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Abstract. We propose a modification to the Lelantus private transac-
tion protocol to provide recipient privacy, improved security, and addi-
tional usability features. Our decentralized anonymous payment (DAP)
construction, Spark, enables non-interactive one-time addressing to hide
recipient addresses in transactions. The modified address format permits
flexibility in transaction visibility. Address owners can securely provide
third parties with opt-in visibility into incoming transactions or all trans-
actions associated to the address; this functionality allows for offloading
chain scanning and balance computation without delegating spend au-
thority. It is also possible to delegate expensive proving operations with-
out compromising spend authority when generating transactions. Fur-
ther, the design is compatible with straightforward linear multisignature
operations to allow mutually non-trusting parties to cooperatively re-
ceive and generate transactions associated to a multisignature address.
We prove that Spark satisfies formal DAP security properties of balance,
non-malleability, and ledger indistinguishability.

1 Introduction

Distributed digital asset protocols have seen a wealth of research since the in-
troduction of the Bitcoin transaction protocol, which enables transactions gen-
erating and consuming ledger-based outputs, and provides a limited but useful
scripting capability. However, Bitcoin-type protocols have numerous drawbacks
relating to privacy: a transaction reveals source addresses and amounts, and sub-
sequent spends reveal destination addresses. Further, data and metadata associ-
ated with transactions, like script contents, can provide undesired fingerprinting
of transactions.

More recent research has focused on mitigating or removing these limitations,
while permitting existing useful functionality like multisignature operations or
opt-in third-party transaction viewing. Designs in privacy-focused cryptocurren-
cies like Beam, Firo, Grin, Monero, and Zcash take different approaches toward
this goal, with a variety of different tradeoffs. The RingCT-based protocol cur-
rently used in Monero, for example, practically permits limited sender anonymity
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due to the space and time scaling of its underlying signature scheme [23,13].
The Sprout and Sapling protocols supported by Zcash [15] (and their currently-
deployed related updates) require trusted parameter generation to bootstrap
their circuit-based proving systems, and interact with transparent Bitcoin-style
outputs in ways that can leak information [3,5]. The Mimblewimble-based con-
struction used as the basis for Grin can leak graph information prior to a merg-
ing operation performed by miners [11]. To mitigate Mimblewimble’s linkability
issue, Beam has designed and implemented into its system an adaption of Lelan-
tus for use with the Mimblewimble protocol which enables obfuscation of the
transaction graph [25]. The Lelantus protocol currently used in Firo does not
provide recipient privacy; it supports only mints and signer-ambiguous spends
of arbitrary amounts that interact with transparent Bitcoin-style outputs, which
can leak information about recipient identity [16]. Seraphis [26] is a transaction
protocol framework of similar design being developed concurrently.

Here we introduce Spark, an iteration on the Lelantus protocol enabling
trustless private transactions which supports sender, recipient, and transaction
amount privacy. Transactions in Spark, like those in Lelantus and Monero, use
specified sender anonymity sets composed of previously-generated shielded out-
puts. A parallel proving system adapted from a construction by Groth and
Bootle et al. [14,4] (of independent interest and used in other modified forms
in Lelantus[16] and Triptych [22]) proves that a consumed output exists in the
anonymity set; amounts are encrypted and hidden algebraically in Pedersen com-
mitments, and a tag derived from a verifiable random function [9,18] prevents
consuming the same output multiple times, which in the context of a transaction
protocol would constitute a double-spend attempt.

Spark transactions support efficient verification in batches, where range and
spend proofs can take advantage of common proof elements and parameters to
lower the marginal cost of verifying each proof in such a batch; when coupled
with suitably-chosen sender anonymity sets, the verification time savings of batch
verification can be significant.

Spark enables additional useful functionality. The use of a modified Chaum-
Pedersen discrete logarithm proof, which asserts spend authority and correct
tag construction, enables efficient signing and multisignature operations similar
to those of [19,17,8] where computationally-expensive proofs may be offloaded
to more capable devices with limited trust requirements. The protocol further
adds three levels of opt-in visibility into transactions without delegating spend
authority. Incoming view keys allow a designated third party to identify trans-
actions containing outputs destined for an address, as well as the corresponding
amounts and encrypted memo data. Full view keys allow a designated third party
to additionally identify when received outputs are later spent (but without any
recipient data), which enables balance auditing and further enhances account-
ability in threshold multisignature applications where this property is desired.
Payment proofs allow a sender to assert the destination, value, and memo of a
coin while proving (in zero knowledge) that it knows the secret data used to
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produce the coin; this permits more fine-grained disclosure without revealing
view keys.

All constructions used in Spark require only public parameter generation,
ensuring that no trusted parties are required to bootstrap the protocol or ensure
soundness.

2 Cryptographic Preliminaries

Throughout this paper, we use additive notation for group operations. Let N be
the set {0, 1, 2, . . .} of non-negative integers.

2.1 Pedersen Commitment Scheme

A homomorphic commitment scheme is a construction producing one-way al-
gebraic representations of input values. The Pedersen commitment scheme is a
homomorphic commitment scheme that uses a particularly simple linear com-
bination construction. Let ppcom = (G,F, G,H) be the public parameters for
a Pedersen commitment scheme, where G is a prime-order group where the
discrete logarithm problem is hard, F is its scalar field, and G,H ∈ G are
uniformly-sampled independent generators. The commitment scheme contains
an algorithm Com : F2 → G, where Com(v, r) = vG+ rH that is homomorphic
in the sense that

Com(v1, r1) + Com(v2, r2) = Com(v1 + v2, r1 + r1)

for all such input values v1, v2 ∈ F and masks r1, r2 ∈ F. Further, the construc-
tion is perfectly hiding and computationally binding.

This definition extends naturally to a double-masked commitment scheme.
Let ppcomm = (G,F, F,G,H) be the public parameters for a double-masked
Pedersen commitment scheme, where G is a prime-order group where the discrete
logarithm problem is hard, F is its scalar field, and F,G,H ∈ G are uniformly-
sampled independent generators. The commitment scheme contains an algorithm
Comm : F3 → G, where Comm(v, r, s) = vF + rG+ sH that is homomorphic in
the sense that

Comm(v1, r1, s1) + Comm(v2, r2, s2) = Comm(v1 + v2, r1 + r2, s1 + s2)

for all such input values v1, v2 ∈ F and masks r1, r2, s1, s2 ∈ F. Further, the
construction is perfectly hiding and computationally binding.

2.2 Representation proving system

A representation proof is used to demonstrate knowledge of a discrete logarithm
in zero knowledge. Let pprep = (G,F) be the public parameters for such a con-
struction, where G is a prime-order group where the discrete logarithm problems
is hard and F is its scalar field.
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The proving system itself is a tuple of algorithms (RepProve,RepVerify) for
the following relation:

{pprep, G,X ∈ G;x ∈ F : X = xG}

We require that the proving system be complete, special honest-verifier zero
knowledge, and special sound; these definitions are standard [14].

The well-known Schnorr proving system may be used for this purpose.

2.3 Modified Chaum-Pedersen Proving System

A Chaum-Pedersen proof is used to demonstrate discrete logarithm equality in
zero knowledge. Here we require a modification to the standard proving system
that uses additional group generators and supports multiple assertions within a
single proof. Let ppchaum = (G,F, F,G,H,U) be the public parameters for such
a construction, where G is a prime-order group where the discrete logarithm
problem is hard, F is its scalar field, and F,G,H,U ∈ G are uniformly-sampled
independent generators.

The proving system is a tuple of algorithms (ChaumProve,ChaumVerify) for
the following relation:{

ppchaum, {Si, Ti}l−1
i=0 ⊂ G2; ({xi, yi, zi}l−1

i=0) ⊂ F3 :

∀i ∈ [0, l), Si = xiF + yiG+ ziH,U = xiTi + yiG}

We require that the proving system be complete, special honest-verifier zero
knowledge, and special sound.

We present an instantiation of such a proving system in Appendix A, along
with security proofs.

2.4 Parallel One-out-of-Many Proving System

We require the use of a parallel one-out-of-many proving system that shows
knowledge of openings of commitments to zero at the same index among two
sets of group elements in zero knowledge. In the context of the Spark protocol,
this will be used to mask consumed coin serial number and value commitments
for balance, ownership, and double-spend purposes. We show how to produce
such a proving system as a straightforward modification of a construction by
Groth and Kohlweiss [14] that was generalized by Bootle et al. [4], with a further
optimization from Esgin et al. [10].

Let pppar = (G,F, n,m, ppcom, ppcomm) be the public parameters for such
a construction, where G is a prime-order group where the discrete logarithm
problem is hard, F is its scalar field, n > 1 and m > 1 are integer-valued
size decomposition parameters, ppcom are the public parameters for a Pedersen
commitment construction, and ppcomm are the public parameters for a double-
masked Pedersen commitment construction.
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The proving system itself is a tuple of algorithms (ParProve,ParVerify) for
the following relation, where we let N = nm:

{
pppar, {Sk, Vk}N−1

k=0 ⊂ G2, S′, V ′ ∈ G; l ∈ N, (s, v) ∈ F :

0 ≤ l < N, Sl − S′ = Comm(0, 0, s), Vl − V ′ = Com(0, v)}

We require that the proving system be complete, special honest-verifier zero
knowledge, and special sound.

We present an instantiation of such a proving system in Appendix B.

2.5 Authenticated Encryption Scheme

We require the use of an authenticated symmetric encryption with associated
data (AEAD) scheme. In the context of the Spark protocol, this construction
is used to encrypt value, memo, and other data for use by the recipient of a
transaction.

Let ppaead be the public parameters for such a construction. The construc-
tion itself is a tuple of algorithms (AEADKeyGen,AEADEncrypt,AEADDecrypt).
Here AEADKeyGen is a key derivation function that accepts as input an ar-
bitrary string, and produces a key in the appropriate key space. The algo-
rithm AEADEncrypt accepts as input a key, associated data, and arbitrary mes-
sage string, and produces ciphertext in the appropriate space. The algorithm
AEADDecrypt accepts as input a key, associated data, and ciphertext string, and
produces a message in the appropriate space if authentication succeeds (and fails
otherwise).

Assume that such a construction is indistinguishable against adaptive chosen-
ciphertext attacks (IND-CCA2) and key-private under chosen-ciphertext attacks
(IK-CCA) in this context [1].

2.6 Symmetric Encryption Scheme

We require the use of a symmetric encryption scheme. In the context of the
Spark protocol, this construction is used to encrypt diversifier indices used to
produce public addresses.

Let ppsym be the public parameters for such a construction. The construc-
tion itself is a tuple of algorithms (SymKeyGen,SymEncrypt,SymDecrypt). Here
SymKeyGen is a key derivation function that accepts as input an arbitrary string,
and produces a key in the appropriate key space. The algorithm SymEncrypt ac-
cepts as input a key and arbitrary message string, and produces ciphertext in
the appropriate space. The algorithm SymDecrypt accepts as input a key and
ciphertext string, and produces a message in the appropriate space.

Assume that such a construction is indistinguishable against adaptive chosen-
ciphertext attacks (IND-CCA2) in this context.
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2.7 Range Proving System

We require the use of a zero-knowledge range proving system. A range prov-
ing system demonstrates that a commitment binds to a value within a specified
range. In the context of the Spark protocol, it avoids overflow that would other-
wise fool the balance definition by effectively binding to invalid negative values.
Let pprp = (G,F, vmax, ppcom) be the relevant public parameters for such a con-
struction, where ppcom are the public parameters for a Pedersen commitment
construction.

The proving system itself is a tuple of algorithms (RangeProve,RangeVerify)
for the following relation:

{pprp, C ∈ G; (v, r) ∈ F : 0 ≤ v ≤ vmax, C = Com(v, r)}

We require that the proving system be complete, special honest-verifier zero
knowledge, and special sound.

In practice, an efficient instantiation like Bulletproofs [6] or Bulletproofs+
[7] may be used to satisfy this requirement.

3 Concepts and Algorithms

We now define the main concepts and algorithms used in the Spark transaction
protocol.

Keys and addresses. Users generate keys and addresses that enable trans-
actions. A set of keys consists of a tuple

(addrin, addrfull, addrsk).

In this notation, addrin is an incoming view key used to identify received funds,
addrfull is a full view key used to identify outgoing funds and conduct certain
computationally-heavy proving operations, and addrsk is the spend key used
to generate transactions. Spark addresses are constructed in such a way that
a single set of keys can be used to construct any number of diversified public
addresses that appear indistinguishable from each other or from public addresses
produced from a different set of keys. Diversified addressing allows a recipient
to provide distinct public addresses to different senders, but scan transactions
on chain only once for identification and recovery of incoming coins destined for
any of its diversified public addresses.

Coins. A coin encodes the abstract value which is transferred through the
private transactions. Each coin is associated with:

– A secret nonce

– A recipient address

– An integer value

– A memo containing arbitrary recipient data
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The recipient address and value are hidden using commitments. The nonce, a
part of the recipient address, the value, and the memo are encrypted to the
recipient (unless the value is made public as part of a mint operation).

Private Transactions. There are two types of private transactions in Spark:

– Mint transactions. A mint transaction generates new coins of public value
destined for a recipient public address in a confidential way, either through
a consensus-enforced mining process, or by consuming transparent outputs
from a non-Spark base layer. In this transaction type, a representation proof
is included to show that the minted coin is of the expected value.

– Spend transactions. A spend transaction consumes existing coins and gen-
erates new coins destined for one or more recipient public addresses in a
confidential way. In this transaction type, a representation proof is included
to show that the hidden input and output values are equal.

Tags. Tags are used to prevent coins from being consumed in multiple trans-
actions. When generating a spend transaction, the sender produces the tag for
each consumed coin and includes it on the ledger. When verifying transactions
are valid, it suffices to ensure that tags do not appear on the ledger in any
previous transactions. Tags are uniquely bound to validly-recoverable coins, but
cannot be associated to specific coins without the corresponding full view key.

Algorithms. Spark is a decentralized anonymous payment (DAP) system
defined as the following polynomial-time algorithms:

– Setup: This algorithm produces all public parameters used by the proto-
col and its underlying components. The setup process does not require any
trusted parameter generation.

– CreateKeys: This algorithm produces keys that are used when constructing
addresses, processing coins, and spending coins.

– CreateAddress: This algorithm produces diversified public addresses used for
receiving coins.

– CreateCoin: This algorithm produces a coin of a given value that is destined
for a recipient public address.

– Mint: This algorithm produces a transaction transferring public value to a
recipient public address.

– Identify: This algorithm processes a coin to determine if it is destined for a
diversified address controlled by a recipient.

– Recover: This algorithm processes a coin to determine if it is destined for a
diversified address controlled by a recipient, and produces additional data
used for spending the coin or determining if it is already spent.

– Spend: This algorithm produces a transaction consuming existing coins and
generating new coins of hidden value to recipient public addresses.

– Verify: This algorithm determines if a given transaction is valid.

We provide detailed descriptions below, and show security of the resulting
protocol in Appendix C.
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4 Algorithm Constructions

In this section we provide detailed description of the DAP scheme algorithms.

4.1 Setup

This algorithm produces public parameters required for the protocol. The secu-
rity parameter and resulting public parameters are assumed to be available to
all other algorithms, even where not specifically noted.

Inputs: Security parameter λ, size decomposition parameters n > 1 and
m > 1, maximum value parameter vmax

Outputs: Public parameters pp

1. Sample a prime-order group G in which the discrete logarithm, decisional
Diffie-Hellman, and computational Diffie-Hellman problems are hard. Let F
be the scalar field of G.

2. Sample F,G,H,U ∈ G uniformly at random. In practice, these generators
may be chosen using a suitable cryptographic hash function on public input.

3. Sample cryptographic hash functions

Hk,HQ2
,Hser,Hval,Hser′ ,Hval′ ,Hbind : {0, 1}∗ → F

and

Hdiv : {0, 1}∗ → G

uniformly at random. In practice, these hash functions may be chosen using
domain separation of a single suitable cryptographic hash function on public
input.

4. Compute the public parameters ppcom = (G,F, G,H) of a Pedersen commit-
ment scheme.

5. Compute the public parameters ppcomm = (G,F, F,G,H) of a double-masked
Pedersen commitment scheme.

6. Compute the public parameters pprep = (G,F) of a representation proving
system.

7. Compute the public parameters ppchaum = (G,F, F,G,H,U) of the modified
Chaum-Pedersen proving system.

8. Compute the public parameters pppar = (G,F, n,m, ppcom, ppcomm) of the
parallel one-out-of-many proving system.

9. Compute the public parameters ppaead of an authenticated symmetric en-
cryption scheme.

10. Compute the public parameters ppsym of a symmetric encryption scheme.

11. Compute the public parameters pprp = (G,F, vmax, ppcom) of a range proving
system.

12. Output all generated public parameters and hash functions as pp.
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4.2 CreateKeys

We describe the construction of key types used in the protocol.
Inputs: Security parameter λ, public parameters pp
Outputs: Key tuple (addrin, addrfull, addrsk)

1. Sample s1, s2, r ∈ F uniformly at random, and let D = Comm(0, r, 0) and
P2 = Comm(s2, r, 0).

2. Set addrin = (s1, P2).
3. Set addrfull = (s1, s2, D, P2).
4. Set addrsk = (s1, s2, r).
5. Output the tuple (addrin, addrfull, addrsk).

4.3 CreateAddress

This algorithm generates a diversified public address from an incoming view
key. A given public address is privately and deterministically tied to an index
called the diversifier. Diversified public addresses share the same set of keys for
efficiency purposes, but are not linkable without non-public information.

Inputs: Security parameter λ, public parameters pp, incoming view key
addrin, diversifier i ∈ N

Outputs: Diversified address addrpk

1. Parse the incoming view key addrin = (s1, P2).
2. Compute the diversified address components:

d = SymEncrypt(SymKeyGen(s1), i)

Q1,i = s1Hdiv(d)

Q2,i = Comm(HQ2
(s1, i), 0, 0) + P2

3. Set addrpk = (d,Q1,i, Q2,i) and output this tuple.

Note that we drop the diversifier index i from subsequent notation when referring
to addresses in operations performed by entities other than the incoming view
key holder, since such users are not provided this index and cannot compute it.

4.4 CreateCoin

This algorithm generates a new coin destined for a given public address. It uses
a type bit to determine if the value is intended to be publicly visible.

Inputs: Security parameter λ, public parameters pp, destination public ad-
dress addrpk, value v ∈ [0, vmax), memo m, type bit b

Outputs: Coin Coin, nonce k

1. Parse the recipient address addrpk = (d,Q1, Q2).
2. Sample a nonce k ∈ F.
3. Compute the recovery key K = Hk(k)Hdiv(d).
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4. Compute the serial number commitment

S = Comm(Hser(k), 0, 0) +Q2.

5. Generate the value commitment C = Com(v,Hval(k)).
6. If b = 0, generate a range proof

Πrp = RangeProve(pprp, C; (v,Hval(k)).

7. If b = 0, set the recipient data r = (v, d, k,m); otherwise, set r = (d, k,m).
8. Generate an AEAD encryption key kaead = AEADKeyGen(Hk(k)Q1); en-

crypt the recipient data

r = AEADEncrypt(kaead, r, r).

9. If b = 0, output the coin Coin = (S,K,C,Πrp, r) and nonce k; otherwise,
output the coin Coin = (S,K,C, v, r) and nonce k.

The case b = 0 represents a coin with hidden value being generated in a spend
transaction, while the case b = 1 represents a coin with plaintext value being
generated in a mint transaction.

The nonce k is returned for use by other algorithms, but is not public.

4.5 Mint

This algorithm generates new coins from either a consensus-determined mining
process, or by consuming non-Spark outputs from a base layer with public value.
Note that while such implementation-specific auxiliary data may be necessary
for generating such a transaction and included, we do not specifically list this
here. Notably, the coin value used in this algorithm is assumed to be the sum of
all public input values as specified by the implementation.

Inputs: Security parameter λ, public parameters pp, destination public ad-
dress addrpk, coin value v ∈ [0, vmax), memo m

Outputs: Mint transaction txmint

1. Run CreateCoin(addrpk, v,m, 1) to obtain coin Coin = (S,K,C, v, r) and
nonce k.

2. Generate a value representation proof on the value commitment:

Πbal = RepProve(pprep, H,C − Com(v, 0);Hval(k))

3. Output the mint transaction txmint = (Coin, Πbal).

4.6 Identify

This algorithm allows a recipient (or designated entity) to determine if it controls
a coin; if so, it computes the value, memo, and diversifier from the coin (in
addition to the coin nonce). It requires the incoming view key used to produce
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diversified addresses to do so. If the coin is not destined for any diversified
address, the algorithm returns failure.

It is assumed that the recipient has run the Verify algorithm on the transac-
tion generating the coin being identified.

Inputs: Security parameter λ, public parameters pp, incoming view key
addrin, coin Coin

Outputs: Value v, memo m, diversifier i, nonce k

1. Parse the incoming view key addrin = (s1, P2).
2. If Coin was generated in a mint transaction, parse Coin = (S,K,C, v, r);

otherwise, parse Coin = (S,K,C,Πrp, r).
3. Generate an AEAD encryption key kaead = AEADKeyGen(s1K) and decrypt

r = AEADDecrypt(kaead, r, r);

if decryption fails, return failure.
4. If Coin was generated in a mint transaction, parse the recipient data r =

(d, k,m); otherwise, parse r = (v, d, k,m).
5. Check that K = Hk(k)Hdiv(d), and return failure otherwise.
6. Check that C = Com(v,Hval(k)), and return failure otherwise.
7. Decrypt the diversifier i = SymDecrypt(SymKeyGen(s1), d).
8. Check that

S = Comm(Hser(k), 0, 0) + Comm(HQ2
(s1, i), 0, 0) + P2,

and return failure otherwise.
9. Output (v,m, i, k).

4.7 Recover

This algorithm allows a recipient (or designated entity) to determine if it controls
a coin; if so, it computes the serial number, tag, value, memo, and diversifier
from the coin (in addition to the coin nonce). It requires the full view key used
to produce diversified addresses to do so. If the coin is not destined for any
diversified address, the algorithm returns failure.

It is assumed that the recipient has run the Verify algorithm on the transac-
tion generating the coin being recovered.

Inputs: Security parameter λ, public parameters pp, full view key addrfull,
coin Coin

Outputs: Serial number s, tag T , value v, memo m, diversifier i, nonce k

1. Parse the full view key addrfull = (s1, s2, D, P2).
2. Arrange the corresponding incoming view key addrin = (s1, P2).
3. Run Identify(addrin,Coin to obtain (v,m, i, k), and return failure if this op-

eration fails.
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4. Compute the serial number

s = Hser(k) +HQ2
(s1, i) + s2

and tag

T = (1/s)(U −D).

5. If T has been constructed in any other valid recovery, return failure.
6. Output (s, T, v,m, i, k).

4.8 Spend

This algorithm allows a recipient to generate a transaction that consumes coins
it controls, and generates new coins destined for arbitrary public addresses. The
process is designed to be modular; in particular, only the full view key is required
to generate the parallel one-out-of-many proof, which may be computationally
expensive. The use of spend keys is only required for the final Chaum-Pedersen
proof step, which is of lower complexity.

It is assumed that the recipient has run the Recover algorithm on all coins
that it wishes to consume in such a transaction.

Inputs:

– Security parameter λ and public parameters pp
– A full view key addrfull
– A spend key addrsk
– A set of N input coins InCoins as part of a cover set
– For each u ∈ [0, w) coin to spend, the index in InCoins, serial number, tag,

value, and nonce: (lu, su, Tu, vu, ku)
– An integer fee value f ∈ [0, vmax)
– A set of t output coin public addresses, values, and memos:

{addrpk,j , vj ,mj}t−1
j=0

Outputs: Spend transaction txspend

1. Parse the required full view key component D from addrfull.
2. Parse the spend key addrsk = (s1, s2, r).
3. Parse the cover set serial number commitments and value commitments

{(Si, Ci)}N−1
i=0 from InCoins.

4. For each u ∈ [0, w):

(a) Compute the serial number commitment offset:

S′
u = Comm(su, 0,−Hser′(su, D)) +D

(b) Compute the value commitment offset:

C ′
u = Com(vu,Hval′(su, D))
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(c) Generate a parallel one-out-of-many proof:

(Πpar)u = ParProve(pppar, {Si, Ci}N−1
i=0 , S′

u, C
′
u;

(lu,Hser′(su, D),Hval(k)−Hval′(su, D)))

5. Generate a set OutCoins = {CreateCoin(addrpk,j , vj ,mj , 0)}t−1
j=0 of output

coins.
6. Parse the output coin value commitments {Cj}t−1

j=0 from OutCoins, where

each Cj contains nonce kj .
7. Generate a representation proof for balance assertion:

Πbal = RepProve

pprep, H,

w−1∑
u=0

C ′
u −

t−1∑
j=0

Cj − Com(f, 0);

w−1∑
u=0

Hval′(su, D)−
t−1∑
j=0

Hval(kj)


8. Let µ = Hbind(InCoins,OutCoins, f, {S′

u, C
′
u, Tu, (Πpar)u, }w−1

u=0 , Πbal).
9. Generate a modified Chaum-Pedersen proof, where we additionally bind µ

to the initial transcript:

Πchaum = ChaumProve((ppchaum, µ), {S′
u, Tu}w−1

u=0 ;

({su, r,−Hser′(su, D)}w−1
u=0 ))

10. Output the tuple:

txspend = (InCoins,OutCoins, f,

{S′
u, C

′
u, Tu, (Πpar)u, Πchaum}

w−1

u=0 , Πbal)

Note that it is possible to modify the balance proof to account for other input
or output values not represented by coin value commitments, similarly to the
handling of fees. This observation can allow for the transfer of value into new
coins without the use of a mint transaction, or a transfer of value to a transparent
base layer. Such transfer functionality is likely to introduce practical risk that is
not captured by the protocol security model, and warrants thorough analysis.

4.9 Verify

This algorithm assesses the validity of a transaction.
Inputs: either a mint transaction txmint or a spend transaction txspend
Outputs: a bit that represents the validity of the transaction
If the input transaction is a mint transaction:

1. Parse the transaction txmint = (Coin, Πbal).
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2. Parse the coin value, serial commitment, and value commitment (v, S, C)
from Coin.

3. If S appears in an output coin from any previously-verified transaction,
output 0.

4. Check that v ∈ [0, vmax), and output 0 if this fails.

5. Check that RepVerify(pprep, Πbal, H,C−Com(v, 0)), and output 0 if this fails.

6. Output 1.

If the input transaction is a spend transaction:

1. Parse the transaction:

txspend = (InCoins,OutCoins, f,

{S′
u, C

′
u, Tu, (Πpar)u, Πchaum}

w−1

u=0 , Πbal)

2. Parse the cover set serial number commitments and value commitments
{(Si, Ci)}N−1

i=0 from InCoins.

3. Parse the output coin serial commitments, value commitments, and range
proofs {Sj , Cj , (Πrp)j}t−1

j=0 from OutCoins.

4. For each u ∈ [0, w) :

(a) Check that Tu does not appear again in this transaction or in any
previously-verified transaction, and output 0 if it does.

(b) Check that ParVerify(pppar, (Πpar)u, {Si, Ci}N−1
i=0 , S′

u, C
′
u), and output 0

if this fails.

5. Compute the binding hash µ as before, check that

ChaumVerify((ppchaum, µ), Πchaum, {S′
u, Tu}w−1

u=0 ),

and output 0 if this fails.

6. For each j ∈ [0, t):

(a) If Sj appears in an output coin in this transaction or in any previously-
verified transaction, output 0.

(b) Check that RangeVerify(pprp, (Πrp)j , C), and output 0 if this fails.

7. Check that f ∈ [0, vmax), and output 0 if this fails.

8. Check that

RepVerify

pprep, Πbal, H,

w−1∑
u=0

C ′
u −

t−1∑
j=0

Cj − Com(f, 0)


and output 0 if this fails.

9. Output 1.
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5 Multisignature Operations

It is often useful to permit transactions requiring multiple parties to authorize;
the parties may be mututally untrusting, and it may not be sufficient to rely on a
separate trusted third party. In this case, we require processes for distributed key
and spend transaction generation that require either a set of specified parties or a
threshold subset of a given size to complete. Specifically, we describe a method for
such signing groups to perform the CreateKeys and Spend algorithms to produce
keys and spend transactions indistinguishable from others. This method uses
techniques from [19,20,8]. We defer a complete security analysis to future work.

Throughout this section, suppose we have a group of ν players who wish to
collaboratively produce keys, and such that a specified threshold 1 ≤ t ≤ ν of
the players is required to produce an authorizing proof spending coins directed
to any address associated to the keys.

For the modified algorithms we present here, sample cryptographic hash func-
tions

Hpok,Hs1 ,Hs2 ,Hρ,HF ,HH : {0, 1}∗ → F

uniformly at random.

5.1 CreateKeys

To produce key components, each player 1 ≤ α ≤ ν engages in the following
two-round key generation process:

1. Selects a set of coefficients {aα,j}t−1
j=0 ⊂ F uniformly at random, and uses

them to define the polynomial fα(x) =
∑t−1

j=0 aα,jx
j .

2. Selects view key shares s1,α, s2,α ∈ F \ {0} uniformly at random.
3. Produces a proof of knowledge of aα,0:

(a) Chooses kα ∈ F uniformly at random.
(b) Sets Rα = kαG.
(c) Sets cα = Hpok(α, aα,0G,Rα).
(d) Sets µα = kα + aα,0cα.

4. Produces a vector of commitments Cα = {Cα,j}t−1
j=0 = {aα,jG}t−1

j=0 to its
coefficients.

5. Sends the tuple (Rα, µα, Cα, s1,α, s2,α) to all other players 1 ≤ β ̸= α ≤ ν.
6. On receipt of a tuple (Rβ , µβ , Cβ , s1,β , s2,β) from another player β:

(a) Checks that s1,β ̸= 0 and s2,β ̸= 0 and aborts otherwise.
(b) Verifies the proof of knowledge by checking that

µβG−Hpok(β,Cβ,0, Rβ)Cβ,0 = Rβ

and aborting otherwise.

7. For each 1 ≤ β ≤ ν, computes a player share r̂α,β = fα(β) and sends it to
player β.
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8. On receipt of a player share r̂β,α from another player β, verifies the share by
checking that

t−1∑
j=0

αjCβ,j = r̂β,αG

and aborting otherwise.
9. Computes its private spend key share rα =

∑ν
β=1 r̂β,α and full view key

component D =
∑ν

β=1 Cβ,0.
10. Computes the group view keys:

s1 =

ν∑
β=1

Hs1({s1,γ}νγ=1, β)s1,β

s2 =

ν∑
β=1

Hs2({s2,γ}νγ=1, β)s2,β

Using the tuple (s1, s2, D), any player can additionally compute the full view
key component P2 = Comm(s2, 0, 0) + D. Since each player holds the aggre-
gate incoming view key, it can compute public addresses using CreateAddress as
needed.

5.2 Precompute

The signing group can reduce the communication complexity of proof generation
by precomputing and sharing sets of nonce data. Each future signing operation
uses one such nonce set for each signing player, which cannot be reused. The
signing group can precompute as many nonce sets as needed for expected sign-
ing operations, and can perform this operation whenever additional nonce sets
are required. In particular, the group may wish to do so during the key genera-
tion process, where the added communication round may be less impactful than
during later proof generation.

To precompute π sets of nonce data, each player 1 ≤ α ≤ ν engages in the
following one-round process:

1. For 0 ≤ k < π, it selects dα,k, eα,k ∈ F uniformly at random and defines
Dα,k = dα,kG and Eα,k = eα,kG.

2. Generates a vector Lα such that for 0 ≤ k < π, we have Lα,k = (Dα,k, Eα,k);
that is, Lα contains π nonce pairs.

3. Sends Lα to all other players.
4. On receipt of a vector Lβ from another player β, checks that Dβ,k ̸= 0 and

Eβ,k ̸= 0 for all 0 ≤ k < π, and aborts otherwise.

5.3 Spend

Because all players possess the aggregate full view key corresponding to public
addresses, any player can use it to construct all transaction components except
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the modified Chaum-Pedersen proof. We describe now how a threshold of t
signers collaboratively produce such a proof to authorize the spending of coins,
with the following proof inputs (using our previous notation):

{ppchaum, {S′
u, Tu}w−1

u=0 ; ({su, r,−Hser′(su, D)}w−1
u=0 )}

For the sake of notation convenience, we assume that the signing players are
indexed 1 ≤ α ≤ t. Further, assume that each nonce list Lα contains k + 1 ≥ w
unused nonces. We also assume the context binding value µ has been defined.
Each such player α engages in the following one-round process:

1. Parses the next available set of nonces {(Dβ,k−u, Eβ,k−u)}w−1
u=0 in each Lβ

for 1 ≤ β ≤ t (and removes them from each list after use) to compute, for
0 ≤ u < w, the following:

ρu = Hρ({β,Dβ,k−u, Eβ,k−u}tβ=1, µ, S
′
u, Tu)

2. Sets the initial proof commitments:

A1 =

w−1∑
u=0

HF (ρu)F +HH(ρu)H +

t∑
β=1

(Dβ,k−u + ρEβ,k−u)


{A2,u}w−1

u=0 =

HF (ρu)Tu +

t∑
β=1

(Dβ,k−u + ρEβ,k−u)


3. Computes the challenge c using the proof transcript as in the original Spend

description.
4. Computes its Lagrange coefficient

λα =

t∏
β=1,β ̸=α

(
β

β − α

)

and the response share

t2,α =

w−1∑
u=0

(dα,k−u + ρueα,k−u + λαrαc
u),

and sends t2,α to the other signing players.
5. On receipt of t2,β from another player, checks that

t2,βG =

w−1∑
u=0

Dβ,k−u + ρuEβ,k−u + cuλβ

ν∑
γ=1

t−1∑
j=0

βjCγ,j


and aborts otherwise.
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6. On receipt of all t2,β values, computes the proof responses:

{t1,u}w−1
u=0 = {HF (ρu) + cusu}

t2 =

t∑
β=1

t2,β

t3 =

w−1∑
u=0

(HH(ρu)− cuHser′(su, D))

6 View Keys and Payment Proofs

The key and proof structures in Spark enable flexible and useful functionality
relating to transaction scanning, generation, and disclosure.

The incoming view key is used in Identify operations to determine when
a coin is directed to an associated public address, and to determine the coin’s
value and associated memo data. This permits two use cases of note. In one case,
blockchain scanning can be delegated to a device or service without delegating
spend authority for identified coins. In another case, wallet software in possession
of a spend key can keep this key encrypted or otherwise securely stored during
scanning operations, reducing key exposure risks.

The full view key is used in Recover operations to additionally compute the
serial number and tag for coins directed to an associated public address. These
tags can be used to identify a transaction spending the coin. Providing this key
to a third party permits identification of incoming transactions and detection of
outgoing transactions, which additionally provides balance computation, without
delegating spend authority. Users like public charities may wish to permit public
oversight of funds with this functionality. Other users may wish to provide this
functionality to an auditor or accountant for bookkeeping purposes. In the case
where an address is used in threshold multisignature operations, a cosigner may
wish to know if or when another cohort of cosigners has produced a transaction
spending funds.

Further, the full view key is used in Spend to generate one-out-of-many proofs.
Since the parallel one-out-of-many proof used in Spark can be computationally
expensive, it may be unsuitable for generation by a computationally-limited
device like a hardware wallet. Providing this key to a more powerful device
enables easy generation of this proof (and other transaction components like
range proofs), while ensuring that only the device holding the spend key can
complete the transaction by generating the simple modified Chaum-Pedersen
proof.

Payment proofs, which we introduce in Appendix D, allow for disclosure of
data for individual coins. Specifically, a payment proof asserts in zero knowledge
that the prover knows the spend key used to authorize the transaction generating
a given coin that is destined for a given public address. The proof convinces a
verifier that the holder of the incoming view key for the public address can
successfully identify the coin, as well as provides the verifier with the value
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and memo for the coin. Unlike view keys, which provide broad visibility into
transactions associated to a public address, a payment proof is limited to a
single coin and can be bound to an arbitrary proof context to prevent replay.

Payment proofs may be useful in a number of circumstances. For example,
a customer may issue a payment to a retailer, but fail to use the correct diver-
sified address or memo required by the retailer to associate the payment to the
customer’s order. By providing the retailer with a payment proof, the customer
can assert that it produced a coin destined for the retailer’s address. In another
use case, a business may wish to make public details of a donation to a charity
without publicly disclosing its full view key. By providing a payment proof, any-
one can verify that the specified coin was destined for the charity’s address and
confirm the value and memo associated to the coin.

7 Efficiency

It is instructive to examine the efficiency of spend transactions in size, generation
complexity, and verification complexity. In addition to our previous notation for
parameters, let vmax = 264, so coin values and fees can be represented by 8-byte
unsigned integers. Further, suppose coin memos are fixed at M bytes in length,
diversifiers are restricted to I bytes in length, with a 16-byte authentication tag;
this is the case for the ChaCha20-Poly1305 authenticated symmetric encryption
construction, for example [21]. Additionally, the arguments in [20] imply that
Schnorr representation proofs can use truncated hash outputs for reduced proof
size. Transaction size data for specific component instantiations is given in Table
1, where we consider the size in terms of group elements, field elements, and other
data. Note that we do not include input ambiguity set references in this data,
as this depends on implementation-specific selection and representation criteria.

Table 1. Spend transaction size by component

Component Instantiation Size (G) Size (F) Size (bytes)

f 8
Πrp Bulletproofs+ 2⌈lg(64t)⌉+ 3 3
Πbal Schnorr (short) 1.5
Πchaum this paper w + 1 w + 2

Input data (w coins)

(S′, C′) 2w
Πpar this paper (2m+ 2)w [m(n− 1) + 3]w

Output data (t coins)

(S,K,C) 3t
r ChaCha20-Poly1305 (8 +M + I + 16)t

To evaluate the verification complexity of spend transactions using these
components, we observe that verification in constructions like the parallel one-
out-of-many proving system in this paper, Bulletproof+ range proving system,
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Schnorr representation proving system, and modified Chaum-Pedersen proving
system in this paper all reduce to single linear combination evaluations in G.
Because of this, proofs can be evaluated in batches if the verifier first weights
each proof by a random value in F, such that distinct group elements need only
appear once in the resulting weighted linear combination. Notably, techniques
like that of [24] can be used to reduce the complexity of such evaluations by up
to a logarithmic factor. Suppose we wish to verify a batch of B transactions, each
of which spends w coins and generates t coins. Table 2 shows the verification
batch complexity in terms of total distinct elements of G that must be included
in a linear combination evaluation.

Table 2. Spend transaction batch verification complexity for B transactions with w
spent coins and t generated coins

Component Complexity

Parallel one-out-of-many B[w(2m+ 2) + 2nm] + 2mn+ 1
Bulletproofs+ B(t+ 2 lg(64t) + 3) + 128T + 2
Modified Chaum-Pedersen B(3w + 1) + 4
Schnorr B(w + t+ 1) + 2

We further comment that the parallel one-out-of-many proving system pre-
sented in this paper may be further optimized in verification. Because corre-
sponding elements of the {Si} and {Vi} input sets are weighted identically in
the protocol verification equations, it may be more efficient (depending on imple-
mentation) to combine these elements with a sufficient weight prior to applying
the proof-specific weighting identified above for batch verification. Initial tests
using a variable-time curve library suggest significant reductions in verification
time with this technique.
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and sends these values to the verifier.

2. The verifier selects a random challenge c ∈ F and sends it to the prover.

3. The prover computes responses

{t1,i}l−1
i=0 = {ri + ci+1xi}l−1

i=0

t2 =

l−1∑
i=0

(si + ci+1yi)

t3 = t+

l−1∑
i=0

ci+1zi

and sends them to the verifier.

4. The verifier accepts the proof if and only if

A1 +

l−1∑
i=0

ci+1Si =

l−1∑
i=0

t1,iF + t2G+ t3H

and
l−1∑
i=0

(A2,i + ci+1U) =

l−1∑
i=0

t1,iTi + t2G.

This interactive protocol can be made non-interactive using the Fiat-Shamir
technique, which replaces the verifier challenge c with the output of a crypto-
graphic hash function on transcript inputs. We now prove that the protocol is
complete, special sound, and special honest-verifier zero knowledge.

Proof. Completeness of the protocol follows by inspection.

We now show it is (l+1)-special sound by building a polynomial-time ex-
tractor as follows. Given a statement and initial proof transcript (A1, {A2i}l−1

i=0),
the verifier sends l + 1 distinct challenge values c0, c1, . . . , cl and receives the
corresponding transcript values ({t01,i}

l−1
i=0, t

0
2, t

0
3), . . . , ({tl1,i}

l−1
i=0, t

l
2, t

l
3) from the

prover. From the first verification equation, we build the following linear system:

A1 +

l−1∑
i=0

ci+1
0 Si =

l−1∑
i=0

t01,iF + t02G+ t03H

A1 +

l−1∑
i=0

ci+1
1 Si =

l−1∑
i=0

t11,iF + t12G+ t13H

...

A1 +

l−1∑
i=0

ci+1
l Si =

l−1∑
i=0

tl1,iF + tl2G+ tl3H
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Subtracting the first equation from the rest, we obtain another linear system:

l−1∑
i=0

(ci+1
1 − ci+1

0 )Si =

l−1∑
i=0

(t11,i − t01,i)F + (t12 − t02)G+ (t13 − t03)H

l−1∑
i=0

(ci+1
2 − ci+1

0 )Si =

l−1∑
i=0

(t21,i − t01,i)F + (t22 − t02)G+ (t23 − t03)H

...

l−1∑
i=0

(ci+1
l − ci+1

0 )Si =

l−1∑
i=0

(tl1,i − t01,i)F + (tl2 − t02)G+ (tl3 − t03)H

(1)

Finally, we let the set {xi}l−1
i=0 ⊂ F be defined through the following linear

system:

l−1∑
i=0

(ci+1
1 − ci+1

0 )xi =

l−1∑
i=0

(t11,i − t01i)

l−1∑
i=0

(ci+1
2 − ci+1

0 )xi =

l−1∑
i=0

(t21,i − t01i)

...

l−1∑
i=0

(ci+1
l − ci+1

0 )xi =

l−1∑
i=0

(tl1,i − t01i)

Since each challenge is uniformly distributed at random, the square coefficient
matrix corresponding to the system has nonzero determinant except with neg-
ligible probability, and hence the system is solvable for all {xi}l−1

i=0. Further, we
can form similar linear systems to define corresponding {yi}l−1

i=0 and {zi}l−1
i=0 such

that we let Si = xiF + yiG+ ziH and the equations in system 1 hold.
It remains to show that these solutions are unique; that is, that no Si has

a different representation with coefficients x′
i, y

′
i, z

′
i consistent with successful

verification. If this were the case, then we must have the polynomial equation∑l−1
i=0 c

i+1(xi−x′
i) = 0 in c; however, since c is selected randomly by the verifier,

all coefficients of the polynomial must (with overwhelming probability) be zero
by the Schwartz-Zippel lemma. Hence each xi = x′

i (and by the same reasoning,
yi = y′i and zi = z′i), and the extracted witness set is unique.

To show the protocol is special honest-verifier zero knowledge, we construct
a valid simulator producing transcripts identically distributed to those of valid
proofs. The simulator chooses a random challenge c ∈ F and random values
{t1,i}l−1

i=0, t2, t3 ∈ F. It also randomly selects {A2,i}l−1
i=1 ∈ G, and sets

A1 =

l−1∑
i=0

t1,iF + t2G+ t3H −
l−1∑
i=0

ci+1Si

24



and

A2,0 =

l−1∑
i=0

t1,iTi + t2G−
l−1∑
i=1

A2,i −
l−1∑
i=0

ci+1U.

The forms of A1 and A2,0 are defined such that the verification equations hold,
and therefore such a transcript will be accepted by an honest verifier. Observe
that all transcript elements in a valid proof are independently distributed uni-
formly at random if the generators F,G,H,U are independent, as are transcript
elements produced by the simulator.

This completes the proof.

B Parallel One-out-of-Many Proving System

The proving system itself is a tuple of algorithms (ParProve,ParVerify) for the
following relation, where we let N = nm:{

pppar, {Sk, Vk}N−1
i=0 ⊂ G2, S′, V ′ ∈ G; l ∈ N, (s, v) ∈ F :

0 ≤ l < N, Sl − S′ = Comm(0, 0, s), Vl − V ′ = Com(0, v)}

Let δ(i, j) : N2 → F be the Kronecker delta function. For any integers k and
j such that 0 ≤ k < N and 0 ≤ j < m, let kj denote the j digit of the n-ary
decomposition of k. Let MatrixCom : Fmn × Fmn × F → G be an additively-
homomorphic matrix commitment construction that commits to the entries of
two matrices, and is perfectly hiding and computationally binding.

The protocol proceeds as follows, where we use some of the notation of [16,22]:

1. The prover selects
rA, rB , {aj,i}m−1,n−1

j=0,i=1 ∈ F
uniformly at random, and, for each j ∈ [0,m), sets

aj,0 = −
n−1∑
i=1

aj,i.

2. The prover computes the following:

A ≡ MatrixCom
(
{aj,i}m−1,n−1

j,i=0 , {−a2j,i}
m−1,n−1
j,i=0 , rA

)
B ≡ MatrixCom

(
{δ(lj , i)}m−1,n−1

j,i=0 , {aj,i(1− 2δ(lj , i))}m−1,n−1
j,i=0 , rB

)
3. For each j ∈ [0,m), the prover selects ρj , ρ

′
j ∈ F uniformly at random, and

computes the following:

Xj ≡
N−1∑
k=0

pk,j(Sk − S′) + Comm(0, 0, ρj)

X ′
j ≡

N−1∑
k=0

pk,j(Vk − V ′) + Com(0, ρ′j)
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Here each pk,j is defined such that for all k ∈ [0, N) we have

m−1∏
j=0

(
δ(lj , kj)x+ aj,kj

)
= δ(l, k)xm +

m−1∑
j=0

pk,jx
j

for indeterminate x.
4. The prover sends A,B, {Xj , X

′
j}

m−1
j=0 to the verifier.

5. The verifier selects x ∈ F uniformly at random and sends it to the prover.
6. For each j ∈ [0,m) and i ∈ [1, n), the prover computes fj,i ≡ δ(lj , i)x+ aj,i

and the following values:

z ≡ rA + xrB

zS ≡ sxm −
m−1∑
j=0

ρjx
j

zV ≡ vxm −
m−1∑
j=0

ρ′jx
j

7. The prover sends {fj,i}m−1,n−1
j=0,i=1 , z, zS , zV to the verifier.

8. For each j ∈ [0,m), the verifier sets fj,0 ≡ x −
∑n−1

i=1 fj,i and accepts the
proof if and only if

A+ xB = MatrixCom
(
{fj,i}m−1,n−1

j,i=0 , {fj,i(x− fj,i)}m−1,n−1
j,i=0 , z

)
and

N−1∑
k=0

m−1∏
j=0

fj,kj

 (Sk − S′)−
m−1∑
j=0

xjXj = Comm(0, 0, zS)

N−1∑
k=0

m−1∏
j=0

fj,kj

 (Vk − V ′)−
m−1∑
j=0

xjX ′
j = Com(0, zV )

are true.

This interactive protocol can be made non-interactive using the Fiat-Shamir
technique, which replaces the verifier challenge x with the output of a crypto-
graphic hash function on transcript inputs.

We now prove that the above protocol is complete, special sound, and honest-
verifier zero knowledge. The proofs proceed similarly to those of [4,16,22].

Proof. Completeness of the protocol follows by straightforward algebra.
To show that the protocol is special honest-verifier zero knowledge, we con-

struct a simulator that, when provided a valid statement and random verifier
challenge x, produces a proof transcript identically distributed to that of a real
proof.
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To produce our simulated transcript on random x, the simulator samples

B, {Xj , X
′
j}m−1

j=1 ∈ G

and
z, zS , zV , {fj,i}m−1,n−1

j=0,i=1 ∈ F
uniformly at random. It defines

fj,0 = x−
n−1∑
i=1

fj,i

for each j ∈ [0,m), and sets

A = MatrixCom
(
{fj,i}m−1,n−1

j,i=0 , {fj,i(x− fj,i)}m−1,n−1
j,i=0 , z

)
− xB

as well. It uses the final two verification equations to compute X0 and X ′
0:

X0 =

N−1∑
k=0

m−1∏
j=0

fj,kj

 (Sk − S′)−
m−1∑
j=1

xjXj − Comm(0, 0, zS)

X ′
0 =

N−1∑
k=0

m−1∏
j=0

fj,kj

 (Vk − V ′)−
m−1∑
j=1

xjX ′
j − Com(0, zV )

Since the challenge x is sampled uniformly at random by construction, the
commitment constructions are perfectly hiding, {ρj , ρ′j}

m−1
j=0 are sampled uni-

formly at random in a real proof, and the decisional Diffie-Hellman problem is
hard in G, all proof elements in both the simulation and real proofs are either
independently uniformly distributed at random or uniquely determined by other
transcript elements. Hence the protocol is special honest-verifier zero knowledge.

We now show that the protocol is (m + 1)-special sound for m > 1. That
is, we construct an extractor that, when presented with a set of m + 1 distinct
challenges and corresponding responses to the same initial statement, produces
a set of extracted witness elements consistent with the statement. Consider a
collection ofm+1 distinct challenges {xι}mι=0, and corresponding valid responses:{

{f (ι)
j,i }

m−1,n−1
j=0,i=1 , z(ι), z

(ι)
S , z

(ι)
V

}m

ι=0

Successful verification on indices ι ∈ {0, 1} gives the following:

(x(0) − x(1))B = MatrixCom
(
{f (0)

j,i − f
(1)
j,i }

m−1,n−1
j,i=0 ,

{f (0)
j,i (x

(0) − f
(0)
j,i )− f

(1)
j,i (x

(1) − f
(1)
j,i )}

m−1,n−1
j,i=0 , z(0) − z(1)

)
For all j ∈ [0,m) and i ∈ [0, n), if we let

bj,i =
f
(0)
j,i − f

(1)
j,i

x(0) − x(1)
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and

cj,i =
f
(0)
j,i (x

(0) − f
(0)
j,i )− f

(1)
j,i (x

(1) − f
(1)
j,i )

x(0) − x(1)

and

rB =
z(0) − z(1)

x(0) − x(1)
,

then we can express

B = MatrixCom
(
{bj,i}m−1,n−1

j,i=0 , {cj,i}m−1,n−1
j,i=0 , rB

)
.

If for j ∈ [0,m) and i ∈ [0, n) we further define

aj,i = f
(0)
j,i − x(0)bi,j

and
di,j = f

(0)
j,i (x

(0) − f
(0)
j,i )− x(0)cj,i

and rA = z(0) − x(0)rB , then we can express

A = MatrixCom
(
{aj,i}m−1,n−1

j,i=0 , {dj,i}m−1,n−1
j,i=0 , rA

)
as well. Observe that since the commitment construction is computationally

binding, for all ι ∈ [0,m] we must have bj,ix
(ι) + aj,i = f

(ι)
j,i and cj,ix

(ι) + dj,i =

f
(ι)
j,i (x

(ι) − f
(ι)
j,i ) for j ∈ [0,m) and i ∈ [0, n). This implies in particular that for

ι ∈ {0, 1, 2}, j ∈ [0,m), i ∈ [0, n) we have

cj,ix
(ι) + dj,i = bj,i(1− bj,i)x

(ι)2 + (1− 2bj,i)aj,ix
(ι) − a2j,i

and hence bj,i(1− bj,i) = 0, so each bj,i ∈ {0, 1}.
We also have, by construction, that

x(ι) =

n−1∑
i=0

f
(ι)
j,i = x(ι)

n−1∑
i=0

bj,i +

n−1∑
i=0

aj,i

for ι ∈ [0,m], j ∈ [0,m), so
∑n−1

i=0 bj,i = 1. This means we can extract l ∈ [0, N)
such that each bj,i = δ(lj , i).

Now if we define for each k ∈ [0, N) the polynomial

pk(x) =

m−1∏
j=0

[
δ(lj , kj)x+ aj,kj

]
in x, we have deg(pk) = m if and only if k = l. Verification can therefore be
expressed as

x(ι)m(Sl − S′)−
m−1∑
j=0

x(ι)jXj = Comm(0, 0, z
(ι)
S )

x(ι)m(Vl − V ′)−
m−1∑
j=0

x(ι)jX
′
j = Com(0, 0, z

(ι)
V )
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for ι ∈ [0,m], where the sets {Xj}m−1
j=0 and {X ′

j}m−1
j=0 can be uniquely de-

rived. Consider a Vandermonde matrix V such that the ι row is the vector
(1, x(ι), . . . , x(ι)m), and note since each challenge is distinct, we have det(V ) ̸= 0
with high probability, so the rows of V span Fm+1. This means we can find
{θι}mι=0 such that the equation

m∑
ι=0

θιx
(ι)j = δ(j,m)

holds for j ∈ [0,m].
We can therefore build a linear combination of each of the two above verifi-

cation equations, taking advantage of the Vandermonde-derived weights:

Sl − S′ =
m∑
ι=0

θιx
(ι)m(Sl − S′) +

m∑
ι=0

θι

(
x(ι)jXj

)
= Comm

(
0, 0,

m∑
ι=0

θιz
(ι)
S

)

Vl − V ′ =

m∑
ι=0

θιx
(ι)m(Sl − S′) +

m∑
ι=0

θι

(
x(ι)jX

′
j

)
= Com

(
0,

m∑
ι=0

θιz
(ι)
V

)

These equations provide the remaining extractions

s =

m∑
ι=0

θιz
(ι)
S

and

v =

m∑
ι=0

θιz
(ι)
V

such that Sl −S′ = Comm(0, 0, s) and Vl −V ′ = Com(0, v), which completes the
proof.

C Payment System Security

Zerocash [2] established a robust security framework for decentralized anony-
mous payment (DAP) scheme security that captures a realistic threat model
with powerful adversaries who are permitted to add malicious coins into trans-
actions’ input ambiguity sets, control the choice of transaction inputs, and pro-
duce arbitrary transactions to add to a ledger. Here we formally prove Spark’s
security within a related (but modified) security model; proofs follow somewhat
similarly to that of [2].

The DAP construction is a tuple of algorithms

(Setup,CreateKeys,CreateAddress,CreateCoin,

Mint, Identify,Recover,Spend,Verify)
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that is secure if it satisfies properties of completeness, balance, non-malleability,
and ledger indistinguishability.

Each security property is formalized as a game between a polynomial-time
adversary A and a challenger C, where in each game the behavior of honest
parties is simulated via an oracle ODAP. The oracle ODAP maintains a ledger L of
transactions and provides an interface for executing the CreateAddress, Mint, and
Spend algorithms. To simulate behavior from honest parties, A passes a query
to C, which makes sanity checks and then proxies the queries to ODAP, returning
the responses to A as needed. For CreateAddress queries, the oracle first runs
the CreateKeys protocol algorithm, then calls CreateAddress using the resulting
incoming view key and a randomly-selected diversifier index, and finally returns
the public address addrpk. For Mint queries, the adversary specifies the value,
memo, and destination public address for the transaction, and the resulting
transaction is produced and returned if the inputs are semantically valid. For
Spend queries, the adversary specifies the input coins to be consumed, as well as
the values, memos, and destination public addresses for the transaction, and the
resulting transaction is produced after coin recovery if the inputs are semantically
valid, all consumed coins are validly controlled by an address produced by the
oracle, and all consumed coins are unspent according to the ledger state. The
oracle ODAP also provides an Insert query that allows the adversary to insert
arbitrary and potentially malicious txmint or txspend transactions into the ledger
L, provided they are semantically valid and pass verification by the oracle.

For each security property, we say the DAP satisfies the property if the
adversary can win the corresponding game with only negligible probability.

We now state a lemma that will be useful when examining the security of
our construction.

Lemma 1. Given a ledger, two otherwise valid spend transactions reveal the
same tag only if there exist coins with serial commitments S1, S2 produced in
previous valid transactions and an extractor that produces representations of the
following form:

S1 = Comm(x, y, β1)

S2 = Comm(x, y, β2)

Proof. Let T be the tag common to the two spend transactions. Each transaction
has a valid modified Chaum-Pedersen proof. One transaction’s valid proof yields
statement values T, S′

1 ∈ G and witness values x1, y1, z1 ∈ F such that U =
x1T + y1G and S′

1 = x1F + y1G+ z1H. Similarly, the other transaction’s valid
proof yields statement values T, S′

2 ∈ G and witness values x2, y2, z2 ∈ F such
that U = x2T +y2G and S′

2 = x2F +y2G+z2H. Since U and G are independent
and Pedersen commitments are computationally binding, we must have (except
with negligible probability) that x1 = x2 = x and y1 = y2 = y. Hence S′

1 =
xF + yG+ z1H and S′

2 = xF + yG+ z2H.
Each transaction further has a valid parallel one-of-many proof. From the

first transaction’s proof we have (by index extraction referencing an element
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of its input cover set) a group element S1 ∈ G and scalar α1 ∈ F such that
S1−S′

1 = α1H. For the second proof, we similarly have S2 ∈ G and α2 ∈ F such
that S2 − S′

2 = α2H.
This means in particular that

S1 = xF + yG+ (z1 + α1)H

and
S2 = xF + yG+ (z2 + α2)H

by combining these results. Since transaction validity requires all input cover set
elements to exist as outputs of previous valid transactions, we have extracted
representations of the desired form by setting β1 = z1 + α1 and β2 = z2 + α2.

Observe that the result also holds for duplicate tags revealed in the same (oth-
erwise valid) transaction, with almost identical reasoning.

C.1 Completeness

Completeness requires that no bounded adversary can prevent an honest user
from spending a coin. Specifically, this means that if the user is able to identify
a coin using its incoming view key, then it can recover the coin using its full view
key and generate a valid spend transaction consuming the coin using its spend
key.

To see why this property holds, note that by construction, if an honest user
is unable to produce a spend transaction for a coin with serial commitment
S that it has recovered, the corresponding tag T must appear in a previous
valid transaction. The identified coin S must be a commitment of the form
S = Comm(s, r, 0) for serial number s and spend key component r according to
the Identify definition. By Lemma 1, any previous transaction revealing T must
consume a coin with serial commitment S = Comm(s, r, z) for z ̸= 0 (since coins
must have unique serial commitments). Since the user cannot have identified
S because z is nonzero, it did not generate the transaction consuming S, a
contradiction since that transaction implies knowledge of the spend key r by
extraction.

C.2 Balance

Balance requires that no bounded adversary A can control more coins than are
minted or spent to it. It is formalized by a BAL game. The adversaryA adaptively
interacts with C and the oracle with queries, and at the end of the interaction
outputs a set of coins AdvCoins. Letting ADDR be set of all addresses of honest
users generated by CreateAddress queries, A wins the game if

vunspent + vA→ADDR > vmint + vADDR→A,

which implies that the total value the adversary can spend or has spent already
is greater than the value it has minted or received. Here:
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– vunspent is the total value of unspent coins in AdvCoins;
– vmint is the total value minted by A to itself through Mint or Insert queries;
– vADDR−→A is the total value of coins received by A from addresses in ADDR;

and
– vA−→ADDR is the total value of coins sent by the adversary to the addresses

in ADDR.

We say a DAP scheme Π is BAL-secure if the adversary A wins the game BAL
only with negligible probability:

Pr[BAL(Π,A, λ) = 1] ≤ negl(λ)

Assume the challenger maintains an extra augmented ledger (L, a⃗) where
each ai contains secret data from transaction txi in L. In that case where txi
was produced by a query from A to the challenger C, ai contains all secret
data used by C to produce the transaction. If instead txi was produced by a
direct Insert query from A, ai consists of all extracted witness data from proofs
contained in the transaction. The resulting augmented ledger (L, a⃗) is balanced
if the following conditions are true:

1. Each valid spend transaction txspend,k in (L, a⃗) consumes distinct coins, and
each consumed coin is the output of a valid txmint,i or txspend,j transaction
for some i < k or j < k. This requirement implies that all transactions spend
only valid coins, and that no coin is spent more than once within the same
valid transaction.

2. No two valid spend transactions in (L, a⃗) consume the same coin. This implies
no coin is spent through two different transactions. Together with the first
requirement, this implies that each coin is spent at most once.

3. For each (txspend, a) in (L, a⃗) consuming input coins with value commitments
{Cu}w−1

u=0 , for each u ∈ [0, w):
– If Cu is the output of a valid mint transaction with augmented ledger

witness a′, then the value of Cu contained in a′ is the same as the cor-
responding value contained in a for the value commitment offset C ′

u.
– If Cu is the output of a valid spend transaction with augmented ledger

witness a′, then the value of Cu contained in a′ is the same as the cor-
responding value contained in a for the value commitment offset C ′

u.
This implies that values are maintained between transactions.

4. For each (txspend, a) in (L, a⃗) with fee f that consumes input coins with
value commitment offsets {C ′

u}w−1
u=0 and generates coins with value commit-

ments {Cj}t−1
j=0, a contains values {vu}w−1

u=0 and {vj}t−1
j=0 corresponding to the

commitments such that the balance equation

w−1∑
u=0

vu =

t−1∑
j=0

vj + f

holds. For each (txmint, a) in (L, a⃗) with public value v that generates a
coin with value commitment C, a contains a value v′ corresponding to the
commitment such that v = v′. This implies that values cannot be created
arbitrarily.
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5. For each txspend in (L, a⃗) inserted by A through an Insert query, each con-
sumed coin in txspend is not recoverable by any address in ADDR. This
implies that the adversary cannot generate a transaction consuming coins it
does not control.

If these five conditions hold, then A did not spend or control more money than
was previously minted or spent to it, and the inequality

vmint + vADDR→A ≤ vunspent + vA→ADDR

holds. We now prove that Spark is BAL-secure under this definition.

Proof. By way of contradiction, assume the adversary A interacts with C leading
to a non-balanced augmented ledger (L, a⃗) with non-negligible probability; then
at least one of the five conditions described above is violated with non-negligible
probability:

A violates Condition 1: Suppose that the probability A wins the game
violating Condition 1 is non-negligible. Each txspend generated by a non-Insert
oracle query satisfies this condition already, so there must exist a transaction
(txspend, a) in (L, a⃗) inserted by A.

Suppose there exist inputs u1, u2 ∈ [0, w) of txspend that consume the same
coin with serial commitment S. Validity of the modified Chaum-Pedersen proof
Πchaum gives extracted openings S′

u1
= su1

F + ru1
G+ yu1

H and S′
u2

= su2
F +

ru2G + yu2H and tag representations such that U = su1Tu1 + ru1G and U =
su2Tu2 + ru2G. Because transaction validity implies Tu1 ̸= Tu2 , we must have
(su1

, ru1
) ̸= (su2

, ru2
). Validity of the corresponding parallel one-out-of-many

proofs (Πpar)u1
and (Πpar)u2

yields indices (corresponding to the same input set
group element S) and discrete logarithm extractions such that S − S′

u1
= xu1

H
and S − S′

u2
= xu2H. This means

S = Comm(su1
, ru1

, xu1
+ yu1

) = Comm(su2
, ru2

, xu2
+ yu2

),

a contradiction since the commitment scheme is computationally binding.
The second possibility for violation of the condition is that the transaction

txspend consumes a coin that is not generated in any previous valid transaction.
This follows immediately using similar reasoning as above, since transaction
validity asserts knowledge of an opening to a commitment contained in the input
set, all of which must have been previously generated in valid transactions by
definition.

A violates Condition 2: Suppose that the probability A wins the game
violating Condition 2 is non-negligible. This means the augmented ledger (L, a⃗)
contains two valid spend transactions consuming the same coin but producing
distinct tags. Similarly to the previous argument, this implies distinct openings
of the coin serial number commitment, which is a contradiction.

A violates Condition 3: Suppose that the probability A wins the game
violating Condition 3 is non-negligible. Let C be the value commitment of the
coin consumed by an input of txspend and generated in a previous transaction
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(of either type) in (L, a⃗). Since the generating transaction is valid, we have
an extracted opening C = vG + aH from either the balance proof (in a mint
transasction) or the range proof (in a spend transaction). Validity of the corre-
sponding parallel one-out-of-many proof in txspend gives an extracted discrete
logarithm C − C ′ = xH, where C ′ is the input’s value commitment offset. But
this immediately gives C ′ = vG+(a−x)H, a contradiction since the commitment
scheme is binding.

A violates Condition 4: Suppose that the probability A wins the game
violating Condition 4 is non-negligible. If the augmented ledger (L, a⃗) contains
a spend transaction that violates the balance equation, this immediately implies
a break in the commitment binding property since the corresponding balance
proof Πbal is valid, which is a contradiction. If instead the augmented ledger
(L, a⃗) contains a mint transaction that violates the balance requirement, this
immediately implies a break in the commitment binding property since the cor-
responding balance proof Πbal is valid, again a contradiction.

A violates Condition 5: Suppose that the probability A wins the game
violating Condition 5 is non-negligible. That is, A produces a spend transaction
txspend by an Insert question that is valid on the augmented ledger (L, a⃗) and
consumes a coin corresponding to a coin serial number commitment S that can
be recovered by a public address (d,Q1, Q2) ∈ ADDR.

Validity of the Chaum-Pedersen proof corresponding to txspend yields an
extracted representation S′ = s′F + r′G + yH. Validity of the corresponding
parallel one-of-many proof gives a serial number commitment S and extraction
such that S − S′ = xH, so S = s′F + r′G+ (x+ y)H.

Now let (s1, s2, r) be the spend key corresponding to the address (d,Q1, Q2).
Since txspend consumes a coin recoverable by this address, a serial number com-
mitment for the recovered coin is

S = Hser(k)F +Q2

= (Hser(k) +HQ2
(s1, i) + s2)F + rG

for nonce k and some diversifier index i.
Since the commitment scheme is binding, we must therefore have r′ = r,

which is a contradiction since A cannot extract this discrete logarithm from the
public address.

This completes the proof.

C.3 Transaction Non-Malleability

This property requires that no bounded adversary can substantively alter a
valid transaction. In particular, non-malleability prevents malicious adversaries
from modifying honest users’ transactions by altering data or redirecting the
outputs of a valid transaction before the transaction is added to the ledger. Since
non-malleability of mint transactions is offloaded to authorizations relating to
consensus rules or base-layer operations, we need only consider the case of spend
transactions.

34



This property is formalized by an experiment TRNM, in which a bounded
adversary A adaptively interacts with the oracle ODAP, and then outputs a spend
transaction tx′. If we let T denote the set of all transactions produced by Spend
queries to ODAP, and L denote the final ledger, A wins the game if there exists
tx ∈ T such that:

– tx′ ̸= tx;

– tx′ reveals a tag also revealed by tx; and

– both tx′ and tx are valid transactions with respect to the ledger L′ containing
all transactions preceding tx on L.

We say a DAP scheme Π is TRNM-secure if the adversary A wins the game
TRNM only with negligible probability:

Pr[TRNM(Π,A, λ) = 1] ≤ negl(λ)

Let T be the set of all txspend transactions generated by the ODAP in response
to Spend queries. Since these transactions are generated by these oracle queries,
A does not learn any secret data used to produce these transactions.

Proof. Assume that the adversary A wins the game with non-negligible proba-
bility. That is, A produces a transaction tx′ revealing a tag T also revealed in a
transaction tx. Without loss of generality, assume each transaction consumes a
single coin.

Observe that a valid spend binds all transaction elements except for the
modified Chaum-Pedersen proof into each such proof via Hbind and the proof
transcripts. Therefore, in order to produce valid tx′ ̸= tx, we consider two cases:

– the modified Chaum-Pedersen proofs are identical, but tx′ and tx differ in
another element of the transaction structures; or

– the modified Chaum-Pedersen proof in tx′ is distinct from the proof in tx.

In the first case, at least one input to the binding hash Hbind used to initialize
the modified Chaum-Pedersen transcripts must differ between the proofs. Be-
cause we model this hash function as a random oracle, the outputs differ except
with negligible probability, a contradiction since the resulting proof structures
must be identical.

In the second case, because the tag revealed in both tx’ and tx is identical,
Lemma 1 gives extractions of the form (s, r, y) and (s, r, 0) respectively. Further,
the coin S = Comm(s, r, 0) consumed in tx was generated such that r is a spend
key component for an address (d,Q1, Q2) not controlled by A. Since A does not
control this address, it cannot produce r without extracting from S or from any
set of corresponding diversified address components {Q2,i}i produced from the
same spend key. However, each Q2,i is produced linearly against Q2 and querying
HQ2

with unique (s1, i) input, a contradiction.
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C.4 Ledger Indistinguishability

This property implies that no bounded adversary A received any information
from the ledger except what is already publicly revealed, even if it can influence
valid ledger operations by honest users.

Ledger indistinguishability is formalized through an experiment LIND be-
tween a bounded adversary A and a challenger C, which terminates with a binary
output b′ by A. At the beginning of the experiment, C samples Setup(1λ) → pp
and sends the parameters to A; next it samples a random bit b ∈ {0, 1} and
initializes two separate DAP oracles ODAP

0 and ODAP
1 , each with its own separate

ledger and internal state. At each consecutive step of the experiment:

1. C provides A two ledgers (Lleft = Lb, Lright = L1−b) where Lb and L1−b are
the current ledgers of the oracles ODAP

b and ODAP
1−b respectively.

2. A sends to C two queries Q,Q′ of the same type (one of CreateAddress, Mint,
Spend, or Insert).
– If the query type is Insert or Mint, C forwards Q to Lb and Q′ to L1−b,

permitting A to insert its own transactions or mint new coins to Lleft

and Lright.
– For all queries of type CreateAddress or Spend, C first checks if the two

queries Q and Q′ are publicly consistent, and then forwards Q to ODAP
0

and Q′ to ODAP
1 . It receives the two oracle answers (a0, a1), but returns

(ab, a1−b) to A.

As the adversary does not know the bit b and the mapping between (Lleft, Lright)
and (L0, L1), it cannot learn whether it affects the behavior of honest parties on
(L0, L1) or on (L1, L0). At the end of the experiment, A sends C a bit b′ ∈ {0, 1}.
The challenger outputs 1 if b = b′, and 0 otherwise.

We require the queries Q and Q′ be publicly consistent as follows If the query
type of Q and Q′ is CreateAddress, both oracles generate the same address. If
the query type of Q and Q′ is Mint, the minted values of both queries must be
equal. If the query type of Q and Q′ is Spend, then:

– Both Q and Q′ must be well-formed and valid, so the referenced input coins
must have been generated in a previous transaction on the ledger and be
unspent. Further, the transaction must balance.

– The number of spent coins and output coins must be the same in Q and Q′.
– If a consumed coin in Q references a coin in L0 posted by A through an

Insert query, then the corresponding index in Q′ must also reference a coin
in L1 posted by A through an Insert query and the values of these two coins
must be equal as well (and vice versa for Q′).

– If an output coin referenced by Q does not reference a recipient address in the
oracle ADDR list (and therefore is controlled by A), then the corresponding
value must equal that of the corresponding coin referenced by Q at the same
index (and vice versa for Q′).

We say a DAP scheme Π is LIND-secure if A wins the game LIND only
probability at most negligibly better than chance:

Pr[LIND(Π,A, λ) = 1]− 1

2
≤ negl(λ)
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Proof. In order to prove that A’s advantage in the LIND experiment is negligible,
we first consider a simulation experiment Dsim, in which A interacts with C as
in the LIND experiment, but with modifications.

The simulation experiment Dsim: Since the parallel one-out-of-many,
modified Chaum-Pedersen, representation, and range proving systems are all
special honest-verifier zero knowledge, we can take advantage of the simulator
for each. Given input statements and verifier challenges, each proving system’s
simulator produces transcripts indistinguishable from honest proofs. Addition-
ally, we now define the behavior of the full simulator.

The simulation. The simulation Dsim works as follows. As in the original
experiment, C samples the system parameters Setup(1λ) → pp and a random bit
b, and initializes DAP oracles ODAP

0 and ODAP
1 . Then Dsim proceeds in steps. At

each step, it provides A with ledgers Lleft = Lb and Lright = L1−b,after which
A sends two publicly-consistent queries (Q,Q′) of the same type. Recall that
the queries Q and Q′ are consistent with respect to public data and information
related to the addresses controlled by A. Depending on the query type, the
challenger acts as follows:

– Answering Insert queries: The challenger proceeds as in the original LIND
experiment.

– Answering CreateAddress queries: In this case the challenger replaces the
public address components (d,Q1, Q2) with random strings of the appropri-
ate lengths, producing addrpk that is returned to A.

– Answering Mint queries: The challenger does the following to answer Q and
Q′ separately:
1. If A provided a public address addrpk not generated by the challenger,

it produces a coin using CreateCoin as usual.
2. Otherwise, it simulates coin generation:

(a) Samples a recovery key K uniformly at random.
(b) Samples a serial number commitment S uniformly at random.
(c) Samples a value commitment C uniformly at random.
(d) Samples a random input used to produce an AEAD encryption key

AEADKeyGen → kenc.
(e) Simulates the recipient data encryption by selecting random r of the

proper length, and encrypting it to produce

AEADEncrypt(kenc, r, r) → r.

3. Simulates the balance proof Πbal on the statement (C − Com(v, 0)).
4. Assembles the transaction and adds it to the ledger as appropriate.

– Answering Spend queries: The challenger does the following to answer Q and
Q′ separately, where w is the number of consumed coins and t the number
of generated coins specified by A as part of its queries:
1. Parse the input cover set serial number commitments and value commit-

ments as InCoins = {(Si, Ci)}N−1
i=0 .

2. For each u ∈ [0, w), where lu represents the index of the consumed coin
in InCoins:
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(a) Samples a tag Tu uniformly at random.
(b) Samples a serial number commitment offset S′

u and value commit-
ment offset C ′

u uniformly at random.
(c) Simulates a parallel one-out-of-many proof (Πpar)u on the statement

({Si, Ci}N−1
i=0 , S′

u, C
′
u).

3. For each j ∈ [0, t):
(a) If A provided a public address addrpk not generated by the chal-

lenger, it produces a coin using CreateCoin as usual.
(b) Otherwise, it simulates coin generation:

i. Samples a recovery key Kj uniformly at random.
ii. Samples a serial number commitment Sj uniformly at random.
iii. Samples a value commitment Cj uniformly at random.
iv. Samples a random input used to produce an AEAD encryption

key AEADKeyGen → kenc.
v. Simulates the recipient data encryption by selecting random r of

the proper length, and encrypting it to produce

AEADEncrypt(kenc, r, r) → r.

vi. Simulates a range proof (Πrp)j on the statement (Cj).
4. Simulates the balance proof Πbal on the statementw−1∑

u=0

C ′
u −

t−1∑
j=0

Cj − Com(f, 0)

 .

5. For each u ∈ [0, w), computes the binding hash µ as defined and sim-
ulates the modified Chaum-Pedersen proof Πchaum on the statement
({S′

u, Tu}w−1
u=0 ).

6. Assembles the transaction and adds it to the ledger as appropriate.

For experiments defined below, we define AdvD as the advantage of A in
some experiment D over the original LIND game. By definition, all answers sent

to A in Dsim are computed independently of the bit b, so AdvD
sim

= 0. We
will prove that A’s advantage in the real experiment Dreal is at most negligibly
different than A’s advantage in Dsim. To show this, we construct intermediate
experiments in which C performs a specific modification of Dreal against A.

Experiment D1: This experiment modifies Dreal by simulating all one-
out-of-many proofs, range proofs, representation proofs, and modified Chaum-
Pedersen proof. As all these protocols are special honest-verifier zero knowledge,
the simulated proofs are indistinguishable from the real proofs generated in Dreal.
Hence AdvD1 = 0.

Experiment D2: This experiment modifies D1 by replacing all encrypted re-
cipient data in transactions with challenger-generated recipient public addresses
with encryptions of random values of appropriate lengths under keys chosen uni-
formly at random, and by replacing recovery keys with uniformly random values.
Since the underlying authenticated symmetric encryption scheme is IND-CCA
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and IK-CCA secure and we assume the decisional Diffie-Hellman problem is
hard, the adversarial advantage in distinguishing ledger output in the D2 ex-
periment is negligibly different from its advantage in the D1 experiment. Hence
|AdvD2 − AdvD1 | is negligible.

Experiment Dsim: The Dsim experiment is formally defined above. In par-
ticular, it differs fromD2 by replacing consumed coin tags, serial number commit-
ment offset, and value commitment offsets with uniformly random values; and by
replacing output coin serial number and value commitments with random values.
In previous experiments (including Dreal), tags are generated using a pseudoran-
dom function [9], and the other given values are generated as commitments with
masks derived from hash functions modeled as independent random oracles, so
the adversarial advantage in distinguishing ledger output in Dsim is negligibly

different from its advantage in the D2 experiment. Hence |AdvD
sim

− AdvD2 | is
negligible.

This shows that the adversary has only negligible advantage in the real LIND
game over the simulation, where it can do no better than chance, which completes
the proof.

D Payment Proofs

We describe now the informal security properties required for a payment proving
system, describe such a construction, and (informally) prove that our construc-
tion meets the requirements.

The security requirements of a payment proving system are as follows:

1. The proof cannot be replayed in a different context.
2. The prover asserts that it knows secret data sufficient to authorize the trans-

action originally generating a specified coin.
3. The verifier can obtain and confirm the value and memo associated to the

coin.
4. The holder of an incoming view key corresponding to a specified public

address can successfully identify the coin.
5. A computationally-bound adversary cannot produce valid proofs for the

same coin claiming distinct public addresses.

We note that coin identification relies on the assumption that the claimed
recipient address was generated using the protocol-specified method from an
incoming view key.

D.1 Protocol

A prover wishes to produce a payment proof on a given coin Coin with nonce k
to a claimed destination public address (d,Q1, Q2). Suppose that tx is the spend
transaction on a ledger that produced Coin. The prover does the following:

1. Parses the serial number commitment, value commitment, and recovery key
from Coin: (S,C,K)
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2. Generates a modified Chaum-Pedersen proof Πauth using the same inputs
and proving system as the proof Πchaum from tx, but also binding the tuple
(Coin, k, d,Q1, Q2), any context relevant to the payment proof instance, and
a globally-fixed payment proof domain separator to the proof context.

3. Assembles the payment proof: Πpay = (Coin, k, d,Q1, Q2, Πauth)

To verify a payment proof on a coin, the verifier does the following:

1. Parses the payment proof: Πpay = (Coin, k, d,Q1, Q2, Πauth)
2. Parses public data from Coin: (S,C,K, r)
3. Verifies that tx is a valid transacton on its own ledger that originally gener-

ated Coin.
4. Verifies the proof Πauth using the data from tx and the additional binding

tuple (Coin, k, d,Q1, Q2), and aborts if verification fails.
5. Generates an AEAD key kaead = AEADKeyGen(Hk(k)Q1) and decrypts the

recipient data:

(v, d′, k′,m) = AEADDecrypt(kaead, r, r)

If decryption fails, or if k′ ̸= k, or if d′ ̸= d, aborts.
6. Checks that K = Hk(k)Hdiv(d), and aborts otherwise.
7. Checks that S = Comm(Hser(k), 0, 0) +Q2, and aborts otherwise.
8. Checks that C = Com(v,Hval(k)), and aborts otherwise.

D.2 Security

We now describe why this construction meets our security requirements.
Requirement 1. To show that a payment proof cannot be replayed in an-

other context, note that since proof context is bound to the transcript of Πauth

along with the statement and coin data, the overall payment proof Πpay cannot
be successfully replayed against any other context.

Requirement 2. To show that successful verification of a payment proof
asserts the prover knows secret data sufficient to authorize the transaction that
generated the coin, we simply note that the modified Chaum-Pedersen proof
Πchaum from tx uses the same statement input as Πauth (albeit with different
proof context).

Requirement 3. To show that the verifier can obtain the correct value and
memo for the coin on successful verification of a payment proof, we simply note
that successful AEAD decryption provides the unique values for the value and
memo originally used to produce the coin, and that the decrypted value uniquely
corresponds to the coin’s value commitment since the commitment scheme is
binding and successful verification implies an opening to this commitment.

Requirement 4. We now show that if the given address (d,Q1, Q2) was
generated from an incoming view key (s1, P2), this key can identify Coin if a
payment proof verifies. Successful verification of a payment proof implies in
particular that K = Hk(k)Hdiv(d) and that AEAD decryption succeeds on a

40



key generated using Hk(k)Q1. This implies that the incoming view holder uses
the AEAD key

s1K = s1Hk(k)Hdiv(d)

= Hk(k)Q1

and hence decryption succeeds. The remaining steps for identification follow from
corresponding steps taken during payment proof verification.

Requirement 5. We now show that a computationally-bound adversary
cannot produce valid proofs against the same coin for distinct destination ad-
dresses. Suppose such an adversary produces for the same coin valid payment
proofs

Πpay = (Coin, k, d,Q1, Q2, Πauth)

and
Π ′

pay = (Coin, k′, d′, Q′
1, Q

′
2, Π

′
auth)

on addresses (d,Q1, Q2) ̸= (d′, Q′
1, Q

′
2). Note that Coin = (S,C,K, r) must be

identical in both proofs by definition.
Successful AEAD decryption of r on both proofs implies in particular that

d = d′ and k = k′ except with negligible probability. Further, the AEAD keys
derived in both proofs must be equal (again except with negligible probability),
so Hk(k)Q1 = Hk(k

′)Q′
1 requires Q1 = Q′

1. Finally, since

S = Comm(Hser(k), 0, 0) +Q2

= Comm(Hser(k
′), 0, 0) +Q′

2

it also follows that Q2 = Q′
2, a contradiction.
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