
1

As easy as ABC: Optimal (A)ccountable
(B)yzantine (C)onsensus is easy!

Pierre Civit1, Seth Gilbert2, Vincent Gramoli3,4, Rachid Guerraoui4 and Jovan Komatovic4

1Sorbonne University, CNRS, LIP6
2NUS Singapore

3University of Sydney
4EPFL

Abstract—It is known that the agreement property of the
Byzantine consensus problem among n processes can be
violated in a non-synchronous system if the number of faulty
processes exceeds t0 = dn/3e − 1 [9], [17]. In this paper, we
investigate the accountable Byzantine consensus problem in
non-synchronous systems: the problem of solving Byzantine
consensus whenever possible (i.e., when the number of
faulty processes does not exceed t0) and allowing correct
processes to obtain a proof of culpability of t0 + 1 faulty
processes whenever correct processes disagree. We present
four complementary contributions:
1) We introduce ABC: a simple yet e�cient transformation

of any Byzantine consensus protocol to an accountable
one. ABC introduces an overhead of (1) only two all-
to-all communication rounds and O(n2) additional bits
in executions with up to t0 faults, and (2) three all-to-
all communication rounds and O(n3) additional bits in
executions with more faults.

2) We prove a tight lower bound on the communica-
tion complexity needed for any accountable Byzantine
consensus protocol. In particular, we show that any
algorithm incurs a cubic communication complexity in
an execution in which disagreement occurs and that this
bound is tight by applying ABC to the binary DBFT
consensus protocol [10].

3) We demonstrate that, when applied to an optimal Byzan-
tine consensus protocol, ABC constructs an account-
able Byzantine consensus protocol that is (1) optimal
in solving consensus whenever consensus is solvable,
and (2) optimal in obtaining accountability whenever
disagreement happens.

4) We generalize ABC to other distributed computing prob-
lems besides the classic consensus problem. We charac-
terize a class of agreement tasks, including reliable and
consistent broadcast [4], that ABC renders accountable.

I. Introduction
Ensuring both safety (“nothing bad ever happens”) and

liveness (“something good eventually happens”) of a wide
variety of distributed Byzantine problems is impossible if
the number of Byzantine processes exceeds a certain pre-
de�ned threshold [17]. �is limitation motivated researchers
to investigate accountable variants of these problems [8],

pierre.civit@lip6.fr
seth.gilbert@comp.nus.edu.sg
vincent.gramoli@sydney.edu.au
rachid.guerraoui@ep�.ch
jovan.komatovic@ep�.ch

[21]. �e accountable variant of a problem P consists in (1)
solving problem P under the appropriate assumptions (e.g.,
whenever the number of Byzantine processes does not exceed
the threshold), and (2) allowing all correct participants to
detect some fraction of culprits if the safety of problem P is
violated. Accountability in distributed systems is important
since it discourages bad behavior. If malicious behavior is
guaranteed to result in apprehension and punishment, mali-
cious processes are much less likely to carry out an a�ack in
the �rst place, thus strengthening the security of the system.
�is paper primarily focuses on obtaining accountabil-

ity in Byzantine consensus protocols that operate in non-
synchronous systems. �e Byzantine consensus problem [17]
is de�ned among n processes while tolerating up to t0 =
dn/3e−1 Byzantine (malicious) processes. A process initially
proposes a value and eventually decides a value such that the
following properties hold:
• (Liveness) Termination: Every correct process eventually
decides.

• (Safety) Agreement: All correct processes decide the
same value.

• (Safety) Validity: If all correct processes propose the
same value, only that value can be decided by a correct
process.

�e conjunction of the aforementioned properties can
only be ensured if the number of faulty processes does not
exceed t0 [17]. If indeed the faulty processes overpopulate the
system, any of these properties might be violated. �is work
focuses on cases when violation of the agreement property
occurs. Speci�cally, we take a closer look at the accountable
Byzantine consensus problem. A process initially proposes
and later decides a value (as in the Byzantine consensus
problem) and detects some faulty processes. Formally, the
accountable Byzantine problem is solved if and only if the
following properties are ensured:
• Termination: If the number of faulty processes does not
exceed t0, then every correct process eventually decides.

• Agreement: If the number of faulty processes does not
exceed t0, then all correct processes decide the same
value.

• Validity: If the number of faulty processes does not
exceed t0 and all correct processes propose the same
value, only that value can be decided by a correct

2

process.
• Accountability: If two correct processes decide di�erent
values, then every correct process eventually detects at
least t0 + 1 faulty processes and obtains a proof of
culpability of all detected processes.

A. Contributions

�e contributions of the paper are fourfold:
1) We present a generic and simple transformation - ABC

– that allows any Byzantine consensus protocol to
obtain accountability. Our transformation is e�cient:
it introduces an overhead of (1) only two all-to-all
communication rounds and O(n2) exchanged bits of
information in all executions with at most t0 faulty
processes (i.e., in the common case), and (2) three all-
to-all communication rounds and O(n3) exchanged bits
of information otherwise (i.e., in the degraded case).
ABC owns its simplicity and e�ciency to the obser-
vation that the composition presented in Algorithm 1
solves the Byzantine consensus problem. Indeed, if the
number of faults does not exceed t0, all processes
eventually broadcast and receive n− t0 matching con-
firm messages. However, the important mechanism il-
lustrated in Algorithm 1 is that faulty processes must
send con�icting confirm messages in order to cause dis-
agreement. Hence, whenever correct processes disagree,
they only need to exchange received confirm messages
to obtain accountability.

Algorithm 1 Intuition Behind ABC Transformation
1: function propose(v) do
2: . bc is any Byzantine consensus protocol
3: v′ ← bc.propose(v)
4: broadcast [confirm, v′]
5: wait for n− t0[confirm, v′]
6: return v′

2) We show that our ABC transformation, despite its
simplicity, su�ces for achieving optimal communica-
tion complexity in providing accountability. Namely, we
prove that any accountable Byzantine consensus incurs
cubic communication complexity in an execution in
which disagreement occurs and we demonstrate that
the lower bound is tight by applying ABC to a cubic
Byzantine consensus protocol (e.g., binary DBFT [10]).

3) We demonstrate that, when applied to an optimal
(with respect to the communication complexity) Byzan-
tine consensus protocol, ABC produces an account-
able Byzantine consensus protocol that is (1) optimal
in solving consensus whenever consensus is solvable,
and (2) optimal in obtaining accountability whenever
disagreement occurs.

4) We show that ABC is not limited to Byzantine consen-
sus. Speci�cally, we de�ne a class of easily accountable
agreement tasks and we demonstrate that generalized
ABC transformation indeed provides accountability for
such tasks. Important distributed tasks, like Byzantine

reliable [5] and Byzantine consistent [5] broadcast, fall
into the class of easily accountable agreement tasks.

B. Related Work
�e work on accountability in distributed systems was pio-

neered in [15]. �e authors presented PeerReview - a generic
accountability layer for distributed systems. Importantly,
PeerReview does not allow correct processes to irrefutably
detect faulty processes in non-synchronous environments,
i.e., faulty processes might be suspected forever, but never
detected. �erefore, PeerReview does not su�ce for account-
ability in non-synchronous Byzantine consensus protocols.
Same authors initiated the formal study of Byzantine failures
in the context of accountability [16].

Recently, with the expansion of blockchain systems, the
interest in accountable distributed protocols resurfaced once
again. Polygraph [8] - the �rst accountable Byzantine consen-
sus protocol - was introduced by Civit et al. �e Polygraph
protocol is based on DBFT [10], tolerates up to n faulty
processes in achieving accountability1 and has the commu-
nication complexity of O(n4), where n denotes the total
number of processes. Casper [3] is another system designed
around the goal of obtaining accountability. Most recently,
authors of [20] investigated the possibility of obtaining
accountability in protocols based on PBFT [6] in scenarios in
which the system is not severely corrupted. Speci�cally, they
present variants of PBFT [6] and HotStu� [22] that achieve
accountability without worsening the communication com-
plexity of the base consensus protocol; however, they allow
for accountability only if up to 2n/3 processes are faulty,
which implies that their “accountability threshold” is lower
than the one of Polygraph. �e commonality between the
discussed prior work is employing sophisticated mechanisms
for obtaining accountability. Indeed, the prior work achieves
accountability with the help of non-trivial modi�cations
applied to the base consensus protocol. In contrast, we take
a fundamentally di�erent approach that allows us to treat
the base consensus protocol as a “black box”, thus obtaining
simpler and more e�cient accountable Byzantine consensus
protocols. Table I compares accountable Byzantine consensus
protocols obtained by ABC with the existing alternatives.

a) Roadmap: We present the system model in §II. We
devote §III to our ABC transformation. Speci�cally, we �rst
introduce the novel accountable con�rmer problem (§III-A),
the crucial building block of ABC. �en, we present ABC
and prove its correctness (§III-B). In §III-C, we demonstrate
that ABC su�ces for obtaining optimal communication com-
plexity in accountable Byzantine consensus protocols. We
de�ne easily accountable agreement tasks and prove the
applicability of generalized ABC to such tasks in §IV. Finally,
we conclude the paper in §V.

II. Model
We consider a system with a set {P1, ..., Pn} of n processes

that communicate by exchanging messages through a point-
1Note that disagreement cannot occur if the number of faulty processes

exceeds n− 2. Hence, satisfying accountability in executions with n− 1 or
n faults is trivial.

3

Base Consensus
Protocol

Communication Complexity
of the Base Consensus Protocol

Communication Complexity
of the Accountable Variant

in the Common Case

Communication Complexity
of the Accountable Variant

in the Degraded Case
Accountability
�reshold Paper

PBFT [6] O(n4) O(n4) O(n4) 2n/3 [20]
HotStu� [22] O(n3) O(n3) O(n3) 2n/3 [20]

Binary DBFT [10] O(n3) O(n4) O(n4) n [8]
Multivalue DBFT [10] O(n4) O(n4) O(n4) n [8]

Any X X max(X,O(n3)) n this paper

TABLE I: Overview of the main properties of existing accountable Byzantine consensus protocols. We consider worst-case
communication complexities in all columns.

to-point network. �e system is non-synchronous: there is
no bound that always holds on message delays and relative
speed of processes. Non-synchronous systems include:
• asynchronous systems, where the bound does not exist,
and

• partially synchronous systems [13], where the bound
holds only eventually.

All our results given in the present paper assume a non-
synchronous system.
Each process is assigned its local protocol to execute. A

local protocol of a process de�nes steps to be taken by the
process during a run of the system. �e collection of all local
protocols assigned to processes is referred to as a distributed
protocol (or simply a protocol).
A subset of all processes might be faulty: these processes

may arbitrarily deviate from their local protocol, i.e., we
consider the Byzantine failure model. If a process is not
faulty, we say that the process is correct. We assume that
any message sent by a correct process to a correct process
is eventually received, i.e., we assume that communication
is reliable. Moreover, we assume that the order of message
receptions is controlled by a computationally bounded ad-
versary. An execution of the system is a single run of the
system, i.e., it is a sequence of sending and receiving events,
as well as the internal events of processes. We denote by t
the actual number of faulty processes in an execution. Finally,
we denote by P(X) the power set of a set X .

a) Cryptographic Primitives: We assume an idealized
public-key infrastructure (PKI): each process is associated with
its own public/private key pair that is used to sign messages
and verify signatures of other processes. A message m sent
by a process Pi that is properly signed with the PKI private
key of Pi is said to be properly authenticated. We denote
by mσi

a message m signed with the PKI private key of a
process Pi.
Moreover, we assume a (k, n)-threshold signature

scheme [18], where k = n − dn/3e + 1. In this scheme,
each process holds a distinct private key and there exists
a single public key. Each process Pi can use its private
key to produce a partial signature of a message m by
invoking ShareSigni(m). Moreover, a partial signature
tsignature of a message m produced by process Pi could
be veri�ed with ShareVerify i(m, tsignature). Finally, set
S = {tsignaturei} of partial signatures, where |S| = k and,
for each tsignaturei ∈ S, tsignaturei = ShareSigni(m),
could be combined into a single digital signature by invoking
Combine(S); a combined digital signature tcombined of

message m could be veri�ed with Verify(m, tcombined). In
the paper, we assume that the cost of obtaining the threshold
signature scheme [1] is amortized and, thus, negligible.
Crucially, we assume that the PKI private key of a correct

process is never revealed (irrespectively of the number of
faulty processes in the system). �erefore, if a message m
is signed with the PKI private key of a process Pi and Pi
is correct, then the message m was certainly sent by Pi.
Conversely, if the number of faulty processes exceeds n− k,
the threshold private key of a process can be revealed and
faulty processes might forge a partial signature of a correct
process.

b) Proof of Culpability: We say that a set S of properly
authenticated messages sent by a process Pi is a proof of
culpability of Pi if and only if there does not exist an
execution e of the system where (1) Pi sends all the messages
from the S set, and (2) Pi is correct. Observe that a proof
of culpability of a process contains messages signed by the
process with its PKI private key. Indeed, the PKI private
key of a correct process is never revealed (as opposed to
the threshold private key of a correct process that might
be revealed if the number of faults exceeds n − k, where
k = n−dn/3e+ 1), which implies that a proof of culpability
of a correct process can never be obtained.

c) Complexity Measure: In this work, as in many in
distributed computing, we care about the communication
complexity which is the maximum number of authenticators
sent by all correct processes combined across all executions
of the system. An authenticator is either a partial signature
or a signature.

III. ABC Transformation
�is section presentsABC, our transformation that enables

any Byzantine consensus protocol to obtain accountability. To
this end, we �rst introduce the accountable con�rmer problem
and give its implementation (§III-A). �en, we construct our
ABC transformation around accountable con�rmer (§III-B).
In §III-C, we prove that ABC allows for obtaining optimal
communication complexity in accountable Byzantine consen-
sus protocols. Finally, we conclude the section with a brief
discussion about the applicability of ABC and communica-
tion optimality it provides (§III-D).

A. Accountable Con�rmer

�e accountable con�rmer problem is a distributed prob-
lem de�ned among n processes. �e problem is associated

4

with parameter t0 = dn/3e − 1 emphasizing that some
properties are ensured only if the number of faulty processes
does not exceed t0

2. Accountable con�rmer exposes the
following interface: (1) request submit(v) - a process submits
value v; invoked at most once, (2) indication confirm(v′) -
a process con�rms value v′; triggered at most once, and (3)
indication detect(F, proof) - a process detects processes from
the set F such that proof represents a proof of culpability of
all processes that belong to F ; triggered at most once. �e
following properties are ensured:
• Terminating Convergence: If the number of faulty pro-
cesses does not exceed t0 and all correct processes
submit the same value, then that value is eventually
con�rmed by every correct process.

• Agreement: If the number of faulty processes does not
exceed t0, then no two correct processes con�rm di�er-
ent values.

• Validity: Value con�rmed by a correct process was
submi�ed by a correct process.

• Accountability: If two correct processes con�rm di�erent
values, then every correct process eventually detects at
least t0 + 1 faulty processes and obtains a proof of
culpability of all detected processes.

Terminating convergence ensures that, if (1) the number of
faults does not exceed t0, and (2) all correct processes submit
the same value, then all correct processes eventually con�rm
that value3. Agreement stipulates that no two correct pro-
cesses con�rm di�erent values if the system is not corrupted
(even if submi�ed values of correct processes di�er). Validity
ensures that any con�rmed value is submi�ed by a correct
process. Finally, accountability ensures detection of t0 + 1
faulty processes by every correct process whenever correct
processes con�rm di�erent values.

a) Implementation: We now give an implementation
of the accountable con�rmer problem (Algorithm 2). �e
implementation takes advantage of threshold signatures (see
§II) in order to obtain quadratic communication complexity
in the common case (i.e., in executions with up to t0 faulty
processes). In the degraded case (i.e., in executions with more
than t0 faulty processes), the complexity is cubic.
Each process initially broadcasts the value it submi�ed in

a submit message (line 18): the submit message contains
the value and the partial signature of the value. Moreover,
the entire message is signed with the PKI private key of
the sender. Once a process receives such a submit message,
the process (1) checks whether the message is properly
signed (line 6), (2) veri�es the partial signature (line 20),
and (3) checks whether the received value is equal to its
submi�ed value (line 20). If all of these checks pass, the
process stores the received partial signature (line 22) and
the entire message (line 23). Once a process stores partial
signatures from (at least) n−t0 processes (line 25), the process
con�rms its submi�ed value (line 27) and informs other

2Recall that t0 = dn/3e − 1 is the number of faulty processes tolerated
by the Byzantine consensus problem.

3Note that it is not guaranteed that any correct process eventually
con�rms a value if correct processes submit di�erent values (even if the
number of faulty processes does not exceed t0).

processes about its con�rmation by combining the received
partial signatures into a light certi�cate (line 28). �e role
of threshold signatures in our implementation is to allow a
light certi�cate to contain a single signature, thus obtaining
quadratic overall communication complexity if t ≤ t0.
Once a process receives two con�icting light certi�cates

(line 33), the process concludes that correct processes might
have indeed con�rmed di�erent values4. If the process has
already con�rmed its value, the process broadcasts the set of
(at least) n−t0 properly authenticated [submit, v, ∗] messages
(line 35), where v is the value con�rmed (and submi�ed)
by the process; such set of messages is a full certi�cate for
value v. Finally, once a process receives two con�icting full
certi�cates (line 40), the process obtains a proof of culpability
of (at least) t0 + 1 faulty processes (line 43), which ensures
accountability. Indeed, each full certi�cate contains n − t0
properly authenticated messages: every process whose mes-
sage is in both full certi�cates is faulty and these messages
represent a proof of its misbehavior (recall that no faulty
process ever obtains the PKI private key of a correct process).

Accountable Con�rmer - De�nitions for Algorithm 2
1) A combined digital signature tsig is a valid light certi�-
cate for value v if and only if Verify(v, tsig) = >.

2) A set S of properly authenticated [submit, v, ∗]σ∗ mes-
sages is a valid full certi�cate for value v if and only if:

a) |S| ≥ n− t0
b) Each message m is sent (i.e., signed) by a distinct

process.

3) Let tsigv be a valid light certi�cate for value v and let
tsigv′ be a valid light certi�cate for value v′. tsigv con�icts
with tsigv′ if and only if v 6= v′.

4) Let Sv be a valid full certi�cate for value v and let Sv′
be a valid full certi�cate for value v′. Sv con�icts with Sv′
if and only if v 6= v′.

5) Let (m1,m2) be a pair of properly authenticated mes-
sages sent by the same process Pi. (m1,m2) is a proof of
culpability of Pi if and only if:

a) m1 = [submit, v, share1]σi

b) m2 = [submit, v′, share2]σi

c) v 6= v′.

�eorem 1. Algorithm 2 solves the accountable con�rmer
problem with:
• O(n2) communication complexity in the common case,

and
• O(n3) communication complexity in the degraded case.

Proof. We start by proving the terminating convergence
property. Indeed, if t ≤ t0 and all correct processes submit
the same value v, then the rule at line 25 eventually triggers
at each correct process. Since each correct process con�rms

4Observe that the process is not certain that correct processes have
con�rmed di�erent values because light certi�cates could be sent by faulty
processes (possible only if t > t0).

5

Algorithm 2 Accountable Con�rmer - Code for Process Pi
1: Implements:
2: Accountable Con�rmer, instance ac

3: Uses:
4: Best-E�ort Broadcast [4], instance beb . Simple broadcast without any guarantees if the sender is faulty.
5: Rules:
6: 1) Any submit message that is not properly authenticated is discarded.
7: 2) Rules at lines 25, 33, 34 and 40 are activated at most once.
8: upon event 〈ac, Init〉 do
9: valuei ← ⊥
10: confirmed i ← false
11: fromi ← ∅
12: lightCertificatei ← ∅
13: fullCertificatei ← ∅
14: obtainedLightCertificatesi ← ∅
15: obtainedFullCertificatesi ← ∅
16: upon event 〈ac,Submit | v〉 do
17: valuei ← v
18: trigger 〈beb,Broadcast | [submit, v,ShareSigni(v)]σi〉
19: upon event 〈beb,Deliver |Pj , [submit, value, share]σj 〉 do
20: if ShareVerifyj(value, share) = > and value = valuei and Pj /∈ fromi then
21: fromi ← fromi ∪ {Pj}
22: lightCertificatei ← lightCertificatei ∪ {share}
23: fullCertificatei ← fullCertificatei ∪ {[submit, value, share]σj

}
24: end if
25: upon |fromi| ≥ n− t0 do
26: confirmed i ← true
27: trigger 〈ac,Confirm | valuei〉
28: trigger 〈beb,Broadcast | [light-certificate, valuei,Combine(lightCertificatei)]〉
29: upon event 〈beb,Deliver |Pj , [light-certificate, valuej , lightCertificatej]〉 do
30: if lightCertificatej is a valid light certi�cate then
31: obtainedLightCertificatesi ← obtainedLightCertificatesi ∪ {lightCertificatej}
32: end if
33: upon certificate1, certificate2 ∈ obtainedLightCertificatesi where certificate1 con�icts with certificate2

34: and confirmed i = true do
35: trigger 〈beb,Broadcast | [full-certificate, valuei, fullCertificatei]〉
36: upon event 〈beb,Deliver |Pj , [full-certificate, valuej , fullCertificatej]〉 do
37: if fullCertificatej is a valid full certi�cate then
38: obtainedFullCertificatesi ← obtainedFullCertificatesi ∪ {fullCertificatej}
39: end if
40: upon certificate1, certificate2 ∈ obtainedFullCertificatesi where certificate1 con�icts with certificate2 do
41: proof ← extract a proof of culpability of (at least) t0 + 1 processes from certificate1 and certificate2

42: F ← set of processes detected via proof
43: trigger 〈ac,Detect |F, proof 〉

only the value it has submi�ed (line 27), the property is
satis�ed by Algorithm 2.
We prove agreement by contradiction. Let a correct process

Pi con�rm value v, let another correct process Pj con�rm
value v′ 6= v and let t ≤ t0. Hence, Pi (resp., Pj) has received
n−t0 submit messages for value v (resp., v′). Given that t0 <
n/3, we conclude that number of processes that have sent the
submit message for both values must be greater than t0. �is
implies that there are more than t0 faulty processes, which
contradicts the fact that t ≤ t0. �erefore, the agreement

property is ensured.
Validity trivially follows from the fact that each correct

process con�rms only the value it has submi�ed (line 27).
We now prove accountability. Let a correct process Pi

con�rm value v and let another correct process Pj con�rm
value v′ 6= v. �e rule at lines 33 and 34 is eventually
triggered at each correct process that con�rms a value. Once
the rule is triggered at Pi (resp., Pj), the process broadcasts
its full certi�cate to all processes (line 35). Eventually, the rule
at line 40 is triggered at each correct process, which ensures

6

accountability. Indeed, every process whose submit messages
belong to both con�icting full certi�cates is detected; more-
over, such process is indeed faulty since no correct process
submits di�erent values, hence, no correct process ever sends
di�erent submit messages.
Finally, we prove the claimed communication complexity:
• If t ≤ t0, the communication complexity of the algo-
rithm is quadratic because (1) light certi�cates are sent
only once and they contain a single signature, and (2)
no correct process ever sends its full certi�cate.

• If t > t0, the communication complexity is cubic. Indeed,
broadcasting of a full certi�cate (that contains O(n) au-
thenticators) dominates the communication complexity
in this case. �erefore, each correct process sends O(n)
authenticators to all processes (line 35), which results in
the cubic overall communication complexity.

B. ABC: Byzantine Consensus + Accountable Con�rmer =
Accountable Byzantine Consensus

We now de�ne our ABC transformation (Algorithm 3),
the main contribution of our work. ABC is built on the
observation that any Byzantine consensus protocol paired
with accountable con�rmer solves the accountable Byzantine
consensus problem.

Algorithm 3 ABC Transformation - Code For Process Pi
1: Implements:
2: Accountable Byzantine Consensus, instance abc

3: Uses:
4: . Byzantine consensus protocol to be transformed
5: Byzantine Consensus, instance bc
6: Accountable Con�rmer, instance ac

7: upon event 〈abc,Propose | proposal〉 do
8: trigger 〈bc,Propose | proposal〉
9: upon event 〈bc,Decide | decision〉 do
10: trigger 〈ac,Submit | decision〉
11: upon event 〈ac,Confirm | confirmation〉 do
12: trigger 〈abc,Decide | confirmation〉
13: upon event 〈ac,Detect |F, proof 〉 do
14: trigger 〈abc,Detect |F, proof 〉

�e following theorem shows that Algorithm 3 solves
the accountable Byzantine consensus problem, which implies
that ABC indeed allows Byzantine consensus protocols to
obtain accountability.

�eorem 2. Algorithm 3 solves the accountable Byzantine
consensus problem.

Proof. Consider an execution where t ≤ t0. All correct
processes eventually decide the same value v from Byzan-
tine consensus at line 9 (by termination and agreement of
Byzantine consensus). Moreover, if all correct processes have
proposed the same value (line 7), then the proposed value
is indeed v (ensured by validity of Byzantine consensus).
Terminating convergence of accountable con�rmer ensures

that all correct processes eventually con�rm v (line 11) and
decide from the accountable Byzantine consensus (line 12).
Hence, Algorithm 3 satis�es termination, agreement and
validity if t ≤ t0.
If correct processes disagree (i.e., decide di�erent values at

line 12), then these processes have con�rmed di�erent values
from accountable con�rmer (line 11). �us, accountability is
ensured by Algorithm 3 since accountability is ensured by
accountable con�rmer, i.e., every correct process eventually
detects faulty processes from accountable con�rmer (line 13).
�us, accountability is satis�ed by Algorithm 3, which con-
cludes the theorem.

Finally, we note that ABC does not worsen the commu-
nication complexity of any Byzantine consensus protocol. It
is well-known that any protocol that solves the Byzantine
consensus problem incurs quadratic communication com-
plexity due to the lower bound set by Dolev et al. [12].
Given the fact that accountable con�rmer has quadratic
communication complexity in the common case (�eorem 1),
every Byzantine consensus protocol retains its complexity
a�er our transformation.

Corollary 1. Let Π be a Byzantine consensus protocol with
the communication complexity XΠ. Let ΠA be a protocol ob-
tained by applying ABC to Π. �en, ΠA solves the Byzantine
consensus problem with the communication complexity XΠ.

C. ABC Su�ces For Optimal Accountability

�is subsection proves that any distributed protocol that
solves the accountable Byzantine consensus problem incurs
cubic communication cost. Moreover, we show that the lower
bound is tight by applying ABC (§III-B) to any cubic (or sub-
cubic) Byzantine consensus protocol (Corollary 2). �erefore,
we show that our simple transformation allows Byzantine
consensus protocols to obtain accountability optimally with
respect to the communication complexity.

Let ΠA be a distributed protocol that solves the account-
able Byzantine consensus problem among n processes. If
up to t0 = dn/3e − 1 processes are faulty, ΠA ensures
termination, agreement and validity; if disagreement occurs,
each correct process eventually detects at least t0 + 1 faulty
processes (and obtains a proof of culpability of all detected
processes). Without loss of generality, let n = 3t0 + 1.

We start by separating processes that execute ΠA into
three disjoint groups: (1) group A, where |A| = t0, (2) group
B, where |B| = t0 + 1, and (3) group C , where |C| = t0.
Given that ΠA solves the Byzantine consensus problem, the
following two executions exist:
• e1: All processes from group C are faulty and silent
throughout the entire execution. Moreover, all processes
from the A ∪ B set propose value v. Since |C| = t0,
ΠA ensures that all processes from the A ∪ B set
eventually decide the same value v (because of the
validity property) by some global time t1.

• e2: All processes from group A are faulty and silent
throughout the entire execution. Moreover, all processes
from the B∪C set propose value v′ 6= v. Since |A| = t0,

7

ΠA ensures that all processes from the B ∪ C set
eventually decide the value v′ 6= v (because of the
validity property) by some global time t2.

Now, we can devise another execution e where:
• Processes from group A and processes from group
C are correct, whereas processes from group B are
faulty. Moreover, all processes from group A propose
v, whereas all processes from group C propose v′ 6= v.

• Processes from group B behave towards processes from
group A as in execution e1 and processes from group
B behave towards processes from group C as in e2.

• All messages between processes from group A and
group C are delayed until time max (t1, t2).

Execution e is indistinguishable from execution e1 to pro-
cesses from group A, which implies that all processes from
group A decide value v by time t1. Similarly, all processes
from group C decide value v′ 6= v by time t2.
Finally, we denote by partitioningExecution the pre�x of

execution e up to time max (t1, t2) (Part (a) of Figure 1 depicts
partitioningExecution). Observe that the following holds for
partitioningExecution :
• All processes from group A decide v in

partitioningExecution .
• All processes from group C decide v′ 6= v in

partitioningExecution .
• No message is exchanged between any two processes

(a ∈ A, c ∈ C).
We are now ready to prove the cubic lower bound on com-
munication complexity for solving the accountable Byzantine
consensus protocol.

�eorem 3. �e communication complexity of ΠA is Ω(n3).

Proof. �e proof is built on top of partitioningExecution we
constructed above. Namely, partitioningExecution is con-
venient for proving the cubic lower bound since the only
way for correct processes (i.e., processes from the A ∪ C
set) to ensure accountability is to exchange information
among themselves. Indeed, faulty processes (i.e., processes
from group B) appear correct to all processes from group A
(resp., group C). �erefore, no faulty process is detected in
partitioningExecution because of the fact that no communi-
cation is established between groups A and C .

Recall that each correct process needs to obtain a proof
of culpability of (at least) t0 + 1 = O(n) faulty processes. If
processes a ∈ A and c ∈ C aim to collaboratively obtain a
proof of culpability of t0 + 1 processes, both a and c need
to send (at least) t0 + 1 = Ω(n) authenticators. Moreover, a
proof of culpability of t0 +1 processes must contain (at least)
Ω(n) authenticators.
We now devise a continuation of partitioningExecution

which ensures that correct processes do send Ω(n3) authen-
ticators. We start by stating that there is a single correct
process in group A - we denote this process by a. Other pro-
cesses from group A are Byzantine and they do not send any
message to a in the continuation of partitioningExecution .
All processes from group C are correct and all processes
from group B are faulty and silent. Finally, all messages sent

between processes from group C that are not received in
partitioningExecution are delayed.
Let c1 ∈ C be a process from group C ; recall that c1

is correct. In the continuation of partitioningExecution , c1
eventually obtains a proof of culpability Σ of t0 +1 processes
by communicating with a single process a1 ∈ A. Speci�cally,
no message is received by c1 from any process that belongs
to group A before c1 obtains Σ by communicating with a1.
Importantly, c1 cannot distinguish the current execution from
one in which only correct processes are c1 and a1 (recall
that accountability must be ensured even in the scenario
with only two correct processes). However, a�er the commu-
nication with a1, process c1 cannot distinguish the current
execution from one in which (1) a1 is faulty (and just behaves
correctly towards c1), and (2) there exist other processes
from group A that are correct, disagree with c1 and need to
detect faulty processes. �erefore, c1 needs to communicate
with other processes from group A. �e aforementioned
construction of the continuation of partitioningExecution is
repeated for all processes ai ∈ A: (1) process c1 sends Ω(n)
authenticators in order to allow process ai ∈ A to obtain
Σ, and (2) before process ai obtains Σ, process c1 does not
hear from any other process from group A from which it has
not heard yet (i.e., process c1 communicates with processes
from group A in “one-by-one” fashion). Recall that process
c1 does not hear from any process from group C until c1
has “helped” each process from group A to obtain Σ (i.e.,
all processes from group C might be faulty as seen from the
perspective of c1). Finally, we conclude that c1 communicates
quadratic number of authenticators in the execution (Ω(n)
authenticators per t0 = O(n) processes).
We apply the same reasoning for correct process c2 ∈ C .

First, process c2 hears from any process from group A only
a�er c1 has already ensured that all processes from group A
obtain Σ. Moreover, any message sent by c2 to a is received
a�er c1 has already ensured that all processes from group A
obtain Σ. All t0 − 1 faulty processes from group A behave
towards c2 as if they receive the information from group
C for the �rst time. Moreover, c2 communicates with all
processes from group A in “one-by-one” fashion. Note that
a, the only correct process from group A, might not behave
towards c2 as if it hears the information from group C for
the �rst time. However, process c2 cannot be certain that
neither a nor processes from group C that communicated
with a are indeed correct; as seen from the perspective of c2,
all processes from group C that communicated with a might
be faulty (recall that c2 has not heard from other processes
from group C in the continuation of partitioningExecution
thus far), which implies that a might be faulty. Hence, c2
cannot rely on process a or processes from group C that
communicated with a to ensure that all processes from group
A obtain a proof of culpability, which results in the fact that
c2 also sends quadratic number of authenticators.

Finally, the construction mechanism we presented for c2
is repeated for all other processes from group C . �erefore,
each process from group C sends quadratic number of
authenticators. Since |C| = t0 = O(n), the total commu-
nication complexity of ΠA is Ω(n3) (Part (b) of Figure 1

8

provides a visual depiction of the execution considered in
the proof).

�e consequence of theorems 1 and 3 is that ABC allows
any cubic (or sub-cubic) Byzantine consensus protocol (e.g.,
DBFT binary consensus [10]) to obtain accountability opti-
mally (whenever disagreement occurs).

Corollary 2. Let Π be a Byzantine consensus protocol with
the communication complexity XΠ ≤ O(n3). Let ΠA be a
protocol obtained by applying ABC to Π. �en, ΠA obtains
accountability (whenever disagreement occurs) optimally, i.e.,
with the cubic communication complexity.

We conclude this subsection by stating the direct con-
sequence of corollaries 1 and 2: ABC, when applied to
an optimal (with respect to the communication complexity)
Byzantine consensus protocol, constructs a protocol that
solves consensus optimally (whenever possible) and obtains
accountability optimally (whenever disagreement occurs).

Corollary 3. Let Πopt be a Byzantine consensus protocol
with the optimal communication complexity Xopt , where
O(n2) ≤ Xopt ≤ O(n3). Let ΠA

opt be a protocol obtained
by applying ABC to Πopt . �e following holds for ΠA

opt :
1) ΠA

opt solves the Byzantine consensus problem with the
optimal communication complexity Xopt .

2) ΠA
opt obtains accountability (whenever disagreement

occurs) with the optimal communication complexity
O(n3).

D. Discussion
�e (accountable) Byzantine consensus problem (as de�ned

in §I) speci�es the validity property which ensures that, if
all correct processes propose the same value, then only that
value could be decided by a correct process. In the literature,
there are many variants of the validity property; the one
we use is traditionally called strong validity. �roughout the
rest of this subsection, we refer to “our” validity property as
strong validity. Other most notable variants of the validity
property include:
• Weak Validity: If all processes are correct and if a correct
process decides value v, then v is proposed by a (correct)
process [2], [19], [22].

• External Validity: A value decided by a correct process
satis�es the prede�ned valid predicate [5].

Importantly, the correctness of ABC does not depend on the
speci�c variant of the validity property.
However, the speci�c variant of the considered validity

property plays a role in showing that our transformation
allows for optimal solution to the accountable Byzantine
consensus problem. As seen in §III-C, our proof of the
cubic lower bound relies on the possibility of devising
partitioningExecution . Indeed, partitioningExecution could
be obtained as a consequence of the strong validity property
(see §III-C). Still, if one assumes weak or external validity,
there is no guarantee that such execution exist. �us, the
lower bound presented in §III-C does not apply to Byzantine
consensus problems that do not ensure strong validity, but
some other variant of the property.

IV. Generalized ABC Transformation
We have shown that ABC enables Byzantine consensus

protocols to obtain accountability. �is section generalizes
ourABC transformation and de�nes its applicability. Namely,
we specify a class of distributed computing problems named
easily accountable agreement tasks and we prove that gener-
alized ABC enables accountability in such tasks.
We introduce agreement tasks in §IV-A. �en, we de�ne

the class of easily accountable agreement tasks (§IV-B) and
prove the correctness of generalized ABC transformation
applied to such agreement tasks (§IV-C).

A. Agreement Tasks

Agreement tasks represent an abstraction of distributed
input-output problems executed in a Byzantine environment.
Speci�cally, each process has its input value. We assume that
“⊥” denotes the special input value of a process that speci�es
that the input value is non-existent. A process may eventually
halt; if a process halts, it produces its output value. �e “⊥”
output value of a process means that the process has not
yet halted (and produced its output value). We denote by Ii
(resp., Oi) the input (resp., output) value of process Pi. We
note that some processes might never halt if permi�ed by
the de�nition of an agreement task (we provide the formal
explanation in the rest of the subsection).
An agreement task A is parameterized with the upper

bound tA on number of faulty processes that are tolerated. In
other words, the speci�cation of an agreement task assumes
that no more than tA processes are faulty in any execution.
Any agreement task could be de�ned as a relation between

input and output values of processes. Since we assume that
processes might fail, we only care about input and output
values of correct processes. Hence, an agreement task could
be de�ned as a relation between input and output values of
correct processes.
An input con�guration of an agreement task A is νI =
{(Pi, Ii) with Pi is correct}, where |νI | ≥ n − tA: an
input con�guration consists of input values of (all and
exclusively) correct processes. Similarly, an output con-
�guration of an agreement task is denoted by νO =
{(Pi, Oi) with Pi is correct}, where |νO| ≥ n − tA: it
contains output values of correct processes. We denote by
θ(νO) = |{Oi | (Pi, Oi) ∈ νO ∧ Oi 6= ⊥}| the number of
distinct non-⊥ values in the νO output con�guration.
Finally, we de�ne an agreement task A as tuple

(I,O,∆, tA), where:
• I denotes the set of all input con�gurations of A.
• O denotes the set of all output con�gurations of A such
that, for every νO ∈ O, θ(νO) ≤ 1.

• ∆ : I → 2O , where νO ∈ ∆(νI) if and only if the
output con�guration νO ∈ O is valid given the input
con�guration νI ∈ I .

• tA ≤ dn/3e−1 denotes the maximum number of faulty
processes the task assumes.

As seen from the de�nition, correct processes that halt
always output the same value in agreement tasks. Moreover,
we de�ne agreement tasks to tolerate less than n/3 faults.

9

(a) �e partitioningExecution execution in which processes from
groups A and C disagree.

(b) �e continuation of partitioningExecution that incurs cubic
number of authenticators sent by correct processes (the communication

pa�ern of a single process from group C is depicted).

Fig. 1: Illustration of �eorem 3.

Without loss of generality, we assume that ∆(νI) 6= ∅,
for every input con�guration νI ∈ I . Moreover, for every
νO ∈ O, there exists νI ∈ I such that νO ∈ ∆(νI).
We note that some problems that are traditionally con-

sidered as “agreement” problems do not fall into our clas-
si�cation of agreement tasks. For instance, Byzantine la�ice
agreement [11] or k-set agreement [7] are not agreement
tasks per our de�nition since the number of distinct non-⊥
values that can be outpu�ed is greater than 1.

a) Solutions: We say that a distributed protocol ΠA
solves an agreement task A = (I,O,∆, tA) if and only if,
in every execution with up to tA faults, there exists (an
unknown) time TD such that νO ∈ ∆(νI), where νI ∈ I
denotes the input con�guration that consists of input values
of all correct processes and νO ∈ O denotes the output
con�guration that (1) consists of output values (potentially
⊥) of all correct processes, and (2) no correct process Pi with
Oi = ⊥ updates its output value a�er TD .
Finally, we say that a distributed protocol ΠA

A solves an
accountable agreement task A = (I,O,∆, tA) if and only if
the following holds:
• A-Solution: ΠA

A solves A.
• Accountability: If two correct processes output di�erent
values, then every correct process eventually detects at
least tA + 1 faulty processes and obtains a proof of
culpability of all detected processes.

B. Easily Accountable Agreement Tasks

Fix an agreement task A = (I,O,∆, tA). We say that A
is an easily accountable agreement task if and only if one of
the following conditions is satis�ed:
1) “All-or-None-Decidability”: �ere does not exist νO ∈ O

such that (Pi, Oi 6= ⊥) ∈ νO and (Pj , Oj = ⊥) ∈ νO ;
or

2) “Partial-Decidability”: For every νI ∈ I such that there
exists νO ∈ ∆(νI) where (Pi, Oi = v 6= ⊥) ∈ νO and
(Pj , Oj = ⊥) ∈ νO , the following holds:

for every c ∈ P({Pi | (Pi, Ii) ∈ νI}), ν′O ∈ ∆(νI),where
∀Pi ∈ c : (Pi, Oi = v) ∈ ν′O and
∀Pj ∈ {Pk | (Pk, Ik) ∈ νI} \ c : (Pj , Oj = ⊥) ∈ ν′O.

“All-or-None-Decidability” characterizes all the problems
in which either every process halts or none does. For

instance, Byzantine consensus [17] and Byzantine reliable
broadcast [4] satisfy “All-or-None-Decidability”.

On the other hand, some agreement tasks permit that some
processes halt, whereas others do not. We say that these tasks
satisfy “Partial-Decidability” if and only if it is allowed for
any subset of correct processes to halt (and output a value).
Note that “Partial-Decidability” covers the case in which no
correct process ever halts. Byzantine consistent broadcast [4]
is the single agreement task we are aware of that satis�es
“Partial-Decidability” (in the case with a Byzantine sender).
However, the signi�cance of Byzantine consistent broadcast
(e.g., for implementing cryptocurrencies [14]) motivated us
to consider the “Partial-Decidability” property.

Algorithm 4 Generalized ABC Transformation - Code For
Process Pi
1: Implements:
2: Accountable Agreement Task A, instance a−A
3: Uses:
4: . Protocol to be transformed
5: Protocol that solves agreement task A, instance ΠA
6: Accountable Con�rmer, instance ac

7: upon event 〈a−A, Input | input〉 do
8: trigger 〈ΠA, Input | input〉
9: upon event 〈ΠA,Output | output〉 do
10: trigger 〈ac,Submit | output〉
11: upon event 〈ac,Confirm | confirmation〉 do
12: trigger 〈a−A,Output | confirmation〉
13: upon event 〈ac,Detect |F, proof 〉 do
14: trigger 〈a−A,Detect |F, proof 〉

C. Correctness of Generalized ABC Transformation
We now prove the correctness of our generalized ABC

transformation (Algorithm 4). First, we show that Algo-
rithm 4 solves an easily accountable agreement problem A
if A satis�es “All-or-None-Decidability”.

Lemma 1. Let A = (I,O,∆, tA) be an easily account-
able agreement task that satis�es “All-or-None-Decidability”.
�en, Algorithm 4 solves A.

Proof. If no correct process ever outputs a value at line 9,
then the lemma trivially holds.

10

Otherwise, each correct process eventually outputs a value
at line 9. Moreover, all correct processes output the exact
same value v (since A is an agreement task). �erefore, all
correct processes submit the same value v to accountable
con�rmer (line 10). By terminating convergence of account-
able con�rmer, all correct processes eventually con�rm value
v (line 11) and output it (line 12). Once this happens, the
agreement task A is solved, which concludes the lemma.

Now, we prove that Algorithm 4 solves an easily account-
able agreement task A if A satis�es “Partial-Decidability”.

Lemma 2. Let A = (I,O,∆, tA) be an easily accountable
agreement task that satis�es “Partial-Decidability”. �en, Al-
gorithm 4 solves A.

Proof. Let νI denotes the speci�c input con�guration of A.
We consider two cases:
• �ere does not exist νO ∈ ∆(νI) such that (Pi, Oi 6=
⊥) ∈ νO and (Pj , Oj = ⊥) ∈ νO : In this case, the proof
is identical to the proof of Lemma 1.

• Otherwise: Since A is an agreement task, we conclude
that all processes that output a value at line 9 output
the same value v. �erefore, any process that outputs a
value at line 12 outputs the value v (ensured by valid-
ity of accountable con�rmer). Finally, once the system
stabilizes at time TS (the system stabilizes at time TS if
and only if no correct process Pi with Oi = ⊥ updates
its output value a�er TS), the fact that any subset of
processes could halt and that all halted processes output
v implies that Algorithm 4 solves A.

�e lemma holds since it is satis�ed in all possible cases.

Finally, we are ready to prove that Algorithm 4 solves
an accountable agreement task A, where A is an easily
accountable agreement task, which means that generalized
ABC is correct.

�eorem 4. Let A = (I,O,∆, tA) be an easily accountable
agreement task. �en, Algorithm 4 solves the accountable
agreement task A.

Proof. Algorithm 4 satis�es A-solution by lemmas 1 and 2.
Furthermore, Algorithm 4 ensures accountability because of
the fact that accountable con�rmer ensures accountability
and tA ≤ t0. �us, the theorem holds.

V. Conclusion
We presented ABC, the generic and simple transformation

that allows Byzantine consensus protocols to obtain account-
ability. Besides its simplicity, ABC is e�cient: it su�ces
for obtaining an accountable Byzantine consensus protocol
that is (1) optimal in solving consensus whenever consen-
sus is solvable, and (2) optimal in obtaining accountability
whenever disagreement occurs. Finally, we show that ABC
can easily be generalized to other agreement problems (e.g.,
Byzantine reliable broadcast, Byzantine consistent broadcast).
Future work includes (1) designing similarly simple and
e�cient transformation for problems not covered by our
generalized ABC transformation, like Byzantine la�ice and

k-set agreement problems, and (2) circumventing the cubic
lower bound using randomization techniques.

References
[1] Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., and

Tomescu, A. Reaching consensus for asynchronous distributed key
generation. In PODC ’21: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, July 26-30, 2021 (2021), A. Miller,
K. Censor-Hillel, and J. H. Korhonen, Eds., ACM, pp. 363–373.

[2] Buchman, E., Kwon, J., and Milosevic, Z. �e latest gossip on b�
consensus. arXiv preprint arXiv:1807.04938 (2018).

[3] Buterin, V., andGriffith, V. Casper the friendly �nality gadget. arXiv
preprint arXiv:1710.09437 (2017).

[4] Cachin, C., Guerraoui, R., and Rodrigues, L. Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[5] Cachin, C., Kursawe, K., Petzold, F., and Shoup, V. Secure and
e�cient asynchronous broadcast protocols. In Annual International
Cryptology Conference (2001), Springer, pp. 524–541.

[6] Castro, M., Liskov, B., et al. Practical byzantine fault tolerance. In
OSDI (1999), vol. 99, pp. 173–186.

[7] Chaudhuri, S. More choices allow more faults: Set consensus problems
in totally asynchronous systems. Information and Computation 105, 1
(1993), 132–158.

[8] Civit, P., Gilbert, S., andGramoli, V. Brief announcement: Polygraph:
Accountable byzantine agreement. In 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference (2020), H. A�iya, Ed., vol. 179 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, pp. 45:1–45:3.

[9] Civit, P., Gilbert, S., and Gramoli, V. Polygraph: Accountable byzan-
tine agreement. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS) (2021), pp. 403–413.

[10] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. Db�: E�cient
leaderless byzantine consensus and its application to blockchains. In
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA) (2018), IEEE, pp. 1–8.

[11] de Souza, L. F., Kuznetsov, P., Rieutord, T., and Tucci Piergiovanni,
S. Accountability and recon�guration: Self-healing la�ice agreement.
CoRR abs/2105.04909 (2021).

[12] Dolev, D., and Reischuk, R. Bounds on information exchange for
byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–
204.

[13] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[14] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., and Seredin-
schi, D.-A. At2: asynchronous trustworthy transfers. arXiv preprint
arXiv:1812.10844 (2018).

[15] Haeberlen, A., Kouznetsov, P., and Druschel, P. Peerreview: practi-
cal accountability for distributed systems. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles 2007, SOSP 2007,
Stevenson, Washington, USA, October 14-17, 2007 (2007), T. C. Bressoud
and M. F. Kaashoek, Eds., ACM, pp. 175–188.

[16] Haeberlen, A., and Kuznetsov, P. �e fault detection problem. In
Principles of Distributed Systems, 13th International Conference, OPODIS
2009, Nı̂mes, France, December 15-18, 2009. Proceedings (2009), T. F.
Abdelzaher, M. Raynal, and N. Santoro, Eds., vol. 5923 of Lecture Notes
in Computer Science, Springer, pp. 99–114.

[17] Lamport, L., Shostak, R., and Pease, M. �e byzantine generals
problem. In Concurrency: the Works of Leslie Lamport. 2019, pp. 203–
226.

[18] Libert, B., Joye, M., and Yung, M. Born and raised distributively: Fully
distributed non-interactive adaptively-secure threshold signatures with
short shares. �eor. Comput. Sci. 645 (2016), 1–24.

[19] Milosevic, Z., Hutle, M., and Schiper, A. Unifying byzantine consen-
sus algorithms with weak interactive consistency. In International Con-
ference On Principles Of Distributed Systems (2009), Springer, pp. 300–
314.

[20] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. BFT
protocol forensics. CoRR abs/2010.06785 (2020).

[21] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. B�
protocol forensics. In Computer and Communication Security (CCS)
(Nov 2021).

[22] Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., and Abraham,
I. HotStu�: BFT consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (2019), pp. 347–356.

