
fflonK: a Fast-Fourier inspired verifier efficient

version of PlonK

Ariel Gabizon Zachary J. Williamson
Aztec Network

September 18, 2021

Abstract

We present a variant of the Kate, Zaverucha and Goldberg polynomial commit-
ment scheme [KZG10] where d polynomials can be opened at a point that is a d’th
power, such that the amount of verifier group operations does not depend on d.
Our method works by reducing opening multiple polynomials at a single point x, to
opening a single polynomial at many points via an “FFT-like identity”.

As an application we present a version of the PlonK zk-SNARK[GWC19] with
significantly improved verifier performance, at the cost of roughly tripling the prover
time. Specifically, in addition to the two pairings, the verifier only performs five
scalar multiplications, rather than 16 or 18 as in the versions presented in [GWC19].

1 Introduction

Polynomial commitment schemes (PCS)[KZG10] have become a central ingredient in re-
cent constructions of succinct arguments(SNARKs) [MBKM19, Gab19, CHM+19, GWC19,
BFS19] when one desires a “universal and updatable” setup procedure [GKM+]. They
“force” a prover to answer verifier queries according to a fixed polynomial of bounded
degree.

In blockchains such as Ethereum, the precise cost of verifiying a zk-SNARK is of cru-
cial importance to applications such as “zk-rollups”[But]. In these recent constructions
this cost mostly reduces to the verification cost of the open procedure of the PCS. In this
procedure we verify the correctness of evaluations given to the verifier, of polynomials
previously committed by the prover. In this work we give a novel method to reduce
verifier cost when opening many commitments in a [KZG10]-style PCS.

1.1 Overiew of method and comparison to previous techniques:

The original scheme of [KZG10] requires two pairings to open a polynomial f at a
point x ∈ F. If we wish to open several polynomials f0, . . . , ft−1 at x - using [KZG10]
directly would require 2t verifier pairings. The common way to improve on this, used in

1

[MBKM19, CHM+19, GWC19], has been to choose a random γ ∈ F, and instead only
verify the value of f(x) :=

∑t−1
i=0 γ

ifi(x).
What verifier efficiency does this result in? The verifier only does two pairings as

when opening a single polynomial. However, she must create the commitment for f out
of the commitments of the {fi}, which requires t − 1 scalar multiplications to multiply
the commitments by the scalars

{
γi
}
i∈{0,...,t−1}. Can we get rid of this dependence on t

in the verifier performance?
The work of Boneh, Drake, Fisch and Gabizon [BDFG20] suggests a route: They give

an opening protocol for multiple points where the number of verifier group operations
only depends on the number of polynomials but not the number of points (there is
still a dependency in the number of verifier field operations, but these are 3 orders of
magnitude cheaper than a scalar multiplication). Thus, if we could reduce opening many
polynomials at a single point to opening a single polynomial at mulitiple points we could
then use [BDFG20] to obtain our desired result.

An illustration Suppose for a moment we only have two polynomials f0, f1 to open at
x. A straightforward attempt to avoid the scalar multiplication would be to only open
f0 + f1 at x. Let a := f0(x) and b := f1(x). This would prove that the sum of values
(f0 + f1)(x) = c = a + b is correct. However, it doesn’t constrain a, b individually: For
any value a′ ∈ F we could choose b′ such that a′ + b′ = c, and the verifier would also
accept (a′, b′). We thus need a way to generate another linear constraint on (a, b) without
resorting to using two polynomials.

The well-known “FFT equation” comes to our aid. In the FFT setting, we represent
a polynomial f by two polynomials f0, f1 of half the degree derived from its even and
odd powers:

f(X) = f0(X
2) +X · f1(X2).

Here, we use this equation in the reverse direction - starting from f0, f1 and deriving f .
Suppose x = z2 is a square. f will allow us to derive the desired second constraint on
a, b. Specifically, we open f at {z,−z}. We have

b0 = f(z) = f0(x) + zf1(x) = a+ zb

b1 = f(−z) = f1(x)− zf1(x) = a− zb

Thus, these two openings of f have given us the desired two independent constraints on
a, b and we can determine them. Using the natural extension to t’th roots of unity gives
us the same thing for t polynomials.

1.2 Our results:

We compare the performance of our PCS to a more straightforward batched version of
the [KZG10] scheme as in [GWC19]. For simplicity, we look at the case where we want to
open t polynomials of degree smaller than n at a single point x ∈ F that is a t’th power,
for t|(|F| − 1). The table clearly shows the tradeoff - while the verifier group operations

2

for opening do not depend anymore on t, the prover’s do - as opposed to more standard
batching where the prover’s group exponentations1 only depend on the maximal degree
amongst the polynomials. See Theorem 5.2 for the more detailed efficiency properties
in the general case (where each polynomial is opened at an arbitrary subset of points).

Table 1: Comparison of opening t polynomials of degree smaller than n, at a point x ∈ F
of the form x = zt for some z ∈ F. In prover/verifier work columns Gi means scalar
multiplication in Gi, F means addition or multiplication in F, and P means pairing.

SRS size prover work
proof
length verifier group operations

KZG n G1, 2 G2 tn G1, O(tn) F t G1 2t P

Batched KZG as in [MBKM19, CHM+19, GWC19] n G1, 2 G2 n G1,O(tn) F 1 G1 t− 1 G1, 2 P

This work tn G1, 2 G2 2tn G1, O(tn) F 2 G1 3 G1, 2 P

Application to PlonK: ThePlonK proving system [GWC19] allows generating proofs
of knowledge for assignments to fan-in two arithmetic circuits with a universal and
updatable SRS (see the paragraph on this topic in Section 2.1). Plugging in our PCS into
PlonK allows saving in verifier work at the expense of increased prover computation.
We compare the PlonK scheme when using the [KZG10]-based PCS in [GWC19] and
the PCS of this paper in Table 2.

Table 2: Comparison of PlonK efficiency for fan-in two circuit with n gates.

SRS size
prover

group operations
proof
length verifier group operations

[GWC19] 3n G1, 2 G2 11n G1 7 G1, 7 F 16 G1, 2 P

this work 9n G1, 2 G2 35n G1 4 G1, 15 F 5 G1, 2 P

When is it worth it?

The zk-rollup setting motivates verifier-prover tradeoffs such as in this paper. We typi-
cally have “client proofs” computed by weak machines. These proofs are not posted on
the blockchain, but usually only recursively verified by another SNARK. Thus, for these
it makes sense to optimize prover efficiency at the expense of the verifier. On the other
hand, the final proof put on chain is typically computed by a powerful machine, and is
expensive to verify - since all network nodes must do so. For such proofs, it could be a
good tradeoff to use the scheme of this paper.

1Following (perhaps faulty) conventions, we interchangeably use the notions group exponetiation and
scalar multiplication.

3

2 Preliminaries

2.1 Terminology and conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. In expressions involving both polynomials
and constants, we will write f(X) instead of f for to distinguish the two; but in contexts
where it is clear f is a polynomial, we will simply write f for brevity.

We assume all algorithms described receive as an implicit parameter the security
parameter λ.

Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ).
Furthermore, we assume an “object generator” O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except

with probability”; i.e. e.w.p γ means with probability at least 1− γ.

Universal SRS-based public-coin protocols We describe public-coin (meaning the ver-
ifier messages are uniformly chosen) interactive protocols between a prover and verifier;
when deriving results for non-interactive protocols, we implicitly assume we can get
a proof length equal to the total communication of the prover, using the Fiat-Shamir
transform/a random oracle. Using this reduction between interactive and non-interactive
protocols, we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[
xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup[GKM+] requiring only one honest
participant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

4

3 Notation, definitions and operations on vectors and polynomials

Formally describing this paper’s scheme in general form requires addressing opening mul-
tiple commitments, each committing to multiple polynomials, each opened at multiple
points. To avoid this leading to very cumbersome notation and a “nightmare of indices”,
we define some operations on vectors and polynomials that enable more concise writing.

For positive integer t we denote by [<t] the integers {0, . . . , t− 1}. We use the
convention for running indicies that the notation i < t e.g. in

∑
i<t means the sum is

over i ∈ [<t].

Vector notation: Let D be some domain. We denote the set of vectors over D by
D(1), and similarly, the set of vectors of vectors, and vectors of vectors of vectors by
D(2) = (D(1))(1) and D(3) = (D(2))(1) respectively.

As suggestive notation, we denote elements of these sets by a corresponding number

of overhead bars respectively; e.g. S̄ ∈ F(1), ¯̄S ∈ F(2) and
¯̄̄
S ∈ F(3).

For a vector f̄ ∈ Dt, we refer to the elements of f̄ by fi, 0 ≤ i < t. Similarly for
¯̄f ∈ D(2), we refer to the elements of ¯̄f , which are vectors over D, by f̄i, 0 ≤ i < | ¯̄f |; and
the elements of the

{
f̄i
}
by {fi,j}i<| ¯̄f |,j<|f̄i| F[X] := F[X]. F<d[X] - elements of F[X] of

degree smaller than d.

Operations on polynomials: For f̄ ∈ F[X]t and x ∈ F we denote by f̄(x) the vector in
Ft, f̄(x) := (f0(x), . . . , ft−1(x)).

For f̄ ∈ F[X]t and Z̄ ∈ Fℓ we denote by f̄(Z̄) ∈ F(2) the two dimensional array in
(Ft)ℓ, f̄(Z̄) := (f̄i(Zj))j∈[<ℓ].

For ¯̄f ∈ F[X](2) and ¯̄Z ∈ F(2) with | ¯̄f | = | ¯̄Z|, we denote by ¯̄f(¯̄Z) ∈ F(3) the element
¯̄f(¯̄Z) := (f̄i(Z̄i))i<| ¯̄f |.

4 Polynomial commitment schemes

We define polynomial commitment schemes similarly to [GWC19, BDFG20]. However,
we make two modifications that enable capturing the scheme of this paper

� We allow the commit phase to take a vector of polynomials as input rather than
just one. Although less general, for notational simplicity we allow the set of opening
points to depend only on the vector in which the polynomial was committed in.

� We allow the scheme to be parameterized by a subset S ⊂ F such that the opening
procedure is only required to succeed on points from S.

Definition 4.1. Fix a finite subset of positive integers T and subset S ⊂ F. A (T,S)-
polynomial commitment scheme is a 3-tuple S = (gen, com, open) such that

� gen(d) - is a randomized algorithm that given positive integer d outputs a structured
reference string (SRS) srs.

5

� com(t, f̄ , srs) - is an algorithm that given t ∈ T , a vector of polynomials f̄ ∈
(F<d[X])t and an output srs of gen(d), returns a commitment cm to f̄ .

� open is a public coin protocol between parties P and V. P is given ¯̄f ∈ (F<d[X])(2).
P and V are both given

1. Positive integer d and srs = gen(d),

2. Positive integer r and cm ∈ Gr
1 - the alleged commitments to the

{
f̄i
}
,

3. Vector t̄ ∈ T r - the alleged lengths of the
{
f̄i
}
.

4. ¯̄Z ∈ S(2).

5.
¯̄̄
S ∈ F(3) - the alleged values ¯̄f(¯̄Z).

At the end of the protocol V outputs acc or rej; such that

– Completeness: Fix any t̄, ¯̄f with f̄i ∈ (F<d[X])ti, ¯̄Z ∈ F(2),
¯̄̄
S ∈ F(3) such

that
¯̄f(¯̄Z) = ¯̄S.

Then if P and V follow the protocol with these inputs, V outputs acc with
probability 1− negl(λ).

– Knowledge soundness in the algebraic group model: There exists an
efficient E such that for any algebraic adversary A and any choice of d =
poly(λ) the probability of A winning the following game is negl(λ) over the
randomness of A, V and gen.

1. Given d and srs = gen(d), A outputs t̄ ∈ T r, cm ∈ Gr
1.

2. E, given access to the messages of A during the previous step, outputs ¯̄f
with f̄i ∈ F<d[X]ti.

3. A outputs ¯̄Z ∈ S(2),
¯̄̄
S ∈ F(3).

4. A takes the part of P in the protocol open with the inputs cm, ¯̄Z,
¯̄̄
S.

5. A wins if

* V outputs acc at the end of the protocol.

* f(¯̄Z) ̸= ¯̄̄
S.

Notation: We usually omit d, srs and r, and write open(t̄, cm, ¯̄Z,
¯̄̄
S; ¯̄f).

4.1 shplonK

From [BDFG20] we cite the following commitment scheme (that for historical reasons
has become known as shplonK). The commitment procedure is identical to [KZG10]. Its
crucial advantage is that the verifier group operations do not grow with the number of
evaluation points .

6

Lemma 4.2. There is a {1,F}-PCS SshplonK = (genshplonK, comshplonK, openshplonK) such
that

1. genshplonK(d) is of the form: Choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2).

2. For integer n ≤ d and f ∈ F<n[X], computing comshplonK(1, f, srs) requires n G1-
scalar multiplications.

3. Fix f̄ , ¯̄Z, ¯̄S. Let n := maxi [deg(fi)]. Let k := |f̄ |. Then openshplonK

(
1k, cm, ¯̄Z, ¯̄S; f̄

)
requires

(a) 2 G1 elements sent from P to V.

(b) at most 2n+ 1 G1-scalar multiplications of P.

(c) k + 2 G1-scalar multiplications and 2 pairings of V.

Proof. This is Lemma 4.1 from [BDFG20] - except that there V does k + 3 G1-scalar
multiplications. However, it turns out the open protocol from there can be “normalized”
to save one of the scalar multiplications, by dividing in many places by the constant
ZT\S1

(z) that appears as one of the scalar multipliers. We present the [BDFG20] open
protocol here with this minor modification. To make the comparision with [BDFG20]
easier, we momentarily use the notation from that paper - where T denotes the union
of opening points for all polynomials, Si denotes the opening set for the i’th polynomial
, i ranges from one rather than zero; and ri denotes the polynomial of degree |Si| − 1
that coincides with fi on Si. (See [BDFG20] for more context and details.)

openshplonK({cmi}i∈[k] , {Si}i∈[k] , {ri}i∈[k] ; {fi}i∈[k]):

1. V sends a random challenge γ ∈ F.

2. P sends W := [(f/ZT)(x)]1 where

f :=
∑
i∈[k]

γi−1 · ZT\Si
(fi − ri).

3. V sends a random evaluation point z ∈ F

4. P sends W ′ :=
[

L(x)
ZT\S1

(z)(x−z)

]
1
where

L :=
∑
i∈[k]

γi−1ZT\Si
(z) · (fi − ri(z))− ZT (z) · (f/ZT).

5. V outputs acc iff e(F + zW ′, [1]2) = e(W ′, [x]2), where

F :=
∑
i∈[k]

γi−1ZT\Si

ZT\S1

(z) · cmi −

∑
i∈[k]

γi−1ZT\Si

ZT\S1

(z)ri(z)

1

− ZT

ZT\S1

(z)W.

7

Observe that in this form the coefficient of cm1 in the last equation is one - this is what
saves a verifier scalar multiplication compared to [BDFG20]. At the same time, it is
straightforward to carry over the knowledge soundness proof from [BDFG20], as terms
have simply changed by the constant ZT\S1

(z).

Remark 4.3. [BDFG] generalize the above result regarding opening efficiency from
[KZG10] to any PCS with a linearly homomorphic commitment scheme. Combining
their generalization with the reduction of the next section could improve verifier effi-
ciency in the open procedures of such schemes.

5 The new commitment scheme

We define a few final operations and notations needed for presenting the scheme.

5.1 FFT-like operations on vectors and polynomials

For a vector v ∈ Ft and a point x ∈ F, we denote v(x) :=
∑

i<t vix
i.

For vectors v, S ∈ F(1) we denote v(S) := (v(x))x∈S
We define operators combine() and decompose() to group together and decompose

polynomials “FFT style”:

� combinet(f̄) : F[X]t → F[X] - given f̄ ∈ F[X]t return

g(X) :=
∑
i<t

fi(X
t) ·Xi

note that when f̄ ∈ F<d[X]t we have combinet(f̄) ∈ F<d·t[X].

� decomposet(g) : F[X] → F[X]t - given g ∈ F[X] return the unique f̄ ∈ F[X]t such
that

g(X) :=
∑
i<t

fi(X
t) ·Xi

Note that these are injective and inverse operations. That is, for any f̄ ∈ F[X]t,
decomposet(combinet(f̄)) = f̄ .

Notation regarding roots: We denote p := |F|. For positive integer t|(p−1), let ωt ∈ F
be a fixed primitive t’th root of unity, i.e. ωt

t = 1 and ωi
t ̸= 1 for i < t. For a t’th power

x ∈ F, fix z ∈ F such that zt = x and zi ̸= x for i < t in a standard way; e.g. take
such z that has the smallest integer representative in [<p − 1]. Now, define the vector
rootst(x) := (zωi

t)i<t

The following simple lemma is the basis of our scheme.

Lemma 5.1. Fix any x ∈ F, S̄ ∈ Ft and f̄ ∈ F[X]t. Define Z̄ := rootst(x), g :=
combinet(f̄) and S̄′ := S̄(Z̄).

Then f̄(x) = S̄ if and only if g(Z̄) = S̄′

8

Proof. For z ∈ Z̄, we have

g(z) =
∑
i<t

fi(z
t)zi =

∑
i<t

fi(x)z
i = f̄(x)(z).

So g(Z̄) = f̄(x)(Z̄). Since distinct polynomials of degree less than t cannot agree on t
points, we have that f̄(x) = S̄ if and only if g(Z̄) = S̄′.

5.2 The new scheme

Choose a positive constant A dividing p−1. Let T := {0 < t ≤ A| t|A}. Let S be the set
of A’th powers in F. We present the following (T,S)-polynomial commitment scheme.

1. gen(d) - choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xA·(d−1)

]
1
, [1]2 , [x]2).

2. com(t, f̄ , srs) - for t ∈ T and f̄ ∈ (F<d[X])t. Let g := combinet(f̄). Output
com(t, f̄ , srs) := [g(x)]1.

3. open: We first describe the open protocol for the simplest case of one commitment
and one evaluation point.

open
(
t, cm, x, S̄; f̄

)
:

(a) P computes g := combinet(f̄). (In practice P has this computed already from
the commitment phase.)

(b) P and V compute Z̄ ′ := rootst(x) and S̄′ := S̄(Z̄ ′).

(c) P and V engage in openshplonK(1, cm, Z̄ ′, S̄′; g) and V outputs acc if and only
if she does so in the execution of openshplonK.

The general case is basically applying the same logic to each evaluation point and
commitment.
open

(
t̄, cm, ¯̄Z,

¯̄̄
S; f̄

)
:

(a) For i < r, P computes gi := combineti(f̄i). Let ḡ := (gi)i<r

(b) P and V compute ¯̄Z ′ where Z̄ ′
i =

⋃
x∈Z̄i

rootsti(x), and ¯̄S′ where S̄′
i :=⋃

j<| ¯̄Si| S̄i,j(rootsti(Zi,j)).

(c) P and V engage in openshplonK(1
r, cm, ¯̄Z ′, ¯̄S′; ḡ) and V outputs acc if and only

if she does so in the execution of openshplonK.

Knowledge soundness: We look first at the simple case of one commitment and evalu-
ation point. In this case A outputs an integer t, a G1-element cm, and coefficients {ai}
such that cm =

[∑
i<A(d−1) aix

i
]
1
. Let g :=

∑
i<A(d−1) aiX

i. We define the extractor

E to output f̄ = decomposet(g). An important point is that the extractor EshplonK used
in [BDFG20] for the knowledge soundness game of openshplonK outputs g when given
1, cm, {ai} by an adversary. We must show that A wins the knowledge soundness game
with probability negl(λ). We will reduce to the knowledge soundness of openshplonK: We
construct an adversary A′ for openshplonK that works as follows.

9

1. A′ starts running the adversary A for the knowledge soundness game of open. She
simulates the roles of V and E according to their correct behavior.

2. When A outputs t, a G1 element cm, and coefficients {ai} such that cm =[∑
i<A(d−1) aix

i
]
1
. A′ outputs 1 and the same element cm and coefficients {ai}.

3. Note that the extractor EshplonK from Lemma 4.2 for the knowledge soundness
game of openshplonK would output g at this point; and that the extractor E we
defined for the knowledge soundness game of open outputs f̄ = decomposet(g) at
this point of the game with A.

4. If A now outputs x, S̄, A′ outputs Z̄ ′, S̄′ where Z̄ ′ := rootst(x) and S̄′ := S(Z ′).

5. Now we must define how A′ behaves in openshplonK(1, cm, Z̄ ′, S̄′). She will behave
exactly as A does in the call to openshplonK which is part of the open procedure -
note that this is well defined as at this point V will use the same inputs 1, cm, Z̄ ′, S̄′

for the openshplonK subprocedure.

We claim that the success probability of A′ and A to win their respective knowl-
edge soundness games is the same: By definition of the knowledge soundness game
of openshplonK, A

′ wins if and only if

1. VshplonK outputs acc

2. g(S̄′) ̸= Z̄ ′.

By definition of V and Lemma 5.1 this is equivalent to

1. V outputs acc

2. f̄(x) ̸= Z̄, for the output f̄ of E.

Hence knowledge soundness follows from the knowledge soundness of openshplonK.
The general case of multiple commitments and evaluation points is totally analogus.
In summary, we get

Theorem 5.2. Fix positive integer A dividing p − 1. Let T be the set of divisors
of A; i.e. T := {t|t ≤ A, t|A}. Let S be the set of A’th powers in F, i.e. S :={
x ∈ F|∃z ∈ F s.t. zt = x

}
.

Then there is a (T,S)-PCS S = (gen, com, open) over F such that

1. gen(d) is of the form: Choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xA·d]

1
, [1]2 , [x]2).

2. Let f̄ ∈ (F<d[X])t for t ∈ T . Suppose n = maxi∈[<t][t ·deg(fi)+i]. Then computing
com(1, f, srs) requires n+ 1 G1-exponentiations.

3. Fix t̄, ¯̄f, ¯̄Z,
¯̄̄
S. Suppose ni = maxj∈[<ti] [t · deg(fi,j) + i]. Let n := maxi [ni]. Let

k :=
∑

i<r ti. Then open
(
t̄, cm, ¯̄Z,

¯̄̄
S; ¯̄f

)
requires

10

(a) 2 G1 elements sent from P to V.

(b) at most 2n+ 1 G1-exponentiations of P.

(c) k + 3 G1-exponentiations and 2 pairings of V.

6 Polynomial Protocols

At this point we move on to apply the new commitment scheme to the PlonK proving
system. We need to slightly alter some components from [GWC19] for this purpose.
We warn that the following sections are hard to follow without an understanding of
[GWC19].

We begin by modifying the definition of polynomial protocols from [GWC19]. The
changes are:

� We enable compiling protocols using a PCS where the opening set is limited by
requiring the {vi,j} below do not map out of the set.

� We explicitly track the number of rounds of the protocol, as with the PCS of this
paper this ends up being a crucial parameter for verifier efficiency.

� We don’t assume the verifier only checks one polynomial identity, and this makes
the notation a little more cumbersome. The reason we could assume this from a
certain point in [GWC19] is that the compilation from ranged protocols always
produced one identity. But using that compilation will hurt verifier efficiency here.

Definition 6.1. Fix positive integers d,D, r, a subset T of positive integers, a vector
t̄ ∈ T r, and a subset S ⊂ F. A (d,D, r, T, t̄,S)-polynomial protocol over F is an r-
round protocol between a prover Ppoly, a verifier Vpoly and ideal party I that proceeds
as follows.

1. The protocol definition includes a set of preprocessed polynomials f̄0 = (f0,1, . . . , f0,t0) ∈
(F<d[X])t0.

2. Each of the r rounds of interaction has the following form:

� At round i, Ppoly sends to I a message f̄i ∈ (F<d[X])ti. If Ppoly sends a
message not of this form, the protocol is aborted.

� The verifier responds with public random coins.

3. Let ¯̄f := (f̄i)i<r consist of the set of preprocessed polynomials together with the
polynomials sent by Ppoly. At the end of the protocol, Vpoly may ask I if certain

polynomial identities holds between the polynomials in ¯̄f . More specifically, each
identity is of the form

Fi(X) := Gi(X,hi,1(vi,1(X)), . . . , hi,M (vi,M (X))) ≡ 0,

where

11

(a) the hi,j are elements of {fi,j}
(b) The {vi,j} are polynomials with the property that whenever x ∈ S, we also

have vi,j(x) ∈ S.

(c) Fi ∈ F<D[X] for every choice of ¯̄f made by Ppoly when following the protocol
correctly.

4. After receiving the answers from I regarding the identities, Vpoly outputs acc if all
identities hold, and outputs rej otherwise.

As in [GWC19], we define polynomial protocols for relations in the natural way.

Definition 6.2. Given a relation R, a polynomial protocol for R is a polynomial
protocol with the following additional properties.

1. At the beginning of the protocol, Ppoly and Vpoly are both additionally given an
input x. The description of Ppoly assumes possession of ω such that (x, ω) ∈ R.

2. Completeness: If Ppoly follows the protocol correctly using a witness ω for x,
Vpoly accepts with probability one.

3. Knowledge Soundness: There exists an efficient E, that given access to the
messages of Ppoly to I outputs ω such that, for any strategy of Ppoly, the probability
of the following event is negl(λ).

(a) Vpoly outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

Remark 6.3. At this point in [GWC19] we defined a further abstraction of polynomial
protocols on ranges and showed a reduction from them to polynomial protocols. We do
not do this here, as this reduction from [GWC19] adds a round to the protocol, which,
as already mentioned above, hurts verifier efficiency which is the focus of this paper.

6.1 From polynomial protocols to protocols against algebraic adversaries

We wish to use the polynomial commitment scheme of Section 5.1 to compile a polyno-
mial protocol into one with knowledge soundness in the algebraic group model.

For the purpose of capturing the efficiency of the transformation, we first define
somewhat technical measures of a (d,D, r, T, t̄,S)-polynomial protocol P.

Let M∗∗ be the number of distinct polynomials {hi,j(vi,j(X))} appearing in the
protocol in the idenitites Gi(X,hi,1(vi,1(X)), . . . , hi,M (vi,M (X))) ≡ 0 checked by Vpoly

in P. Let M∗ = M∗∗−K, where K is the number of identities such that Gi is linear in
XM . For i ∈ [r], suppose ni = maxj∈[<ti] [ti · deg(fi,j) + i], where the maximum is over
f̄i sent by the honest prover in round i.

Let n(P) := maxi [ni]. Finally, define e(P) :=
∑

i<r ni + 2n(P) + r.

Lemma 6.4. Let P be a (d,D, r, T, t̄,S)-polynomial protocol over F for a relation R,
where

12

� T = {t ≤ A| t|A} for a constant A dividing p− 1.

� S is the set of A’th powers in F.

Then we can construct a protocol P∗ for R with knowledge soundness in the Algebraic
Group Model under 2n(P)-DLOG such that

1. The prover P in P∗ requires e(P) G1-exponentiations.

2. The total prover communication consists of r+2 G1 elements and M∗ F-elements.

3. The verifier V requires r + 4 G1-exponentiations, two pairings, one evaluation of
each Gi checked in P, and one evaluation of each vi,j.

Proof. Let S = (gen, com, open) be the (T,S)-polynomial commitment scheme described
in Theorem 5.2. Let ḡ := (g1, . . . , gℓ). The SRS of P∗ includes srs = gen(d), with the
addition of com(ḡ).

Given P we describe P∗. P and V behave identically to Ppoly and Vpoly, except the
following changes

� As preprocessing, we compute the commitment com(t0, f̄0) to the preprocessed
polynomials and give this in advance to V.

� If in round i of P, Ppoly sends the vector of polynomials f̄i ∈ (F<d[X])ti to I, in
P∗ P sends cmi = com(ti, f̄i) to V.

� When Vpoly asks in P about the k identities

Fi(X) := Gi(X,hi,1(vi,1(X)), . . . , hi,M (vi,M (X))) ≡ 0,

1. Let v∗1, . . . , v
∗
t∗ be the distinct polynomials amongst {vi,j} among the different

identities.

2. V chooses random x ∈ S, computes v∗1(x), . . . , v
∗
t∗(x), and sends x to P.

3. P generally replies with {si,j}i∈[k],j∈[M], which are the alleged values {hi,j(vi,j(x)}.
Note though that when Gi is linear in XM , there is no need to send the value
si,M as the unique value that will cause the equation to be satisfied can be
computed by Vpoly herself.

4. V engages in the protocol open with P to verify the correctness of {si,j}
5. V outputs acc if and only if for each i ∈ [k]

Gi(x, si,1, . . . , si,M) = 0.

The efficiency claims about P∗ follow directly from Theorem 5.2.
To prove the claim about knowledge soundness in the AGM we must describe the

extractor E for the protocol P∗. For this purpose, let EP be the extractor of the
protocol P as guaranteed to exist from Definition 6.2, and ES be the extractor for the
Knowledge Soundness game of S as in Definition 4.1.

Now assume an algebraic adversary A is taking the role of P in P∗.

13

1. E sends the commitments cm to ES and receives in return ¯̄f ∈ (F<d[X])(2).

2. E plays the role of I in interaction with EP , sending him the polynomials ¯̄f .

3. When EP outputs ω, E also outputs ω.

Now let us define two events (over the randomness of V,A and gen):

1. We think of an adversary AP participating in P, and using the polynomials ¯̄f as
their messages to I. We define A to be the event that one of the identities Fi

held, but (x, ω) /∈ R. By the KS of P, Pr(A) = negl(λ).

2. We let B be the event that for some i ∈ [k], j ∈ [M], hi,j(vi,j(x)) ̸= si,j , and at the
same time V has output acc when open was run as a subroutine in Step 4. By the
KS of S , Pr(B) = negl(λ).

Now look at the event C thatV outputs acc, but E failed in the sense that (x, ω) /∈ R.
We split C into two events.

1. A or B also happened - this has negl(λ) probability.

2. C happened but not A or B. This means that for some i ∈ [k], Fi is not the zero
polynomial, but Fi(x) = 0; which happens w.p. deg(Fi) ·A/p which is negl(λ).

7 Polynomial protocol for constraint system satisfiability

As in Section 6 and 7 of [GWC19], we work with a constraint system C = (V,Q) where
Q = (qL,qR,qO,qM,qC) ∈ (Fn)5 are our “Selector vectors”; and V implicitly describe
a permutation on [3n].

We present a slightly modified polynomial protocol for the relation RC described in
[GWC19]; which is the set of pairs (x, ω) with x ∈ Fℓ, ω ∈ Fm−ℓ such that x := (x, ω)
satisfies C . The difference from [GWC19] is that we do not wish to use their reduction
from ranged polynomial protocols to polynomial protocols, as this adds a round of
interaction, which ends up adding a verifier scalar multiplication in the compiled protocol
against algebraic adversaries. Instead, we need to explicitly describe sending the quotient
polynomial involved in each of three identities checked. We assume below n is a power
of two such that 24n divides p− 1, and H ⊂ F is a multiplicative subgroup of F of order
n with generator g. Note that our divisibility assumption implies g is a 24’th power inF.

Preprocessed polynomials: The polynomials Sσ1,Sσ2,Sσ3 describing the permutation
derived from C as in Section 8 of [GWC19]. (As explained there, the polynomials de-
scribing the identity permutation can be computed in logn time directly by the verifier.)
The polynomials qL,qR,qO,qM,qC ∈ F<n[X] (as in [GWC19], we identify the vectors
with polynomials obtaining the vector values on H).

14

Protocol:

1. Let x ∈ Fm be Ppoly’s assignment consistent with the public input x. Ppoly computes
the three polynomials fL, fR, fO ∈ F<n[X], where for i ∈ [n]

fL(i) = xai , fR(i) = xbi
, fO(i) = xci .

2. Ppoly and Vpoly compute the “Public input polynomial”

PI(X) :=
∑
i∈[ℓ]

−xi · Li(X).

3. Ppoly computes the quotient polynomial T0(X) showing fL, fR, fO satisfy the arith-
metic constraint; i.e.

T0(X) :=

qL(X) · fL(X) + qR(X) · fR(X) + qO(X) · fO(X) + qM(X) · fL(X) · fR(X) + (qC(X) + PI(X))

ZH(X)

Ppoly sends f̄1 = (fL, fR, fO, T0) to I.

4. Ppoly and Vpoly run an extended permutation check protocol as in [GWC19], us-
ing the permutation σ between (fL, fR, fO) and itself. As explained in Section
5 of [GWC19], this exactly checks whether (fL, fR, fO) copy-satisfies TC . More
precisely,

(a) Vpoly chooses random β, γ ∈ F and sends them to Ppoly.

(b) Let f ′
j := fj + β · SIDj + γ, and g′j := gj + β · Sσj + γ. That is, for j ∈

{L,R,O} , i ∈ [n]

f ′
j(g

i) = fj(g
i)+β((j−1) ·n+ i)+γ, g′j(g

i) = gj(g
i)+β ·σ((j−1) ·n+ i)+γ

(c) Define f ′, g′ ∈ F<3n[X] by

f ′(X) :=
∏

j∈{L,R,O}

f ′
j(X), g′(X) :=

∏
j∈{L,R,O}

g′j(X).

(d) Ppoly computes Z ∈ F<n[X], such that Z(g) = 1; and for i ∈ {2, . . . , n}

Z(gi) =
∏

1≤ℓ<i

f ′(gj)/g′(gj).

(e) Ppoly computes the quotients T1, T2 showing that Z “starts from one” and
that Z accumulates the values of f/g. Namely,

T1(X) := (L1(X)(Z(X)− 1))/ZH(X) = 0

T2(X) := (Z(X)f ′(X)− g′(X)Z(X · g))/ZH(X)

15

(f) Ppoly sends f̄1 = (Z, T1, T2) to I.

(g) Vpoly checks the following three identities

i.

qL(X)·fL(X)+qR(X)·fR(X)+qO(X)·fO(X)+qM(X)·fL(X)·fR(X)+(qC(X)+PI(X))

= T0(X) · ZH(X)

ii.
L1(X)(Z(X)− 1) = T1(X)ZH(X)

iii.
Z(X)f ′(X)− g′(X)Z(X · g) = T2(X)ZH(X)

and outputs acc iff all checks hold.

Using the analysis of [GWC19] we get

Theorem 7.1. The above is a polynomial protocol for the relation RC .

Now using Lemma 6.4 we get

Corollary 7.2. Assume the Q-DLOG for Q = 18 ·n. Assume 24|(p− 1). Then there is
a protocol for the relation RC with Knowledge Soundness in the Algebraic Group Model
such that

1. The prover P requires 35n G1-exponentiations.

2. The total prover communication consists of 4 G1-elements and 15 F-elements.

3. The verifier requires 6 G1-exponentiations and two pairings.

Proof. We need to simply compute the parameters we are plugging into Lemma 6.4 when
using the above protocol P. The number of rounds r is two. We have

� n0 = maxj<8 [8 · (n− 1) + j] < 8n

� n1 = max {4 · deg(fL), 4 · deg(fR) + 1, 4 · deg(fO) + 2, 4 · deg(T0) + 2} < 8n

� n2 = max {3 · deg(Z), 3 · deg(T1) + 1, 3 · deg(T2) + 2} < 9n

� n(P) = max {n0, n1, n2} < 9n

Now, from Lemma 6.4 we know that

1. The prover requires e(P) = n1 + n2 + 2n(P) + r ≤ 35n G1-exponentiations.

2. The total prover communication consists of r + 2 = 4 G1 elements and M∗ =
15 F-elements.(Opening qL,qR,qO,qM,qC, Sσ1, Sσ2,Sσ3, fL, fR, fO, Z at x and
Z, T1, T2 at gx.)

3. The verifier V requires r + 4 = 6 G1-exponentiations.

16

References

[BDFG] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo infinite: Proof-carrying
data from additive polynomial commitments. In Tal Malkin and Chris Peik-
ert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part I.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commit-
ment schemes for multiple points and polynomials. IACR Cryptol. ePrint
Arch., page 81, 2020.

[BFS19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from DARK
compilers. IACR Cryptology ePrint Archive, 2019:1229, 2019.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-
snark parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

[But] V. Buterin. https://vitalik.ca/general/2021/01/05/rollup.html.

[CHM+19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:
Preprocessing zksnarks with universal and updatable SRS. IACR Cryptology
ePrint Archive, 2019:1047, 2019.

[Gab19] A. Gabizon. Auroralight:improved prover efficiency and SRS size in a sonic-
like system. IACR Cryptology ePrint Archive, 2019:601, 2019.

[GKM+] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updat-
able and universal common reference strings with applications to zk-snarks.
IACR Cryptology ePrint Archive, 2018.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Pro-
ceedings, pages 177–194, 2010.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured ref-
erence strings. IACR Cryptology ePrint Archive, 2019:99, 2019.

17

https://eprint.iacr.org/2017/1050

	Introduction
	Overiew of method and comparison to previous techniques:
	Our results:

	Preliminaries
	Terminology and conventions

	Notation, definitions and operations on vectors and polynomials
	Polynomial commitment schemes
	shplonK

	The new commitment scheme
	FFT-like operations on vectors and polynomials
	The new scheme

	Polynomial Protocols
	From polynomial protocols to protocols against algebraic adversaries

	Polynomial protocol for constraint system satisfiability
	References

