
As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy!

PIERRE CIVIT, Sorbonne University, pierre.civit@lip6.fr

SETH GILBERT, NUS Singapore, seth.gilbert@comp.nus.edu.sg

VINCENT GRAMOLI, University of Sydney and EPFL, vincent.gramoli@sydney.edu.au

RACHID GUERRAOUI, EPFL, rachid.guerraoui@epfl.ch

JOVAN KOMATOVIC, EPFL, jovan.komatovic@epfl.ch

It is known that the Byzantine consensus problem among 𝑛 processes cannot be solved in a non-synchronous system if the number

of faulty processes exceeds 𝑡0, where 𝑡0 = ⌈𝑛/3⌉ − 1 [15]. Indeed, if the number of faulty processes is greater than the 𝑡0 threshold,

correct processes might never decide or (even worse) correct processes might decide and disagree. We focus in this paper on the

latter case, where disagreement occurs. Specifically, we investigate the accountable Byzantine consensus problem in non-synchronous

systems: the problem of solving Byzantine consensus whenever possible (i.e., whenever the number of faulty processes does not

exceed the 𝑡0 bound) and otherwise allowing correct processes to obtain a proof of culpability of (at least) 𝑡0 + 1 faulty processes

whenever correct processes disagree. We present three complementary contributions:

(i) We give a simple transformation named ABC that enables any Byzantine consensus protocol to obtain accountability. Besides

being simple, ABC is also efficient: it induces an overhead of (1) two all-to-all communication rounds and𝑂 (𝑛2) exchanged bits

of information in all executions with up to 𝑡0 faults
1
, and (2) three all-to-all communication rounds and 𝑂 (𝑛3) exchanged bits of

information otherwise. Therefore, any protocol that solves the Byzantine consensus problem with quadratic (or greater) communication

complexity retains its complexity in solving the problem after our transformation.

(ii) We show that ABC, despite its simplicity, allows for optimal communication complexity in solving the accountable Byzantine

consensus problem. That is, (1) we prove that any accountable Byzantine consensus incurs cubic communication complexity whenever

disagreement occurs, and (2) we demonstrate that the lower bound is tight by applying ABC to any cubic Byzantine consensus

protocol (e.g., binary DBFT [8]).

(iii) We show that ABC is not limited to the Byzantine consensus problem. Specifically, we define a class of easily accountable

agreement tasks and we prove that generalized ABC transformation indeed provides accountability for such tasks. Important

distributed tasks, like Byzantine reliable [3] and Byzantine consistent broadcast [3], fall into this class.

1 INTRODUCTION

Ensuring both safety (“nothing bad ever happens”) and liveness (“something good eventually happens”) of a wide variety

of distributed Byzantine problems is impossible if the number of Byzantine processes exceeds a certain predefined

threshold [15]. This limitation motivated researchers to investigate accountable variants of these problems. The

accountable variant of a problem P consists in (1) solving problem P under the appropriate assumptions (e.g., whenever

the number of Byzantine processes does not exceed the threshold), and (2) allowing all correct participants to detect

some fraction of culprits if the safety of problem P is violated. Accountability in distributed systems is important since

it discourages bad behavior. If malicious behavior is guaranteed to result in apprehension and punishment, malicious

processes are much less likely to carry out an attack in the first place, thus strengthening the security of the system.

This paper primarily focuses on obtaining accountability in Byzantine consensus protocols that operate in non-

synchronous systems. The Byzantine consensus problem [15] is defined among 𝑛 processes while tolerating up to

1
Since our transformation relies on the existence of a threshold signature scheme, we assume that the cost of obtaining such scheme is amortized and,

thus, negligible.

1

2 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

𝑡0 = ⌈𝑛/3⌉ − 1 Byzantine (malicious) processes. A process initially proposes a value and eventually decides a value such

that the following properties hold:

• (Liveness) Termination: Every correct process eventually decides.

• (Safety) Agreement: All correct processes decide the same value.

• (Safety) Validity: If all correct processes propose the same value, a correct process can decide only that value.

The conjunction of the aforementioned properties can only be ensured if the number of faulty processes does

not exceed 𝑡0 [15]. If indeed the faulty processes overpopulate the system, any of these properties might be violated.

This work focuses on cases when violation of the agreement property occurs. Specifically, we take a closer look at

the accountable Byzantine consensus problem. A process initially proposes and later decides a value (as done in the

Byzantine consensus problem) and detects some faulty processes. Formally, the accountable Byzantine problem is solved

if and only if the following properties are ensured:

• Termination: If the number of faulty processes does not exceed 𝑡0, then every correct process eventually decides.

• Agreement: If the number of faulty processes does not exceed 𝑡0, then all correct processes decide the same value.

• Validity: If the number of faulty processes does not exceed 𝑡0 and all correct processes propose the same value, a

correct process can decide only that value.

• Accountability: If two correct processes decide different values, then every correct process eventually detects at

least 𝑡0 + 1 faulty processes and obtains a proof of culpability of all detected processes.

The contributions of the paper are threefold:

(i) We present a generic and simple transformation - ABC - that allows any Byzantine consensus protocol to obtain

accountability. Our transformation is also efficient: it introduces an overhead of (1) only two all-to-all communication

rounds and 𝑂 (𝑛2) exchanged bits of information in all executions with at most 𝑡0 faulty processes (i.e., in the common

case), and (2) three all-to-all communication rounds and 𝑂 (𝑛3) exchanged bits of information otherwise (i.e., in the

degraded case). Therefore, any protocol that solves the Byzantine consensus problem with quadratic (or greater)

communication complexity retains its complexity in solving the problem after ABC.
ABC owns its simplicity and efficiency to the observation that the composition presented in Algorithm 1 solves the

Byzantine consensus problem. Indeed, if the number of faults does not exceed 𝑡0, all processes eventually broadcast and

receive 𝑛 − 𝑡0 matching confirm messages. However, the important mechanism illustrated in Algorithm 1 is that faulty

processes must send conflicting confirm messages in order to cause disagreement. Hence, whenever correct processes

disagree, they only need to exchange received confirm messages to obtain accountability.

Algorithm 1 Intuition Behind ABC Transformation

1: function 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑣) do
2: 𝑣 ′ ← bc.propose(𝑣), where bc is any Byzantine consensus protocol

3: broadcast [confirm, 𝑣 ′]
4: wait for 𝑛 − 𝑡0 [confirm, 𝑣 ′]
5: return 𝑣 ′

(ii) We show that our ABC transformation, despite its simplicity, suffices for obtaining optimal communication

complexity in accountable Byzantine consensus protocols. Namely, we prove that any accountable Byzantine consensus

incurs cubic communication complexity whenever disagreement occurs and we demonstrate that the lower bound is

tight by applying ABC to any cubic Byzantine consensus protocol (e.g., DBFT binary consensus [8]).

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 3

(iii) We prove that ABC is not limited to Byzantine consensus. Specifically, we define a class of easily accountable

agreement tasks and we demonstrate that generalized ABC transformation indeed provides accountability for such

tasks. Important distributed tasks, like Byzantine reliable [4] and Byzantine consistent [4] broadcast, fall into the class

of easily accountable agreement tasks.

Related Work. The work on accountability in distributed systems was pioneered in [13]. The authors presented

PeerReview - a generic accountability layer for distributed systems. Same authors initiated the formal study of Byzantine

failures in the context of accountability [14]. Recently, with the expansion of blockchain systems, the interest in

accountable distributed protocols resurfaced once again. Polygraph [7] - the first accountable Byzantine consensus

protocol - was introduced by Civit et al. The Polygraph protocol solves Byzantine consensus [15] whenever possible

(i.e., whenever the number of faulty processes is less than one third of all processes in the system) and enables

accountability whenever two correct processes disagree. Casper [2] is another system designed around the goal of

obtaining accountability. Most recently, authors of [18] investigated the possibility of obtaining accountability in

protocols based on PBFT [5] in scenarios in which the system is not severely corrupted. The commonality between

the discussed prior work is employing sophisticated mechanisms for obtaining accountability. In contrast, we give

significantly simpler solution to the problem.

Roadmap. We present the system model in §2. We devote §3 to our ABC transformation. Specifically, we first

introduce the novel accountable confirmer problem (§3.1), the crucial building block of ABC. Then, we present ABC
and prove its correctness (§3.2). In §3.3, we demonstrate that ABC suffices for obtaining optimal communication

complexity in accountable Byzantine consensus protocols. We define easily accountable agreement tasks and prove the

applicability of generalized ABC to such tasks in §4. Finally, we conclude the paper in §5.

2 MODEL

We consider a system with a set {𝑃1, ..., 𝑃𝑛} of 𝑛 processes that communicate by exchanging messages through a

point-to-point network. The system is non-synchronous: there is no bound that always holds on message delays and

relative speed of processes. Non-synchronous systems include:

• asynchronous systems, where the bound does not exist, and

• partially synchronous systems [11], where the bound holds only eventually.

All our results given in the present paper assume a non-synchronous system.

Each process is assigned its local protocol to execute. A local protocol of a process defines steps to be taken by

the process during a run of the system. The collection of all local protocols assigned to processes is referred to as a

distributed protocol (or simply a protocol).

A subset of all processes might be faulty: these processes may arbitrarily deviate from their local protocol, i.e., we

consider the Byzantine failure model. If a process is not faulty, we say that the process is correct. We assume that any

message sent by a correct process to a correct process is eventually received, i.e., we assume that communication is

reliable. An execution of the system is a single run of the system, i.e., it is a sequence of sending and receiving events, as

well as the internal events of processes. We denote by 𝑡 the actual number of faulty processes in an execution. Finally,

we denote by P(𝑋) the power set of a set 𝑋 .

Cryptographic Primitives. We assume an idealized public-key infrastructure (PKI): each process is associated with its

own public/private key pair that is used to sign messages and verify signatures of other processes. A message𝑚 sent by

4 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

a process 𝑃𝑖 that is properly signed with the PKI private key of 𝑃𝑖 is said to be properly authenticated. We denote by𝑚𝜎𝑖

a message𝑚 signed with the PKI private key of a process 𝑃𝑖 .

Moreover, we assume a (𝑘, 𝑛)-threshold signature scheme [16], where 𝑘 = 𝑛 − ⌈𝑛/3⌉ + 1. In this scheme, each process

holds a distinct private key and there exists a single public key. Each process 𝑃𝑖 can use its private key to produce

a partial signature of a message𝑚 by invoking ShareSign𝑖 (𝑚). Moreover, a partial signature tsignature of a message

𝑚 produced by process 𝑃𝑖 could be verified with ShareVerify𝑖 (𝑚, tsignature). Finally, set 𝑆 = {tsignature𝑖 } of partial
signatures, where |𝑆 | = 𝑘 and, for each tsignature𝑖 ∈ 𝑆 , tsignature𝑖 = ShareSign𝑖 (𝑚), could be combined into a single

digital signature by invoking Combine(𝑆); a combined digital signature tcombined of message𝑚 could be verified with

Verify(𝑚, tcombined). In the rest of the paper, we assume that the cost of obtaining the threshold signature scheme is

amortized and, thus, negligible.

Crucially, we assume that the PKI private key of a correct process is never revealed (irrespectively of the number of

faulty processes in the system). Therefore, if a message𝑚 is signed with the PKI private key of a process 𝑃𝑖 and 𝑃𝑖 is

correct, then the message𝑚 was certainly sent by 𝑃𝑖 . On the other hand, if the number of faulty processes does exceed

𝑛 − 𝑘 , then the threshold private key of a process can be revealed and faulty processes might forge a partial signature of

a correct process.

Proof of Culpability. We say that a set S of properly authenticated messages sent by a process 𝑃𝑖 is a proof of

culpability of 𝑃𝑖 if and only if there does not exist an execution 𝑒 of the system where (1) 𝑃𝑖 sends all the messages from

the S set, and (2) 𝑃𝑖 is correct. Observe that a proof of culpability of a process contains messages signed by the process

with its PKI private key. Indeed, the PKI private key of a correct process is never revealed (as opposed to the threshold

private key of a correct process that might be revealed if the number of faults exceeds 𝑛 − 𝑘 , where 𝑘 = 𝑛 − ⌈𝑛/3⌉ + 1)
which implies that a proof of culpability of a correct process can never be obtained.

Complexity Measure. In this work, as in many in distributed computing, we care about the communication complexity

which is the maximum number of authenticators sent by all correct processes combined across all executions of the

system. An authenticator is either a partial signature or a signature.

3 ABC TRANSFORMATION

This section presentsABC, our transformation that enables any Byzantine consensus protocol to obtain accountability.

To this end, we first introduce the accountable confirmer problem and give its implementation (§3.1). Then, we construct

ourABC transformation around accountable confirmer (§3.2). In §3.3, we prove thatABC allows for obtaining optimal

communication complexity in accountable Byzantine consensus protocols. Finally, we conclude the section with a brief

discussion about the applicability of ABC and communication optimality it provides (§3.4).

3.1 Accountable Confirmer

The accountable confirmer problem is a distributed problem defined among 𝑛 processes. The problem is associated

with parameter 𝑡0 = ⌈𝑛/3⌉ − 1 emphasizing that some properties are ensured only if the number of faulty processes

does not exceed 𝑡0
2
. Accountable confirmer exposes the following interface: (1) request submit (𝑣) - a process submits

value 𝑣 , (2) indication confirm(𝑣 ′) - a process confirms value 𝑣 ′, and (3) indication detect (𝐹, proof) - a process detects

2
Recall that 𝑡0 = ⌈𝑛/3⌉ − 1 is the number of faulty processes tolerated by the Byzantine consensus problem.

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 5

processes from the set 𝐹 such that proof represents a proof of culpability of all processes that belong to 𝐹 . The following

properties are ensured:

• Terminating Convergence: If the number of faulty processes does not exceed 𝑡0 and all correct processes submit

the same value, then that value is eventually confirmed by every correct process.

• Agreement: If the number of faulty processes does not exceed 𝑡0, then no two correct processes confirm different

values.

• Validity: Value confirmed by a correct process is submitted by a correct process.

• Accountability: If two correct processes confirm different values, then every correct process eventually detects at

least 𝑡0 + 1 faulty processes and obtains a proof of culpability of all detected processes.

Terminating convergence ensures that, if (1) the number of faults does not exceed 𝑡0, and (2) all correct processes submit

the same value, then all correct processes eventually confirm that value
3
. Agreement stipulates that no two correct

processes confirm different values if the system is not corrupted (even if submitted values of correct processes differ).

Validity ensures that any confirmed value is submitted by a correct process. Finally, accountability ensures detection of

𝑡0 + 1 faulty processes by every correct process whenever correct processes confirm different values.

Implementation. We now give an implementation of the accountable confirmer problem (Algorithm 2). The imple-

mentation takes advantage of threshold signatures (see §2) in order to obtain quadratic communication complexity in

the common case (i.e., in executions with up to 𝑡0 faulty processes). In the degraded case (i.e., in executions with more

than 𝑡0 faulty processes), the communication complexity is cubic.

Each process initially broadcasts the value it submitted in a submit message (line 17): the submit message contains

the value and the partial signature of the value. Moreover, the entire message is signed with the PKI private key of

the sender. Once a process receives such a submit message, the process (1) checks whether the message is properly

signed (line 6), (2) verifies the partial signature (line 19), and (3) checks whether the received value is equal to its

submitted value (line 19). If all of these checks pass, the process stores the received partial signature (line 20) and the

entire message (line 21). Once a process stores partial signatures from (at least) 𝑛 − 𝑡0 processes (line 23), the process
confirms its submitted value (line 25) and informs other processes about its confirmation by combining the received

partial signatures into a light certificate (line 26). The role of threshold signatures in our implementation is to allow a

light certificate to contain a single signature, thus obtaining quadratic overall communication complexity if 𝑡 ≤ 𝑡0.

Once a process receives two conflicting light certificates (line 31), the process concludes that correct processes might

have indeed confirmed different values
4
. If the process has already confirmed its value, the process broadcasts the set of

(at least) 𝑛 − 𝑡0 properly authenticated [submit, 𝑣, ∗] messages (line 33), where 𝑣 is the value confirmed (and submitted)

by the process; such set of messages is a full certificate for value 𝑣 . Finally, once a process receives two conflicting

full certificates (line 38), the process obtains a proof of culpability of (at least) 𝑡0 + 1 faulty processes (line 41), which

ensures accountability. Indeed, each full certificate contains 𝑛 − 𝑡0 properly authenticated messages: every process

whose message is in both full certificates is faulty and these messages represent a proof of its misbehavior (recall that

no faulty process ever obtains the PKI private key of a correct process).

3
Note that it is not guaranteed that any correct process eventually confirms a value if correct processes submit different values (even if the number of

faulty processes does not exceed 𝑡0).
4
Note that the process is not certain that correct processes have confirmed different values because light certificates could be sent by faulty processes

(possible only if 𝑡 > 𝑡0).

6 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

Accountable Confirmer - Definitions for Algorithm 2

1) A combined digital signature tsig is a valid light certificate for value 𝑣 if and only if Verify(𝑣, tsig) = ⊤.
2) A set S of properly authenticated [submit, 𝑣, ∗]𝜎∗ messages is a valid full certificate for value 𝑣 if and only if:

a) |S| ≥ 𝑛 − 𝑡0
b) Each message𝑚 is sent (i.e., signed) by a distinct process.

3) Let tsig𝑣 be a valid light certificate for value 𝑣 and let tsig𝑣′ be a valid light certificate for value 𝑣 ′. tsig𝑣 conflicts
with tsig𝑣′ if and only if 𝑣 ≠ 𝑣 ′.

4) Let S𝑣 be a valid full certificate for value 𝑣 and let S𝑣′ be a valid full certificate for value 𝑣 ′. S𝑣 conflicts with S𝑣′ if
and only if 𝑣 ≠ 𝑣 ′.

5) Let (𝑚1,𝑚2) be a pair of properly authenticated messages sent by the same process 𝑃𝑖 . (𝑚1,𝑚2) is a proof of
culpability of 𝑃𝑖 if and only if:

a)𝑚1 = [submit, 𝑣, share1]𝜎𝑖
b)𝑚2 = [submit, 𝑣 ′, share2]𝜎𝑖
c) 𝑣 ≠ 𝑣 ′.

Theorem 1. Algorithm 2 solves the accountable confirmer problem with:

• 𝑂 (𝑛2) communication complexity in the common case, and

• 𝑂 (𝑛3) communication complexity in the degraded case.

Proof. We start by proving the terminating convergence property. Indeed, if 𝑡 ≤ 𝑡0 and all correct processes submit

the same value 𝑣 , then the rule at line 23 eventually triggers at each correct process. Since each correct process confirms

only the value it has submitted (line 25), the property is satisfied by Algorithm 2.

We prove agreement by contradiction. Let a correct process 𝑃𝑖 confirm value 𝑣 , let another correct process 𝑃 𝑗 confirm

value 𝑣 ′ ≠ 𝑣 and let 𝑡 ≤ 𝑡0. Hence, 𝑃𝑖 (resp., 𝑃 𝑗) has received 𝑛 − 𝑡0 submit messages for value 𝑣 (resp., 𝑣 ′). Given that

𝑡0 < 𝑛/3, we conclude that number of processes that have sent the submit message for both values must be greater

than 𝑡0. This implies that there are more than 𝑡0 faulty processes, which contradicts the fact that 𝑡 ≤ 𝑡0. Therefore, the

agreement property is ensured.

Validity trivially follows from the fact that each correct process confirms only the value it has submitted (line 25).

We now prove accountability. Let a correct process 𝑃𝑖 confirm value 𝑣 and let another correct process 𝑃 𝑗 confirm

value 𝑣 ′ ≠ 𝑣 . The rule at lines 31 and 32 is eventually triggered at each correct process that confirms a value. Once the

rule is triggered at 𝑃𝑖 (resp., 𝑃 𝑗), the process broadcasts its full certificate to all processes (line 33). Eventually, the rule

at line 38 is triggered at each correct process, which ensures accountability.

Finally, we prove the claimed communication complexity:

• If 𝑡 ≤ 𝑡0, the communication complexity of the algorithm is quadratic because (1) light certificates are sent only

once and they contain a single signature, and (2) no correct process ever sends its full certificate.

• If 𝑡 > 𝑡0, the communication complexity is cubic. Indeed, broadcasting of a full certificate (that contains 𝑂 (𝑛)
authenticators) dominates the communication complexity in this case. Therefore, each correct process sends

𝑂 (𝑛) authenticators to all processes (line 33), which results in cubic overall communication complexity.

The proof of the communication complexity concludes the theorem. □

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 7

Algorithm 2 Accountable Confirmer - Code for Process 𝑃𝑖

1: Implements:
2: Accountable Confirmer, instance ac
3: Uses:
4: Best-Effort Broadcast [3], instance beb ⊲ Simple broadcast without any guarantees if the sender is faulty.

5: Rules:
6: 1) Any submit message that is not properly authenticated is discarded.

7: 2) Rules at lines 23, 31, 32 and 38 are activated at most once.

8: upon event ⟨ac, Init⟩ do
9: value𝑖 ← ⊥
10: confirmed = false
11: lightCertificate𝑖 ← ∅
12: fullCertificate𝑖 ← ∅
13: obtainedLightCertificates𝑖 ← ∅
14: obtainedFullCertificates𝑖 ← ∅
15: upon event ⟨ac, Submit | 𝑣⟩ do
16: value𝑖 ← 𝑣

17: trigger ⟨beb, Broadcast | [submit, 𝑣, ShareSign𝑖 (𝑣)]𝜎𝑖 ⟩
18: upon event ⟨beb,Deliver | 𝑃 𝑗 , [submit, value, share]𝜎 𝑗

⟩ do
19: if ShareVerify 𝑗 (value, share) = ⊤ and value = value𝑖 then
20: lightCertificate𝑖 ← lightCertificate𝑖 ∪ {share}
21: fullCertificate𝑖 ← fullCertificate𝑖 ∪ {[submit, value, share]𝜎 𝑗

}
22: end if
23: upon |lightCertificate𝑖 | ≥ 𝑛 − 𝑡0 do
24: confirmed ← true
25: trigger ⟨ac,Confirm | value𝑖 ⟩
26: trigger ⟨beb, Broadcast | [light-certificate, value𝑖 ,Combine(lightCertificate𝑖)]⟩
27: upon event ⟨beb,Deliver | 𝑃 𝑗 , [light-certificate, value 𝑗 , lightCertificate 𝑗]⟩ do
28: if lightCertificate 𝑗 is a valid light certificate then
29: obtainedLightCertificates𝑖 ← obtainedLightCertificates𝑖 ∪ {lightCertificate 𝑗 }
30: end if
31: upon certificate

1
, certificate

2
∈ obtainedLightCertificates𝑖 where certificate1 conflicts with certificate

2

32: and confirmed = true do
33: trigger ⟨beb, Broadcast | [full-certificate, value𝑖 , fullCertificate𝑖]⟩
34: upon event ⟨beb,Deliver | 𝑃 𝑗 , [full-certificate, value 𝑗 , fullCertificate 𝑗]⟩ do
35: if fullCertificate 𝑗 is a valid full certificate then
36: obtainedFullCertificates𝑖 ← obtainedFullCertificates𝑖 ∪ {fullCertificate 𝑗 }
37: end if
38: upon certificate

1
, certificate

2
∈ obtainedFullCertificates𝑖 where certificate1 conflicts with certificate

2
do

39: proof ← extract a proof of culpability of (at least) 𝑡0 + 1 processes from certificate
1
and certificate

2

40: 𝐹 ← set of processes detected via proof
41: trigger ⟨ac,Detect | 𝐹, proof ⟩

3.2 ABC: Byzantine Consensus + Accountable Confirmer = Accountable Byzantine Consensus

We now define our ABC transformation (Algorithm 3), the main contribution of our work. ABC is built on the

observation that any Byzantine consensus protocol paired with accountable confirmer solves the accountable Byzantine

consensus problem.

8 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

Algorithm 3 ABC Transformation - Code For Process 𝑃𝑖

1: Implements:
2: Accountable Byzantine Consensus, instance abc
3: Uses:
4: Byzantine Consensus, instance bc ⊲ Byzantine consensus protocol to be transformed

5: Accountable Confirmer, instance ac
6: upon event ⟨abc, Propose | proposal⟩ do
7: trigger ⟨bc, Propose | proposal⟩
8: upon event ⟨bc,Decide | decision⟩ do
9: trigger ⟨ac, Submit | decision⟩
10: upon event ⟨ac,Confirm | confirmation⟩ do
11: trigger ⟨abc,Decide | confirmation⟩
12: upon event ⟨ac,Detect | 𝐹, proof ⟩ do
13: trigger ⟨abc,Detect | 𝐹, proof ⟩

The following theorem shows that Algorithm 3 solves the accountable Byzantine consensus problem, which implies

that ABC indeed allows Byzantine consensus protocols to obtain accountability.

Theorem 2. Algorithm 3 solves the accountable Byzantine consensus problem.

Proof. Consider an execution where 𝑡 ≤ 𝑡0. All correct processes eventually decide the same value 𝑣 from Byzantine

consensus at line 8 (by termination and agreement of Byzantine consensus). Moreover, if all correct processes have

proposed the same value (line 6), then the proposed value is indeed 𝑣 (ensured by validity of Byzantine consensus).

Terminating convergence of accountable confirmer ensures that all correct processes eventually confirm 𝑣 (line 10) and

decide from the accountable Byzantine consensus (line 11). Hence, Algorithm 3 satisfies termination, agreement and

validity if 𝑡 ≤ 𝑡0.

If correct processes disagree (i.e., decide different values at line 11), then these processes have confirmed different

values from accountable confirmer (line 10). Thus, accountability is ensured by Algorithm 3 since accountability is

ensured by accountable confirmer, i.e., every correct process eventually detects faulty processes from accountable

confirmer (line 12). Thus, accountability is satisfied by Algorithm 3, which concludes the theorem. □

Finally, we note that ABC does not worsen the communication complexity of a Byzantine consensus protocol

that solves Byzantine consensus optimally. It is well-known that any protocol that solves the Byzantine consensus

problem incurs quadratic communication complexity due to the lower bound set by Dolev et al. [10]. Given the fact

that accountable confirmer has quadratic communication complexity in the common case (Theorem 1), any Byzantine

consensus protocol with quadratic communication complexity retains its complexity after our transformation. In

other words, any optimal Byzantine consensus protocol still matches the Dolev-Reischuk lower bound after our

transformation
5
.

Corollary 1. ABC applied to any quadratic Byzantine consensus protocol gives an accountable Byzantine consensus

protocol with quadratic communication complexity in the common case.

5
We emphasize that the proof of quadratic lower bound presented in [10] does not consider cryptographic primitives like threshold signatures. Therefore,

even though our transformation preserves quadratic communication complexity in all executions with up to 𝑡0 faults, it does so by utilizing threshold

signatures and, as such, is not covered by the proof given in [10].

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 9

3.3 ABC Suffices For Optimal Accountability

This subsection proves that any distributed protocol that solves the accountable Byzantine consensus problem incurs

cubic communication cost. Moreover, we show that the lower bound is tight by applying ABC (§3.2) to any cubic

(or sub-cubic) Byzantine consensus protocol (Corollary 2). Therefore, we show that our simple transformation allows

Byzantine consensus protocols to obtain accountability optimally with respect to the communication complexity.

Let Π𝐴
be a distributed protocol that solves the accountable Byzantine consensus problem among 𝑛 processes. If up

to 𝑡0 = ⌈𝑛/3⌉ − 1 processes are faulty, Π𝐴
ensures termination, agreement and validity; if disagreement occurs, each

correct process eventually detects at least 𝑡0 + 1 faulty processes (and obtains a proof of culpability of all detected

processes). Without loss of generality, we assume that 𝑛 = 3𝑡0 + 1.
We start by separating processes that execute Π𝐴

into three disjoint groups: (1) group 𝐴, where |𝐴| = 𝑡0, (2) group

𝐵, where |𝐵 | = 𝑡0 + 1, and (3) group 𝐶 , where |𝐶 | = 𝑡0. Given that Π𝐴
solves the Byzantine consensus problem, the

following two executions exist:

• 𝑒1: All processes from group 𝐶 are faulty and silent throughout the entire execution. Moreover, all processes

from the 𝐴 ∪ 𝐵 set propose value 𝑣 . Since |𝐶 | = 𝑡0, Π
𝐴
ensures that all processes from the 𝐴 ∪ 𝐵 set eventually

decide the same value 𝑣 (because of the validity property) by some global time 𝑡1.

• 𝑒2: All processes from group𝐴 are faulty and silent throughout the entire execution. Moreover, all processes from

the 𝐵 ∪𝐶 set propose value 𝑣 ′ ≠ 𝑣 . Since |𝐴| = 𝑡0, Π
𝐴
ensures that all processes from the 𝐵 ∪𝐶 set eventually

decide the value 𝑣 ′ ≠ 𝑣 (because of the validity property) by some global time 𝑡2.

Now, we can devise another execution 𝑒 in the following manner:

• Processes from group 𝐴 and processes from group 𝐶 are correct, whereas processes from group 𝐵 are faulty.

Moreover, all processes from group 𝐴 propose 𝑣 , whereas all processes from group 𝐶 propose 𝑣 ′ ≠ 𝑣 .

• Processes from group 𝐵 behave towards processes from group 𝐴 as in execution 𝑒1 and processes from group 𝐵

behave towards processes from group 𝐶 as in execution 𝑒2.

• All messages between processes from group 𝐴 and group 𝐶 are delayed until time max (𝑡1, 𝑡2).
Execution 𝑒 is indistinguishable from execution 𝑒1 to processes from group 𝐴, which implies that all processes from

group 𝐴 decide value 𝑣 by time 𝑡1. Similarly, all processes from group 𝐶 decide value 𝑣 ′ ≠ 𝑣 by time 𝑡2.

Finally, we denote by partitioningExecution the prefix of execution 𝑒 up to time max (𝑡1, 𝑡2) (Part (a) of Figure 1

depicts partitioningExecution). Observe that the following holds for execution partitioningExecution:

• All processes from group 𝐴 decide 𝑣 in partitioningExecution.

• All processes from group 𝐶 decide 𝑣 ′ ≠ 𝑣 in partitioningExecution.

• No message is exchanged between any two processes (𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶).
We are now ready to prove the cubic lower bound on communication complexity for solving the accountable Byzantine

consensus protocol.

Theorem 3. The communication complexity of Π𝐴 is Ω(𝑛3).

Proof. The proof is built on top of partitioningExecution we constructed above. Namely, partitioningExecution is

convenient for proving the cubic lower bound since the only way for correct processes (i.e., processes from the 𝐴 ∪𝐶
set) to ensure accountability is to exchange information among themselves. Indeed, faulty processes (i.e., processes

from group 𝐵) appear correct to all processes from group 𝐴 (resp., group 𝐶). Therefore, no faulty process is detected in

partitioningExecution because of the fact that no communication is established between groups 𝐴 and 𝐶 .

10 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

Recall that each correct process needs to obtain a proof of culpability of (at least) 𝑡0 + 1 = 𝑂 (𝑛) faulty processes. If

processes 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 aim to collaboratively obtain a proof of culpability of 𝑡0 + 1 processes, both 𝑎 and 𝑐 need to

send (at least) 𝑡0 + 1 = Ω(𝑛) authenticators. Moreover, a proof of culpability of 𝑡0 + 1 processes must contain (at least)

Ω(𝑛) authenticators.
We now devise a continuation of partitioningExecution which ensures that correct processes do send Ω(𝑛3) authenti-

cators. We start by stating that there is a single correct process in group𝐴 - we denote this process by 𝑎. Other processes

from group 𝐴 are Byzantine and they do not send any message to 𝑎 in the continuation of partitioningExecution. All

processes from group 𝐶 are correct and all processes from group 𝐵 are faulty and silent. Finally, all messages sent

between processes from group 𝐶 are delayed in the continuation of partitioningExecution.

Let 𝑐1 ∈ 𝐶 be a process from group 𝐶; recall that 𝑐1 is correct. In the continuation of partitioningExecution, 𝑐1
eventually obtains a proof of culpability Σ of 𝑡0+1 processes by communicating with a single process 𝑎1 ∈ 𝐴. Specifically,
no message is received by 𝑐1 from any process that belongs to group 𝐴 before 𝑐1 obtains Σ by communicating with

𝑎1. Importantly, 𝑐1 cannot distinguish the current execution from one in which only correct processes are 𝑐1 and 𝑎1

(recall that accountability must be ensured even in the scenario with only two correct processes). However, after the

communication with 𝑎1, process 𝑐1 cannot distinguish the current execution from one in which (1) 𝑎1 is faulty (and

just behaves correctly towards 𝑐1), and (2) there exist other processes from group 𝐴 that are correct, disagree with

𝑐1 and need to detect faulty processes. Therefore, 𝑐1 needs to communicate with other processes from group 𝐴. The

aforementioned construction of the continuation of partitioningExecution is repeated for all processes 𝑎𝑖 ∈ 𝐴: (1) process
𝑐1 sends Ω(𝑛) authenticators in order to allow process 𝑎𝑖 ∈ 𝐴 to obtain Σ, and (2) before process 𝑎𝑖 obtains Σ, process

𝑐1 does not hear from any other process from group 𝐴 from which it has not heard yet (i.e., process 𝑐1 communicates

with processes from group 𝐴 in “one-by-one” fashion). Recall that process 𝑐1 does not hear from any process from

group 𝐶 until 𝑐1 has “helped” each process from group 𝐴 to obtain Σ (i.e., all processes from group 𝐶 might be faulty as

seen from the perspective of 𝑐1). Finally, we conclude that 𝑐1 communicates quadratic number of authenticators in the

execution (Ω(𝑛) authenticators per 𝑡0 = 𝑂 (𝑛) processes).
We apply the same reasoning for correct process 𝑐2 ∈ 𝐶 . First, process 𝑐2 hears from any process from group 𝐴

only after 𝑐1 has already ensured that all processes from group 𝐴 obtain Σ. All 𝑡0 − 1 faulty processes from group 𝐴

behave towards 𝑐2 as if they receive the information from group 𝐶 for the first time. Moreover, 𝑐2 communicates with

all processes from group 𝐴 in “one-by-one” fashion. Note that 𝑎, the only correct process from group 𝐴, might not

behave towards 𝑐2 as if it hears the information from group 𝐶 for the first time. However, process 𝑐2 cannot be certain

that 𝑎 is indeed correct; the reason is that 𝑎 has previously received information only from other processes from group

𝐶 in the continuation of partitioningExecution and it is possible that all of these processes are faulty (as seen from the

perspective of 𝑐2; recall that 𝑐2 has not heard from other processes from group 𝐶 thus far), which implies that 𝑎 might

be faulty. Hence, 𝑐2 also needs to ensure that each process from group 𝐴 obtains a proof of culpability, which results in

the fact that 𝑐2 also sends quadratic number of authenticators.

Finally, the construction mechanism we presented for 𝑐2 is repeated for all other processes from group 𝐶 . Therefore,

each process from group 𝐶 sends quadratic number of authenticators. Since |𝐶 | = 𝑡0 = 𝑂 (𝑛), the total communication

complexity of Π𝐴
is Ω(𝑛3) (Part (b) of Figure 1 provides a visual depiction of the execution considered in the proof). □

The consequence of theorems 1 and 3 is that ABC allows any cubic (or sub-cubic) Byzantine consensus protocol

(e.g., DBFT binary consensus [8]) to solve the accountable Byzantine consensus problem optimally.

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 11

(a) The partitioningExecution execution in which processes from groups 𝐴 and𝐶 disagree.

(b) The continuation of partitioningExecution that incurs cubic number of authenticators sent by correct
processes (the communication pattern of a single process from group𝐶 is depicted).

Fig. 1. Illustration of Theorem 3.

Corollary 2. ABC applied to any cubic (or sub-cubic) Byzantine consensus protocol gives an accountable Byzantine

consensus protocol with the asymptotically optimal cubic communication complexity.

Direct consequence of corollaries 1 and 2 is that ABC, when applied to any quadratic Byzantine consensus, obtains

a protocol that:

• solves the Byzantine consensus problem with quadratic communication complexity, which matches the lower

bound given by Dolev et al. [10], and

• solves the accountable Byzantine consensus problem with cubic communication complexity, which matches the

lower bound given in the paper (Theorem 3).

3.4 Discussion

The (accountable) Byzantine consensus problem (as defined in §1) specifies the validity property which ensures that, if

all correct processes propose the same value, then only that value could be decided by a correct process. In the literature,

there are many variants of the validity property; the one we use is traditionally called strong validity. Throughout the

rest of this subsection, we refer to “our” validity property as strong validity. Other most notable variants of the validity

property include:

12 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

• Weak Validity: If all processes are correct and if a correct process decides value 𝑣 , then 𝑣 is proposed by a (correct)

process [1, 17, 19].

• External Validity: A value decided by a correct process satisfies the predefined valid predicate [4].

Importantly, the correctness of ABC does not depend on the specific variant of the validity property.

However, the specific variant of the considered validity property plays a role in showing that our transformation

allows for optimal solution to the accountable Byzantine consensus problem. As seen in §3.3, our proof of the cubic

lower bound relies on the possibility of devising partitioningExecution. Indeed, partitioningExecution could be obtained

as a consequence of the strong validity property (see §3.3). Still, if one assumes weak or external validity, there is no

guarantee that such execution exist. Thus, the lower bound presented in §3.3 does not apply to Byzantine consensus

problems that does not ensure strong validity, but some other variant of the property.

4 GENERALIZED ABC TRANSFORMATION

We have shown that ABC enables Byzantine consensus protocols to obtain accountability. This section generalizes

our ABC transformation and defines its applicability. Namely, we specify a class of distributed computing problems

named easily accountable agreement tasks and we prove that generalized ABC enables accountability in such tasks.

We introduce agreement tasks in §4.1. Then, we define the class of easily accountable agreement tasks (§4.2) and

prove the correctness of generalized ABC transformation applied to such agreement tasks (§4.3).

4.1 Agreement Tasks

Agreement tasks represent an abstraction of distributed input-output problems executed in a Byzantine environment.

Specifically, each process has its input value. We assume that “⊥” denotes the special input value of a process that
specifies that the input value is non-existent. A process may eventually halt; if a process halts, it produces its output

value. The “⊥” output value of a process means that the process has not yet halted (and produced its output value). We

denote by 𝐼𝑖 (resp., 𝑂𝑖) the input (resp., output) value of process 𝑃𝑖 . We note that some processes might never halt if

permitted by the definition of an agreement task (we provide the formal explanation in the rest of the subsection).

An agreement taskA is parameterized with the upper bound 𝑡A on number of faulty processes that are tolerated. In

other words, the specification of an agreement task assumes that no more than 𝑡A processes are faulty in any execution.

Any agreement task could be defined as a relation between input and output values of processes. Since we assume

that processes might fail, we only care about input and output values of correct processes. Hence, an agreement task

could be defined as a relation between input and output values of correct processes.

An input configuration of an agreement task A is a𝐼 = {(𝑃𝑖 , 𝐼𝑖) with 𝑃𝑖 is correct}, where |a𝐼 | ≥ 𝑛 − 𝑡A : an input

configuration consists of input values of (all and exclusively) correct processes. Similarly, an output configuration of

an agreement task is denoted by a𝑂 = {(𝑃𝑖 ,𝑂𝑖) with 𝑃𝑖 is correct}, where |a𝑂 | ≥ 𝑛 − 𝑡A : it contains output values of
correct processes. We denote by \ (a𝑂) = |{𝑂𝑖 | (𝑃𝑖 ,𝑂𝑖) ∈ a𝑂 ∧𝑂𝑖 ≠ ⊥}| the number of distinct non-⊥ values in the a𝑂

output configuration.

Finally, we define an agreement task A as tuple (I,O,Δ, 𝑡A), where:
• I denotes the set of all possible input configurations of A.

• O denotes the set of all possible output configurations of A such that, for every a𝑂 ∈ O, \ (a𝑂) ≤ 1.

• Δ : I → 2
O
, where a𝑂 ∈ Δ(a𝐼) if and only if the output configuration a𝑂 ∈ O is valid given the input

configuration a𝐼 ∈ I.
• 𝑡A ≤ ⌈𝑛/3⌉ − 1 denotes the maximum number of faulty processes the task assumes.

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 13

As seen from the definition, correct processes that halt always output the same value in agreement tasks. Moreover, we

define agreement tasks to tolerate less than 𝑛/3 faults. Without loss of generality, we assume that Δ(a𝐼) ≠ ∅, for every
input configuration a𝐼 ∈ I. Moreover, for every a𝑂 ∈ O, there exists a𝐼 ∈ I such that a𝑂 ∈ Δ(a𝐼).

We note that some problems that are traditionally considered as “agreement” problems do not fall into our classification

of agreement tasks. For instance, Byzantine lattice agreement [9] or 𝑘-set agreement [6] are not agreement tasks per

our definition since the number of distinct non-⊥ values that can be outputted is greater than 1.

Solutions. We say that a distributed protocol ΠA solves an agreement task A = (I,O,Δ, 𝑡A) if and only if there

exists (an unknown) time 𝑇𝐷 such that a𝑂 ∈ Δ(a𝐼), where a𝐼 ∈ I denotes the input configuration that consists of

input values of all correct processes and a𝑂 ∈ O denotes the output configuration that (1) consists of output values

(potentially ⊥) of all correct processes, and (2) no correct process 𝑃𝑖 with 𝑂𝑖 = ⊥ updates its output value after 𝑇𝐷 .

Finally, we say that a distributed protocol Π𝐴
A solves an accountable agreement task A = (I,O,Δ, 𝑡A) if and only if

the following holds:

• A-Solution: If 𝑡 ≤ 𝑡A , Π𝐴
A solves A.

• Accountability: If two correct processes output different values, then every correct process eventually detects at

least 𝑡A + 1 faulty processes and obtains a proof of culpability of all detected processes.

4.2 Easily Accountable Agreement Tasks

Fix an agreement task A = (I,O,Δ, 𝑡A). We say that A is an easily accountable agreement task if and only if one of

the following conditions is satisfied:

(1) “All-or-None-Decidability”: There does not exist a𝑂 ∈ O such that (𝑃𝑖 ,𝑂𝑖 ≠ ⊥) ∈ a𝑂 and (𝑃 𝑗 ,𝑂 𝑗 = ⊥) ∈ a𝑂 ; or
(2) “Partial-Decidability”: For every a𝐼 ∈ I such that there exists a𝑂 ∈ Δ(a𝐼) where (𝑃𝑖 ,𝑂𝑖 = 𝑣 ≠ ⊥) ∈ a𝑂 and

(𝑃 𝑗 ,𝑂 𝑗 = ⊥) ∈ a𝑂 , the following holds:

for every 𝑐 ∈ P({𝑃𝑖 | (𝑃𝑖 , 𝐼𝑖) ∈ a𝐼 }), a ′𝑂 ∈ Δ(a𝐼),where ∀𝑃𝑖 ∈ 𝑐 : (𝑃𝑖 ,𝑂𝑖 = 𝑣) ∈ a ′𝑂 and

∀𝑃 𝑗 ∈ {𝑃𝑘 | (𝑃𝑘 , 𝐼𝑘) ∈ a𝐼 } \ 𝑐 : (𝑃 𝑗 ,𝑂 𝑗 = ⊥) ∈ a ′𝑂 .

“All-or-None-Decidability” characterizes all the problems in which either every process halts or none does. For

instance, Byzantine consensus [15] and Byzantine reliable broadcast [3] satisfy “All-or-None-Decidability”.

On the other hand, some agreement tasks permit that some processes halt, whereas others do not. We say that

these tasks satisfy “Partial-Decidability” if and only if it is allowed for any subset of correct processes to halt (and

output a value). Note that “Partial-Decidability” covers the case in which no correct process ever halts. Byzantine

consistent broadcast [3] is the single agreement task we are aware of that satisfies “Partial-Decidability”. However, the

significance of Byzantine consistent broadcast (e.g., for implementing cryptocurrencies [12]) motivated us to consider

the “Partial-Decidability” property.

4.3 Correctness of Generalized ABC Transformation

We now prove the correctness of our generalized ABC transformation (Algorithm 4). First, we show that Algorithm 4

solves an easily accountable agreement problem A when 𝑡 ≤ 𝑡A if A satisfies the “All-or-None-Decidability” property.

Lemma 1. Let A = (I,O,Δ, 𝑡A) be an easily accountable agreement task that satisfies “All-or-None-Decidability”.

Then, Algorithm 4 solves A if 𝑡 ≤ 𝑡A .

Proof. In no correct process ever outputs a value at line 8, then the lemma trivially holds.

14 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic

Algorithm 4 Generalized ABC Transformation - Code For Process 𝑃𝑖

1: Implements:
2: Accountable Agreement Task A, instance 𝑎 − A
3: Uses:
4: Protocol that solves agreement task A, instance ΠA ⊲ Protocol to be transformed

5: Accountable Confirmer, instance ac
6: upon event ⟨𝑎 − A, Input | input⟩ do
7: trigger ⟨ΠA , Input | input⟩
8: upon event ⟨ΠA ,Output | output⟩ do
9: trigger ⟨ac, Submit | output⟩
10: upon event ⟨ac,Confirm | confirmation⟩ do
11: trigger ⟨𝑎 − A,Output | confirmation⟩
12: upon event ⟨ac,Detect | 𝐹, proof ⟩ do
13: trigger ⟨𝑎 − A,Detect | 𝐹, proof ⟩

Otherwise, each correct process eventually outputs a value at line 8. Moreover, all correct processes output the exact

same value 𝑣 (since A is an agreement task). Therefore, all correct process submit the same value 𝑣 to accountable

confirmer (line 9). By terminating convergence of accountable confirmer, all correct processes eventually confirm value

𝑣 (line 10) and output it (line 11). Once this happens, the agreement task A is solved, which concludes the lemma. □

Now, we prove that Algorithm 4 solves an easily accountable agreement task A when 𝑡 ≤ 𝑡A if A satisfies the

“Partial-Decidability” property.

Lemma 2. Let A = (I,O,Δ, 𝑡A) be an easily accountable agreement task that satisfies “Partial-Decidability”. Then,

Algorithm 4 solves A if 𝑡 ≤ 𝑡A .

Proof. Let a𝐼 denotes the specific input configuration of A. We consider two cases:

• There does not exist a𝑂 ∈ Δ(a𝐼) such that (𝑃𝑖 ,𝑂𝑖 ≠ ⊥) ∈ a𝑂 and (𝑃 𝑗 ,𝑂 𝑗 = ⊥) ∈ a𝑂 : In this case, the proof is

identical to the proof of Lemma 1.

• Otherwise: SinceA is an easily accountable agreement task, we conclude that all processes that output a value at

line 8 output the same value 𝑣 . Therefore, any process that outputs a value at line 11 outputs the value 𝑣 (ensured

by validity of accountable confirmer). Finally, once the system stabilizes at time 𝑇𝑆 (the system stabilizes at time

𝑇𝑆 if and only if no correct process 𝑃𝑖 with 𝑂𝑖 = ⊥ updates its output value after 𝑇𝑆), the fact that any subset of

processes could halt and the fact that all halted processes output 𝑣 imply that Algorithm 4 solves A.

The lemma holds since it is satisfied in both possible cases. □

Finally, we are ready to prove that Algorithm 4 solves an accountable agreement task A, where A is an easily

accountable agreement task, which means that generalized ABC is correct.

Theorem 4. Let A = (I,O,Δ, 𝑡A) be an easily accountable agreement task. Then, Algorithm 4 solves the accountable

agreement task A.

Proof. Algorithm 4 satisfies A-solution by lemmas 1 and 2. Furthermore, Algorithm 4 ensures accountability

because of the fact that accountable confirmer ensures accountability and 𝑡A ≤ 𝑡0. Thus, the theorem holds. □

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! 15

5 CONCLUSION

We presented ABC, the generic and simple transformation that allows Byzantine consensus protocols to obtain

accountability. Besides its simplicity, ABC is efficient: it introduces an overhead of (1) 𝑂 (𝑛2) exchanged bits of

information in the common case, and (2) 𝑂 (𝑛3) exchanged bits of information in the degraded case. Finally, we show

thatABC can easily be generalized to other agreement problems (e.g., Byzantine reliable broadcast, Byzantine consistent

broadcast). Future work includes (1) designing similarly simple and efficient transformation for problems not covered

by our generalized ABC transformation, like Byzantine lattice and 𝑘-set agreement problems, and (2) circumventing

the cubic lower bound using randomization techniques.

REFERENCES
[1] Buchman, E., Kwon, J., and Milosevic, Z. The latest gossip on bft consensus. arXiv preprint arXiv:1807.04938 (2018).
[2] Buterin, V., and Griffith, V. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437 (2017).

[3] Cachin, C., Guerraoui, R., and Rodrigues, L. Introduction to reliable and secure distributed programming. Springer Science & Business Media, 2011.

[4] Cachin, C., Kursawe, K., Petzold, F., and Shoup, V. Secure and efficient asynchronous broadcast protocols. In Annual International Cryptology
Conference (2001), Springer, pp. 524–541.

[5] Castro, M., Liskov, B., et al. Practical byzantine fault tolerance. In OSDI (1999), vol. 99, pp. 173–186.
[6] Chaudhuri, S. More choices allow more faults: Set consensus problems in totally asynchronous systems. Information and Computation 105, 1 (1993),

132–158.

[7] Civit, P., Gilbert, S., and Gramoli, V. Brief announcement: Polygraph: Accountable byzantine agreement. In 34th International Symposium on
Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference (2020), H. Attiya, Ed., vol. 179 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, pp. 45:1–45:3.

[8] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. Dbft: Efficient leaderless byzantine consensus and its application to blockchains. In 2018 IEEE
17th International Symposium on Network Computing and Applications (NCA) (2018), IEEE, pp. 1–8.

[9] de Souza, L. F., Kuznetsov, P., Rieutord, T., and Tucci Piergiovanni, S. Accountability and reconfiguration: Self-healing lattice agreement. CoRR
abs/2105.04909 (2021).

[10] Dolev, D., and Reischuk, R. Bounds on information exchange for byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–204.
[11] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[12] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., and Seredinschi, D.-A. At2: asynchronous trustworthy transfers. arXiv preprint

arXiv:1812.10844 (2018).
[13] Haeberlen, A., Kouznetsov, P., and Druschel, P. Peerreview: practical accountability for distributed systems. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007 (2007), T. C. Bressoud and M. F.

Kaashoek, Eds., ACM, pp. 175–188.

[14] Haeberlen, A., and Kuznetsov, P. The fault detection problem. In Principles of Distributed Systems, 13th International Conference, OPODIS 2009,
Nîmes, France, December 15-18, 2009. Proceedings (2009), T. F. Abdelzaher, M. Raynal, and N. Santoro, Eds., vol. 5923 of Lecture Notes in Computer
Science, Springer, pp. 99–114.

[15] Lamport, L., Shostak, R., and Pease, M. The byzantine generals problem. In Concurrency: the Works of Leslie Lamport. 2019, pp. 203–226.
[16] Libert, B., Joye, M., and Yung, M. Born and raised distributively: Fully distributed non-interactive adaptively-secure threshold signatures with

short shares. Theor. Comput. Sci. 645 (2016), 1–24.
[17] Milosevic, Z., Hutle, M., and Schiper, A. Unifying byzantine consensus algorithms with weak interactive consistency. In International Conference

On Principles Of Distributed Systems (2009), Springer, pp. 300–314.
[18] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. BFT protocol forensics. CoRR abs/2010.06785 (2020).
[19] Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., and Abraham, I. HotStuff: BFT consensus with linearity and responsiveness. In Proceedings

of the 2019 ACM Symposium on Principles of Distributed Computing (2019), pp. 347–356.

	Abstract
	1 Introduction
	2 Model
	3 ABC Transformation
	3.1 Accountable Confirmer
	3.2 ABC: Byzantine Consensus + Accountable Confirmer = Accountable Byzantine Consensus
	3.3 ABC Suffices For Optimal Accountability
	3.4 Discussion

	4 Generalized ABC Transformation
	4.1 Agreement Tasks
	4.2 Easily Accountable Agreement Tasks
	4.3 Correctness of Generalized ABC Transformation

	5 Conclusion
	References

