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Abstract

We describe a protocol for two-party private set intersection (PSI) based on Diffie-Hellman key
agreement. The protocol is proven secure against malicious parties, in the ideal permutation + random
oracle model.

For small sets (500 items or fewer), our protocol requires the least time and communication of any
known PSI protocol, even ones that are only semi-honest secure and ones that are not based on Diffie-
Hellman. It is one of the few significant improvements to the 20-year old classical Diffie-Hellman PSI
protocol of Huberman, Franklin, and Hogg (ACM Elec. Commerce 1999).

Our protocol is actually a generic transformation that constructs PSI from a class of key agreement
protocols. This transformation is inspired by a technique of Cho, Dachman-Soled, and Jarecki (CT-RSA
2016), which we streamline and optimize in several important ways to achieve our superior efficiency.

1 Introduction

In a private set intersection (PSI) protocol, Alice provides an input set X of items, Bob provides an input
set Y , then one or both of them learn X ∩Y , without learning anything about their opponent’s items not in
the intersection. Many of the most compelling real-world applications of secure multiparty computation are
direct applications of PSI, or close variants of PSI such as private contact discovery [MPGP09, DRRT18].

PSI state of the art. Recently, PSI protocols have been the focus of significant concrete performance
improvements (see [HEK12, DCW13, PSZ14, PSSZ15, KKRT16, RR17a, RR17b, CDCS18, PRTY19, CM20,
PRTY20]). There are several protocol paradigms for PSI, but in this work we focus on the two most practical
approaches: Diffie-Hellman and OT-extension. Other protocol paradigms (FHE, RSA, generic MPC)
are many orders of magnitude slower.

Diffie-Hellman protocols. The first and arguably simplest PSI protocol is due to Huberman, Franklin,
and Hogg [HFH99], but with roots as far back as Meadows [Mea86]. It is a semi-honest protocol that
requires exponentiations in a Diffie-Hellman group proportional to the number of items in the sets. Because
this protocol follows so elegantly from Diffie-Hellman key agreement, there is a rather limited design space
of variants for semi-honest security (one variant is implicit in [JL10]). The DH-PSI protocol has been
strengthened for malicious security in several works. The most efficient to date is due to De Cristofaro,
Kim, and Tsudik [DKT10]. Another efficient, malicious variant is due to Jarecki & Liu [JL10], although it
achieves a functionality that slightly relaxes the input independence security guarantee.
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OT-extension protocols. The other category of PSI protocols is based on OT extension. With OT
extension [Bea96, IKNP03], parties can generate many instances of oblivious transfer with only a small
constant number of public-key operations. By basing PSI on many OTs, the number of public-key operations
(exponentiations) in the resulting PSI protocol scales only with the security parameter, and not with the
size of the input sets. PSI protocols in this category include [PSZ14, PSSZ15, KKRT16, RR17a, RR17b,
PRTY19, PRTY20, CM20].

As a general rule, OT-based protocols are (significantly) faster but require more communication than
Diffie-Hellman-based protocols. However, recent work of Pinkas et al. [PRTY19] presented an OT-based
protocol with slightly less communication (and running time) than Diffie-Hellman-based PSI.

Why Care About Diffie-Hellman PSI? Since DH-based PSI is much slower (with exponentiations
linear in the number of items) than OT-based PSI, what is the value in studying it? We suggest several
reasons:

• In some scenarios, communication cost is overwhelmingly more important than computation cost.
For a concrete example, Ion et al. [IKN+17, IKN+19] report on their real-world deployment of a PSI-
like functionality within Google. They chose to deploy Diffie-Hellman PSI, and justified their choice as
follows:

“Somewhat surprisingly, for the offline ‘batch computing’ scenarios we consider, communication costs
are far more important than computation. This is especially the case for a secure protocol involving
multiple businesses, where servers cannot be co-located (Wide area network solutions). Networks are
inherently shared, and it is much less expensive to add CPUs to a shared network than to expand network
capacity.” [from [IKN+19], bold formatting not in the original]

Our improved DH-PSI protocol has the lowest communication among DH-based and OT-based protocols.1

• Consider the regime of PSI on small sets. For example, the PrivateDrop [HHS+21] system enhances
Apple’s AirDrop feature by performing a PSI of one user’s entire address book (a few thousand items)
with another user’s own personal identifiers (e.g., phone numbers and email addresses; perhaps 10 items),
in order to determine whether one user appears in the other’s address book. In another example, two
parties may wish to use PSI of their available calendar times to schedule a meeting (∼360 half-hour slots
during business hours in a single month). DH-based PSI protocols are the cheapest for these input sizes
(equal-size sets of a few hundred items, or sets of highly unbalanced size where the larger set is a few
thousand items); our improvements to DH-PSI give even further improvements.

OT-based PSI protocols use OT extension, whose “base OTs” each require public-key operations (ex-
ponentiations). Concretely, using the most efficient 1-out-of-2 OT protocol to date [MR19], 128 base
OTs cost 3 × 128 = 384 group elements of communication and 5 × 128 = 640 exponentiations. This
is already more expensive than our improved DH-PSI protocol on sets of size 200, meaning that our
protocol is necessarily cheaper than any OT-extension-based protocol for sets of this size. In
fact the breakeven point, where OT-based protocols overtake ours, is between 500 and 1000 items on a
fast network (10Gbps) and beyond 1000 items for a slow network (50Mbps).

• For OT-based PSI protocols, the performance gap between semi-honest and malicious is quite narrow
due to recent improvements in malicious PSI by [PRTY20]. The case for DH-based PSI is much different,
where the most efficient malicious PSI is 5× slower and requires 2.5× more communication. Our new
approach essentially closes the performance gap between semi-honest and malicious, for DH-based
PSI.

• Finally, the semi-honest DH-PSI protocol of [HFH99] is a truly classic protocol that has not been improved
upon in over 20 years. Our new semi-honest protocol variant is the first to improve the communication
cost of DH-PSI, and the improvement is not minor (over 40%). Even our malicious variant is more
efficient than the classic semi-honest protocol. The only comparable improvement that we know of is due
to Jarecki & Liu [JL10] who show how to improve only the computational cost, by about 5-15% in our
experience.

1Some protocols based on FHE or RSA [DT10, ADT11] have even lower communication, but are several orders of magnitude
higher in computation cost.
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1.1 Related Work

Since its introduction, several techniques have been proposed to improve PSI’s performance. In this section,
we give an overview on existing efficient PSI protocols with more focus on the solutions that have linear-
communication complexity due to public-key techniques. From here on, we assume that each set has n
items, where each item has σ-bit length. We let λ and κ denote the statistical and computational security
parameters, respectively.

The earliest PSI protocols were presented in the 1980s-1990s [Mea86, HFH99] and proven secure against
semi-honest adversaries, in the random oracle model. These protocols remain the basis for comparison among
Diffie-Hellman-based protocols.

Freedman et al. [FNP04] introduced PSI protocols secure against semi-honest and malicious adversaries
in the standard model. Their protocol was based on oblivious polynomial evaluation (OPE) which is imple-
mented using additively homomorphic encryption (AHE), such as Paillier encryption scheme. Relying on
the OPE technique, Kissner and Song [KS05] proposed protocols for different set operations, such as set-
intersection and set-union with quadratic computation and communication complexity in the size of dataset.
Dachman-Soled et al. [DMRY09] present an improved construction of PSI protocol [KS05], which achieves
communication of O(nκ2 log2(n) + κn) group elements and O(n2κ log(n) + nκ2 log2(n)) exponentiations in
the presence of malicious adversaries. They avoid generic zero-knowledge due to the fact that Shamir’s
secret sharing implies a Reed-Solomon code. Later, Hazay and Nissim [HN10] extend OPE-based PSI proto-
col, and combine the efficiency of perfectly hiding commitment scheme with an OPRF evaluation protocol.
The PSI protocol in [HN10] incurs communication of O(n(1 + log σ)) group elements, and computation of
O(n(1 + log log(n) + log(σ)) modular exponentiations. Later, other variants of the problem were also in-
vestigated such as size-hiding set intersection [BFT16, CDCS18], PSI cardinality [DGT12, DD15], Private
Intersection-Sum [IKN+19]. Here we highlight public-key based PSI protocols with linear-complexity.

Semi-honest PSI protocols. The current state-of-the-art for semi-honest PSI (independent of whether
the protocols are based on DH or not) are the protocols of [KKRT16, PRTY19, CM20], with the best protocol
depending on the relative cost of computation vs communication. Our protocol involves encoding values into
polynomials, and this technique appears in some form in several PSI protocols. One such protocol is due
to Cho, Dachman-Soled, and Jarecki [CDJ16]. Our protocol builds heavily on theirs, and we discuss it in
more detail later. Another protocol of Pinkas et al. [PRTY19] is based on OT extension but also encodes
certain values in a polynomial. Until our work, this protocol has had the lowest communication, excluding
protocols based on expensive FHE or RSA accumulators.

For RSA-based PSI approaches, to the best of our knowledge, the work of Cristofaro and Tsudik [DT10],
and its improvement [ADT11] proposed PSI protocols with lowest communication in this semi-honest setting.
These protocol are based on RSA accumulators. The latter protocol achieves communication that is only
marginally more than the insecure protocol for intersection (in which parties simply send hashes of their
inputs). However, their computational requirements (at least n log(n) RSA exponentiations) make the
protocol prohibitively expensive in practice due to the cost of RSA operations. We give further comparisons
to the RSA approach later in Section 5.2.

Malicious PSI protocols. Jarecki and Liu [JL09] proposed the first linear-complexity PSI protocol based
on OPRF in the presence of malicious adversaries. They constructed an OPRF protocol for the Dodis-
Yampolskiy PRF fk(x) = g1/(k+x), which requires O(1) modular exponentiations and has constant-round
communication. However, the secure computation protocol for their OPRF functionality is in the Common
Reference String (CRS) model, where the CRS includes a safe RSA composite that either must be pre-
generated by a trusted party or implies high overhead when produced in the secure two-party computation
model. Another limitation of this protocol is that its security proof runs an exhaustive search over the input
domain. This implies that the domain of the inputs should be polynomial in the security parameter.

De Cristofaro et al. [DKT10] presented a PSI protocol secure in the malicious setting, which achieves
the same asymptotic bound as the previous work [JL09] without restricting the input domain size, and does
not require the CRS model. Their PSI protocol incurs computation of 11n+ 3 modular exponentiations in
a cyclic group.
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Figure 1: Time vs communication for PSI protocols on n = 256 items; LAN setting. Both axes are in
log-scale.

Jarecki and Liu [JL10] is a concurrent work with [DKT10]. Their protocol [JL10] requires only 5n
modular exponentiations for computing the adaptive set intersection in the presence of malicious adversaries,
but under a One-More Gap Diffie-Hellman (OMGDH) assumption, which assumes that the One-More Diffie-
Hellman problem is hard even when the DDH problem is easy.

Currently, the fastest malicious 2-party PSI protocols are due to Pinkas et al. [PRTY20], and more
recently Rindal & Schoppmann [RS21]. They are not based on Diffie-Hellman, but on efficient OT extension
or vector OLE [BCG+19]. The protocol of [RS21] is efficient when the set size is sufficiently large (e.g.
n > 220), but it has significant fixed costs that make it inefficient for smaller sets.

In Table 1, we show the theoretical communication complexity of our protocol compared with the semi-
honest and malicious protocols.

Protocol Communication
n = n1 = n2 Hardness

28 29 210 212 216 220 Assumption

Semi Honest
DH-PSI (φ+ λ+ log(n1n2))n1 + φn2 568n 570n 572n 576n 584n 592n CDH
KKRT [KKRT16] (3 + s)(λ+ log(n1n2))n1 + 1.2`n2 + |baseOT| 1349n 1388n 1418n 1094n 1032n 1018n

CDH
SpOT-low [PRTY19] 1.02(λ+ log2(n2) + 2)n1 + `n2 + |baseOT| 483n 493n 495n 499n 515n 532n
SpOT-fast [PRTY19] 2(λ+ log(n1n2))n1 + `(1 + 1/λ)n2 + |baseOT| 547n 559n 563n 571n 595n 619n
PaXoS [PRTY20] (λ+ log2(n1n2))n1 + `(2.4n2 + λ+ χ) + |baseOT| 1074n 1095n 1097n 1101n 1128n 1155n
CM [CM20] (λ+ log(n1n2))n1 + 4.8κn2 + |baseOT| 670n 672n 674n 678n 686n 694n
VOLE-PSI (PaXoS)[RS21] (λ+ log(n1n2))n1 + 217κn0.05

2 + 2.4κn2 + |baseOT| 86838n 45128n 23538n 6580n 825n 419n
LPN+CDH

VOLE-PSI (interpolation)[RS21] (λ+ log(n1n2))n1 + 217κn0.05
2 + κn2 + |baseOT| 86659n 44948n 23358n 6400n 646n 240n

Ours (var. 1) (λ+ log(n1n2))n1 + φn2 + φ 312n 314n 316n 320n 328n 336n CDH
Ours (var. 2 – no ideal perm.) (λ+ log(n1n2))n1 + φn2 + 2φ 312n 314n 316n 320n 328n 336n ODH

Malicious
DKT [DKT10] 2κn1 + 6φn2 + 2φ 1792n 1792n 1792n 1792n 1792n 1792n CDH
JL [JL10] 2κn1 + 3φn2 1024n 1024n 1024n 1024n 1024n 1024n OMGDH
Hazay [Haz18] φ(n1 + n2) log(n1 + n2) 4608n 5120n 5632n 6656n 8704n 10752n CDH
PaXoS [PRTY20] 2κn1 + `(2.4n2 + 2λ+ χ) + λ(2.4n2 + 2`) + |baseOT| 1370n 1389n 1389n 1389n 1408n 1427n CDH
VOLE-PSI (PaXoS)[RS21] 2κn1 + 217κn0.05

2 + 2.4κn2 + |baseOT| 87038n 45326n 23734n 6772n 1009n 595n
LPN+CDH

VOLE-PSI (interpolation)[RS21] 2κn1 + 217κn0.05
2 + κn2 + |baseOT| 86859n 45146n 23554n 6592n 830n 416n

Ours 2κn1 + φn2 + φ 512n 512n 512n 512n 512n 512n ODH

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using computational security
κ = 128 and statistical security λ = 40. The cost of base OTs are independent of input size and equal to
5κ, which are ignored in the columns n = n1 = n2. n1 and n2 are the input sizes of the sender and receiver
respectively. φ is the size of elliptic curve group elements (256 is used here). ` is width of OT extension
matrix (depends on n1 and protocol). χ is the upper bound on the number of cycles in a cuckoo graph of
PaXoS. The hardness assumptions that we list do not include random oracle or ideal permutation.

1.2 Summary of Our Results

We show how to transform any KA protocol (with pseudorandom messages and a natural non-malleability
property) into a PSI protocol.
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CDJ starting point. Our starting point is an approach of Cho, Dachman-Soled, and Jarecki (CDJ).
Suppose Alice holds items x1, . . . , xn and Bob has items y1, . . . , yn. Each party will run n instances of a
(malicious) secure string equality test protocol, one for each of their inputs. Consider Alice’s equality-test-
protocol instance corresponding to item xi. How will she send the protocol messages to Bob so that (1) if
Bob also has xi, then he will associate it with this instance (of the equality-test protocol) and not some other
one, (2) if Bob doesn’t have xi, he won’t know whether Alice was running an instance associated with xi?

The main insight of CDJ — inspired by a technique originally due to Manulis, Pinkas, and Poetter-
ing [MPP10] — is to embed protocol messages in a polynomial. For each message of the equality-test
protocol, Alice will interpolate a polynomial P such that P (xi) equals the next message for the ith equality
test instance. When Bob receives the polynomial, he can evaluate it at each of his yi inputs, respond to each
one, and encode them into a polynomial of his own. Importantly, if the equality-test protocol messages are
sufficiently random, then the polynomial P hides the xi values of Alice.

Our improvements. We improve this CDJ paradigm in several dimensions. (1) Instead of embedding
messages from a malicious-secure string-equality protocol into a polynomial, we can embed messages from a
plain key agreement (KA) protocol. (2) We show that one party can avoid embedding n KA messages
into a polynomial, and instead send only one KA message. This reduces the total communication significantly.
(3) We simplify the protocol to use an ideal permutation in place of an ideal cipher.

In more detail, the CDJ mechanism has the parties run n instances of string equality tests. Each equality
test will return either true or false, indicating which items are in the intersection. We observe that full-
fledged equality tests are overkill for CDJ. Instead, let the parties run n instances of plain KA, embedded
into polynomials according to their PSI inputs. Each of these KA instances terminates with an output key.
If Alice and Bob hold a common item, then they will have a key in common. If Alice has an item that Bob
doesn’t (or vice-versa), we show that Alice computes a key that looks random to Bob. Hence, for PSI it
suffices for the parties to simply compare their set of KA outputs in the clear.

Not only are key agreement protocols conceptually simpler and more concretely efficient than string
equality test protocols — they are also inputless. As a result, KA protocols have the property that their
first protocol message can be reused for many instances. This is not necessarily true for a string equality
test protocol, where the party’s input string would typically be “baked into” the first protocol message. In
terms of the PSI protocol, this means that our protocol does not require a large polynomial of degree n (for
n items) for the first message. Instead, Alice can send just a single KA protocol message, to which Bob
computes n KA responses.

For a two-message KA protocol (like Diffie-Hellman), the fact that the second message is pseudorandom
ensures that the polynomial hides the input set. By adding random oracle calls in a few selected places,
we provide a “hook” for the simulator to extract malicious parties’ inputs, yielding a malicious-secure PSI
protocol.

Finally, the CDJ mechanism uses an ideal cipher for technical reasons (giving the simulator the ability
to ”program” outputs of the polynomial). We show that a simpler ideal permutation suffices.

Performance of the Diffie-Hellman Instantiation. When our new PSI paradigm is instantiated with
Diffie-Hellman KA, we obtain the most efficient DH-based PSI protocol to date. For malicious security we
require the oracle Diffie-Hellman (ODH) assumption [ABR01] to hold in the cyclic group. For semi-
honest security we give two variants of the protocol — one that requires only the standard CDH or DDH
assumption, and another that only requires ODH but completely avoids the ideal permutation.

Our protocol is both faster and uses less communication than any other protocol, when the
set sizes are small (less than 1000 items) — even considering semi-honest protocols and protocols based
on OT extension, which are faster on large sets. For n = 256 items, our malicious protocol is 18-30%
faster (depending on the network speed) and uses 10% less communication than the next best (semi-honest)
protocol. Our semi-honest variants use 45% less communication than the next best. See Figure 1 for a
complete comparison.

To the best of our knowledge, ours is the first significant improvement in communication cost
to the 20-year old classic DH-PSI protocol, due to [HFH99]. We reduce the communication cost
while simultaneously promoting it from semi-honest to malicious security. The classic semi-honest DH-PSI
protocol of [HFH99] requires total communication 2n group elements plus n hashes; the total computation is
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Parameters: Size of parties’ sets: n for honest parties and n′ for corrupt parties.

Functionality:

• Wait for input Y ⊆ {0, 1}∗ from receiver. Abort if |Y | > n and the receiver is honest, or if |Y | > n′

and the receiver is corrupt.

• Wait for input X ⊆ {0, 1}∗ from sender and abort if |X| > n.

• Give output X ∩ Y to the receiver.

Figure 2: PSI ideal functionality.

4n variable-base exponentiations. In our protocol, the total communication is only n+1 group elements plus
n hashes; the total computation is 3n fixed-base exponentiations, 2n variable-base exponentiations, and 2
polynomial interpolation/multi-evaluations of a degree-n polynomial. The leading malicious DH-based PSI
protocol is due to De Cristofaro, Kim, and Tsudik [DKT10]; its total communication is 6n group elements
plus n hashes; the total computation is 2n fixed-based exponentiations and 4n variable-base exponentiations.
Our malicious protocol is over 30× faster and uses 80% less communication.

1.3 Updates Since Initial Publication

October 2021: We have revised the security of our semi-honest protocol variant. The original security
proof had a bug which we have repaired. We also include a new variant of the semi-honest protocol that
does not require an ideal permutation, but adds one extra field element of communication and requires
the non-malleability property from the underlying KA scheme (the same property needed for our malicious
protocol).

2 Preliminaries

2.1 Security Model

Secure two-party computation allows mutually distrusting parties to jointly perform a computation on their
private inputs without revealing any additional information except for the result itself. There are two
adversarial models, which are usually considered. In the semi-honest model, the adversary is assumed to
follow the protocol, but may try to learn information from the protocol transcript. In the malicious model,
the adversary follows an arbitrary polynomial-time strategy, and feasibility holds in the presence of both
types of attacks.

2.2 PSI functionality

In Figure 2, we formally describe the PSI functionality, which allows 2 parties to compute the intersection
of their datasets without revealing any additional information.

Note that the functionality allows a corrupt receiver to have more input items (n′) than is “advertised”
(n). This property reflects the fact that our protocol can’t tightly enforce the number of items held by the
receiver. This is a common feature of PSI protocols, shared in particular by all the fastest malicious-secure
PSI protocols [RR17a, RR17b, PRTY20]. We discuss specific relationship between n′ and n achieved by our
protocol in Section 4.1.

2.3 Polynomial Operations

A common implementation of polynomial interpolation and multi-point evaluation is based on Lagrange
algorithm, which costs O(n2) field operations. This implementation typically uses for low-degree polynomials.
However, when n is very large (e.g. n = 220) this algorithm is completely impractical. In this work,
we use the faster algorithms [MB72] which achieves computational complexity of O(n log2 n) arithmetic
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operations. At the high level idea, the algorithms for both problems follow the divide-and-conquer approach.
Particularly, the problem is reduced to two half-size problems after each iteration. Each combination of
individual solutions from two half-size problems to the full-size solution costs O(n log n). Therefore, the
total complexity of polynomial interpolation and multi-point evaluation is O(n log2 n).

Given X = {x1, . . . , xn} ⊆ F and Y = {y1, . . . , yn} ⊆ F, we use P = interpolF({(x1, y1), . . . , (xn, yn)}) to
refer to polynomial interpolation which finds the unique (n−1)-degree polynomial P that satisfies P (xi) = yi
for all i ∈ [n].

2.4 Ideal Permutation

In the ideal permutation model, all parties have oracle access to a random permutation Π on {0, 1}n and
its inverse Π−1. We write Π± to refer to the pair of these oracles. In the proof of security, the simulator
answers the interface of Π±, meaning that it can observe all queries and program the responses. The ideal
permutation model is similar to, but weaker than, the ideal cipher model. An ideal cipher is a family of ideal
permutations, one for each key.

The ideal permutation assumption has recently become popular in practical MPC implementations,
because it allows one to base cryptographic operations on a fixed-key block cipher — i.e., to use hardware-
accelerated AES instructions without computing the AES key schedule. Ideal permutations have been
used to realize efficient hashing functions for garbled circuits and OT extension [BHKR13, GKWY20].
Our work requires an ideal permutation that supports key-agreement messages as inputs, therefore our
implementation uses Rijndael-256 rather than AES (whose block size is only 128). We note that other
options are available to instantiate an ideal permutation. For example, symmetric-key constructions that
use the sponge methodology [BDPV08] all use an efficient underlying ideal permutation.

3 Key Agreement Preliminaries

We construct PSI from 2-round key-agreement protocols. A 2-round key agreement protocol KA has
several parameters:

• KA.R is the space of random coins for the two parties.

• KA.M is the space of possible messages for Party 2.

• KA.K is the space of possible output keys.

A key agreement protocol consists of algorithms: KA.msg1, KA.msg2, KA.key1, KA.key2, which correspond to
an interactive key agreement protocol as shown in Figure 3.

Party 1 Party 2

a← KA.R

m1 = KA.msg1(a)
m1

b← KA.R
m2 = KA.msg2(b,m1)

m2

output KA.key1(a,m2) output KA.key2(b,m1)

Figure 3: Generic 2-round key agreement protocol

In some 2-round key agreement protocols, the second message m2 does not depend on the first message
m1, and we can write m2 = KA.msg2(b) instead of m2 = KA.msg2(b,m1). In these cases, m1 and m2 can be
sent simultaneously (or in either order), and we say that the key agreement protocol is one-round.
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3.1 Security Properties

Different instantiations of our PSI protocol will require the following security properties of a key agreement
protocol. Note that Definition 4 and strongly uniform KA (SU-KA) [FMV19] are similar, but our definition
is specialized to 1-round KA.

Definition 1. A KA scheme is correct if, when executed honestly as shown in Figure 3, the two parties
give identical output. In other words, for all a, b ∈ KA.R:

KA.key1(a,KA.msg2(b,KA.msg1(a))) = KA.key2(b,KA.msg1(a))

Definition 2. A KA scheme is secure against an eavesdropper if the following distributions are indis-
tinguishable:

a, b← KA.R
m1 = KA.msg1(a)
m2 = KA.msg2(b,m1)

k = KA.key2(b,m1)

return (m1,m2, k)

a, b← KA.R
m1 = KA.msg1(a)
m2 = KA.msg2(b,m1)

k ← KA.K
return (m1,m2, k)

Definition 3. A KA scheme is non-malleable if it is secure (in the sense of Definition 2) against an
eavesdropper that has oracle access to KA.key1(a, ·), provided the eavesdropper never queries the oracle on
m2. Formally, the following distributions are indistinguishable, for every PPT A that never queries its oracle
on input m2:

a, b← KA.R
m1 = KA.msg1(a)
m2 = KA.msg2(b,m1)

k = KA.key2(b,m1)

return AKA.key1(a,·)(m1,m2, k)

a, b← KA.R
m1 = KA.msg1(a)
m2 = KA.msg2(b,m1)

k ← KA.K
return AKA.key1(a,·)(m1,m2, k)

Definition 4. A KA scheme has pseudorandom second messages if m2 is indistinguishable from ran-
dom, even to someone who chooses m1 adversarially. Formally, the following distributions are indistinguish-
able for all PPT A:

(view, m̃1)← A
b← KA.R
m2 = KA.msg2(b, m̃1)
return (view,m2)

(view, m̃1)← A

m2 ← KA.M
return (view,m2)

3.2 Diffie-Hellman Instantiation

The classic Diffie-Hellman key agreement protocol is a one-round KA protocol (meaning that the two mes-
sages can be sent simultaneously). It is parameterized by a cyclic group G = 〈g〉 of order q, and defined
as:

• KA.R = Zq (space of private randomness)

• KA.M = G (space of second party’s protocol messages)

• KA.msg1(a) = ga

• KA.msg2(b) = gb

In this work we consider the “hashed” variant of DH which is secure under the computational Diffie-Hellman
(CDH) assumption in the random oracle model. Let H : G→ {0, 1}` be a random oracle, then:

• KA.K = {0, 1}` (space of output keys)

• KA.key1(a, gb) = H((gb)a)

• KA.key2(b, ga) = H((ga)b)
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Elligator DHKA

Modern applications of DHKA use elliptic curves for the underlying cyclic group, due to their compact size
(e.g., group elements with representations roughly 2κ bits, for κ bits of security). However, encodings of
elliptic curve elements are rather conspicuous, and can easily be distinguished from uniformly distributed
strings. Our PSI protocols require the KA protocol messages (specifically, m2) to be pseudorandom as
strings.

In [BHKL13], Bernstein et al. explicitly consider the question of encoding elliptic curve elements so that
the resulting Diffie-Hellman protocol has pseudorandom messages (viewed as strings). Formally, they define
an encoding mechanism called elligator with the following properties:

• There are efficient encoding/decoding functions dec, enc which are inverses, where im(enc) ⊆ {0, 1}t is a
set of strings and im(dec) ⊆ E is a subset of elliptic curve points.

• The size of im(enc) is very close to 2t, so that the uniform distribution over encodings is indistinguishable
from the uniform distribution over {0, 1}t

• The size of im(dec) is a constant fraction (typically close to 1/2) of the size of the elliptic curve.

• It is possible to efficiently test for membership in im(enc) (and hence also in im(dec)).

After defining such an elligator encoding method for Edwards curves, Bernstein et al. propose to modify
Diffie-Hellman key agreement as follows:

• KA.R = {r ∈ Zq | gr ∈ im(dec)}.

• KA.M = {0, 1}t

• KA.msg1(a) = enc(ga)

• KA.msg2(b) = enc(gb)

• KA.key1(a, sb) = H(dec(sb)
a)

• KA.key2(b, sa) = H(dec(sa)b)

In other words, the parties condition their randomness to always sample a point in the “elligator subset”
im(dec) of the curve. In practice, each party would repeatedly sample an exponent r ← Zq and retry until
finding one in the elligator subset. Since |im(dec)|/|E| is constant, only a constant number of trials is needed
before successfully hitting im(dec). Furthermore, the concrete security of DHKA is degraded by only a small
constant factor.

Due to the desired properties of the elligator encoding, the protocol messages are uniform in im(enc) and
hence pseudorandom in {0, 1}t.

Security properties

The security of hashed DHKA against an eavesdropper (Definition 2) is standard and follows from the CDH
assumption.

The “pseudorandom second messages” property (Definition 4) of the elligator-DHKA protocol follows
from the properties of elligator discussed above. Note that in DHKA, m2 doesn’t depend on m1, so the
adversary’s ability to choose m1 in Definition 4 is irrelevant.

Finally, the “non-malleable” property (Definition 3) of hashed DHKA is equivalent to the oracle DH
(ODH) assumption proposed by Abdalla, Bellare, and Rogaway [ABR01]. Roughly speaking, the ODH
assumption is that ga, gb, H(gab) is indistinguishable from random in the presence of an oracle for X 7→
H(Xa), as long as the distinguisher doesn’t query that oracle on gb. Here H is the hash function / random
oracle used in hashed DHKA. In [ABR01] it is shown that the ODH assumption holds in the generic group
model when H is a random oracle.
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4 Malicious PSI from Key Agreement

In this section we present our main result, a malicious 2-party PSI protocol. Our protocol requires the
following building blocks:

• A 2-round KA protocol KA. Recall that KA.M is the space of possible protocol messages. We require
KA.M = F for some finite field F, and that the KA protocol has pseudorandom messages in this field.
We also require the KA protocol to be non-malleable in the sense of Definition 3.

• Parties have oracle access to an ideal permutation Π,Π−1 defined over the same field F. We write Π± to
refer to the two functions Π,Π−1 collectively. Parties also have access to random oracles H1, H2.

As a concrete example, we can choose hashed DHKA with elligator encodings (see Section 3.2), whose
protocol messages are pseudorandom in {0, 1}`, and then set F be to the field GF (2`). Under the ODH
assumption, hashed DHKA is also non-malleable. We give more details about instantiating our protocol
with Diffie-Hellman in Section 5.

Protocol Overview. Following the overview given in Section 1, the sender sends the first KA message.
Intuitively, the receiver prepares a polynomial P such that P (yi) is a KA response that it chooses, for each
yi in its set. If KA responses are pseudorandom then the polynomial P hides the identities of the yi-values.

However, for technical reasons we make the receiver prepare a polynomial such that P (H1(yi)) = Π−1(mi)
where H1 is a random oracle, Π is an ideal permutation, and mi is the KA response. The presence of random
oracle H1 helps the simulator extract from a corrupt receiver (from observing its H1-queries). The presence
of the ideal permutation helps the simulator (against both corrupt parties), by programming Π to output
KA messages chosen by the simulator.

Finally, the sender can interpret Π(P (H1(xi))) as a KA response, for each xi in its set, and compute the
corresponding KA output ki. For each xi, the sender sends H2(xi, ki) to the receiver. The presence of this
random oracle again helps the simulator extract from a corrupt sender.

The protocol is described formally in Figure 4. interpolF denotes polynomial interpolation over field F,
as discussed in Section 2.3.

Lemma 5. The protocol of Figure 4 is UC-secure against a malicious sender, if KA has pseudorandom
messages (Definition 4), Π± is an ideal permutation, and H2 is a random oracle.

Before giving the proof, we first sketch the main idea of the simulator. When the simulator sees the
set K provided by the adversary, it needs to extract a set of items that “explains” the effect of K on the
honest party. The elements of K are supposed to have the form H2(xi, ki), where ki is the “correct” KA
output for item xi. The simulator observes all queries to H2, so it can see which H2-outputs are placed into
K — but how can the simulator check that some ki is the “correct” KA output corresponding to item xi?
To do this, we let the simulator program Π so that every output of Π is a KA message for which it knows
the randomness. Now for any x, the simulator can compute the corresponding KA output, using the KA
randomness it associates with Π(P (H1(x))).

Proof. We first describe the behavior of the simulator.

• The simulator honestly plays the role of random oracle H2. For every query H2(x, k) made by the
adversary, the simulator records the input-output tuple (x, k,H2(x, k)) in a set O2.

• For every query of the form Π(f) made after the message m is sent, the simulator chooses a random
bf ← KA.R and simulates KA.msg2(bf ,m) as the output of Π(f).

• In step 4, the simulator sends a uniform polynomial P .

• Upon receiving K in step 6, the simulator defines the set

X̃ = {x | ∃k′ :
(
x,KA.key2(bP (H1(x)),m), k′

)
∈ O2 and k′ ∈ K}

and sends X̃ to the ideal PSI functionality (which causes the honest receiver to obtain output X̃ ∩ Y ).
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Parameters: finite field F
KA protocol KA with KA.M = F and |KA.K| ≥ 2κ

ideal permutation Π,Π−1 : F→ F
random oracles H1 : {0, 1}∗ → F,

H2 : {0, 1}∗ × F→ {0, 1}2κ

Sender Receiver
X = {x1, . . . , xn} ⊆ {0, 1}∗ Y = {y1, . . . , yn} ⊆ {0, 1}∗

1. a← KA.R
2. m = KA.msg1(a)

m

3. for i ∈ [n]:
bi ← KA.R
m′i = KA.msg2(bi,m)
fi = Π−1(m′i)

4. P = interpolF

(
{(H1(yi), fi) | yi ∈ Y }

)
P

(abort if deg(P ) < 1)

5. for i ∈ [n]:
ki = KA.key1(a,Π(P (H1(xi))))

k′i = H2(xi, ki)
6. K = {k′1, . . . , k′n} (shuffled)

K

7. output
{
yi

∣∣∣ H2

(
yi,KA.key2(bi,m)

)
∈ K

}
Figure 4: Our malicious PSI protocol.

We prove that this simulation is indistinguishable from the real interation via the following sequence of
hybrids.

Hybrid 0: The real interaction, with the receiver running honestly with input Y and giving its output to
the environment according to the protocol specification.

Hybrid 1: Same as the previous hybrid, except for how Π± is simulated. A query to Π (resp. Π−1) is
fresh if it was never made before, and its value is not determined by previous queries to Π−1 (resp. Π) and
the fact that Π/Π−1 are inverses. In this hybrid, all fresh queries (by either the adversary or honest party)
to Π and Π−1 are answered with a uniformly random response. The interaction aborts if this leads to Π or
Π−1 repeating an output. This change is indistinguishable from the standard permutation switching lemma.

Hybrid 2: Same as the previous hybrid, except for how P is generated. In step 3, P is generated by
interpolating through points of the form Π−1(KA.msg2(bi,m)). In this hybrid we abort if these queries to
Π−1 are not fresh — i.e., if KA.msg2(bi,m) previously occurred as either an adversary’s query to Π−1 or as
an output of an adversary’s query to Π.

If the KA.msg2(bi,m) terms were independently and uniformly random, then this abort would happen
with probability bounded by nq/|F|, when the adversary makes q oracle queries. By the pseudorandom
property of the KA scheme, each KA.msg2(bi,m) is indistinguishable from random, so the abort probability
is negligibly close to nq/|F|. Either way, the probability is negligible, so the hybrids are indistinguishable.

Now conditioned on not aborting, we have that each Π−1(KA.msg2(· · · )) is a fresh and uniform value.
Hence, P is distributed as a uniform polynomial, independent of the yi values. Then this interaction is
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identical to one in which we first choose a uniform polynomial P and then later program Π(P (H1(yi))) =
KA.msg2(bi,m) for each yi ∈ Y (aborting if Π is already programmed on this point).

Hybrid 3: Same as the previous hybrid, except for how Π is simulated. For every fresh query Π(f) made
after the adversary sends m, sample bf ← KA.R and respond with KA.msg2(bf ,m) (instead of responding
with a uniform result). This change is indistinguishable by the pseudorandomness property of KA.

Note that we have already been simulating Π(P (H1(yi))) in this way for yi ∈ Y , but with different
variable names (randomness bi rather than bf for f = P (H1(yi))). If we rename randomness bi (for yi ∈ Y )
to bP (H1(yi)) then we program Π in the same way for all inputs, with no special case for the elements of Y .
In doing so, the honest party’s output is computed via:

{yi ∈ Y | H2

(
yi,KA.key2(bP (H1(yi)),m)

)
∈ K}

Hybrid 4: The honest receiver queries H2 to determine its final output (in the expression above). In this
hybrid we abort if one of those H2 queries is fresh (meaning that the adversary did not make that query) and
yet the result is in K. The probability of a fresh query’s output being an element of K is |K|/|F| = n/|F|,
which is negligible. Therefore this change is indistinguishable.

Suppose the final hybrid maintains the list O2 as described earlier — i.e., (x, k, k′) ∈ O2 means that the
adversary queried H2(x, k) and got a result k′. Since the receiver only “recognizes” values that the adversary
has already queried to H2, this final hybrid is identical to one in which the receiver’s output is computed as:

{yi ∈ Y | ∃k′ :
(
yi,KA.key2(bP (H1(yi)),m), k′

)
∈ O2 and k′ ∈ K}

But this is logically equivalent to:

Y ∩ {x | ∃k′ :
(
x,KA.key2(bP (H1(x)),m), k′

)
∈ O2 and k′ ∈ K}︸ ︷︷ ︸

X̃

Here X̃ is the set that the simulator can define. Hence this hybrid is identical to the ideal interaction
involving the simulator defined earlier.

Lemma 6. The protocol of Figure 4 is UC-secure against a malicious receiver, if KA is non-malleable
(Definition 3), |KA.K| ≥ 2κ, H1, H2 are random oracles, and Π± is an ideal permutation.

Before giving the proof, we first sketch the main idea of the simulator. The simulator’s job, when the
adversary gives the polynomial P , is to extract a set Ỹ that it can send to the ideal functionality. Then,
after learning X ∩ Ỹ , it simulates the message K appropriately. Intuitively, we want to make a distinction
between KA instances where the receiver participates versus KA instances where the receiver acts as an
eavesdropper. The former instances will correspond to the items of Ỹ and the latter instances will contribute
to KA outputs (and elements of K) that look random.

The honest sender will interpret Π(P (H1(x))) as a KA message, for every x ∈ X. The receiver only
“controls” this value if: (1) it made a query to H1(x); (2) it made a backwards query to Π−1 that resulted in
the value P (H1(x)). If on the other hand the adversary chose P (H1(x)) first and only then made a forward
query at Π(P (H1(x))), then intuitively it will have no control over the resulting value.

The simulator observes all queries to Π± and to H1, and can therefore use these criteria to identify which
KA instances will give outputs that the receiver can recognize. All other KA outputs can safely be replaced
with random.

We draw the reader’s attention to two subtleties in the proof: Suppose the adversary queries Π to obtain
some KA message m∗. Since (intuitively) the adversary has no control over m∗, we would like to argue that
the corresponding KA.key(m∗) (slightly abusing notation here) looks random. But suppose the adversary
programs P so that Π(P (H1(y))) = m∗ and Π(P (H1(y′))) = m∗+ 1. If the sender has both inputs y and y′,
then she will compute and send KA.key(m∗) and KA.key(m∗ + 1). Does the former KA output look random
even in the presence of the latter? It does if the KA protocol is non-malleable in the sense of Definition 3.

Another subtlety is that the receiver may choose its polynomial P to have “collisions” in the sense that
P (H1(y)) = P (H1(y′)). This is not a problem or an attack per se, but it means that the hybrids in the
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proof must be structured carefully. The goal of the proof is to justify that the sender’s messages of the form
H2(xi,KA.key(Π(P (H1(xi)))) can be replaced with random values, for all xi not in the intersection. But
the sequence of hybrids does not replace these real values with random one at a time. Instead, we replace
Π(P (H1(·))) outputs, one at a time, with KA messages chosen by the simulator. Then we can argue that
KA.key(Π(P (H1(xi)))) is indistinguishable from random for possibly many values of xi that give the same
P (H1(xi)).

Proof. We first formally describe the behavior of the simulator:

• The simulator honestly plays the role of random oracle H1 and ideal permutation Π±. For every query
H1(y) made by the adversary, record y in a set O1. For every query Π−1(m) = f , where there was no
previous query of the form Π(f) = m, record f in a set OΠ.

• The simulator runs steps 1–2 honestly.

• Upon receiving P in step 4, the simulator defines the set

Ỹ = {y | y ∈ O1 and P (H1(y)) ∈ OΠ}

and sends Ỹ to the ideal PSI functionality.

• Upon receiving output Z = X∩Ỹ from the functionality, the simulator computes kz = KA.key1(a,Π(P (H1(z)))
for each z ∈ Z. Define K = {H2(z, kz) | z ∈ Z} and then keep adding uniformly random values to K
until |K| = |X|. The simulator finally sends this K to the adversary.

We prove that this simulation is indistinguishable from the real interation via the following sequence of
hybrids.

Hybrid 0: The real interaction, with the sender running honestly on input X. In particular, the protocol
message K is generated as follows:

K =
{
H2

(
x,KA.key1

(
a,Π(P (H1(x))

))
| x ∈ X

}
The lists O1 and OΠ are also maintained, as defined above.

Hybrid 1: Same as the previous hybrid, except the interaction aborts in step 5 if there is an x ∈ X where
x 6∈ O1 and yet P (H1(x)) ∈ OΠ. In other words, the adversary nevery queried H1(x) and yet P (H1(x)) is a
value that it previously received as output from Π−1.

It suffices to show that the probability of such an abort is negligible. For any f ∈ OΠ, the polynomial
equation P (·) = f has at most n solutions, since P is a polynomial of degree n, and not the zero polynomial
(that would mean P is a constant polynomial and the sender would have already aborted in step 4). Since
H1(x) is a fresh query never made before (until the simulated sender makes it), it is uniformly distributed
in F and therefore has at most n/|F| probability of satisfying P (H1(x)) = f . Suppose the adversary makes
a total of q queries to its oracles. By a union bound over all n choices of x ∈ X and q choices of f ∈ OΠ,
the total probability of this event is n2q/|F|, which is negligible.

Hybrid (2, i), for i ∈ [q]: Same as the previous hybrid, except for the following changes. For the first i
queries of the form Π(f) = m, where there was no previous query to Π−1(m), add f to the set Si. Note that
Si and OΠ are necessarily disjoint (based on whether Π or Π−1 was queried first). Intuitively, Si are the
first i Π-outputs (interpreted in the protocol as KA protocol messages) that the adversary has no control
over. Then compute K instead as:

K =
{
H2

(
x,KA.key1

(
a,Π(P (H1(x))

))
| x ∈ X and P (H1(x)) 6∈ Si

}
and thereafter add uniformly random elements to K until |K| = n. Note that there may be many values of
x giving the same P (H1(x)) output, so there may be many values of x treated differently between Hybrids
(2, i) and (2, i+ 1).

It should be clear that Hybrid (2, 0) is identical to Hybrid 2, since S0 = ∅ and the new condition is always
true. In Lemma 7 we prove that Hybrids (2, i) and (2, i+ 1) are indistinguishable.
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Hybrid 3: We rewrite Hybrid (2, q) for clarity. In this hybrid, every Π(f) = m that is known in the
interaction is represented in either Sq (for those known by an initial Π-query) or OΠ (for those known by an
initial Π−1 query). In other words, these two sets form a partition of all known Π(f) = m points.

Let us consider how the set K is computed in this hybrid. The condition P (H1(x)) 6∈ Sq is equivalent to
P (H1(x)) ∈ OΠ, meaning that we can write:

K =
{
H2

(
x,KA.key1

(
a,Π(P (H1(x))

))
| x ∈ X and P (H1(x)) ∈ OΠ

}
(padded with random values).

Recall that the interaction aborts if there is any x 6∈ O1 but P (H1(x)) ∈ OΠ. In other words, conditioned
on even reaching this point in the interaction, P (H1(x)) ∈ OΠ implies x ∈ O1. Hence we can further rewrite
the definition of K as:

K =
{
H2

(
x,KA.key1

(
a,Π(P (H1(x))

))
| x ∈ X ∩ O1

and P (H1(x)) ∈ OΠ

}
Now, suppose we define Ỹ = {y | y ∈ O1 and P (H1(y)) ∈ OΠ}. Then K can be rewritten in the equivalent
form:

K =
{
H2

(
x,KA.key1

(
a,Π(P (H1(x))

))
| x ∈ X ∩ Ỹ

}
In this form, it is now clear that the hybrid corresponds to the behavior of the ideal interaction. That is,
the simulator computes Ỹ , and then computes K based only on the contents of Z = X ∩ Ỹ , its output from
the functionality.

Lemma 7. Hybrids (2, i−1) and (2, i) are indistinguishable, if the KA protocol is non-malleable (Definition 3)
and |KA.K| ≥ 2κ.

Proof. The hybrids differ only in the following way: Hybrid (2, i) replaces KA.key1(a,Π(f∗)) with random,
in the event that f∗ was the ith query to Π (with no corresponding prior Π−1 query).

Recall that in the game that defines non-malleability of a KA, the distinguisher receives (m1 = KA.msg1(a),m2, k)
and also gets access to an oracle for K(·) = KA.key1(a, ·), which it cannot query on m2. Below is a reduction
algorithm that is a distinguisher for the non-malleability game:

RK(m1,m2, k):

• Run Hybrid (2, i− 1) against the adversary, using m1 as the PSI protocol message m.

• Maintain set Si−1 as described. On the ith query to Π (i.e., the value that would have been added to
Si), let f∗ denote the input and simulate m2 = Π(f∗) as the response.

• For every expression of the form KA.key1(a,Π(P (H1(x)))) used in the definition of K:

– If P (H1(x)) = f∗ then replace the entire expression with k (input to this reduction algorithm).

– Otherwise, replace the entire expression with the result of K(Π(P (H1(x)))), where K is the reduction
algorithm’s oracle. Since Π is a permutation, we have Π(P (H1(x))) 6= Π(f∗) = m2; in other words,
the oracle K is never invoked on m2.

Intuitively, this reduction algorithm runs the hybrid interaction without knowing the KA randomness a.
Instead, a is used implicitly via m1, k, and the oracle K.

When the input k is the correct key k = KA.key1(a,m2), then the simulation exactly matches Hybrid
(2, i− 1), since the reduction correctly uses k in place of the expression KA.key1(a,Π(f∗)) = KA.key1(a,m2).

Now consider the case that k is a random key. Then whenever P (H1(x)) = f∗, the value H2(x, k)
is added to K. Since H2 is a random oracle, and since k is uniform (and |k| ≥ κ), outputs H2(x, k)
are indistinguishable from random, even for multiple values of x (e.g., in the case where the adversary
constructs P so that P (H1(x)) = f∗ for several values of x). In summary, when k is uniform, the simulation
is indistinguishable from Hybrid (2, i) in which a random value is added to the set K in these cases. The
non-malleabiity of KA means that these two cases are indistinguishable.
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Optimizations. When KA is a one-round key agreement protocol (i.e., message 2 doesn’t depend on
message 1, as in the Diffie-Hellman instantiation), then the two messages m and K from the sender can be
combined. This leads to a 2-round PSI protocol where the first flow is P from the receiver and the second
flow is m,K from the sender.

Note that the direction of the last message (H2 outputs from sender to receiver) is important. It is not
possible to save a round of communication by letting the receiver send H2 outputs to the sender. These H2

outputs are computed using the result of a KA between a common a (chosen by the sender) and various bi
(chosen by the receiver). Knowing a, the sender can compute the “correct” H2 for any x, so the receiver
would expose a dictionary attack by sending their set of H2 outputs.

If security is required against only semi-honest adversaries, then the protocol can be streamlined slightly.
We describe two semi-honest variants in Appendix A, which have slightly improved performance and slightly
more favorable hardness assumptions.

Two other possible optimizations are presented in Appendix B.

Costs. The sender must compute one KA message and n KA keys/outputs. The receiver computes n KA
responses and n KA keys/outputs. Both parties make n queries to each of H1, H2, and Π±. Finally, the
receiver must interpolate a polynomial of degree n, and the sender must evaluate such a polynomial on n
points. These are both possible with O(n log2 n) field operations, as described in Section 2.3.

The total communication cost of the protocol consists of: (1) 1 KA message from the sender, (2) n field
elements (each equivalent in size to a KA response) from the receiver to describe P , (3) n outputs of H2,
each 2κ bits.

4.1 Size of Adversary’s Set

Recall that we consider an ideal functionality in which a corrupt party can provide an input set that is
“larger than advertised.” If a corrupt party (specifically, the receiver) provides an input that is as large as
the universe of possible items, then PSI provides no security whatsoever. Hence, it is important to bound
the size of the set that the simulator extracts.

Corrupt Sender. The sender gives a set K during the protocol, which is supposed to contain H2-outputs.
The simulator extracts by finding x such that H2(x, k) ∈ K, for an appropriate value k. Since the output
of H2 is 2κ bits, the probability of the adversary encountering a collision in H2 is negligible. Hence for each
item in K, there is at most one preimage known to the adversary/simulator and hence at most one item
that will be included in the extracted set X̃.

In other words, the simulator extracts an input set for a corrupt sender of size at most |K| = n. The
protocol strictly enforces the size of a corrupt sender’s input set.

Corrupt Receiver. The simulator for a corrupt receiver extracts their input set as

Ỹ = {y | y ∈ O1 and P (H1(y)) ∈ OΠ}

Abstractly speaking, the adversary sees q outputs of H1, and it sees q outputs of Π. In the simulation,
outputs of both H1 and Π are uniform. The adversary then generates a polynomial P of degree less than n
(and greater than 0) and the simulator checks whether P (α) = β for all outputs α from H1 and all outputs
β from Π. The number of such pairs is the size of the set that is extracted. The question is therefore how
many random points can the adversary fit on a degree < n polynomial?

CDJ shows that if the size of the field is 2nω(log κ) then with overwhelming probability no polynomial can
fit more points than its degree suggests. However, such a large field leads to quadratic total communication
(n coefficients in a field of more than 2n elements). We instead prefer to stick to a field of minimum size
(large enough only to encode a KA message) and obtain bounds on the number of items.
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Definition 8. Let F be a field and define the PolyOverfitn,n
′

F (q) game against an adversary A to be as follows:

sample α1, . . . , αq, β1, . . . , βq ← F
P ← A(α1, . . . , αq, β1, . . . , βq)

if 0 < deg(P ) < n and
∣∣∣{αi | P (αi) ∈ {β1, . . . , βq}}

∣∣∣ ≥ n′:
declare A the winner

In other words, the adversary tries to generate a polynomial that hits some βj on at least n′ distinct αi’s.

We say that PolyOverfitn,n
′

F is hard if for all polynomial q and all PPT A, the adversary wins with
negligible probability.

Proposition 9. If PolyOverfitn,n
′

F is hard, then the simulator for a corrupt receiver in our PSI protocol
outputs a set of size bounded by n′, except with negligible probability.

In Appendix C we show the following using a standard compression argument. If such an “overfitting”
polynomial existed, it could be used to generate a compressed representation of the αi’s and βi’s, which is
impossible if they are uniform.

Lemma 10. The probability of winning PolyOverfitn,n
′

F (q) is at most (q2n)n
′
/|F|n′−n.

Some concrete examples of this bound for |F| = 2256 are given below:

q n n′ bound
2107 210 8n+ 4 2−128

2115 210 16n+ 8 2−128

2102 220 8n+ 4 2−128

2110 220 16n+ 8 2−128

For example, when running the protocol for n = 210 items, the adversary will not be able to have an effective
input of size 8n+ 4, with high probability.

We emphasize that the above bound is unconditional, meaning that for the parameters above, such an
“overfitting” polynomial simply does not exist except with negligible probability. It seems reasonable to
conjecture that even when such polynomials exist, finding them is hard for PPT adversaries. If such a claim
were proven, it would imply a tighter enforcement of set sizes in our protocol.

We also emphasize that all malicious PSI protocols based on OT extension have similar “slack” in the
size of corrupt parties’ sets. In [RR17a] a bound of n′ = 6n is stated; in [RR17b] a bound of n′ = 4n is
stated; and in [PRTY20] a range of bounds n′ = 2.4cn for c ∈ {2, 3, 4, 5} is given for different parameters.

5 Experimental Results

5.1 Implementation

In order to evaluate the performance of our PSI protocol, we built and evaluated an implementation. Our
complete implementation is available on GitHub: https://github.com/osu-crypto/MiniPSI. Below, we
discuss how the various components were instantiated.

Key Agreement. We instantiate DHKA using elliptic curve groups, and hash gab with SHA2. As men-
tioned previously, this variant of DHKA is non-malleable (Definition 3) under the ODH assumption.

An elliptic curve consists of the solutions (x, y) in a field Fq to the Weierstrass equation y2 = x3 +Ax2 +B
or Montgomery equation y2 = x3 +Ax2 +x. Depending on the curve parameters, EC shows different shapes
on the plane. In this work, we choose the Curve25519 Montgomery curve, since it is recommended for
elligator [imp]. This Curve25519 is defined over GF (q = 2255 − 19) and its curve parameter A has the value
486662.

We implement the elligator encoding based on [BHKL13]. The encoding takes a curve point and outputs
a pseudorandom string of 256 bits. The point (x, y) has an inverse map if it satisfies two conditions: the x
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n Protocol Sec.
Comm.

Running time (milliseconds)
10 Gbps 50 Mbps

(KB) Offline Online Total Offline Online Total

27

Classic DH [HFH99]
SH

9.09 — 81.1 81.1 — 241.1 241.1
KKRT [KKRT16] 22.22 180.1 21.2 201.3 339.0 499.1 838.1
Ours 4.99 29.2 29.3 58.5 29.2 172 201.2
SpOT-low [PRTY19]

1M
26.70 139.5 24.9 164.4 570.9 185.6 756.5

CM [CM20] 32.00 203.9 32.3 236.2 554.0 349.2 903.2
DKT [DKT10]

2M
31.48 — 492.0 492.0 — 1918.8 1918.8

PaXoS [PRTY20] 40.96 250.2 34.8 285 665.2 536.1 1201.3
Ours 8.19 32 30.1 62.1 32.2 189.6 221.8

28

Classic DH [HFH99]
SH

18.18 — 149.8 149.8 — 321.7 321.7
KKRT [KKRT16] 43.8 181.2 27.1 208.3 341.2 507.1 848.3
Ours 9.98 57.4 59.1 116.5 58.1 212.5 270.6
SpOT-low [PRTY19]

1M
33.90 138.8 59.2 198.0 565.7 216.8 782.5

CM [CM20] 43.00 205.1 32.0 237.1 623.3 361.3 984.6
DKT [DKT10]

2M
62.74 — 898.0 898.0 — 3081.8 3081.8

PaXoS [PRTY20] 69.83 255.3 35.9 291.2 668.1 552.04 1220.14
Ours 16.38 58.4 61.1 119.5 62.1 225.5 287.6

29

Classic DH [HFH99]
SH

36.86 — 248.2 248.2 — 430.3 430.3
KKRT [KKRT16] 94.64 183.2 40.8 224.0 342.0 656.9 998.9
Ours 20.48 96.3 110.0 206.3 106.2 268.9 375.1
SpOT-low [PRTY19]

1M
48.40 139.0 116.8 255.8 571.0 266.7 837.7

CM [CM20] 64.00 207.1 28.3 235.4 633.5 355.1 988.6
DKT [DKT10]

2M
125.27 — 1720.0 1720.0 — 5966.2 5966.2

PaXoS [PRTY20] 127.56 256.3 54.1 310.4 671.1 554.04 1225.14
Ours 32.77 98.3 112.9 211.2 115.1 275.1 390.2

210

Classic DH [HFH99]
SH

73.73 — 375.2 375.2 — 574.2 574.2
KKRT [KKRT16] 188.64 185.4 42.6 228.0 345.1 554.1 899.2
Ours 40.96 149.1 252.4 401.5 155 379.7 534.7
SpOT-low [PRTY19]

1M
77.20 140.0 239.6 379.6 570.5 358.2 928.7

CM [CM20] 105.00 207.4 36.5 243.9 633.6 359.5 993.1
DKT [DKT10]

2M
250.32 — 3028.0 3028.0 — 10111.2 10111.2

PaXoS [PRTY20] 243.01 258.4 94.1 352.5 671.2 560.1 1231.3
Ours 65.54 155.6 268.9 424.5 164 393.9 557.9

Table 2: Communication cost in KB and running time in milliseconds of PSI protocols on the set size n.
“SH”, “1M”, and “2M” refer to semi-honest, 1-sided malicious and 2-sided malicious protocol, respectively.
Cells with ”—” denote setting not supported or program out of memory.

value is not equal to the curve parameter A; and −2x(x+a) must be a square. Therefore, we keep sampling
points until these conditions are hold. According [BHKL13, imp] and confirmed by our experiment, the

success probability is 1
2 . The elligator encoding of such a valid point is defined by r =

√
(−1

2 )( x
x+A )b, where

b = 1 if v ≤ q−1
2 , otherwise, b = −1.

The decoding function takes a string r and produces the x coordinate of a point on Curve25519. The

value x can be computed as x = ed− (1− e)A2 , where d = −A
1+2r2 and e = (d3 +Ad2 + d)

q−1
2 .

We implemented elligator on top of the Curve25519 implementation from libsodium. From our experi-
mental evaluation, libsodium is about 10× faster than miracl library.

The length of elligator encodings is slightly less than 256 bits. In order to promote these encodings to
be uniform in {0, 1}256, we can append a few extra uniform bits which are ignored during decoding. These
additional bits can be considered as part of the randomness in the KA protocol, and they cause the protocol
messages to be pseudorandom in F = {0, 1}256.
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Protocol
Sec. Comm.

Running time (seconds)

n2 n1
10 Gbps 50 Mbps 1 Mbps

(MB) Online Total Online Total Online Total

212

212

Classic DH [HFH99]
SH

0.29 0.86 0.86 1.13 1.13 2.26 2.26
KKRT [KKRT16] 0.56 0.03 0.2 0.57 0.91 5.09 5.47
Ours 0.16 0.59 1.07 0.91 1.39 1.71 2.17
SpOT-low [PRTY19]

1M
0.25 0.72 0.88 1.04 1.61 2.79 3.36

CM [CM20] 0.36 0.08 0.28 0.51 1.15 3.11 3.74
DKT [DKT10]

2M
0.83 12.12 12.12 36.35 36.35 97.06 97.06

PaXoS [PRTY20] 0.94 0.14 0.4 0.97 1.64 5.26 5.93
Ours 0.16 0.62 1.08 0.95 1.41 1.75 2.22

28

Classic DH [HFH99]
SH

0.17 0.48 0.48 0.83 0.83 1.24 1.24
KKRT [KKRT16] 0.28 0.02 0.2 0.67 1.01 4.64 5.01
Ours 0.26 0.41 0.47 0.59 0.65 0.59 0.69
SpOT-low [PRTY19]

1M
0.24 0.65 0.79 0.33 0.89 0.38 0.95

CM [CM20] 0.32 0.20 0.27 0.63 1.13 3.11 3.74
Ours 2M 0.14 0.43 0.49 0.62 0.66 0.63 0.67

216

216

Classic DH [HFH99]
SH

4.78 10.38 11.58 17.6 17.6 38.53 38.53
KKRT [KKRT16] 6.73 0.21 0.44 2.53 2.92 74.15 74.57
Ours 2.69 8.96 16.25 10.9 16.64 25.03 31.16
SpOT-low [PRTY19]

1M
3.9 12.61 12.81 15.76 16.33 40.15 40.71

CM [CM20] 5.34 0.54 0.75 1.72 2.35 45.11 45.75
DKT [DKT10]

2M
13.33 216.83 216.83 845.63 845.63 1929.76 1929.76

PaXoS [PRTY20] 14.79 0.25 0.52 4.27 4.95 48.34 49.02
Ours 4.19 8.89 15.95 11.1 18.64 27.73 36.16

212

Classic DH [HFH99]
SH

2.82 6.45 6.45 14.01 14.01 22.37 22.37
KKRT [KKRT16] 4.55 0.11 0.32 1.59 1.92 39.7 40.02
Ours 0.72 4.71 5.17 5.91 6.37 7.10 7.46
SpOT-low [PRTY19]

1M
3.42 1.55 1.75 1.34 1.91 6.10 6.67

CM [CM20] 4.82 0.50 0.70 1.37 2.01 40.38 41.01
Ours 2M 2.23 4.71 5.97 6.01 7.47 7.90 8.96

220

220

Classic DH [HFH99]
SH

77.59 189.87 189.87 290.82 290.82 717.08 717.08
KKRT [KKRT16] 133.00 3.51 4.18 27.42 27.5 1153.23 1154
Ours 44.04 144.64 245.06 150.93 251.69 452.7 554.26
SpOT-low [PRTY19]

1M
63.18 270.69 270.88 310.83 311.4 687.77 688.34

CM [CM20] 86.16 7.94 8.15 16.56 17.17 726.81 727.46
DKT [DKT10]

2M
213.00 5121 5121 — — — —

PaXoS [PRTY20] 236.47 5.01 5.29 46.13 46.81 798.26 798.94
Ours 67.11 148.94 251.06 161.93 267.69 489.7 597.26

216

Classic DH [HFH99]
SH

46.14 104.57 104.57 170.82 170.82 371.77 371.77
KKRT [KKRT16] 74.20 1.86 2.32 17.5 18.25 609.49 610.25
Ours 12.58 92.5 98.24 104.44 108.92 109.41 117.81
SpOT-low [PRTY19]

1M
55.53 218.65 218.85 15.82 16.39 128.43 129.10

CM [CM20] 76.77 7.50 7.70 15.66 16.26 721.81 722.45
Ours 2M 35.65 94.1 99.91 105.44 113.02 120.49 121.81

Table 3: Communication cost in MB and running time in seconds of PSI protocols; the sender and receiver
set size is n1 and n2, respectively. “SH”, “1M”, and “2M” refer to semi-honest, 1-sided malicious and 2-sided
malicious protocol, respectively. Cells with ”—” denote setting not supported or program out of memory.
[DKT10] and [PRTY20] implementations do not support sets of different sizes.

Other Primitives. We instantiate the necessary random oracles using SHA2. Since the elliptic curves
have 256-bit encodings, we need an ideal permutation Π± defined over {0, 1}256. In our implementation we
use Rijndal-256 with a fixed key as the ideal permutation.
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Polynomial Operations. Our protocol requires the receiver to generate a polynomial of degree n, and the
sender to evaluate it on n points. It is known that these problems could be solved by Lagrange interpolation
and Horner evaluation which requiresO(n2) field operations. However, when n is very large (e.g. n = 220) this
becomes impractical. Moenck and Borodin [MB72] describe algorithms for these problems in O(n log2(n))
field operations, which make them a better fit for our protocol.

Security Parameters. All evaluations were performed with a PSI item length of 128 bits, computational
security parameter κ = 128 bits, and a statistical security parameter λ = 40 bits.

5.2 Experiments and Evaluation

Experimental Setup. We implement our protocol in C++, and run our protocol on a single Intel Xeon
with 2.30GHz and 256GB RAM. The parties communicate over a simulated 10Gbps network with 0.2ms
round-trip time for LAN setting. We also run all protocols in WAN setting with 80ms round-trip time and
two different network bandwidths 50 Mbps, and 1 Mbps.

Protocol Evaluation. In the following, we benchmark the state of the art semi-honest and malicious PSI
protocols [HFH99, DKT10, KKRT16, PRTY19, CM20, PRTY20]. We now briefly discuss several protocols
not included in our comparison: The Jarecki-Liu protocol [JL10] is a malicious-secure, DH-based protocol.
However, it achieves a weaker ideal functionality where the adversary can choose items adaptively. The
recent PSI protocol of Rindal & Schoppmann [RS21] is based on silent vector-OLE, and is extremely efficient
for large sets. However, its implementation is not yet publicly available and its high fixed costs make it
inefficient for small sets (as illustrated in Table 1). The work of Chen et al. [CHLR18] is the state-of-the-art
(one-sided) malicious FHE-based PSI. Its first step is essentially classic DH-PSI, before even doing any FHE
operations. Since our entire protocol is more efficient than DH-PSI, we expect ours would be much faster
than theirs for small-to-medium-size sets.

We also do not include RSA-based PSI protocols [DT10, ADT11], by which we mean protocols that
require at least one RSA exponentiation per item. RSA elements are 16 × (= 4096/256) larger than ellip-
tic curve (ECC) elements. A simple benchmark on our experimental hardware (openssl speed rsa4096

ecdhx25519) shows that RSA-4096 exponentiation is 100× slower than ECC exponentiation (even RSA-2048
was 20× slower). Therefore, RSA-based protocols will always be ∼100× slower than ours. If they send one
RSA value per item, they will have 16× more communication than ours.

We report detailed comparisons in Table 2 and Table 3 for small set size {27, 28, 29, 210} and large set
size n ∈ {212, 216, 220}. As expected, our protocol shows a significant performance improvement when the
set is small.

We note that our poly-DH PSI protocol is very amenable to precomputation (by precomputing exponen-
tiation). When reporting performance of these protocols, we split total running time into two phases:

• Offline: operations like generating random pairs (ri, g
ri), which can be done without any interaction

and before the inputs are known.

• Online: everything else, starting when the parties have determined their inputs.

Bandwidth Comparison. Our polynomial-based protocol requires the lowest communication among all
PSI protocols. The communication of our polynomial-based protocol is approximately 2× smaller than that
of classic DH PSI. Compared to malicious DH-based PSI protocol [DKT10] (DKT), our protocol shows about
3− 4× improvement.

Consider a semi-honest PSI with unequal set size, the communication cost is (n1|G| + n2`) bits for the
polynomial-based PSI protocol, and about (n1 +n2)|G|+n2`) bits for classic DH-based PSI. Concretely, for
n1 = 216 and n2 = 220, the polynomial-based protocol takes 12.58 MB of communication while classic DH
PSI needs 46.14 MB, a 3.67× improvement.

We also compare bandwidth to the state-of-the-art OT-based semi-honest PSI protocols [KKRT16,
PRTY19, CM20] and malicious PSI protocol [PRTY20]. Note that [KKRT16] (KKRT), [PRTY20](PaXoS)
are the fastest PSI protocol to date and [CM20] (CM) has the fastest in networks with moderate bandwidth
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(e.g., 30-100 Mbps) while [PRTY19] (SpOT-low) has the least communication among practical semi-honest
protocols. The communication cost of our protocol is about 3− 4.6×, 1.4− 1.7×, and 3.7− 7.8× less than
that of [KKRT16], [PRTY19], and [PRTY20], respectively.

Runtime Comparison. For small set (e.g n = 29), our polynomial-based protocol is faster than all DH-
based and OT-based schemes in both LAN and WAN settings. Starting from n = 210, our protocol is slower
than the OT-based protocols in LAN setting. However, bench-marking all protocols in the WAN setting
with 1 Mbps network bandwidth and 80 ms round-trip latency, our protocol shows an 1− 3.17× faster than
others due to the fact that the communication cost is smallest.

The polynomial-based protocol shows its benefit in the unbalanced setting where the sender’s set size is
larger than the receiver’s set size (n2 > n1). It means that the sender only needs to send the receiver a short
fingerprint ` per each item in his set while in DH-based protocol the sender additional requires to send a
group element per each item. Since the implementation of PaXoS and DKT does not support to compute a
PSI for asymmetric set, we omit to report their performance costs. Table 3 shows that in most of the cases
the running time of our polynomial-based protocol is faster than other semi-honest protocols. Consequently,
our protocol is faster than other malicious protocols. For n1 = 216 and n2 = 220 in WAN setting with 1Mpbs
bandwidth, the baseline DH protocol runs in 574.26 seconds, while the polynomial-based protocol requires
117.81 seconds, a factor of 4.9× and 3.1× improvement, respectively.

A summary of the state of the art (including this work) is presented in Figure 1 where the running time
is measured in the LAN setting. Our PSI prototocol’s performance is mostly unaffected by changing the
network bandwidth and latency, due to its extremely low communication complexity.

Conclusions. For small sets (n ≤ 512) our protocol is the best in terms of both communication and
computation. As we previously discussed in Section 1, on sets of this size our protocol is less expensive than
the base OTs required for OT extension and PSI protocols that are based on OTs.
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A Semi-Honest Variants

In this section we show two semi-honest variants of our protocol.
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Parameters: finite field F
KA protocol KA with KA.M = F and |KA.K| ≥ 2λ+2 logn

ideal permutation Π,Π−1 : F→ F

Sender Receiver
input X = {x1, . . . , xn} ⊆ F input Y = {y1, . . . , yn} ⊆ F

1. a← KA.R
2. m = KA.msg1(a)

m

3. for i ∈ [n]:
bi ← KA.R
m′i = KA.msg2(bi,m)
fi = Π−1(m′i)

4. P = interpolF

(
{(yi, fi) | yi ∈ Y }

)
P

5. for i ∈ [n]:
ki = KA.key1(a,Π(P (xi)))

6. K = {k1, . . . , kn} (shuffled)

K

7. output {yi | KA.key2(bi,m) ∈ K}

Figure 5: Semi-honest variant #1 of our protocol.

A.1 Variant 1

The first protocol variant closely matches the malicious variant. The only changes are:

• The polynomial can be interpolated on values P (yi) instead of P (H1(yi)); H1 was used only to help
extract a malicious party’s input, which is not a concern in the semi-honest model.

• Instead of sending values of the form H2(xi, ki), the sender can simply send the ki values. Again, H2 was
used only to extract. Furthermore, the ki values can have length of only λ+ 2 log(n) in order to ensure
correctness with probability 1− 2−λ.

The details of this protocol are given in Figure 5. The correctness of the protocol boils down to the
following observations:

• Suppose xi = yj for some i, j (i.e., xi is an item of the sender that is in the intersection). Then by
construction we have:

KA.key1(a,Π(P (xi))) = KA.key1(a,Π(fj))

= KA.key1(a,m′j)

= KA.key1(a,KA.msg2(bj ,m))

By the correctness of the KA protocol, this is equal to KA.key2(bj ,m), and the receiver will indeed include
yj (= xi) in the output.

• Suppose xi 6∈ Y . In this case, our security proof will argue that the corresponding ki value (computed by
the sender) is pseudorandom. The receiver only produces incorrect output if this ki happens to match
one of the KA.key2(bj ,m) values computed by the receiver. For this particular ki, this event happens with
probability (negligibly close to) n/|KA.K|. With a union bound over at most n such ki values, the overall
probability of incorrect output is at most (negligibly close to) n2/|KA.K|.
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To limit the correctness error to a concrete value 2−λ (for example, λ = 40 in our implementation), it suffices
to use a KA protocol with |KA.K| ≥ 2λ+2 logn.

Lemma 11. The protocol of Figure 5 is secure against a semi-honest sender, if KA is a pseudorandom-
message KA (Definition 4) and Π± is an ideal permutation.

Proof. Since the only protocol message from the receiver is P , it suffices to show how to simulate P . In fact,
we simply show that P is indistinguishable from a polynomial of appropriate degree with coefficients chosen
uniformly in F.

First, consider replacing “bi ← KA.R;m′i = KA.msg2(bi,m)” in step 3 with “m′i ← KA.M (= F)”. This
change is indistinguishable to the sender by the pseudorandom-message property of KA. Then, since Π is a
permutation, we see that fi becomes uniformly distributed on F. Finally, interpolating a polynomial on a
set of points {(yi, fi)}, where each fi is uniform in F, results in a uniformly chosen polynomial, independent
of the yi values.

Lemma 12. The protocol of Figure 5 is secure against a semi-honest receiver, if KA is a secure KA (Defi-
nition 2) and Π± is an ideal permutation.

Proof. First, we discuss the intuition of the proof. For each xi ∈ X, the sender interprets Π(P (xi)) as
a KA protocol message. When xi ∈ X \ Y , the receiver never actively chooses the value at P (xi), and
so presumably does not know the secret randomness of the KA message Π(P (xi)). From the receiver’s
perspective, this is just like watching a KA instance between two external parties, so the resulting key ki
should look random. We can formalize this by having the simulator program Π(P (xi)) to be a KA protocol
message whose underlying randomness is explicitly unknown to the receiver.

Hybrid 0: The real interaction, where both parties run the protocol honestly on inputs X and Y , and
the ideal permutation Π± is simulated honestly.

Hybrid 1: Same as the real interaction, except we abort if there exists x∗ ∈ X \ Y and y∗ ∈ Y such that
P (x∗) = P (y∗). Note that P is distributed indistinguishably from a uniform polynomial, independent of
any X and Y values. Given a fixed x∗ 6= y∗, the probability that P (x∗) = P (y∗) for a random polynomial is
1/|F|. By a union bound over all choices of x∗ and y∗, the probability of an abort in this hybrid is at most
n2/|F|, which is negligible. Hence, the hybrids are indistinguishable.

Hybrid 2: Same as Hybrid 1, except in how the ideal permutation is simulated. Without loss of generality,
the adversary does not make any Π± queries until after the protocol transcript is generated. This hybrid
generates the polynomial P as in the real protocol. Then, for each xi ∈ X \ Y , we know that there has been
no query to Π(P (xi)) so far — otherwise we would already have aborted, since this means P (xi) collides
with some P (yj). The hybrid chooses ri ← KA.key2 and programs Π(P (xi)) to be equal to KA.msg2(ri,m).

The hybrids are indistinguishable because honestly generated KA.msg2 values are indistinguishable from
random. Note that in this hybrid, every ki that the sender computes is in response to a KA.msg2 message
with randomness known to the hybrid. For x ∈ X ∩ Y , the sender responds to a KA message explicitly
programmed into P . For x ∈ X \ Y , the sender responds to a value chosen above while programming Π.

Hybrid 3: Same as Hybrid 2, except how the ki values are computed:

for i ∈ [n]:
if xi ∈ Y , i.e., xi = yj for some yj ∈ Y :
ki = KA.key2(bj ,m)

else:
ki = KA.key2(ri,m)

We have simply replaced all KA.key1(a, ·) computations of the sender with the corresponding KA.key2 com-
putations. The hybrids are identically distributed by the correctness of KA.

25



Parameters: finite field F
KA protocol KA with KA.M = F and |KA.K| ≥ 2λ+2 logn

Sender Receiver
input X = {x1, . . . , xn} ⊆ F+ input Y = {y1, . . . , yn} ⊆ F+

1. a← KA.R
2. m = KA.msg1(a)

m

3. for i ∈ [n]:
bi ← KA.R
m′i = KA.msg2(bi,m)

R← F
4. P = interpolF

(
{(0, R)} ∪ {(yi,m′i) | yi ∈ Y }

)
P

5. for i ∈ [n]:
ki = KA.key1(a, P (xi))

6. K = {k1, . . . , kn} (shuffled)

K

7. output {yi | KA.key2(bi,m) ∈ K}

Figure 6: Semi-honest variant #2 of our protocol.

Hybrid (4, h), for h ∈ [n+ 1]: Same as Hybrid 3, except that K is computed as follows:

for i ∈ [n]:
if xi ∈ Y , i.e., xi = yj for some yj ∈ Y :
ki = KA.key2(bj ,m)

else if i < h:
ki ← KA.K

else:
ki = KA.key2(ri,m)

Clearly if h = 0 then the new if-clause is not reachable and the hybrid is identical to Hybrid 3. The difference
between Hybrids (4, h− 1) and (4, h) is the treatment of the value kh when xh 6∈ Y . It is straightforward to
reduce this change of hybrids to the standard security of KA (Definition 2) as follows: Given (m1,m2, k

∗),
use m = m1 as the sender’s first message, program Π(P (xh)) = m2, and set kh = k∗. If k∗ is a real KA key
then we get Hybrid (4, h − 1), and if it is a random key then we get Hybrid (4, h). Hence, the hybrids are
indistinguishable.

Simulator: We rewrite the computation of the K-values in Hybrid (4, n+ 1) in an equivalent way. Note
that in this hybrid, the the final else-branch is not reachable. Hence the set K is generated as follows:

K = {KA.key2(bj ,m) | yj ∈ X ∩ Y } ∪ {k′1, . . . , k′|X\Y |}

where each k′i is chosen uniformly. This interaction is distributed identically to Hybrid (4, n+1), and clearly
it can be carried out with only knowledge of X ∩Y , Y and |X \Y | (which can be inferred from |X|). Hence,
this hybrid defines our final simulator.

A.2 Variant #2

We also describe a semi-honest variant that does not require an ideal permutation. However, the protocol
requires the receiver to send 1 additional field element, and it requires the KA protocol to satisfy the stronger
non-malleability property (Definition 3 — the same property used for the malicious protocol variant).
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Recall how the ideal permutation was used in the previous semi-honest proof. While the receiver inter-
polated the polynomial P so that Π(P (yi)) equals chosen KA messages, the simulator in the hybrid proof
used Π to program other outputs Π(P (x)) for x 6∈ Y . These other outputs need to be “programmed” in
order to reduce security to that of KA.

Now consider an alternative approach that we take in this section. There is no longer any ideal permu-
tation, so the receiver interpolates P such that P (yi) is a chosen KA message. The receiver also chooses a
random R ← F and ensures that P (0) = R (we assume that 0 is not a valid item for the PSI inputs). Now
the degree of the polynomial is one larger than otherwise, and the value R becomes part of the receiver’s
protocol view. The simulator can “program” the output of P (x∗) for some x∗ 6∈ Y by interpolating over the
yi values and x∗, instead of the yi values and zero. Then it can simply solve for the correct R = P (0) to
include in the receiver’s simulated view.

With this trick, the hybrid simulators can change one KA output at a time. However, while it replaces one
KA output with random, the simulator still needs to simulate the other KA outputs — i.e., KA.key1(a, P (xi))
for xi 6∈ Y . Unlike in the previous protocol variant, here we cannot guarantee that P (xi) is an honestly-
generated KA message. There is no “other way” (i.e., using KA.key2) to compute this KA output. Hence, we
must give the simulator oracle access to KA.key1(a, ·), just like in the security proof of the malicious variant.

The details of the protocol are given in Figure 6. Security against a semi-honest sender follows from the
same reasoning as the previous semi-honest variant. We focus on security against semi-honest receiver.

Lemma 13. The protocol of Figure 6 is secure against a semi-honest receiver, if KA is non-malleable (Def-
inition 3) and has pseudorandom second messages (Definition 4).

Proof. We prove security in a sequence of hybrids. Hybrid 0 is the real protocol interaction.
Hybrid 1: Same as the real interaction, except we abort if there exists x∗ ∈ X \ Y and y∗ ∈ Y such that

P (x∗) = P (y∗). This hybrid is indistinguishable from Hybrid 0, following the same logic as in the previous
proof.

Hybrid (2, h) for h ∈ [n]: Same as Hybrid 1, except in the way the ki values are computed:

for i ∈ [n]:
if xi ∈ X ∩ Y or i > h:
ki = KA.key1(a, P (xi))

else:
ki ← KA.K

Since the if-branch is always taken when h = 0, Hybrid (2, 0) is identical to Hybrid 1. Below, we prove that
Hybrids (2, h− 1) and (2, h) are indistinguishable for all h.

Simulation: Hybrid (2, n) is our final simulation. Note that Hybrid (2, n) is equivalent to one where the
ki values are computed as:

for i ∈ [n]:
if xi ∈ X ∩ Y :
ki = KA.key1(a, P (xi))

else:
ki ← KA.K

Hence, these ki values can be generated knowing only X ∩ Y and |X \ Y |.

Lemma 14. Hybrids (2, h−1) and (2, h), defined above, are indistinguishable when KA is non-malleable and
has pseudorandom second messages.

Proof. Fix h and note that the hybrids differ only in how kh is generated, in the case that xh 6∈ X ∩ Y . The
lemma is trivial in the case that xh ∈ X ∩ Y , so hereafter we assume xh 6∈ X ∩ Y . To prove the lemma, we
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define the following reduction algorithm:

AK(m1,m2, k
∗;X,Y, xh):

for i ∈ [n]:
bi ← KA.R
m′i = KA.msg1(bi,m1)

P = interpolF({(xh,m2)} ∪ {(yi,m′i) | yi ∈ Y })
R = P (0)
abort if ∃x∗ ∈ X \ Y, y∗ ∈ Y with P (x∗) = P (y∗)
for i ∈ [n]:

if xi ∈ X ∩ Y or i > h− 1:
ki = K(P (xi))

else if i = h and xh 6∈ X ∩ Y
ki = kh = k∗

else:
ki ← KA.K

return (m1,K = {k1, . . . , kn}; {b1, . . . , bn}, R)

Intuitively, this algorithm receives a purported KA transcript (m1,m2, k
∗) as input, and generates a simulated

view by letting m1 be the sender’s PSI message, programming P so that P (xh) = m2 and letting k∗ be the
value kh that the sender sends corresponding to item xh. It also has access to an oracle K which it uses to
generate other ki values.

Claim: When this reduction algorithm is run as distinguisher in the “real” experiment from Definition 3,
it outputs a view which is indistinguishable from Hybrid (2, h− 1). Indeed, m1 is generated as KA.msg1(a),
kh is generated as KA.key1(a, P (xh)) = KA.key1(a,m2), and the other ki values are generated correctly
using the K(·) = KA.key1(a, ·) oracle. All of these values are as in Hybrid (2, h − 1). The only difference
is how P is generated — instead of interpolating P over {(0, R)} ∪ {(yi,m′i)} values, here we interpolate
over {(xh,m2)} ∪ {(yi,m′i)} values. But since m2 is pseudorandom, the two ways of computing P are
indistinguishable. Note also that K is called only on values of the form K(P (xi)) for xi ∈ Y . But no y ∈ Y
has P (y) = P (xh) = m2, since we would already have aborted in that case. Hence the K oracle is never
queried at m2, as required in Definition 3.

Claim: When this reduction algorithm is run as distinguisher in the “random” experiment from Defini-
tion 3, it outputs a view which is indistinguishable from Hybrid (2, h). The logic here is almost identical,
except now kh = k∗ is random, as in Hybrid (2, h)

B Optimizations

For all of these optimizations, we leave it as an exercise for the reader to verify that the security proofs hold
when using the optimizations.

Elligator. Our protocol requires a KA protocol whose second message is pseudorandom, since only the
second KA message is encoded into a polynomial. Elligator-DHKA requires parties to re-sample randomness
until they “hit” the elligator subset of the elliptic curve. Only the receiver needs to do this in our PSI
protocol; the sender does not need to use elligator encodings for their KA message.

Alternatives to Polynomials. Our PSI protocol requires the receiver to interpolate a polynomial over
n points, and the sender to evaluate that polynomial on n points, where n is the size of their sets (e.g.,
n = 1M). Each of these procedures cost O(n log2 n) field operations.

One way to reduce the cost of this step is to encode the same information in a different way. The purpose
of P is to convey mappings of the form yi 7→ fi in a way that hides the yi values. Concurrent to this
work, Garimella et al. [GPR+21] introduced oblivious key-value stores (OKVS), which are an abstraction
that provides the properties that our protocol requires. They present an efficient OKVS alternative to
polynomials that has linear encoding time, but at a small (∼35%) increase in communication size. This data
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structure can be used in our protocol to replace polynomials, however: (1) Polynomial interpolation over
small (degree < 1000) polynomials is a very small contribution to the protocol’s overall cost (even using a
simpler quadratic algorithm) compared to the cost of elliptic curve exponentiations. (2) Even a 35% increase
in size significantly undermines our protocol’s contribution of minimal communication cost.

C Polynomial Overfitting

Recall the polynomial overfitting game PolyOverfitn,n
′

F (q):

sample α1, . . . , αq ← F
sample β, . . . , βq ← F
give {α1, . . . , αq} and {β1, . . . , βq} to A
A outputs a polynomial P
if 0 < deg(P ) < n and P (αi) ∈ {β1, . . . , βq} for at least n′ distinct αi:
A wins the game

else A loses the game

We prove an unconditional bound for winning this game, based on a compression argument.

Proposition 15. Let E : A→ B and D : B → A be functions. Then Pra←A[D(E(a)) = a] ≤ |B|/|A|.

Proof. If a 6∈ range(D), then we can never have D(E(a)) = a. Furthermore, |range(D)| ≤ |B|.

Lemma 16. The probability of any (computationally unbounded) adversary winning PolyOverfitn,n
′

F (q) is at
most

(q2n)n
′
/|F|n

′−n

Proof. Let A be an adversary that wins the game with probability ε. Using A we can compress a list
(α1, . . . , αq, β1, . . . , βq) by giving the following information (in this order):

• the output polynomial P ← A(α1, . . . , α1, β1, . . . , βq)

• a bipartite graph G with left and right vertex sets [q], left-degree 1, and an edge from left vertex i to
right vertex j if P (αi) = βj

• for every connected component in G (in some canonical order):

– If the component is a singleton right vertex i, give βi

– If the component contains a left vertex, let i be the lowest numbered left vertex in the component,
and give αi. Then for every left vertex i except the lowest numbered one, give an index v such that
αi is the vth root of P (·)− P (αi) in lexicographic order.

Recovering the αi and βi inputs from this information amounts to labeling each vertex in G with the
appropriate αi or βj , which can be done in a straight-forward way.

Note that the graph G has 2q vertices, and if it has e edges then it has c = 2q− e connected components.
The number of possible “compressed encodings” is at most the product of the following terms:

• |F|n, for the number of polynomials P

• (q2)e, for (an upper bound on) the number of bipartite graphs with q + q vertices and e edges.

• |F|c, for listing one αi or βj per component

• ne, for the other information in each connected component — there are at most e left vertices in nontrivial
connected components, and each index v names one of the n roots of a deg < n polynomial.
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Hence, the number of such encodings is bounded by:

|F|n · q2e · |F|2q−e · ne = |F|2q+n ·
(
q2n

|F|

)e
Assume that the quantity in parentheses is less than 1, since if it is not then the probability bound in the
statement of the lemma exceeds 1 and is therefore trivial. When A wins the game, then e ≥ n′ and the
number of encodings is bounded by:

|F|2q+n ·
(
q2n

|F|

)n′
Yet the number of inputs to this compression algorithm is |F|2q. Hence the compression cannot succeed with
probability better than the ratio of inputs to outputs:

|F|2q+n−n′ · q2n′ · nn′

|F|2q
=

(q2n)n
′

|F|n′−n
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