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Abstract. Asynchronous verifiable secret sharing (AVSS) protocols pro-
tect a secret that is distributed among n parties. Dual-threshold AVSS
protocols guarantee consensus in the presence of t Byzantine failures and
privacy if fewer than p parties attempt to reconstruct the secret. In this
work, we construct a dual-threshold AVSS protocol called Haven that
is optimal along several dimensions. First, it is a high-threshold AVSS
scheme, meaning that it is a dual-threshold AVSS with optimal parame-
ters t < n/3 and p < 2n/3. Second, it has O(n2) message complexity, and
for large secrets it achieves the optimal O(n) communication overhead,
without the need for a public key infrastructure or trusted setup. While
these properties have been achieved individually before, to our knowledge
this is the first protocol that achieves all of the above simultaneously. The
core component of Haven is a high-threshold AVSS scheme for small se-
crets based on polynomial commitments that achieves O(n2 log(n)) com-
munication overhead, as compared to prior schemes that require O(n3)
overhead with t < n/4 Byzantine failures or O(n4) overhead for the re-
cent high-threshold protocol of Kokoris-Kogias et al (CCS 2020). Using
standard amortization methods based on erasure coding, we can reduce
the communication complexity to O(n|s|) for a large secret s.

1 Introduction

Broadcast protocols are a core component in the design of fault-tolerant systems;
for example, they enable replica servers to coordinate their actions in state ma-
chine replication, and they contribute toward the finality of cryptocurrencies.
Reliable broadcast protocols between n servers ensure both that a message is
delivered to all servers and that the delivered messages are identical. While there
exist many broadcast protocols that assume strict or partial synchrony (i.e., an
upper bound on message delivery times), asynchronous reliable broadcast proto-
cols do not rely on any timing assumptions and are inherent more robust against
denial-of-service and performance attacks. Bracha’s asynchronous reliable broad-
cast protocol has O(n2) total message complexity and achieves reliability for up
to t < n/3 Byzantine failures [11], which is optimal for protocols without setup
that provide correctness, liveness, and agreement [24].

Asynchronous verifiable secret sharing (AVSS) protocols [19] introduce a
fourth guarantee: privacy of the message against any coalition of up to p servers
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comprising the t Byzantine servers plus p − t honest servers that unintention-
ally cooperate with the adversary. Combining asynchronous broadcast with a
Shamir secret sharing scheme [36] with threshold p, AVSS protocols proceed in
two phases: a sharing phase in which the initial holder or dealer of a secret mes-
sage s distributes secret shares of s to all servers, and a reconstruction phase
in which any collection of p+ 1 servers can recover s. This is the asynchronous
version of verifiable secret sharing [22] because correct reconstruction is required
even against a malicious dealer. While many AVSS protocols consider p = t, a
subset called dual-threshold AVSS protocols consider p > t.

In this paper, we explore high-threshold asynchronous verifiable secret sharing
(HAVSS) protocols, which are a special case of dual-threshold AVSS that can
achieve any possible consensus threshold t < n/3 and privacy threshold p < n−t.
These match the known upper bounds for consensus [34] and privacy (the honest
servers must be able to reconstruct even if the Byzantine servers refuse to do so).
HAVSS enables the generation of an asynchronous fair coin tossing protocol that
can be used to remove the trusted dealer assumption needed in many distributed
computations, such as efficient asynchronous Byzantine agreement, distributed
key generation, threshold signatures, and threshold encryption [14–16,28].

Our contributions. In this work, we contribute an HAVSS protocol called Haven
that is optimal along several dimensions:

– Haven achieves any consensus threshold of t < n/3 and privacy threshold
of p < n− t.

– Haven has O(n2) message complexity during sharing and reconstruction.
Concretely, every server sends 2 messages to each party during sharing (3
for the dealer), and 1 message to each party during reconstruction.

– For a short secret s sampled randomly from a finite field, its communication
overhead (i.e., number of field elements sent) is O(n2 log n) without trusted
setup. If trusted setup is permissible, this can be reduced to O(n2) in some
cases.

– For a long secret s, its communication complexity is O(n|s|).
– Haven does not require trusted setup or a public key infrastructure (PKI).

All of these parameters improve upon the recent breakthrough by Kokoris-
Kogias et al. [28], the first HAVSS protocol with optimal resilience. Our com-
munication complexity even beats many existing AVSS schemes that were not
striving for dual-threshold. Table 1 shows a comparison of our work to several
related protocols, which we describe in more detail below.

Why is HAVSS possible? Suppose there are n = 3t+ 1 parties, where the dealer
is one of the t Byzantine servers, and the honest servers are split into two camps:

– t+1 informed servers that always receive valid messages from the Byzantine
servers (i.e., what honest servers would have sent), and

– t clueless servers that never receive any messages from Byzantine servers.
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threshold complexity avoiding setup crypto
Works dual high message comm. amortized rounds no trust? no PKI? assumption

Cachin et al. [15] 3 7 O(n2) O(κn3) O(κn2) 3 3 3 DL

Backes et al. [2] 7 7 O(n2) O(κn2) O(κn2) 3 7 3 t-SDH

Kate et al. [25] 7 7 O(n2) O(κn3) O(κn) > 4 7 7 t-SDH

Kokoris-Kogias
et al. [28]

3 3 O(n2) O(κn4) O(κn3) 4 3 7 DL

Haven option 1 3 3 O(n2) O(κn2) O(κn) 3 7 3 t-SDH

Haven option 2 3 3 O(n2) Õ(κn2) O(κn) 3 3 3 DL + ROM

Table 1. Comparison of our Haven protocol with several prior AVSS protocols. Note
that Haven’s communication complexity, computational assumption, and reliance on
trusted setup depend on the polynomial commitment scheme used; the contents of this
table are predicated on the use of Bulletproofs [13] (cf. Sec. 3.3).

One might wonder: is it even possible to achieve p = 2t privacy? Intuitively, it
seems that we run into a paradox. The informed servers can complete the sharing
phase because they receive valid messages from 2t + 1 servers (i.e., from their
perspective, the clueless servers appear Byzantine). Ergo, the 2t+1 informed and
clueless servers must collectively be able to recover the secret, even if the Byzan-
tine servers refuse to participate in reconstruction. However, the clueless servers
cannot contribute anything meaningful toward the reconstruction because they
have only received messages from the informed servers. Hence, if the t + 1 < p
informed servers can learn the secret with the clueless servers, then they must
have been able to learn the secret without them, breaking privacy.

Fortunately, there is one flaw in the above argument that enables HAVSS
(and which schemes like Haven must exploit): even if the t+ 1 informed servers
collectively possess enough data to learn the secret, they might not actually
transmit this data during reconstruction. Ergo, they might still rely on the clue-
less servers during the actual reconstruction protocol, even if the clueless servers
are relying information that the informed servers collectively know.

Overview of the construction. The core of Haven is a construction for small,
randomly chosen secrets. Like other (dual-threshold) AVSS schemes, it broadly
follows a “two-layer secret sharing” approach. The dealer begins by constructing
a degree p polynomial R that is a Shamir secret sharing with her secret s encoded
at location R(0). We call R the recovery polynomial because the reconstruction
phase consists of each party Pi revealing R(i) so that everyone can interpolate
R and learn the secret. Next for i ∈ [1, n], the dealer constructs the degree t
polynomial Si that is a Shamir secret sharing with the secret encoded at location
R(i) = Si. This creates a diagonal pattern as shown on Fig. 1.

The sharing phase of Haven follows a 3-message (send, echo, ready) format,
just like Bracha’s reliable broadcast. There are two goals that are achieved con-
currently:

– Each party Pi must learn Si, which we call its share polynomial. To do this
privately, the dealer sends each party one share on everyone else’s share



4 Nicolas AlHaddad, Mayank Varia, and Haibin Zhang

Sn(1) Sn(2) ... Sn(i) ... R(n) = 
Sn(n) ...

... ... ... ... ... ... ...

 Si(1) Si(2) ... R(i) = 
Si(i)

... Si(n) ...

... ... ... ... ... ... ...

S2(1) R(2) = 
S2(2) ... S2(i) ... S2(n) ...

R(1) =  
S1(1) S1(2) ... S1(i) ... S1(n) ...

Any p+1 points can reconstruct R
(0) = s

Any t+1 points on Si(x) can be used to recover Si(i) = R(i)
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Column representing shares party i will receive from the dealer

Fig. 1. Overview of the data transmitted during Haven. Each party Pi receives column
i of this matrix from the dealer; note that this includes Si = R(i). If Pi never received
R(i), then t + 1 other parties will send their points on row i, from which Pi can
interpolate the polynomial Si and learn the value Si(i) = R(i). At the reconstruction
stage, any p + 1 points on the polynomial (1 per party) suffice to interpolate R and
learn the secret s = R(0).

polynomial, which they can disperse in the echo stage. Polynomial commit-
ments (and their succinct proofs/arguments) enable each party Pi to verify
the integrity of everyone else’s claimed point on her share polynomial.

– The parties must collectively reach consensus about which share polynomials
to use (against a Byzantine dealer). To do this, the dealer produces a vector
commitment of the n+1 polynomial commitments and uses Bracha’s reliable
broadcast to disseminate this value (which is not sensitive).

Because we provide each server with 1 share on everyone else’s Si, observe that
t + 1 servers collectively hold enough data to reconstruct all polynomials and
recover the secret (as stated above). This is acceptable because HAVSS only
aims to protect against t Byzantine adversaries.

Unlike previous (dual-threshold) AVSS constructions, Haven does not en-
compass R and Si into a (larger) bivariate polynomial. Instead, we directly check
for consistency of these univariate polynomials by designing a polynomial com-
mitment scheme that is:

– Homomorphic, in order to construct a succinct proof that the polynomials
intersect at the correct point (i.e., that R(i)− Si(i) = 0).

– Degree-revealing, meaning that its proofs demonstrate an upper bound on
the degree of the committed polynomial (cf. Def. 4) so that parties can
consistently reconstruct it .
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– Deterministic, so that once party Pi learns Si, she can now prove the value at
new points. This property allows Pi to prove that she is sending the correct
value for Si(i) = (R(i)) during reconstruction.

The communication complexity of Haven is dominated by the transmission of a
polynomial commitment between each pair of parties. These commitments can
be constant-sized with trusted setup, or logarithmic in size otherwise, which
leads to the two options shown in Table 1.

Finally, we extend Haven into an HAVSS scheme for large, arbitrarily-chosen
secrets with linear communication overhead. The idea is simple: choose a short,
ephemeral secret key k, and engage in (1) the above HAVSS protocol to share k
and (2) an asynchronous verifiable information dispersal protocol [17] to dissem-
inate the ciphertext Enck(s) without concern for privacy. The linear overhead
to disseminate the ciphertext dominates the cost of HAVSS for secrets of length
|s| = Ω(n log n) (this can be reduced to |s| = Ω(n) with trusted setup).

Related work. Several AVSS protocols were proposed in the 1990s with uncondi-
tional security [5,18,19], but at the expense of huge communication complexity.
The first practical AVSS was achieved by Cachin et al. [15] using computa-
tional assumptions (namely, the discrete logarithm assumption). Their protocol
achieves an optimal message complexity of O(n2) and resilience of n > 3t, but
their O(κn3) communication complexity is suboptimal. Cachin et al. [15] also
constructed the first dual-threshold AVSS with consensus t < n/4 and privacy
p < n/2, with the same message and communication complexity as above.

Recently, Kokoris-Kogias et al. [28] constructed the first HAVSS protocol.
As described above, breaking the privacy barrier from p < n/2 to p < 2n/3
is a challenging accomplishment. Nevertheless, the improved privacy comes at
a price of O(κn4) communication complexity with 4 rounds of communication,
plus the need for a public key infrastructure (PKI) so that any server can pass
along digitally-signed messages from other senders to their intended destination.
Kokoris-Kogias et al. use their HAVSS in a black-box manner to construct ran-
domness beacons, distributed key generation, threshold signatures, and more;
using Haven reduces the communication of those constructions too.

Several other works focused on providing linear (amortized) communication
overhead of AVSS for large secrets, including Cachin and Tessaro [17] and more
recently Basu et al. [4] and Kate et al. [25]. The latter two works use polyno-
mial commitments [26] that require a trusted setup to achieve an optimal com-
munication complexity of O(κn), but for short messages their communication
complexity is O(κn3) in the worst case.

Our construction makes extensive use of polynomial commitments, which
were introduced by Kate et al. [26] and subsequently used by Backes et al. [2]
to design an AVSS protocol (with a single threshold). We also leverage recent
works that construct polynomial commitments without trusted setup; we use
Bulletproofs [13] in our construction, but our techniques are amenable to other
polynomial commitment schemes (e.g., [9, 10,12]).
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Finally, we focus exclusively on worst-case metrics for message and (amor-
tized) communication complexity in this paper. There exist several works that
contain a “fast path” and “slow path” approach whose typical communication
complexity is comparable to Haven and can provide benefits like lower com-
putational cost or higher thresholds for some security properties, even if the
worst-case metrics are identical or worse (e.g., [1, 3, 24,33]).

Organization. The rest of this paper is organized as follows. In Section 2, we
define (high-threshold) asynchronous verifiable secret sharing as well as many of
the building blocks that we need in this work. In Section 3, we construct Haven
for “short” secrets that are approximately equal in length to the security param-
eter. Finally, in Section 4, we amortize Haven to achieve lower communication
complexity for secrets that are substantially larger than the security parameter.

2 Definitions

In this section, we provide definitions for polynomial and vector commitments
that we will use within Haven as well as a definition for asynchronous verifi-
able secret sharing. In the definitions below, κ denotes the security parameter,
“negligible” refers to a function vanishing faster than any inverse polynomial,
“overwhelming” refers to 1− ε for a negligible function ε, and PPT is an abbre-
viation for probabilistic polynomial time.

2.1 Commitment schemes

In this work, we consider non-interactive commitment schemes for polynomials
and vectors. We begin by defining a polynomial commitment scheme [26]. In this
work, we exclusively consider schemes that are homomorphic, and our definition
is similar to the notion of “linear combination schemes” from Boneh et al. [8]
except that we restrict our attention to deterministic schemes.

Definition 1. A polynomial commitment scheme P comprises four algorithms
Setup, Com, Eval, Verify and an optional fifth algorithm Hom that act as follows:

– Setup(1κ,F, D)→ pp is given a security parameter κ, a finite field F, and an
upper bound D on the degree of any polynomial to be committed. It generates
public parameters pp that are required for all subsequent operations.

– Com(pp, φ(x), d) → φ̂ is given a polynomial φ(x) ∈ F[x] of degree d ≤ D.

It outputs a commitment string φ̂ (throughout this work, we use the hat
notation to denote a commitment to a polynomial).

– Eval(pp, φ, i)→ 〈i, φ(i), w〉 is given a polynomial φ as well as an index i ∈ F.
It outputs a 3-tuple containing i, the evaluation φ(i), and witness string wi.

– Verify(pp, φ̂, y, d) → True/False takes as input a commitment φ̂, a 3-tuple
y = 〈i, j, w〉, and a degree d. It outputs a Boolean.
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– Hom(pp, φ̂1, φ̂2, a)→ ̂φ1 + aφ2 takes in commitments to two polynomials φ1
and φ2 of degree at most D, as well as a field element a ∈ F. Outputs the
commitment Com(pp, φ,max{d1, d2}) to the polynomial φ = φ1 + aφ2.

Informally, the Verify method of a polynomial commitment scheme should return
True if and only if φ(i) = j, w is a witness previously created by Eval, and the
degree of φ is at most d. We formalize this guarantee in Definitions 2-5 below.

Definition 1 is mostly similar to prior works that have defined and constructed
polynomial commitments [9,10,13,25,26]. There are three differences. First, the
verifier learns an upper bound on the degree of the polynomial. Second, we
restrict our attention to deterministic Com algorithms, and consequently the
witness generation process in Eval is well-specified purely from the polynomial
(i.e., without requiring the randomness string used earlier in the Com stage).
These changes have consequences for our security definitions (see Definitions 4
and 5) and constructions of polynomial commitments (see Section 3.3). Third,
we don’t include a method to open the entire polynomial φ; this is without loss
of generality since revealing φ is equivalent to revealing enough evaluations to
interpolate φ.

There are two predominant styles of security definitions for polynomial com-
mitments: game-based definitions that resemble the binding and hiding proper-
ties of traditional commitments [25, 26], or simulation-based definitions in the
vein of zero knowledge proofs of knowledge [9, 10,13].

The weaker indistinguishability style suffices for this work, and we use it
in the definitions below. Definitions 2, 3, and 5 are nearly identical to their
counterparts in [25,26], whereas Definition 4 is a new security guarantee that we
require in this work (cf. Section 3.3 for constructions). All of these definitions
apply equally whether or not the commitment scheme is homomorphic.

Definition 2 (Strong correctness). Let pp← Setup(1κ,F, D). For any poly-

nomial φ(x) ∈ F[x] of degree d with associated commitment φ̂ = Com(pp, φ, d):

– If d ≤ D, then for any i ∈ F the output y ← Eval(pp, φ̂, i) of evaluation is

successfully verified by Verify(pp, φ̂, y, d).
– If d > D, then no adversary can succeed with non-negligible probability at

creating a commitment φ̃ that is successfully verified at d+1 randomly chosen
indices.

Definition 3 (Evaluation binding). Let pp← Setup(1κ,F, D). For any PPT
adversary A(pp) that outputs a commitment φ̃, a degree d, and two evaluations
y = 〈i, j, w〉 and y′ = 〈i′, j′, w′〉, there exists a negligible function ε(κ) such that:

Pr[(φ̃, y, y′, d)← A(pp) : i = i′∧j 6= j′∧Verify(pp, φ̃, ỹ, d)∧Verify(pp, φ̃, ỹ′, d)] < ε(κ).

Definition 4 (Degree binding). Let pp ← Setup(1κ,F, D). For any PPT
adversary A that outputs a polynomial φ of degree deg(φ), evaluation ỹ, and
integer d, there exists a negligible function ε(κ) such that:

Pr[(φ, ỹ, d)← A(pp), φ̂ = Com(pp, φ,deg(φ)) : Verify(pp, φ̂, ỹ, d)∧deg(φ) > d] < ε(κ).
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Definition 5 (Hiding for random polynomials). Let pp← Setup(1κ,F, D),
d be an arbitrary integer less than D, and I ⊂ F be an arbitrary set of indices
with |I| ≤ d. Randomly choose a φ ← F[x] of degree d and construct its com-

mitment φ̂ = Com(pp, φ, d). For all PPT adversaries A, there exists a negligible
polynomial ε(κ) such that:

Pr[(x, y)← A(pp, φ̂, {Eval(pp, φ, i)}i∈I) : y = φ(x) ∧ x /∈ I] < ε(κ),

where the probability is taken over A’s coins and the random choice of φ.

In words, the hiding definition states that even given evaluations at the indices
in I, no adversary can find a new point on φ with non-negligible probability.
Note that the hiding property is only achievable for randomly-chosen φ because
we defined Eval deterministically.

Finally, we provide the syntax for (static) vector commitments, which are
succinct encodings of finite, ordered lists in such a way that one can later open
a value at a specific location [20,31]. (We use 0-indexing throughout this work.)

Definition 6. A static vector commitment scheme V = (vSetup, vCom, vGen,
vVerify) comprises four algorithms that operate as follows:

– vSetup(1κ, U, L)→ p̄p is given a security parameter κ, a set U , and a max-
imum vector length L. It generates public parameters p̄p.

– vCom(p̄p,v) → C is given a vector v ∈ U ` where ` ≤ L. It outputs a
commitment string C.

– vGen(p̄p,v, i)→ wi is given a vector v and an index i. It outputs a witness
string wi.

– vVerify(p̄p, C, u, i, w) → True/False takes as input a vector commitment C,
an element u ∈ U , an index i, and a witness string we. It outputs a Boolean
value that should only equal True if u = v[i] and w is a witness to this fact.

This is a special case of a polynomial commitment scheme, and indeed through-
out this work we assume that vector commitments are instantiated using our
polynomial commitments (see Section 3.3) although other instantiations are pos-
sible like Merkle trees [32]. Vector commitments also have analogous binding and
hiding security guarantees to Definitions 2-5 [20,31]. Without loss of generality,
we can consider U = {0, 1}∗ by hashing strings before running the vector com-
mitment algorithms.

2.2 Dual-threshold asynchronous verifiable secret sharing

In this section, we define dual-threshold asynchronous verifiable secret sharing
(DAVSS) protocols that are the focus of this work. Our definition is consistent
with the works of Cachin et al. [15] and Kokoris-Kogias et al. [28]. Recall that,
informally, an AVSS scheme is an interactive protocol between n servers that
allows one server (the “dealer”) to split a secret among all servers in such a
way that they obtain consensus over the shared secret while also protecting the
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privacy of the secret until reconstruction time, even though some of the servers
are adversarial. The term “dual-threshold” means that the number of parties
required for reconstruction of the secret may be different than the number of
Byzantine failures that can be withstood.

Definition 7. A (n, p, t) dual-threshold asynchronous verifiable secret sharing
(DAVSS) protocol involves n servers interacting in two stages.

– Sharing stage. This stage begins when a special party, called the “dealer” Pd,
is activated on an input message of the form (ID.d, in, share, s). Here, the
value ID.d is a tag identifying the session, and s is the dealer’s secret. Pd be-
gins the protocol to share s using ID.d. A server Pi has completed the sharing
for ID.d when it generates a local output of the form (ID.d, out, shared).

– Reconstruction stage. After server Pi has completed the sharing stage, it may
start reconstruction for ID.d when activated on a message (ID.d, in, reconstruct).
Eventually, the server halts with output (ID.d, out, reconstructed, zi). In this
case, we say that Pi reconstructs zi for ID.d.

An (n, p, t)-DAVSS satisfies the following security guarantees in the presence of
an adversary A who can adaptively and maliciously corrupt up to t servers.

– Liveness. If A initializes all honest servers on a sharing ID.d, delivers all as-
sociated messages, and the dealer Pd is honest throughout the sharing stage,
then with overwhelming probability all honest servers complete the sharing.

– Privacy. If an honest dealer shared s using ID.d and at most p − t honest
servers started reconstruction for ID.d, then A has no information about s.

– Agreement. Provided that A initializes all honest servers on a sharing ID.d
and delivers all associated messages: (1) if some honest server completes the
sharing for ID.d, then all honest servers complete the sharing for ID.d, and
(2) if all honest servers start reconstruction for ID.d, then with overwhelming
probability every honest server Pi reconstructs some si for ID.d.

– Correctness. Once p+ 1 honest servers have completed the sharing for ID.d,
there exists a fixed value z ∈ F such that the following holds with overwhelm-
ing probability: (1) if the dealer shared s using ID.d and is honest throughout
the sharing stage, then z = s and (2) if an honest server Pi reconstructs zi
for ID.d, then zi = z.

A high-threshold asynchronous verifiable secret sharing (HAVSS) protocol is a
(n, p, t)-DAVSS that supports any choice of t < n/3 and p < n− t.

3 Haven for Short, Uniformly Random Secrets

In this section, we show how to use polynomial commitments to construct an
HAVSS protocol called Haven for a short secret s that is uniformly sampled
from a finite field F. Then, we demonstrate that our construction achieves all the
security properties for an HAVSS. Finally, we show how to modify two existing
polynomial commitment schemes so that they meet our Definitions 2-5.
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3.1 Construction

Like all AVSS protocols, Haven proceeds in two phases: a sharing phase in
which the dealer distributes shares of her secret s, and a reconstruction phase
in which the servers collectively reconstruct the secret. We formally present the
two phases of Haven in Algorithms 1 and 2, respectively. Here, we present the
concepts behind the construction.

Sharing phase. The sharing phase of Haven follows the same communication
pattern as Bracha’s asynchronous reliable broadcast [11] and the AVSS protocol
of Cachin et al. [15]. First, the dealer transmits a Õ(n)-size send message to all
parties. Then, everyone sends a Õ(1)-size echo and ready messages to all parties.

Lines 1-14 show the dealer’s initial work, culminating in the send message.
This is the most complex part of the protocol, and we describe it in detail.

– In lines 2-4, the dealer samples a degree-p recovery polynomial R and along
with n different degree-t share polynomials S1, . . . , Sn, all in F[x]. They sat-
isfy R(0) , s and Si(i) , R(i), but are otherwise uniformly sampled. Figure
1 pictorially shows the relationships between these polynomials; we stress
that they need not be consistent with any low-degree bivariate polynomial.

– In lines 5-6, the dealer computes polynomial commitments of R and all Si.

– Recall that an evaluation contains one (x, y) coordinate as well as a proof
that this coordinate is on the committed polynomial. In line 8, we form a
vector ySi containing n evaluations, but in a transposed order: this vector
contains the evaluation of one point on each share polynomial S1, . . . , Sn.

– In lines 9-10, we construct the n test polynomials Ti , R − Si along with
evaluations proving that Ti(i) = 0 for all i. This proves consistency between
the share and recovery polynomials, as shown in Figure 1. (Interestingly,
even though we have committed to R, we never evaluate it directly.)

– In lines 11-12, we build the root commitment C; this is a vector commitment
to all of the polynomial commitments. Looking ahead, we will run Bracha’s
reliable broadcast protocol on C, and servers will only believe a polynomial
(commitment) if it can be linked back to C. Abusing notation, we assume
each polynomial commitment contains the witness to its own inclusion in C
(this witness is ignored when running a polynomial Verify check).

– Finally, in lines 13-14, the dealer sends to party Pi the root commitment,
all n + 1 polynomial commitments, one evaluation on everybody’s share
polynomial, and all n evaluations of the test polynomial.

When a party Pi receives the send message from the dealer, it performs
several checks to ensure that the message is internally consistent (lines 16-18):

– All polynomial evaluations received are verifiably part of Sj and Tj .

– The degrees of the Sj and Tj polynomials are at most t and p, respectively.

– The recovery and share polynomials are equal at R(i) = Si(i).

– All polynomial commitments link back to the root commitment.
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Algorithm 1 Sharing phase of Haven, for server Pi and tag ID.d

1: upon receiving (ID.d, in, share, s): . only if party is the dealer Pd

2: randomly choose recovery polynomial R ∈ F[x] of degree p s.t. R(0) = s
3: for i ∈ [1, n] do
4: randomly choose share polynomial Si ∈ F[x] of degree t s.t. Si(i) = R(i)

5: compute R̂ = Com(pp, R, p) . make polynomial commitments
6: compute each Ŝi = Com(pp, Si, t) and let Ŝ = 〈Ŝ1, Ŝ2, . . . , Ŝn〉
7: for i ∈ [1, n] do . evaluate and create witnesses
8: compute yS

i = [Eval(pp, Sj , i) for j ∈ [1, n]] . one point on each Sj

9: compute T̂i = Hom(R̂, Ŝi,−1) . Ti(x) = R(x)− Si(x)

10: compute yT = [Eval(pp, Ti, i) for i ∈ [1, n]] . tests if all Si(i) = R(i)

11: compute C = vCom(p̄p, 〈R̂, Ŝ1, Ŝ2, . . . , Ŝn〉) . root commitment
12: append to R̂ and each Ŝi a witness of inclusion in C at the right location

13: for i ∈ [1, n] do
14: send “ID.d, send, seti” to party Pi, where seti = {C, R̂, Ŝ,yS

i ,y
T }

15: Upon receiving (ID.d, send, setj) from Pd for the first time: . echo stage
16: if all Verify(pp, Ŝj ,y

S
i [j], t) and Verify(pp, T̂j ,y

T [j], p) are true then
17: if R̂ and all Ŝ are in C at the expected locations then
18: if Tj(j) = 0 for all j ∈ [1, n] then . dealer’s message is consistent
19: for j ∈ [1, n] do . send message to each party Pj

20: send “ID.d, echo, infoi,j” to Pj , where infoi,j = {C, Ŝj ,y
S
i [j]}

21: Upon receiving (ID.d, echo, infoj,i) from Pm for the first time: . ready stage
22: if Ŝm is in C at location m and Verify(pp, Ŝm,y

S
i [m], t) = True then

23: if not yet sent ready and received 2t+ 1 valid echo with this C then
24: send “ID.d, ready, C” to all parties . Bracha consensus on C

25: Upon receiving (ID.d, ready, C) from Pm for the first time:
26: if not yet sent ready and received t+ 1 ready with this C then
27: send “ID.d, ready, C” to all parties . Bracha consensus on C

28: if received 2t + 1 ready with this C then
29: wait to receive t+ 1 valid echo with this C . must happen eventually
30: interpolate Si from the t+ 1 valid yS

m[i] in the received echo
31: compute y∗i = Eval(pp, Si, i) . evaluation of Si(i)
32: output (ID.d, out, shared) . locally halt
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Algorithm 2 Reconstruction phase of Haven, for server Pi and tag ID.d

1: Upon receiving (ID.d, in, reconstruct):
2: for j in [1, n] do
3: send (ID.d, reconstruct-share, Ŝj , y

∗
j ) . to Party Pj

4: Upon receiving (ID.d, reconstruct-share, Ŝm, y
∗
m): . from Party Pm

5: if Ŝm in C and Verify(pp, Ŝm, y
∗
m, t) then

6: if received p+ 1 valid reconstruct-share messages then
7: interpolate R from the p+ 1 valid points . assume that R(j) = Sj(j)
8: output (ID.d, out, reconstructed, R(0))

If all checks pass: party Pi sends an echo message to each party Pj containing
what it believes to be the root commitment C (as part of Bracha’s broadcast)
along with two pieces of information about party j’s share polynomial: its com-
mitment Ŝj and the evaluation at one point Sj(i) (to help Pj interpolate the
polynomial). We stress that when party Pi sends an echo message, she may not
yet be able to tell whether her polynomial (commitments) will become the con-
sensus ones, because the Bracha broadcast protocol on C might not be complete.

When party Pi receives an echo message from another party, she will disre-
gard the message if either the received polynomial commitment or evaluation
cannot link back to the received root commitment (all of which may be differ-
ent from her local state from the earlier send message). The remainder of the
protocol proceeds as in Bracha’s broadcast.

Reconstruction phase. If a party Pi completes the sharing and starts the recon-
struction stage, then this party knows the share polynomial Si and a witness
that it links back to the broadcast root commitment. She sends all parties an
evaluation of Si(i) along with the witness linking Si to the root commitment;
observe that Pi can construct this evaluation because the commitment is de-
terministic. Everyone verifies this evaluation and interprets this point as R(i)
instead; this is acceptable because at least t+ 1 honest parties have verified that
R(j) = Sj(j) for all j during the sharing phase (line 18). Given p + 1 valid
messages from other parties, Pi can interpolate R and recover the secret s.

3.2 Analysis

In this section, we prove that our Haven protocol is a high-threshold AVSS.

Theorem 1. Assuming that the underlying polynomial and vector commitment
schemes satisfy Definitions 2-6, then Haven protocol is a high threshold AVSS
with O(n2) message complexity and O(κn2c) communication complexity, where
κ is the security parameter and c is the size of the underlying commitments and
evaluations.

Below, we provide proofs for each of the four security properties in Definition
7 and the efficiency claim.
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Proof (Liveness). If the dealer Pd is honest and all messages are delivered, then
Pd will send everyone the same root commitment, polynomial commitments.
Also, each party receives 1 point on every share polynomial. All of the checks on
lines 16-18 pass, so the honest parties can echo these points, from which everyone
will be able to send ready messages and interpolate their own share polynomial.
If any dishonest party tries to send a malformed commitment or evaluation in
their echo message, then evaluation binding (Def. 3) ensures that it will not link
back to the root commitment, so honest parties will disregard this message.

Proof (Privacy). We focus first on the reconstruction stage, and we assume with-
out loss of generality that the adversary A knows her own share polynomials.
As a result, she knows t points on the recovery polynomial R and will receive
p− t additional points from honest parties. From this information alone, Shamir
secret sharing guarantees that A learns nothing about the secret unless she can
distinguish at least 1 more point on R from random.

Next, we consider the information available to the adversary A during the
sharing stage. The dealer’s send messages give A a total of t evaluations on each
share polynomial Si, but the hiding property (Def. 5) guarantees that this is
insufficient to distinguish any other point on Si from random with non-negligible
probability. The subsequent echo and ready messages are of no help because they
only contain information about A’s share polynomials, not those of other parties.

Proof (Agreement). Suppose that an honest party Pi has completed the sharing
for ID.d. We must show that another (arbitrary) honest Pj will also complete
the sharing.

– Since Pi completed the sharing, she heard 2t + 1 ready messages with the
same root commitment C∗ and have confirmed that the dealer correctly split
the large secret s into proper shares and fingerprinted them correctly in the
root commitment C∗. At least t+1 of those senders are honest and will send
ready messages to everyone. Due to line 27, this will cause all honest parties
to send ready messages if they have not yet done so. Ergo, party Pj will
eventually hear 2t + 1 ready messages with root commitment C∗, thereby
satsifying the conditional on line 28.

– Since Pi completed the sharing, she must have sent a ready message in line 24
or line 27 (this is an xor since honest parties only send one ready message).

– The condition for line 27 cannot be satisfied until t+ 1 parties sent a ready
due to line 24, at least one of whom must be honest (say, party Pm). For
this to occur, party Pm must have observed 2t + 1 echo messages that are
internally consistent and link to the same root commitment C∗.

– At least t+1 of those echo message senders are honest, so they will also send
consistent echo messages to party Pj . Once this happens, Pj can complete
the wait step on line 29. Also, the echo messages contain enough information
for Pj to compute lines 30-31 and complete the sharing.

Next, suppose all honest servers start reconstruction for ID.d (note that there
are at least p+ 1 honest servers). Because these parties completed the sharing,
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they each have a share polynomial that can be linked back to the common root
commitment C∗. Hence, they can construct an evaluation at Si(i) that will be
accepted by others. Once p+ 1 such points are received, each honest server can
recover a secret.

Proof (Correctness). First, assume that an honest dealer shared a secret s. Then,
the share polynomial evaluations at all {Si(i)}i∈[1,n] lie on a degree p polynomial
that will recover s. By the Agreement property, once an honest server completes
the sharing, the parties will have a common root commitment C∗. Thus, the
only way to deviate from a reconstruction of s is to reveal an invalid evaluation
of Si(i), which occurs with negligible probability by evaluation binding (Def. 3).

The second correctness property requires evaluation and degree binding. Even
with a dishonest dealer, still the parties reconstruct the secret using p + 1 of
the n points S1(1), . . . , Sn(n). This reconstruction is unique if and only if that
polynomial is of degree p. Recall that at least t+1 honest parties verified during
the sharing stage that R(j) − Sj(j) = 0 for all j, where this polynomial is of
degree p (line 18). Evaluation binding ensures that the Si(i) evaluations revealed
during reconstruction match the values tested earlier, and degree binding ensures
that the points lie on a degree p polynomial as desired.

Proof (Efficiency). The protocol achieves a message complexity ofO(n2) because
every party sends n echo, ready, and reconstruct-share messages (plus n send
messages for the dealer). Also assuming a field size |F| = O(κ), every stage of
Haven has O(κn2c) communication complexity. In the send stage the dealer
sends n messages of size O(κnc), and in all other stages each party sends n
messages of size O(κc).

3.3 Constructing the Underlying Commitments

To complete our Haven construction for short secrets, it remains only to con-
struct deterministic polynomial commitment schemes that satisfy Definitions
2-5 for random polynomials with short commitments and evaluations. In this
section, we present two such constructions. The first construction is based on
Bulletproofs [13], and it provides constant-size commitments and logarithmic-
size evaluations without trusted setup. The second construction is based on the
scheme of Kate et al. [26], and its commitments and evaluations are constant-
sized at the expense of requiring trusted setup.

Deterministic Bulletproofs. Bulletproofs [13] are constant-sized vector commit-
ments that support logarithmic-sized arguments of the result of an inner product
operation applied to two (committed) vectors. One can construct a polynomial
commitment from Bulletproofs as follows: Com(pp, φ, d) commits to the vector
φ = 〈φj〉j∈[0,d] of coefficients of the polynomial, Eval(pp, φ, i) constructs the vec-

tor i = 〈1, i, i2, . . . , id〉 (padding with 0s if needed) and produces an argument
to the value of φ · i = φ(i), and Verify checks this argument.

The commitment scheme in Bulletproofs is deterministic: Setup(1κ, D) uni-
formly samples D + 1 group elements g0, . . . , gD ← Gκ, and then Com(φ) =
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∏d
j=0 g

φj

j . If the discrete log assumption holds for the family G = {Gκ}κ∈N,
then this commitment scheme is binding, and it is also hiding when the polyno-
mial φ is chosen uniformly at random (even though it is not hiding otherwise)
Bulletproofs are also homomorphic, and its argument reveals an upper bound d
on the degree of the committed polynomial (it’s the number of non-zero entries
in the public vector i).

The only remaining issue is with Definition 5, since Bulletproof arguments
are not hiding. We can resolve the issue of hiding using the blinding technique
previously used by [9, 12, 13, 21]. Concretely, because Eval(pp, φ, i) cannot show
an argument for the inner product φ·i directly, instead the evaluator can: sample
and commit to a random ephemeral polynomial ψ ∈ F[x] of degree d, send this
commitment along with the two field elements φ(i) and ψ(i) to the verifier,
query the (public coins) verifier for a challenge c ∈ F, and use the homomorphic
property to construct a non-hiding argument proving that (ψ + cφ) · i equals
ψ(i)+cφ(i). It is acceptable for this argument to reveal information about ψ+cφ
because the polynomial ψ serves as a one-time pad that hides φ from the verifier.

We believe that this construction can be adapted to construct deterministic
versions (for random polynomials) of other linear combination schemes [8] such as
DARK [12], Dory [30], and the post-quantum polynomial commitment schemes
[7, 27,37] based on FRI [6]. We leave this as an open question for future work.

Deterministic KZG commitments. Kate et al. construct two polynomial commit-
ment schemes, the first of which (called PolyCommitDL in their work [26, §3.2])
is already deterministic and was shown to meet Definitions 2, 3, and 5 based on
the t-bilinear strong Diffie-Hellman assumption. The only discrepancy between
our requirements and their construction is Definition 4. We must verify that the
commitments of the share polynomials Si are of degree at most t. However, the
PolyCommitDL construction is predicated upon using trusted setup to generate
powers of a generator element pp = 〈g, g2, . . . , gD〉, and once this information
is public, it is impossible to verify whether a committer has committed to a
polynomial of the maximum degree or a smaller one.

If there exist constant integers α and β such that p = αt + β (such as the
case where n = 3t+1 and p = 2t), then there is a simple resolution to this issue:
always construct polynomial commitments of maximum degree so that we can
rely on strong correctness (Def. 2) instead. Observe that throughout Algorithm
1, there only exist commitments to polynomials of two different degrees: R of
degree p = αt (in line 5) and each Si of degree t (in line 6). In our construction,
party Pi must be able to (a) interpolate Si when given evaluations from t + 1
honest parties and (b) verify that the share polynomials are constructed in this
fashion. Ergo, we can set the maximum degree D = p during setup, sample Si
as a polynomial of degree D, and adjust line 6 of the Eval method to provide
α distinct evaluations of the polynomial to each party (say, party i receives
evaluations at the points i, i + t, i + 2t, . . .) as well as β evaluations of the
polynomial in common to all parties (say, at points αt+ 1, αt+ 2, . . ., αt+ β).
Each test polynomial Ti is now the difference of two degree-D polynomials, so it is
also of degree D with overwhelming probability. Finally, while each party receives
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α points on each share polynomial Si, it suffices that only one of those points
intersect with R for the test polynomial to guarantee correct reconstruction.

4 Amortizing Haven for Long Secrets

In this section, we show how to extend Haven to share a large secret s using
O(κn) communication complexity such that any p+1 people can reconstruct the
secret. Following the techniques used by Krawczyk [29] and Cachin and Tessaro
[17], the core idea is to use a communication-efficient protocol for asynchronous
reliable broadcast of the ciphertext corresponding to the long secret s, alongside
Algorithm 1 to share the ephemeral symmetric key.

Building blocks. In more detail, our construction uses a (t, n)-information disper-
sal algorithm IDA [35], a semantically secure symmetric key encryption scheme,
and a collision-resistant hash function H. By comparison to Shamir secret shar-
ing, an IDA scheme is similar in that it contains algorithms to split and recon-
struct an object to and from shares, respectively, but it differs in two ways:

1. Shares of an IDA might leak information about the original object while
Shamir shares do not.

2. Shares of an IDA are smaller in size than the original object while Shamir
shares are of the same size.

More formally, an IDA consists of the following two algorithms.

1. split(f, t, n): Splits an object f into n shares such that any t can reconstruct
the original object f where each share has size |f |/t.

2. reconstruct(s): Takes a vector of t shares and combine them to reconstruct
the original object f .

Also, we define an encryption scheme as containing a key generation al-
gorithm, an encryption method Enc : k,m 7→ c, and a decryption method
Dec : k, c 7→ m such that no probabilistic polynomial time adversary can distin-
guish ciphertexts belonging to two arbitrarily-chosen plaintexts m0 or m1 with
noticeable probability. A hash function H : {0, 1}∗ → F is called collision re-
sistant if no polynomial time adversary can find two inputs x and x′ 6= x such
that H(x) = H(x′) with non-negligible probability. We refer readers to [23] for
formal definitions.

Our new construction. To support long secrets, our Amortized Haven protocol
makes the following additions to the sharing phase in Algorithm 1.

– At the start of the protocol, the dealer generates a random key k ∈ F
and encrypts the large secret s using k by running c = Enck(s). Using
split(c, t+1, n), the ciphertext is then encoded in n pieces c1, . . . , cn of length
|s|/t. Additionally, we add hi = H(ci) to the vector that forms the root com-
mitment (line 11). Finally, the send message to party Pi also includes the
ciphertext c and all witnesses to different hashes of every piece hi = H(ci)
that is included in the root commitment (line 14).
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– Upon receiving (ID.d, send, setj): party Pi adds one more consistency check
to the list of requirements for her to produce an echo response. Namely,
Pi checks that the every piece cj is linked back to the root commitment
using the witness provided by the dealer. To acquire each piece cj , Pi runs
split(c, t + 1, n) the same way the dealer did. Pi then adds to infoi,j the
corresponding ci along with it’s witness.

– Upon receiving(ID.d, echo, infoj,i): party Pi adds one more consistency check
to the list of requirements for her to produce a ready response. Namely, Pi
checks that every cm is linked back to the root commitment using the witness
provided by Pm. The rest of the protocol proceeds as normal.

At the start of reconstruction, each honest party recovers the large ciphertext by
running reconstruct IDA on t+ 1 pieces that are linked to the root commitment
that we have agreement on. The reconstruction phase continues as before and
reconstructs the key k. The parties use the symmetric key k to decrypt the
ciphertext and recover the original large secret s.

Theorem 2. Suppose that t = O(n), the underlying polynomial and vector com-
mitments satisfy Defs. 2-6, Enc is a semantically secure encryption scheme, and
H is collision resistant hash function. Then, amortized Haven for a large secret
s = Ω(n log n) is a high threshold AVSS that achieves a message complexity of
O(n2) and a communication overhead of O(κn).

Proof. We first examine communication costs. None of the changes above im-
pact the message complexity: each party still sends O(n) send, echo, ready, and
reconstruct-share messages. The communication complexity now has two compo-
nents: the HAVSS for the short key and the IDA for the long message. These
costs sum to O(κn2 log n) +O(((|s|/t) · n) · n) = O(n|s|) as desired.

Next, the only two properties of an HAVSS that are directly impacted by
the IDA of an encryption of the long secret are privacy and agreement. We
argue about each property below in turn. Both properties only require minor
adjustments to the arguments made in the proof of Theorem 1.

– Privacy: If the dealer is honest, the privacy argument in Theorem 1 guaran-
tees that the adversary doesn’t get hold of the secret key k used to encrypt
the large secret s. The only thing that the adversary would get hold of is
encrypted shares of the s. By definition of semantic security the attacker will
not be able to extract any useful information about s from the ciphertext
except with negligible probability.

– Agreement: Since at least t + 1 honest parties have to verify that all pieces
{ci} are part of the polynomial commitment. Then if agreement is reached
over the polynomial commitment, then agreement is reached over the pieces.
Availability is also guaranteed, since each honest party has heard t+ 1 echo
messages from honest parties. Hence each honest party would have avail-
able t + 1 pieces that are consistent with the root commitment, enough to
reconstruct the ciphertext c and thus the large secret s.
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