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1 Eötvös Loránd University, Budapest, Hungary
2 CrySyS Lab, HIT/VIK/BME, Hungary

Abstract. Fuzzy Message Detection (FMD) is a recent cryptographic
primitive invented by Beck et al. (CCS’21) where an untrusted server
performs coarse message filtering for its clients in a recipient-anonymous
way. In FMD — besides the true positive messages — the clients down-
load from the server their cover messages determined by their false-
positive detection rates. What is more, within FMD, the server cannot
distinguish between genuine and cover traffic. In this paper, we formally
analyze the privacy guarantees of FMD from four different angles.
First, we evaluate what privacy provisions are offered by FMD. We found
that FMD does not provide relationship anonymity without additional
cryptographic techniques protecting the senders’ identities. Moreover,
FMD only provides a reasonable degree of recipient unlinkability when
users apply considerable false-positive rates, and concurrently there is
significant traffic. Second, we perform a differential privacy (DP) analysis
and coin a relaxed DP definition to capture the privacy guarantees FMD
yields. Third, we study FMD through a game-theoretic lens and argue
why FMD is not sustainable without altruistic users. Finally, we simulate
FMD on real-world communication data. Our theoretical and empirical
results assist FMD users to adequately select their false-positive detec-
tion rates for various applications with given privacy requirements.

Keywords: Fuzzy Message Detection · unlinkability · anonymity · dif-
ferential privacy · game theory

1 Introduction

Fuzzy Message Detection (FMD) [3] is a promising, very recent privacy-enhancing
cryptographic primitive that aims to provide several desired privacy properties
such as recipients’ anonymity. In recipient-anonymous communication systems,
not even the intended recipients can tell which messages have been sent to them
without decrypting all messages. The main practical drawback for the users in
a recipient-anonymous scheme such as messaging and payment systems is to
efficiently and privately detect the incoming messages or transactions. Decrypt-
ing all traffic in the system leads to a private but inevitably inefficient and
bandwidth-wasting scan. This challenge is tackled by FMD, which allows the
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users to outsource the detection of their incoming traffic to an untrusted server
in an efficient and privacy-enhanced way. It is assumed that messages/transac-
tions are posted continuously to a potentially public board, e.g., to a permission-
less public blockchain. It is expected that users are intermittently connected and
resource-constrained. In the FMD scheme, whenever users are online, they down-
load their genuine transactions as well as false-positive transactions according to
their custom-set false-positive detection rate. The cryptographic technique be-
hind FMD guarantees that true and false-positive messages are indistinguishable
from the server’s point of view. Thus, the false-positive messages act as cover
traffic for genuine messages.

The FMD protocol caught the attention of many practitioners and pri-
vacy advocates due to the protocol’s applicability in numerous scenarios. In
general, it supports privacy-preserving retrieval of incoming traffic from store-
and-forward delivery systems. We highlight two potential applications currently
being implemented by multiple teams and waiting to be deployed in several
projects [4,7,23,33].

– Anonymous messaging. In a recipient-anonymous messaging application,
the senders post their recipient-anonymous messages to a store-and-forward
server. If the server employs FMD, recipients can detect their incoming (and
false-positive) messages in an efficient and privacy-enhanced way. Recently,
the Niwl messaging application was deployed utilizing FMD [23].

– Privacy-preserving cryptocurrencies & stealth payments. In privacy-
preserving cryptocurrencies, e.g., Monero [30], Zcash [34], or in a privacy-
enhancing overlay, payment recipients wish to detect their incoming pay-
ments without scanning the whole ledger. At the time of writing, several
privacy-enhancing overlays for Ethereum (e.g., Zeth [33], Umbra [4]) as well
as for standalone cryptocurrencies (e.g., Penumbra [7]) are actively exploring
the possibility of applying FMD in their protocols.

Contributions. Despite the rapid adoption and interest in the FMD protocol,
as far as we know, there is no study analyzing the provided privacy guarantees.
Consequently, it is essential to understand the privacy implications of FMD.
Furthermore, it is an open question how users need to choose their false-positive
detection rates to achieve an efficiency-privacy trade-off suitable for their sce-
nario. In this work, we make the following contributions.

– Information-Theoretical Analysis. We assess and quantify the privacy
and anonymity guarantees of FMD and the enhanced k-anonymity it pro-
vides in the context of anonymous communication systems. We focus on
three notions of privacy and anonymity: recipient unlinkability, relationship
anonymity, and temporal detection ambiguity. We demonstrate that FMD
does not provide relationship anonymity when the server knows the senders’
identity. Concerning recipient unlinkability and temporal detection ambi-
guity, we show that they are only provided in a meaningful way when the
system has extensive traffic and users apply considerable false-positive de-
tection rates.
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– Differential Privacy Analysis. We adopt differential privacy (DP) [11] for
the FMD scenario and coin a new definition, called Personalized Existing
Edge Differential Privacy (PEEDP). Moreover, we analyze the number of
incoming messages of a user with (ε, δ)-differential privacy. The uncovered
trade-off between the FMD’s false-positive rates and DP’s parameters could
help the users to determine the appropriate regimes of false-positive rates,
which corresponds to the level of tolerated privacy leakage.

– Game-Theoretical Analysis. We formalize a game focusing on relation-
ship anonymity and show that in our model at the Nash Equilibrium, the
users do not employ any cover traffic via FMD due to their selfishness. On
the other hand, if a central planner coordinates the false-positive rate selec-
tion (and a certain condition holds), then the highest welfare corresponds to
the utilization of FMD.

– Simulation of FMD on Real-World Data. We quantitatively evalu-
ate the privacy guarantees of FMD through open-source simulations on
real-world communication systems. Specifically, we show that the untrusted
server can effortlessly recover a large portion of the social graph of the com-
municating users, i.e., the server can break relationship anonymity for nu-
merous users.

Outline. In Section 2, we provide some background on FMD, while in Section 3,
we introduce our system and threat model. In Section 4, we analyze the privacy
guarantees of FMD while in Section 5 and in Section 6, we study FMD with tools
from differential privacy and game theory, respectively. In Section 7, we conduct
simulations on real-world communication networks, and finally, in Section 8, we
conclude the paper.

2 Fuzzy Message Detection

The FMD protocol seeks to provide a reasonable privacy-efficiency trade-off in
use cases where recipient anonymity needs to be protected. Users generate de-
tection keys and send them along with their public keys to the untrusted server.
Senders encrypt their messages with their recipient’s public key and create flag
ciphertexts using the intended recipient’s public key. Detection keys allow the
server to test whether a flag ciphertext gives a match for a user’s public key. If
yes, then the server stores the message for that user identified by its public key.
In particular, matched flag ciphertexts can be false-positive matches, i.e., the
corresponding ciphertexts cannot be decrypted by the user. Users can decrease
their false-positive rate by sending more detection keys to the server. Above all,
the FMD protocol ensures correctness, so whenever a user comes online, they
can retrieve their genuine messages. The fuzziness property enforces that each
other flag ciphertext is tested to be a match approximately with probability p
set by the recipient.

Besides recipient anonymity, FMD also aims to satisfy detection ambigu-
ity, which requires that the server cannot distinguish between true and false-
positive matching flag ciphertexts provided that ciphertexts and detection keys
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Variable Description

U Number of honest users (i.e., recipients and senders)
M Number of all messages sent by honest users
p(u) False-positive detection rate of recipient u
tag(u) Number of fuzzy tags received by u (i.e., genuine and false positive)
tagv(u) Number of fuzzy tags received by u from v
in(u) Number of genuine incoming messages of u
out(u) Number of sent messages of u

Table 1: Notations used throughout the paper.

are honestly generated. Hence, whenever a user downloads its matched mes-
sages, false-positive messages serve as cover traffic for the genuine messages. For
formal security and privacy definitions of FMD and concrete instantiations, we
refer the reader to Appendix A and ultimately to [3]. To improve readability, we
present in Table 1 the variables utilized in the paper: we refer to the downloaded
(genuine or cover) flag ciphertext as a fuzzy tag.

Privacy-efficiency trade-off. If user u’s false-positive rate is p(u), it received
in(u) messages and the total number of messages in the system is M , then
the server will store tag(u) ≈ in(u) + p(u)(M − in(u)) messages for u. Clearly,
as the number of messages stored by the server increases, so is the strength
of the anonymity protection of a message. Note the trade-off between privacy
and bandwidth efficiency: larger false-positive rate p(u) corresponds to stronger
privacy guarantees but also to higher bandwidth as more messages need to be
downloaded from the server.3 Substantial bandwidth can be prohibitive in cer-
tain use cases, e.g., for resource-constrained clients. Even though in the original
work of Beck et al. [3] their FMD instantiations support a restricted subset of
[2−l]l∈Z as false-positive rates, in our privacy analysis, we lift these restrictions
and assume that FMD supports any false-positive rate p ∈ [0, 1].

Provided privacy protection. The anonymity protection of FMD falls under the
“hide-in-the-crowd” umbrella term as legitimate messages are concealed amongst
cover ones. More precisely, each legitimate message enjoys an enhanced version
of the well-known notion of k-anonymity [37].4 In more detail, the anonymity
guarantee of the FMD scheme is essentially a “dynamic”, “personalized”, and
“probabilistic” extension of k-anonymity. It is dynamic because k could change
over time as the overall number of messages could grow. It is personalized because
k might differ from user to user as each user could set their own cover detection
rates differently. Finally, it is probabilistic because achieved k may vary message-
wise for a user due to the randomness of the amount of selected fuzzy messages.

3 Similar scenario was studied in [5] concerning Bloom filters.
4 Note that Beck et al. coined this as dynamic k-anonymity, yet, we believe it does

not capture all the aspects of their improvement. Hence, we renamed it with a more
generic term.
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To the best of our knowledge, as of today, there has not been a formal
anonymity analysis of the “enhanced k-anonymity” achieved by the FMD proto-
col. Yet, there is already a great line of research demonstrating the weaknesses
and the brittle privacy guarantees achieved by k-anonymity [9,26]. Intuitively,
one might hope that enhanced k-anonymity could yield strong(er) privacy and
anonymity guarantees. However, we show both theoretically and empirically and
by using several tools that this enhanced k-anonymity fails to satisfy standard
anonymity notions used in the anonymous communication literature.5

3 System and Threat Model

System Model. In a typical application where the FMD scheme is applied, we
distinguish between the following four types of system components where the
users can simultaneously be senders and recipients.

1. Senders: They send encrypted messages to a message board. Messages are
key-private, i.e., no party other than the intended recipient can tell which
public key was used to encrypt the message. Additionally, senders post flag
ciphertexts associated with the messages to an untrusted server. The goal of
the flag ciphertexts is to allow the server and the recipients to detect their
messages in a privacy-enhanced manner.

2. Message Board: It is a database that contains the senders’ messages. In
many applications (e.g., stealth payments), we think of the message board as
a public bulletin board; i.e., everyone can read and write the board. It might
be implemented as a blockchain or as a centrally managed database, e.g., as
would be the case in a messaging application. In either case, we assume that
the message board is always available and that its integrity is guaranteed.

3. Server: It stores the detection keys of recipients. Additionally, it receives and
stores flag ciphertexts from senders and tests the flag ciphertexts with the
recipient’s detection keys. It forwards matching flag ciphertexts and their
associated data (messages, transactions, etc.) to recipients whenever they
query it. Typically, flag ciphertexts match numerous recipients’ public keys.6

4. Recipients: The recipient obtains matching flag ciphertexts from the server.
An application-dependent message is attached as associated data to each flag
ciphertext, e.g., e-mail, payment data, or instant message. The number of
matching ciphertexts is proportional to the recipient’s false-positive detec-
tion rate and all the messages stored by the untrusted server.

Threat model. Our focus is on the privacy and anonymity guarantees provided
by FMD. Hence, we assume that the FMD scheme is a secure cryptographic
primitive, i.e., the cryptographic properties of FMD (correctness, fuzziness, and

5 For an initial empirical anonymity analysis, we refer the reader to the simulator
developed by Sarah Jamie Lewis [24].

6 In this work, we stipulate that a single server filters the messages for all users, i.e.,
a single server knows all the recipients’ detection keys.
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detection ambiguity) hold. Senders and recipients are assumed to be honest.
Otherwise, they can be excluded from the messages’ anonymity sets. We consider
two types of computationally-bounded attackers that can compromise user’s
privacy in an FMD scheme. The adversaries’ goal is to learn as much information
as possible about the relationship between senders, recipients, and messages.

– Server: Naturally, the server providing the FMD service can endanger the
user’s privacy since it has continuous access to every relevant information re-
lated to message detection. Specifically, the server knows users’ false-positive
rates. It can analyze each incoming message, flag ciphertext, and their cor-
responding anonymity sets.

• Sender-oracle. The server may know the sender of each message, i.e., a
sender-oracle might be available in FMD. For instance, it is mandatory
for the untrusted server if it only serves registered users. We assumed
solely in Section 4.2 that such sender-oracle is available. If FMD is in-
tegrated into a system where senders apply anonymous communication
(e.g., use Tor to send messages and flag ciphertexts to the server), then
sender-oracle is not accessible to the FMD server.

– Eavesdropper: A local passive adversary might observe the amount of data
each user downloads from the server. Specifically, an eavesdropper could
inspect the number of flag ciphertexts each user has received. Even though
this attacker type does not have continual intrusion to the server’s internal
state, as we will show, it can still substantially decrease FMD user’s privacy,
e.g., if p(u) is known, then the number of genuine incoming messages of users
does not enjoy sufficiently high privacy protection (see Section 5).

4 Privacy Guarantees in FMD

In this section, we analyze and quantify various privacy and anonymity guaran-
tees provided by the FMD scheme. Specifically, in Sections 4.1, 4.2, and 4.3, we
measure recipient unlinkability, assess relationship anonymity, and estimate de-
tection ambiguity, respectively. Note that for the latter two property we provide
experimental evaluations in Section 7, and we formulate a game in Section 6
concerning relationship anonymity. We denote the security parameter with λ,

and if an (probabilistic) algorithm A outputs x, then we write A −→ x (A
$−→ x).

The Binomial distribution with success probability p and number of trials n is
denoted as Binom(n, p), while a normal distribution with mean µ and variance
σ2 is denoted as N (µ, σ2).

4.1 Recipient Unlinkability

In anonymous communication systems, recipient unlinkability is the cornerstone
of anonymity guarantees. It ensures that it is hard to distinguish whether two
different messages were sent to the same recipient or different ones. Whenever
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recipient unlinkability is not attained, it facilitates possibly devastating pas-
sive attacks, i.e., if an adversary can infer which messages are sent to the same
recipient, then the adversary can effortlessly launch intersection attacks, see Ap-
pendix F. In the absence of recipient unlinkability, it is also possible to efficiently
map every message to its genuine recipient by 1) clustering the messages that
are sent to the same recipient and 2) see the intersection of the users who down-
loaded the flag ciphertexts sent to the same recipient.

We consider a definition of recipient unlinkability similar to the one intro-
duced in [2]. Informally, in the recipient unlinkablity security game, we examine
two recipients u0, u1 and a sender u2. The challenger C generates uniformly at

random c
$←− {0, 1} and instructs u2 to send message mα to uc. Afterwards, C

draws a uniformly random bit b
$←− {0, 1}. If b = 0, then instructs u2 to send a

message mβ to uc. Otherwise u2 sends mβ to u1−c. Adversary A examines the
network, the flag ciphertexts and all communications and outputs b′ indicating
whether the two messages were sent to the same recipient.

Definition 1 (Recipient unlinkability). An anonymous communication pro-
tocol Π satisfies recipient unlinkability if for all probabilistic polynomial-time
adversaries A there is a negligible function negl(·) such that

Pr[GRUA,Π(λ) = 1] =
1

2
+ negl(λ), (1)

where the recipient unlinkability game GRUA,Π(·) is defined in Figure 5 in Ap-
pendix B.

We denote the set of users who downloaded message m by fuzzy(m), i.e.,
they form the anonymity set of the message m. We estimate the advantage of
the following adversary A in the GRUA,Π(·) game: A outputs 1 if fuzzy(mα) ∩
fuzzy(mβ) 6= ∅ and outputs 0 otherwise. Note that A always wins if the same
recipient was chosen by the challenger (i.e., b = 0) because it is guaranteed by the
correctness of the FMD scheme that uc ∈ fuzzy(mα) ∩ fuzzy(mβ). Therefore,
we have that Pr[GRUA,Π(λ) = 1|b = 0] = 1.

If two different recipients were chosen by the challenger in the recipient un-
linkability game (i.e., b = 1), then A wins iff. the two sets of fuzzy message tags
have an empty intersection. More precisely, the advantage of the adversary can
be computed as follows.

Pr[GRUA,Π(λ) = 1|b = 1] = Pr[∩m∈{mα,mβ}fuzzy(m) = ∅|b = 1] =

=

U∑
i,j=1

(
U

i

)
p(u0)i(1− p(u0))U−i

(
U

j

)
p(u1)j(1− p(u1))U−j

j∏
k=1

U − i− k
U

.
(2)

We simplify the adversarial advantage in Equation 2 by assuming that p(u0) =
p(u1) = p and that the sizes of the anonymity sets are fixed at bpUc.7 Moreover,

7 This lower bound is meaningful since the probability distribution of the adversary’s
advantage is concentrated around the mean bpUc anyway.
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computer-aided calculations show that the following birthday paradox-like quan-
tity can be used as a sufficiently tight lower bound for the recipient unlinkability
adversarial advantage.

bpUc∏
j=1

U − bpUc − j
U

=

bpUc∏
j=1

(
1− bpUc+ j

U

)
≈
bpUc∏
j=1

e−
bpUc+j

U =

= e−
∑
j(bpUc+j)

U = e−
3bpUc2+bpUc

2U ≤ Pr[GRUA,Π(λ) = 1|b = 1].

(3)

The approximation is obtained by applying the first-order Taylor-series ap-
proximation for ex ≈ 1 +x, whenever |x| � 1. We observe that the lower bound
for the adversary’s advantage in the recipient unlinkability game is a negligi-
ble function in U for a fixed false-positive detection rate p. Thus, in theory, the
number of recipients U should be large in order to achieve recipient unlinkability
asymptotically. Yet, in practice, the classical birthday-paradox argument shows
us that the two anonymity sets intersect with probability 1/2 if p ≈ 1/

√
U . Our

results suggest that a deployment of the FMD scheme should concurrently have a
large number of users with relatively high false-positive rates in order to provide
recipient unlinkability, see Figure 1a for the concrete values of Equation 2.

4.2 Relationship anonymity

Relationship anonymity ensures that the adversary cannot determine the sender
and the recipient of a communication at the same time. Intuitively, recipients
applying low false-positive rates receive only a handful of fuzzy tags from peers
they are not communicating with. Therefore, multiple fuzzy tags between a
sender and a recipient can eradicate their relationship anonymity, given that
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Fig. 1: Recipient unlinkability and temporal detection ambiguity guarantees pro-
vided by the FMD scheme for various parameter settings.
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Fig. 2: The minimum number of messages between a pair of users that statisti-
cally reveal the relationship of the communicating users (significance level 1%).

the untrusted server knows the number of messages a sender issued. We assume
the server knows the sender of each message, which holds whenever the untrusted
server has access to a sender-oracle, see Section 3.

The number of fuzzy tags between a non-communicating pair of reciever u1
and sender u2 follows Binom(out(u2), p(u1)). If tagu2(u1) is saliently far from the
expected mean out(u2)p(u1), then the untrusted server can deduce with high con-
fidence that a relationship exists between the two users. We approximate8 the
above mentioned binomial distribution with N (out(u2)p(u1), out(u2)p(u1)(1 −
p(u1))) so we can apply Z-tests to determine whether u2 and u1 had exchanged
messages. Concretely, we apply two-tailed Z-test9 for the hypothesisH : tagu2(u1)
∼ N (out(u2)p(u1), out(u2)p(u1)(1 − p(u1))). If the hypothesis is rejected, then
users u2 and u1 are deemed to have exchanged messages.

In Sections 6 and 7.1 we study relationship anonymity using game theory and
provide experiments using real communication data to evaluate the efficiency of
this statistical test. We observe in Figure 2 that the relationship anonymity of
any pair of users could be already broken by a handful of exchanged messages.
This severely limits the applicability of the FMD scheme in use cases such as
instant messaging. To have a meaningful level of relationship anonymity with
their communicating peer, the user should either apply substantial false-positive
rates, or the server should not be able to learn the sender’s identity of each
message. This latter could be achieved, for instance, if senders apply an anony-
mous communication system to send messages or by using short-lived provisional
pseudo IDs where no user would send more than one message.

8 Note that this approximation is generally considered to be tight enough when
out(u2)p(u1) ≥ 5 and out(u2)(1− p(u1)) ≥ 5.

9 For senders with only a few sent messages (out(u2) ≤ 30), one can apply t-tests
instead of Z-tests.
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4.3 Temporal detection ambiguity

The FMD scheme is required to satisfy the security notion of detection ambiguity
devised by Beck et al. [3]. Namely, for any message that yields a match for a
detection key, the server should not be able to decide whether it is a true or a
false-positive match. This definition is formalized for a single incoming message
in isolation. Yet, the detector server can continuously observe the stream of
incoming messages.10 Consequently, the server might be able to assess whether
the user has received a message in a certain time interval. To capture this time-
dependent aspect, we relax detection ambiguity and coin the term temporal
detection ambiguity. Informally, no adversary should be able to tell in a given
time interval having access to all the incoming flag ciphertexts whether a user
has received an incoming true-positive match. We provide the formal definition
in Appendix B, and we empirically study temporal detection ambiguity on real
communication data in Section 7. Furthermore, in Section 5 we measure from a
differential privacy angle what level of privacy protection the number of incoming
messages enjoys.

Any message that enters the communication system yields a match to a de-
tection key according to its set false-positive rate. Specifically, the number of
false-positive matches acquired by user u’s detection key follows a Binom(M −
in(u), p(u)) distribution. Similarly to Section 4.2, if M is large, then we can
approximate the number of false-positive matches with a N (p(u)M,p(u)(1 −
p(u))M) distribution and use statistical tests to assess that the number of
downloaded messages by a recipient is statistically far from the expected num-
ber of downloaded messages. More precisely, the adversary can statistically test
whether tag(u) could have been drawn from N (p(u)M,p(u)(1 − p(u))M) (the
approximation of Binom(M,p(u))). We observe that in an epoch, a user should
have either large false-positive rates or a small number of incoming messages to
provide temporal detection ambiguity, shown in Figure 1b.

5 Differential Privacy Analysis

Differential privacy (DP) [11] is a procedure for sharing information about a
dataset by publishing statistics of it while withholding information about single
data points. DP is formalized in Definition 2; the core idea is to ensure that an
arbitrary change on any data point in the database has a negligible effect on the
query result. Hence, it is infeasible to infer much about any data point.

Definition 2 (Differential Privacy [11]). An algorithm A satisfies ε-differential
privacy if for all S ⊆ Range(A) and every input pair D and D′ differing in a
single element Equation 4 holds.

Pr(A(D) ∈ S) ≤ eε · Pr(A(D′) ∈ S) (4)

10 As an illustrative example, see Figure 3b that is collected from a real communication
system.
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Personalized Existing Edge DP. A widely used relaxation of the above defini-
tion is (ε, δ)-DP, where Equation 4 is extended with a small additive term δ at
the right end. There are over 200 modifications of DP [8], yet none of them are
directly applicable for FMD. Consequently, we create one by combining four ex-
isting notions, called Personalized Existing Edge DP (PEEDP) (formally defined
in Definition 3).11 To capture FMD, we utilize edge-DP [17] which is essentially
Definition 2 applied to communication graphs, i.e., D and D′ are the original
communication graphs with and without a particular edge (concurrently), and S
is a graph with fuzzy edges included. Furthermore, in FMD, the users’ false pos-
itive rates could differ. Therefore their incoming messages may enjoy a different
level of protection, similarly to personalized DP [18].

Hiding the presence or absence of a message is only possible by explicitly
removing real messages and adding fuzzy ones to the communication graph,
which is indistinguishable from real ones. This setting (i.e., protecting existence
and not value) corresponds to unbounded DP [20]. Hence, as also noted in [3],
without a false negative rate (which would directly contradict correctness), FMD
cannot satisfy Equation 4 as fuzzy messages can only hide the presence of a
message not the absence. To tackle this asymmetry, we utilize one-sided DP [10]
which only protects some of the attributes determined by policy P . It only
differs from Definition 2 in the relationship of D and D′ as Equation 4 should
only hold for every input pair D and D′ where later is created by changing in
D a single sensitive record defined by P . By combining all these DP notions, we
can formulate our PEEDP definition.

Definition 3 (ε- Personalized Existing Edge Differential Privacy). An
algorithm A satisfies ε-PEEDP (where ε is an element-wise positive vector which
length is equal with the amount of nodes in D) if Equation 5 holds for all S ⊆
Range(A) and every input graphs D and D′ where later is created by replacing
in D a single existing incoming edge of user u.

Pr(A(D) ∈ S) ≤ eεu · Pr(A(D′) ∈ S) (5)

Once we formalized a suitable DP definition for FMD, it is easy to calculate
the trade-off between efficiency (approximated by p(u)) and privacy protection
(measured by εu). This is captured in Theorem 1 (proof can be found in Ap-
pendix C), where we present few exemplary values as well.

Theorem 1. If we assume the distribution of the messages are IID then FMD
satisfy log 1

p(u) -PEEDP, consequently if p(u) = {0.58, 0.54, 0.52, 0.51, 0.50} then

εu = {5.545, 2.773, 1.386, 0.693, 0.000}.

Protecting the Number of Incoming Messages. In most applications, e.g., anony-
mous messaging or stealth payments, we want to protect the number of in-
coming messages of the users, in(u). Intuitively, the server observes tag(u) ∼
in(u) + Binom(M − in(u), p(u)) where (with sufficiently large M) the second

11 We elaborate more on various DP notions in Appendix C.
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M 100 100 100 200 1 000 000 1 000 000 1 000 000 2000000
in(u) 10 10 20 10 100 100 1000 100
p(u) 0.54 0.52 0.54 0.54 0.58 0.54 0.58 0.58

ε 7.2 5.6 7.1 8.0 19.4 16.5 19.4 20
δ 3e-3 6e-12 6e-3 5e-6 1e-1700 1e-28027 1e-1699 1e-3400

Table 2: Exemplary settings to illustrate the trade-off between the false-positive
rate p(u) and the privacy parameters of (ε, δ)-differential privacy for protecting
the number of incoming messages.

term can be thought of as Gaussian-noise added to mask in(u). In consequence
(ε, δ)-DP can be satisfied, see in Theorem 2 (proof in Appendix C). To illustrate
our results, we provide some exemplary settings in Table 2 and show how the
false positive rate translates into ε and δ. It is clear that FMD does not achieve
sufficient privacy protection as values above one for ε are considered weak.

Theorem 2. The FMD protocol provides (ε, δ)-DP for the number of incoming
messages of the users where δ = maxu(p(u), 1− p(u))M−in(u) and

ε = log

[
max
u

(
p(u) · (M − 2 · in(u))

(1− p(u)) · (in(u) + 1)
,

(1− p(u)) · (M − in(u))

p(u)

)]
.

6 Game-Theoretical Analysis

Incentive compatibility has the utmost importance in decentralized and privacy-
enhancing technologies. Therefore, we present a game-theoretic study of the
FMD protocol, which by itself is a fruitful and over-arching direction.12 Specif-
ically, we formulate a game only for one privacy property from Section 4 (re-
lationship anonymity) and show its Nash Equilibrium [28]. Our goal, besides
conducting a preliminary analysis, is to raise interest and fuel future research
towards this direction.

Almost every multi-party interaction can be modeled as a game. In our case,
these decision makers are the users using the FMD service. We assume the
users bear some costs Cu for downloading any message from the server. For
simplicity we define this uniformly: if f is the cost of retrieving any message
for any user than Cu = f · tag(u). Moreover, we replace the random variable
tag(u) ∼ in(u) + Binom(M − in(u), p(u)) with its expected value, i.e., Cu =
f · (in(u) + p(u) · (M − in(u))).

Besides, the user’s payoff should depend on whether any of the privacy prop-
erties detailed in Section 4 are not satisfied. For instance, we assume the users
suffer from a privacy breach if relationship anonymity is not ensured, i.e., they
uniformly lose L when the recipient u can be linked to any sender via any mes-
sage between them. In the rest of the section (and in Appendix D) we slightly

12 We present a brief overview of the utilized game-theoretical concepts in Appendix D.
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abuse the notation u as in contrast to the rest of the paper we refer to the users
as u ∈ {1, . . . , U} instead of {u0, u1, . . . }. The probability of a linkage via a
particular message for user u is αu =

∏
v∈{1,...,U}/u(1−p(v)). The probability of

a linkage from any incoming message of u is 1− (1− αu)in(u).13 Based on these
we define the FMD-RA Game.

Definition 4. The FMD-RA Game is a tuple 〈N , Σ,U〉, where the set of players
is N = {1, . . . , U}, their actions are Σ = {p(1), . . . , p(U)} where p(u) ∈ [0, 1]
while their utility functions are U = {ϕu(p(1), . . . , p(U))}Uu=1 such that for 1 ≤
u ≤ U :

ϕu = −L ·
(

1− (1− αu)
in(u)

)
− f · (in(u) + p(u) · (M − in(u))). (6)

It is visible in the utility function that the bandwidth-related cost (second
term) depends only on user u’s action while the privacy-related costs (first term)
depend only on the other user’s actions. This reflects well that relationship
anonymity is an interdependent privacy property [6] within FMD: by download-
ing fuzzy tags, the users provide privacy to others rather than to themselves. As
a consequence of this tragedy-of-commons [15] situation, a trivial no-protection
Nash Equilibrium (NE) emerges. Moreover, Theorem 3 also states this NE is
unique, i.e., no other NE exists (the corresponding proof is in Appendix D).

Theorem 3. Applying no privacy protection in the FMD-RA Game is the only
NE: (p∗(1), . . . , p∗(U)) = (0, . . . , 0).

This negative result highlights that in our model, no rational (selfish) user
would use FMD; it is only viable when altruism [35] is present. On the other
hand, (if some condition holds) in the Social Optimum (SO) [16], the users do
utilize privacy protection. This means a higher total payoff could be achieved
(i.e., greater social welfare) if the users cooperate or when the false-positive rates
are controlled by a central planner. Indeed, according to Theorem 4 (proof in
Appendix D) the SO6=NE if, for all users, the cost of the fuzzy message downloads
is smaller than the cost of the privacy loss. The exact improvement of the SO
over the NE could be captured by the Price of Stability/Anarchy [1,22], but we
leave this as future work.

Theorem 4. The SO of the FMD-RA Game is not the trivial NE and corre-
sponds to higher overall utilities if f · (M −maxu(in(u))) < L.

7 Evaluation

We evaluate the relationship anonymity and temporal detection ambiguity guar-
antees of FMD through simulations on data from real communication systems.14

We chose two real-world communication networks that could benefit from im-
plementing and deploying FMD on top of them.

13 It is only a optimistic baseline as it merely captures the trivial event when no-one
downloads the a message from any sender v besides the intended recipient u.

14 The simulator can be found at https://github.com/seresistvanandras/FMD-analysis

https://github.com/seresistvanandras/FMD-analysis
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– College Instant Messaging (IM) [31]. This dataset contains the instant
messaging network of college students from the University of California,
Irvine. The graph consists of 1899 nodes and 59 835 edges that cover 193
days of communication.

– EU Email [32]. This dataset is a collection of emails between members of a
European research institution. The graph has 986 nodes and 332 334 edges.
It contains the communication patterns of 803 days.

Users are roughly distributed equally among major Information Privacy Aware-
ness categories [36], thus for each node in the datasets, we independently and
uniformly at random chose a false-positive rate from the set {2−l}7l=1. Note that
the most efficient FMD scheme only supports false-positive rates of the form 2−l.
Moreover, for each message and user in the system, we added new ”fuzzy” edges
to the graph according to the false-positive rates of the messages’ recipients.
The server is solely capable of observing the message-user graph with the added
”fuzzy” edges that serve as cover traffic to enhance the privacy and anonymity
of the users. We run our experiments 10-fold where on average, there are around
16 and 48 million fuzzy edges for the two datasets, i.e., a randomly picked edge
(the baseline) represents a genuine message with � 1%.

7.1 Uncovering the relationship graph

The server’s goal is to uncover the original social graph of its users, i.e., to expose
who is communicating with whom. The relationship anonymity of a sender and a
receiver can be easily uncovered by the statistical test introduced in Section 4.2
especially if a user is receiving multiple messages from the same sender while
having a low false-positive rate. We found that statistical tests produce a 0.181
and 0.229 precision with 0.145 and 0.391 recall on average in predicting the
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Rel.Anonymity
 Recall

Temp. Det. Amb.
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 Recall
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(a) The precision and recall of the statisti-
cal tests breaking relationship anonymity
and temporal detection ambiguity, cf. Sec-
tion 4.2 and 4.3.
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Fig. 3: Privacy guarantees of FMD in simulations on real communication systems.
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communication links between all the pairs of nodes in the College IM and EU
Email datasets, respectively, see Figure 3a. The results corresponding to the EU
Email dataset are higher due to the increased density of the original graph. These
results are substantial as they show the weak anonymization power of FMD in
terms of relationship anonymity.

7.2 Breaking Temporal Detection Ambiguity

We empirically quantify whether users can deny that they received an incoming
(true positive) message. We consider 25 000 randomly selected messages with
the corresponding fuzzy edges as one epoch. The server tried to assess using
statistical tests (see Section 4.3) that a user has received an incoming message.
The intuition is that users receive messages heterogeneously concerning time.
Hence, surges in incoming traffic might not be adequately covered by fuzzy edges
for users with low false-positive rates. Thus, these messages could be tight to the
receiver with high probability, see Figure 3b for an illustrative example. Indeed,
Figure 3a suggests that, in general, deniability can be broken effectively with
high precision and recall. On the other hand, Figure 3b also shows that higher
false-positive rates could provide enough cover traffic for messages within these
conspicuous epochs, which is in line with the findings presented in Figure 1b.

8 Conclusion

In this paper, we present a privacy and anonymity analysis of the recently in-
troduced Fuzzy Message Detection scheme. Our analysis is thorough as it covers
over four directions. Foremost, an information-theoretical analysis was carried
out concerning recipient unlinkability, relationship anonymity, and temporal de-
tection ambiguity. It is followed by a differential privacy analysis which leads
to a novel privacy definition. Next, a game-theoretical view was considered, and
finally, we gave an exhaustive simulation based on real-world data. Our findings
facilitate proper parameter selection and the deployment of the FMD scheme
into various applications. Yet, we also raise concerns about the guarantees what
FMD provides and questions whether it is adequate/applicable for many real-
world scenarios.

Limitations and Future Work. Although far-reaching, our analysis only scratches
the surface of what can be analyzed concerning FMD, and substantial work and
important questions remain as future work. Thus, a hidden goal of this paper
is to fuel discussions about FMD so it can be deployed adequately for diverse
scenarios. Concretely, we formulated a game only for one privacy property and
did not study the Price of Stability/Anarchy. Concerning differential privacy,
our assumption about the IID nature of the edges in a communication graph is
non-realistic. At the same time, the time-dependent aspect of the messages is
not incorporated in our analysis via Pan-Privacy.
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A FMD in more details

The fuzzy message detection scheme consists of the following five probabilistic
polynomial-time algorithms (Setup,KeyGen,Flag,Extract,Test). In the following,
let P denote the set of attainable false positive rates.

Setup(1λ)
$−→ pp. Global parameters pp of the FMD scheme are generated, i.e.,

the description of a shared cyclic group.

KeyGenpp(1
λ)

$−→ (pk, sk). This algorithm is given the global public parameters
and the security parameter and outputs a public and secret key.

Flag(pk)
$−→ C. This randomized algorithm given a public key pk outputs a flag

ciphertext C.
Extract(sk, p) −→ dsk. Given a secret key sk and a false positive rate p the algo-

rithm extracts a detection secret key dsk iff. p ∈ P or outputs ⊥ otherwise.
Test(dsk, C) −→ {0, 1}. The test algorithm given a detection secret key dsk and

a flag ciphertext C outputs a detection result.

An FMD scheme needs to satisfy three main security and privacy notions: cor-
rectness, fuzziness and detection ambiguity. For the formal definitions of these,
we refer to [3]. The toy example presented in Figure 4 is meant to illustrate the
interdependent nature of the privacy guarantees achieved by the FMD scheme.
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Recipient A

Recipient B

Recipient C

Recipient D

Downloaded messages

Senders Server

true positive

false positive

Fig. 4: A toy example of the FMD scheme. 1 Several senders post anonymous

messages to the untrusted server. 2 Whenever recipients come online, they
download messages that correspond to them (some false positve, some true pos-
itive). Recipient A,B,C and D have a false positive rate 0, 13 ,

1
3 , 1, respectively.

Note that the server can map the messages that belong to A and D. However,
the messages of Recipient B and C are 2-anonymous.
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B Formal definitions of security and privacy guarantees

The recipient unlinkability GRUA,Π(λ) game

1. Adversary A selects target recipients u0, u1 and a target sender u2.

2. Challenger C instructs sender u2 to send a message to uc for c
$←− {0, 1}.

3. C uniformly at random generates a challenge bit b
$←− {0, 1}. If b = 0, C

instructs u2 to send a message to uc. Otherwise, instructs u2 to send a
message to u1−c.

4. A observes network traffic and flag ciphertexts and outputs b′.
5. Output 1, iff. b = b′, otherwise 0.

Fig. 5: The security game for the anonymity notion of recipient unlinkability.

Definition 5 (Temporal Detection Ambiguity). An anonymous commu-
nication protocol Π satisfies temporal detection ambiguity if for all probabilistic
polynomial-time adversaries A there is a negligible function negl(·) such that

Pr[GTDAA,Π (λ) = 1] =
1

2
+ negl(λ), (7)

where the temporal detection ambiguity game GTDAA,Π (·) is defined below.

The temporal detection ambiguity GTDAA,Π (λ) game

1. Adversary A selects a target recipient u0.

2. Challenger C uniformly at random generates a challenge bit b
$←− {0, 1}. If

b = 0, C picks k
$←− {1, U} and instructs sender uk to send a message to u0.

Otherwise, the challenger does nothing.
3. The anonymous communication protocol Π remains functional for a certain

period of time, i.e., users keep sending messages using Π.
4. A observes network traffic and flag ciphertexts and outputs b′.
5. Output 1, iff. b = b′, otherwise 0.

Fig. 6: The security game for the privacy notion of temporal detection ambiguity
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C Differential Privacy Relaxations & Proofs

Our novel DP notion called PEEDP (short for Personalized Existing Edge DP) is
a straight forward combination of unbounded DP [20], edge-DP [17]), one-sided
DP [10], and personalized DP [18]. Although our definition (i.e., Definition 3)
is appropriate for FMD, it does not capture the scenarios fully as the time-
dependent nature of the messages are not taken into account. On the other
hand, based on the survey [8] there are adequate DP notions providing guaran-
tees under continuous observation (i.e., stream-data), such as pan-privacy [14].
Within this streaming context we can consider several definitions: user-level [13]
(to protect the presence of users), event-level [12] (to protect the presence of
messages), and w-event level [19] (to protect the presence of messages within
time windows).

Moreover, in Theorem 1 we assumed the messages are IID, yet for real-world
applications this is not necessarily the case. Therefore, dependent-DP [25] or
correlated-DP [38] should be considered where “dependence relationships” are
used to describe how much the variation in one record can influence the other
records and where correlations are defined by an observation on other datasets
respectively. We leave it as a future work to tweak our definition further to fit
into these contexts.

Proof (of Theorem 1). Due to the IID nature of the messages it is enough to
show that Equation 5 holds for a single message of an arbitrary user u. The two
possible world the adversary should not be able to differentiate is whether the
particular message is real or not. Due to the asymmetric nature of Definition 3
(i.e., it only protects the existing edges) Equation 8 does not need to be satisfied.
On the other hand, if the message exists than Equation 9 and 10 must be satisfied
where S1 ={message downloaded by user} and S2 ={message not downloaded
by user}.

Pr(A(real mess. not exists) ∈ S) ≤ eεu · Pr(A(real mess. exists) ∈ S) (8)

Pr(A(real mess. exists) ∈ S1) ≤ eεu · Pr(A(real mess. not exists) ∈ S1) (9)

Pr(A(real mess. exists) ∈ S2) ≤ eεu · Pr(A(real mess. not exists) ∈ S2) (10)

If we reformulate the last two equations with the corresponding probabilities
we get 1 ≤ eεu ·p(u) and 0 ≤ eεu · (1−p(u)) respectively. While the second holds
trivially the first corresponds to the formula in Theorem 1. ut

Proof (of Theorem 2). The users’ number of incoming messages are independent
from each other hence we can focus on a single user u. The proof is similar
to [21]: we satisfy Equation 4 (with +δ at the end) when A(D) = tag(u) ∼
D + Binom(M − in(u), p(u)) for D = in(u) and D′ = in(u) ± 1, i.e., we show
that the following Equation holds.
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Pr(A(D) = tag(u) ∈ S|D = in(u),M, p(u)) ≤
eε · Pr(A(D′) = tag′(u) ∈ S|D′ = in(u)± 1,M ′ = M ± 1, p(u)) + δ

⇒ Pr(in(u) + Binom(M − in(u), p(u)) ∈ S) ≤
eε · Pr(in(u)± 1 + Binom(M ± 1− (in(u)± 1), p(u)) ∈ S) + δ

First, we focus on δ and provide a lower bound originating from the probabil-
ity on the left when Pr(·) ≤ eε ·0+δ. This corresponds to two cases as seen in the
Equation below: when D′ = in(u) + 1 with S = in(u) and when D′ = in(u)− 1
with S = M . The corresponding lower bounds (i.e., probabilities) correspond to
the event when user u does not download any fuzzy messages and when user
u does downloads all messages respectively. Hence, the maximum of these are
indeed a lower bound for δ.

Pr(A(in(u)) = in(u)) ≤ eε · Pr(A(in(u) + 1) = in(u)) + δ ⇒ (1− p(u))M−in(u) ≤ δ
Pr(A(in(u)) = M) ≤ eε · Pr(A(in(u)− 1) = M) + δ ⇒ p(u)M−in(u) ≤ δ

Now we turn towards ε and show that (ε, 0)-DP holds for all subset besides
the two above15, i.e., when S = in(u) + y with y = [1, . . . ,M − in(u)− 1]. First,
we reformulate Equation 4 as seen below.

Pr(in(u) + Binom(M − in(u), p(u)) ∈ S)

Pr(in(u)± 1 + Binom(M − in(u), p(u)) ∈ S)
≤ eε

Then, by replacing the binomial distributions with the corresponding prob-
ability formulas we get the following two equations for D′ = in(u) + 1 and
D′ = in(u)− 1 respectively.

(
M−in(u)

y

)
· p(u)y · (1− p(u))M−in(u)−y(

M−in(u)
y−1

)
· p(u)y−1 · (1− p(u))M−in(u)−y+1

=
M − in(u)− y + 1

y
· p(u)

1− p(u)
≤ eε

(
M−in(u)

y

)
· p(u)y · (1− p(u))M−in(u)−y(

M−in(u)
y+1

)
· p(u)y+1 · (1− p(u))M−in(u)−y−1

=
y + 1

M − in(u)− y
· 1− p(u)

p(u)
≤ eε

Consequently, the maximum of these is the lower bound for eε. The first
formula’s derivative is negative, so the function is monotone decreasing, meaning
that its maximum is at y = in(u) + 1. On the other hand, the second formula’s
derivative is positive so the function is monotone increasing, hence the maximum
is reached at y = M − in(u) − 1. By replacing y with these values respectively
one can verify that the corresponding maximum values are indeed what is shown
in Theorem 2. ut
15 Possibly a smaller bound for ε can be reached if δ is set to its lower bound instead

of zero, we leave this analysis for future work.
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D Game Theory 101 & Proofs

– Tragedy of Commons [15]: users act according to their own self-interest
and, contrary to the common good of all users, cause depletion of the resource
through their uncoordinated action.

– Nash Equilibrium [28]: every player makes the best/optimal decision for
itself as long as the others’ choices remain unchanged.

– Altruism [35]: users act to promote the others’ welfare, even at a risk or
cost to ourselves.

– Social Optimum [16]: the user’s strategies which maximizes social welfare
(i.e., the overall accumulated utilities).

– Price of Stability/Anarchy [1,22]: the ratio between utility values corre-
sponding to the best/worst NE and the SO. It measures how the efficiency
of a system degrades due to selfish behavior of its agents.

– Best Response Mechanism [29]: from a random initial strategy the play-
ers iteratively improve their strategies

Proof (of Theorem 3). First we prove that no-protection is a NE. If all user u
set p(u) = 0 than a single user by deviates from this strategy would increased
its cost. Hence no rational user would deviate from this point. In details, in
Equation 6 the privacy related costs is constant −L independently from user u’s
false-positive rate while the download related cost would trivially increase as the
derivative of this function (shown in Equation 11) is negative.

∂ϕu
∂p(u)

= −f · (M − in(u)) < 0 (11)

Consequently, p∗ = (p∗(1), . . . , p∗(U)) = (0, . . . , 0) is indeed a NE. Now we
give an indirect reasoning why there cannot be any other NEs. Lets assume
p̂ = (p̂(1), . . . , p̂(U)) is a NE. At this state any player could decrease its cost
by reducing its false positive-rate which only lower the download related cost.
Hence, p̂ is not an equilibrium. ut

Proof (of Theorem 4). We show that the condition in the theorem is sufficient
to ensure that SO6=NE by showing that greater utility could be achieved with
0 < p′(u) than with p(u) = 0. To do this we simplify out scenario and set p(u) = p
for all users. The corresponding utility function is presented in Equation 12 while
in Equation 13 we show the exact utilities when p is either 0 or 1.

ϕu(p) = −L · (1− (1− (1− p)U−1)in(u))− f · (in(u) + p · (M − in(u))) (12)

ϕu(0) = −L− f · in(u) ϕu(1) = −f ·M (13)

One can check with some basic level of mathematical analysis that the deriva-

tive of Equation 12 is negative at both edge of [0, 1] as ∂ϕu(p)
∂p (0) = ∂ϕu(p)

∂p (1) =

−f · (M − in(u)). This implies that the utility is decreasing at these points.
Moreover, depending on the relation between the utilities in Equation 13 (when
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Fig. 7: Illustration of the utility functions: the yellow curve’s maximum must be
between zero and one since the gray dot is below the green where the derivative
is negative.

p = 0 and p = 1), two scenario is possible as we illustrate in Figure 7. From this
figure it is clear that when ϕu(0) < ϕu(1) (or f · (M − in(u)) < L) for all users
that the maximum of their utilities cannot be at p = 0. ut

Potential Game. We also show that FMD-RA is a potential game [27]. This is
especially important, as it guaranteed that the Best Response Dynamics termi-
nates in a NE.

Definition 6 (Potential Game). A Game 〈N ,A,U〉 (with players {1, . . . , U},
actions {a1, . . . , aU}, and utilities {ϕ1, . . . , ϕU}) is a Potential Game if there
exist a potential function Ψ such that Equation 14 holds for all players u inde-
pendently of the other player’s actions.16

ϕu(au, a−u)− ϕu(a′u, a−u) = Ψ(au, a−u)− Ψ(a′u, a−u) (14)

Theorem 5. FMD-RA is a Potential Game with potential function shown in
Equation 15.

Ψ(p(1), . . . , p(U)) = −f ·
U∑
u=1

p(u) · (M − in(u)) (15)

Proof. We prove Equation 14 by transforming both side to the same form. We
start with the left side: the privacy related part of the utility does only depend
on the other user’s action, therefore this part falls out during subtraction. On
the other hand the download related part accumulates as shown below.

ϕu(p(u), (p(−u))− ϕu(p(u)′, p(−u)) =

−f · (in(u) + p(u) · (M − in(u)))− (−f · (in(u) + p(u)′ · (M − in(u)))) =

−f · p(u) · (M − in(u))− (−f · p(u)′ · (M − in(u)))

16 a−u is a common notation to represent all other players action except player u. Note
that p(−u) stands for the same in relation with FMD.
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Coincidentally, we get the same result if we do the subtraction on the right
side using the formula in Equation 15 as all element in the summation besides u
falls out (as they are identical because they do not depend on user u’s action).

ut

E Extended Evaluation

In this section, we enclose complementary statistics about our collected datasets
and we discuss additional simulation results. We analyze the communication
graph G = (V,E) of both of the collected datasets [31,32]. In these temporal
graphs, V consists of the users that communicate with each other. An edge
(u0, u1, t) ∈ E represents an exchanged message sent from u0 to u1 at time t.
However, in our analysis below we do not utilize the temporal information of
the graph. We observe in Figure 8 that both in and out-degree distributions of
the graphs are heavy-tailed and follow the power law. Namely, most of the users
barely send and receive messages/e-mails, while a few users send and/or receive
hundreds of messages. The level of individual usage of these communication
systems does affect the false-positive rates, for instance see Section 5 and 6.

Many pairs of users exchange only a handful of messages, cf. Figure 9a. In
particular, communication relationships where merely a single message has been
exchanged remain undetected by the applied statistical tests, cf. Figure 9b. How-
ever, note that for every other pairs of users, the used statistical tests do not
provide false positives in none of the analyzed datasets. These simulation results
demonstrate that relationship anonymity is effectively maintained against sta-
tistical attacks if each user only sends a single message from the server’s point of
view. This can be achieved by cryptographic tools or anonymous communication
systems, e.g., Tor. On the other hand, recurrent communication relationships do
reveal the relationship of communicating peers. Thus, relationship anonymity is
breached with perfect precision and high recall, cf. Figure 10.
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Fig. 8: Degree distributions of the communication networks [31,32].
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(a) The distribution of the number of mes-
sages between pairs of users in the two ana-
lyzed datasets. Most of the users exchange
only a handful of messages.
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Fig. 9: Recurrent communication relationships can be recovered with perfect pre-
cision by applying statistical tests, see Section 4.2.
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Fig. 10: Recall of the statistical test in breaking relationship anonymity (see
Section 4.2) for the College IM (left) and the EU Mail (right) datasets.
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F Attacks on Privacy

We show several possible attacks against the FMD scheme, that might be fruitful
to be analyzed in more depth.

Intersection Attacks. The untrusted server could possess some background
knowledge that it allows to infer that some messages were meant to be received
by the same recipient. In this case, the server only needs to consider the inter-
section of the anonymity sets of the “suspicious” messages. Suppose the server
knows that l messages are sent to the same user. In that case, the probability
that a user is in the intersection of all the l messages’ anonymity sets is drawn
from the Binom(U, pl) distribution. Therefore, the expected size of the anonymity
set after an intersection attack is reduced to plU from pU .

Sybil attacks. The collusion of multiple nodes would decrease the anonymity set
of a message. For instance, when a message is downloaded by K nodes out of U ,
and N node is colluding, then the probability of pinpointing a particular message

to a single recipient is
(N+1
K )

(UK)
. This probability clearly increases as more node is

being controlled by the adversary. On the other hand, controlling more nodes
does trivially increase the controller’s privacy (not message-privacy but user-
privacy) as well. However, formal reasoning would require a proper definition for
both of these privacy notions.

Neighborhood attacks. Neighborhood attacks had been introduced by Zhou et al.
in the context of deanonymizing individuals in social networks [39]. An adversary
who knows the neighborhood of a victim node could deanonymize the victim even
if the whole graph is released anonymously. FMD is susceptible to neighborhood
attacks, given that relationship anonymity can be easily broken with statistical
tests. More precisely, one can derive first the social graph of FMD users and
then launch a neighborhood attack to recover the identity of some users.
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