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Abstract. Pairing computations on elliptic curves with odd prime degrees are
rarely studied as low efficiency. Recently, Clarisse, Duquesne and Sanders pro-
posed two new curves with odd prime embedding degrees: BW13-P310 and
BW19-P286, which are suitable for some special cryptographic schemes. In this
paper, we propose efficient methods to compute the optimal ate pairing on this
types of curves, instantiated by the BW13-P310 curve. We first extend the tech-
nique of lazy reduction into the finite field arithmetic. Then, we present a new
method to execute Miller’s algorithm. Compared with the standard Miller iter-
ation formulas, the new ones provide a more efficient software implementation
of pairing computations. At last, we also give a fast formula to perform the final
exponentiation. Our implementation results indicate that it can be computed effi-
ciently, while it is slower than that over the BLS-446 curve at the same security
level.

Keywords: Pairing Computations, Odd Prime Embedding Degree, Miller Itera-
tion

1 Introduction

Pairings on elliptic curves are a powerful tool in cryptography because of their
widespread applications in cryptographic schemes such as Identity-Based Encryption
(IBE) [1], Short Signatures [2], Direct Anonymous Attestation (DAA) [3], and En-
hanced Privacy ID (EPID) [4]. The book [5] provides a good reference of pairing-based
cryptography. A pairing is a bilinear and non-degenerated map 4 : G1 × G2 −→ G) ,
where G1 and G2 are two subgroups of order A of an elliptic curve, and G) is a sub-
group of order A of F?: , where : is the embedding degree of the elliptic curve with
respect to A. In order to shorten the length of Miller loop, several variants of Tate pairing
are proposed, such as ate [6, 7], ate8 [8], R-ate [9, 10] and optimal [11] pairings. For
efficiency, most implementations of pairing computations are over elliptic curves with
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embedding degrees : = 283 9 . However, the special structure of F?: also results in some
potential security risks. The security of pairing-based protocols is based on the hardness
of discrete logarithm problems in G1, G2 and F?: , respectively. Due to the Pollard’s
rho [12] algorithm, the security level inG1 andG2 is log2 |A |/2. To compute the discrete
logarithm in F?: with ? medium or large [13], the state-of-the-art attacks are variants
of NFS. Gordon [14] and Schirokauer [15] first used NFS to attack the DLP in prime
fields. Schirokauer [16] adapted the NFS and proposed a new variant, later known as
TNFS, to compute the discrete logarithm in F?: with : > 1 based on a tower exten-
sion. This can be applied to determine the key sizes of pairing based cryptosystems.
Joux 4C 0;. [17] later applied the NFS (known as JLSV) to finite fields for any large
or medium characteristic ?. In 2016, Kim and Barbulescu [13] introduced exTNFS to
DLP in F?: with : a composite number mainly by modifying the polynomial selection
in TNFS. This implies that for a non-prime number : , NFS has better complexity for
? medium size. Furthermore, in paring-based construction, the prime ? always has a
special form of %(D)/{ with some polynomial %(G) ∈ Z[G] and some integers D, {. Kim
and Barbulescu [13] proposed a variant of exTNFS, named SexTNFS, to target DLP in
F?: when ? has the special form, which greatly reduces the asymptotic complexity even
compared to exTNFS. This implies that pairing-based cryptosystems associated with a
composite number : require larger key sizes compared to those ones with : prime.
Hence, the curves with prime embedding degree may be preferred for the special

schemes, such as EPID and DAA, which require an amount of exponentiations in G1.
Clarisse 4C 0;. [18] studied pairing friendly curves with fast exponentiation in G1 and
recommended two curves:BW13-P310 andBW19-P286. To our knowledge, the software
implementation of pairings on the two curves have never been studied. In this paper,
we investigate efficient pairing computation on the curves with odd prime embedding
degrees. An instantiation using BW13-P310 curve is discussed in detail. We summarize
our contributions as follows:

– We first investigate the finite field arithmetic in F?13 . The technique of lazy reduc-
tion is extended to the multiplication, squaring and inversion in F?13 . An efficient
inversion operation is also presented.

– We introduce a modifiedMiller function, which is suitable for pairing computations
with odd prime embedding degrees. On this basis, new iterative formulas are given
to speed up the computation in the Miller loop.

– We examine the efficiency of pairing computation in Jacobian and homogeneous
coordinates. The results show that the former one is more efficient than the latter.

– Finally, we optimize the computation of the final exponentiation. We implement
the optimal ate pairing over the BW13-P310 curve on a 64-bit PC platform. Our
implementation results show that it can be computed efficiently, although it is not
as efficient as that over the BLS-446 curve.

Outline of this paper: Section 2 gives a brief overview of the optimal ate pairing
and the explicit formula of that over the BW13-P310 curve. In Section 3, we describe
the finite field arithmetic optimized by the technique of lazy reduction. Sections 4 and
5 study the modified Miller double-and-add and the modified Miller quadruple-and-
add, respectively. In Section 6, we introduce an efficient method to implement the final
exponentiation of the BW13-P310 curve. Section 7 summarizes operation counts and
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implementation results of the optimal ate pairing computation on the curve. We draw
conclusions in Section 8.

2 Preliminaries

2.1 Optimal ate pairing

Let F? be a prime field of characteristic ? and � an elliptic curve defined over F? .
Denote by O the infinity point of � . We use #� (F?) to denote the order of � (F?). Then
#� (F?) = ? + 1 − C, where C is the trace of the Frobenius endomorphism c? : (G, ~) →
(G? , ~?). Consider a large prime A such that A |#� (F?). Then the embedding degree :
is the smallest positive integer such that A |?: − 1. The number : also ensures � [A] ⊆
� (F?: ). Let G1 = {% ∈ � [A] |c? (%) = %} and G2 = {% ∈ � [A] |c? (%) = [?]%}. Let
< be an integer such that A - < and the coefficients of _ = <A in basis ? are as small
as possible. Define the Miller function 5D,& to be the normalized rational function with
divisor

38{( 5D,&) = D(&) − ([D]&) − (D − 1) (O),

where & is a rational point of � . Write _ =
;∑

8=0
28 ?

8 and B8 =
;∑
9=8

2 9 ?
9 . The general

expression of the optimal ate pairing is defined as [11]:

0>?C : G2 × G1 → G) ,

(&, %)→
(

;∏
8=0

5
?8

28 ,&
(%) ·

;−1∏
8=0

ℓ[B8+1 ]&, [28 ?8 ]& (%)
a [B8 ]& (%)

) (?:−1)
A

,

where ℓ[B8+1 ]&, [28 ?8 ]& is the straight line passing through the points [B8+1]& and [28 ?8]&,
and a [B8 ]& is the vertical line passing through the points [B8]& and [−B8]&. The target
coefficients 28 can be captured from the short vectors of the following lattice !.

! =

©«
A 0 0 · · · 0
−? 1 0 · · · 0
· · · · · · · · · · · · · · ·

−?i (:)−1 0 0 · · · 1

ª®®®¬ .
2.2 BW13-P310 curve

The improvement of NFS results in a larger field size for pairing friendly curves
at 128-bit security level. New security estimation of pairing friendly curves are given
in [19, 20]. If we restrict the embedding degree : < 19 and the computer word-size
| = 64, the curve from Construction 6.6 in [21] with : = 13 is the sole survivor such
that the prime ? can be represented by 5 words. The order A (D), the prime ?(D) and the
Frobenius trace C (D) of the curve are given by

A (D) = Φ78 (D),
?(D) = 1

3 (D + 1)
2 (D26 − D13 + 1) − D27,

C (D) = −D14 + D + 1.
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By using the function ShortestVectors in MAGMA [22], we obtain a short vector of
lattice ! as � = [D2,−D, 1, 0, 0, 0, 0, 0, 0]. The seed D is selected as D = −0G801 and the
corresponding elliptic curve is given as

� : ~2 = G3 − 1, (1)

where 1 = 17. As the curve is actually constructed by using the Brezing-Weng method
with embedding degree : = 13, and the bit length of the prime ? is 310, it is named
as BW13-P310 in [18]. In the following, we denote G = −D = 0G801. Then the optimal
pairing is expressed as

0>?C = ( 5G2 ,& · 5
?

G,&
· ℓc2 (&) , c ( [G ]&) ) (?

13−1)/A .

According to [5, Lemma 3.5], we find that

5G2 ,& · 5
?

G,&
= 5

G+?
G,&
· 5G, [G ]& .

Therefore, the optimal pairing can be equivalently written as

0>?C = ( 5 G+?G,&
· 5G, [G ]& · ℓc2 (&) , c ( [G ]&) ) (?

13−1)/A ,

which gives a short Miller loop.

2.3 Pairing computation

Pairing computation consists of the Miller loop, which mainly computes 528 ,& (%)
by using Miller’s Algorithm (Algorithm 1), and the final exponentiation, which raises
the result of the Miller loop to the power of 3 =

?:−1
A
. Miller iteration is based on the

following relations:

51,& = 1,

5D+1,& = 5D,& ·
ℓ[D ]&,&

a [D+1]&
,

52D,& = 5 2D,& ·
ℓ[D ]&, [D ]&
a [2D ]&

.

When the embedding degree : is composite, the computation of the final exponentiation
is usually relatively easy [23–25]. When : is prime, the exponent 3 could be factorized
as 3 = (? − 1) · [, where [ =

Φ: (?)
A
, and Φ: denotes the :-th cyclotomic polynomial.

Raising an element 5 ∈ F?: to the power ? − 1 is easy via one ?-Frobenius map, one
inversion and one multiplication in F?: . However, raising 5 to the power [ is relatively
costly. Generally, the exponent [ can be expressed as [=_0 + _1? . . . _:−1?:−2. Note
that a fixed non-degenerate power of a pairing is still a pairing. Therefore, we can
equivalently compute 5 [

′ , where [′ = < · [ for some < with A - < and the coefficients
of [′ in basis ? are as small as possible. More details are shown in [26]. In Section 6,
we will investigate the final exponentiation on the BW13-P310 curve in detail.
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Algorithm 1: MILLERLOOP(G, &, %)

1 Input:% ∈ G1, & ∈ G2, G =
∑ b;>�2Gc
8=0 G828

2 Output: 5G,& (%)
1: ) ← &, 5 ← 1
2: for 8 =

⌊
log2 G

⌋
− 1 downto 0 do

3: 5 ← 5 2 · ℓ) ,) (%)
a2) (%) , ) ←− 2)

4: if G8 = 1 then
5: 5 ← 5 · ℓ) ,& (%)

a) +& (%) , ) ← ) +&
6: end if
7: if G8 = −1 then
8: 5 ← 5 · ℓ) ,−& (%)

a)−& (%) , ) ← ) −&
9: end if
10: end for
11: return 5

3 Finite Field Operations in F p13

For any embedding degree : , the extension field F?: can be seen as F? [l]/〈 5 (l)〉,
where 5 (l) is a :-th irreducible polynomial over F? . The irreducible polynomial
5 (l) is usually chosen as a binomial in order to implement finite field arithmetic
efficiently. From [27, Theorem 3.75], 5 (l) can be chosen as a binomial if ? ≡ 1 mod : .
Fortunately, the prime selected for the BW13-P310 curve meets this requirement. Hence,
the extension field F?13 can be constructed as F?13 = F? [l]/〈l13 − b〉 for some b ∈ F? .
For the prime ? selected, the parameter b can be chosen as b = 2. In the section, we
mainly discuss the finite field arithmetic operations in F?13 , including multiplication,
squaring, inversion and Frobenius operations. We skip the discussion of the arithmetic
of addition/subtraction in F?13 since it is relatively simple and straightforward. All
notations used in the following field operations are presented in Table 1.

3.1 Lazy reduction

Lazy reduction technique was first introduced in pairing computations by [28] to
speed up the multiplication in F?2 . Aranha 4C 0;. [23] extended the method to the whole
pairing computations in tower-friendly fields. By using the technique the computation of
0×1 mod ? ⊕ 2×3 mod ? is replaced by that of (0×1+2×3) mod ? for any 0, 1 ∈ F? .
Hence one modular reduction can be saved. It should be noted that 0 × 1 mod ? and
2 × 3 mod ? are single-precision numbers (occupying 5 words for the selected ?), and
0 × 1 and 2 × 3 are double-precision numbers (occupying 10 words for the selected ?).
The shortcoming of the technique is that one single-precision addition is replaced by one
double-precision addition. Let # = | ·

⌈ ⌈
log2 ?

⌉
|

⌉
. As the upper bound of Montgomery

reduction is 2# · ?, it should be careful when using the technique of lazy reduction. In
this section, we apply the technique to the arithmetic in F?13 .
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3.2 Multiplication

For any 0 =
∑12

8=0 08l
8 and 1 =

∑12
8=0 18l

8 , the computation of 0 · 1 is given in
Algorithm 2 by using Karatsuba multiplication [29]. The corresponding sub-algorithms

ofMulLevel-i(0, 1) for 8 ∈ {2, 3, 4, 6, 7} are used to compute
8∑
9=0

0 9l
9 ×

8∑
9=0

1 9l
9 , which

are presented in Appendix �. Now we explain every step of the algorithm. At Lines 1-4,
the two elements 0 and 1 are written as 0 = �0 + �1l6 and 1 = �0 + �1l6. Then, we
have

0 × 1 = U + (W − U − V)l6 + Vl12,

where U, V and W are given at Lines 5 − 9. Lines 10 − 15 compute W − U − V. It is easy
to check that W8 − (U8 + V8) > 0 for 8 ∈ {0, . . . , 12}. Thus, the above double precision
subtractions do not require carry checks. Lines 16 − 26 compute 0 × 1. As b is small,
the values of D8 ∈ (0, 2# · ?) for 8 ∈ {0, . . . , 12}. Hence, the above double precision
additions also do not require carry checks. Lines 27 − 29 compute 0 · 1 = 0 × 1 mod ?.
The algorithm of squaring in F?13 is similar. Here we do not discuss it in detail as it is
tedious. The operation counts of multiplication and squaring in F?13 are summarized in
Table 4.

Algorithm 2:Multiplication in F?13

1 Input: 0 =
12∑
8=0

08l
8 , 1 =

12∑
8=0

18l
8 ,

2 Output: 2 = 0 · 1 =
12∑
8=0

28l
8 ∈ F?13

1: �0 ←
5∑
8=0

08l
8

2: �1 ←
6∑
8=0

08+6l8

3: �0 ←
5∑
8=0

18l
8

4: �1 ←
6∑
8=0

18+6l8

5: U← "D;!4{4;6(�0, �0)
6: V← "D;!4{4;7(�1, �1)
7: )0 ← �0 + �1
8: )1 ← �0 + �1
9: W ← "D;!4{4;7()0, )1)
10: for 8 = 0 to 10 do
11: W8 ← W8 − U8
12: W8 ← W8 − V8
13: end for

14: W11 ← W11 − V11
15: W12 ← W12 − V12
16: for 8 = 0 to 5 do
17: D8 ← V8+1 + W8+7
18: D8 ← b · D8
19: D8 ← U8 + D8
20: end for
21: for 8 = 6 to 10 do
22: D8 ← U8 + W8−6
23: D8 ← D8 + b · V8+1
24: end for
25: D11 ← W5 + b · V12
26: D12 ← W6 + V0
27: for 8 = 0 to 12 do
28: 28 ← D8 mod ?
29: end for

30: return 2 =
12∑
8=0

28l
8
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3.3 Frobenius map and inversion operation

Table 1. Notation of arithmetic operations in F?13

Notation Definition
< Multiplication in F?
B Squaring in F?
0 Addition in F?
8 Inversion in F?
A Modular reduction in F?
<D Multiplication in F? without reduction
BD Squaring in F? without reduction
<̃ Multiplication in F?13
B̃ Squaring in F?13
0̃ Addition in F?13
8̃ Inversion in F?13
8̃2 Inversion in Gq13
Ã Modular reduction in F?13
<̃D Multiplication in F?13 without reduction
B̃D Squaring in F?13 without reduction
5 Frobenius in F?13
4 Exponentiation by G in F?13
+ addition without carry checks
− subtraction without carry checks
× multiplication without modular reduction
⊕ addition with modular reduction or carry checks
	 subtraction with modular reduction or carry checks
⊗ multiplication modular reduction

Let 0 =
∑12

8=0 08l
8 ∈ F?13 , where each 08 ∈ F? . Since ? ≡ 1 mod 13, it follows that

0? 9

= (
12∑
8=0

08l
8) ? 9

=

12∑
8=0
(08 · b8 ·

? 9−1
13 )l8 .

The values of b8
? 9−1
13 can be precomputed for each 8 ∈ {1, 2, ...12}. Thus, one ?8- Frobe-

nius operation in F?13 costs 12<. Generally, the inversion of 0 ∈ F?13 can be computed
by using the following formula:

0−1 = #>A<F
?13/F? (0)

−1 ·
12∏
i=1

08 , (2)
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where #>A<F
?13/F? (0) =

12∏
i=0

08 ∈ F? . A direct computation of an inversion in F?13 by
using Equation (2) requires 12<̃ + 13< + 8 + 12 5 . Now we give another efficient method

to compute it. Define 1 =
12∏
i=1

08 . Then we find that

1 =
(
(0? · 0?2 · 0?3 ) ?3+1

) ?6+1
. (3)

Since 0 · 1 ∈ F? , it follows that

0 × 1 = 00 × 10 + b · (01 × 112 + 02 × 111 + · · · + 012 × 11).

Hence,
0−1 =

1(
00 × 10 + b · (01 × 112 + · · · + 012 × 11)

)
mod ?

.

The total cost is reduced to 4<̃ + 13< + 13<D + 8 + 5 5 + 260 + 1A . The cyclotomic
subgroup GΦ13 is a subgroup of F?13 such that

GΦ13 = {0 ∈ F?13 |0Φ13 (?) = 1}.

Comparedwith the inversion inF?13 , an inversion inGΦ13 ismore efficient as 0−1 =
12∏
i=1

08 ,

which requires 4<̃ and 5 5 as calculated in (3).

4 Modified Miller double-and-add

In the standard implementation of Miller’s algorithm, the Miller loop consists of
two parts: doubling ( DBL) step and addition (ADD) step . In this section, we give a fast
formula by combining one doubling and addition steps into a single step. We name the
stage as doubling-addition (DBLADD) step. Generally, the rational function 52<+1,&
can be obtained from 5<,& as follows

52<+1,& = 5 2<,&

ℓ[<]&, [<]& · ℓ[2<]&,&

a [2<]& · a [2<+1]&
. (4)

When the embedding degree is odd prime, the trick of denominator elimination is not
applicable any more. Hence, one doubling-addition step requires four line evaluations
in (4). Define the modified Miller function �<,& to be a normalized rational function
such that

38{(�<,&) = <(&) + ([−<]&) − (< + 1) (O). (5)

It follows that

�1,& = G − G&, (6)

�2<,& = �2<,& ·
a [2<]&

ℓ[−<]&, [−<]&
, (7)
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�<+1,& = �<,& ·
ℓ[<]&,&

a [<]&
. (8)

We also observe that

38{(�D,&) − 38{( 5D,&) = 38{(aD&).

Thus �D,& = 5D,& ·aD& up toF? . This gives us anotherway to compute 5D,&. In particular,
we first compute �D,& starting from �1,& by using the iteration relations given in (7)-(8).
Then, we recover 5D,& from �D,& by 5D& = �D,&/aD&. In order to obtain �2<+1,& from
�<,&, it requires to find a rational function with divisor 38{(�2<+1,&) − 38{(�2<,&

). From
(5), we immediately have

38{(�2<+1,&) − 38{(�2<,&)
=(&) + ([−2< − 1]&) − 2( [−<]&)
=38{(ℓ[2<]&,&) − 38{(ℓ[−<]&, [−<]&)

Hence,

�2<+1,& = �2<,&

ℓ[2<]&,&

ℓ[−<]&, [−<]&
. (9)

Compared with the formula in (4), it is intuitively plausible that the new formula in (9)
would bemore efficient, since only two line evaluations are required. In the following, we
apply the optimization to the curve arithmetic in Jacobian and homogeneous coordinates.
For any integers 8 and 9 , we denote by #8,&, #ℓ[8 ]&, [ 9 ]& and #a [8 ]& the numerators
of �8,& (%), ℓ[8 ]&, [ 9 ]& (%) and a [8 ]& (%), and by �8,& the denominator of �8,& (%),
respectively.

4.1 Jacobian coordinates

For any point ' ∈ � , let G' and ~' be the G- and ~- coordinates of ' in affine
coordinates. Fast algorithm of elliptic curve scalar multiplication is crucial for pairing
computation. Hence, the point ) in the subgroup G2 is generally stored in projective
coordinates to avoid the field inversion. For this curve shape, Jacobian coordinates offer
the most efficient group operations [30]. In particular, let ) = (-) , .) , /) ) be in Jaco-
bian coordinates. Using the formulas proposed in [31], the point 2) = (-2) , .2) , /2) )
is given by :

-2) =
9
4
-4) − 2-) · .2) ,

.2) =
3
2
-2) · (-) · .2) − -2) ) − .4) ,

/2) = .) · /) .

To compute the above, we use the following sequence of operations:

C0=-2) , C1 = C0/2, C0 = C0 + C1, C1 = C20 , C2 = .2) , C3 = -) · C2,
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-2) = C1 − 2C3, C1 = C3 − -2) , D0 = C0 × C1, D1 = C2 × C2,
.2) = (D0−D1) mod ?, /2) = .) · /) ,

which requires 2<̃ + <̃D + 3B̃ + B̃D + Ã + 70̃. It should be noted that the cost of division
by two is equivalent to that of addition, and the computation of D0 − D1 requires 20. If
) ≠ &, then the point ) +& = (-) +&, .) +&, /) +&) in Jacobian coordinates is given by

U) +& = ~& · /3) − .) ,
V) +& = G& · /2) − -) ,

-) +& = U2) +& − 2-) · V2) +& − V3) +&,

.) +& = U) +& · (-) · V2) +& − -) +&) − .) · V3) +&,
/) +& = /) · V) +& .

We use the following sequence of operations to compute the point addition in 6<̃ +
2<̃D + 3B̃ + Ã + 80̃ as

C0 = /2) , C1 = C0 · /) , C1 = C1 · ~&, C1 = C1 − .) ,
C2 = C21 , C3 = C0 · G& − -) , C4 = C23 , C5 = C3 · C4,
C2 = C2 − C5, C4 = C4 · -) , -) +& = C2 − 2C4,
C4 = C4 − -) +&, D0 = C1 × C4, D1 = .) × C5,
.) +& = (D0 − D1) mod ?, /) +& = /) · C3.

doubling step According to the new iteration formula in (7), we require to compute
ℓ−) ,−) (%) and a2) (%) at doubling step. Logically, we first compute 2) using one point
doubling as proposed above. Note that ℓ−) ,−) can be written as two different formulas,
that is,

~ = −
3G2

)

2~)
(G − G) ) − ~) ,

~ = −
3G2

)

2~)
(G% − G2) ) + ~2) .

In our experience, it is more efficient to select the latter one at the step, since it shares
more common intermediate values with a2) (%). Specifically, the line functions ℓ−) ,−)
and a2) evaluated at % = (G% , ~%) in Jacobian coordinates can be expressed as

ℓ−) ,−) (%) =
~% · /32) +

3
2-
2
)
· (G% · /22) − -2) ) − .2)
/32)

,

a2) (%) =
G% · /22) − -2)

/22)
.

Then, the values of #2<,& and �2<,& are given by

#2<,& = #2<,& · /2) · #a2) ,
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�2<,& = �2<,& · #ℓ−) ,−) .

Note that 32-
2
)
has been given in the point doubling step. Hence, the values of #2<,&

and �2<,& can be computed by using the following sequence of operations:

C0 = /22) , C1 = C0 · /2) , C0 = G% · C0, C0 = C0 − -2) ,

D0 = ~% × C1, C2 = /2) · C0, C3=#2<,&, #2<,& = C2 · C3,

D1 =
3
2
-2) × C0, C0 = (D0 + D1) mod ?, C0 = C0 − .2) ,

C1 = �2<,&, �2<,& = C0 · C1,

which comes at a cost of 4<̃ + <̃D + 3B̃ + 13< + 13<D + Ã + 40̃. In total, the number of
operations required at the doubling step is 6<̃ + 2<̃D + 6B̃ + B̃D + 13< + 13<D + 2Ã + 110̃.

addition step We first compute ) + & by using one point addition. Then the two line
functions ℓ) ,& and a) evaluated at % = (G% , ~%) in Jacobian coordinates are given by:

ℓ) ,& (%)=
V) +& · (~% ·/3) −.) )−U) +& (G% · /

2
)
−-) )

/) +& · /2)
,

a) (%) =
G% · /2) − -)

/2
)

,

where U) +&, V) +&, /2) and /
3
)
have been given in the point addition step. From (8), the

values of #<+1,& and �<+1,& are given by

#<+1,& = #<,& · #ℓ) ,&,

�<+1,& = �<,& · /) +& · #a) .

To compute #<+1,& and �<+1,&, we use the following sequence of operations:

C0 = ~% · /3) − .) , C1 = G% · /2) − -) , D0 = V) +& × C0,
D1 = U) +& × C1, C0 = (D0 − D1) mod ?, C1 = C1 · /) +&,
#<+1,& = #<,& · C0, �<+1,& = �<,& · C1,

which comes at a cost of 3<̃ + 2<̃D + 26< + Ã + 40̃. Hence, the number of operations
required at the addition step is 9<̃ + 4<̃D + 3B̃ + 26< + 2Ã + 120̃.

doubling-addition step The point 2) + & in Jacobian coordinates can be obtained by
performing one point doubling and one point addition. Consequently, the line functions
ℓ2) ,& and ℓ−) ,−) evaluated at % = (G% , ~%) are given by

X1 = V2) +& · (~% · /32) − .2) ),
X2 = G% · /22) − -2) ,
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ℓ2) ,& (%) =
X1 − U2) +& · X2
V2) +& · /32)

,

ℓ−) ,−) (%) =
X1 + 32-

2
)
· V2) +& · X2

V2) +& · /32)
,

where 32-
2
)
, U2) +&, V2) +&, /22) and /

3
2) have been given in point doubling or addition

steps. The numerator and denominator of ℓ−) ,−) (%) are multiplied by V2) +& simulta-
neously. By this way, one modular reduction in F?13 can be saved as lazy reduction can
be used when computing the numerator of ℓ−) ,−) (%). From (9), the values of #2<+1,&
and �2<+1,& are given by

#2<+1,& = #2<,& · #ℓ2) ,&,

�2<+1,& =�2<,& · #ℓ−) ,−) .

We use the following sequence of operations to compute #2<+1,& and �2<+1,&:

C0 = ~% · /32) −.2) , D0 = C0 ×V2) +&, C0 = G% · /22) ,
C0 = C0 − -2) , D1 = C0 × U2) +&, C1 = (D0 − D1) mod ?,

C2=#
2
<,&, #2<+1,& = C1 ·C2, C1=

3
2
-2) ·V2) +&, D1= C0 × C2,

C0 = (D0 + D1) mod ?, C1 = �2<,&, �2<+1,& = C0 · C1,

which comes at a cost of 3<̃ + 3<̃D + 2B̃ + 26< + 2Ã + 60̃. Thus, the total number of
operations required at the doubling-addition step is 11<̃+6<̃D +8B̃+ B̃D +26<+4Ã +210̃.

4.2 Homogeneous coordinates

Homogeneous coordinates offer another efficient way to implement elliptic curve
scalar multiplication. Compared with Jacobian coordinates, Azarderakhsh 4C 0;. [31]
examine that homogeneous coordinates are the preferred choice for the optimal ate
pairing implementation over BN curves. In particular, let ) = (-) , .) , /) ) ∈ � (�?13 )
in homogeneous coordinates. Then the point 2) = (-2) , .2) , /2) ) in homogeneous
coordinates is given as follows:

-2) =
-) · .)
2

· (.2) +91/2) ),

.2) =
(.2) − 91/2)

2
) 2−2712/4) ,

/2) = 2.3) · /) .

We use the following sequence of operations to compute the point doubling in 3<̃ +3B̃+
2B̃D + Ã + 220̃ as

C0 =
-) · .)
2

, C1 = .2) , C2 = /2) , C3 = 31C2, C4 = 3C3,
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C5 = C1 + C4, -2) = C0 · C5, C5 = (.) + /) )2 −C1 − C2,

/2) = C1 · C5, C0 =
C1 − C4
2

, D0 = C0 × C0, D1 = C3 × C3,

.2) = (D0 − 3D1) mod ?,

where 1 is the curve parameter. If ) ≠ &, the point ) + & = (-) +&, .) +&, /) +&) in
homogeneous coordinates is given by

U) +& = .) − ~& · /) ,
V) +& = -) − G& · /) ,
-) +& = V) +& (V3) +& + /) · U

2
) +& − 2-) · V2) +&),

.) +& =U) +& (3-) ·V2) +&−V
3
) +&−/) ·U

2
) +&)−.) · V

3
) +&,

/) +& = /) · V3) +& .

We compute the point ) +& using the following sequence of operations:

C0 = .) − ~& · /) , C1 = C20 , C2 = -) − G& · /) , C3 = C22 ,

C4 = C2 · C3, C5 = C1 · /) + C4, C6 = -) · C3, C7 = 2C6,
C5 = C5 − C7, -) +& = C2 · C5, C7 = C6 − C5, D0 = C0 × C7,
D1 = .) × C4, .) +& = (D0 − D1) mod ?, /) +& = /) · C4.

The total cost of point addition in homogeneous coordinates is 7<̃ + 2<̃D + 2B̃ + Ã + 80̃.

doubling step Unlike the case of the doubling step in Jacobian coordinates, it is
appropriate to select the formula of ℓ−) ,−) as

~ = −
3G2

)

2~)
(G − G) ) − ~) .

This is mainly due to the curve equation (1) can be used to speed up line evaluation in
this situation. Indeed, the value of -3

)
//) can be replaced by.2) + 1/2) in homogeneous

coordinates. As a result, the tangent line ℓ−) ,−) and vertical line a2) evaluated at
% = (G% , ~%) are given by

ℓ−) ,−) (%) =
2.) /) · ~% + 3-2) · G% − .2) − 31/2)

2.) /)
,

a2) (%) =
G% · /2) − -2)

/2)
,

where 2.) /) , .2) and 31/
2
)
have been given in point doubling step. Therefore, the

values of #2<,& and �2<,& are given by

#2<,& = #2<,& · #a2) ,
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�2<,& = �2<,& · .
2
) · #ℓ−) ,−) .

We compute #2<,& and �2<,& by using the following sequence of operations in 3<̃ +
3B̃ + 13< + 26<D + Ã + 70̃ as

C0 = G% · /2) − -2) , C1 = #2<,&, #2<,& = C0 · C1,
D0 = ~% × 2.) /) , C0 = 3-2) , D1 = G% × C0,
C0 = (D0 + D1) mod ?, C0 = C0 − .2) − 31/2) ,
C0 = C0 · .2) , C1 = �2<,&, �2<,& = C0 · C1.

Hence, the number of operations required in the doubling step is 6<̃ + 6B̃ + 2B̃D + 13< +
26<D + 2Ã + 290̃.

addition step The point ) + & can be obtained by using one point addition step. The
two line functions ℓ) ,& and a) evaluated at % = (G% , ~%) are given by:

ℓ) ,& (%) =
V) +& · (~? · /) −.) )−U) +& · (G% · /) −-) )

V) +& · /)
,

a) (%) =
G% · /) − -)

/)
,

where U) +& and V) +& have been given in the point addition step. As a result, the values
of #<+1,& and �<+1,& are given by

#<+1,& = #<,& · #ℓ) ,&,

�<+1,& = �<,& · V) +& · #a) .

The following sequence of operations can be used to compute the values #<+1,& and
�<+1,&:

C0 = ~? · /) − .) , C1 = G% · /) − -) , D0 = C0 × V) +&,

D1= C1 × U) +&, C0= (D0−D1)mod ?, #<+1,& = C0 ·#<,&,

C1= C1 · �<,&, �<+1,& = V) +& · C1,

which comes at a cost of 3<̃+2<̃D +26<+ Ã +40̃. Hence, the total number of operations
required at the addition step is 10<̃ + 4<̃D + 2B̃ + 26< + 2Ã + 120̃.

doubling-addition step We obtain the point 2) + & by using one point doubling and
one point addition. The line functions ℓ−) ,−) and ℓ2) ,& evaluated at % = (G% , ~%) are
given by

ℓ2) ,& (%) =
V2) +& · (~% − ~&) − U2) +& · (G% − G&)

V2) +&
,
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ℓ−) ,−) (%) =
2.) /) · ~% + 3-2) · G% − .2) − 31/2)

2.) /)
,

where U2) +&, V2) +&, 2.) /) , .2) and 31/
2
)
have been given in the point doubling or

addition steps. Thus, the values of #2<+1,& and �2<+1,& are given by

#2<+1,& =#2<,& · 2.) /) · #ℓ2) ,&,

�2<+1,& =�2<,& · V2) +& · #ℓ−) ,−) .

To compute #2<+1,& and �2<+1,&, we use the following sequence of operations:

D0 = V2) +& × (~% − ~&), D1 = U2) +& × (G% − G&),
C0= (D0−D1) mod ?, C0= C0 · 2.) /) , #2<+1,& = C0 ·#2<,&,

C0=3-2) , D0=2.) /) ×~% , D1= C0×G% , C0= (D0+D1)mod ?,
C0= C0−.2) −31/2) , C0= C0 · V2) +&, �2<+1,& = C0 ·�2<,& .

Hence, it costs 4<̃ + 2<̃D + 3B̃ + 26<D + 2Ã + 100̃. In total, the number of operations
required at the doubling-addition step is 14<̃ + 4<̃D + 8B̃ + 2B̃D + 26<D + 4Ã + 400̃.

4.3 Comparison of operation counts

In Table 2, we draw a comparison of the operation counts of every stage in the
modified Miller double-and-add between Jacobian and homogeneous coordinates. The
operation counts using themethod proposed in [19] is also listed.We ignore addition and
the optimization by the technique of lazy reduction. The results show that homogeneous
coordinates are the best choice, since it offers the fastest formula at doubling step.
Moreover, one doubling-addition step requires less computation than the sum of one
doubling and one addition steps in both homogeneous and Jacobian coordinates. In
particular, if we assume that <̃ ≈ 0.8B̃ and <̃ ≈ 66< (see Table 4), one doubling-
addition step is about 8.9% and 17.4% faster than the sum of one doubling and one
addition steps in homogeneous and Jacobian coordinates, respectively.

Table 2. Operation counts for the iteration of Miller double-and-add in different way( ignoring
addition and the optimization of lazy reduction)

Coordinates DBL ADD DBLADD

Jacobian [19] 9<̃ + 7B̃ + 39< 14<̃ + 3B̃ + 13< 23<̃ + 10B̃ + 52<
Jacobian
(this work) 8<̃ + 7B̃ + 26< 13<̃ + 3B̃ + 26< 17<̃ + 9B̃ + 26<

Homogeneous
(this work) 6<̃ + 8B̃ + 39< 14<̃ + 2B̃ + 26< 18<̃ + 10B̃ + 26<
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5 Modified Miller quadruple-and-add

Inspired by the idea proposed in [32], we combine two modified doubling steps into
one modified quadrupling (QPL) step. In the classic Miller’s algorithm, the modified
Miller function �4<,& can be obtained from �<,& by using two consecutive doubling
steps, that is,

�4<,& = �4<,& ·
a2[2<]& · a [4<]&

ℓ2[−<]&, [−<]& · ℓ[−2<]&, [−2<]&
(10)

The difference between the 38{(�4<,&) and 38{(�4<,&
) are given by

38{(�4<,&) − 38{(�4<,&)
=([−4<]&) − 4( [−<]&) + 3(O)
=38{(ℓ[2<]&, [2<]&) − 38{(ℓ2[−<]&, [−<]&).

Hence,

�4<,& = �4<,&

ℓ[2<]&, [2<]&

ℓ2[−<]&, [−<]&
. (11)

As compared to (10), the number of line functions required in Miller function update is
reduced to two in (11). The above optimization is analogous to the trick of denominator
elimination for pairing computation with even embedding degree, as both of them
eliminate vertical line valuation.

5.1 Jacobian coordinates

quadrupling step The point 4) = (-4) , .4) , /4) ) in Jacobian coordinates can be
obtained by computing two consecutive point doublings. Then, the tangent lines ℓ2) ,2)
and ℓ−) ,−) evaluated at % are given by

X1 = ~% · /4) · /22) ,
X2 = G% · /22) − -2) ,

ℓ2) ,2) (%)=
X1 − 32-

2
2) ·X2 − .

2
2)

/4) · /22)
,

ℓ−) ,−)(%)=
X1 + 32-

2
)
·.2) · X2−.22)

/4) · /22)
,

where 32-
2
)
, 32-

2
2) and .

2
2) have been given in point doubling steps. Analogous to the

doubling-addition step, the numerator and denominator of ℓ−) ,−) (%) are multiplied by
.2) simultaneously. According to (11), the values of #4<,& and �4<,& are given by

#4<,& = #4<,& · /4) · /
2
2) · #ℓ2) ,2) ,



Title Suppressed Due to Excessive Length 17

�4<,& = �4<,& · (#ℓ−) ,−) )2.

We use the following sequence of operations to compute #4<,& and �4<,&:

C0=/
2
2) , C1=G% · C0 − -2) , C0= C0 · /4) , D0=~%×C0,

D1 =
3
2
-22) × C1, C2 = (D0 − D1) mod ?, C2 = C2 − .22) ,

C3 = C0 · C2, C0 = #2<,&, #4<,& = C20 · C3, C0 =
3
2
-2) · .2) ,

D2= C0×C1, C0= (D0+D2) mod ?, C0= C0−.22) , C1=�
2
<,&,

C1 = C0 · C1, �4<,& = C21 ,

which comes at a cost of 5<̃ + 2<̃D + 5B̃ + 13< + 13<D + 2Ã + 70̃. As a consequence, the
total number of operations required at the quadrupling step is 9<̃ + 4<̃D + 11B̃ + 2B̃D +
13< + 13<D + 4Ã + 210̃.

quadrupling-addition step Define quadrupling-addition (QPLADD) to be the step
that obtaining �4<+1,& from �<,&. There are two feasible schemes that need to be
considered for performing the step. At the first scheme, this step can be decomposed
as one quadrupling and one addition steps. According to the above analysis, the total
number of operation counts required in this scheme is 18<̃ + 8<̃D + 14B̃ + 2B̃D + 39< +
13<̃D + 6Ã + 330̃. At the second scheme, this step can be decomposed as one doubling
and one doubling-addition steps. The total number of operation counts required in this
scheme is 17<̃ +8<̃D +14B̃+2B̃D +39< +13<D +6Ã +320̃. We select the second scheme
to execute quadrupling-addition step since it saves <̃ + 0̃ compared to the first one.

quadrupling-doubling step Define quadrupling-doubling (QPLDBL) to be the step
that obtaining �4<+2,& from �<,&. At the step, the only scheme is to perform one
doubling-addition step and one doubling step. Hence, the total number required in this
step is equal to that in quadrupling-addition step.

5.2 Homogeneous coordinates

quadrupling step In homogeneous coordinates, the two tangent lines ℓ2) ,2) and ℓ−) ,−)
evaluated at % are given by

ℓ2) ,2) (%)=
2.2) /2) ·~%−3-22) ·G%+.

2
2) +31/

2
2)

2.2) /2)
,

ℓ−) ,−) (%) =
2.) /) · ~% + 3-2) · G% − .2) − 31/2)

2.) /)
,

where 2.) /) , 2.2) /2) ,.2) ,.
2
2) , 31/

2
)
and 31/22) have been given in the point doubling

steps. According to Formula (11), we have

#4<,& = #4<,& · (2.) /) )
2 · #ℓ2) ,2) ,
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�4<,& = �4<,& · (#ℓ−) ,−) )2 · 2.2) /2) .

We use the following sequence of operations to compute #4<,& and �4<,&:

C0 = 3-22) , D0 = 2.2) /2) × ~% , D1= C0 × G% ,
C0 = (D0 − D1) mod ?, C0 = C0 + .22) + 31/

2
2) ,

C1=#
2
2<,&, C1= C1 ·2.) /) , #4<,& = C0 ·C21 , C0=3-

2
) ,

D0=2.) /) ×~% , D1= C0×G% , C0= (D0+D1) mod ?,
C0 = C0−.2) −31/2) , C1 = �2<,&, C1= C1 · C0, C1 = C21 ,

�4<,& = C1 · 2.2) /2) ,

which comes at a cost of 4<̃ + 6B̃ + 52<D + 2Ã + 120̃. As a consequence, the number
of operations required in modified Miller function update at the quadrupling step is
10<̃ + 12B̃ + 4B̃D + 52<D + 4Ã + 560̃.

quadrupling-addition step At the quadrupling-addition step, the results show the cost
of the two proposed schemes are identical, that is, 20<̃+4<̃D+14B̃+4B̃D+52<D+6Ã+690̃.
So does the quadrupling-doubling step.

5.3 Comparison and optimal strategy

In table 3,we list the operation counts of every stage in themodifiedMiller quadruple-
and-add. The results show that the costs of one quadrupling step are almost identical
in the two projective coordinates. However, Jacobian coordinates is preferred for both
quadrupling-addition and quadrupling-doubling steps. Hence, we conclude that Jaco-
bian coordinates are the faster choice. In the following, we only implement pairing
computation in Jacobian coordinates. Moreover, as compared to the data in Table 2, one
quadrupling step is about 15.0% faster than two consecutive doubling steps in Jaco-
bian coordinates. In conclusion, the optimal strategy to implement Miller’s algorithm
in modified Miller quadruple-and-add is as follows: (1) two consecutive doubling steps
are combined into one quadrupling step; (2) one doubling and one addition steps are
combined into one doubling-addition step.

Table 3. Operation counts for the iteration of Miller quadruple-and-add in different coordinates
systems( ignoring addition and the optimization of lazy reduction)

Coordinates QPL QPLADD QPLDBL

Jacobian 13<̃ + 13B̃ + 26< 25<̃ + 16B̃ + 52< 25<̃ + 16B̃ + 52<
Homogeneous 10<̃ + 16B̃ + 52< 24<̃ + 18B̃ + 52< 24<̃ + 18B̃ + 52<
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6 Final Exponentiation

By using the method proposed in Section 2.2, the exponent 3 = (?13 − 1)/A can be
equivalently expressed as

3 = (? − 1) ·
11∑
8=0

C8 · ?8 ,

where the coefficients C8 for 8 ∈ {0, 1, · · ·, 11} are given by

C0=−G16−2G15− 3G14 − 2G13 − G12 + 3G2 + 3G + 3,
C1 = −G27 − 2G26 − 2G25 − G24 − G16 − G15 − 2G14+
2G13 + 2G12 + 4G2 + G + 4,

C2=G
25 + G24 +G23 − G16 − G15 − G14 + 2G12 − G11+
G10 + 4G2 + G + 1,

C3=G
25 + G24+ G23 − G16 − G15 − G14 − 4G11 − G10−
G9 + 4G2 + G + 1,

C4 =−G24−2G23 −2G22−G21 −G16 −G15 −G14−G11+
2G10 + 2G9 + 4G2 + G + 1,

C5=G
22 + G21+ G20 − G16 − G15− G14+ 2G9 − G8 + G7
+4G2 + G + 1,

C6=G
22 + G21+ G20− G16− G15− G14 − 4G8 − G7 − G6
+4G2 + G + 1,

C7 =−G21 − 2G20− 2G19− G18 − G16 − G15 − G14− G8
+2G7 + 2G6+ 4G2+ G+ 1,

C8=G
19 + G18+ G17− G16 − G15− G14 + 2G6 − G5 + G4
+4G2 + G + 1,

C9 = G19 + G18 + G17 − G16 − G15 − G14 − 4G5 − G4−
G3 + 4G2 + G + 1,

C10 = −G18 − 2G17 − 3G16 − 2G15 − G14 − G5 + 2G4+
2G3 + 4G2 + G + 1,

C11 = G4 + 2G3 + 3G2 + 2G + 1.

Denote #5 and �5 by the numerator and denominator of 5G2 ,& · 5
?

G,&
· ℓc2 (&) , c ( [G ]&) ,

respectively. We first compute 5 = (#5 /�5 ) ?−1, which totally costs 3<̃ + 8̃ + 2 5 . Then,

we raise 5 to the power
11∑
8=0

C8 · ?8 . It seems costly as the relations among C8 are chaotic.
By using the following lemma, we fortunately find some relations among C8 .

Lemma 1. Let : be a prime number, 5 any of an element inGΦ:
and Φ: (?)

A
=

:−2∑
8=0

C8 · ?8 .
Then we have

5

:−2∑
8=0

C8 ·?8

= 5

:−2∑
8=0
(C8+2) ·?8+2 ·?:−1

for any 2 ∈ Z.
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Proof. Since 5 ∈ GΦ:
, we have 5

:−1∑
8=1

?8

= 1. For any 2 ∈ Z, it is easy to see 5
:−1∑
8=1

2 ·?8

= 1.
It implies that

5

:−2∑
8=0
(C8+2) ·?8+2 ·?:−1

= 5

:−2∑
8=0

C8 ·?8

· 5
:−1∑
8=0

2 ·?8

= 5

:−2∑
8=0

C8 ·?8

.

ut

Define 2 = _12 = G16 + G15 + G14 − 4G2 − G − 1 and _8 = C8 + 2 for 8 ∈ {1, 2, · · ·, 11}.
Then, it follows that

_0 = −G15 − 2G14 − 2G13 − G12 − G2 + 2G + 2,
_10 = −G18 − 2G17 − 2G16 − G15 − G5 + 2G4 + 2G3,
_11=G

16 + G15+ G14 + G4 + 2G3 − G2 + G,
_12 = 2 = G16 + G15 + G14 − 4G2 − G − 1,
_1 = _10 · G9 + 3, _2 = _11 · G9, _3 = _12 · G9,
_4 = _10 · G6, _5 = _11 · G6, _6 = _12 · G6,
_7 = _10 · G3, _8 = _11 · G3, _9 = _12 · G3.

From Lemma 1, the exponent
11∑
8=0

C8 · ?8 can be replaced by
12∑
8=0

_8 · ?8 , which is rewritten
as

12∑
8=0

_8 · ?8 =_0 + 3 · ? +
( 2∑
8=0

_10+8 · ?8
)
·
( 3∑
8=0

G38 · ?10−38
)
.

In order to raise 5 to the power of
12∑
8=0

_8 · ?8 , we first compute {1 = 5 _0 and {2 =

5 _10+_11 ·?+_12 ·?
2 by using the following formula:

�1 ← 5 G , �2 ← �G1 , �3 ← �G2 , �4 ← �G3 , �5 ← �G4 ,

31 ← 5 · �1, 32 ← �1 · �3, 33 ← 31 · �42 , 34 ← �3 · �4,

ℎ1 ← (�5 · 34)G
9
, ℎ2 ← ℎG1 , ℎ3 ← ℎG2 , ℎ4 ← ℎG3 ,

ℎ5 ← ℎG4 , A1 ← ℎ1 · ℎ2, A2← ℎ4 · ℎ5 ·�5, A3←ℎ3 ·32,

A3 ← A3 · 34, {1 ←
321
A1

, {2 ← 324 · A
?

3 , {2 ← {2 · ℎ?2

4 ,

{3 ← A2 · �?2 , {3 ← {3 · 3 ?2

3 , {2 ←
{2
{3
.

Notice that the above inversion is in the cyclotomic subgroupGq13 . Finally, the following
exponentiation is performed to accomplish the final exponentiation:

D1 ← {G
3

2 , D2 ← DG
3

1 , D3 ← DG
3

2 , (12)

D4 ← {
?10

2 · D
?7

1 · D
?4

2 · (D3)
? · {1 · ( 5 ?)3. (13)
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7 Operation Counts and Implementation Results

7.1 Operation counts

At the modified Miller loop, we require to compute #5 and �5 , which means
that two modified Miller iterations are executed. Denote #1(resp. #2) and �1(resp.
�2) to the numerator and denominator of 5G,& (%)(resp. 5G, [G ]& (%)), respectively. The
binary representation the loop parameter G is 100010110000. At the first modifiedMiller
iteration, we compute #1 and�1 by executing 3 quadrupling, 2 doubling and 3 doubling-
addition steps, and 2<̃ + B̃ + 13< + 0̃ to recover 5G,& (%) from �G,& (%). The values of
#2 and �2 can be obtained by the same way, besides that we require to transform the
point [G]& from Jacobian coordinates into affine coordinates at the beginning of the
second modified Miller loop, which comes a cost of 8̃ + 3<̃ + B̃. In order to compute
ℓc2 (&) , c ( [G ]&) (%), one requires to compute c2 (&) and c( [G]&) firstly, which costs 4 5 .
Denote [G]& = (G1, ~1) and c( [G]&) = (G2, ~2) in affine coordinates. Then,

ℓc2 (&) , c ( [G ]&) (%)

=
(~% − ~1) · (G2 − G1) − (~2 − ~1) · (G% − G1)

G2 − G1
.

Denote ℎ by the numerator of ℓc2 (&) , c ( [G ]&) (%). The computation of ℎ can also use the
technique of lazy reduction, which requires 2<̃D + 1Ã + 4 5 + 60̃. In total, we have

#5 = (#1 · �−11 )
?+G · #2 · ℎ, (14)

�5 = �2 · (G2 − G1). (15)

As proposed in [19], raising #1 · �−11 to power of G only requires 4<̃, since the squares
can be shared with the computation of #2. Hence, it costs 8̃ + 8<̃ + 5 in (14)-(15). We
delay the computation of #5 /�5 into the final exponentiation.
In conclusion, the total number of operations required in the Miller loop using

Jacobian coordinates is

"! =6(9<̃ + 4<̃D + 11B̃ + 2B̃D + 13< + 13<D + 4Ã + 210̃)
+4(6<̃ + 2<̃D + 6B̃ + B̃D + 13< + 13<D + 2Ã + 110̃)
+6(11<̃ + 6<̃D + 8B̃ + B̃D + 26< + 4Ã + 210̃)
+2(2<̃ + B̃ + 13< + 0̃) + (8̃ + 3<̃ + B̃)
+(2<̃D + 1Ã + 4 5 + 60̃) + (8̃ + 8<̃ + 5 )
=28̃ + 159<̃ + 70<̃D + 141B̃ + 22B̃D + 312< + 130<D

+ 57Ã + 3040̃ + 5 5
=28+518<+15798<D+10758BD+4747A+1951870.

In the final exponentiation, computing 5 = (#5 /�5 ) ?−1 requires 8̃ + 3<̃ + 2 5 . Raising
5 to the powers _0 and _10 + _11 · ? + _12 · ?2 totally cost 16<̃ + 4B̃ + 28̃2 + 184 + 4 5 .
The last step of the final exponentiation as shown in (12)-(13) requires 6<̃ + B̃ + 94 + 5 5 .
Hence, the total number of operations required in the final exponentiation is

�� = (8̃ + 3<̃ + 2 5 ) + (16<̃ + 4B̃ + 28̃2 + 184 + 4 5 )
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+ (6<̃ + B̃ + 94 + 5 5 )
= 8̃ + 28̃2 + 25<̃ + 5B̃ + 274 + 11 5
= 8 + 325< + 7801<D + 19932BD + 1930480 + 5461A.

7.2 Implementation results

According to algorithms proposed in Section 3, we first implement finite field by
using the C programming language. The codes are complied with the GCC compiler
using -03 optimization level. Lower-level prime field operations are based on Version
0.5.0 of RELIC library [33]. Timing benchmarks are taken on a 64-bit Intel Core i7-
8550U @1.8GHz processor running Ubuntu 18.04.1. We present the corresponding

Table 4. Operation counts averaged over 104 trials for finite field arithmetic

F?13 Arithmetic Operation Counts in F? Clock Cycles

Addition 130 566
Multiplication 66<D + 5020 + 13A 8788
Squaring 66BD + 4430 + 13A 3842
Inversion 277<D+73<+8+20340+53A 39875
Inversion in Gq13 264<D + 60< + 20080 + 52A 34211
Exponentiation by G 198<D+726BD+63790+182A 92619
Frobenius 12< 1904

Table 5. Comparison of implementations averaged over 104 trials between the BW13-P310 curve
and theBLS12-446 curve

Curve Phase Clock Cycles

BLS12-446 [33]
Miller loop 1215923
Final exponentiation 1227885
Optimal ate pairing 2443808

BW13-P310
Miller loop 3597243
Final exponentiation 2779631
Optimal ate pairing 6376874

operation counts and timing benchmarks in Table 4. On this basis, we then implement
the optimal ate pairing on the BW13-P310 curve. Comparison of timing benchmarks
between theBW13-P310 and theBLS12-446 curve are given in Table 5. The result shows
that the implementations of pairings on the BW13-P310 curve is about 2 times slower
than that on the BLS12-446 curve.
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8 Conclusions

In this paper, we studied pairing computation on pairing friendly curves with odd
prime embedding degrees, instantiated by using the BW13-P310 curve on a 64-bit PC
processor. The curve can reach 128-bit security level under the attack of SexTNFS. We
proposed a modified Miller function and gave a new strategy to implement Miller’s
algorithm. Based on that, we drew a comparison between Jacobian and homogeneous
coordinates.
In addition, we also presented an efficient method to execute final exponentiation.

Even though pairing computation on the BW13-P310 curve is slower than that on the
BLS12-446 curve, it is still meaningful since the size of prime field of the curve is
smaller. As proposed by Clarisse, Duquesne and Sanders [18], the curve can be used in
the schemes that requires an amount of exponentiation in G1, such as EPID and DAA.
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A Sub-Algorithm

Algorithm 3: "D;!4{4;2(0, 1) cost =3<D + 60
1 Input: 0 = 00 + 01l, 1 = 10 + 11l
2 Output: D = 0 × 1

D0 ← 00 × 10, D1 ← 01 × 11
C0 ← 00 + 10, C1 ← 01 + 11
D2 ← C0 × C1, D2 ← D2 − D0

D2 ← D2 − D1
return
D = D0 + D1l + D2l2

Algorithm 4: "D;!4{4;3(0, 1) cost=6<D+200

1 Input: 0 =
2∑
8=0

08l
8 , 1 =

2∑
8=0

18l
8

2 Output: D = 0 × 1

1: D0 ← 00 × 10
2: D2 ← 01 × 11
3: D4 ← 02 × 12
4: C0 ← 00 + 01
5: C1 ← 10 + 11
6: D1 ← C0 × C1
7: D1 ← D1 − D0
8: D1 ← D1 − D2
9: C0 ← 01 + 02
10: C1 ← 11 + 12
11: D3 ← C0 × C1

12: D3 ← D3 − D2
13: D3 ← D3 − D4
14: C0 ← 00 + 02
15: C1 ← 10 + 12
16: D̃ ← C0 × C1
17: D̃ ← D̃ − D0
18: D̃ ← D̃ − D4
19: D2 ← D2 + D̃
20: return

D =
4∑
8=0

D8l
8
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Algorithm 5: "D;!4{4;4(0, 1) cost=9<D+380

1 Input: 0 =
3∑
8=0

08l
8 , 1 =

3∑
8=0

18l
8

2 Output: D = 0 × 1

1: �0 ← 00 + 01l
2: �1 ← 02 + 03l
3: �0 ← 10 + 11l
4: �1 ← 12 + 13l
5: U← "D;!4{4;2(�0, �0)
6: V← "D;!4{4;2(�1, �1)
7: )0 ← �0 + �1
8: )1 ← �0 + �1
9: W ← "D;!4{4;2()0, )1)
10: for 8 = 0 to 2 do
11: W8 ← W8 − U8

12: W8 ← W8 − V8
13: end for
14: D0 ← U0,
15: D1 ← U1
16: D2 ← U2 + W0
17: D3 ← W1
18: D4 ← V0 + W2
19: D5 ← V1,
20: D6 ← V2

21: return D =
6∑
8=0

D8l
8

Algorithm 6: "D;!4{4;6(0, 1) cost=18<D+940

1 Input: 0 =
5∑
8=0

08l
8 , 1 =

5∑
8=0

18l
8

2 Output: D = 0 × 1

1: �0 ← 00 + 01l + 02l2
2: �1 ← 03 + 04l + 05l2
3: �0 ← 10 + 11l + 12l2
4: �1 ← 13 + 14l + 15l2
5: U← "D;!4{4;3(�0, �0)
6: V← "D;!4{4;3(�1, �1)
7: )0 ← �0 + �1, )1 ← �0 + �1
8: W ← "D;!4{4;3()0, )1)
9: for 8 = 0 to 4 do
10: D8 ← U8 + V8
11: W8 ← W8 − D8
12: end for

13: D0 ← U0,
14: D1 ← U1
15: D2 ← U2,
16: D3 ← U3 + W0
17: D4 ← U4 + W1
18: D5 ← W2
19: D6 ← V0 + W3
20: D7 ← V1 + W4
21: D8 ← V2
22: D9 ← V3
23: D10 ← V4

24: return D =
10∑
8=0

D8l
8
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Algorithm 7: "D;!4{4;7(0, 1) cost=24<D+1380

1 Input: 0 =
6∑
8=0

08l
8 , 1 =

6∑
8=0

18l
8

2 Output: D = 0 × 1

1: �0 ← 00 + 01l + 02l2
2: �1←03 +04l+05l2+06l3
3: �0 ← 10 + 11l + 12l2
4: �1←13+14l+15l2+16l3
5: U← "D;!4{4;3(�0, �0)
6: V← "D;!4{4;4(�1, �1)
7: )0 ← �0 + �1 )1 ← �0 + �1
8: W ← "D;!4{4;4()0, )1)
9: for 8 = 0 to 4 do
10: D8 ← U8 + V8
11: W8 ← W8 − D8
12: end for
13: W5 ← W5 − V5
14: W6 ← W6 − V6

15: D0 ← U0
16: D1 ← U1, D2 ← U2
17: D3 ← U3 + W0
18: D4 ← U4 + W1
19: D6 ← V0 + W3
20: D7 ← V1 + W4
21: D8 ← V2 + W5
22: D9 ← V3 + W6
23: D5 ← W2, D8 ← V2
24: D9 ← V3, D10 ← V4
25: D11 ← V5
26: D12 ← V6

27: return D =
12∑
8=0

D8l
8


