
Opportunistic Algorithmic Double-Spending:
How I learned to stop worrying and hedge the Fork

Nicholas Stifter1,2, Aljosha Judmayer2,1, Philipp Schindler1,2, and
Edgar Weippl2,1

1 SBA Research, Vienna, Austria
(firstletterfirstname)(lastname)@sba-research.org

2 University of Vienna, Vienna, Austria

Abstract. In this paper we outline a novel form of attack we refer to as
Opportunistic Algorithmic Double-Spending (OpAl). OpAl attacks not
only avoid equivocation, i.e., do not require conflicting transactions, the
attack is also carried out programmatically. Algorithmic double-spending
is facilitated through transaction semantics that dynamically depend on
the context and ledger state at the time of execution. Hence, OpAl evades
common double-spending detection mechanisms and can opportunistically
leverage forks, even if the malicious sender itself is not aware of their
existence. Furthermore, the cost of modifying a regular transaction to
opportunistically perform an OpAl attack is low enough to consider
it a viable default strategy for most use cases. Our analysis suggests
that while Bitcoin’s stateless UTXO model is more robust against OpAl ,
designs with expressive transaction semantics, especially stateful smart
contract platforms such as Ethereum, are particularly vulnerable.

1 Introduction

Double-spending attacks in cryptocurrencies have primarily been considered
in two general categories. In the first category, an adversary is either them-
selves capable, or is able to coerce others, to participate in an attack that un-
dermines the expected security guarantees of the underlying consensus proto-
col [73,76,88]. Hereby, attack vectors such as information withholding and in-
formation eclipsing [25,35,67,3], as well as exploiting the rational behavior of
participants [8,55,41], have received particular attention. The second category
of double-spending attacks leverages inadequately chosen security parameters by
merchants, i.e, they provide goods or services while the probability of the pay-
ment transaction being reverted is non-negligible [44,2,45,76]. In either case, it
is generally assumed that the adversary proactively performs a double-spending
attack by creating mutually exclusive transactions, i.e., equivocates [38].

We hereby challenge this status quo and discuss an alternative attack we
refer to as algorithmic double-spending, whereby the intent to double-spend is
intentionally encoded in the transaction semantics. Algorithmic double-spending
does not require equivocating transactions and is facilitated through distributed
ledgers that exhibit two properties, namely i) the ability to define transaction



2 N. Stifter et al.

semantics that dynamically depend on the ledger state or execution context, which
we refer to as semantic malleability, and ii) probabilistic consensus decisions,
i.e., protocols without finality, or where security failures have compromised the
safety, i.e, consistency [29], of consensus decisions.

1.1 Paper Structure

An introduction and executive summary that outlines the concept of algorithmic-
double spending and highlights the contributions of this paper is presented
in Section 1.2. In Section 1.3 we discuss related work and background litera-
ture. Section 2 provides a definition of what is meant by (algorithmic) double-
spending. A proof-of-concept OpAl attack in the context of Ethereum is pre-
sented in Section 3, to highlight the concept of algorithmic double-spending
by example. To gain a better understanding of the principles behind OpAl , we
first define prerequisites and properties of semantic malleability in Section 4,
and use them to investigate three different ledger designs in Section 5. Finally,
we consider possible mitigation strategies against algorithmic double-spending
(Section 6) and highlight future research directions in Section 7.

1.2 Algorithmic Double-Spending in a Nutshell

In this work, we are the first to describe and analyze the unique category of (op-
portunistic) algorithmic double-spending, which has been largely overlooked as a
potential attack vector. The relevance of this novel attack lies, on the one hand,
in its automatic execution upon inclusion in a fork, its conceptual simplicity, its
evasion of detection strategies, and its plausible deniability. On the other hand,
the opportunistic nature of OpAl attacks also presents a more serious threat in
case the underlying security assumptions of the ledger do not hold in practice,
even if the cause of failure itself is benign. In light of any deep fork that extends
beyond the assumed k-block common prefix [30,69], replaying transactions on a
different branch risks inadvertently triggering an embedded OpAl attack.

The characteristic of OpAl attacks is comparable to logic bombs found in
malware, which can exhibit time- or state-dependent behavior [14,28]. Future
detection and prevention mechanisms against OpAl may hence need to perform
in-depth transaction analysis and classification techniques, e.g. [84,36], or at-
tempt to identify abnormal behavior during on-the-fly analysis [26].

Regarding the previously outlined two general categories of double-spending,
OpAl attacks are applicable in both scenarios. We note that OpAl attacks can be
used as a drop-in replacement for classical, non-opportunistic equivocation-based
attacks. Thus, in this context, algorithmic double spending appears to present a
superior strategy. To highlight the practicability of OpAl , we demonstrate that
Ethereum transactions can easily be augmented to perform such an attack. OpAl
itself does not affect the success probability of attacks targeted at causing the
required blockchain fork for performing a double-spending attack. However, it
can be easily used as a default strategy in transactions to leverage upon random



OpAl : How I learned to stop worrying and hedge the Fork 3

forking events or unknown attacks. We hence refer to this form of attack as
opportunistic algorithmic double-spending (OpAl).

OpAl attacks do not stand in contradiction to the security guarantees and
desirable properties [30,69,6] offered by Nakamoto-style distributed ledgers. The
existence of state instability through forks is abstracted away in idealized ledgers
by waiting for the relevant actions, e.g. transactions, to be included in the
common prefix [9]. Assuming the security guarantees hold, algorithmic double-
spending is primarily of concern in cases where users exhibit an insecure inter-
action model referred to as hasty players [9], whereby actions are taken based
on unstable state. We crucially note that this pattern is commonly encountered
in real-world ledgers, in particular in regard to applications such as decentralized
finance (DeFi), where hastiness can be financially advantageous [15,90,91].

Our analysis of the governing mechanism for algorithmic double-spending
suggests that semantic malleability lies at the core of the problem. Semantically
malleable transactions allow for different state transitions depending on the input
state and execution environment at the time of processing. It may appear that
the solution to this problem is to enforce a single valid state transition for a
transaction, such as the EUTXO model [12] employed by Cardano. However, in
this case the possibility of algorithmic double-spending still arises if the validity
of a transaction can be tied to particular ledger states. Interestingly, in the highly
limited UTXO model of Bitcoin [4], access to ledger state appears sufficiently
constrained to prevent practicable OpAl attacks.3

While there appear to be some mitigation strategies against OpAl , it is un-
clear if the underlying issue can be completely avoided in practice. One possible
defensive approach against OpAl attacks is to prevent players from concurrently
interacting with malleable ledger state until it has sufficiently stabilized, how-
ever such a pattern may not be desirable for users, as it can lead to long wait-
ing periods. In this regard it appears advantageous to be able to achieve fast
and guaranteed consensus finality, which remains an active research topic for
decentralized ledger designs [11,70,68]. Finally, if the security assumptions of
the ledger fail due to attacks or technical errors, which practice has shown can
happen [61,56,64], OpAl attacks can prove particularly severe and superior to
equivocation-based techniques. Hence, a hedge against such scenarios might be
for oneself to proactively engage in OpAl (counter)attacks.

1.3 Related Work

Beside the related work on double-spending that we mention in the introduc-
tion, it is important to note that prior art has identified a range of security issues
in distributed ledgers that tie-into the discussion of OpAl , e.g., timestamp- and
transaction-order dependence [57], concurrency and event ordering (EO) vulner-
abilities [75,50], blockchain anomalies [66], stake bleeding [31], time-bandit [15]
attacks, and order-fairness [47,53]. We outline several of these works in detail

3 Transaction inputs from a coinbase transaction in a fork in excess of 100 Blocks can
enable a form of OpAl attack that does not require equivocation (see Section 5).



4 N. Stifter et al.

within the body of this paper. To the best of our knowledge, we are the first to
present the concept of algorithmic double-spending and demonstrate its practi-
cability. Conceptually, Botta et al. [9] relates most to the topics discussed within
this work. They effectively highlight the possible effects of blockchain forks, as
well as the practical implications of probabilistic finality with hasty players, in
the context of MPC protocols executed atop distributed ledgers. However the
concept of algorithmic double-spending is not considered.

2 What is Algorithmic Double-Spending?

In this section we define our notion of double-spending and put forth the ar-
gument that there exists the overlooked class of algorithmic double-spending,
which does not necessitate conflicting actions, i.e., equivocation. We then dis-
cuss the implications of this insight, such as the possibility of unintentional
double-spending, and raise the question whether double-spending requires eco-
nomic damage.

2.1 Defining (Algorithmic) Double-Spending

We observe that while research on double-spending provides concrete descrip-
tions and formal analyses of particular instantiations of double-spending attacks,
e.g., [44,2,45,37], a general definition of the term double-spending appears to be
outstanding. A clearer definition of what is meant in this regard may not only aid
with classification efforts, but could also help identify new or overlooked attack
forms. Motivated by the novel class of algorithmic double-spending we present
within this work, we hereby set out to propose such a more general definition:

Definition 1 (Double-Spending Attack). In a double-spending attack an
adversary attempts to fool a victim into performing an economic transaction
directed at the adversary on the basis of a presumed valid system state, which
is later revealed to be stale or invalid. Hereby, the adversary’s goal is to be able
to reuse any of the resources that form the basis of the economic transaction for
other purposes. We distinguish between the following Double-Spending Attacks:

– Equivocation-Based, whereby the adversary issues multiple conflicting ac-
tions in the system, one of which is aimed at fooling the victim, and where
at most one of the issued actions can eventually be performed in the system.

– Algorithmic, whereby the adversary performs a single action that can have
different semantic meanings, depending on the system state in which they
are interpreted, and where the interpretation of this action in some stale or
invalid system states can be used to fool the victim.

At the core of this work lies the insight that double-spending may be facilitated
through other means than the classical notion of requiring equivocation-based
conflicting actions of an adversary. Algorithmic double-spending builds on a
simple property, that can be observed in various distributed ledger designs with
expressive transaction semantics today:



OpAl : How I learned to stop worrying and hedge the Fork 5

Observation 1 (semantic malleability) Given a transaction t, it may have
different semantic outcomes, depending on the ledger state and environment upon
which t is executed.

We refer to this property as semantic malleability due to the fact that external
factors, such as the consensus protocol and its ordering guarantees [47,89,53,46],
as well as other actors in the system who may be rushing [51], e.g., in the context
of frontrunning [22,15,91], are able to transition the system state in a way that
is able to affect or malleate the semantics of transactions.

From Observation 1 we can rather intuitively derive a basic strategy for an
algorithmic double-spending attack: an adversary can encode both, the regular
payment to the merchant, as well as an alternative malicious action, e.g., pay-
ment to herself, as different execution paths within a single transaction. The
control flow of the transaction is designed to conditionally branch, depending
on the ledger state σ at the time the transaction is processed by a miner. If the
same transaction is included in a different state σ′, i.e. a fork, the “hidden” algo-
rithmic double-spend is triggered without active participation from the attacker.
Figure 1 illustrates this difference to equivocation-based double-spending.

Fig. 1. Conceptual difference between equivocation- and algorithmic double-spending

2.2 Novel Insights inspired by Algorithmic Double-Spending

The concept of algorithmic double-spending raises interesting challenges, two
of which we outline in more detail. First, up until now unintentional double-
spending, for example as a result of technical failures, did not appear of partic-
ular concern. Prior art identifies potential vulnerabilities that arise from order



6 N. Stifter et al.

dependence in smart contracts [57,75,50] and violations of transaction causal-
ity in forks with unintended side-effects [66]. We expand upon these insights
by highlighting that semantic malleability can lead to unintentional algorithmic
double-spending as a result of transaction reordering within a blockchain fork.
Hereby, it can be difficult to distinguish between misbehavior and misfortune.

Second, in stateful smart contract systems double-spending may not only be
performed solely at the economic level by reusing some virtual coin. For example,
Botta et al. [9] highlights the need of mitigation strategies against an adversary
leveraging forks in MPC protocols with hasty players. On the other hand, Zhou
et al. [90] identify network flooding events with equivocating, almost identical,
transactions. Similarly, increasing the miner fee of a transaction may require a
user to equivocate, raising the question if such behavior should be subsumed
under the notion of double-spending. This presents the interesting problem how
any divergent system behavior within forks, be it through equivocation- or al-
gorithmic double-spending, should be addressed.

3 A Proof-of-Concept (PoC) OpAl Attack in Ethereum

We demonstrate the practicality of algorithmic double-spending by providing a
functional PoC OpAl attack in Ethereum. Our attack design is inspired, on the
one hand, by hardfork oracles, which McCorry et al. [61] discusses in the context
of atomic-trade protocols during hardforks, and, on the other hand, by the notion
of context sensitive transactions Gaži et al. [31] describes as a replay protection
mechanism in stake-bleeding attacks. An informal statement that encapsulates
the intended transaction semantics for our PoC OpAl attack is the following:

“ IF this transaction is included in a blockchain that contains a block with
hash 0xa79d THEN pay the merchant, ELSE don’t pay the merchant.”

Essentially, our attack is based on the insight that a transaction can act as its
own fork oracle for conditionally branching its execution. In the following, we
first outline the construction of such a fork oracle in more detail and then present
a PoC attack that allows transactions with the above semantics to be created.

3.1 How to Construct an OpAl Fork Oracle in Ethereum

The concept of employing a fork oracle to distinguish between branches of
(hard)forks was proposed in cryptocurrency communities [59,23], as well as re-
search [61,62,40]. Hereby, a frequent goal is achieving replay protection. McCorry
et al. [61] outlines how fork oracles can be leveraged to realize atomic trades
across hardforks. Constructing a smart-contract based fork oracle if the under-
lying forks do not offer replay protection can be challenging [61]. McCorry et
al. [62] demonstrate through history revision bribery how (equivocation-based)
double-spending can be leveraged to realize a fork oracle. Hereby, the fork oracle
is not used to facilitate (algorithmic) double-spending. Rather, the mutually ex-
clusive outcomes of the double-spend in different forks are relied upon to actually



OpAl : How I learned to stop worrying and hedge the Fork 7

implement the oracle. Surprisingly, the idea of using fork oracles to algorithmi-
cally trigger double-spending was not yet considered.

Block-Hash Based Fork Oracle The fork oracle we propose is inspired by
a simple and elegant technique to achieve replay protection that has been con-
sidered in the proof-of-stake setting [54,31]. Hereby, the hash of a recent block
is included in a transaction, and the transaction is only considered valid for
blockchains that contain this block in their prefix. Gaži et al. [31] refer to this
mechanism as context sensitive transactions. Essentially, context sensitive trans-
actions already implicitly realize the attack semantics described above.4 In case
a fork of sufficient depth occurs, this replay protection mechanism ensures that
transactions become invalid at the protocol level, and the double-spending “at-
tack” is realized algorithmically through the underlying protocol rules. Ethereum
does not natively support context sensitive transactions, however, this function-
ality can easily be emulated with smart contract code because of available EVM
primitives that expose ledger context, such as the Blockhash opcode. [83] It is
hence possible to programmatically act upon the existence of a particular block,
or other ledger context, as part of an Ethereum transaction.

Fork Oracle Discussion A downside of the hash-based fork oracle is its re-
liance on a commitment to previous ledger state, thereby requiring a fork of at
least depth-2 to trigger the attack. However, it is also possible to construct or-
acles that enable OpAl attacks for forks of depth-1. The key difference between
a depth-1 fork oracle and a hash-based fork oracle in the above design is, that
the latter is based on ledger state which is known, whereas the former is based
on some prediction of the future state at the time the transaction is processed.
Hence, depth-1 fork oracles generally offer much weaker probabilistic guarantees
for identifying forks. For example, consider the coinbase opcode in the EVM
that returns the current block’s beneficiary address [83]. Instead of specifying
the highest known block hash as the branching condition, an adversary could
use the beneficiary address of a large mining pool5 in an OpAl attack. Hereby
the transaction semantics depend on whether the transaction is included in a
block from the targeted mining pool, or some other miner. Generally speaking,
in Nakamoto-style proof-of-work ledgers the next block producer is not known
in advance. However, we note that in future proof-of-stake protocols [7,16] this
may be different, thereby allowing for more reliable depth-1 fork oracles.

Another limitation of the hash-based fork oracle specific to the EVM is the
restriction that the blockhash opcode only returns hashes within a 256 block
look back window, and 0 otherwise. [83] Hence, if a transaction is processed in
a block that exceeds 257 blocks after the height of the blockhash commitment,
the oracle will falsely report a fork and trigger the attack branch. We argue that
in the case of our intended OpAl semantics this limitation is unproblematic, as
the transaction would simply transfer the funds back to the attacker.

4 Thereby introducing the possibility of unintentional OpAl attacks (see Section 2.2).
5 We note that in Ethereum, address reuse in the coinbase by miners is prevalent.



8 N. Stifter et al.

3.2 Proof of Concept OpAl Attack Contract

Di Angelo and Salzer present a comprehensive empirical analysis of wallet con-
tracts on Ethereum [18,19]. Of the identified properties, in particular designs that
support flexible transactions, i.e., forwarding of arbitrary calls, appear suitable
for augmentation to support the creation of OpAl transactions. Their empiri-
cal data shows that at least tens of thousands of contracts supporting flexible
transactions are currently deployed in Ethereum, suggesting practical use-cases
for such contract patterns, even without an OpAl augmentation. Our attack
requires minimal modifications, and the interaction pattern is almost the same.

In the following, we present a minimal fully viable PoC OpAl attack smart
contract written in Solidty [82], that relies on the aforementioned hash-based fork
oracle. Our contract code (Listing 1.1) is loosely based on the Executor contract
from the Gnosis-Safe Wallet [63], which allows the forwarding of arbitrary func-
tion calls. Instead of forwarding a call directly, the contract first evaluates if the
block hash at a particular height of the current ledger matches the commitment
hash that was provided as an additional parameter in the transaction data. This
is realized through the blockhash() function [24]. If the blockhash matches the
commitment, the function call is forwarded, else, no action is performed, i.e., the
action is reversed in a fork.

1 pragma solidity 0.8.4;
2 // This contract acts as an OpAl forwarding proxy for transactions.
3 contract Opal {
4 address public owner;
5
6 modifier onlyOwner () {
7 require(isOwner(msg.sender));
8 _;
9 }

10 constructor () {
11 owner = msg.sender;
12 }
13
14 fallback () external payable {}
15 receive () external payable {}
16
17 function isOwner(address addr) public view returns(bool) {
18 return addr == owner;
19 }
20
21 function cashOut(address payable _to) public onlyOwner {
22 _to.transfer(address(this).balance);
23 }
24
25 // forwarding function implementing opportunistic double -spending (OpAl)
26 function forward(address payable destination , bytes32 commitblockHash ,
27 uint commitblockNumber , bytes memory data)
28 onlyOwner public payable returns(bool success) {
29 if (blockhash(commitblockNumber) == commitblockHash)
30 assembly { success := call(gas(), destination , callvalue (),
31 add(data , 0x20), mload(data), 0, 0)
32 }
33 }
34 }

Listing 1.1. Solidity OpAl contract that implements a basic fork oracle by only
forwarding transactions if the provided commitment to a block hash can be resolved.



OpAl : How I learned to stop worrying and hedge the Fork 9

Outline of the Attack An adversary wishing to engage in OpAl first needs to
deploy the attack contract. Once the contract is successfully deployed, whenever
they wish to perform a transaction with OpAl functionality, instead of calling a
function f() in the target contract or sending funds directly, they simply forward
this call to the forward() function (Line 15 in Listing 1.1) of the deployed attack
contract, together with the appropriate parameters. Specifically, the adversary
generates transaction t that calls forward in the attack contract with the fol-
lowing parameters: i) the target address; ii) the block hash and height h of the
current chain tip; iii) the encoded function name to be called at the target f()
together with its parameters; iv) any Ether that shall be sent; and broadcasts t
to the network. Ideally, the transaction fee is high enough for t to be immediately
included in the next block h+ 1. Otherwise, the required fork depth increases in
the number of blocks the chain grows between the creation and inclusion of t.

To the recipient of t, the interaction pattern will appear as if the user em-
ployed a regular wallet contract. Unless they perform an analysis of the deployed
contract bytecode, the malicious behavior only becomes apparent once the at-
tack conditions are triggered, i.e., during a fork. In case the adversary is lucky
and a fork at, or before, height h occurs, and their transaction is replayed within
this fork, the alternative attack branch of the contract is executed automatically.

3.3 Cost Overhead of PoC Attack in Ethereum

We quantify the additional costs incurred when augmenting a transaction with
OpAl capabilities, by deploying our attack contract in a private Ethereum test-
net and measuring the gas utilization for basic interactions, such as ERC-20
token [80] transfers. Our PoC OpAl attack adds a constant overhead of gas that
depends on the number of parameters supplied to the target function f(). The
deployment transaction for the contract in Listing 1.1 required 393175 gas. As
this transaction can be done well in advance of any attacks and needn’t be timely,
we assume a lower gas price of 75 GWei, which translates to deployment costs
of ≈ 0.03 Ether or, at an exchange rate of 3400 USD, almost exactly 100 USD.
Note that the attacker only needs to deploy this contract once, after which the
only overhead derives from using the forwarding function. For ERC-20 token
interactions (approve, transfer, transferFrom), using OpAl adds ≈ 3000 gas,
which equates to ≈ 8% overhead. At the time of writing, assuming a gas price
of 150 GWei for timely inclusion of the transaction, this overhead translates to
≈ 1.5 USD higher fees if a transaction is augmented to support OpAl attacks.

4 Prerequisites for Algorithmic Double-Spending

Within this section we identify prerequisites and underlying properties that en-
able algorithmic double-spending. Our analysis is based on an intentionally sim-
ple system model to account for different ledger designs. We define the concept
of semantic malleability that we introduced in Section 2 and argue that ledgers



10 N. Stifter et al.

with semantically malleable transactions are vulnerable to algorithmic double-
spending, and thus OpAl attacks. In our analysis we show that any distributed
ledger that is robust to semantic malleability must satisfy two necessary prop-
erties, namely eventual replay validity and replay equivalence. Finally, we raise
the question whether a characterization of Nakamoto-style ledgers as replicated
state machines (RSM) is accurate in light of algorithmic double-spending.

System Model and Assumptions: Following Luu et al. [57], we conceptually
view a blockchain as a transaction-based RSM, where its state is updated after
every transaction. We denote S the set of all possible system states and σ ∈ S
a single system state. The initial starting state of a blockchain is defined as σ0.

A valid transition from state σ to σ′, via transaction t, is denoted as σ
t−→ σ′.

past(σn) is defined as the ordered list of transactions T = {t1, t2, . . . , tn}, that,
when applied to σ0, lead to state σn. If there exists a non-empty sequence of
transactions starting from state σa to state σb, we call σa a predecessor of σb, in
short σa ≺ σb. The predicate valid(t, σ) represents the transaction validation
rules of the underlying protocol, it returns True if and only if the transaction
t is considered valid (executable) in state σ. We assume that block producers,
e.g., miners, adhere to protocol rules and transaction liveness is guaranteed, i.e.,
any valid transaction will eventually be executed.

Executing a transaction t in state σ alters (part of) the state σ and thus
results in a new state σ′. The changes are captured by the function diff(t, σ).
Consider, for example, a state σ = {Alice: 6,Bob: 5,Carol: 4} represented as
account-value mapping, and a transaction t, where Alice gives 2 coins to Bob.
Then diff(t, σ) = {Alice: −2,Bob: +2} captures the balance changes of Alice
and Bob while other parts of the state (Carol’s balance) remain unaffected. In
this example a single account-value mapping is called a substate. Note that it
is possible that the effects of executing the same transaction t in two different
states are equal, i.e., (σa 6= σb) ∧ (diff(t, σa) = diff(t, σb)).

Identification of Prerequisites: We consider a transaction t to be a sequence
of operations (computations) that lead to a state transition. A transaction is
semantically malleable, if the available primitives, which are used to define the
semantics of the transaction, allow the control flow of the execution to branch
conditionally based on the particular input state σ.

The following two properties we define are necessary for a ledger to be robust
against semantic malleability. We refer to these properties as replay equivalence
and eventual replay validity, since replaying the same ordered set of transactions
on some initial state σ0 should always yield the same state transitions and final
state, and the validity of transactions should not be affected by the environment.

Definition 2 (replay equivalence). Assuming that no transaction equivoca-
tion happens: A transaction t satisfies replay equivalence, if executing t in all
candidates states where t is executable (valid) leads to the same changes in the



OpAl : How I learned to stop worrying and hedge the Fork 11

respective (sub)states:

∀σa, σb ∈ S, (valid(t, σa) ∧ valid(t, σb)) =⇒ (diff(t, σa) = diff(t, σb)) .
(1)

Definition 3 (eventual replay validity). Assuming that no transaction equiv-
ocation happens: If a transaction t is found executable (valid) in some state σa,
then it either remains executable (valid) or has already been executed in successor
states of σa:

∀σa, σb ∈ S, (valid(t, σa) ∧ σa ≺ σb) =⇒ (t ∈ past(σb) ∨ valid(t, σb)) .
(2)

Definition 4 (semantic malleability). A transaction t is semantically mal-
leable if it violates the replay equivalence and/or the eventual replay validity
property.6

4.1 Can Blockchains be Characterized as State Machines?

State machine replication is generally based on the notion that the state of the
system is solely determined by the sequence of (deterministic) operations it has
processed, independent of external factors. Interestingly, we observe (Section 5)
that in practice, designs appear to deviate from the model we adopt from Luu et
al. In his seminal work on the state machine approach F. B. Schneider provides
the following semantic characterization of a state machine [74]:

“Outputs of a state machine are completely determined by the sequence
of requests it processes, independent of time and any other activity in a
system.”

First, consider the herein discussed property of semantic malleability in trans-
actions. The existence of semantic malleability in itself does not violate the above
characterization, as a mere reordering of transactions, i.e., requests, may lead to
semantic malleability without requiring any access to time or activity within the
system. However, in practice, ledger designs often allow transaction semantics
to depend on external ledger context that is not solely defined by such requests,
i.e., time or other external data from blocks (See Section 3). In essence, being
able to define functions that take as input elements of the ledger context within
transaction semantics, such as previous block hashes, the block height, coinbase
transaction or block time, can cause a violation of replay equivalence or eventual
replay validity, both of which can be directly derived as required properties of a
RSM from the above characterization.

Second, blockchain designs generally offer rewards as an incentive mechanism
for block producers to participate in the consensus protocol. Under the assump-
tion that a block merely represents an ordered set of transactions, i.e., requests,

6 A equivalent standalone definition of this property is given in Appendix B.



12 N. Stifter et al.

and transactions can not access any external state defined within blocks, this
model would appear to realize a RSM. However, if we include the fact that block
rewards represent transactions or state transitions that depend on a particular
external state, namely the block itself that justifies the reward, the model is no
longer independent of the system state.

We note that one possibility to amend this issue is to either include the cre-
ation of blocks as requests, or model state updates entirely from the perspective
of blocks and not at the transaction level. The latter approach is, for instance,
taken by formal models that analyze Nakamoto consensus [30,69,6]. Neverthe-
less, even if one considers state machine replication only from the perspective of
blocks and not individual transactions, there can still exist external dependencies
on the environment, in particular on time. Consider that receiving late or early
blocks may render them (temporarily) invalid by the protocol rules, leading to
different possible interpretations of the same sequence of requests and resulting
final state depending on the current system time.

Observation 2 If operations, i.e. transactions, in a blockchain either depend
on- or have access to- the execution context, e.g., time, block hashes, block height,
coinbase transactions, etc., then the resulting system does not adhere to the se-
mantic characterization of a replicated state machine.

5 Do Bitcoin, Ethereum, and Cardano Achieve Eventual
Replay Validity and Replay Equivalence?

For the following investigation we set aside the orthogonal topic of how to cre-
ate blockchain forks of sufficient depth to facilitate double-spending attacks.
Instead, we are interested in identifying if, in principle, the designs are vulnera-
ble to semantic malleability, by evaluating whether the aforementioned necessary
properties are satisfied. We consider Bitcoin, Ethereum and Cardano, as they
each represent instantiations of Nakamoto-style blockchains with distinct design
differences. Bitcoin [65] is UTXO-based and facilitates a highly limited, non-
Turing complete scripting language for transaction semantics. [4] Ethereum [83]
adopts an account-based model and offers expressive transaction semantics that
can draw upon stateful Turing-complete smart contract functionality. Finally,
Cardano [13] is set to adopt the EUTXO model [10], which intends to lever-
age advantages of a stateless UTXO design with the expressiveness of Turing-
complete smart contracts that can carry state.

Bitcoin: In Bitcoin, transactions are based on the so-called unspent transac-
tion outputs (UTXO) model [17] and contain simple (deterministic) Boolean
functions, called Scripts, that determine the transaction semantics.[4] Bitcoin’s
UTXO model is stateless and non-Turing complete. A key aspect of the UTXO
model is that transactions are deterministic and bound to a single execution
by committing to the exact input (sub)states, i.e., UTXOs, that a transaction
consumes, and a precise set of output UTXOs, that the transaction produces.



OpAl : How I learned to stop worrying and hedge the Fork 13

We now informally analyze whether Bitcoin’s UTXO model appears to satisfy
replay equivalence and eventual replay validity. Consider a sequence of transac-
tions T = {t1, t2, . . . tn} in some valid Bitcoin blockchain B. If T is replayed in
another valid blockchain B′, and both B and B′ have the same starting state σ0,
then: i) for replay equivalence to not hold, there must exist a transaction tv in
T where the resulting state transition differs between B and B′. In the UTXO
model, there exists precisely one valid input UTXO and one valid output UTXO
for every transaction. Hence, for tv to result in a different state transition, it
would have to be invalid, If tv is invalid, yet included in B′, it would mean B′
is also invalid – a contradiction. Hence, it appears that Bitcoin’s UTXO model
satisfies replay equivalence.

ii) regarding eventual replay validity, for a transaction to be included in
a blockchain B′, the input UTXO the transaction consumes must be present.
Given B and B′ have the same σ0 and transactions are executed in the same
order, executing t1 on σ0 in either B or B′ yields the same resulting state σ1.
By induction, this holds for every transaction ti in T , unless ti also has some
external context dependency on the environment of B, in addition to the output
state generated by ti−1. In Bitcoin, external context (e.g. time) is not accessed
explicitly through a UTXO, but implicitly through Scripts or validity rules for
transactions. Specifically, it is possible to define some relative or absolute time,
in relation to that of the ledger context, from which point onward a transaction
may become valid. [78] However it is not possible to permanently invalidate a
transaction that depends on ledger context, i.e., in a live blockchain there is a
future point and time where this dependency is satisfied. We therefore conclude
that, in principle, the Bitcoin UTXO model could satisfy eventual replay validity.

However, we have excluded the notion of coinbase transactions from our
analysis, i.e., reward transactions to block producers, whose validity depend on
the block in which they were created and therefore implicitly on blockchain B.
Hence, eventual replay validity is not satisfied by coinbase transactions.

As a tangible attack example, consider a transaction which includes, as one
of its input UTXO, an output from a coinbase transaction that has become
spendable, i.e., has matured for 100 Blocks. If a sufficiently deep blockchain
fork, of say 144 blocks, occurs, the above transaction can not be replayed within
a fork and becomes invalid, thereby facilitating an algorithmic double-spend that
does not require equivocation. Karame et al. [45] also outlines a form of double-
spending attack in Bitcoin that leverages the different interpretations of validity
for a transaction in a softfork [86], however their attack is based on equivocating
transactions.

Cardano: Cardano [13] is based on a line of research on provably secure proof-
of-stake Nakamoto-style blockchains [49,16,5,48], which we subsume under the
term Ouroboros. Hence, Ouroboros also offers probabilistic finality guarantees
and the existence of temporary blockchain forks is possible.

Cardano is poised to adopt the Extended UTXO (EUTXO) model [12,10],
that was conceived to leverage desirable properties of Bitcoin’s UTXO design. [12]
Conceptually, to support stateful Turing-complete smart contracts in EUTXO,



14 N. Stifter et al.

the UTXO model is extended in the following (from Chakravarty et al. [12]):
i) outputs can contain arbitrary contract-specific data; ii) Scripts, which are
referred to as validators in the EUTXO model, receive the entire transaction
information, including its outputs, as context next to the contract specific data,
and can impose arbitrary validity constraints on the transaction; iii) a valid-
ity interval is added for transactions, whereby any Scripts which run during
validation can assume that the current time is within that interval;

A key property the EUTXO model inherits from the UTXO model is that
the execution of a transaction during validation is entirely deterministic and
solely determined by its inputs. Equivocation is hence required to achieve a dif-
ferent semantic result. In terms of our necessary properties to achieve robustness
against semantic malleability, replay equivalence follows analogous to Bitcoin.

However, as Brünjes and Gabbay [10] crucially point out, the EUTXO model
allows to restrict the validity of transactions to time intervals, which renders the
result of transaction processing dependent on the ledger context. Unlike Bitcoin,
in Cardano transactions can be permanently invalidated based on ledger context.
Hence, eventual replay validity is not satisfied and semantic malleability possible.
In particular, a transaction’s validity interval can be used as a weaker fork oracle
to trigger OpAl attacks where the transaction is reverted if a fork occurs, and it
is not included before the validity interval expires. We refer the interested reader
to Appendix C for a visualization of this attack.

Ethereum: We refer the reader to Section 3 for a practical example of an
OpAl attack in Ethereum. Nevertheless, we briefly also provide an example why
Ethereum’s design is vulnerable to semantic malleability. The EVM offers primi-
tives that can be used to query information from the ledger context at the time of
execution, e.g., opcode 0x42, which is defined in the Ethereum Yellowpaper [83]
to place the current block’s timestamp onto the stack. This implies that a trans-
action whose execution relies on such opcodes can semantically differ, depending
on the block in which it is included. Hence, replay equivalence is not satisfied.

6 Mitigation Strategies against OpAl

Having outlined the principles behind algorithmic double-spending, we now dis-
cuss possible prevention or mitigation strategies. Hereby, we broadly distinguish
between two categories, namely approaches that seek to limit the effects of se-
mantic malleability and those that address instability in consensus, i.e., a lack of
finality. Finally, a questionable course of action can also be to oneself engage in
OpAl attacks, in order to reduce counterparty risk and try to hedge against the
potentially detrimental effects of any deep blockchain fork, should it ever occur.

Mitigating Semantic Malleability: As we have shown in Sections 2 and 4
semantic malleability lies at the core of enabling algorithmic double-spending.
In this regard we believe that the expressive transaction semantics associated
with smart-contract functionality poses a fundamental challenge when trying to



OpAl : How I learned to stop worrying and hedge the Fork 15

combat algorithmic double-spending. Drawing upon the concept of guard func-
tions from Luu et al. [57] and context sensitive transactions Gazi et al. [31]
and Botta et al. [9] rely on, transaction validity of transactions should more
explicitly be constrained to input states that only lead to desirable outcomes
for the sender. While such patterns do not prevent the possibility of algorithmic
double-spending, they can avert that a user’s transaction executes in a state
that leads to an undesirable outcome. In light of recent research in regard to
order-fairness in consensus [47,89,53,46], the aforementioned pattern could also
help to mitigate the potential negative impact of malicious orderings.

Another mitigation strategy is through the analysis and classification of
transaction semantics in order to try and identify potential threats. Hereby,
the challenges lie on the one side, in finding efficient techniques for static and
dynamic code analysis that can be applied, in real-time, to identify potentially
malicious transactions before they are processed, and on the other side, in how
to define what is considered malicious behavior and also enforce any transaction
rejection policies within decentralized systems. [72,81,26,84,87,36,27]

Mitigating OpAl through stronger consensus guarantees: Essentially,
the majority of distributed ledgers rely on consensus7 to agree upon the order
of transactions among participants, in order to prevent double-spending. [34]

Our Definition 1 of double-spending highlights the need of some stale or
invalid system state in order to fool a victim. The existence of hasty players,
that are willing to act on such state, renders double-spending attacks feasible
in practice, even if the consensus protocol in principle provides strong guaran-
tees against it. In this regard, effective mitigation strategies to combat double-
spending may entail a stricter enforcement of safe interaction patterns in client
software and cryptocurrency wallets, and a better understanding of the behavior
and mental models of cryptocurrency users. [21,52,60]

However, if the security assumptions of the underlying system are compro-
mised, in particular Nakamoto-style distributed ledgers can suffer from deep
forks where previously assumed stable ledger state is reverted. Aside from the
potential of targeted attacks against the protocol [3,79], technical failures8 can
also lead to such a violation of the security assumptions. [61,56,64]

Notice that in this regard there is a crucial difference between OpAl and
equivocation-based double spending. In the latter, an adversary has to actively
monitor the network for forks and disseminate conflicting double-spending trans-
actions that are at risk of being easily detected and prevented at the peer-to-peer
layer [44,32]. OpAl attacks and algorithmic double-spending, on the other hand,
may prove particularly severe. Any transaction that was included in a blockchain
that is replayed on a fork faces the risk of triggering a hidden OpAl attack. If

7 An interesting recent result in this regard is presented in Guerraoui et al. [34], which
proves that for simple asset transfer consensus is, in principle, not necessary for
double-spending prevention.

8 We note that scheduled protocol updates carry a risk of unintentional forks, and an
adversary may try to leverage this by performing OpAl transactions at that time.



16 N. Stifter et al.

a fork in excess of k blocks occurs, OpAl attacks which are triggered have a
high probability of success. A possible mitigation strategy to limit the effects of
OpAl in deep forks is the utilization of checkpointing [43]. Another line of re-
search seeks to strengthen the guarantees of Nakamoto-consensus by achieving
consensus finality [11,71,20,68]. It may also be preferable to sacrifice liveness by
halting execution rather than risking systemic risk through OpAl attacks.

7 Conclusion

We have described and analyzed a novel class of double-spending attacks, called
(opportunistic) algorithmic double spending (OpAl), and shown that OpAl at-
tacks can readily be realized in stateful smart contract platforms by present-
ing a proof-of-concept implementation for EVM-based designs. OpAl itself does
not increase the likelihood or severity of blockchain forks, which are a prereq-
uisite for most double-spending attacks. Instead, OpAl allows regular trans-
actions performed by anyone to opportunistically leverage forking events for
double-spending attacks. Hereby OpAl evades common double-spending detec-
tion strategies and offers a degree of plausible deniability. A particularly worrying
property of OpAl is the ability for already processed transactions to trigger hid-
den double-spending attacks whenever they are replayed in a fork. Attacks or
technical failures that lead to deep forks may hence pose an even greater sys-
temic risk than previously assumed. It would appear that the most promising
mitigation strategy against OpAl is achieving fast consensus finality, combined
with avoiding transaction semantic malleability.

We believe that the introduction of algorithmic double-spending as a novel
attack category opens up new research directions and highlights the intercon-
nectedness of many important insights in the domain of distributed ledgers. The
advent of expressive smart contract systems has created a vast new range of excit-
ing use-cases, but with them also come novel security challenges [58,42,15,39,91]
that need to be thoroughly addressed.

Acknowledgment

This material is based upon work partially supported by (1) the Christian-
Doppler-Laboratory for Security and Quality Improvement in the Production
System Lifecycle; The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the Nation Foundation for Research, Technol-
ogy and Development and University of Vienna, Faculty of Computer Science,
Security & Privacy Group is gratefully acknowledged; (2) SBA Research; the
competence center SBA Research (SBA-K1) funded within the framework of
COMET Competence Centers for Excellent Technologies by BMVIT, BMDW,
and the federal state of Vienna, managed by the FFG; (3) the FFG Bridge 1
project 864738 PR4DLT. (4) the FFG Industrial PhD project 878835. (5) the
FFG ICT of the Future project 874019 dIdentity & dApps. (6) the European



OpAl : How I learned to stop worrying and hedge the Fork 17

Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 826078 (FeatureCloud). We would also like to thank our anonymous
reviewers for their valuable feedback and suggestions.

References

1. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.
Tech. rep., Tech. rep., Uniswap (2021)

2. Androulaki, E., Capkun, S., Karame, G.O.: Two Bitcoins at the Price of One?
Double-Spending Attacks on Fast Payments in Bitcoin. In: CCS (2012), http:

//eprint.iacr.org/2012/248.pdf

3. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
375–392. IEEE (2017)

4. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin
transactions. In: Proceedings of the 22nd International Conference on Financial
Cryptography and Data Security (FC). Springer (2018), http://fc18.ifca.ai/
preproceedings/92.pdf

5. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
pp. 913–930 (2018)

6. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a Transaction
Ledger: A Composable Treatment (2017), https://eprint.iacr.org/2017/149.
pdf, published: Cryptology ePrint Archive, Report 2017/149

7. Bentov, I., Pass, R., Shi, E.: Snow White: Provably Secure Proofs of Stake. Cryp-
tology ePrint Archive, Report 2016/919 (2016), https://eprint.iacr.org/2016/
919.pdf

8. Bonneau, J.: Why buy when you can rent? Bribery attacks on Bitcoin consensus.
In: BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain
Research (Feb 2016), http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

9. Botta, V., Friolo, D., Venturi, D., Visconti, I.: Shielded computations in smart
contracts overcoming forks. In: Financial Cryptography and Data Security-25th
International Conference, FC. pp. 1–5 (2021)

10. Brünjes, L., Gabbay, M.J.: Utxo-vs account-based smart contract blockchain pro-
gramming paradigms. In: International Symposium on Leveraging Applications of
Formal Methods. pp. 73–88. Springer (2020)

11. Buterin, V., Griffith, V.: Casper the Friendly Finality Gadget (2017), https://
arxiv.org/pdf/1710.09437.pdf, published: arXiv:1710.09437

12. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended utxo model. In: International Conference on Financial
Cryptography and Data Security. pp. 525–539. Springer (2020)

13. Corduan, J., Vinogradova, P., Gudemann, M.: A formal specification of the cardano
ledger (2019)

14. Crandall, J.R., Wassermann, G., De Oliveira, D.A., Su, Z., Wu, S.F., Chong, F.T.:
Temporal search: Detecting hidden malware timebombs with virtual machines.
ACM SIGOPS Operating Systems Review 40(5), 25–36 (2006)

http://eprint.iacr.org/2012/248.pdf
http://eprint.iacr.org/2012/248.pdf
http://fc18.ifca.ai/preproceedings/92.pdf
http://fc18.ifca.ai/preproceedings/92.pdf
https://eprint.iacr.org/2017/149.pdf
https://eprint.iacr.org/2017/149.pdf
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2016/919.pdf
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
https://arxiv.org/pdf/1710.09437.pdf
https://arxiv.org/pdf/1710.09437.pdf


18 N. Stifter et al.

15. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consen-
sus Instability in Decentralized Exchanges (2019), https://arxiv.org/pdf/1904.
05234.pdf, published: arXiv preprint arXiv:1904.05234

16. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018)

17. Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin utxo set. In: International Conference on Financial Cryp-
tography and Data Security. pp. 78–91. Springer (2018)

18. Di Angelo, M., Salzer, G.: Wallet contracts on ethereum. In: 2020 IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC). pp. 1–2. IEEE
(2020)

19. Di Angelo, M., Salzer, G.: Wallet contracts on ethereum–identification, types, us-
age, and profiles. arXiv preprint arXiv:2001.06909 (2020)

20. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A
partially synchronous finality layer for blockchains. In: International Conference
on Security and Cryptography for Networks. pp. 24–44. Springer (2020)

21. Eskandari, S., Barrera, D., Stobert, E., Clark, J.: A first look at the usability
of bitcoin key management. In: Workshop on Usable Security (USEC) (2015),
http://users.encs.concordia.ca/clark/papers/2015_usec_full.pdf

22. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: front-running
attacks on Blockchain. In: arXiv preprint arXiv:1902.05164 (2019), https://

arxiv.org/pdf/1902.05164.pdf

23. Ethereum Community: Replay attack protection: Include blocklimit and blockhash
in each transaction issue#134 ethereum/eips (Jul 2016), https://github.com/

ethereum/EIPs/issues/134

24. Ethereum Community: Units and globally available variables (Aug
2021), https://github.com/ethereum/solidity/blob/develop/docs/

units-and-global-variables.rst

25. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security. pp. 436–454. Springer (2014), http:
//arxiv.org/pdf/1311.0243

26. Ferreira Torres, C., Baden, M., Norvill, R., Jonker, H.: Ægis: Smart shielding of
smart contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 2589–2591 (2019)

27. Ferreira Torres, C., Iannillo, A.K., Gervais, A., et al.: The eye of horus: Spotting
and analyzing attacks on ethereum smart contracts. In: International Conference
on Financial Cryptography and Data Security, Grenada 1-5 March 2021 (2021)

28. Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna, G.:
Triggerscope: Towards detecting logic bombs in android applications. In: 2016
IEEE symposium on security and privacy (SP). pp. 377–396. IEEE (2016)

29. Garay, J., Kiayias, A.: SoK: A Consensus Taxonomy in the Blockchain Era (2018),
https://eprint.iacr.org/2018/754.pdf, published: Cryptology ePrint Archive,
Report 2018/754

30. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Advances in Cryptology-EUROCRYPT 2015. pp.
281–310. Springer (2015), http://courses.cs.washington.edu/courses/cse454/
15wi/papers/bitcoin-765.pdf

https://arxiv.org/pdf/1904.05234.pdf
https://arxiv.org/pdf/1904.05234.pdf
http://users.encs.concordia.ca/ clark/papers/2015_usec_full.pdf
https://arxiv.org/pdf/1902.05164.pdf
https://arxiv.org/pdf/1902.05164.pdf
https://github.com/ethereum/EIPs/issues/134
https://github.com/ethereum/EIPs/issues/134
https://github.com/ethereum/solidity/blob/develop/docs/units-and-global-variables.rst
https://github.com/ethereum/solidity/blob/develop/docs/units-and-global-variables.rst
http://arxiv.org/pdf/1311.0243
http://arxiv.org/pdf/1311.0243
https://eprint.iacr.org/2018/754.pdf
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf


OpAl : How I learned to stop worrying and hedge the Fork 19

31. Gaži, P., Kiayias, A., Russell, A.: Stake-Bleeding Attacks on Proof-of-Stake
Blockchains (2018), https://eprint.iacr.org/2018/248.pdf, published: Cryp-
tology ePrint Archive, Report 2018/248

32. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting Transaction Ac-
cumulation and Double Spends for Topology Inference in Bitcoin. In: 5th
Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer (2018), http://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final10.pdf

33. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: International Conference on Financial Cryptography
and Data Security. pp. 201–226. Springer (2020)

34. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The con-
sensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 307–316 (2019)

35. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse Attacks on Bitcoin’s
Peer-to-Peer Network. In: 24th USENIX Security Symposium (USENIX Security
15). pp. 129–144 (2015), https://www.usenix.org/system/files/conference/

usenixsecurity15/sec15-paper-heilman.pdf
36. Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J., Zhou, K., Liu,

Y.: Transaction-based classification and detection approach for ethereum smart
contract. Information Processing & Management 58(2), 102462 (2021)

37. Iqbal, M., Matulevičius, R.: Exploring sybil and double-spending risks in
blockchain systems. IEEE Access 9, 76153–76177 (2021)

38. Iqbal, M., Matulevičius, R.: Exploring sybil and double-spending
risks in blockchain systems. vol. 9, pp. 76153–76177 (2021).
https://doi.org/10.1109/ACCESS.2021.3081998

39. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.: Sok: Algorithmic incentive manipulation attacks on permissionless
pow cryptocurrencies. IACR Cryptol. ePrint Arch. 2020, 1614 (2020)

40. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.: Pay to win: Cheap, crowdfundable, cross-chain algorithmic incentive
manipulation attacks on pow cryptocurrencies (2019), https://ia.cr/2019/775

41. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gaži, P., Meiklejohn,
S., Weippl, E.: Pay-To-Win: Incentive Attacks on Proof-of-Work Cryptocurrencies
(2019), https://eprint.iacr.org/2019/775.pdf, published: Cryptology ePrint
Archive, Report 2019/775

42. Juels, A., Kosba, A., Shi, E.: The ring of Gyges: Investigating the future of
criminal smart contracts. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 283–295. ACM (2016),
http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf

43. Karakostas, D., Kiayias, A.: Securing Proof-of-Work Ledgers via Checkpointing.
Tech. Rep. 173 (2020), https://eprint.iacr.org/2020/173

44. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. pp. 906–917 (2012)

45. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbe-
havior in Bitcoin: A Study of Double-Spending and Accountability. In: ACM
Transactions on Information and System Security (TISSEC). vol. 18, p. 2. ACM
(2015), http://www.syssec.ethz.ch/content/dam/ethz/special-interest/

infk/inst-infsec/system-security-group-dam/research/publications/

pub2015/tissec15_karame.pdf, issue: 1

https://eprint.iacr.org/2018/248.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final10.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final10.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://doi.org/10.1109/ACCESS.2021.3081998
https://ia.cr/2019/775
https://eprint.iacr.org/2019/775.pdf
http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf
https://eprint.iacr.org/2020/173
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf
http://www.syssec.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2015/tissec15_karame.pdf


20 N. Stifter et al.

46. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting
(2021)

47. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-
sensus. In: Annual International Cryptology Conference. pp. 451–480. Springer
(2020)

48. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy (SP).
pp. 157–174. IEEE (2019)

49. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

50. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting The Laws
of Order in Smart Contracts (2018), https://arxiv.org/pdf/1810.11605.pdf,
published: arXiv:1810.11605

51. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: Symposium on
Security & Privacy. IEEE (2016), http://eprint.iacr.org/2015/675.pdf

52. Krombholz, K., Judmayer, A., Gusenbauer, M., Weippl, E.R.: The Other
Side of the Coin: User Experiences with Bitcoin Security and Pri-
vacy. In: International Conference on Financial Cryptography and Data
Security (FC) (2016), https://www.sba-research.org/wp-content/uploads/

publications/TheOtherSideOfTheCoin_FC16preConf.pdf

53. Kursawe, K.: Wendy, the Good Little Fairness Widget. arXiv preprint
arXiv:2007.08303 (2020)

54. Larimer, D.: Transactions as proof-of-stake (November 2013),
https://github.com/super3/invictus.io/blob/master/assets/pdf/

TransactionsAsProofOfStake10.pdf

55. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 264–279.
Springer (2017), http://www.cs.umd.edu/jkatz/papers/whale-txs.pdf

56. Lovejoy, J.P.T.: An empirical analysis of chain reorganizations and double-spend
attacks on proof-of-work cryptocurrencies. Ph.D. thesis, Massachusetts Institute
of Technology (2020)

57. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. In: 23rd ACM Conference on Computer and Communications Security
(ACM CCS 2016) (Oct 2016), https://eprint.iacr.org/2016/633.pdf

58. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the
consensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. pp. 706–719. ACM (2015), http:

//www.comp.nus.edu.sg/prateeks/papers/VeriEther.pdf

59. Maersk, N.: Thedaohardforkoracle (Jul 2016), https://github.

com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/

TheDAOHardForkOracle/TheDAOHardForkOracle.sol

60. Mai, A., Pfeffer, K., Gusenbauer, M., Weippl, E., Krombholz, K.: User mental
models of cryptocurrency systems-a grounded theory approach. In: Sixteenth Sym-
posium on Usable Privacy and Security ({SOUPS} 2020). pp. 341–358 (2020)

61. McCorry, P., Heilman, E., Miller, A.: Atomically Trading with Roger: Gambling on
the success of a hardfork. In: CBT’17: Proceedings of the International Workshop
on Cryptocurrencies and Blockchain Technology (Sep 2017), http://homepages.
cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf

https://arxiv.org/pdf/1810.11605.pdf
http://eprint.iacr.org/2015/675.pdf
https://www.sba-research.org/wp-content/uploads/publications/TheOtherSideOfTheCoin_FC16preConf.pdf
https://www.sba-research.org/wp-content/uploads/publications/TheOtherSideOfTheCoin_FC16preConf.pdf
https://github.com/super3/invictus.io/blob/master/assets/pdf/TransactionsAsProofOfStake10.pdf
https://github.com/super3/invictus.io/blob/master/assets/pdf/TransactionsAsProofOfStake10.pdf
http://www.cs.umd.edu/ jkatz/papers/whale-txs.pdf
https://eprint.iacr.org/2016/633.pdf
http://www.comp.nus.edu.sg/ prateeks/papers/VeriEther.pdf
http://www.comp.nus.edu.sg/ prateeks/papers/VeriEther.pdf
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf


OpAl : How I learned to stop worrying and hedge the Fork 21

62. McCorry, P., Hicks, A., Meiklejohn, S.: Smart Contracts for Bribing Miners. In:
5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer (2018), http://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final14.pdf

63. Meissner, R., Gnosis community: Gnosis safe contracts - ex-
ecutor. https://github.com/gnosis/safe-contracts/blob/

34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol,
accessed: 2021-09-07

64. Moroz, D.J., Aronoff, D.J., Narula, N., Parkes, D.C.: Double-spend counterattacks:
Threat of retaliation in proof-of-work systems. arXiv preprint arXiv:2002.10736
(2020), https://arxiv.org/pdf/2002.10736.pdf

65. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (Dec 2008), https:
//bitcoin.org/bitcoin.pdf

66. Natoli, C., Gramoli, V.: The blockchain anomaly. In: Network Computing and
Applications (NCA), 2016 IEEE 15th International Symposium on. pp. 310–317.
IEEE (2016), https://arxiv.org/pdf/1605.05438.pdf

67. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. In: 1st IEEE European Symposium
on Security and Privacy, 2016. IEEE (2016), http://eprint.iacr.org/2015/796.
pdf

68. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
446–465. IEEE (2021)

69. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 643–673. Springer (2017), https:

//eprint.iacr.org/2016/454.pdf

70. Pass, R., Shi, E.: Thunderella: Blockchains with Optimistic Instant Confirmation
(2017), http://eprint.iacr.org/2017/913.pdf, published: Cryptology ePrint
Archive, Report 2017/913

71. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–33. Springer (2018)

72. Rodler, M., Li, W., Karame, G.O., Davi, L.: Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks (2018), https://arxiv.org/pdf/1812.

05934.pdf, published: arXiv:1812.05934
73. Rosenfeld, M.: Analysis of Hashrate-Based Double Spending, vol. abs/1402.2009

(2014), https://arxiv.org/pdf/1402.2009.pdf, publication Title: CoRR
74. Schneider, F.B.: Implementing fault-tolerant services using the state machine

approach: A tutorial. In: ACM Computing Surveys (CSUR). vol. 22, pp. 299–
319. ACM (1990), http://www-users.cselabs.umn.edu/classes/Spring-2014/

csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf, issue: 4
75. Sergey, I., Hobor, A.: A Concurrent Perspective on Smart Contracts (2017),

https://arxiv.org/pdf/1702.05511.pdf, publication Title: arXiv preprint
arXiv:1702.05511

76. Sompolinsky, Y., Zohar, A.: Bitcoin’s Security Model Revisited. arXiv preprint
arXiv:1605.09193 (2016), http://arxiv.org/pdf/1605.09193.pdf

77. Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses
against cross-shard consensus in sharded distributed ledgers. In: 2020 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 294–308. IEEE (2020)

http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
https://github.com/gnosis/safe-contracts/blob/34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol
https://github.com/gnosis/safe-contracts/blob/34c87b783dfd04ff09ef7c358c3182c3c151e086/contracts/base/Executor.sol
https://arxiv.org/pdf/2002.10736.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1605.05438.pdf
http://eprint.iacr.org/2015/796.pdf
http://eprint.iacr.org/2015/796.pdf
https://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/454.pdf
http://eprint.iacr.org/2017/913.pdf
https://arxiv.org/pdf/1812.05934.pdf
https://arxiv.org/pdf/1812.05934.pdf
https://arxiv.org/pdf/1402.2009.pdf
http://www-users.cselabs.umn.edu/classes/Spring-2014/csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf
http://www-users.cselabs.umn.edu/classes/Spring-2014/csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf
https://arxiv.org/pdf/1702.05511.pdf
http://arxiv.org/pdf/1605.09193.pdf


22 N. Stifter et al.

78. Todd, P.: Op checklocktimeverify (Oct 2014), https://github.com/bitcoin/

bips/blob/master/bip-0065.mediawiki

79. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A Stealthier Partition-
ing Attack against Bitcoin Peer-to-Peer Network. In: To appear in Proceed-
ings of IEEE Symposium on Security and Privacy (IEEE S&P) (2020), https:

//erebus-attack.comp.nus.edu.sg/erebus-attack.pdf

80. Victor, F., Lüders, B.K.: Measuring ethereum-based erc20 token networks. In: In-
ternational Conference on Financial Cryptography and Data Security. pp. 113–129.
Springer (2019)

81. Wang, X., He, J., Xie, Z., Zhao, G., Cheung, S.C.: Contractguard: Defend ethereum
smart contracts with embedded intrusion detection. IEEE Transactions on Services
Computing 13(2), 314–328 (2019)

82. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). pp. 2–8. IEEE (2018)

83. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

84. Wu, L., Wu, S., Zhou, Y., Li, R., Wang, Z., Luo, X., Wang, C., Ren, K.: EthScope:
A Transaction-centric Security Analytics Framework to Detect Malicious Smart
Contracts on Ethereum. arXiv:2005.08278 [cs] (May 2020), http://arxiv.org/

abs/2005.08278, arXiv: 2005.08278

85. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez,
P., Kiayias, A., Knottenbelt, W.J.: SoK: Communication Across Distributed
Ledgers. IACR Cryptology ePrint Archive, 2019: 1128 (2019), https://eprint.
iacr.org/2019/1128.pdf

86. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottebelt,
W.J.: A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in
Practice. In: 5th Workshop on Bitcoin and Blockchain Research, Financial Cryp-
tography and Data Security 18 (FC). Springer (2018), https://eprint.iacr.org/
2018/087.pdf, (Short Paper)

87. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: {TXSPECTOR}: Uncovering attacks in
ethereum from transactions. In: 29th {USENIX} Security Symposium ({USENIX}
Security 20). pp. 2775–2792 (2020)

88. Zhang, R., Preneel, B.: Lay down the common metrics: Evaluating proof-of-work
consensus protocols’ security. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP). IEEE (2019), https://www.esat.kuleuven.be/cosic/publications/
article-3005.pdf

89. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consen-
sus without byzantine oligarchy. In: 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). pp. 633–649 (2020)

90. Zhou, L., Qin, K., Gervais, A.: A2mm: Mitigating frontrunning, transaction re-
ordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371 (2021)

91. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 428–445. IEEE (2021)

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://erebus-attack.comp.nus.edu.sg/erebus-attack.pdf
https://erebus-attack.comp.nus.edu.sg/erebus-attack.pdf
http://arxiv.org/abs/2005.08278
http://arxiv.org/abs/2005.08278
https://eprint.iacr.org/2019/1128.pdf
https://eprint.iacr.org/2019/1128.pdf
https://eprint.iacr.org/2018/087.pdf
https://eprint.iacr.org/2018/087.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf


OpAl : How I learned to stop worrying and hedge the Fork 23

A Responsible Disclosure and Ethical Considerations

After careful consideration and review of the potential impact of this work,
we believe that the presentation of opportunistic algorithmic double-spending
and OpAl attacks does not require prior notification or responsible disclosure.
As we outline within this paper, the presented double-spending techniques do
not fundamentally increase the success probability of attacks aimed at causing
blockchain forks, which are a necessary prerequisite for successfully perform-
ing most double-spending attacks. Hence, exchanges, merchants, and users that
adhere to best practices and wait for sufficiently many confirmations on trans-
actions do not appear to face substantially higher risk compared to other forms
of double-spending.

However, we do see a potential for systemic risks in case of severe techni-
cal failures or attacks that cause deep forks, because of blockchain interlink-
ing [85,77], layer-two protocols [33] and the existence of large centralized cryp-
tocurrency exchanges, which all face the risk of becoming victims of algorithmic
double-spending during such events. The principal mechanisms that can lead to
unintentional algorithmic double-spending are already present in various smart
contracts today. Consider the slippage tolerance users can specify as part of a
trade when interacting with DEXs such as Uniswap [1]. In case of a deep fork,
the necessary preconditions for a user’s trade to be executed within a transac-
tion may change, e.g., due to transaction reordering. The effect can be similar
or even equivalent to intentional OpAl attacks.

We are hence convinced that raising awareness of these potential issues
through openly publishing our findings is the best course of action.

B Definition of Semantic Malleability

Definition 5 (semantic malleability). A transaction t is semantically mal-
leable if at least one of the following conditions hold:

1. Executing t on two states σa, σb results in different changes to their respective
substates, i.e., diff(t, σa) 6= diff(t, σb).

∃σa, σb (valid(t, σa) ∧ valid(t, σb) ∧ diff(t, σa) 6= diff(t, σb)) (3)

2. After a transaction t becomes valid for execution in state σa, t is invalidated
at some future state σb without being executed.

∃σa, σb (valid(t, σa) ∧ σa ≺ σb ∧ t 6∈ past(σb) ∧ ¬valid(t, σb)) (4)

C Alternative OpAl Attack Designs in Ethereum

We hereby illustrate alternative constructions to the OpAl attack that is outlined
in Section 3. Figure 2 shows two different attack scenarios that rely on depth-1
fork oracles. Hereby the first part of the illustration (left) captures an attack that



24 N. Stifter et al.

relies on querying the coinbase address of the current block and conditionally
branches if a particular mining pool address is returned. The second part of the
illustration (right) shows a scenario where the block height is used to trigger the
attack.

Fig. 2. Depth-1 OpAl attacks

The Figure 3 serves to illustrate how OpAl attacks can also be facilitated
through invalidation of transactions, for example if the underlying protocol sup-
ports context sensitive transactions. Hereby, the transaction may only be valid
for specific blockchain states, or during specific time intervals, at the protocol
level, preventing the transaction, such as a payment to the merchant, to be
replayed in a fork.

Fig. 3. OpAl attack based on transaction invalidation


	 Opportunistic Algorithmic Double-Spending: How I learned to stop worrying and hedge the Fork

