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Abstract. We offer a public key exchange protocol based on a semidirect product of two cyclic
(semi)groups of matrices over Zp. One of the (semi)groups is additive, the other one multiplicative.
This allows us to take advantage of both operations on matrices to diffuse information. We note
that in our protocol, no power of any matrix or of any element of Zp is ever exposed, so all
standard attacks on Diffie-Hellman-like protocols (including Shor’s quantum algorithm attack) are
not applicable.

1. Introduction

We start by recalling the classical Diffie-Hellman protocol [1]. The simplest, and original, imple-
mentation of this protocol uses the multiplicative group of integers modulo p, where p is prime and
g is primitive modulo p. A more general description of the protocol uses an arbitrary finite cyclic
group:

(1) Alice and Bob agree on a finite cyclic group G of order q and a generating element g in G.
We will write the group G multiplicatively.

(2) Alice picks a random natural number m < q and sends gm to Bob.
(3) Bob picks a random natural number n < q and sends gn to Alice.
(4) Alice computes KA = (gn)m = gnm.
(5) Bob computes KB = (gm)n = gmn.

Since mn = nm, both Alice and Bob are now in possession of the same group element K =
KA = KB which can serve as the shared secret key.

The protocol is considered secure against eavesdroppers if G and g are chosen properly. The
eavesdropper must solve the Diffie-Hellman problem (recover gmn from g, gm, and gn) to obtain
the shared secret key. This is currently considered difficult for a “good” choice of parameters (see
e.g. [5] for details).

In [3], a new key exchange protocol was offered, based on a semidirect product of multiplicative
matrix semigroups. That protocol is similar to the Diffie-Hellman protocol, but it differs in one
essential detail: at the last two steps, Alice and Bob use multiplication instead of exponentiation.
In other words, the equality KA = KB in that case is based on the identity m + n = n + m in
the ring of integers, instead of the identity mn = nm. Also, even though the parties do compute a
large power of a public element (as in the classical Diffie-Hellman protocol), they do not transmit
the whole result, but rather just part of it, so no power of a public element is ever exposed.

The generic protocol in [3] can be based on any (semi)group, in particular on any non-commutative
(semi)group. For a particular instantiations of the generic protocol, the authors of [3] used conjuga-
tion as an action of the multiplicative semigroup of matrices on itself, and matrices were considered
over the group ring Z7[A5]. A ring of such a small size was selected to enhance efficiency; however,
because of this small size, the protocol turned out to be vulnerable to a “linear algebra attack”,
similar to the attack on Stickel’s protocol [11] offered in [10], albeit more sophisticated, see [6], [8].
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In this paper, we use matrices over Zp for a large p. The size of the exponents used in the
protocol should guarantee security against brute force attacks. We also note that in our protocol,
no power of any matrix is ever exposed, so all standard attacks on Diffie-Hellman-like protocols
(including Shor’s quantum algorithm attack [9]) are not applicable.

2. Semidirect products and extensions by automorphisms

We include this section to make the exposition more comprehensive. The reader who is uncom-
fortable with group-theoretic constructions can skip to subsection 2.1.

We now recall the definition of a semidirect product:

Definition 1. Let G,S be two groups, let Aut(G) be the group of automorphisms of G, and let
ρ : S → Aut(G) be a homomorphism. Then the semidirect product of G and S is the set

Γ = Goρ S = {(g, h) : g ∈ G, h ∈ S}

with the group operation given by
(g, h)(g′, h′) = (gρ(h

′) · g′, h · h′).
Here gρ(h

′) denotes the image of g under the automorphism ρ(h′), and when we write a product
h · h′ of two morphisms, this means that h is applied first.

In this paper, we focus on a special case of this construction, where the group S is just a
sub(semi)group of the semigroup of self-homomorphisms of G, typically a cyclic sub(semi)group.
We give more details about this special case in Section 2.1 below.

2.1. Extensions by automorphisms. A particularly simple special case of the semidirect product
construction is where the group S is just a subgroup of the group Aut(G) of automorphisms of G.
Then the semidirect product is the set of all pairs (g, φ), where g ∈ G, φ ∈ S, with the group
operation given by

(g, φ) · (g′, φ′) = (φ′(g) · g′, φ · φ′).(1)

One can also use this construction if G is not necessarily a group, but just a semigroup, and/or
consider endomorphisms (i.e., self-homomorphisms) of G, not necessarily automorphisms. Then
the resulting semidirect product will be a semigroup, not a group, but this is quite sufficient for
being the platform of a Diffie-Hellman-like key exchange protocol.

3. Action

Our platform semigroup will be a semidirect product of two semigroups of matrices over Zp. In
the notation of Section 2.1, the semigroup G will be the additive semigroup of matrices, and the
semigroup S will be a cyclic subsemigroup of the multiplicative semigroup of matrices.

The action of S on G will be as follows: MH = HMH for M ∈ G, H ∈ S. Note that this is an
action only if we restrict to a commutative (in particular, cyclic) sub(semi)group S generated by a
matrix H.

Thus, in the semidirect product of the additive semigroup of matrices with the multiplicative
cyclic semigroup generated by H, the multiplication looks like this (cf. formula (1)):

(M,H)2 = (M,H) · (M,H) = (HMH +M,H2);
(M,H)3 = (HMH +M,H2) · (M,H) = (H2MH2 +HMH +M,H3), etc.
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4. Protocol description

Below is the protocol description. Parameters are discussed separately, in Section 5.

1. (key selection) (i) Alice and Bob agree on two invertible public matrices, M and H, over
Zp, such that MH 6= HM .

(ii) Alice selects a private integer m and Bob selects a private integer n.

2. Alice computes (M,H)m and sends only the first component (call it A) of the result to
Bob.

3. Bob computes (M,H)n and sends only the first component (call it B) of the result to
Alice.

4. Alice computes (B, x) · (A, Hm) = (HmBHm +A, ?). Her key is now KA = HmBHm +A.

5. Bob computes (A, y) · (B, Hn) = (HnAHn +B, ?). His key is now KB = HnAHn +B.

6. Since (M,H)m+n = (B, x) · (A, Hm) = (A, y) · (B, Hn) = (K, Hm+n), we should have
KA = KB = K, the shared secret key.

Remark 1. Note that, in contrast with the “standard” Diffie-Hellman key exchange, correctness
here is based on the equality xm ·xn = xn ·xm = xm+n rather than on the equality (xm)n = (xn)m =
xmn. In the “standard” Diffie-Hellman set up, our trick would not work because, if the shared key K
was just the product of two openly transmitted elements, then anybody, including the eavesdropper,
could compute K.

5. Parameters and keys sampling

The basic parameter p should have the same properties and the same magnitude as recommended
for the classical Diffie-Hellman protocol. In particular, p should be a safe prime, i.e., a prime of
the form p = 2q + 1 see Proposition 1 in Section 6.

The exponents m and n should be of the same magnitude as q = p−1
2 .

For the public matrices M and H, we require that they are invertible and that MH 6= HM .
Sampling of invertible non-commuting matrices can be done as follows. Build a matrix M with
entries selected uniformly at random from Zp. Check if it is invertible; with high probability it will
be. If not, then start over. Then do the same for the matrix H. Then check if MH 6= HM ; with
high probability this will be the case. If not, then start the whole sampling over.

Then, since the matrix H is raised to a large power, we should worry that the order of H in
the (multiplicative) group GLk(Zp) is not too small. We suggest that the size of all matrices in
our scheme be 3 × 3. In that case, the order of the group GL3(Zp) is (p3 − 1)(p3 − p)(p3 − p2) =
p3(p− 1)3(p+ 1)(p2 + p+ 1) = 8p3q3(p+ 1)(p2 + p+ 1).

Recall that by Lagrange’s theorem, the order of any element of a group should divide the order
of the group. Since we do not have control over prime factors of (p+ 1) (p2 + p+ 1) and those may

be rather small, we just have to check that H(p+1)(p2+p+1) 6= I. Then it will follow that the order
of H is at least q, i.e., is large.

6. Security

In this section, we address security of the protocol described in Section 4.
Our security assumption here, analogous to the computational Diffie-Hellman assumption, is that

it is computationally infeasible to retrieve the shared secret key K from the quadruple (M,H,A,B).
The matrices A and B are expressed in terms of the matrices M and H as follows:
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A = Hm−1MHm−1 +Hm−2MHm−2 + . . .+HMH +M.(2)

B = Hn−1MHn−1 +Hn−2MHn−2 + . . .+HMH +M.(3)

The shared secret key K is

K = Hn+m−1MHn+m−1 +Hn+m−2MHn+m−2 + . . .+HMH +M.(4)

What makes our scheme compare favorably to, say, the scheme of [3] is that in computing A
and B, both operations on matrices (addition and multiplication) are employed, which is good for
security because neither multiplicative (e.g. the determinant) nor additive (e.g. the trace) functions
of a matrix can be used to reduce the problem to a problem in Zp.

Also, the expressions for A and B cannot be factored into products of simpler expressions. To
compare, factoring would be possible if the action of H on M was a one-sided multiplication. For
example, if the action of H on M was given by M · H, then the matrix A would be equal to
MHm+MHm−1 + . . .+MH+M = M(Hm+Hm−1 + . . .+H+ I). The adversary could multiply
this on the right by (H − I) and get M(Hm+1 − I). Since the matrices M and H are public, the
adversary could then recover MHm+1 or even Hm+1 if M is invertible. Then, if H is invertible,
too, the adversary can recover Hm, and this breaks the scheme.

However, with the action M → HMH, no factorization of A (or B) is possible, and there is no
visible way to recover K from (M,H,A,B).

We also note again that no power of any matrix is ever exposed, so all standard attacks on
Diffie-Hellman-like protocols are not applicable in our situation. We also note that the analog
of the discrete logarithm problem for our protocol is at least as hard as it is for the classical
Diffie-Hellman protocol.

Proposition 1. Let a prime p be of the form p = 4n + 3. (In particular, safe primes have this
property.) Suppose it is computationally feasible for the adversary to recover, from the 3× 3 public
matrices A, M , and H over Zp, the private exponent m in the protocol in Section 4. Then it is

computationally feasible for the adversary to recover the private exponent k from g and gk in the
classical Diffie-Hellman protocol.

Proof. In the notation we used for the Diffie-Hellman protocol in the Introduction, suppose we are
given g and gm, for some g ∈ Zp and m ∈ Z. Make a 3× 3 matrix M with a11 = g; a22, a23, and
a33 random. Let the matrix H be a diagonal matrix, with h22 = 1; h11 and h33 random.

Then, for any i ≥ 0, the matrix H i will have hi11, 1, and hi33 on the diagonal. The matrix H iMH i

will have g2i in the upper left corner, and zeros as other entries in the first row and in the first
column. Therefore, the matrix A (see the formula (2)), which is the sum of H iMH i, will have

g2
∑
i in the upper left corner, and zeros as other entries in the first row and in the first column.

The summation in the exponent on g is from i = 0 to i = m − 1 and the whole exponent on g is
therefore equal to (m− 1)(m− 2). Clearly, one knows m if and only if one knows (m− 1)(m− 2).
Other entries of the matrix A are as follows. The entry (2,2) is m · a22, i.e., it is random since a22
is random. Similarly, the entry (2,3) is m · a23, i.e., is random. The entry (3,2) is 0. Finally, the

entry (3,3) is a33 ·
∑
hj33, where j in the exponent on h33 runs from j = 0 to j = m − 1. Again,

this is random since a33 is random.
Thus, the matrix A has g(m−1)(m−2) in the upper left corner, and other entries are either zeros or

random. Hence our strategy for recovering k from g and gk will be as follows. Put gk in the upper
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left corner of A, and make other entries either zeros or random, according to what we wrote in the
previous paragraph. Then recover m, if possible, using an algorithm that is assumed to exist by
the Proposition hypothesis. We say “if possible” because k may not have the form (m− 1)(m− 2),
in which case the algorithm may fail.

Re-write (m − 1)(m − 2) as (m − 3
2)2 − 9

4 . Here 3
2 means 3 · 2−1. The inverse of 2 exists since

p 6= 2. Similarly, 9
4 is a particular fixed element of Zp; denote it by r. Thus, k− r = (m− 3

2)2, i.e.,
(k− r) should be a quadratic residue modulo p for our hypothetical algorithm to work. If (k− r) is
not a quadratic residue modulo p, then, since p is of the form p = 4n+ 3, it is known that (r − k)
should be a quadratic residue. Then we replace gk in the matrix A by gr(gk)−1 = gr−k and run
our algorithm on this updated matrix as well.

Thus, we will have two similar algorithms running in parallel on two different matrices A: one
with gk in the upper left corner, the other one with gr−k. One of these algorithms will recover m,
and therefore k (or (r − k)), and this completes the proof.

�

We have also run some tests to see if the matrix K (the shared secret key) is indistinguishable
from random. Figure 1 shows a histogram of values of the (1,1) entry of K, for a 200-bit p. Here
values from 0 to p are split into 10 groups (“bins”) of size

⌊ p
10

⌋
and the number of values in each

bin, out of 100,000 trials, is recorded. The histogram shows essentially uniform distribution of
values between the bins. Histograms for values of other entries of the matrix K look the same, so
K passes at least this simple randomness test.
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Figure 1. Values distribution for the (1,1) entry of K

Another test we have run was computing the mean of the entries of K in each single row and
each single column, as well as the mean of all entries of the matrix K. Figure 2 below shows a
histogram of the means of the entries of the first column, out of 100,000 trials. Figure 3 shows
a histogram of the means of all entries of the matrix K. Again, values from 0 to p are split into
10 groups (“bins”) of size

⌊ p
10

⌋
. By the central limit theorem, if several random variables are

independent and identically distributed, then their mean is approximately normally distributed.
Thus, our Figure 2 and Figure 3 are, though indirect, still an evidence of different entries of K
being independent.
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Figure 2. Mean distribution of the first column entries of K
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Figure 3. Mean distribution of all entries of K

Another evidence of the matrix K being indistinguishable from random is independent distri-
bution of values of different entries of K. This is illustrated by Figure 4. It shows that joint
distribution of values of a pair of different entries of K is very close to uniform, i.e., for any two
possible values (x, y) of the entries in such a pair, the probability to occur is 1

p2
= 1

p ·
1
p , evidencing

independence of x and y. The ticks on the x-axis of the histogram in Figure 4 split p possible
values of the first entry in a pair into 10 bins corresponding to sets of values with an increment of
h =

⌊ p
10

⌋
. Each of these 10 bins is split again into 10 bins of equal size to accommodate possible

values of the second entry in a pair.
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Figure 4. Distribution of values of a pair of entries of K

7. Implementation and performance

The scheme of this paper was implemented using Python. The code is available online, along
with a challenge, see [7].

We note that the formulas (2) and (3) may create an impression that to compute the matrices
A and B, Alice and Bob have to compute all powers of the matrix H, from 1 to (m − 1) or
(n − 1). However, this is not the case; a large power of (M,H) can be computed with the usual
square-and-multiply method, and this will produce A or B as the corresponding first component.

The number of multiplications in Zp needed to compute Hn is, of course, larger than that to
compute gn for g ∈ Zp. To compute the square of a 3 × 3 matrix, one needs 24 multiplications of
elements of Zp, so one can expect our protocol to run at least 24 times slower than the classical
Diffie-Hellman protocol. This is still fast enough to be practical; with a 2000-bit p the run time of
the protocol is about 2 sec on a very basic computer. Besides, given that at this time there are no
visible approaches whatsoever (other than brute force) to attack the protocol in this paper, the basic
parameter p can probably be taken smaller than what is recommended for standard Diffie-Hellman
protocols, and this will reduce the run time.

A particular 2000-bit safe prime p that we used in our computer simulations was 10045850546888
50036334185776562243339025531704844369832736073099638458477395071158608659647532399390
27972338834707903941940188314348678981808910413754306718965087266944429878241410578991
73376250244281758576559881643143110828207143325627334593997352683778809319929255772120
45905540615043591215742223683070489198090104899809610177067292220347910171309250704268
93349814057145812995340991548906078333104951440614482037356443864699967124299012034397
81034231264233355059817445403969916571063605224058329470399818911447991765712527069708
6234200442489544474659560583354052797579309573507121265302226528942789519.

8. Conclusions

• We have offered a key exchange protocol, resembling the classical Diffie-Hellman protocol,
based on a semidirect product of two cyclic semigroups of matrices over Zp. One of the semigroups
is additive, the other one multiplicative.
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• In our protocol, no power of any matrix or any element of Zp is ever exposed, so all standard
attacks on Diffie-Hellman-like protocols are not applicable.
• Security assumption, analogous to the computational Diffie-Hellman assumption, is computa-

tional infeasibility of recovering the value of a polynomial (of unknown degree) of a special form
on two given matrices, from the values of two other polynomials (also of unknown degrees) on the
same two matrices. A weaker security assumption is analogous to the discrete log assumption in
Zp and is provably at least as hard.
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