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Abstract. Secure multi-party computation (MPC) allows a set of n parties to jointly compute
an arbitrary computation over their private inputs. Two main variants have been considered in
the literature according to the underlying communication model. Synchronous MPC protocols
proceed in rounds, and rely on the fact that the communication network provides strong delivery
guarantees within each round. Asynchronous MPC protocols achieve security guarantees even when
the network delay is arbitrary.
While the problem of MPC has largely been studied in both variants with respect to both feasibility
and efficiency results, there is still a substantial gap when it comes to communication complexity of
adaptively secure protocols. Concretely, while adaptively secure synchronous MPC protocols with
linear communication are known for a long time, the best asynchronous protocol communicates
O(n4κ) bits per multiplication.
In this paper, we make progress towards closing this gap by providing two protocols. First, we
present an adaptively secure asynchronous protocol with optimal resilience t < n/3 and O(n2κ)
bits of communication per multiplication, improving over the state of the art protocols in this
setting by a quadratic factor in the number of parties. The protocol has cryptographic security and
follows the CDN approach [Eurocrypt’01], based on additive threshold homomorphic encryption.
Second, we show an optimization of the above protocol that tolerates up to t < (1 − ϵ)n/3 corrup-
tions and communicates O(n · poly(κ)) bits per multiplication under stronger assumptions.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function of their
private inputs, in such a way that the parties’ inputs remain secret, and the computed output
is correct. This must hold even when an adversary corrupts a subset of the parties.

The problem of MPC [Yao82, GMW87, BGW88, CCD88, RB89] has been studied mostly in
the so-called synchronous network model, where parties have access to synchronized clocks and
there is an upper bound on the network communication delay. Although this model is theoret-
ically interesting and may be justified in some settings, they fail to model real-world networks
such as the Internet, which is inherently asynchronous. This gave rise to the asynchronous net-
work model, where protocols do not rely on any timing assumptions, and messages sent can be
arbitrarily delayed.

Asynchronous MPC protocols have received much less attention than their synchronous
counterpart, partly because of their inherent difficulty and the weaker achievable security guar-
antees. In particular, one cannot distinguish between a dishonest party not sending a message,
or an honest party that sent a message that was delayed by the adversary. As a result, parties
have to make progress in the protocol after seeing messages from n− t parties. This also implies
that in this setting it is impossible to consider the inputs of all honest parties, i.e, the inputs of
up to t (potentially honest) parties may be ignored. Moreover, one can show that the optimal
achievable corruption tolerance in the asynchronous setting is t < n/3, even with setup, in both
the cryptographic and information-theoretic setting; and perfect security is possible if and only
if t < n/4.

⋆ This work was partially carried out while the author was at ETH Zurich.



1.1 Communication Complexity of Asynchronous MPC protocols

The communication complexity in MPC has been the subject of a huge line of works. While the
most communication-efficient synchronous MPC solutions without the usage of multiplicative-
homomorphic encryption primitives achieve O(nκ) bits per multiplication gate (see e.g. [HN06,
DI06, BTH08, BFO12, GLS19, GSZ20]), asynchronous MPC protocols still feature higher com-
munication complexities, most notably when it comes to protocols with adaptive security.

In the adaptive security setting, all protocols are information-theoretic. The first protocol
was provided by Ben-Or et al. [BKR94], and later improved by Patra et al. [PCR10, PCR08]
to O(n5κ) per multiplication, and by Choudhury [Cho20] to O(n4κ) per multiplication.

When considering static security, the most efficient protocols with optimal resilience t < n/3
provide cryptographic security. The works by Hirt et al. [HNP05, HNP08] make use of an
additive homomorphic encryption, with the protocol in [HNP08] being slightly more efficient
and communicating O(n2κ) per multiplication. The work by Choudhury and Patra [CP15]
achieves O(nκ) per multiplication at the cost of using somewhat-homomorphic encryption, and
the work by Cohen [Coh16] achieves a communication independent of the circuit size using
fully-homomorphic encryption.

Other efficient solutions have been provided for the t < n/4 setting. Notable works include
the protocols in [SR00, PSR02, CHP13, PCR15], achieving information-theoretic security.

1.2 Contributions

In this paper, we consider the problem of MPC over an asynchronous network with adaptive
security. Our contributions can be summarized as follows.

First, we present an adaptively secure protocol with optimal resilience t < n/3 and O(n2κ)
bits of communication per multiplication, improving over the state of the art adaptively-secure
protocols by a quadratic factor in the number of parties. The protocol follows the CDN approach
[CDN01, DN03] and makes use of an additive threshold homomorphic encryption.

Second, we show a protocol that tolerates up to t < (1−ϵ)n/3 corruptions and communicates
a O(n · poly(κ)) number of bits per multiplication, assuming secure erasures, non-interactive
zero-knowledge proofs, and access to a network providing atomic send1 (see e.g. [BKLZL20]),
which guarantees that parties are able to atomically send messages to all other parties, and also
guarantees that messages sent by honest parties cannot be retrieved back, even if the sender
becomes corrupted. Note that a linear protocol with optimal resilience, and without the usage
of any type of multiplicative-homomorphic encryption is not known even for the case of static
security.

2 Preliminaries

We consider protocols among a set of n parties P1, . . . , Pn. We denote by κ the security param-
eter. Our protocols are proven in the model by Canetti [Can00a]. A summary can be found in
appendix A.

2.1 Communication and Adversary Model

Parties have access to a network of point-to-point asynchronous and secure channels (for details
of the asynchronous network model, we refer the reader to [CR98]). Asynchronous channels guar-
antee eventual delivery, meaning that messages sent are eventually delivered, and the scheduling
of the messages is done by the adversary. In particular, the adversary can arbitrarily (but only
finitely) delay all messages sent and deliver them out of order.

1 This model has also been referred to as weakly-adaptive corruption, or simply adaptive corruption model in
the literature.
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We consider a computationally bounded adversary that can actively corrupt up to t parties
in an adaptive manner. That is, as long as the adversary has corrupted strictly less than t
parties, it can corrupt any party at any point in time based on the information during the
protocol execution.

2.2 Zero-Knowledge Proofs of Knowledge

In this subsection, we introduce the notion of patchable zero-knowledge proof of knowledge. For
more details, see [DN03].

Definition 1. A 2-party patchable zero-knowledge proof of knowledge for a predicate Q is a
protocol between a prover P and a verifier V where P has as public input an instance z and as
secret input a witness x and V has public input the instance z and output in {accept, reject}.
The protocol needs to satisfy the following properties.

– Completeness: On common input z, if P ’s secret input x is such that Q(x, z) = true, then
V accepts.

– Soundness: There exists an efficient program K (the knowledge extractor) that can interact
with any prover P ′ such that if P ′ succeeds to make V accept with non-negligible probability,
then K can extract a witness x′ from its interaction with P ′ such that Q(x′, z) = true.

– Zero-Knowledge: For any efficient verifier V ′, there exists an efficient simulator S such that
for any common input z, S can simulate a run of the protocol with V ′ in a computationally
indistinguishable way.

– Patchability: Let z be an arbitrary instance and let t̃ be any step of the protocol. Let T V ′

t̃
(z)

be the communication of the simulator (which might not know a witness to z) with a verifier
V ′ in the simulated run of the protocol until step t̃. We require that there exists an efficient
algorithm Pat that takes as input z, t̃, T V ′

t̃
(z) and a witness x such that Q(x, z) = true

and outputs randomness ν which satisfies the following: If an honest prover P executes
the protocol with V ′ up to step t̃ on instance z and witness x using randomness ν, then
the communication is identical to T V ′

t̃
(z). Furthermore, the randomness ν looks uniformly

random to V ′.

All zero-knowledge proofs used in our protocol will be 2-party patchable zero-knowledge proofs
of knowledge with constant communication complexity.

2.3 Universally Composable Commitments

In this section, we briefly introduce universally composable commitment schemes. A detailed
exposition is given in Appendix B.

A commitment scheme allows a party P to commit to a value v towards other parties without
revealing information about v. If at any point in time, P wants to reveal v, then it can open
the given commitment to v.

A universally composable (UC) commitment scheme is a commitment scheme in the UC
framework [Can00b]. Like usual commitment schemes, a UC commitment scheme is hiding and
binding. Additionally, it is extractable (that is, the simulator can extract the value a corrupted
party committed to from its commitment) and equivocable (that is, the simulator can simulate
a commitment on behalf of an honest party towards a corrupted party without knowing the
committed value and later open the given commitment to any value it wants). Since in our
model we consider an adaptive adversary, we require that when the adversary corrupts a party,
the simulator can patch the internal state of that party.

For all the commitments in our protocol, we will use a UC adaptively secure (equivocable
and extractable) commitment scheme with constant communication complexity.
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2.4 Threshold Homomorphic Encryption

We briefly discuss threshold homomorphic encryption schemes. For a detailed exposition, see
Appendix C.

A threshold homomorphic encryption scheme is a tuple (KeyGen, Enc, DecShare, Comb) of
four algorithms, where

– KeyGen is a probabilistic algorithm that takes a security parameter κ, the number of par-
ties n and the threshold parameter t as input and outputs a uniformly distributed tuple
(pk, sk1, . . . , skn) where the public key pk is given to all parties and the secret key ski is
given to Pi for all i ∈ {1, . . . , n}.

– Enc is an efficient probabilistic non-interactive algorithm that takes as input a public key
pk and a message m from the message ring Rpk and outputs an encryption Encpk(m) of m.
If we want to specify the randomness r used in the execution of the algorithm, we write
Encpk(m, r).
The Enc algorithm is a homomorphism in the sense that there exists an efficient algorithm
that takes as input the public key pk and two encryptions Encpk(m1, r1) and Encpk(m2, r2)
and outputs Encpk(m1, r1) ⊕pk Encpk(m2, r2) := Encpk(m1 +pk m2, r1 �pk r2), where +pk and
�pk are the group laws in the message space and the randomness space. Similarly, there
exists an efficient algorithm that takes as input the public key pk, an encryption Encpk(m, r)
and a message c ∈ Rpk and outputs a uniquely determined encryption c ⊙pk Encpk(m, r) of
c ·pk m.

– DecShare is an efficient algorithm that takes as input an index i ∈ {1, . . . , n}, the public key
pk, the secret key ski and a ciphertext c and outputs a decryption share ci and a proof that
ci is correctly computed using i, pk, c and ski.

– Comb is an efficient algorithm that takes as input the public key pk, a ciphertext c and pairs
(ci, pi) where each pair has a different index. The algorithm outputs a message m or fails.

The scheme is correct (that is, if at least t + 1 distinct decryption shares with valid proofs for
the same ciphertext c are given as input to the Comb algorithm, then it outputs the message
underlying c) and threshold semantically secure (that is, without the help of at least one honest
party, an adversary corrupting at most t parties cannot extract information about the plaintext
underlying a given ciphertext). Furthermore, there exists a patchable zero-knowledge proof
of plaintext knowledge and a patchable zero-knowledge proof of correct multiplication with
constant communication complexity.

From the definition of threshold homomorphic encryption scheme, it follows that there is an
algorithm Blind that takes an encryption of a message m and the public key pk as input and
outputs a uniformly random encryption of m (without knowing m). For details, see Proposition
2 in the appendix.

For convenience, we introduce the following functions which we will often use. For an en-
cryption M in the ciphertext space, we define

EncM
pk : (x, r) → EncM

pk(x, r) = (x ⊙pk M) ⊕pk Encpk(0pk, r).

We call a preimage of the function EncM
pk of an encryption y a “preimage of y under (pk, M)”.

If we do not specify the second argument r of the function, then we implicitly mean that r is
uniformly random in the randomness space. So (by the homomorphic property of the encryption
scheme and by a similar reasoning as in the proof of Proposition 2) EncM

pk(x) is a uniformly
random encryption of x ·pk m, where m is the value encrypted by M .

In our protocol, we need the following additional properties of our encryption scheme.

– Proof of compatible commitment: Let QM
pk((m′, r1, r2), (y, B)) be the binary predicate that

is 1 if and only if y = EncM
pk(m′, r1) and (m′, r2) is the opening information for the commit-

ment B. We require that for every public key pk and every encryption M , there exists an
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efficient patchable zero-knowledge proof of knowledge for QM
pk with constant communication

complexity.
– Lagrange arguments: There exist n distinct elements {α1, . . . , αn} ∈ (Rpk\{0pk})n such that

for all (i, j) ∈ {1, . . . , n}2 we have that αi − αj is invertible in Rpk. For these elements, the
usual Lagrange polynomials and Lagrange coefficients are well-defined.

– Patch: Given a public key pk, two encryptions E = Encpk(0pk, r0) and K = Encpk(0pk, rK) of
0pk under key pk and the randomness r0 and rK used, there exists an efficient probabilistic
algorithm that given any constant x computes randomness rE such that E = (x ⊙pk K) ⊕pk

Encpk(0pk, rE) = EncK
pk(x, rE).

Remark 1. By the homomorphic property of the encryption scheme, in the Patch property we
have that x ⊙pk K = Encpk(0pk, r0 �pk rE). Since multiplication by a constant is a deterministic
algorithm and since the randomness space is a group, this implies that if r0 is uniformly random
from the randomness space, then rE is also uniformly random from the randomness space.

In Appendix C.1, we present the Paillier threshold encryption scheme which is an instanti-
ation of the definition above.

3 Subprotocols

This section is devoted to the exposition of the subprotocols that will be used in the MPC
protocol.

3.1 Agreement protocols
Often, parties need to have agreement on certain values or objects. To achieve this, we use the
following primitives in our protocol.
1. Reliable consensus: Reliable consensus is a weaker version of asynchronous consensus. It

allows the parties to agree on one of the honest parties’ input values without requiring
termination if there is no pre-agreement. More precisely, every party has a (private) input
and the primitive guarantees that if all honest parties have the same input, then all honest
parties output their inputs. Furthermore, if an honest parties outputs a value, then all other
honest parties output the same value. In Appendix D.1, we discuss the definition of reliable
consensus in more details and we present a reliable consensus protocol RC for t < n/3. Our
protocol is based on Bracha’s A-Cast protocol [Bra84] and has communication complexity
O(n2κ), where κ is the size any party’s secret input.

2. A-Cast: A-Cast is an asynchronous broadcast protocol. It allows the parties to agree on the
value of a sender without requiring termination if the sender is corrupted. More precisely,
the sender has a private input and the primitive guarantees that if the sender is honest, then
all parties output the senders message. Furthermore, if an honest party outputs a value, then
all other honest parties output the same value. In Appendix D.2, we discuss the definition
of reliable broadcast in more details and we present Bracha’s reliable broadcast protocol
RBC for t < n/3 [Bra84]. The protocol has communication complexity O(n2κ), where κ is
the size of the sender’s input. Moreover, we show that if the sender has computationally
indistinguishably distributed input, then the RBC protocol maintains computational indis-
tinguishability.
In some situations, we use Patra’s Multi-Valued-Acast protocol [Pat11] which is a reliable
broadcast protocol that achieves linear communication complexity for messages of size
Ω(n3 log(n)). This allows us to improve the efficiency of our MPC protocol.

3. Byzantine agreement: Byzantine agreement allows the parties to agree on one of the honest
parties’ input values. It guarantees that all honest parties terminate and that they output the
same value. For t < n/3, Byzantine agreement can be achieved with expected communication
complexity O(n2). For a more detailed definition of Byzantine agreement, see Appendix D.3.
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4. ACS: The agreement on a common subset (ACS) primitive allows the parties to agree on a
set of at least n − t parties that satisfy a certain property (a so-called ACS property). In
Appendix D.4, we discuss the definitions of ACS property and ACS protocol in more details
and we present an ACS protocol ACS with communication complexity O(n3).

3.2 Decryption Protocols

To decrypt ciphertexts of our threshold homomorphic encryption scheme, we use two decryp-
tion protocols. The PrivDec protocol is a straightforward private decryption protocol which
takes as input the public and private keys pk, sk1, . . . , skn, a ciphertext c and a party P and
correctly decrypts c towards P even in the presence of an active adaptive adversary corrupting
t < n/3 parties. The PubDec protocol is a public decryption protocol which takes as input
pk, sk1, . . . , skn, n−2t ciphertexts c1, . . . , cT and uses the PrivDec protocol to correctly publicly
decrypt c1, . . . , cT even in the presence of an active adaptive adversary corrupting t < n/3
parties. The PubDec protocol has communication complexity O(n2κ) and thus achieves linear
communication complexity per decrypted ciphertext. For details about these two protocols and
their guarantees, see Appendix D.5.

Remark 2. Additionally to the properties in the definiton of threshold homomorphic encryption
scheme, we require the following from our encryption scheme. Let P be any party and let c1
and c2 be two computationally indistinguishably distributed ciphertexts with computationally
indistinguishably distributed underlying plaintexts. An instance of the PrivDec protocol with
(pk, c1, P ) as public input (and sk1, . . . , skn as private inputs) is computationally indistinguish-
ably distributed to an instance of the PrivDec protocol with (pk, c2, P ) as public input (and
sk1, . . . , skn as private inputs) even in the presence of an active adaptive adversary corrupting
up to t < n/3 parties.

Remark 3. By inspection of the PubDec protocol in Appendix D.5, it is clear that the “compu-
tational indistinguishable decryption” property also holds for the PubDec protocol.

3.3 Multiplication

In this section, we briefly discuss the multiplication protocol. A detailed description is given in
Appendix D.6.

The main idea for the multiplication protocol is to use circuit randomization [Bea92]. To
make it more efficient, we apply the ideas of [DN07] and [BTH08], namely we use the PubDec
protocol to process up to T = ⌊n−2t

2 ⌋ independent multiplication gates simultaneously. Hence,
the multiplication protocol takes as input T independent multiplication gates, their encrypted
inputs and their associated multiplication triples and outputs the encrypted outputs of the
given gates. The protocol guarantees that if the inputs to the processed multiplication gates
are computationally indistinguishably distributed, then the executions of the multiplication
protocol are as well (see Proposition 5). Furthermore, it communicates O(n2κ) bits.

3.4 Triple Generation

This subsection is devoted to the introduction of the Triples protocol which takes as input an
integer ℓ and outputs ℓ encrypted multiplication triples. The protocol is based on the multi-
plication protocol in [DN03] and the kfd-triples protocol in [HN06]. We first adapted their
protocols to the asynchronous setting using the ACS primitive and then improved efficiency by
amortizing the cost of the ACS instances over the number of generated triples and using the
communication efficient Multi-Valued-Acast protocol.
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1: Every party Pj independently chooses uniformly random elements ai
j in the message space Rpk and ri

j in
the randomness space for all i ∈ {1, . . . , ℓ}. Then, Pj computes Ai

j = Encpk(ai
j , ri

j) and uses the Multi-
Valued-Acast protocol to broadcast Ai

j for all i ∈ {1, . . . , ℓ}. Finally, Pj proves to Pk in zero-knowledge
that it knows the plaintext underlying Ai

j using the “proof of plaintext knowledge” property in Definition
9 with instance Ai

j and witness (ai
j , ri

j) for all i ∈ {1, . . . , ℓ} and all k ∈ {1, . . . , n}.
2: Let Q be the property such that a party Pk satisfies Q towards another party Pj if and only if the broadcasts

of all Ai
k with i ∈ {1, . . . , ℓ} terminated for Pj and Pj accepted all proofs of plaintext knowledge for Ai

k

with i ∈ {1, . . . , ℓ}. The parties run the ACS protocol with Q and obtain a set S of parties.
3: The parties wait until the broadcasts of all parties in S terminated and set Ai =

⊕
Pk∈S

Ai
k for all

i ∈ {1, . . . , ℓ}.
4: Every party Pj independently chooses uniformly random elements bi

j in the message space Rpk and r′i
j in the

randomness space for all i ∈ {1, . . . , ℓ}. Then, Pj computes Bi
j = Encpk(bi

j , r′i
j ) and (Ci

j , r′′i
j ) = Blind(bi

j ⊙pk

Ai) and uses the Multi-Valued-Acast protocol to broadcast Bi
j and Ci

j for all i ∈ {1, . . . , ℓ}. Finally, Pj

proves to Pk in zero-knowledge that Ci
j was computed correctly using the “proof of correct multiplication”

property in Definition 9 with instance (Bi
j , Ai, Ci

j) and witness (bi
j , r′i

j , r′′i
j ) for all i ∈ {1, . . . , ℓ} and all

k ∈ {1, . . . , n}.
5: Let Q′ be the property such that a party Pk satisfies Q′ towards another party Pj if and only if the

broadcast of all (Bi
k, Ci

k) with i ∈ {1, . . . , ℓ} terminated for Pj and Pj accepted all proofs of correct
multiplication for (Bi

k, Ai, Ci
k) with i ∈ {1, . . . , ℓ}. The parties run the ACS protocol with Q′ and obtain

a set S′ of parties.
6: The parties wait until the broadcasts of all parties in S′ terminated and set Bi =

⊕
Pk∈S′ Bi

k and Ci =⊕
Pk∈S′ Ci

k for all i ∈ {1, . . . , ℓ}.
7: Each party outputs (Ai, Bi, Ci) for all i ∈ {1, . . . , ℓ}.

Protocol Triples

To prove security of the above Triples protocol, we give the simulator STriples who does not
have access to the secret keys of honest parties.

The simulator STriples executes the protocol acting honestly on behalf of the honest parties. If the adversary
decides to corrupt a party Pi at any point of the protocol, STriples gives all the information it holds on behalf
of Pi about the execution of the Triples protocol to the adversary.

Simulator STriples

Lemma 1. The Triples protocol above satisfies the following:

– Termination: All honest parties terminate the protocol and output ℓ triples.
– Consistency: All honest parties output the same triples.
– Correctness: The output triples are correct.
– Secrecy: The plaintexts underlying the output triples are unknown to the adversary. In

other words, the adversary has no more information about these plaintexts than that the
plaintexts underlying the third components are the multiplication of the plaintexts underlying
the corresponding first and second components.

– Computational Uniform Randomness: The distribution of the plaintexts underlying any out-
put triple is computationally indistinguishable from the uniform distribution over the set of
all triples (a, b, a ·pk b) for a, b ∈ Rpk.

– Independence: The plaintexts underlying any output triple are independent of the plaintexts
underlying all other output triples.

– Privacy: The adversary’s views in the simulation and the protocol are perfectly indistinguish-
ably distributed, i.e. the adversary does not learn anything.

– Communication complexity: The protocol communicates O(n2ℓκ + n5 log(n)) bits.

The proof is given in Appendix E.

Remark 4. If we choose ℓκ = Ω(n3 log(n)), we obtain that the Triples protocol communicates
O(n2κ) bits per triple.
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4 Asynchronous Adaptively Secure MPC Protocol

In this section, we present an asynchronous MPC protocol based on the protocols in [CDN01],
[DN03] and [BTH08]. Then we informally prove that our protocol is secure against an active
adaptive adversary corrupting up to t parties.

4.1 Ideal Functionality

In this subsection, we define the specification that our protocol achieves. The following exposi-
tion is based on [BKR94] and [CDN00].
Let f : N × {0, 1}∗ × ({0, 1}∗)n → ({0, 1}∗)n be an efficiently computable function.

1: The trusted party receives the security parameter κ ∈ {0, 1}∗ and the number of parties n ∈ N as input.
2: Every party Pi gives its input xi to the trusted party. Corrupted parties are allowed to give wrong input

or even no input at all. If the adversary corrupts a party Pj at any point in time after this step, then the
trusted party gives xj to the adversary.

3: The adversary chooses a set of parties S ⊆ P of size at least n − t and gives it to the trusted party.
4: The trusted party evaluates the function f on the given inputs of parties in S and using a default input

d for parties not in S. From this, it obtains output y.
5: The trusted party sends y to all parties.
6: All honest parties output y. Corrupted parties can output whatever they like.

Functionality

Recall that since we are in the asynchronous setting with at least n − t honest parties, the size
of the set S of parties whose inputs are considered for the evaluation of f is between n − t and
n. Note that it is not guaranteed that all parties in S are honest. However, we require from
the adversary that it only includes corrupted parties in S for whom it gave input to the ideal
functionality in step 2.

4.2 Informal Explanation of the Protocol

To achieve adaptive security in the asynchronous setting, we proceeded as follows. We started
with the statically secure synchronous MPC protocol introduced by Cramer, Damgård and
Nielsen [CDN01]. Next, we used circuit randomization [Bea92] to split the protocol into a prepa-
ration phase and a computation phase. After that, we adapted the protocol to the asynchronous
setting using asynchronous broadcast and agreement on a common subset (ACS). Finally, we
made the protocol adaptively secure by applying the techniques from Damgård and Nielsen
[DN03], namely redefining the way values are encrypted and randomizing the output ciphertext
in a specific way before decrypting it. Concretely, the new rule of encryption is: Given an en-
cryption M and a value v to be encrypted, the encryption is set to EncM

pk(v). Recall that if we
denote the value that M encrypts by m, then by the homomorphic property of the encryption
scheme and by definition of the function EncM

pk, EncM
pk(v) is a uniformly random encryption of

v ·pk m. In the protocol, we will mostly choose m = 1pk to have an encryption of v while in
the simulation we will often choose m = 0pk which helps the simulator to provide computation-
ally indistinguishably distributed information. In detail, the idea of the protocol is the following.

Preparation phase:

– Setup phase (steps 1–4): The keys for all the keyed primitives used in our protocol (namely
the encryption scheme, the commitment scheme and the zero-knowledge proofs) are set
up. Each party receives the keys it is entitled to along with public Lagrange arguments
{αi}i∈{1,...,n}. Additionally, two public encryptions K and R are set up and given to all
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parties. The encryption K is a uniformly random encryption of 1pk and the encryption R
is a uniformly random encryption of 0pk. In the simulation, the simulator will cheat by
choosing K to be a uniformly random encryption of 0pk and R to be a uniformly random
encryption of 1pk. By semantic security of the encryption scheme, this is computationally
indistinguishable to the adversary.
Finally, the parties compute the circuit corresponding to the function to be evaluated and
generate multiplication triples that will be used in the Evaluation phase to evaluate the
multiplication gates of the circuit.

Computation phase:

– Input phase (steps 1 and 2): The parties receive their inputs xi needed for the execution
and want to give them to an agreed function f . To do so, every party reliably broadcasts an
encryption of its input applying the new rule of encryption with M = K. While EncK

pk(xi) is
indeed an encryption of xi in the real world (recall that in the protocol K is an encryption
of 1pk), it is an encryption of 0pk in the simulation as there, K is an encryption of 0pk.
Hence, in the simulation all encryptions of inputs will be encryptions of 0pk independently
of the inputs of the parties. However, the simulator needs to be able to extract the inputs of
corrupted parties because it has to provide those inputs to the ideal functionality on behalf
of the corrupted parties. This is why every party commits to its input towards every other
party using a UC commitment scheme. The extraction property of UC commitments allows
the simulator to extract the correct inputs of corrupted parties (ewnp) and give them to
the ideal functionality. To ensure correctness and prevent the adversary in the real world
from having more power than an adversary in the ideal world, the parties need to prove
in zero-knowledge (using the “proof of compatible commitment” property) that they know
a preimage of the reliably broadcasted encryption EncK

pk(xi) under (pk, K) and that the
first component of this preimage is the same as the value that they committed to. This is
important because without these proofs a corrupted party could just wait for the reliable
broadcast of another party Pj to terminate and then set its input to the same as the one
from Pj without knowing it. This is not possible in the ideal world and therefore, we want
to prevent it in the protocol execution. Furthermore, the simulator extracts the inputs of
the corrupted parties from the commitments whereas for the computation in the protocol
we will use the encryptions. Thus, the simulator needs to ensure that the value underlying
the commitment and the first component of the preimage under (pk, K) of the encryption
are the same so that it does not give wrong inputs to the ideal functionality on behalf of
the corrupted parties. Finally, the parties run the ACS protocol and obtain a set S of size
at least n − t of parties that successfully broadcasted an encryption of their input which
they committed to. The inputs of the parties in S are the ones that will be taken into
account in the evaluation of f . Thus, the ACS protocol needs to ensure that S only contains
parties that successfully completed the reliable broadcast of their inputs and all their zero-
knowledge proofs towards at least one honest party (so that everything is correct and the
simulator can extract the correct inputs ewnp as it received at least one valid commitment
to every input of the corrupted parties in S). All inputs of parties that are not in S are set
to a default value. Each party then waits until the reliable broadcast for every party in S
terminated. It is okay for the parties to wait until the reliable broadcast of the parties in S
terminate because we saw that for all parties Pk in S, there exists an honest party for which
the reliable broadcast of Pk terminated. By the properties of reliable broadcast this implies
that the reliable broadcast of Pk eventually terminates for all honest parties.
The computation of the encryptions, their reliable broadcast, the zero-knowledge proofs and
the run of the ACS protocol are summed up in the BrACS protocol in Appendix F.

– Evaluation phase (step 3): The parties evaluate the circuit on the encrypted inputs of the
parties using the “+pk-homomorphic” property, the “Multiplication by constant” property
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and the multiplication protocol from Appendix D.6. In the end, the parties get a ciphertext
c (called Encpk(s) in the protocol and Encpk(ŝ) in the simulation).

– Randomization phase (steps 4–7): Before the parties jointly decrypt c, they randomize it.
This is done so that the simulator can cheat. In fact, as we saw above, all inputs to the circuit
in the simulation are encryptions of 0pk. By the correctness of the gates, this implies that all
ciphertexts in the circuit are encryptions of 0pk (not counting the intermediate ciphertexts in
the multiplication protocol). Hence, c is also an encryption of 0pk and therefore, we cannot
simply honestly decrypt c as otherwise the simulator would fail to provide a computationally
indistinguishable simulation with overwhelming probability. Furthermore, our encryption
scheme is not adaptively secure which is why we can not decrypt c to anything but 0pk

either. Thus, the parties randomize the ciphertext before decrypting it honestly.
To randomize the ciphertext c, the parties do the following. Each party chooses a random
ri and reliably broadcasts the encryption EncR

pk(ri). Then the parties agree on a set Ŝ of
parties of size at least t + 1 of successful broadcasts using the ACS protocol. Denote the
indices of the parties in the set Ŝ by I. Next, the parties consider the unique polynomial p of
degree |I| − 1 that goes through EncR

pk(ri) at position αi for all i ∈ I. They interpolate this
polynomial at 0pk and add this to c using the “+pk-homomorphic” and the “Multiplication
by constant” properties of the encryption scheme. This gives the new ciphertext c′ (denoted
by Encpk(s)′ in the protocol and the simulation). In the real execution, R is an encryption of
0pk under pk and therefore, all EncR

pk(ri) are encryptions of 0pk under pk. Since interpolation
is a linear operation and the encryption scheme is homomorphic, the value of p at 0pk will
also be an encryption of 0pk and thus c′ will encrypt the same message as c. In the simulation
however, R is an encryption of 1pk. This will help the simulator to cheat. Concretely, the
simulator will adjust the ri’s of honest parties so that at position 0pk, p will have a uniformly
random encryption of the output s (received from the ideal functionality) of the function f
evaluated on the inputs of the parties. This is possible since |I| > t + 1 and hence, there is
at least one honest party whose ri is taken into account in the randomization and can be
chosen by the simulator in the simulation. Since c is an encryption of 0pk in the simulation,
we get that c′ encrypts s as wanted. But we need to integrate a mechanism that allows the
simulator to choose the ri’s of honest parties according to those of corrupted parties. This
is done in the following way.
Before reliably broadcasting EncR

pk(ri) and agreeing on a set of successful broadcasts, the
parties commit to their ri and use the BrACS protocol to reliably broadcast EncK

pk(ri)
and agree on a set S′ of successful broadcasts (including a successful proof of compatible
commitment). By the ACS property we will use and by the guarantees of the ACS protocol,
we have that the simulator received at least one valid commitment to rk for every corrupted
party Pk ∈ S′. Thus, it can extract all rk from corrupted parties in S′ ewnp (by the extraction
property of UC commitment schemes). Now the simulator can adjust the ri’s of the honest
parties as described above. Then the parties execute the BrACS for EncR

pk(ri) (see above)
but using the same commitments in the zero-knowledge proof as in the previous BrACS
(with EncK

pk(ri)). We obtain a set S′′ and encryptions EncR
pk(ri) for all Pi ∈ S′′. The ACS

property the parties use in the second BrACS is slightly modified to ensure that the value
used to compute the broadcasted encryption in the first BrACS (the one with EncK

pk(ri)) and
the value used to compute the broadcasted encryption in the second BrACS (the one with
EncR

pk(ri)) is the same except with negligible probability. Concretely, the property ensures
that for all Pi ∈ S′′ at least one honest party likes Pi for both BrACS executions. Since those
BrACS protocols were run with the same commitments, we can be sure that the values used
to compute the broadcasted encryptions are the same in both runs of the BrACS protocol.
Then we set Ŝ = S′ ∩ S′′ and observe that Ŝ is of size at least n − 2t > t + 1 as wanted.
Note that the simulator has to know the rk’s of corrupted parties in Ŝ ⊆ S′ before the
broadcasting of EncR

pk(ri) because while it can patch the encryptions and proofs of the first
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BrACS (with EncK
pk(ri)) due to K being an encryption of 0pk, it can not do the same for the

second BrACS (with EncR
pk(ri)) because R is an encryption of 1pk.

– Output phase (steps 8 and 9): The parties decrypt c′ and obtain s. Then they run the reliable
consensus protocol on secret input s as termination procedure. The persistency property of
reliable consensus ensures that everyone terminates on the same correct output s.

A detailed description of the protocol can be found in Appendix F.

4.3 Main Theorem
Our protocol achieves the following.
Theorem 1. The MPC protocol in Appendix F t-securely realizes the ideal functionality in
Subsection 4.1 in the KG-hybrid model for t < n/3. The protocol communicates O(cM n2κ +
Dn2κ + n3κ + n5 log(n)) bits, where cM is the number of multiplication gates in the circuit and
D is the multiplicative depth of the circuit.

In Appendix G, the simulator and an informal proof are given.

5 Near-Linear MPC in the Atomic Send Model

In this section, we show how to improve the efficiency of our MPC protocol at the cost of
stronger assumptions on the model.
Taking a closer look at the communication complexity of the protocol in Appendix F reveals that
the complexity is dominated by the communication in the Triples protocol. While the number of
messages sent between the parties per produced triple (and hence per multiplication gate of the
circuit) in the Triples protocol is quadratic in the number of parties, the computation phase of the
protocol only needs near-linear communication per evaluated gate assuming a shallow circuit
(except for the input phase which has quadratic communication complexity per input gate).
By considering slightly stronger assumptions on the model, we can reduce the communication
complexity of the triple generation and obtain a near-linear MPC protocol.

5.1 Model
In this subsection, we present the model which will be used to achieve better efficiency in the
generation of multiplication triples. The subsection is based on [BKLZL20].

As before (see Subsection 2.1), we consider multiparty computation among a set of n parties
P1, . . . , Pn, where every pair of parties is connected by a secure asynchronous communication
channel. A protocol in our setting comprises a number of atomic steps.
The adversary in the new setting is computationally bounded and can actively corrupt up to
t parties in an atomic send adaptive manner. That is, as long as the adversary has corrupted
strictly less than t parties, it can corrupt any party at any point in time considering all the
information it has seen so far and make this party behave as it wishes for the remaining steps
of the protocol. However, if in some step a party needs to send several messages simultaneously,
then the adversary is only allowed to corrupt this party before or after it sent all the messages
(that is, the adversary can not corrupt the party in the midst of the sending). Furthermore,
messages sent by any honest party Pi are guaranteed to arrive, even if Pi is later corrupted. Once
a party is corrupted, the adversary learns its internal state and the party remains corrupted
until the end of the protocol.
We assume the existence of non-interactive zero-knowledge (NIZK) proofs and secure erasure.
Moreover, we assume the existence of a trusted party that provides the parties with public and
private setup information before the execution of a protocol, more details below. The size of the
setup is defined to be the sum of the size of the total private setup information and the size of
the public setup information (hence, we count the private information of each party separately,
but the public information only once for all parties).
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5.2 VACS

This subsection is devoted to the introduction of the VACS primitive. We follow the exposition
in [BKLZL20].
In the efficient WeakTriples protocol, we need a primitive that allows the parties to agree on a
sufficiently large subset of their inputs satisfying a specific predicate. This can be achieved by
the VACS primitive.

Definition 2. Consider a predicate Q and an n-party protocol π, where every party Pi has a
secret input mi and outputs a multiset S of size at most n. Every honest party’s input satisfies
Q and every party terminates upon generating output. We say that π is a t-secure Q-validated
ACS protocol with q-output quality if for all adversaries corrupting up to t parties and for all
inputs the following is satisfied:
– Q-Validity: Let S be the output of an honest party. Then for every m ∈ S, we have Q(m) = 1.
– Consistency: All honest parties agree on S.
– q-Output Quality: The output multiset S of every honest party is of size at least q and

contains the inputs of at least q − t parties that were honest at the beginning of the protocol.

Theorem 2. Let 0 < ϵ < 1/3, t 6 (1−2ϵ) ·n/3 and q 6 (1+ ϵ/2) ·2n/3. There exists a t-secure
Q-validated ACS protocol Πq,Q

VACS with q-output quality, expected setup size O(qκ4) and expected
communication complexity O((I + κ3) · qκn), where I is the size of any party’s secret input. In
addition to the properties of t-secure Q-validated ACS protocols, the Πq,Q

VACS protocol guarantees
that the output multiset S contains the inputs of at least 1

2q parties that were honest at the

beginning of the protocol except with probability smaller than e
−qϵ2

(2−3ϵ)(2+ϵ) .

The construction of Πq,Q
VACS and the proof of the first part of the theorem can be found in

[BKLZL20]. The second part of the theorem can be proven using Lemma 24 of [BKLZL20].

5.3 Triple Generation

To obtain an efficient protocol for the triple generation in the atomic send model, we start with
our Triples protocol from Subsection 3.4 and make it more efficient using the VACS primitive,
NIZK proofs and erasure. The following protocol is inspired by the protocols in [BKLZL20]. It
takes as input an integer ℓ and outputs ℓ encrypted multiplication triples.

Let ℓ be the number of triples we want to generate . We assume that the parties have access to the setup for
two runs of the VACS protocol with output quality κ.
1: Each party Pj independently chooses uniformly random messages ak

j ∈ Rpk and uniformly random elements
rk

j in the randomness space for all k ∈ {1, . . . , ℓ}. Then, Pj computes Ak
j = Encpk(ak

j , rk
j ) and an NIZK

proof pk
1,j of plaintext knowledge with instance Ak

j and witness (ak
j , rk

j ) for all k ∈ {1, . . . , ℓ}. Finally, Pj

erases (ak
j , rk

j ) for all k ∈ {1, . . . , ℓ}.
2: The parties run an instance of the Πκ,Q

VACS protocol with output quality κ where every party Pj has input
{(Ak

j , pk
1,j)}k∈{1,...,ℓ} and Q({(Ak

j , pk
1,j)}k∈{1,...,ℓ}) = 1 if and only if pk

1,j is a correct NIZK proof of plaintext
knowledge with instance Ak

j for all k ∈ {1, . . . , ℓ}. The parties obtain a multiset S of size at least κ and
define Ai =

⊕
j : {(Ak

j
,pk

1,j
)}k∈{1,...,ℓ}∈S

Ai
j for all i ∈ {1, . . . , ℓ}.

3: Each party Pj independently chooses uniformly random messages bk
j ∈ Rpk and uniformly random elements

r̂k
j in the randomness space for all k ∈ {1, . . . , ℓ}. Then, Pj computes Bk

j = Encpk(bk
j , r̂k

j ) and (Ck
j , r̃k

j ) =
Blind(bk

j ⊙pkAk), where Blind is the blinding algorithm of the encryption scheme. Furthermore, Pj computes
an NIZK proof pk

2,j of correct multiplication with instance (Bk
j , Ak, Ck

j ) and witness (bk
j , r̂k

j , r̃k
j ) for all

k ∈ {1, . . . , ℓ}. Finally, Pj erases (bk
j , r̂k

j ), r̃k
j and the information used in the blinding algorithm for all

k ∈ {1, . . . , ℓ}.
4: The parties run an instance of the Πκ,Q′

VACS protocol with output quality κ where every party Pj has input
{(Bk

j , Ck
j , pk

2,j)}k∈{1,...,ℓ} and Q′({(Bk
j , Ck

j , pk
2,j)}k∈{1,...,ℓ}) = 1 if and only if pk

2,j is a correct NIZK proof of

Protocol WeakTriples
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correct multiplication with instance (Bk
j , Ak, Ck

j ) for all k ∈ {1, . . . , ℓ}. The parties obtain a multiset S′ of
size at least κ and define Bi =

⊕
j : {(Bk

j
,Ck

j
,pk

2,j
)}k∈{1,...,ℓ}∈S′ Bi

j and Ci =
⊕

j : {(Bk
j

,Ck
j

,pk
2,j

)}k∈{1,...,ℓ}∈S′ Ci
j

for all i ∈ {1, . . . , ℓ}.
5: Every party outputs (Ai, Bi, Ci) for all i ∈ {1, . . . , ℓ}.

Remark 5. Because we want to ensure that all parties who contribute to the triples know the
plaintexts underlying their contributions and because the VACS protocol requires Q and Q′

(defined in steps 2 and 4) to be predicates on the inputs of the parties to the VACS protocol,
we need to use NIZK proofs.

To prove security of the above WeakTriples protocol, we give the simulator SWeakTriples who
does not have access to the secret keys of honest parties.

The simulator SWeakTriples executes the protocol acting honestly on behalf of the honest parties. If the adversary
decides to corrupt a party Pi at any point of the protocol, SWeakTriples gives all the information it holds on
behalf of Pi about the execution of the WeakTriples protocol to the adversary.

Simulator SWeakTriples

Lemma 2. For 0 < ϵ < 1/3 and t 6 (1 − 2ϵ) · n/3, the WeakTriples protocol above satisfies the
following:

– Termination: All honest parties terminate the protocol and output ℓ triples.
– Consistency: All honest parties output the same triples.
– Correctness: The output triples are correct.
– Secrecy: The plaintexts underlying the output triples are unknown to the adversary. In

other words, the adversary has no more information about these plaintexts than that the
plaintexts underlying the third components are the multiplication of the plaintexts underlying
the corresponding first and second components.

– Computational Uniform Randomness: The distribution of the plaintexts underlying any out-
put triple is computationally indistinguishable from the uniform distribution over the set of
all triples (a, b, a ·pk b) for a, b ∈ Rpk.

– Independence: The plaintexts underlying any output triple are independent of the plaintexts
underlying all other output triples.

– Privacy: The adversary’s views in the simulation and the protocol are perfectly indistinguish-
ably distributed, i.e. the adversary does not learn anything.

– Communication complexity: The protocol communicates O(ℓκ3n + κ5n) bits.

The proof is given in Appendix H.

5.4 Main Theorem for the Atomic Send Model

By replacing the instance of the Triples protocol in step 4 of the Preparation Phase of the MPC
protocol in Appendix F by the WeakTriples protocol above, we can improve the communication
complexity of our MPC protocol and achieve O(n · poly(κ)) bits per multiplication.

Theorem 3. There exists an MPC protocol that t-securely realizes the ideal functionality in
Subsection 4.1 in the KG-hybrid atomic send model for t < n/3 and communicates O(cM nκ3 +
Dn2κ + n3κ + nκ5) bits, where cM is the number of multiplication gates in the circuit and D is
the multiplicative depth of the circuit.
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Appendix

A MPC Security Model

In this subsection, we briefly summarize the main aspects of the model of Canetti [Can00a]
that we use for our protocols. The goal of a protocol is to emulate an ideal functionality, which
models a trusted party that receives inputs and provides outputs to the parties. Intuitively, a
protocol is proven secure if one shows that for any attack that an adversary can perform in the
real protocol, one can construct a corresponding ideal adversary which can perform the same
attack in the ideal world via what is called the simulator. The simulator runs in the ideal world,
interacting only with the ideal functionality and the real adversary, and has to be such that the
distributions of messages seen in the real world and ideal world executions are indistinguishable.

Definition 3 (Real world). Consider an n-party protocol π and an active adaptive adver-
sary A corrupting up to t parties. Let κ be a security parameter, a be an auxiliary string
for the adversary and x be the vector of public and private inputs of the parties. We define
REALπ,A(κ, x, a) to be the distribution of the private and public outputs of all parties in an
execution of π on inputs κ, x and a in the network model described in Subsection 2.1 and in the
presence of adversary A (the probability comes from the randomness used in an execution of π).
The distribution ensemble {REALπ,A(κ, x, a)}κ∈N,x∈({0,1}∗)2n,a∈{0,1}∗ is denoted by REALπ,A.
This setting is called the real world model.

Let us introduce the notion of an ideal functionality.

Definition 4. An ideal functionality F is an incorruptible trusted party that is connected via
a secure channel to each party, takes input from all parties and gives output to all parties
according to a specified input-output relation. In other words, F is a black box achieving a
specified input-output relation.

Definition 5 (Ideal world). Consider an ideal functionality F and an active adaptive simu-
lator (a.k.a. ideal world adversary) S corrupting up to t parties. As in the previous definition,
let κ be a security parameter, a be an auxiliary string for the simulator and x be the vector of
public and private inputs of the parties. We define IDEALF,S(κ, x, a) to be the distribution of the
private and public outputs of all parties in an execution of F on inputs κ, x and a in the presence
of the simulator S (the probability comes from the randomness used in an execution of F ). The
distribution ensemble {IDEALF,S(κ, x, a)}κ∈N,x∈({0,1}∗)2n,a∈{0,1}∗ is denoted by IDEALF,S . This
setting is called the ideal world model.

Definition 6 (Hybrid world). Let F1, . . . , Fl be ideal functionalities. We call the (F1, . . . , Fl)-
hybrid model to be the real world model where the parties additionally have access to the ideal
functionalities F1, . . . , Fl. The distribution of the private and public outputs of all parties in
the (F1, . . . , Fl)-hybrid model with inputs κ, x and a in the presence of an active adaptive
(F1, . . . , Fl)-hybrid-adversary A corrupting up to t parties is denoted by REAL(F1,...,Fl)

π,A (κ, x, a).
Like before, the distribution ensemble {REAL(F1,...,Fl)

π,A (κ, x, a)}κ∈N,x∈({0,1}∗)2n,a∈{0,1}∗ is denoted
by REAL(F1,...,Fl)

π,A . The ()-hybrid model is the real world model.

The security notion states that the execution of a protocol in the hybrid model does not reveal
any more information to the adversary than the ideal functionality that the protocol realizes.
This is formalized as follows.

Definition 7. Consider an n-party protocol π and ideal functionalities F, F1, . . . , Fl. We say that
π t-securely realizes F in the (F1, . . . , Fl)-hybrid model if for all active adaptive (F1, . . . , Fl)-
hybrid-adversaries A corrupting up to t parties there exists an active adaptive simulator S
corrupting up to t parties such that REAL(F1,...,Fl)

π,A
c≈ IDEALF,S .

17



B Details on Universally Composable Commitment Schemes

This subsection is devoted to the introduction of universally composable commitment schemes
and some of their properties. The exposition is based on [CF01]. For more details and instanti-
ations see [CF01] and [DN03].

The authors of [CF01] define the ideal functionality of a universally composable commitment
scheme between parties P1, . . . , Pn and simulator S as follows. Let sid be a session ID (sid is
useful when running several copies of F ).

1: On input (Commit, sid, Pi, Pj , b ∈ {0, 1}) from Pi, save b and send (Receipt, sid, Pi, Pj) to Pj and S.
Disregard any further Commit-messages from Pi to Pj associated with sid.

2: On input (Open, sid, Pi, Pj) from Pi, if there is a saved commitment value b from Pi to Pj associated
with sid, send (Open, sid, Pi, Pj , b) to Pj and S and halt. Else halt.

Functionality F

Step 1 models a Commit phase where a party Pi commits to b ∈ {0, 1} towards a party Pj . The
ideal functionality receives the value b, the session ID, the sender and the receiver through the
Commit-message and informs the receiver as well as the simulator that the sender committed
to some value associated to the session ID by sending the Receipt-message.
Step 2 models an Opening phase where a party Pi opens its commitment towards Pj (if it indeed
committed to a value towards Pj).

Definition 8. A protocol that securely realizes F is called a universally composable (UC) com-
mitment scheme. If the scheme is secure in the presence of an adaptive adversary, we call it a
UC adaptively secure commitment scheme.

UC adaptively secure commitment schemes achieve the following guarantees.

Proposition 1. Let π be a UC adaptively secure commitment scheme, let A be an adversary
and let Sπ be the corresponding simulator. Then we have the following properties.

– The scheme is hiding and binding.
– Extraction: Let Pi be any corrupted party and let T be the transcript of the communication

between the adversary and the simulator during a successful Commit phase where Pi commits
to a value b (which might be unknown to Pi) towards an honest party Pj. Then the simulator
can extract b from T ewnp.

– Equivocability: Let Pi be any corrupted party, b be any value and T ′
b be the distribution of

the messages from honest parties during the Commit phase in the real execution, where an
honest party Pj commits to b towards Pi. Then —without having any information about
b— the simulator can efficiently sample messages T from a distribution T such that T is
computationally indistinguishable from T ′

b . Furthermore, upon receiving an Open-message
for b from the ideal functionality, the simulator can open the commitment given by T to
b, that is it can simulate the messages from honest parties in the Opening phase of the
commitment given by T to b in a computationally indistinguishable way.

– Adaptiveness: If at any point, the adversary corrupts a party Pi, the simulator can provide
computationally indistinguishably distributed information about the internal state of Pi (using
the information received from the ideal functionality upon corruption of Pi) and can patch
the information sent to the adversary in a computationally indistinguishable way to the
information that the simulator receives from the ideal functionality F .

Proof. The proposition follows directly from the definition of the ideal functionality, the defi-
nition of UC commitment schemes and the definition of adaptive security.
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C Details on Threshold Homomorphic Encryption Schemes

In this section, we define threshold homomorphic encryption schemes. Our definition is based on
the definitions given in [CDN00] and [FPS01]. We use the notation from [CDN00] and [DN03].

Definition 9. A threshold homomorphic encryption scheme is a tuple (KeyGen, Enc, DecShare,
Comb) such that the following holds.

– KeyGen is a probabilistic algorithm that takes a security parameter κ, the number of par-
ties n and the threshold parameter t as input and outputs a uniformly distributed tuple
(pk, sk1, . . . , skn) where the public key pk is given to all parties and the secret key ski is
given to Pi for all i ∈ {1, . . . , n}.

– Enc is an efficient probabilistic non-interactive algorithm that takes as input a public key
pk and a message m and outputs an encryption Encpk(m) of m. If we want to specify the
randomness r used in the execution of the algorithm, we write Encpk(m, r).

– DecShare is an efficient algorithm that takes as input an index i ∈ {1, . . . , n}, the public
key pk, the secret key ski and a ciphertext c and outputs a decryption share ci and a proof
that ci is correctly computed using i, pk, c and ski. We require that from the output of the
DecShare algorithm, a computationally bounded adversary does not learn anything about the
secret input used, even under parallel composition.

– Comb is an efficient algorithm that takes as input the public key pk, a ciphertext c and pairs
(ci, pi) where each pair has a different index. The algorithm outputs a message m or fails.

Furthermore, the scheme needs to satisfy the following properties.

– Correctness (this corresponds to the t-robust property in [FPS01]): Let (pk, sk1, . . . , skn)
be any output of the KeyGen algorithm, m be any message in the message space Rpk, r
be any randomness from the randomness space, P ′ ⊆ P be any set of parties of size at
least t + 1 and {(ci, pc

i )}Pi∈P ′ be any set of values where the second component is a valid
proof that the first component is a correctly computed decryption share for i, pk, Encpk(m, r)
and ski. We require that even in the presence of an active adversary that corrupted up to
t parties before the KeyGen algorithm, Comb(pk, Encpk(m, r), {(ci, pc

i )}i=1,...,n) = m where
{(ci, pc

i )}Pi /∈P ′ are arbitrary values or ⊥ (missing values are set to ⊥ by default). In par-
ticular, this implies that for any set P ′ ⊆ P of parties of size at least t + 1, we have
Comb(pk, Encpk(m, r), {DecShare(i, pk, ski, Encpk(m, r))}Pi∈P ′ , {(ci, pc

i )}Pi /∈P ′) = m, where
again {(ci, pc

i )}Pi /∈T are arbitrary values or ⊥.
– Threshold semantic security: Let κ be the security parameter and let (pk, sk1, . . . skn) be

the output of the KeyGen algorithm on input (κ, n, t). Consider any efficient probabilistic
adversary A that on input κ, set C ⊆ P of size at most t, public key pk and secret keys
{ski}i∈C of the parties in C outputs two messages m0 and m1. Let c0 = Encpk(m0) be an
encryption of m0 and c1 = Encpk(m1) an encryption of m1. We denote the distribution of c0
over κ ∈ N and C ⊆ P with |C| 6 t by X0(κ, C) and the distribution of c1 over the same set
as X0 (namely κ and C) by X1(κ, C). We require that the distributions {X0(κ, C)}κ∈N,C⊆P
and {X1(κ, C)}κ∈N,C⊆P are computationally indistinguishable.

– Message ring: Let Rpk be the message space for a public key pk. Then (Rpk, +pk, ·pk, 0pk, 1pk)
is a commutative ring. Furthermore, knowing pk, it is possible to do computations in Rpk

efficiently.
– Randomness space: The domain for the randomness used in the probabilistic algorithm Enc

is a group with group operation �pk.
– +pk-homomorphic: There exists an efficient algorithm that takes as input the public key pk

and two encryptions Encpk(m1, r1) and Encpk(m2, r2) of m1 using randomness r1 respectively
of m2 using randomness r2 and computes the uniquely determined encryption Encpk(m1 +pk

m2, r1 �pk r2) of m1 +pk m2 using randomness r1 �pk r2. We denote a call to this algorithm
with inputs pk, Encpk(m1) and Encpk(m2) by Encpk(m1) ⊕pk Encpk(m2).
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– Multiplication by constant: There exists an efficient algorithm that takes as input the public
key pk, a constant c ∈ Rpk and an encryption Encpk(m) of m and computes a uniquely
determined encryption Encpk(c ·pk m) of c ·pk m. We denote a call to this algorithm with
inputs pk, c and Encpk(m) by c ⊙pk Encpk(m).

– Proof of plaintext knowledge: Let Qpk be the binary predicate such that Qpk((m, r), y) = true
if and only if y = Encpk(m, r). We require that for every public key pk, there exists an
efficient patchable zero-knowledge proof of knowledge for Qpk with constant communication
complexity.

– Proof of correct multiplication: Similar to the previous property, let Ppk be the binary
predicate such that Ppk((α, r1, r2), (y1, y2, y3)) = true if and only if y1 = Encpk(α, r1) and
y3 = (α ⊙pk y2) ⊕pk Encpk(0pk, r2). We require that for every public key pk, there exists an
efficient patchable zero-knowledge proof of knowledge for Ppk with constant communication
complexity.

Remark 6. As noted in [CDN00] we have that if the additive group of the message space Rpk

can be spanned by 1pk, then the multiplication by constant property is a direct consequence of
the +pk-homomorphic property.

Furthermore, the Blindable property in [CDN00] follows directly from the slightly modified
version of the +pk-homomorphic property above:

Proposition 2. Let (KeyGen, Enc, DecShare, Comb) be any threshold homomorphic encryption
scheme. Then there exists an efficient probabilistic algorithm Blind that takes as input a public key
pk and an encryption y = Encpk(m) of a message m and outputs an encryption z = Encpk(m, r)
of m, where r is a uniformly random element from the randomness space, and the randomization
factor r1. More precisely, we define Blind(pk, y) := (z, r1), where z = y ⊕pk Encpk(0pk, r1) and r1
is a uniformly randomly sampled element of the randomness space. If the public key pk is clear
from the context, we omit it as an input to the algorithm.

Proof. Let r1 be uniformly random in the randomness space and define z = y ⊕pk Encpk(0pk, r1)
as above. Then by the +pk-homomorphic property of the encryption scheme we have that
z = Encpk(m +pk 0pk, r0 �pk r1) where r0 is the randomness such that y = Encpk(m, r0). Clearly
m +pk 0pk = m and r0 �pk r1 is uniformly random because the randomness space is a group and
r1 is uniformly random in it. Hence, z satisfies the wanted properties.

C.1 Paillier Threshold Encryption Scheme

In this subsection, we present the Paillier encryption scheme (which was first introduced in
[Pai99]) and a threshold version of it (introduced in [FPS01] and [DJ00]). The Paillier threshold
version is an instantiation of the above definition. Our exposition of the original scheme and
the threshold version closely follows the description in [FPS01]. For more details, we refer the
reader to [FPS01], [DJ00] and [DN03].

Paillier Encryption Scheme Let us shortly recall the original Paillier encryption scheme.

Key Generation: Let N = pq be an RSA-modulus and let g be an integer such that ord(g) = αN
mod N2. Let λ be the Carmichael lambda function in Z∗

N2 . We define the public key to be the
pair (N, g) and the secret key to be λ(N).
Encryption: Let m be a message from the message ring ZN . To encrypt m, choose a uniformly
random element r ∈ Z∗

N and define the ciphertext to be c = gmrN mod N2.
Decryption: Let W = {w ∈ N0 | w < N2 and w = 1 mod N} and define the function
L : W → N0 by L(w) = w−1

N (for the well-definedness of the function L, see [FPS01]). To
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decrypt a ciphertext c, compute the message m = L(cλ(N) mod N2)
L(gλ(N) mod N2) mod N . Correctness of the

decryption algorithm can be checked using two properties of the Carmichael lambda function,
namely that for all elements w ∈ Z∗

N2 , we have wλ(N) = 1 mod N and wNλ(N) = 1 mod N2.
For a security analysis of this scheme, see [Pai99].

Paillier Threshold Version We continue with the threshold version. Let n be the number of
parties. Define ∆ = n!. The key generation algorithm uses the Shamir sharing scheme to share
the secret key among all parties. This secret sharing scheme ensures that all sets of at least
t + 1 parties can collectively reconstruct the secret key while no set of up to t parties have any
information about the secret key. For an explanation of the Shamir sharing scheme, we refer
the reader to Section 3.1 of [FPS01] and to [Sha79] where it was first introduced.

Key Generation: Let N be an integer such that N = pq for p = 2p′ + 1 and q = 2q′ + 1
for p′ and q′ prime and such that gcd(N, φ(N)) = 1. We define χ = p′q′ and we choose
(β, γ, δ) ∈ (Z∗

N )3 randomly. Next, we set g = (1 + N)γ · δN mod N2 and we share the secret
key β · χ with the Shamir sharing scheme by setting ℓ0 = β · χ, randomly choosing coefficients
ℓi ∈ {0, . . . , χN − 1} for i ∈ {1, . . . , t}, defining the polynomial ℓ(x) =

∑t
i=0 ℓix

i and providing
the share ski = ℓ(i) mod χN of the secret key β · χ to party Pi for i ∈ {1, . . . , n}. The public
key is pk = (g, N, θ = L(gχβ) = γχβ mod N). Finally, let V K = v be a generator of the cyclic
group of squares in Z∗

N2 and set the verification keys to V Ki = v∆ski mod N2 (the verification
keys will be used in zero-knowledge proofs in the decryption process).
Encryption: Let m be a message from the message ring Rpk = ZN . To encrypt m, choose a
uniformly random r ∈ Z∗

N and define the ciphertext to be c = gmrN mod N2.
Decryption Shares: Every party Pi sends its decryption share ci = c2∆ski mod N2 to everyone
and proves that its share is correct, that is that c4∆ mod N2 and v∆ mod N2 raised to the
same power ski yield c2

i and vi. For a description of the proof used to show that a decryption
share is correct, see Section 3.2 of [FPS01].
Combination: If at least t + 1 decryption shares are proven to be correct, consider a set U of
t + 1 correct decryption shares. Define the Lagrange coefficients µU

j = ∆ ·
∏

j′∈U\{j}(−j′)∏
j′∈U\{j}(j−j′) ∈ for

all j ∈ U and compute the message m = L(
∏

j∈U c
2µU

j

j mod N2) · 1
4∆2θ

mod N . Else (if less
than t + 1 decryption shares are proven to be correct), the algorithm fails.

We assume without proof that for the Paillier threshold encryption scheme, the “proof of
plaintext knowledge” property, the “proof of correct multiplication” property, the “proof of com-
patible commitment” property and Remark 2 hold. All the remaining properties of Definition 9
are proven to be satisfied by the Paillier threshold encryption scheme in [FPS01]. Furthermore,
the Paillier threshold encryption scheme satisfies the Patch and Lagrange arguments properties.
In fact, for the Patch property, we have that rE can be computed efficiently as rE = r−x

K · r0
mod N , where N is the Paillier public key. For the Lagrange arguments property we have that if
N = pq is such that n < min{p, q} and if we set αi = i for all i ∈ {1, . . . , n}, then the αi’s satisfy
the condition of the property. In fact, since n < min{p, q}, we have for all (i, j) ∈ {1, . . . , n}2

that |αi − αj | ∈ {0, . . . , n} and thus gcd{|αi − αj |, N} = 1. Hence, |αi − αj | is invertible in ZN

and thus so is αi − αj . Therefore, we will assume from now on, that N is sufficiently larger than
n so that n < min{p, q}. We can thus conclude that the described Paillier threshold encryption
scheme is an instantiation of Definition 9 that also satisfies the additional properties we need
for our protocol.

D Details of the Subprotocols
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D.1 Reliable Consensus

In this subsection, we discuss reliable consensus which is a weaker version of asynchronous
consensus. Our protocol is a slight modification of the A-Cast protocol in [Bra84]. We follow
the exposition of the A-Cast protocol in [CR98]. In this whole subsection, an honest party is a
party that is never corrupted by the adversary and remains honest during the whole execution
of the protocol.

Definition 10. Consider an n-party protocol π, where each party Pi potentially eventually
(possibly not even before it terminates the protocol π) has a secret input mi that can be influenced
by other protocols running in parallel. We say that π is a t-resilient reliable asynchronous
consensus protocol if for all active adaptive adversaries corrupting up to t parties and for all
inputs the following is satisfied:

– Persistency: If the honest parties all eventually have the same secret input m (that is if there
is pre-agreement on m), then all honest parties output m and terminate.

– Consistency: If an honest party Pi outputs a value y and terminates, then all honest parties
output y and terminate.

Reliable consensus does not require that honest parties eventually terminate. It is allowed
that the protocol runs forever if there is no pre-agreement.

Each party Pi acts as follows:
1: On input the secret input mi, if Pi has not sent an (echo, m′)-message for some m′ (potentially equal to

mi) to all parties yet, it sends (echo, mi) to all parties.
2: On input (echo, m′) from n − t parties, if Pi has not sent (ready, m′) to all parties yet, it does so.
3: On input (ready, m′) from t + 1 parties, if Pi has not sent (ready, m′) to all parties yet, it does so.
4: On input (ready, m′) from n − t parties, Pi outputs m′ and terminates.

Protocol RC

Theorem 4. The RC protocol is a t-resilient reliable asynchronous consensus protocol for t <
n/3 communicating O(n2κ) bits, where κ is the size any party’s secret input.

The theorem can be proven along the lines of the proof in [Bra84] for the A-Cast protocol.

D.2 A-Cast

In this subsection, we introduce the so-called A-Cast or reliable broadcast (RBC) which is
an asynchronous broadcast protocol that was originally introduced in [Bra84]. We follow the
exposition in [CR98]. In the whole subsection (as in the previous subsection), an honest party is
a party that is never corrupted by the adversary and remains honest during the whole execution
of the protocol.

Definition 11. Consider an n-party protocol π, where party PS (the sender) has input m
(the message that it wants to broadcast) and all other parties have input PS. We say that π
is a t-resilient reliable asynchronous broadcast protocol if for all active adaptive adversaries
corrupting up to t parties and for all inputs the following is satisfied:

– Validity: If PS is honest, then all honest parties output m and terminate.
– Consistency: If an honest party Pi outputs a value y and terminates, then all honest parties

output y and terminate.

Reliable broadcast (like reliable consensus) does not require that honest parties eventually
terminate. It is allowed that the protocol runs forever if the sender is corrupted during or before
the execution.
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1: PS sends m to every party. Denote the value that Pi receives from PS by mi.
2: The parties run the RC protocol with secret input mi for all honest parties Pi (malicious parties can choose

an arbitrary input).

Protocol RBC [Bra84]

Theorem 5. The RBC protocol is a t-resilient reliable asynchronous broadcast protocol for
t < n/3 communicating O(n2κ) bits, where κ is the size of the sender’s input.

Proof. First we will prove that validity holds and then we will show that the protocol achieves
consistency.
– Validity: Suppose PS is honest. Then PS sends m to all parties and all honest parties

eventually receive m and use it as their secret input in the run of the RC protocol. Hence,
by the persistency property of reliable consensus, we can conclude that all honest parties
output m and terminate.

– Consistency: Suppose that there exists an honest party Pi that outputs y and terminates.
The consistency property of the reliable consensus protocol ensures that all other honest
parties also output y and terminate and thus we can conclude.

For the communication complexity we have that the RC protocol communicates O(n2κ) bits
(see Theorem 4) and hence, it is easy to see that the RBC protocol also communicates O(n2κ)
bits.
Our proof works for an adaptive adversary corrupting at most t parties because the reasoning
above is independent of which parties the adversary corrupts at what point in time (we only
talk about parties that remain honest during the whole execution of the protocol).

The RBC protocol satisfies the following property.
Proposition 3. Let m1 and m2 be any two computationally indistinguishably distributed mes-
sages. Then, even in the presence of an active adaptive adversary corrupting up to t < n/3
parties, an execution of the RBC protocol where PS has input m1 is computationally indistin-
guishably distributed from an execution of the RBC protocol where PS has input m2.
The proposition can be proven by reduction.

Remark 7. In [Pat11], Patra presents a t-resilient reliable asynchronous broadcast protocol
Multi-Valued-Acast for t < n/3 which achieves linear communication complexity for messages
of size Ω(n3 log(n)). More precisely, for messages of size ℓ, the protocol communicates O(nℓ +
n4 log(n)) bits. We use the Multi-Valued-Acast protocol in selected steps of our MPC protocol
to reduce the communication complexity.

D.3 Byzantine Agreement
In this subsection, we briefly introduce Byzantine agreement. The following definition is taken
from [CR98].
Definition 12. Consider an n-party protocol π, where each party Pi eventually has a secret
input that can be influenced by other protocols running in parallel. The protocol π is a (1 − ϵ)-
terminating, t-resilient Byzantine agreement protocol (BA) if for all active adaptive adversaries
corrupting up to t parties and for all inputs the following is satisfied:
– Termination: With probability 1 − ϵ all parties terminate.
– Correctness: All honest parties that terminate have the same output. Moreover, if all parties

that remain honest during the whole execution of the protocol have the same input m, then
all these parties output m and terminate.

For t < n/3, (1−ϵ)-terminating, t-resilient asynchronous Byzantine agreement with expected
communication complexity O(n2) is achieved in [MMR15].
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D.4 ACS

This subsection is devoted to the introduction of the “agreement on a common subset”-protocol
which was first introduced by Canetti in [Can95]. Our exposition is based on Section 4 of
[BKR94]. For more details, we refer the reader to [BKR94] and [Can95].

Definition 13. Let P be a set of n parties and let Q be a property that can be influenced by
multiple protocols running in parallel. Every party Pi ∈ P can decide for every party Pj ∈ P
based on the protocols running in parallel whether Pj satisfies the property towards Pi or not.
If it does, we say Pi likes Pj for Q or simply Pi likes Pj if the property Q is clear from the
context. We require that once a party likes another party, it cannot unlike it. Such a property
Q is called an ACS property if for every pair of uncorrupted parties (Pi, Pj) ∈ P2 we have that
Pi will eventually like Pj.

While the definition guarantees that all honest parties eventually like each other, a dishonest
party can also satisfy Q towards an honest party and then the honest party will like the dishonest
party. Furthermore, it is possible for a dishonest party to satisfy Q towards an honest party Pi,
but not towards a different honest party Pj .
Additionally, the relation goes only one way in terms of if a party Pi knows that a party Pj

does not satisfy Q, it cannot dislike Pj . It will simply never like Pj .
Moreover, as Q can depend on protocols running in parallel, it is not required that at the
beginning of the current protocol, all parties already know which parties they like. This can be
determined later on.
A simple example of such a property Q is if all parties send a “Present”-message to all other
parties to announce that they are in the protocol. A party Pi likes Pj as soon as it receives a
“Present”-message from Pj . In this work, Q will usually be a property like “reliable broadcast
of an input terminated” or “zero-knowledge proof is accepted”.

Definition 14. The “agreement on a common subset”-protocol (ACS) is an adaptively secure
asynchronous protocol that takes as input an ACS property Q and outputs a set S of parties of
size at least n − t such that for each Pi ∈ S there exists at least one honest party Pj that likes
Pi for Q. The protocol ensures that all honest parties terminate with high probability and agree
on S.

Observe that while all parties in S are liked by at least one honest party, there might be parties
(possibly even honest ones) that are liked by an honest party but are not in S. This is not in
contradiction to the guarantee given by the ACS protocol.
To achieve ACS, we run n instances of (1−ϵ) terminating, t-resilient Byzantine agreement (BA),
one for each party Pj ∈ P. If the output of BAj is 1, we add Pj to S, else we don’t.

Every Pi does the following:
1: For every party Pj that Pi likes, Pi inputs 1 to BAj .
2: As soon as n − t BA’s terminated on output 1, Pi inputs 0 to all the BA’s that it hasn’t given input yet.
3: After all BA’s terminated, Pi defines S to be the set of parties whose BA terminated on 1, that is

S = {Pj such that the output of BAj is 1}.
4: Party Pi outputs S.

Protocol ACS

Proposition 4. The ACS protocol is indeed an ACS protocol according to Definition 14. The
protocol communicates O(n3) bits.

The proposition can be proven along the lines of the proof of Lemma 2 in [BKR94] (replace
2t + 1 by n − t in the whole proof).
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D.5 Decryption protocols
Private Decryption The private decryption protocol PrivDec takes the public key pk, a
ciphertext c and a party P as public input and the secret keys sk1, . . . , skn as private inputs.
The protocol has no public nor private output for all parties except for P , who privately outputs
the plaintext underlying c. This section is along the lines of [BTH08].

1: Every party Pi computes (ci, pc
i ) = DecShare(i, pk, ski, c), sends (ci, pc

i ) to P and terminates.
2: As soon as P has received at least t + 1 pairs (ck, pc

k) from distinct parties Pk such that pc
k is a valid proof

for ck from Pk, P computes m = Comb(pk, c, {(ck, pc
k)}k∈{1,...,n}), where P sets all the values that is has

not received to ⊥. Then P outputs m.

Protocol PrivDec

Lemma 3. Every party that is not corrupted before or during the execution terminates the
PrivDec protocol. Furthermore, if P is honest at the end of the protocol, then its output m is the
correct decryption of c even in the presence of an adaptive adversary actively corrupting up to
t < n/3 parties. The protocol has communication complexity O(nκ).

Proof. In this whole proof, an honest party is a party that is never corrupted by the adversary
and remains honest during the whole execution of the protocol.
Termination: Clearly all honest parties apart from P terminate as they only need to compute
a decryption share and send it to P . Furthermore, if P is honest, then it terminates since all
honest parties send correct decryption shares. Hence, P eventually receives at least n− t > t+1
correct decryption shares from distinct parties, runs Comb and obtains and outputs a message
m.
Correctness: As we saw above, P eventually receives at least t + 1 correct decryption shares
from distinct parties. Hence, thanks to correctness of the threshold homomorphic encryption
scheme, we can deduce that P can compute the correct decryption m of c. If P is honest, then
it computes and outputs m.
It is easy to see that the communication complexity is indeed O(nκ).
The proof works for an adaptive adversary corrupting at most t parties because the reasoning
above is independent of which parties the adversary corrupts at what point in time (we only
talk about parties that remain honest during the whole execution of the protocol).

Amortized Public Decryption The public reconstruction protocol PubDec takes the public
key pk and T = n − 2t ciphertexts c1, . . . , cT as public inputs and the secret keys sk1, . . . , skn

as private inputs. The protocol publicly outputs the plaintexts m1, . . . , mT underlying the ci-
phertexts c1, . . . , cT . This section is along the lines of [CHP12] and [BTH08].

1: Every party defines the polynomial g(x) =
∑T

j=1 xj−1⊙pk cj and computes vi = g(αi) for all i ∈ {1, . . . , n}.
2: The parties use their secret keys to run PrivDec(Pi, vi) for all i ∈ {1, . . . , n}. Let ui be Pi’s private output

from PrivDec(Pi, vi) for all i ∈ {1, . . . , n}.
3: Every party Pi ∈ P sends ui to all other parties.
4: Every party Pi ∈ P locally defines a set P ′

i of parties and adds party Pk to P ′
i if Pi received u′

k from Pk.
For j = 0, 1, . . . t, as soon as |P ′

i| > T + t + j, Pi applies an efficient algorithm PolyFind (for example the
Berlekamp-Welch algorithm) on the points {(αk, u′

k)}Pk∈P′
i

to check whether there exists a polynomial
p of degree at most T − 1 such that at least T + t of the input points lie on p. If this is the case, then
PolyFind outputs this polynomial and Pi outputs m1 = p1, . . . , mT = pT , where p(x) =

∑T

j=1 xj−1 ·pk pj ,
and terminates. Otherwise, Pi proceeds with iteration j + 1.

Protocol PubDec

Lemma 4. Every party that is not corrupted before or during the execution terminates the
PubDec protocol and outputs the correct decryptions of c1, . . . , cT even in the presence of an
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adaptive adversary actively corrupting up to t < n/3 parties. The protocol has communication
complexity O(n2κ).

Proof. In this whole proof, an honest party is a party that is never corrupted by the adversary
and remains honest during the whole execution of the protocol.
Termination: (taken from [CHP12]) Since all honest parties participate in the PrivDec(Pi, vi)
protocols for all i ∈ {1, . . . , n}, termination of the PrivDec protocol implies that all honest par-
ties terminate steps 1–3. Next, define the polynomial g′(x) =

∑T
j=1 xj−1 ·pk mj . Since cj is an

encryption of mj under pk for all j ∈ {1, . . . , T}, the homomorphic property of the encryption
scheme implies that g(x) is an encryption of g′(x) under pk for all x ∈ Rpk. In particular, this
holds for x = αk for all k ∈ {1, . . . , n}. Hence, by the correctness of the PrivDec protocol and
by definition of uk, we have uk = g′(αk) for all honest parties Pk. Now, let Pi be an arbitrary
honest party and let ĵ be the first iteration when all honest parties are in P ′

i (note that every
honest party eventually includes all honest parties in P ′

i and since there are at most n = T + 2t
parties, we have ĵ 6 t). Then, either PolyFind already found a polynomial in iteration j for
j < ĵ and Pi terminated before iteration ĵ or in iteration ĵ, P ′

i is of size T + t + ĵ and contains
n − t = T + t honest parties. Hence, since g′ is a polynomial of degree at most T − 1 and at
least T + t input points (namely the points from honest parties) lie on g′, we can be sure that
the PolyFind algorithm finds a polynomial and Pi terminates in step ĵ. Hence, after at most
ĵ 6 t iterations, Pi terminates. Note that if in an iteration j the PolyFind algorithm fails to find
a polynomial that passes the checks, then Pi has not received all the u′

k = uk’s from honest
parties as otherwise the PolyFind algorithm would have succeeded (see above). Hence, if in an
iteration the PolyFind algorithm fails to compute a suitable polynomial, then it is ok for Pi to
proceed with the next iteration because it is guaranteed that Pi can eventually add at least one
party to P ′

i and as soon as Pi has all the uk’s from honest parties (i.e all honest parties are in
P ′

i), it can terminate (and this will happen before the tth iteration ended).
Correctness: Let Pi be any honest party. As Pi terminates, it found a polynomial p of degree at
most T − 1 and a set of parties P ′′

i of size at least T + t such that Pi received a message u′
k from

all Pk ∈ P ′′
i and u′

k = p(αk) for all Pk ∈ P ′′
i . Since there are at most t corrupted parties, at least

T of the parties in P ′′
i are honest. In the proof for termination, we saw that for honest parties,

u′
k = uk = g′(αk). Therefore, there exist T distinct elements αk with p(αk) = g′(αk). Since T

points uniquely define a polynomial of degree at most T − 1 and both p and g′ are polynomials
of degree at most T − 1, we can conclude that p = g′ and Pi can correctly compute and output
the messages m1, . . . , mT underlying the ciphertexts c1, . . . , cT .
The claim about the communication complexity follows directly from the communication com-
plexity of the PrivDec protocol.
Again, the proof works for an adaptive adversary corrupting at most t parties because the rea-
soning above is independent of which parties the adversary corrupts at what point in time (we
only talk about parties that remain honest during the whole execution of the protocol).

Remark 8. In every execution of the PubDec protocol, each party runs the PolyFind algorithm
up to t + 1 times. By using local player elimination, we can reduce the number of runs of
the PolyFind algorithm in m instances of the PubDec protocol to t + m per party (instead of
m(t + 1)). More precisely, if in iteration j the run of the PolyFind algorithm of an honest party
fails to output a polynomial that passes the checks, then at least j + 1 of the inputs must be
wrong (otherwise the PolyFind algorithm would have succeeded). Since every party outputs a
polynomial satisfying all the checks at latest in round t, each party can then detect which inputs
were wrong and can locally eliminate the parties that sent those wrong values. In any future
run of the PolyFind algorithm in the PubDec protocol, the party ignores the values sent from
parties it locally eliminated (respectively, it does not include parties it locally eliminated in P ′

i).

Remark 9. By reduction and by Remark 2, we can deduce that for c1
1, . . . , c1

T and c2
1, . . . , c2

T

two computationally indistinguishably distributed sets of T ciphertexts with computationally
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indistinguishably distributed sets of underlying plaintexts, an instance of the PubDec protocol
with (pk, c1

1, . . . , c1
T ) as public input (and sk1, . . . , skn as private inputs) is computationally

indistinguishably distributed to an instance of the PubDec protocol with (pk, c2
1, . . . , c2

T ) as
public input (and sk1, . . . , skn as private inputs) even in the presence of an active adaptive
adversary corrupting up to t < n/3 parties.

D.6 Multiplication

This subsection presents the multiplication protocol which is based on the Multiplication
Gate in the Computation Phase protocol of [BTH08]. The protocol uses circuit randomization
which was originally introduced in [Bea92].
Let T = ⌊n−2t

2 ⌋. Our multiplication protocol processes up to T independent multiplication gates
at the same time. To ensure independence of the gates, every run of the multiplication protocol
only considers multiplication gates with a specific multiplicative depth.
The multiplication protocol takes as input T multiplication gates m1, . . . , mT with the same
multiplicative depth, the 2T inputs {(Xi, Yi)}i∈{1,...,T } to the given multiplication gates and the
T encrypted multiplication triples {(Ai, Bi, Ci)}i∈{1,...,T } (encrypting the values {(ai, bi, ai ·pk

bi)}i∈{1,...,T }) associated with the given multiplication gates m1, . . . , mT . We denote the plain-
texts underlying the encryptions {(Xi, Yi)}i∈{1,...,T } by (xi, yi) for all i ∈ {1, . . . , T}. The protocol
publicly outputs T encryptions {Zi}i∈{1,...,T }, where the underlying plaintexts zi are equal to
xi ·pk yi for all i ∈ {1, . . . , T}.

1: Every party locally computes Xi ⊖pk Ai encrypting xi −pk ai and Yi ⊖pk Bi encrypting yi −pk bi for all
i ∈ {1, . . . , T } using the +pk-homomorphic property of the encryption scheme.

2: The parties use their secret keys to run PubDec({Xi ⊖pk Ai}i∈{1,...,T }, {Yi ⊖pk Bi}i∈{1,...,T }) and obtain
xi −pk ai and yi −pk bi for all i ∈ {1, . . . , T }.

3: Each party locally computes Ei = Encpk((xi −pk ai) ·pk (yi −pk bi), e) for all i ∈ {1, . . . , T }, where e is
the neutral element of the randomness space. Then, it computes Zi = Ei ⊕pk [(xi −pk ai) ⊙pk Bi] ⊕pk

[(yi −pk bi) ⊙pk Ai] ⊕pk Ci for all i ∈ {1, . . . , T }.
4: Every party outputs {Zi}i∈{1,...,T }.

Protocol Multiplication

Remark 10. 1. If n−2t is odd, then the parties only input n−2t−1 ciphertexts to the PubDec
protocol in step 2. In that case, the parties additionally give Encpk(0pk, e) as input to the
PubDec protocol, where e is again the neutral element of the randomness space, obtain the
plaintext 0pk as one of the outputs of PubDec and simply disregard it in all further steps.

2. If only T ′ < T multiplication gates are input to the multiplication protocol (for example
when there are less than T multiplication gates with the same multiplicative depth in a
given circuit), then the parties execute the protocol normally doing all the computations for
indices in {1, . . . , T ′} instead of in {1, . . . , T} and adding the encryption Encpk(0pk, e) to the
inputs of the PubDec protocol n − 2t − 2T ′ times (where e is again the neutral element of
the randomness space).

The multiplication protocol achieves the following.

Proposition 5. Let m1, . . . , mT be T multiplication gates with the same multiplicative depth
and let {(Ai, Bi, Ci)}i∈{1,...,T } be the encrypted multiplication triples associated with the gates
m1, . . . , mT . Furthermore, let {(X1

i , Y 1
i )}i∈{1,...,T } and {(X2

i , Y 2
i )}i∈{1,...,T } be two computation-

ally indistinguishably distributed sets of 2T ciphertexts. Then, even in the presence of an active
adaptive adversary corrupting up to t < n/3 parties, an execution of the multiplication protocol
with {(X1

i , Y 1
i )}i∈{1,...,T } as inputs to the given gates is computationally indistinguishably dis-

tributed from an execution of the multiplication protocol with {(X2
i , Y 2

i )}i∈{1,...,T } as inputs to
the given gates.
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Proof. Using reduction it is easy to see that step 1 is computationally indistinguishably dis-
tributed in both executions (even if the adversary corrupts a party during step 1).
For step 2, by reduction, we know that ciphertexts ({X1

i ⊖pk Ai}i∈{1,...,T }, {Y 1
i ⊖pk Bi}i∈{1,...,T })

and ({X2
i ⊖pk Ai}i∈{1,...,T }, {Y 2

i ⊖pk Bi}i∈{1,...,T }) are computationally indistinguishably dis-
tributed. Furthermore, by Lemma 1, we have that the plaintexts underlying {Ai}i∈{1,...,T } and
the plaintexts underlying {Bi}i∈{1,...,T } are computationally uniformly randomly distributed.
Therefore, the plaintexts underlying {X1

i ⊖pk Ai}i∈{1,...,T }, {Y 1
i ⊖pk Bi}i∈{1,...,T }), {X2

i ⊖pk

Ai}i∈{1,...,T } and {Y 2
i ⊖pk Bi}i∈{1,...,T }) are all computationally uniformly randomly distributed

and thus, they are computationally indistinguishably distributed. By Remark 9, we can con-
clude that step 2 of the multiplication protocol is computationally indistinguishably distributed
in both executions, even if the adversary corrupts a party.
As for step 1, a reduction argument shows that steps 3 and 4 maintain computational indistin-
guishability (even if the adversary corrupts a party during these steps).

Proposition 6. The multiplication protocol communicates O(n2κ) bits.

E Proof of Lemma 1

We will prove each property separately. The proof is inspired by [BTH08], [DN03], [HN06] and
[BHN08]. In this whole proof, an honest party is a party that remains honest during the whole
execution of the protocol. Furthermore, we use uppercase letters to denote ciphertexts and the
corresponding lowercase letters to denote the plaintexts underlying these ciphertexts.

– Termination and Consistency: By validity of reliable broadcast and completeness of zero-
knowledge proofs, Q and Q′ defined in the Triples protocol are indeed ACS properties ac-
cording to Definition 13. Hence, the guarantees of the ACS primitive ensure that all honest
parties eventually terminate the two ACS instances in the protocol and consistently output
a set S, respectively S′, of parties of size at least n − t, where each party in S, respec-
tively S′, is liked by at least one honest party for Q, respectively Q′. Therefore, for each
Pk ∈ S, respectively Pk ∈ S′, at least one honest party terminated the Multi-Valued-Acast
of {Ai

k}i∈{1,...,ℓ}, respectively {(Bi
k, Ci

k)}i∈{1,...,ℓ}. Consistency of reliable broadcast then im-
plies that all honest parties eventually terminate the reliable broadcasts of {Ai

k}i∈{1,...,ℓ},
respectively {(Bi

k, Ci
k)}i∈{1,...,ℓ} for all parties Pk ∈ S, respectively Pk ∈ S′, with the same

output. Hence, all honest party can compute (Ai, Bi, Ci) as described in the protocol for
i ∈ {1, . . . , ℓ}, output the same triples and terminate.

– Correctness: This property can be proven using the properties of the ACS primitive, the
definition of Q and a similar reasoning as for the multiplication protocol in [DN03].

– Secrecy: We start by showing that the plaintexts underlying Ai are unknown to the adversary
for all i ∈ {1, . . . , ℓ}. Since the set S is of size at least n − t and there are at most t < n − t
corrupted parties, we have that there is at least one honest party in S. We choose an arbitrary
honest party in S and denote its index by h. Let i be an arbitrary index in {1, . . . , ℓ}. By
definition of Ai we have Ai =

⊕
Pk∈S Ai

k = Ai
h ⊕pk

⊕
Pk∈S\{Ph} Ai

k. The guarantees of the
ACS primitive and the definition of the ACS property Q ensure that for each Pk ∈ S, at least
one honest party accepts the zero-knowledge proof of plaintext knowledge for Ai

k. Therefore,
soundness of zero-knowledge proofs implies that with high probability the adversary knows
the plaintext ai

k underlying Ai
k for all corrupted parties Pk in S. By semantic security, the

adversary does not know the plaintext ai
h underlying Ai

h. Thus, the ai
k’s from corrupted

parties Pk ∈ S are independent of ai
h and we can conclude that the plaintext underlying Ai

is unknown to the adversary. Since i was an arbitrary index in {1, . . . , ℓ}, this holds for all
i ∈ {1, . . . , ℓ}.
The reasoning that the plaintexts underlying Bi are unknown to the adversary for all i ∈
{1, . . . , ℓ} is analogous.
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To show that the adversary does not have more information about the plaintexts underlying
Ci than that they are the multiplication of the plaintexts underlying Ai and Bi for all
i ∈ {1, . . . , ℓ}, we observe the following. Let i be an arbitrary index in {1, . . . , ℓ} and let k
be any index such that Pk ∈ S′. If Pk is corrupted at any point of the Triples protocol, then
the adversary knows bi

k with high probability (by the guarantees of the ACS primitive, the
definition of the ACS property Q′ and soundness of zero-knowledge proofs). However, by
semantic security and because ai is unknown to the adversary (see above), the adversary
still does not know anything more about ci

k than that it is the multiplication of bi
k and

the unknown plaintext ai underlying Ai (note that since Pk is in S′, the guarantees of the
ACS primitive, the definition of the ACS property Q′ and soundness of zero-knowledge
proofs ensure that with high probability Ci

k is indeed the multiplication of the plaintexts
underlying Bi

k and Ai). If Pk remains honest during the whole execution of the protocol,
then by semantic security, the adversary does not have more information about ci

k than that
it is the multiplication of the plaintexts underlying Bi

k and Ai which are both unknown
to the adversary. Hence, since Ci =

⊕
Pk∈S′ Ci

k, Bi =
⊕

Pk∈S′ Bi
k and all Bi

k’s are only
used to compute Bi, we can conclude that the adversary does not know anything about the
plaintext underlying Ci but that it is the multiplication of the plaintexts underlying Ai and
Bi. Finally, since i was an arbitrary index in {1, . . . , ℓ}, we can conclude that Secrecy holds.

– Computational Uniform Randomness and Independence: These two properties can be proven
using similar arguments as for the Secrecy property and a similar reasoning as for the
multiplication protocol in [DN03].

– Privacy: It is easy to see that this property holds because the simulator STriples can perfectly
imitate the honest parties (no party has any secret input to this protocol). Hence, also if the
adversary decides to corrupt any party during the execution of the protocol, the simulator
can give perfectly indistinguishably distributed information to the adversary.

– Communication complexity: The parties only communicate in steps 1, 2, 4 and 5 of the
protocol. Furthermore, it is easy to see that the communication complexity of steps 1
and 4 are in the same complexity class and the communication complexity of steps 2
and 5 are in the same complexity class. Hence, the overall communication complexity is
O({communication complexity of step 1} + {communication complexity of step 2}).
In step 1, each party uses the Multi-Valued-Acast to broadcast ℓ values (of size κ) and proves
bilaterally to each party plaintext knowledge of the ℓ broadcasted values. Hence, the com-
munication complexity of step 1 is O(n2ℓκ + n5 log(n)). By Appendix D.4, we know that
the communication complexity of step 2 is O(n3). Thus, we can conclude that the total
communication complexity is O(n2ℓκ + n5 log(n)).

F Protocol

The protocol we present uses a key generation oracle (KG) which sets up all the public and
private keys used in our protocol, gives the keys to the entitled parties and provides public
Lagrange arguments for all parties. We assume that the simulator has access to an efficient key
generation algorithm (KGA) that computes a computationally indistinguishably distributed set
of public and private keys and Lagrange arguments. Furthermore, we assume that the parties
have access to an encoder and a decoder algorithm that transform values from the message space
of the encryption scheme to {0, 1}∗ and vice versa. We do not explicitly mention when the parties
use the encoder and decoder algorithms. They are implicitly used whenever a transformation is
necessary.
The description of the protocol follows the structure of the FuncEvalf Algorithm in [CDN00].
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Preparation Phase:
1: Every party Pi receives a security parameter κ, the number of parties n, a secret input xi ∈ {0, 1}∗ and a

random string bi ∈ {0, 1}∗ as input. The adversary is given the inputs κ, n, a random string b ∈ {0, 1}∗

and an auxiliary string a ∈ {0, 1}∗.
2: The parties call the key generation oracle KG. Each Pi gets common inputs pk, K, R, {Kν}ν , {αi}i∈{1,...,n}

and the secret inputs ski, {Ki
χ}χ, where (pk, sk1, . . . , skn) is a uniformly random threshold encryption key,

K is a uniformly random encryption of 1pk under pk, R is a uniformly random encryption of 0pk under
pk, {Kν}ν are the public keys used for the zero-knowledge proofs and the commitment scheme, {Ki

χ}χ are
the private keys of Pi used for the zero-knowledge proofs and the commitment scheme and {αi}i∈{1,...,n}
are Lagrange arguments.

3: On input pk, every party computes the arithmetic circuit over Rpk corresponding to the function f eval-
uated on n inputs. We denote the gates in the circuit by H1

pk, . . . , Hl
pk.

4: Let cM be the number of multiplication gates in the circuit. The parties execute the Triples protocol with
input cM and obtain a set of triples {(Ai, Bi, Ci)}i∈I , where I is the set of all indices of multiplication
gates in the circuit.

Computation Phase:
1: Each party Pi commits to its secret input xi towards every party Pj for all j ∈ {1, . . . , n} under the

corresponding commitment key. For all (i, j) ∈ {1, . . . , n}, let Ci→j be the commitment to xi from Pi

towards Pj and let (xi, cij) be the opening information for Ci→j .
2: Every party Pi chooses a uniformly random value rxi from the randomness space. The parties run the

BrACS protocol from Appendix F with public input (pk, K) and secret input (xi, rxi , {cij}j∈{1,...,n},
{Ci→j}j∈{1,...,n}, {Cj→i}j∈{1,...,n}) for every party Pi. The parties obtain as output a set S and encryptions
{EncK

pk(xi)}i : Pi∈S .
3: Evaluate the circuit as in [CDN00]: While there are gates that have not been evaluated yet, let J ⊆

{1, . . . , l} be the set of non-evaluated gates that are ready to be evaluated. Evaluate all gates in J in
parallel by doing for every j ∈ J :
a) If Hj

pk is an input gate for a party Pi ∈ S, then every party sets Encpk(hj) = EncK
pk(xi). If Hj

pk is
an input gate for a party Pi /∈ S, then every party computes d ⊙pk K using the “Multiplication by
constant” property of the encryption scheme and sets Encpk(hj) = d ⊙pk K, where d and is a default
value.

b) If Hj
pk is a constant input gate for constant c, then every party sets Encpk(hj) = c ⊙pk K by using the

“Multiplication by constant” property of the encryption scheme.
c) If Hj

pk is an addition gate for Encpk(hj1 ) and Encpk(hj2 ), every party sets Encpk(hj) = Encpk(hj1 ) ⊕pk

Encpk(hj2 ) using the “+pk-homomorphic” property of the encryption scheme.
d) If Hj

pk is a multiplication by a constant gate for values c and Encpk(hj1 ), every party sets Encpk(hj) =
c ⊙pk Encpk(hj1 ) using the “Multiplication by constant” property of the encryption scheme.

e) If Hj
pk is a multiplication gate, the parties wait until all the multiplication gates with the same mul-

tiplicative depth as Hj
pk are ready to be evaluated. As soon as this is the case, the parties split these

multiplication gates into blocks of ⌊ n−2t
2 ⌋ gates. For each block, the parties use the multiplication pro-

tocol from Appendix D.6 with the following input: the gates in the block, their input ciphertexts and
the encrypted multiplication triples associated with the gates in the considered block. From this, the
parties obtain the encrypted outputs of all the multiplication gates with the same multiplicative depth
as Hj

pk.
Let Encpk(s) be the output of the evaluated circuit.

4: Every party Pi generates a uniformly random ri from the message space Rpk. Each Pi commits to ri towards
every party Pj for all j ∈ {1, . . . , n} under the corresponding commitment key. For all (i, j) ∈ {1, . . . , n},
let Bi→j be the commitment to ri from Pi towards Pj and let (ri, bij) be the opening information for
Bi→j .

5: Every party Pi chooses a uniformly random value rK
ri

from the randomness space. Parties run BrACS
(see Appendix F) with public input (pk, K) and secret input (ri, rK

ri
, {bij}j∈{1,...,n}, {Bi→j}j∈{1,...,n},

{Bj→i}j∈{1,...,n}) for every party Pi. The parties get as output a set S′ and encryptions {EncK
pk(ri)}i : Pi∈S′ .

6: Every party Pi chooses a uniformly random value rR
ri

from the randomness space. Parties run BrACS with
public input (pk, R) and secret input (ri, rR

ri
, {bij}j∈{1,...,n}, {Bi→j}j∈{1,...,n}, {Bj→i}j∈{1,...,n}) for every

party Pi. In this execution of the BrACS, we take a slightly modified ACS property Q, namely to all the
conditions described in the BrACS protocol, we add that a party Pj only likes another party Pi if Pj likes
Pi for the ACS property of the BrACS execution in step 5 (it is okay if Pj only likes Pi after the BrACS
from step 5 terminated and input 0 to BAi in the ACS of step 5). The parties obtain as output a set S′′

and encryptions {EncR
pk(ri)}i : Pi∈S′′ .

Protocol
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7: Let Ŝ = S′ ∩ S′′. Let I be the set of indices of the parties in Ŝ and let {λi}i∈I be the Lagrange coefficients
of degree |I| − 1 over Rpk such that for any polynomial g of degree at most |I| − 1 we have g(0pk) =∑

i∈I
λi ·pk g(αi) (precisely λi =

∏
j∈I
j ̸=i

(0pk − αj) ·pk (αi − αj)−1 for all i ∈ I). Every party Pi locally

computes Encpk(s)′ = Encpk(s)
⊕

pk
i∈I

(λi ⊙pk EncR
pk(ri)).

8: The parties use their secret keys to run PrivDec(Pi,Encpk(s)′) for all i ∈ {1, . . . , n} and all parties obtain
s.

9: The parties run the RC protocol from Appendix D.1 taking as secret input the value s decrypted in the
previous step (as soon as they obtain it).

BrACS In this subsection, we discuss the BrACS protocol used in our MPC protocol. The
subprotocol takes as public input the public key pk of the encryption scheme and an encryption
M (in our protocol and simulation this is sometimes an encryption of 1pk and other times an
encryption of 0pk). The message encrypted by M is denoted by m. For each party Pi the protocol
takes as secret input a message ai, a randomness rai , n values cij and 2n commitments Cj→i

and Ci→j for j ∈ {1 . . . , n}. The Cj→i’s represent commitments from Pj towards Pi. If Pi and
Pj are both honest, (ai, cij) is the opening information for the commitment Ci→j that Pj holds.
The protocol publicly outputs a set S of parties and for each party Pi ∈ S it publicly outputs
an encryption of ai ·pk m.

1: Every party Pi generates an encryption of ai ·pk m by computing EncM
pk(ai, rai ) and reliably broadcasts

EncM
pk(ai, rai ) using the RBC protocol from Appendix D.2.

2: Every party Pi uses the “proof of compatible commitment” property in Subsection 2.4 and proves to all
Pj for j ∈ {1, . . . , n} with instance (EncM

pk(ai, rai ), Ci→j) and witness (ai, rai , cij).
3: Let Q be the property such that a party Pk satisfies Q towards another party Pj if and only if the reliable

broadcast of Pk in step 1 terminated for Pj and the proof in step 2 was accepted by Pj . The parties run
the ACS protocol with property Q and obtain a set S ⊆ P. Every Pi waits until the reliable broadcast of
all parties Pk ∈ S terminated. Then each party outputs S and for each Pk ∈ S the value received from the
terminated reliable broadcast.

Protocol BrACS

Proposition 7. The BrACS protocol achieves the following properties.

a) The protocol terminates for all honest parties.
b) All parties agree on the set S and the encryptions of parties in S.
c) The set S is of size at least n − t.
d) Every honest party Pi in S succeeds to reliably broadcast a correct encryption EncM

pk(ai) of
ai ·pk m. This means that the reliable broadcast of EncM

pk(ai) terminates for all honest parties
and that at least one honest party Pj accepts the proof given by Pi in step 2, namely that Pi

knows a preimage of EncM
pk(ai) under (pk, M) and that the first component of this preimage

is equal to the value Pi committed to with Ci→j.
Furthermore, for every corrupted party Pi in S, the reliable broadcast of y of Pi in step
1 terminates for all honest parties and at least one honest party Pj accepts the proof (see
above) given by Pi in step 2. Hence, with high probability, Pi knows values (a′

i, c′
ij) such that

y = EncM
pk(a′

i) and (a′
i, c′

ij) is the opening information to Ci→j.

The proof is straightforward and therefore omitted.

G Proof of Theorem 4.3

We will only informally prove the theorem. To do so, we construct the simulator.
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G.1 Simulator
The description follows the structure of the simulator in [CDN00]. The simulator receives κ, n,
a random string c ∈ {0, 1}∗ and a as inputs. We denote the set of corrupted parties by C. Every
time the adversary decides to adaptively corrupt a party Pi, Pi is added to C and the simulator
sends a corruption request for Pi to the ideal functionality (we will not mention this explicitly
in the description of the simulator).

Preparation Phase:
1: Give κ and n to the ideal functionality. Then, give κ, n, b and a to the adversary, where b is a prefix of c. If

the adversary decides to corrupt a party Pi during or after this step, receive xi from the ideal functionality
and give it to the adversary.

2: Run the key generation algorithm (KGA) and get a threshold key (pk, sk1, . . . , skn), the public and private
keys {Kν}ν and {{Ki

χ}χ}i∈{1,...,n} used for the zero-knowledge proofs and the commitment scheme, the La-
grange arguments {αi}i∈{1,...,n} and the uniformly random encryptions K (encrypts 1pk) and R (encrypts
0pk). Then, choose uniformly random rK and rR in the randomness space and redefine K = Encpk(0pk, rK)
and R = Encpk(1pk, rR). Give pk, K, R, {Kν}ν , {{Ki

χ}χ}i∈C , {αi}i∈{1,...,n} and {ski}i∈C to the adversary.
If the adversary decides to corrupt a party Pi during or after this step, receive xi from the ideal function-
ality and give xi, ski and {Ki

χ}χ to the adversary.
3: Execute this step honestly on behalf of honest parties. If the adversary decides to corrupt a party Pi during

or after this step, give all the information that Pi holds about the execution of this step to the adversary.
4: Run the Triples simulator STriples described in Subsection 3.4. If the adversary decides to corrupt a party

during or after this step, the Triples simulator STriples handles what information is given to the adversary
about this step.

Computation Phase:
1: For every corrupted party Pj and every honest party Pi, act honestly on behalf of Pi in the commit

protocol that allows Pj to commit to a value towards Pi.
For each honest party Pi and every j ∈ {1, . . . , n}, use the simulator of the commitment scheme to simulate
a commitment Ci→j from Pi towards Pj (if Pj is honest, act honestly on behalf of Pj). If the adversary
decides to corrupt Pi during or after this step, receive xi from the ideal functionality and patch all the
commitments from Pi towards any Pj that were already started or sent before Pi was corrupted to xi using
the adaptiveness property of the commitment scheme for all Pj for j ∈ {1, . . . , n}. Give the information
from the patching and all the information Pi holds about commitments made towards Pi to the adversary.

2: The steps in the BrACS protocol are simulated as follows.
1. Act honestly on behalf of honest parties in the reliable broadcasts with corrupted parties as senders.

For every honest parties Pi, compute Di = Encpk(0pk, r̂xi ) using a uniformly random value r̂xi and
reliably broadcast Di. If the adversary decides to corrupt Pi after the reliable broadcast, receive xi from
the ideal functionality and compute the randomness rxi such that Di = (xi⊙pk K)⊕pk Encpk(0pk, rxi ) =
EncK

pk(xi, rxi ) using pk, Di, r̂xi , K, rK and the Patch property of the encryption scheme. Then give
rxi to the adversary.

2. Act honestly on behalf of honest parties in the zero-knowledge proofs from corrupted parties towards
honest parties.
Use the simulator for zero-knowledge proofs for all zero-knowledge proofs with an honest party as
prover. If the adversary decides to corrupt Pi during or after this step, receive xi from the ideal
functionality, compute rxi and patch the commitments as in the previous steps. For every Pj ∈ P, let
c′

ij be the opening information received from the patching of the commitment Ci→j to xi. Give the
instance (EncK

pk(xi, rxi ), Ci→j), the witness (xi, rxi , c′
ij), the step t̃ in the zero-knowledge protocol when

the adversary decides to corrupt Pi and the communication for the zero-knowledge proof up to t̃ to
the Pat algorithm of the “proof of compatible commitment” zero-knowledge proof and Pat will output
randomness νj that patches the proof. Give νj to the adversary for all j ∈ {1, . . . , n}.

3. Run the ACS honestly with the same ACS property Q as in the protocol and obtain the set S ⊆ P.
Wait until all the reliable broadcasts of the corrupted parties in S terminate and set EncK

pk(xi) to the
output of the honest parties in the reliable broadcast with Pi as sender for all i such that Pi ∈ S ∩ C.
Extract xi from a valid commitment received from Pi to xi for all i such that Pi ∈ S ∩C. Give all xi for
Pi ∈ S ∩ C to the ideal functionality as inputs on behalf of the corrupted parties in S ∩ C. Additionally
give the set S as input and receive the output s from the ideal functionality. If the adversary decides
to corrupt Pi during or after this step, patch the previous steps as described in the steps before and
give all the information Pi holds about the running of the ACS in this step to the adversary.

Simulator S
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3: Evaluate the circuit as described in step 3 of the protocol acting honestly on behalf of honest parties. If
the adversary decides to corrupt a party Pi during or after this step, give all the information Pi holds
about the execution of this step to the adversary.
Let Encpk(ŝ) be the output of the evaluated circuit.

4: For every corrupted party Pj and every honest party Pi, act honestly on behalf of Pi in the commit
protocol that allows Pj to commit to a value towards Pi.
For each honest party Pi, generate a uniformly random r′

i from the message space. For every j ∈ {1, . . . , n},
use the simulator of the commitment scheme to simulate a commitment Bi→j from Pi towards Pj (if Pj is
honest, act honestly on behalf of Pj). If the adversary decides to corrupt Pi during or directly after this
step, patch all the commitments from Pi towards any Pj that were already started or sent before Pi was
corrupted to r′

i using the adaptiveness property of the commitment scheme for all Pj for j ∈ {1, . . . , n}.
Give r′

i, the information from the patching and all the information Pi holds about commitments made
towards Pi to the adversary.

5: The steps in the BrACS protocol are simulated very similarly to the BrACS in step 2.
1. Act honestly on behalf of honest parties in the reliable broadcasts with corrupted parties as senders.

For every honest party, compute Vi = Encpk(0pk, r̂K
r′

i
) using a uniformly random value r̂K

r′
i

and reliably
broadcast Vi. If the adversary decides to corrupt Pi directly after the reliable broadcast, patch all
the commitments of Pi towards other parties in step 4 to r′

i using the adaptiveness property of the
commitment scheme and compute the randomness rK

r′
i

such that Vi = (r′
i ⊙pk K) ⊕pk Encpk(0pk, rK

r′
i
) =

EncK
pk(r′

i, rK
r′

i
) using pk, Vi, r̂K

r′
i
, K, rK and the Patch property of the encryption scheme. Then give

r′
i, rK

r′
i
, the information from the patching of the commitments and all the information Pi holds about

commitments made towards Pi in step 4 to the adversary.
2. Act honestly on behalf of honest parties in the zero-knowledge proofs from corrupted parties towards

honest parties.
Use the simulator for zero-knowledge proofs for all zero-knowledge proofs with an honest party as
prover. If the adversary decides to corrupt Pi during or directly after this step, compute rK

r′
i

and patch
the commitments as in the previous step. For every Pj ∈ P, let b′

ij be the opening information received
from the patching of the commitment Bi→j to r′

i. Give the instance (EncK
pk(r′

i, rK
r′

i
), Bi→j), the witness

(r′
i, rK

r′
i
, b′

ij), the step t̃ in the zero-knowledge protocol when the adversary decides to corrupt Pi and the
communication for the zero-knowledge proof up to t̃ to the Pat algorithm of the “proof of compatible
commitment” zero-knowledge proof and Pat will output randomness ν′

j that patches the proof. Give
r′

i, rK
r′

i
, the information from the patching of the commitments, all the information Pi holds about

commitments made towards Pi in step 4 and ν′
j to the adversary for all j ∈ {1, . . . , n}.

3. Run the ACS honestly with the same ACS property Q as in the protocol and obtain the set S′ ⊆ P.
Wait until all the reliable broadcasts of the corrupted parties in S′ terminate and set EncK

pk(ri) to the
output of the honest parties in the reliable broadcast with Pi as sender for all i such that Pi ∈ S′ ∩ C.
Extract ri from a valid commitment received from Pi to ri for all i such that Pi ∈ S′ ∩ C. If the
adversary decides to corrupt Pi during or directly after this step, patch as described in the previous
step and give all the information Pi holds about the running of the ACS along with the information
that the adversary would receive upon corrupting Pi directly after the previous step to the adversary.

6: Let I ′ be the set of indices of all the corrupted parties in S′ and let ri be the value they committed to
in step 4. If |I ′| < t, randomly choose t − |I ′| > 0 honest parties in S′, add their indices to I ′ and set
ri = r′

i for the added parties. Then choose the unique polynomial p of degree less than or equal to t that
at position αi goes through ri for i ∈ I ′ and at position 0pk goes through s, where s is the output received
from the ideal functionality. Set rj = p(αj) for all honest parties Pj with j /∈ I ′.
For every honest party Pi, choose a uniformly random value rR

ri
from the randomness space. Patch the

commitments of Pi towards other parties in step 4 to p(αi) using the adaptiveness property and execute the
BrACS (with the slightly modified ACS property) honestly for public input (pk, R) and secret input (ri =
p(αi), rR

ri
, {b′

ij}j∈{1,...,n}, {Bi→j}j∈{1,...,n}, {Bj→i}j∈{1,...,n}), where {(p(αi), b′
ij)}j∈{1,...,n} is the opening

information of the commitments {Bi→j}j∈{1,...,n} to p(αi) learned from the patching. From this execution
obtain the set S′′ and encryptions {EncR

pk(ri)}Pi∈S′′ . If the adversary decides to corrupt Pi at any point
during or after this step, then
– if i ∈ I ′, patch as described in step 5.3. and give all the information Pi holds about the execution of

the current step along with all the information that the adversary would receive upon corrupting Pi

directly after step 5.3 to the adversary.
– if i /∈ I ′, patch steps 1–3 of the Computation phase as described in the simulator of those steps. Patch

the commitments of Pi towards other parties in step 4 to p(αi) and patch the execution of the BrACS
in step 5 to the secret input ri = p(αi) in the same way as the execution of the BrACS in step 2 was
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patched to xi (see step 2 of the simulator). Finally give all the information along with the state of Pi

in step 6 to the adversary.
7: For all honest parties, execute step 7 as described in the protocol (replacing Encpk(s) by Encpk(ŝ)). If

the adversary decides to corrupt Pi during or after this step, give all the information Pi holds about the
execution of this step to the adversary.

8: Run the n instances of the PrivDec protocol with input ciphertext Encpk(s)′ acting honestly on behalf of
honest parties. Again, if the adversary decides to corrupt a party Pi during or after this step, give all the
information Pi holds about the execution of this step to the adversary.

9: Run the RC protocol acting honestly on behalf of honest parties. Again, if the adversary decides to corrupt
a party Pi during or after this step, give all the information that Pi holds about the running of the RC
protocol to the adversary.

G.2 Informal Proof of Security

Let us informally prove that the distributions of the simulation and the real execution are
computationally indistinguishable (note that the distributions are in fact comparable). As in
[CDN00], we will show that every step in the protocol is computationally indistinguishably dis-
tributed from the corresponding step in the simulation. Hence, after every step, computational
indistinguishability is ensured which implies that after step 9 of the Computation phase, we can
conclude that the distributions are computationally indistinguishable.

– Preparation Phase:
1. Clearly the adversary receives the exact same inputs in both settings.
2. Thanks to the guarantees given by the KGA, the threshold key, the Lagrange arguments

and the public and private keys used for the zero-knowledge proofs and the commitment
scheme are computationally indistinguishably distributed in the real execution and in
the simulation. By the semantic security of the encryption scheme, we obtain that the
distributions of K and R in the simulation (where they are redefined by the simulator)
and the real execution are computationally indistinguishable.

3. It is easy to see that this step keeps the computational indistinguishability.
4. Lemma 1 shows that this step is perfectly indistinguishably distributed in the simulation

and the real protocol.
– Computation Phase:

1. By the equivocability property, the simulator of the commitment scheme gives a com-
putationally indistinguishably distributed simulation of the commitments from honest
parties. Furthermore, the simulator acts honestly on behalf of honest parties in commit
protocols that allow a corrupted party to commit to a value towards an honest party.
Thus, this step is computationally indistinguishably distributed from the corresponding
one in the protocol. If the adversary corrupts a party Pi during or after this step, the
simulator can perfectly patch the commitment to the value it receives from the ideal
functionality (adaptiveness property) and give the information to the adversary.

2. 1. Since the simulator acts honestly on behalf of honest parties in the reliable broadcasts
with corrupted parties as senders, we have that the communication in these reliable
broadcasts is computationally indistinguishably distributed. By semantic security
of the encryption scheme, the inputs from honest parties to the reliable broadcasts
where they act as senders are also computationally indistinguishably distributed.
Hence, Proposition 3 applies and we can deduce that the communication in the reli-
able broadcasts with honest parties as senders is computationally indistinguishably
distributed in the real execution and the simulation. If the adversary corrupts a
party Pi during or after this step, the Patch property of the encryption scheme en-
sures that the simulator can perfectly patch the internal state of Pi to the value that
it receives from the ideal functionality and give this information to the adversary.
(More precisely, the simulator can compute the randomness rxi so that the reliably
broadcasted encryption is equal to Encpk(xi, rxi) and rxi is uniformly random in the
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randomness space.) Moreover, the simulator executes the reliable broadcasts honestly
for all honest parties and hence, it can provide the adversary with computationally
indistinguishably distributed information about the state of Pi in all reliable broad-
casts.

2. Since the simulator acts honestly on behalf of honest parties in zero-knowledge proofs
with honest parties as verifiers, we have that the communication in these zero-
knowledge proofs is computationally indistinguishably distributed. Thanks to the
simulator of zero-knowledge proofs giving a computationally indistinguishably dis-
tributed view of the zero-knowledge proofs with honest parties as provers, the view
of the adversary in the simulation of these zero-knowledge proofs is also computa-
tionally indistinguishably distributed from its view in the real execution. As before,
if the adversary decides to corrupt party Pi during or after this step, the simulator
can patch the commitments and the reliably broadcasted encryption and give this
information as a witness to the Pat algorithm who will then patch the zero-knowledge
proof. The adversary is given the patched internal state of Pi which is computation-
ally indistinguishably distributed from the one in the real execution.

3. As the ACS protocol is run honestly and since the ACS property Q is not susceptible
to changes of the ciphertexts and the zero-knowledge proofs up to computational
indistinguishability, we have that the distributions remain computationally indistin-
guishable. If the adversary corrupts Pi during or after this step, its view is compu-
tationally indistinguishably distributed from the real execution since this was true
after the previous step and this step is run honestly and can be efficiently simulated
using only information that the adversary knows (reduction).

3. Since the simulator evaluates the circuit as described in the protocol, we have the fol-
lowing. For gates of type a), it is easy to see that they maintain computational indis-
tinguishability. For gates of type b), we can conclude by the semantic security of the
encryption scheme. For gates of type c) and d), we can reduce the computational indis-
tinguishability of the distribution of the output to the computational indistinguishability
of the distributions of the inputs. Finally, for gates of type e), we obtain computational
indistinguishability by Proposition 5. If the adversary decides to corrupt a party during
the evaluation of a gate, then the simulator can give computationally indistinguishably
distributed information for gates of type a)–d) because it acts honestly on behalf of
honest parties and by reduction to the computational indistinguishability of the distri-
butions of the inputs to the considered gate. For gates of type e) we can conclude by
Proposition 5 and because the simulator acts honestly on behalf of honest parties.
The outputs of the circuit Encpk(s) and Encpk(ŝ) are computationally indistinguishably
distributed because the inputs and outputs to all types of gates are computationally
indistinguishably distributed.

4. Again, by the equivocability property, the simulator of the commitment scheme gives
a computationally indistinguishably distributed simulation of the commitments from
honest parties. Furthermore, the simulator acts honestly on behalf of honest parties
in commit protocols that allow a corrupted party to commit to a value towards an
honest party. Thus, this step is computationally indistinguishably distributed from the
corresponding one in the protocol. If the adversary corrupts a party Pi during or after this
step, the simulator can perfectly patch the commitments to r′

i (which is uniformly random
like ri in the protocol) using the adaptiveness property and give the computationally
indistinguishably distributed information to the adversary.

5. 1. By the same reasoning as in step 2.1, this step is computationally indistinguishably
distributed from the one in the real execution (use Proposition 3 and semantic se-
curity of the encryption scheme). Furthermore, if the adversary decides to corrupt
a party Pi during or after this step, the Patch property of the encryption scheme
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ensures that the simulator can perfectly patch the internal state of Pi to r′
i (as in

step 2.1, the randomness learned in the patching of the reliably broadcasted value to
r′

i in the protocol and in the simulation is distributed identically, namely uniformly).
Hence, the simulator can give indistinguishably distributed information about the
state of Pi in the reliable broadcast with Pi as sender to the adversary. Moreover,
the simulator executes all reliable broadcasts honestly on behalf of honest parties
and hence, it can provide the adversary with computationally indistinguishably dis-
tributed information about the state of Pi in all reliable broadcasts.

2. The same reasoning as in step 2.2. applies.
3. The same reasoning as in step 2.3. applies.

6. By the same reasoning as in step 5 (use semantic security of the encryption scheme,
Proposition 3, the zero-knowledge property of the proof given and reduction), this step
is computationally indistinguishably distributed from the corresponding step in the real
execution. It remains to argue that if the adversary decides to corrupt party Pi during or
after this step, the simulator can give it computationally indistinguishably distributed
information about the state of Pi.

• If i ∈ I ′, then by the reasoning in step 5, the simulator can provide computationally
indistinguishably distributed information about the state of Pi up to (and including)
step 5 (since ri = r′

i for i ∈ I ′, we have that ri is uniformly random like in the real
execution of the protocol). Since step 6 is executed honestly and can be efficiently
simulated using only information that the adversary knows (reduction), the distribu-
tion of the information given in the simulation is computationally indistinguishable
to the one in the real execution.

• If i /∈ I ′, we first want to show that, as in the real execution, the ri that the adver-
sary receives from the simulator is uniformly random conditioned on the rl’s of the
adversary. Let RS

l be the random variables capturing the values of the rl’s in step 6
of the simulation for l ∈ {1, . . . , n}. With this notation, we want to show that the
random variable RS

i conditioned on RS
l for Pl ∈ C is uniformly distributed for all

Pi /∈ C.
For an index set Î ⊆ {0, . . . , n} of size t + 1 and for values {ak}k∈Î , we denote
the unique polynomial of degree less than or equal to t passing through all points
{(αk, ak)k∈Î\{0pk}} and (0pk, a0) by p{ak}k∈Î

.
Since the adversary was still able to corrupt Pi, this implies there exists at least one
honest party Pj which is still honest such that j ∈ I ′ (otherwise the adversary could
corrupt at least t + 1 parties). Let us denote the set of indices of honest parties in I ′

by J . By the reasoning above, we have J ̸= ∅.
Let now a, b, {vk}Pk∈S′\C be arbitrary values in the message space. We will show that

Pr[RS
i = a | RS

k = vk for Pk ∈ S′ ∩ C] = Pr[RS
i = b | RS

k = vk for Pk ∈ S′ ∩ C].

This equality implies that ri is uniformly random conditioned on all rl’s of the ad-
versary because the simulator defines ri independently of rl for Pl ∈ C\S′.
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We have

Pr[RS
i = a | RS

k = vk for Pk ∈ S′ ∩ C]

=
∑

{ak}k∈J

Pr[RS
i = a | (RS

k = vk for Pk ∈ S′ ∩ C)

∧ (RS
k = ak for k ∈ J)] · Pr[RS

k = ak for k ∈ J ]

=
∑

{ak}k∈J

1{a=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)} · Pr[RS

k = ak for k ∈ J ]

=
∑

{ak}k∈J

a=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)

Pr[RS
k = ak for k ∈ J ]

=
∑

{ak}k∈J

a=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)

(
1

|Rpk|

)|J |

where on the second line we used the law of total probability and where 1A is the
indicator random variable for an event A. The second equality follows from the fact
that RS

i is determined by {RS
k }k∈I′ and the last equality holds because by definition of

the simulator, RS
k is uniformly distributed in the message space Rpk and independent

of all RS
l for all k, l ∈ J . By the same reasoning, we have

Pr[RS
i = b | RS

k = vk for Pk ∈ S′ ∩ C] =
∑

{ak}k∈J

b=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)

(
1

|Rpk|

)|J |

.

The sets A = {{ak}k∈J : a = ps,{ak}k∈J ,{vk}k∈I′\J
(αi)} and B = {{ak}k∈J : b =

ps,{ak}k∈J ,{vk}k∈I′\J
(αi)} have the same cardinality, namely |A| = |B| = N |J |−1 > 1

(remember that we argued above that |J | > 1). Hence,

∑
{ak}k∈J

a=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)

(
1

|Rpk|

)|J |

=
∑

{ak}k∈J

b=ps,{ak}k∈J ,{vk}k∈I′\J
(αi)

(
1

|Rpk|

)|J |

and thus,

Pr[RS
i = a | RS

k = vk for Pk ∈ S′ ∩ C] = Pr[RS
i = b | RS

k = vk for Pk ∈ S′ ∩ C].

We can conclude that the distribution of ri that the adversary sees in the simulation
is indistinguishable from the distribution in the real execution.
Hence, by the reasoning in step 4, the simulator can provide computationally in-
distinguishably distributed information about the state of Pi up to (and including)
step 4 (the commitments in step 4 are patched to ri = p(αi) instead of r′

i, but the
reasoning to show computational indistinguishability is the same). Furthermore, by
the same reasoning as in step 5 for the case where the adversary corrupts Pi and
the simulator patches the internal state of Pi to r′

i, we have that the simulator can
patch the internal state of Pi for the execution of step 5 to ri = p(αi). As step 6 is
executed honestly with respect to ri and can be efficiently simulated using only in-
formation that the adversary knows (reduction), the simulator can now provide the
adversary with information about the internal state of Pi that is computationally
indistinguishably distributed from the one in the real execution.
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7. If the adversary decides to corrupt a party Pi during or after this step, the simulator
can give computationally indistinguishably distributed information about the internal
state of Pi to the adversary because it executes the step honestly and the step can be
efficiently executed using only information that the adversary knows (reduction).

8. Since in the simulation R is an encryption of 1pk and K is an encryption of 0pk, now
EncR

pk(ri) are encryptions of ri for all Pi ∈ Ŝ (ewnp) and Encpk(ŝ) is an encryption of
0pk. Hence, Encpk(s)′ is an encryption of ∑i∈I λi ·pk ri and thus, Encpk(s)′ and Encpk(ŝ)
do not encrypt the same value anymore. By construction in step 6 of the simulator∑

i∈I λi ·pk ri = s and thus, Encpk(s)′ is an encryption of s. Note that ewnp the output s
of the ideal functionality is identically distributed to the message underlying the output
of the circuit in the real execution. This is true because the circuit is correct and because
the messages underlying the encrypted inputs of corrupted parties to the circuit in the
real execution and the inputs given to the ideal functionality in the simulation are iden-
tically distributed ewnp (by the extraction property of UC commitment schemes and
by computational indistinguishability of the real execution and the simulation up to the
step when corrupted parties give input). Hence, we have that the distributions of the de-
crypted value in the simulation and the real execution are identical ewnp. Furthermore,
by the reasoning in the previous steps, we know that the distributions of Encpk(s)′ are
computationally indistinguishable in the real execution and the simulation. Thus, by Re-
mark 2, the communication in this step is computationally indistinguishably distributed
in the real execution and the simulation. Hence, we can conclude that the step maintains
computational indistinguishability. If the adversary decides to corrupt Pi during or after
this step, then the simulator can give computationally indistinguishably distributed in-
formation about the internal state of Pi in this step to the adversary thanks to Remark
2 and because the simulator runs the decryption protocol honestly on behalf of Pi.

9. Since the secret input s of the parties is identically distributed in the real execution
and in the simulation of this step (ewnp) and since the simulator acts honestly on be-
half of honest parties, computational indistinguishability is maintained. If the adversary
decides to corrupt a party Pi during or after this step, the simulator can give computa-
tionally indistinguishably distributed information about the internal state of Pi in this
step because the simulator executes the step honestly on behalf of Pi.

H Proof of Lemma 2

We will prove each property separately. The proof is inspired by [BTH08], [HN06] and [BHN08]
and analogous to the proof of Lemma 1 (see Appendix E). In this whole proof, an honest party
is a party that remains honest during the whole execution of the protocol. Furthermore, we use
uppercase letters to denote ciphertexts and the corresponding lowercase letters to denote the
plaintexts underlying these ciphertexts.

– Termination: Since all honest parties terminate the Πκ,Q
VACS protocol and the Πκ,Q′

VACS protocol
ewnp, we can immediately conclude that they terminate the WeakTriples protocol ewnp and
output ℓ triples.

– Consistency: This property holds by consistency of the VACS primitive.
– Correctness: By the soundness of zero-knowledge proofs, we know that for every element

{(Bk
j , Ck

j , pk
2,j)}k∈{1,...,ℓ} in S′, the plaintext underlying Ck

j is the multiplication of the
plaintexts underlying Bk

j and Ak for all k ∈ {1, . . . , ℓ}. By definition of Bk and Ck for
k ∈ {1, . . . , ℓ}, we can directly conclude that the plaintext underlying Ck is the multiplica-
tion of the plaintexts underlying Bk and Ak for all k ∈ {1, . . . , ℓ}. Hence, the output triples
are correct.

– Secrecy: We start by showing that the plaintexts underlying Ai are unknown to the adversary
for all i ∈ {1, . . . , ℓ}. By Theorem 2, we have that ewnp there is at least one honest party
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Ph’s input {(Ak
h, pk

1,h)}k∈{1,...,ℓ} in S. Let i be an arbitrary index in {1, . . . , ℓ}. By definition
of Ai we have Ai = Ai

h

⊕
j : {(Ak

j ,pk
1,j)}k∈{1,...,ℓ}∈S\{(Ak

h
,pk

1,h
)}k∈{1,...,ℓ}

Ai
j . The guarantees of the

VACS primitive and the definition of Q ensure that for every {(Ak
j , pk

1,j)}k∈{1,...,ℓ} ∈ S, pk
1,j is

a valid zero-knowledge proof of plaintext knowledge for Ak
j for all k ∈ {1, . . . , ℓ}. Therefore,

soundness of zero-knowledge proofs implies that with high probability the adversary knows
the plaintext ai

j underlying Ai
j for all inputs {(Ak

j , pk
1,j)}k∈{1,...,ℓ} ∈ S with Pj corrupted at

the beginning of the VACS protocol. By semantic security, the adversary does not know the
plaintext ai

h underlying Ai
h. Thus, the ai

j ’s from corrupted parties are independent of ai
h and

we can conclude that the plaintext underlying Ai is unknown to the adversary. Since i was
an arbitrary index in {1, . . . , ℓ}, this holds for all i ∈ {1, . . . , ℓ}.
The reasoning that the plaintexts underlying Bi are unknown to the adversary for all i ∈
{1, . . . , ℓ} is analogous.
To show that the adversary does not have more information about the plaintexts underlying
Ci than that they are the multiplication of the plaintexts underlying Ai and Bi for all
i ∈ {1, . . . , ℓ}, we observe the following. Let i be an arbitrary index in {1, . . . , ℓ} and let
{(Bk

j , Ck
j , pk

2,j)}k∈{1,...,ℓ} be any element of S′. If Pj is corrupted before it is told to erase bi
j ,

then the adversary knows bi
j with high probability (by the guarantees of the VACS protocol,

the definition of Q′ and soundness of zero-knowledge proofs). However, by semantic security
and because ai is unknown to the adversary (see above), the adversary still does not know
anything more about ci

j than that it is the multiplication of bi
j and the unknown plaintext

ai underlying Ai (note that since {(Bk
j , Ck

j , pk
2,j)}k∈{1,...,ℓ} is in S′, the guarantees of the

VACS protocol, the definition of Q′ and soundness of zero-knowledge proofs ensure that
with high probability Ci

j is indeed the multiplication of the plaintexts underlying Bi
j and

Ai). If Pj remains honest during the whole execution of the protocol or is corrupted after it
already erased bi

j , then by semantic security, the adversary does not have more information
about ci

j than that it is the multiplication of the plaintexts underlying Bi
j and Ai which

are both unknown to the adversary. Hence, since Ci =
⊕

j : {(Bk
j ,Ck

j ,pk
2,j)}k∈{1,...,ℓ}∈S′ Ci

j , Bi =⊕
j : {(Bk

j ,Ck
j ,pk

2,j)}k∈{1,...,ℓ}∈S′ Bi
j and all Bi

j ’s are only used to compute Bi, we can conclude
that the adversary does not know anything about the plaintext underlying Ci but that it is
the multiplication of the plaintexts underlying Ai and Bi. Finally, since i was an arbitrary
index in {1, . . . , ℓ}, we can conclude that Secrecy holds.

– Computational Uniform Randomness and Independence: These two properties can be proven
using similar arguments as for the Secrecy property and a similar reasoning as for the
multiplication protocol in [DN03].

– Privacy: It is easy to see that this property holds because the simulator SWeakTriples can
perfectly imitate the honest parties (no party has any secret input to this protocol). Hence,
also if the adversary decides to corrupt any party during the execution of the protocol, the
simulator can give perfectly indistinguishably distributed information to the adversary.

– Communication complexity: The parties only communicate in the executions of the Πκ,Q
VACS

and the Πκ,Q′

VACS protocols in steps 2 and 4 of the WeakTriples protocol. Hence, by Theorem
2 and since the size of the inputs of the parties in the Πκ,Q

VACS and the Πκ,Q′

VACS protocols is
O(ℓκ), we have that the communication complexity is O(ℓκ3n + κ5n).
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