
Giving an Adversary Guarantees (Or: How to
Model Designated Verifier Signatures in a

Composable Framework)

Ueli Maurer1, Christopher Portmann2?, and Guilherme Rito1

1 Department of Computer Science, ETH Zürich, Switzerland
{maurer,gteixeir}@inf.ethz.ch

2 Concordium, Zürich, Switzerland
cp@concordium.com

Abstract. When defining a security notion, one typically specifies what
dishonest parties cannot achieve. For example, communication is confi-
dential if a third party cannot learn anything about the messages being
transmitted, and it is authentic if a third party cannot impersonate the
real (honest) sender. For certain applications, however, security crucially
relies on giving dishonest parties certain capabilities. As an example, in
Designated Verifier Signature (DVS) schemes, one captures that only the
designated verifier can be convinced of the authenticity of a message by
guaranteeing that any dishonest party can forge signatures which look
indistinguishable (to a third party) from original ones created by the
sender.
However, composable frameworks cannot typically model such guarantees
as they are only designed to bound what a dishonest party can do.
In this paper we show how to model such guarantees—that dishonest
parties must have some capability—in the Constructive Cryptography
framework (Maurer and Renner, ICS 2011). More concretely, we give
the first composable security definitions for Multi-Designated Verifier
Signature (MDVS) schemes—a generalization of DVS schemes.
The ideal world is defined as the intersection of two worlds. The first
captures authenticity in the usual way. The second provides the guarantee
that a dishonest party can forge signatures. By taking the intersection
we have an ideal world with the desired properties.
We also compare our composable definitions to existing security notions
for MDVS schemes from the literature. We find that only recently, 23 years
after the introduction of MDVS schemes, sufficiently strong security no-
tions were introduced capturing the security of MDVS schemes (Damg̊ard
et al., TCC 2020). As we prove, however, these notions are still strictly
stronger than necessary.

? Work done while author was at ETH Zürich, Switzerland.

https://orcid.org/0000-0002-0080-8670

1 Introduction

1.1 Composable security

In a nutshell, composable security frameworks define security by designing an
ideal world and proving that the real world is indistinguishable [2, 5, 8, 12, 20–
22,25]. Typically, one first designs an ideal functionality, which corresponds to
the functionality one wishes to achieve. For example, if one wants confidential
communication from Alice to Bob, then the ideal functionality allows Alice
to input messages, Bob to read messages, and guarantees that Eve can only
learn the length of the messages input by Alice. Eve could additionally be given
extra capabilities that do not violate confidentiality, e.g. inputting messages. A
simulator is then connected to this ideal functionality, covering the idealized
inputs and outputs available to dishonest parties and providing “real” inputs
and outputs to the environment (that should be indistinguishable from those of
the real world). Let S denote an ideal functionality, and simS the ideal world
consisting of S with some simulator sim attached. Since any (efficient) simulator
sim ∈ Ω is acceptable, one can alternatively view the ideal world as the set of all
possible acceptable ideal worlds:

S = {simS}sim∈Ω . (1.1)

A security proof then shows that the real world R (also modeled as a set) is a
subset of the ideal world S. Since sim covers the dishonest parties’ interfaces of
S, it can only further limit the capabilities of dishonest parties. For example, an
ideal functionality for confidentiality might allow a third party to change Alice’s
message, but if this is not possible in the real world, the simulator can disallow
the environment to use that capability. This structure of the ideal world makes it
impossible for traditional composable frameworks to provide guarantees about a
dishonest party’s capabilities, because these might be blocked by the simulator.

Some prior works using the Constructive Cryptography (CC) framework
[14, 22] have noted that the ideal world does not have to be structured as in
Eq. (1.1). In particular, the simulator does not have to necessarily cover all
dishonest parties’ interfaces (or might not be present at all). This relaxed view
of the ideal world allows one to define composable security notions capturing
the security of schemes whose security could not be modeled by traditional
composable frameworks. In this work we crucially exploit this to give the first
composable security notions for Multi-Designated Verifier Signature schemes. We
refer the interested reader to [3] to see how to model Digital Signature Schemes
(DSS) in CC, and to [14] for an extended introduction to CC, in which some of
the novel techniques used here were first applied.

1.2 MDVS schemes

Designated Verifier Signature (DVS) schemes are a variant of DSSthat allow a
signer to sign messages towards a specific receiver, chosen (or designated) by the

2

signer [9, 11, 13, 16–19, 26–29, 31]. The goal of these schemes is to establish an
authentic communication channel, say from a sender Alice to a receiver Bob, where
the authenticity property is exclusive to the receiver Bob designated by Alice, i.e.
Bob and only Bob can tell whether Alice actually sent some message authentically.
In Multi-Designated Verifier Signature (MDVS) schemes [9,11,13,16,31], multiple
receivers may be designated verifiers for the same message, e.g. Alice signs
a message so that both Bob and Charlie can verify that Alice generated the
signature, but a third party Eve would not be convinced that Alice signed it.
This should hold even if a verifier is dishonest, say Bob, and provides his secret
keys to Eve. MDVS schemes achieve this by guaranteeing that Bob could forge
signatures that would look indistinguishable to Eve from Alice’s signatures—but
Charlie could distinguish the two using his secret key, thus authenticity with
respect to the designated verifiers is not violated.

MDVS schemes have numerous applications: from secure messaging (and
in particular secure group messaging for the multi-verifier case) [11], to online
auctions wherein all bidders place their binding-bids in a non-interactive way,
and the highest bidder wins. In the case of online auctions a bidder Bob would
then sign its bid to both the auctioneer Charlie and his bank Blockobank, and
if Bob wins Charlie would then sign a document stating Bob is the winner of
the auction; the winner could also be kept anonymous by having Charlie signing
such document only with respect to Bob, its bank Blockobank and any other
official entity needed to confirm Bob’s ownership of the auctioned item.

While composable security notions for DSS are well understood [1, 3, 5, 6],
the literature on (M)DVS schemes provides only a series of different game-based
security definitions—which we discuss in detail in Sect. 6—capturing a variety
of properties that an MDVS scheme could possess. By defining the ideal world
for an MDVS scheme in this work, we can compare the resulting composable
definition to the game-based ones and determine which security properties are
needed. It turns out that crucial properties for the security of MDVS schemes
like consistency—all (honest) designated verifiers will either accept or reject the
same signature—and security against any subset of dishonest verifiers were only
introduced very recently [11].

1.3 Contributions

Providing guarantees to Dishonest Parties. To capture that a dishonest party
is guaranteed to have some capability, we introduce a new type of ideal world
specification, which we sketch in this section. The first step consists in defining a
set of ideal functionalities (called resources or resource specification in CC [21,22])
that have the required property. For example, in the case of MDVS schemes,
we want a dishonest receiver to be able to generate a valid signature. This
corresponds to a channel in which both Alice (the honest sender) and Bob (the
dishonest receiver) may insert messages. Thus anyone reading from that channel

would not know if the message is from Alice or Bob. Let X̂ denote such a set.
The ideal worlds we are interested in are those in which a dishonest receiver

3

could achieve this property if they run an (explicit) forging algorithm π. Thus,
the ideal world of interest is defined as

X =
{

X : πX ∈ X̂
}
, (1.2)

where πX denotes a resource X with the algorithm π being run at the dishonest
receivers’ interface of X.

Similar techniques could be used to model ideal worlds for ring signatures [4,26]
or coercibility [21,30].

Composable Security Notions for MDVS Schemes. We then use the technique
described above to define composable security for MDVS schemes. For example,
if one considers a fixed honest sender and a fixed set of designated verifiers
(some of which may be dishonest), then an MDVS scheme is expected to achieve
authenticity with respect to the honest verifiers, but this authenticity should be
exclusive to them, meaning that any dishonest player should be able to generate
a signature that would fool a third party Eve. Authenticity is captured in the
usual way (see, e.g. [3]), as in Eq. (1.1), i.e. we define an authentic channel A
from Alice to the honest verifiers, and the ideal world is given by a set

A = {simA}sim∈Ω . (1.3)

The exclusiveness of the authenticity is defined with a (set of) ideal world(s)
as in Eq. (1.2). Both properties are then achieved by taking the intersection of
the two, namely by proving that for the real world R we have

R ⊆ A ∩X .

Comparison With Existing Notions for MDVS. Now that the composable security
notion is defined, we compare it to the game-based definitions from the literature.
It turns out that only the most recent definitions from [11] are sufficient to
achieve composable security.

More precisely, we prove reductions and a separation between our composable
security definition and the games of [11]. Our statements imply the following:

– any MDVS scheme which is Correct, Consistent, Unforgeable and Off-The-
Record (according to [11]) can be used to construct the ideal world for
MDVS;

– there is an MDVS scheme which satisfies the composable definition, but
which is not Off-The-Record (as defined in [11]).

1.4 Structure of this paper

In Sect. 2 we start by introducing the concepts from CC [14, 20–22] that are
needed to understand the framework. We also define repositories which are the
resources we use in this work for communication between parties jointly running
a protocol (see also [3]). In Sect. 3 we introduce MDVS schemes and state the

4

game-based security notions from [11] capturing their security. In Sect. 4 we
consider a setting in which the sender and designated receivers are fixed and
publicly known. This allows us to define the ideal worlds and the corresponding
composable security definition in a simpler setting. Also for simplicity, we only
require that dishonest delegated verifiers have the ability to forge signatures,
not third parties. We then prove that the security games from [11] are sufficient
to imply composable security. In Sect. 5 we model the more general setting
where the sender and designated receivers can be arbitrarily chosen. As before,
we model composable security and prove that the security games from [11] are
sufficient to achieve composable security in this setting as well. But we also prove
a seperation between the Off-The-Record game from [11] and the composable
security defintion, showing that this game is stronger than necessary. Note that
in this section any dishonest party should be able to forge signatures, not only
the dishonest designated verifiers. Finally, in Sect. 6 we discuss the literature
related to MDVS schemes and some of the issues in previous security definitions.

2 Constructive Cryptography

The Constructive Cryptography (CC) framework [20,21] views cryptography as a
resource theory: protocols construct new resources from existing (assumed) ones.
For example, a CCA-secure encryption scheme constructs a confidential channel
given a public key infrastructure and an insecure channel on which the ciphertext
is sent [10]. The notion of resource construction is inherently composable: if a
protocol π1 constructs R from S and π2 constructs T from S, then running
both protocols will construct T given that one initially has access to R.3

In this section we first review the building blocks of CC in Sect. 2.1. We explain
how security is defined in Sect. 2.2. Then in Sect. 2.3 we model a specific type
of resources, namely repositories, which is an abstract model of communication.
Throughout the rest of the paper, for any set of parties S, we denote by SH the
partition of S containing all honest parties, and SH the partition containing all
dishonest parties, such that S = SH] SH . The set of all parties is denoted P.

2.1 Resource Specifications, Converters, and Distinguishers

Resource. A resource is an interactive system shared by all parties, e.g. a channel
or a key resource—and is akin to an ideal functionality in UC [5]. Each party can
provide inputs and receive outputs from the resource. We use the term interface
to denote specific subsets of the inputs and outputs, in particular, all the inputs
and outputs available to a specific party are assigned to that party’s interface. For
example, an insecure channel INS allows all parties to input messages at their
interface and read the contents of the channel. A confidential channel resource
CONF shared between a sender Alice, a receiver Bob and an eavesdropper Eve
allows Alice to input messages at her interface; it allows Eve to insert her own
messages and it allows her to duplicate Alice’s messages, but not to read them4;

3 For a formal statement of the composition theorem used here we refer to [14,22].
4 More precisely, the CONF channel only allows Eve to read the length of messages.

5

and it allows Bob to receive at his interface any of the messages inserted by Alice
or Eve. As another example, an authenticated channel from Bob to Alice (AUT)
allows Bob to send messages through the channel and allows Alice and Eve to
read messages from the channel.

Formally, a resource is a random system [23, 24], i.e. it is uniquely defined by
a sequence of conditional probability distributions. For simplicity, however, we
usually describe resources by pseudo-code.

If multiple resources {Ri}ni=1 are simultaneously accessible, we write R =
[R1, . . . ,Rn], or alternatively R = [Ri]i∈{1,...,n}, for the new resource obtained
by the parallel composition of all Ri, i.e. R is a resource that provides each party
with access to the (sub)resources Ri.

Converter. A converter is an interactive system executed either locally by a
single party or cooperatively by multiple parties. Its inputs and outputs are
partitioned into an inside interface and an outside interface. The inside interface
connects to (those parties’ interfaces of) the available resources, resulting in a
new resource. For instance, connecting a converter α to Alice’s interface A of
a resource R results in a new resource, which we denote by αAR. The outside
interface of the converter α is now the new A-interface of αAR. Thus, a converter
may be seen as a map between resources. Note that converters applied at different
interfaces commute, i.e. βBαAR = αAβBR.

A protocol is given by a tuple of converters π = (πPi
)Pi∈PH , one for each

(honest) party Pi ∈ PH . Simulators are also given by converters. For any set S
will often write πSR for (πPi)Pi∈SR. We also often drop the interface superscript
and write just πR when it is clear from the context to which interfaces π connects.

For example, suppose Alice and Bob share an insecure channel INS and a
single use authenticated channel from Bob to Alice AUT and suppose that Alice
runs a converter enc and Bob runs a converter dec, and that these converters
behave as follows: First, converter dec generates a public-secret key-pair (pk,sk)
for Bob and sends pk over the single-use authenticated channel AUT to Alice.
Each time a message m is input at the outside interface of enc, the converter uses
Bob’s public key pk—which it received from AUT—to compute a ciphertext
c = Encpk(m); it then sends this ciphertext over the insecure channel to Bob
(via the inside interface of enc connected to INS). Each time Bob’s decryption
converter dec receives a ciphertext c from the INS channel, it uses Bob’s secret
key sk to decrypt c, obtaining a message m = Decsk(c), and if m is a valid
plaintext, the converter then outputs m to Bob (via the outside interface of the
converter). The real world of such a system is given by

decBencA[AUT, INS]. (2.1)

Specification. Often one is not interested in a unique resource, but in a set
of resources with common properties. For example, the confidential channel
described above allows Eve to insert messages of her own. Yet, if she did not have
this ability, the resulting channel would still be a confidential one. We call such a

6

set a resource specification (or simply also a resource), and denote it with a bold
calligraphic letter, e.g. a specification of confidential channels could be defined as

T = {simECONF}sim∈Ω (2.2)

where Ω is a set of converters (the simulators) that are applied at Eve’s interface.5

Parallel composition of specifications R and S, and composition of a converter
α and a specification R follow by applying the operations elementwise to the
resources R ∈R and S ∈ S.

Distinguisher. To measure the distance between two resources we use the
standard notion of a distinguisher, an interactive system D which interacts with
a resource at all its interfaces, and outputs a bit 0 or 1. The distinguishing
advantage for distinguisher D is defined as

∆D(R,S) := Pr [DS = 1]− Pr [DR = 1]

where DR and DS are the random variables over the output of D when it
interacts with R and S, respectively.

Relaxation. Typically one proves that the ability to distinguish between two
resources is bounded by some function of the distinguisher, e.g. for any D,

|∆D(R,S)| ≤ ε(D)

where ε(D) might be the probability that D can win a game or solve some finite
instance of a problem believed to be hard.6

This distance measure then naturally defines another type of specification,
namely an ε-ball: for a resource specification R, the ε-ball around R is given by

Rε :=
⋃

R∈R
{S : ∀D, |∆D(R,S)| ≤ ε(D)}. (2.3)

If one chooses a function ε(D) which is small for a certain class of distinguishers
D—e.g. ε(D) is small for all D that cannot be used to solve (a finite instance of)
a problem believed to be hard, as described in Footnote 6—but potentially large
for other D, then we have a specification of resources that are indistinguishable
(to the distinguishers in the chosen class) from (one of) those in R.

5 The definition of the set Ω may depend on the context, e.g. whether one is interested in
bounded run time, bounded memory, and whether one is making finite or asymptotic
statements.

6 Formally, one first finds an (efficient) reduction χ which constructs a solver S =
χ(D) from any distinguisher D. Then one bounds the distance |∆D(R,S)| with
a function of the probability that χ(D) succeeds is solving some problem, i.e.,
ε(D) := f(Pr[χ(D) succeeds]) for an f that does not significantly alter the probability
of success. Thus for any D that cannot be used to solve the problem, |∆D(R,S)|
must be small.

7

Remark 1 (Finite vs. Asymptotic security statements). In this paper, rather than
making asymptotic security statements (where one considers the limit k →∞
for security parameter k) we make a security statement for each possible k ∈ N.
Specifications, resources, converters and distinguishers are then defined for a fixed
security parameter k. If needed, one can obtain the corresponding asymptotic
statements by defining sequences of resources, converters and distinguishers and
then making a statement about the limit behavior of these sequences when
k →∞.

2.2 Composable Security

We now have all the elements needed to define a cryptographic construction.

Definition 1 (Cryptographic Construction [14,22]). Let R and S be two
resource specifications, and π be a protocol for R. We say that π constructs S
from R if

πR ⊆ S. (2.4)

For example, in the case of constructing the confidential channel described
above, the real world is the singleton set with the element given in Eq. (2.1), and
the ideal world is given by an ε-ball around the set of confidential channels given
in Eq. (2.2), i.e. to prove security one would need to show that

decBencA{[AUT, INS]} ⊆ ({simECONF}sim∈Ω)ε. (2.5)

Equation (2.5) is equivalent to the more traditional notation of requiring the
existence of a simulator sim such that for all D,

|∆D(decBencA[AUT, INS], simECONF)| ≤ ε(D).

But the formulation in Definition 1 is more general and allows other types of ideal
worlds to be defined than the specification obtained by appending a simulator at
Eve’s interface of the ideal resource and taking an ε-ball.

Remark 2 (Asymptotic Construction). As pointed out in Remark 1, specifications,
resources, converters and distinguishers are defined for a fixed security parameter
k. The specifications and converters in Definition 1 are then to be interpreted
as being defined for a concrete security parameter k, and Eq. (2.4) is to be
understood as a statement about a fixed k, i.e.

πkRk ⊆ Sk. (2.6)

For simplicity we omit the security parameter whenever it is clear from the context,
and thus will simply write as in Eq. (2.4). If one wishes to make an asymptotic
security statement then one defines efficient families {πk}k∈N, {Rk}k∈N, {Sk}k∈N
and shows that Eq. (2.6) holds asymptotically in k, meaning that there is a
family −→ε := {εk}k∈N of ε-balls such that πkRk ⊆ (Sk)εk , and for any efficient

family of distinguishers
−→
D := {Dk}k∈N, the function −→ε (

−→
D) : N→ R defined as

−→ε (
−→
D)(k) := εk(Dk) is negligible.

8

Remark 3 (Modeling different sets of (dis)honest parties). When one is interested
in making security statements for different sets of (dis)honest parties it is not
sufficient to make a single statement as in Definition 1. Instead, one makes a
statement for each relevant set of (dis)honest parties. For example, let π be
the protocol defining a converter πi for each party Pi ∈ P. For every relevant

subset of honest parties PH ⊆ P, letting RP
H

and SP
H

denote, respectively,
the available resources’ specifications—the real world—and the desired resources’
specifications—the ideal world—one needs to prove that

πP
H

RP
H

⊆ SP
H

,

where πP
HRP

H

denotes the attachment of each converter πi—run by honest

party Pi ∈ PH as ascribed by the protocol π—to RP
H

. In this paper, although
we will make statements of this format, i.e. modeling different sets of (dis)honest
parties, we will drop the superscript PH from the notation of the converters and
specifications, whenever clear from the context.

2.3 Access Restricted Repositories

We formalize communication between different parties as having access to a
repository resource. More specifically, a repository consists of a set of registers
and a single buffer containing register identifiers; a register is a pair reg = (id,m),
which includes the register’s identifier id (uniquely identifying the register among
all repositories), and a message m ∈M (where M is the message space of the
repository7). Access rights to a repository are divided in three classes: write access
allows a party to add messages to a repository, read access allows a party to read
all the messages in a repository, and copy access allows a party to make duplicates
of messages already existing in the repository (without necessarily being able
to read the messages).8 Let P be the set of all parties, and let W ⊆ P, R ⊆ P
and C ⊆ P denote the parties with write, read and copy access to a repository
rep, respectively. We will write CrepWR whenever it is needed to make the access
permissions explicit. Though we may drop them and only write rep whenever
clear from the context. For example, in the three party setting with sender
Alice, receiver Bob and dishonest Eve, i.e. P = {A,B,E}, the insecure channel
mentioned in Sect. 2.1—which allows all parties to read and write—is given by

INSPP ;9 an authentic channel from Alice to Bob is given by {E}AUT
{A}
{B,E}; for

fixed-length message spaces, the confidential channel mentioned in Sect. 2.1 is

7 In analogy to Remark 1 we consider that a repository defined for security parameter k
has message spaceMk; for a family of repositories one then considers a corresponding

family of message spaces
−→
M := {Mk}k∈N. Since most statements are made for a

fixed parameter k, we usually omit k from the notation, writing M instead.
8 Copy access is used to capture the capability that dishonest parties have for copying

or resending (modifications of) whatever they see; modeling this capability is crucial
for some of the security proofs.

9 Since all parties can read and write, copying capabilities are redundant.

9

given by {E}CONF
{A,E}
{B} . The exact semantics of such an (atomic) repository

are defined in Algorithm 1.

Algorithm 1 Repository CrepWR for the set of parties P.

Initialization
Buffer ← ∅

(P ∈ W)-Write(m ∈ M)
id ← NewRegister(m)
Buffer ← id
P -Output(id)

(P ∈ R ∪ C)-ReadBuffer
P -Output(Buffer)

(P ∈ R)-ReadRegister(id)
P -Output(GetMessage(id))

(P ∈ C)-CopyRegister(id)
m← GetMessage(id)
id′ ← NewRegister(m)
Buffer ← id′

P -Output(id′)

Parties will typically have access to many repositories simultaneously, e.g. an
authentic repository from Alice to Bob and one from Alice to Charlie. One could
model this as providing all these (atomic) repositories in parallel to the players,
i.e.

[C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
]. (2.7)

However, this would mean that to check for incoming messages, a party would
need to check every possible atomic repository repi, which could be inefficient if
the number of atomic repositories is very high. Instead, we define a new resource
REP which is identical to a parallel composition of the atomic repositories,
except that it allows parties to efficiently check for incoming messages (rather
than requiring parties to poll each atomic repository repi they have access to).
Abusing notation, we denote such a resource as in Eq. (2.7), namely

REP = [C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
]. (2.8)

The new resource REP allows every party with read or copy access to issue a
single ReadBuffer operation that returns a list of pairs, each pair containing
a register’s identifier and a label identifying the atomic repository in which
the register was written. In addition, it provides single ReadRegister and
CopyRegister operations which return the contents of the register with the
given id and copy the register with the given id, respectively. Write operations
for REP additionally have to specify the atomic repository for which the operation
is meant. The exact semantics of REP are defined in Algorithm 2.

3 Game-Based Security Definitions for Multi-Designated
Verifier Signature Schemes

We now introduce game-based correctness and security notions for MDVS schemes.
For some security parameter k, we denote the advantage of an adversary A in

10

Algorithm 2 Repository REP = [C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
] for a set of parties

P.

Initialization
for each repi ∈ REP do

repi-Initialization

(P ∈ P)-Write(repi, m ∈ M)
Require: (P ∈ Wi)

id ← repi-Write(m)
P -Output(id)

(P ∈ P)-ReadBuffer
outputList ← ∅
for each repi ∈ REP do

if P ∈ Ri ∪ Ci then
for each id ∈ repi-ReadBuffer

do
outputList ← (id, repi)

P -Output(outputList)

(P ∈ P)-ReadRegister(id)
Require: P ∈ Ri for id ∈ repi-ReadBuffer

m← repi-ReadRegister(id)
P -Output(m)

(P ∈ P)-CopyRegister(id)
Require: P ∈ Ci for id ∈ repi-ReadBuffer

id′ ← repi-CopyRegister(id)
P -Output(id′)

winning the game defined by some security notion X for an MDVS scheme Π as
AdvΠ-X

k (A). Whenever it is clear from the context, we simply write AdvX
k (A),

omitting Π from the notation. In the literature, one typically makes statements

about a sequence of adversaries
−→
A = {Ak}k∈N, one for each security parameter,

and the correctness and security of a scheme are defined asymptotically. More

precisely, it is required that for any efficient adversary
−→
A—where efficient usually

means that
−→
A is a non-uniform probabilistic polynomial time adversary—the

function induced by the advantages of each Ak in winning the corresponding game
for k is at most negligible in k. But since the reductions in this paper are non-
asymptotic—for any system Dk that can distinguish the real world from the ideal
world we construct an adversary Ak that can win the corresponding game with
comparable advantage—the asymptotic behavior of the games is mostly irrelevant
for our results and is thus omitted for simplicity; it is rather straightforward to
obtain the asymptotic security notions from the non-asymptotic ones we give
below (alternatively, refer to [11] for the asymptotic definitions of the notions
given ahead). As already mentioned, since most security statements are made for
a fixed (but arbitrary) security parameter k, we usually omit it from the notation
and simply write AdvX(A) instead.

One can find multiple definitions of MDVS schemes in the literature [9,
11, 16, 31]. In this paper, we define an MDVS scheme Π as a 5-tuple Π =
(Setup,GS ,GV ,Sign,Vfy) of Probabilistic Polynomial Time algorithms (PPTs),
following [17]. Setup takes the security parameter as input, and produces public
parameters (pp) and a master secret key (msk),

(pp, msk)← Setup(1k).

11

These are then used by GS and GV to generate pairs of public and secret keys
for the signers and verifiers, respectively,

(spk1, ssk1)← GS(pp, msk), . . . (spkm, sskm)← GS(pp, msk),

(vpk1, vsk1)← GV (pp, msk), . . . (vpkn, vskn)← GV (pp, msk).

Finally, the signing algorithm Sign requires the signer’s secret key and the public
keys of all the verifiers, and the verifying algorithm Vfy requires the signer’s
public key, the secret key of whoever is verifying and the public keys of all verifiers.
For example suppose that party A is signing a message m for a set of verifiers V
and that B ∈ V verifies the signature, then

σ ← Sign(pp, sskA, {vpki}i∈V ,m)

b← Vfy(pp, spkA, vskB , {vpk}i∈V ,m, σ),

where b = 1 if the verification succeeds and b = 0 otherwise.
The MDVS correctness and security notions given next are defined in terms of

a game played between a challenger and an adversary. In game-based definitions
an adversary A interacts with a game system G and tries winning the game. We
denote this interaction by AG. At the end of the interaction, the game system G
outputs a bit b ∈ {win, lose} that indicates whether A won the game. As we will
see next, the definition of the adversary’s advantage in winning a game is defined
differently depending on the security notion. Typically a game system provides
the adversary with a set of oracles that it can interact with to help winning the
game. If game system G provides adversary A with access to oracles O1 and O2,
the interaction between A and G can alternatively be denoted as AO1,O2 , making
explicit what capabilities A is given while playing the game. Before proceeding to
the actual MDVS correctness security definitions, we first introduce some oracles
that the game systems defined ahead use. These following oracles are defined for
a game-system with (an implicitly defined) security parameter k.

Public Parameter Generation Oracle: OPP
1. If a query to this oracle has been previously performed then simply output

the previously generated public parameters pp.
2. Otherwise, compute and store (pp, msk)← Setup(1k). Then, output pp.

Signer Key-Pair Generation Oracle: OSK(Ai)
1. If a query to this oracle has been previously performed for Ai, look up

and return the previously generated key.
2. Otherwise, output and store (spki, sski)← GS(pp, msk).

Verifier Key-Pair Generation Oracle: OV K(Bj)
1. Analogous to the Signer Key-Pair Generation Oracle.

Signer Public-Key Oracle: OSPK(Ai)
1. (spki, sski)← OSK(Ai).
2. Output spki.

Verifier Public-Key Oracle: OV PK(Bj)
1. Analogous to the Signer Public-Key Oracle.

Signing Oracle: OS(Ai,V,m)

12

1. (spki, sski)← OSK(Ai).

2. For all Bj ∈ V: vpkj ← OV PK(Bj).

3. Output σ ← Sign(pp, sski, {vpkj}Bj∈V ,m).

Verification Oracle: OV (Ai, Bj ,V,m, σ)

1. spki ← OSPK(Ai).

2. For all Bl ∈ V: vpkl ← OV PK(Bl).

3. (vpkj , vskj)← OV K(Bj).

4. Output d← Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m, σ).

We now introduce the relevant game-based notions for MDVS schemes. Let
Π = (Setup,GS ,GV ,Sign,Vfy) be an MDVS scheme with security parameter k.

Definition 2 (Correctness). Consider the following game played between an
adversary A and the game system GCorr:

1. AOPP ,OSK ,OV K ,OSPK ,OV PK ,OS ,OV

A wins the game if there are two queries qS and qV to OS and OV , respectively,
where qS has input (Ai,V,m) and qV has input (Ai

′, Bj ,V ′,m′, σ), satisfying
Ai = Ai

′, V = V ′, Bj ∈ V, the input σ in qV is the output of qS, the output of qV
is 0, and A did not previously query (i.e. before either qS or qV) OSK on (input)
Ai nor OV K on Bj.

We define the advantage of A in winning the correctness game as

AdvCorr(A) := Pr[AGCorr = win].

The following security notions—Definition 3 and Definition 4—correspond
to multi-challenge variants of existing security notions from the literature [11,
31]. It is worth mentioning that the multi-challenge versions of both of these
security notions are asymptotically equivalent to the single challenge counterparts
(meaning that if a scheme asymptotically satisfies the single-challenge version
of either of these notions then it also asymptotically satisfies the corresponding
multi-challenge version). To allow for the multiple challenges, we will introduce an
additional oracle OChallenge that adversaries use to submit the (possibly multiple)
challenges to the games. Inputs to oracle OChallenge are quadruples of the form
(m∗, Ai

∗,V∗, σ∗); the oracle does not output any value. The exact behavior of the
oracle, and in particular the definition of when the adversary wins the underlying
game, depends on the security notion. On any query to this oracle, and regardless
of whether it is a game-winning one, the oracle does not give any output.

The following security notion is the multi-challenge version of the Consistency
security notion for MDVS, introduced by Damg̊ard et al. in [11].

Definition 3 (Consistency). Consider the following game played between an
adversary A and the game system GCons:

1. AOPP ,OSK ,OV K ,OSPK ,OV PK ,OV ,OChallenge

13

where oracles OPP , OSK , OV K , OSPK , OV PK , and OV are as defined above,
and oracle OChallenge receives as input a quadruple (m∗, Ai

∗,V∗, σ∗) and does
not give any output. We say that A wins the game if it queries OChallenge on
a quadruple (m∗, Ai

∗,V∗, σ∗) such that there exist verifiers Bj0 , Bj1 ∈ V∗ such
that:

Vfy(pp, spk, vskj0 , {vpkl}Bl∈V∗ ,m, σ) 6= Vfy(pp, spk, vskj1 , {vpkl}Bl∈V∗ ,m, σ),

where all keys are the honestly generated outputs of the key generation oracles
and OV K was not queried on Bj0 or Bj1 at least until the query is submitted.

We define the advantage of A in winning the consistency security game as

AdvCons(A) := Pr[AGCons = win].

The following notion can be seen as either the multi-challenge version of the
unforgeability game introduced in [11], or the MDVS version of the unforgeability
game for DSS from [3].

Definition 4 (Unforgeability). Consider the following game played between
adversary A and game system GUnforg:

1. AOPP ,OSK ,OV K ,OSPK ,OV PK ,OS ,OChallenge

where oracles OPP , OSK , OV K , OSPK , OV PK , and OV are as defined above,
and oracle OChallenge receives as input a quadruple (m∗, Ai

∗,V∗, σ∗) and does
not give any output. We say that A wins the game if it makes a query, say q to
OChallenge on a quadruple (m∗, Ai

∗,V∗, σ∗) such that all of the following hold:

1. for all queries Ai to OSK until q is issued, Ai
∗ 6= Ai;

2. for all queries (Ai,V,m) issued to oracle OS until q was issued that result in
a signature σ, it holds that (Ai

∗,V∗,m∗) 6= (Ai,V,m);
3. there exists a verifier Bj′ ∈ V∗ such that for all queries Bj to oracle OV K

until q was issued, Bj′ 6= Bj and Vfy(pp, spki∗ , vskj′ , {vpkl}Bl∈V∗ ,m, σ) = 1,
where all keys are honestly generated outputs of the key generation oracles.

We define the advantage of A in winning the unforgeability security game as

AdvUnforg(A) := Pr[AGUnforg = win].

The following security notion is the multi-challenge variant of the Off-The-
Record (game-based) security notion introduced in [11]. In contrast to the previous

security notions, this new notion defines two game systems, GOTR-Forge
0 and

GOTR-Forge
1 , which are parameterized by an algorithm Forge. The game system

also defines an oracle OChallengeSign whose behavior varies depending on the
underlying game system, i.e. depending on b ∈ {0, 1} the oracle OChallengeSign
provided by GOTR-Forge

b behaves differently, as described below.

ChallengeSign Oracle: OChallengeSign(type ∈ {sign, forge},m,Ai,V,D)

For game system GOTR-Forge
b , the oracle behaves as follows:

14

1. (spki, sski)← OSK(Ai).
2. For each Bj ∈ V: vpkj ← OV PK(Bj).
3. For each Bj ∈ D: (vpkj , vskj)← OV K(Bj).
4. σ0 ← Π.Sign(pp, sski, {vpkj}Bj∈V ,m).
5. σ1 ← Forge(pp, spki, {vpkj}Bj∈V , {vskj}Bj∈D,m).
6. If b = 0, output σ0 if type = sign and σ1 if type = forge.
7. If b = 1, output σ1.

Definition 5 (Off-The-Record). Consider an MDVS scheme Π with Π =
(Setup,GS ,GV ,Sign,Vfy). In the following, let Forge be a PPT algorithm that on
input pp, spki∗ , {vpkl}Bl∈V∗ , {vskj}Bj∈D∗ , and m∗ outputs a forged signature
σ′. For b ∈ {0, 1}, consider the following game played between an adversary A

and game system GOTR-Forge
b :

1. b′ ← AOPP ,OSK ,OV K ,OSPK ,OV PK ,OV ,OChallengeSign

A wins the game if b′ = b and for every query (type,m,Ai,V,D) to OChallengeSign
all of the following hold:

1. D ⊆ V;
2. for every query Bj to OV K , Bj 6∈ V \ D;
3. for every query Al to OSK , Al 6= Ai; and
4. letting σ denote the output of OChallengeSign to the query above, for all queries

(Al, Bj ,V ′,m′, σ′) to oracle OV , σ′ 6= σ.

We define the advantage of A in winning the Off-The-Record security game
with respect to algorithm Forge as

AdvOTR-Forge(A) :=
∣∣∣Pr[AGOTR-Forge

0 = win] + Pr[AGOTR-Forge
1 = win]− 1

∣∣∣.
4 Modeling MDVS with Fixed Sender and Receivers

In this section we consider a fixed sender A, a fixed set of receivers R =
{B1, . . . , Bn} and one eavesdropper E that is neither sender nor receiver, and
is always dishonest. The set of parties is then given by P = {A,B1, . . . , Bn, E}.
Furthermore, we assume that sender A always designates R as the set of des-
ignated receivers for the messages it sends. This means in particular that if all
receivers are honest then E always learns when A sends a message (as no other
party can send messages).

4.1 Real-World

To communicate, each party in P has access to an insecure repository INS :=
INSk (for a fixed security parameter k) to which everyone can read from and
write to (recall Sect. 2.3). In addition, parties also have access to a Key Generation

15

Authority (KGA), which generates and stores the parties’ key pairs.10 For a fixed
security parameter k, the KGA := KGAk resource runs the Setup algorithm
giving it the (implicit) parameter k, and then generates and stores all key pairs for
the sender A and each receiver in R, using GS and GV , respectively. Every honest
party can then query their own public-secret key pair, the public parameters and
everyone’s public key at their own interface. Dishonest parties can additionally
query the public-secret key pairs of any other dishonest party. The semantics of
the KGA resource is defined in Algorithm 3.11

Algorithm 3 Key Generation Authority resource KGA for MDVS scheme
Π = (Setup,GS ,GV ,Sign,Vfy) with a set of senders S (= SH] SH) and set of

receivers R (= RH]RH). In the following, k is the implicitly defined security

parameter (i.e. KGA := KGAk), and PH the set of all dishonest parties.

Initialization
Sign-Keys ← ∅
Vfy-Keys ← ∅
(pp, msk)← Π.Setup(1k)
for each Ai ∈ S do

(spki, sski)← Π.GS(pp, msk)
Sign-Keys ← (Ai, (spki, sski))

for each Bj ∈ R do
(vpkj , vskj)← Π.GV (pp, msk)

Vfy-Keys ← (Bj , (vpkj , vskj))

(P ∈ P)-PublicParameters
P -Output(pp)

(Ai ∈ SH)-SignerKeyPair
(spki, sski)← Sign-Keys(Ai)
Ai-Output(spki, sski)

(P ∈ PH)-SignerKeyPair(Ai ∈ SH)
(spki, sski)← Sign-Keys(Ai)
P -Output(spki, sski)

(P ∈ P)-SignerPublicKey(Ai ∈ S)
(spki, sski)← Sign-Keys(Ai)
P -Output(spki)

(Bj ∈ R)-VerifierKeyPair
(vpkj , vskj)← Vfy-Keys(Bj)

Bj-Output(vpkj , vskj)

(P ∈ PH)-VerifierKeyPair(Bj ∈ RH)
(vpkj , vskj)← Vfy-Keys(Bj)

P -Output(vpkj , vskj)

(P ∈ P)-VerifierPublicKey(Bj ∈ R)
(vpkj , vskj)← Vfy-Keys(Bj)

P -Output(vpkj)

The sender A runs a converter Snd (locally) and each receiver Bj ∈ R runs a
converter Rcv (also locally). This means sender A can send messages by simply
running its converter Snd, and each receiver can receive messages by simply
running its converter Rcv.

The Snd converter connects to INS and KGA at its inner interface, and has
an outer interface that is identical to the interface of a repository for a party who is
a writer, i.e. it provides a procedure Write which takes as input a label 〈Ai → V〉
defining the sender Ai and set of receivers V and a message m ∈M to be signed.
Snd then gets the necessary keys and public parameters from KGA, signs the

10 The purpose of having an explicit KGA resource is guaranteeing that receivers
know their secret keys, which is crucial for being able to achieve the exclusiveness of
authenticity guarantee of MDVS schemes [13,28].

11 Algorithm 3 defines the behavior of KGA in the case of multiple senders, which will
only be used in Sect. 5.

16

input message m using the algorithm Sign, which outputs some signature σ ∈ S,
and then writes (m,σ, (Ai,V)) into the insecure repository INS. For simplicity,
since in this section the label is always 〈A→ R〉 it is simply omitted. In addition,
rather than making the Snd converter always write (m,σ, (A,R)) tuples into
INS, we omit (A,R) and simply write (m,σ) pairs instead. The exact (simplified)
semantics for converter Snd is given in Algorithm 4.

Algorithm 4 Snd converter for A ∈ SH .

(A ∈ SH)-Write(m ∈ M)
pp← A-PublicParameters
(spk, ssk)← A-SignerKeyPair
for each Bl ∈ R do
{vpkl} ← A-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈R,m)

id ← A-Write(m,σ)
return id

Similarly to Snd, the Rcv converter connects to KGA and INS at its inner
interfaces and provides the same outer interface as a repository for a party with
read access, i.e. it gives access to two read operations, namely ReadBuffer
and ReadRegister. The behavior of Rcv for each such read operation is speci-
fied by means of a procedure with the same name (i.e. a ReadBuffer and a
ReadRegister procedure). The ReadBuffer procedure first reads all tuples
(m,σ, (Ai,V)) written into INS—by issuing a ReadBuffer operation to INS
followed by a series of ReadRegister operations, one for each id returned by the
first operation—and for each tuple satisfying Ai = A and V = R, the converter
verifies whether σ is a valid signature on m with respect to sender A and set of
receivers R. To this end, the Rcv converter first fetches all the public parameters
and keys needed from KGA, and then checks if σ is a valid signature on m with
respect to the public keys of the sender A and of each receiver in R using the
Vfy algorithm defined by the underlying MDVS scheme Π. The converter then
outputs a list of pairs—one for each register stored in INS containing a valid
message-signature pair according to Vfy and with respect to A and R—where
each pair contains a register’s id and a label 〈A→ R〉. Since in this section the
label is always the same, we simply omit it. The ReadRegister procedure of
the Rcv converter receives as input the id of the register to be read; if the register
contains a valid tuple (in the same sense as above) the procedure then outputs
the message contained in the register. The exact (simplified) semantics for the
Rcv converter is given in Algorithm 5.

In the case where the sender and all receivers are honest—i.e. PH = {A}∪RH
with RH = R—the real world specification is given by

SndARcvR
H

{[KGA, INS]}, (4.1)

where RcvR
H

= RcvB1 · · ·RcvBn denotes all receiver converters run at the inter-
faces of Bj ∈ RH . This is illustrated in Fig. 1. As explained in Remark 3 in

17

Algorithm 5 Rcv converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if id ∈ Bj-GetValidIds then

(m,σ)← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
pp← Bj-PublicParameters
(vpkj , vskj)← Bj-VerifierKeyPair

spk← Bj-SignerPublicKey(A)
for each Bl ∈ R do
{vpkl} ← Bj-VerifierPublicKey(Bl)

validIds← ∅
for each id ∈ Bj-ReadBuffer do

(m,σ)← Bj-ReadRegister(id)
if Π.Vfy(pp, spk, vskj , {vpkl}Bl∈R,m, σ) then

validIds← id
return validIds

Sect. 2.2, if a party P is dishonest, then we simply remove their converter from
Eq. (4.1) to get the corresponding real world.

4.2 Ideal-Worlds

Whether the sender is honest or dishonest completely changes the guarantees
one wishes to give, and thus completely changes the ideal world. So we divide
this in two subsections, the first models a dishonest sender and the second an
honest sender. Recall that the third-party E is always dishonest.

Dishonest Sender. In case of a dishonest sender the only property the con-
struction must capture is consistency, namely that all honest receivers in RH
get the same messages (for any RH 6= ∅). This means that even if all dishonest

parties collude, including the sender A, the dishonest receivers RH and the
third-party E, they are unable to generate confusion within the honest senders
as to whether some message is authentic or not: either every receiver Bj ∈ RH
accepts a message as authentic or none does. A repository to which all honest
receivers have read access captures this guarantee. Since dishonest parties may
share secret keys with each other, any of them may have either read or write
access. The repository we want to construct is then

〈A→ R〉R
H∪{A,E}
R∪{A,E} ,

where we have used 〈A→ R〉 as label to denote the repository. By considering a
set of converters Ω12 that could be run jointly at the dishonest parties’ interfaces,

12 We do not define Ω at this point, since in a finite setting there is no “good” and
“bad” system (efficient or inefficient, negligible or non-negligible). Instead, in the
theorem statement for a security proof we explicitly give the set Ω which is used, as
the meaningfulness of the theorem will depend on the choice of this set.

18

A

B1

B2

B3

E

KGA

INS

Rcv

Rcv

Snd

Fig. 1. Illustration of the real world system specified by Eq. (4.1) for the case where
R = {B1, B2, B3}, with RH = {B1, B2}.

one can then define the ideal world specification CFix
Ω capturing consistency as

CFix
Ω :=

{
simR

H∪{A,E}
[
〈A→ R〉R

H∪{A,E}
R∪{A,E}

]}
sim∈Ω

. (4.2)

Finally, we also want the ideal world to contain systems that are indistinguishable
from the perfect ones defined above, so we put an ε-ball around the ideal
resource.13 The ideal world is then (

CFix
Ω

)ε
.

Honest Sender. In the case of an honest sender, there are two properties that
we expect from an MDVS scheme. The first is that the (honest) designated
receivers can verify the authenticity of the message as coming from the actual
sender A. The second is that this authenticity is exclusive to the designated
receivers,14 i.e. a third party E cannot be convinced that any message was sent
by A, even if dishonest receivers leak all their secret keys to E.15 To this end,
MDVS schemes need to be such that every possible set of dishonest receivers
can (cooperatively) come up with forged signatures that are indistinguishable
from the real ones generated by A to the third-party E (who has access to the

13 Like for Ω (see Footnote 12) we do not define acceptable ε here, but in a theorem
statement for a security proof we explicitly give the one used.

14 A third important property is correctness, but in our setting dishonest parties cannot
delete the messages of honest parties, so correctness follows from authenticity and
does not need to be considered separately.

15 If all receivers are honest only A can send messages, and so in this case E just knows
that A must be the one sending messages.

19

A

B1

B2

B3

E

RH∪{E}〈A→ R〉{A}R∪{E}

simR
H∪{E}

Fig. 2. Illustration of an ideal world system from the AFix
Ω specification (Eq. (4.3)) for

the case where R = {B1, B2, B3}, with RH = {B1, B2}.

dishonest receivers’ secret keys). Note, on the other hand, that honest designated
receivers are not “fooled” by signatures forged by dishonest (designated) receivers;
authenticity guarantees that honest designated receivers can verify whether it
was really A signing a message or otherwise.

Authenticity is straightforward to capture: it essentially corresponds to a
repository where only the sender can write, but everyone else can read. The only
twist is that dishonest parties might be able to duplicate messages written by
the sender A [3].16 So the repository we wish to be constructed is given by

RH∪{E}〈A→ R〉{A}R∪{E}.

As for consistency, by considering a set of converters Ω that could be run jointly at
the dishonest parties’ interfaces, one can then define the ideal world specification
AFix
Ω capturing authenticity as

AFix
Ω :=

{
simR

H∪{E}
[
RH∪{E}〈A→ R〉{A}R∪{E}

]}
sim∈Ω

. (4.3)

Here too, we extend the ideal world to also contain systems that are indistin-
guishable from those in Eq. (4.3) by adding a ε-ball around the specification.
The final ideal specification is thus(

AFix
Ω

)ε
.

Fig. 2 illustrates the ideal world systems from the AFix
Ω specification.

16 They can do this either by creating a copy of a valid message-signature pair or by
sending the same message but with a different signature.

20

Finally, the notion of exclusiveness of authenticity is captured in a world
where there exists an (explicit) behavior π for the dishonest receivers that allows
them to generate signatures that look just like fresh signatures to any third party
E. This means that running π would result in a repository in which both the
honest sender A and all the dishonest receivers in RH can write and E can read,
namely17

〈A→ R〉{A}∪R
H

{E} . (4.4)

As usual, we extend the specification by attaching a converter sim at the dishonest
parties’ interfaces. However, sim is not allowed to block or cover the write ability
at the interfaces of the parties in RH , because we wish to guarantee that a
dishonest receiver can write to the repository.18 The specification providing the
guarantee that E cannot distinguish real signatures (created by A) from fake
ones (forged by the dishonest designated receivers) is given by

X̂
Fix

Ω :=
{
sim{E}

[
〈A→ R〉{A}∪R

H

{E}

]}
sim∈Ω

. (4.5)

Fig. 3 illustrates an ideal world system from X̂
Fix

Ω . As stated above, there must

exist a converter π that the dishonest receivers RH can run jointly to achieve a
resource in the specification from Eq. (4.5). Since dishonest receivers could have
run (and can run) π, a third party E cannot tell if the message was sent by them
or by the honest sender A even when given access to the keys of all dishonest
receivers (notice that E, being one of the dishonest parties, can query the KGA
to obtain the secret keys of any dishonest receiver). Putting things together, the
ideal world is defined as

XFix
Ω,π :=

{
V : πR

H⊥R
H

V ∈ X̂
Fix

Ω

}
, (4.6)

where ⊥RH

blocks the interfaces of all honest receivers RH .19 Fig. 4 illustrates

a possible real world system in the XFix
Ω,π specification with a converter ⊥RH

blocking the interface of the (only) honest receiver B1, and protocol πR
H

attached
to the interfaces of the dishonest receivers (i.e. B2 and B3). Again, we put an
ε-ball around Eq. (4.6), and define the ideal specification for the exclusiveness of
authenticity to be

(XFix
Ω,π)ε.

17 As one might note, the repository in Eq. (4.4) does not allow the honest designated
receivers RH to read. The reason for this is that the security statement does not
concern them, so we remove them from the security statement. In fact, due to
authenticity the honest designated receivers could distinguish signatures written by
Alice or forged by the dishonest receivers.

18 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (4.5).

19 Note that the ideal specification in Eq. (4.6) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.

21

A

B1

B2

B3

E

〈A→R〉{A}∪R
H

{E}

sim{E}

Fig. 3. Illustration of an ideal world system from the X̂
Fix

Ω specification (Eq. (4.5)) for
the case where R = {B1, B2, B3}, with RH = {B1}.

Putting things together, the ideal world specification for the case of an honest
sender is then given by

S =
(
AFix
Ω

)ε
∩
(
XFix
Ω′,π

)ε′
. (4.7)

4.3 Reduction to Game-Based Security

We now compare our composable notions against the existing game-based security
notions from the literature (given in Sect. 3).

The first theorem shows that in the case of a dishonest sender, the advantage
in distinguishing the real and ideal systems is upper bounded by the advantage
in winning the consistence game.

Theorem 1. When the sender A is dishonest, i.e. PH = RH , we find an
explicit reduction system C (defined in Algorithm 12) and an explicit simulator
sim (defined in Algorithm 11) such that for any Ω ⊇ {sim}:

R ⊆ (CFix
Ω)AdvCons(·C) (4.8)

where for any distinguisher D, AdvCons(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Consistency
game (Definition 3).

A proof of Theorem 1 is provided in Appendix A.1.
The second theorem shows that in the case of an honest sender, the advantage

in distinguishing the real world from the ideal world for authenticity is upper
bounded by the advantage in winning the unforgeability game and the correctness
game.

22

A

B1

B2

B3

E

KGA

INS

⊥R
H

πR
H

Snd

Fig. 4. Illustration of a possible real world system in the XFix
Ω,π specification (Eq. (4.6))

for the case where R = {B1, B2, B3}, with RH = {B1}. Converter ⊥R
H

blocks B1’s

interface; signature forgery protocol πR
H

is attached to the interfaces of B2 and B3.

Theorem 2. When the sender is honest, i.e. for PH = {A} ∪ RH , we find
explicit reduction systems C′ and C (the latter is defined in Algorithm 14) and
an explicit simulator sim (defined in Algorithm 13) such that for any Ω ⊇ {sim}:

R ⊆ (AFix
Ω)AdvUnforg(·C) +AdvCorr (·C′) (4.9)

where for any distinguisher D, AdvUnforg(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Unforgeability
game (see Definition 4), and AdvCorr(DC′) is the advantage of D′′ = DC′ in
winning the Correctness game (see Definition 2).

A proof of Theorem 2 is provided in Appendix A.2.
In the third theorem we show that in the case of an honest sender, the advan-

tage in distinguishing the real world from the ideal world for the exclusiveness of
authenticity is bounded by the advantage in winning the Off-The-Record game.

Theorem 3. When the sender is honest, i.e. for PH = {A} ∪ RH , and for
any signature forgery algorithm Forge suitable for the Off-The-Record security
notion (see Definition 5), we find an explicit reduction system C (defined in
Algorithm 16) and an explicit simulator sim (defined in Algorithm 15) such that
for any Ω ⊇ {sim}:

R ⊆ (XFix
Ω,πForge)AdvOTR-Forge(·C), (4.10)

where πForge is the converter running the Forge algorithm (see Algorithm 6), and
for any distinguisher D, AdvOTR-Forge(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Off-The-Record
game with respect to the signature forgery algorithm Forge (see Definition 5).

A proof of Theorem 3 is provided in Appendix A.3.

23

Algorithm 6 Converter πForge for set of (dishonest) parties RH ; πForge uses
algorithm Forge to forge signatures, and is connected to a KGA and an insecure
repository INS.

(Bj ∈ RH)-Write(m ∈ M)
pp← Bj-PublicParameters
spk← Bj-SignerPublicKey(A)

for each Bc ∈ RH do
{(vpkc, vskc)} ← Bj-VerifierKeyPair(Bc)

for each Bl ∈ R do
{vpkl} ← Bj-VerifierPublicKey(Bl)

σ ← Forge(pp, spk, {vpkl}Bl∈R, {vskc}
Bc∈RH , m)

Bj-Output(Bj-Write(m,σ))

5 Modeling MDVS for Arbitrary Parties

In this section we model the security of MDVS schemes in the presence of
multiple possible senders and multiple sets of receivers, which corresponds to a
generalization of the models given in Sect. 4. Throughout this section, we denote
by S the set of senders, and by SH and SH the partitions of S corresponding
to honest and dishonest senders. As before, R, RH and RH correspond to the
set of all receivers, honest and dishonest receivers, respectively. Furthermore, we
assume that RH , RH , SH and SH are all non-empty sets.

5.1 Real-World

The real world specification for this security model is similar to the one given
in Sect. 4.1 for the fixed sender and fixed set of receivers case. However, in
Sect. 4 we made a few simplifications in the description of converters Snd and
Rcv namely, the fixed sender and a fixed set of receiver are hard-coded in the
converters. In this section, the converters SndArb and RcvArb (see Algorithm 7
and Algorithm 8, respectively) allow the sender to specify the set of receivers for
each message they send, and the RcvArb converters explicitly output the sender
and the set of designated receivers. Moreover, the SndArb converter now attaches
to each message-signature pair also the sender and set of receivers meant for
that message-signature pair; the RcvArb converter then relies on this information
to validate the authenticity of messages meant for the corresponding receiver.
Apart from this, the real-world specification is as before: the SndArb and RcvArb

converters connect to the KGA and to an insecure repository INS, and behave
otherwise similarly to the Snd and Rcv converters. Since we assumed that SH
and RH are non-empty sets, the real-world specification is then defined by

SndArbS
H

RcvArbR
H

{[KGA, INS]}, (5.1)

as illustrated in Fig. 5.

24

Algorithm 7 SndArb converter for Ai ∈ SH .

(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)
pp← Ai-PublicParameters
(spk, ssk)← Ai-SignerKeyPair
for each Bl ∈ V do
{vpkl} ← Ai-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈V ,m)

id ← Ai-Write(m,σ, (Ai,V))
return id

Algorithm 8 RcvArb converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

(m,σ, (Ai,V))← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
pp← Bj-PublicParameters
(vpkj , vskj)← Bj-VerifierKeyPair

validIds← ∅
for each (id, INS) ∈ Bj-ReadBuffer do

(m,σ, (Ai,V))← Bj-ReadRegister(id)
if Bj ∈ V then

spki ← Bj-SignerPublicKey(Ai)
for each Bl ∈ V do
{vpkl} ← Bj-VerifierPublicKey(Bl)

if Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m, σ) then

validIds← (id, 〈Ai → V〉)
return validIds

5.2 Ideal-Worlds

As aforementioned in Sect. 4.2, the guarantees given by the ideal world when
a sender is honest are completely different from the ones when it is dishonest.
However, since now we have both honest and dishonest senders at the same time,
the ideal-world specification modeling the security of MDVS schemes consists of
the intersection of only two (relaxed) specifications, one capturing the consistency

and authenticity together (CA)
Arb
Ω ,20 and one capturing the exclusiveness of

authenticity XArb
Ω′,π. The ideal world is then

S =
(
(CA)

Arb
Ω

)ε
∩
(
XArb
Ω′,π

)ε′
. (5.2)

One key difference between the model we now introduce and the one from
Sect. 4 is that we may have dishonest parties (other than Eve) that are neither
sender nor designated receivers in this section, and we require exclusiveness of
authenticity to hold with respect to them as well. So it is not sufficient that (any

20 As noted in Sect. 4, in our setting correctness follows from authenticity, so it does
not need to be considered separately.

25

A1

A2

A3

B1

B2

B3

E

KGA

INS

RcvArb

RcvArb

SndArb

SndArb

Fig. 5. Illustration of the real world system specified by Eq. (5.1) for the case where
S = {A1, A2, A3} and R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

non-empty subset of) dishonest verifiers who have a secret verification key can
forge signatures, parties with no secret verification key should also be able to
forge.21

Consistency and Authenticity. As just mentioned, (CA)
Arb
Ω models consis-

tency and authenticity. More concretely, for dishonest senders Ai ∈ SH , (CA)
Arb
Ω

includes the repository [
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R

,

which captures consistency, since all honest receivers have access to the same
messages. And for honest senders Ai ∈ SH , (CA)

Arb
Ω includes the repository[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

,

which captures authenticity, since only Ai can write. As before, a simulator sim
is added at the interfaces of the dishonest parties, hence

(CA)
Arb
Ω :=

 simP
H

[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

sim∈Ω

. (5.3)

Fig. 6 illustrates the ideal world systems from the (CA)
Arb
Ω specification.

21 This could have been modeled in Sect. 4 by adding a second Eve, but we omitted it
for simplicity.

26

A1

A2

A3

B1

B2

B3

E

[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

simP
H

Fig. 6. Illustration of the ideal world system specified by Eq. (5.3) for the case where
S = {A1, A2, A3}, R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

Exclusiveness of Authenticity. To model exclusiveness of authenticity, for
honest senders Ai ∈ SH , we define a resource containing a repository where Ai
and all dishonest parties (except Eve) can write and Eve can read, i.e.[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R

.

This means that Eve does not know if the messages she sees are from Alice or
another dishonest party—even those that are not designated verifiers can input
messages.

In the arbitrary party setting, we also need to deal with the case of dishonest
senders. Since we cannot exclude that by submitting forged signatures and seeing
whether they are accepted, dishonest parties might learn something about the
honest receivers’ secret keys, we also include repositories where a dishonest party
(Eve) can write and honest verifiers read,22 namely[

〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R

.

Like in the previous section, we want to guarantee that the ability of dishonest
parties to write in the repositories for honest senders is preserved, so the simulator

22 Messages signed by a party with no knowledge of the signer’s secret key will likely
be recognized as forgeries, so we only need to consider the case where the sender is
dishonest and the keys are shared. Furthermore, the distinguisher could in principle use
any party’s interface to submit these messages, but since it simplifies the presentation
to only have the simulator at Eve’s interface we only include Eve in the parties with
write abilities.

27

only covers Eve’s interface.23 We thus get a resource specification,

X̂
Arb

Ω :=

 sim{E}

[
〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R

 . (5.4)

As previously, our ideal world consists of all resources that when the interfaces
of the honest designated verifiers on repositories with honest senders are covered
and when the dishonest parties (excluding Eve) collude to run a forging protocol

π result in a resource contained in X̂
Arb

Ω , i.e. the ideal-world specification XArb
Ω,π

is defined as

XArb
Ω,π :=

{
V : πS

H∪RH
(⊥Arb)R

H

V ∈ X̂
Arb

Ω

}
, (5.5)

where ⊥Arb is the converter specified in Algorithm 9 which does not allow the
receiver to verify the authenticity of messages input into any repository 〈Ai → V〉
with an honest sender (i.e. for which Ai ∈ SH).24

Algorithm 9 ⊥Arb converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

m← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
validIds← ∅
for each (id, 〈Ai → V〉) ∈ Bj-ReadBuffer do

if Ai ∈ SH then
validIds← (id, 〈Ai → V〉)

return validIds

5.3 Reduction to Game-Based Security

We now compare our composable notions for arbitrary parties to the existing
game-based security notions from the literature.

The first theorem in this section shows that that advantage in distinguishing
the real world from the ideal world for authenticity and consistency is upper
bounded by the advantage in winning the consistency, unforgeability and correct-
ness games.

23 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (5.4).

24 Note that the ideal specification in Eq. (5.5) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.

28

Theorem 4. Consider a setting where RH , RH , SH and SH are all non-empty.
We find an explicit reduction system C′, an explicit simulator sim (see Algo-
rithm 17) and explicit reduction systems C (see Algorithm 18), CCons (see
Algorithm 19) and CUnforg (see Algorithm 20) such that, for any Ω ⊇ {sim}

R ⊆
(
(CA)

Arb
Ω

)AdvCons(·CCCons)+AdvUnforg(·CCUnforg)+AdvCorr (·C′)
, (5.6)

where for any distinguisher D, AdvCons(DCCCons), AdvUnforg(DCCUnforg), and

AdvCorr(DC′) are, respectively, the advantages of D′ = DCCCons (the distin-
guisher resulting from composing D, C and CCons) in winning the Consistency
game (see Definition 3), of D′′ = DCCUnforg in winning the Unforgeability game
(see Definition 4), and of D′′′ = DC′ in winning the Correctness game (see
Definition 2).

A proof of Theorem 4 is provided in Appendix A.4.
In the second theorem we show that the advantage in distinguishing the real

world from the ideal world for the exclusiveness of authenticity is bounded by
the advantage in winning the Off-The-Record and Consistency games.

Theorem 5. Consider a setting where RH , RH , SH and SH are all non-empty.
For any signature forgery algorithm Forge suitable for the Off-The-Record security
notion (see Definition 5), we find explicit reduction systems C (see Algorithm 22)
and C′ (see Algorithm 23) and an explicit simulator sim (see Algorithm 21) such
that for any Ω ⊇ {sim}:

R ⊆ (XArb
Ω,πForge)AdvOTR-Forge(·C)+AdvCons(·C′), (5.7)

where πForge is the converter running the Forge algorithm (see Algorithm 10),
and for any for any distinguisher D, AdvOTR-Forge(DC) and AdvCons(DC′)
are, respectively, the advantage of D′ = DC (the distinguisher resulting from
composing D and C) in winning the Off-The-Record game with respect to forgery
algorithm Forge (see Definition 5), and the advantage of D′′ = DC′ in winning
the Consistency game (see Definition 3).

Algorithm 10 πForge converter for set of (dishonest) parties SH ∪RH .

(P ∈ SH ∪RH)-Write(〈Ai → V〉, m ∈ M)
pp← P -PublicParameters
spki ← P -SignerPublicKey(Ai)

for each Bj ∈ VH do
{(vpkj , vskj)} ← P -VerifierKeyPair(Bj)

for each Bl ∈ V do
{vpkl} ← P -VerifierPublicKey(Bl)

σ ← Forge(pp, spki, {vpkl}Bl∈V , {vskc}Bc∈VH ,m)

P -Output(P -Write(m,σ, (Ai,V)))

A proof of Theorem 5 is provided in Appendix A.5.

29

Asymptotic Composable Security of MDVS Analogously to Remark 2,

for a security notion X, AdvX(
−→
A) : N → R denotes a function defined as

AdvX(
−→
A)(k) := AdvX(Ak). We say that a scheme satisfies X asymptotically

if AdvX(
−→
A) is negligible on the security parameter k.

In the following, let Π = (Setup,GS ,GV ,Sign,Vfy) be an MDVS scheme.
The following corollaries, Corollary 1 and Corollary 2, follow from Theorem 4
and Theorem 5, respectively. These results state that any MDVS scheme Π
that is asymptotically secure—according to asymptotic versions of Definition 2,
Definition 3, Definition 4, and Definition 5 (see [11] for possible definitions)—and
which is used as specified in Sect. 5.1 asymptotically constructs, from a real
world specification R, the ideal world specification defined in Equation 5.2 (see
Remark 2). Note that, since we are making asymptotic construction statements,
Ω and Ω′ are both classes of efficient simulators (say non-uniform probabilistic

polynomial time), and for any efficient family of distinguishers
−→
D, −→ε and −→ε ′ are

both negligible functions (on the security parameter).

Corollary 1. Consider a setting where RH , RH , SH and SH are all non-empty.
If Π is asymptotically Correct (see Definition 2), Consistent (see Definition 3)

and Unforgeable (see Definition 4), then R asymptotically constructs (CA)
Arb

.

Corollary 2. Consider a setting where RH , RH , SH and SH are all non-empty.
If Π is asymptotically Off-The-Record (see Definition 5) and Consistent (see
Definition 3), then R asymptotically constructs XArb

πForge , where πForge is the
converter defined in Algorithm 10, running an algorithm Forge with respect to
which Π is asymptotically Off-The-Record (i.e. no non-uniform probabilistic

polynomial time adversary
−→
A can win the Off-The-Record game of Π with respect

to algorithm Forge with non-negligible advantage).

5.4 Separation from Existing Game-Based Security Notions

The game-based security notion from [11] capturing the Off-The-Record security
property of MDVS schemes —corresponding to Definition 5— is unnecessarily
strong as for some MDVS schemes it allows the adversary to verify the validity of
the challenge signatures, and thus allows it to trivially win the game. As hinted
by our composable security notions, the main goal of the Off-The-Record security
notion is capturing that a third party cannot tell whether a given signature
is a valid one generated by the signer, or a forged one generated by dishonest
receivers. The ability of a third party to generate signature replays—which might
only be valid if the original signatures were already valid—does not violate any
of the security properties that MDVS schemes intend to guarantee, and as such
should not help in winning the corresponding security game. However, it does
help in winning the Off-The-Record game from [11], meaning that this notion
(i.e. the one from [11]) is unnecessarily strong.

Theorem 6. Let P = {A1, A2, A3, B1, B2, B3, E}. Consider any MDVS scheme
Π, and let εΠ-4 and εΠ-5 denote the ε-balls (see Eq. (2.3)) given by, respectively,

30

Theorem 4 and Theorem 5 for settings where RH , RH , SH and SH are all
non-empty sets. Then there is a modified MDVS scheme Π ′ that is also secure as
in each of these two theorems and for essentially the same ε-balls as Π, but such
that for any suitable algorithm Forge for the Off-The-Record security notion (see
Definition 5) there is an explicit and efficient adversary A such that

AdvΠ
′-OTR-Forge(A) ≥ 1− δcorr − δauth,

where AdvΠ
′-OTR-Forge(A) denotes the advantage of A in winning the Off-The-

Record game for Π ′ with respect to the signature forgery algorithm Forge, δcorr is
the probability that a single honestly generated signature does not verify correctly
and δauth is the probability that a single forged signature is considered valid by
the signature verification algorithm.

A proof of Theorem 6 is provided in Appendix A.6.

6 Further Related Work

In [13], Jakobsson, Sako, and Impagliazzo introduce DVS and MDVS schemes
and give two property-based security notions for the single designated verifier
case. Their weaker notion is intended to capture essentially the same as our
weaker exclusiveness of authenticity notion—if all receivers are honest, Eve learns
that Alice is the one sending messages—whereas their stronger notion is intended
to capture our stronger notion—even if all receivers are honest, Eve cannot tell
if Alice sent any message. Unfortunately, the signature unforgeability notion
considered—equivalent to Existential Unforgeability under No-Message Attacks
(EUF-NMA)—is known to be too weak to allow for authentic communication.25

Furthermore, the security notion capturing the exclusiveness of authenticity
which is implicitly considered for the case of multiple receivers is also too weak,
and in particular is not sufficient to achieve neither of our composable notions.
This is so since simulating signatures requires secret information from every
designated verifier, and thus if at least one of the verifiers is honest, doing so is
not feasible.

In [28], Steinfeld, Bull, Wang and Pieprzyk introduce Universal Designated
Verifier Signatures, wherein a signer can generate publicly verifiable signatures
which can then be transformed into designated verifier ones (possibly by a
distinct party not possessing the secret signing key). Although the security
notions capturing the exclusiveness of authenticity property introduced in that
paper are weak—in that they only meet the weaker notion we introduce in this
paper—the proposed schemes meet our stronger notion for this property (for the
single receiver case). On the other hand, the unforgeability notion considered in
the paper is too weak: it does not suffice to achieve even our weaker composable

25 Existential Unforgeability under Chosen Message Attacks (EUF-CMA)—a security
notion known to be strictly stronger than EUF-NMA—is necessary for authentic
communication, see [3, 7].

31

security notion. Unfortunately, numerous subsequent works have considered the
same unforgeability notion [16–19,29,31].

In [15], Krawczyk and Rabin introduce Chameleon signature schemes, which
work by first using a chameleon hash function to hash a message and then using
a normal signature scheme to sign the resulting hash. Chameleon hash functions
are public key schemes which are collision-resistant for anyone not possessing
the secret key, but which allow for efficient collision finding given the secret
key. The intended use of these schemes is to provide the same guarantees as
DVS schemes: a designated receiver first generates its chameleon hash function,
and sends the corresponding public key to the signer; the signer then sends
a signature on the message under the hash function provided by the receiver,
which it can verify. Since the receiver knows the secret key of the chameleon
hash function it sent to the signer, no one other than the receiver gets convinced
that the signer signed any particular message. However, these schemes do not
allow to achieve the exclusiveness of authenticity that our stronger composable
notion captures: anyone with the public keys of the signer and of the chameleon
hash function can verify whether a certain signature is a valid one (for some
message), which implies that no third-party can feasibly forge signatures that are
indistinguishable from real ones (or otherwise the signature scheme used by the
signer is not unforgeable). Moreover, they also do not achieve our weaker notion,
as dishonest receivers can only forge signatures once the signer signed a message.

In [26], Rivest, Shamir and Tauman mention that two party ring signatures
are DVS schemes. Indeed, one can obtain a DVS scheme meeting our weaker
composable notion for the case of a single receiver B by taking a ring signature
scheme and using it to produce signatures for a ring composed by the signer A
and by the intended (designated) receiver of that message, B.26 But notice that,
similarly to the case of Chameleon signature schemes, public keys are enough
to verify signatures, implying that the DVS schemes yielded by ring signatures
can really only achieve our weaker security notion—where if both A and B are
honest, E learns A is the signer. Furthermore, since any ring member can locally
sign messages that are valid with respect to the entire ring, which is incompatible
with the stronger authenticity requirement of MDVS schemes, ring signatures
may only be used as DVS schemes for the case of a single receiver. Unfortunately,
this went unnoticed in various prior works [9, 16, 18], which gave constructions of
MDVS schemes based on ring signature schemes.

One could think that perhaps, to achieve our stronger notion for exclusiveness
of authenticity—where a third party is not convinced that the signer signed some
message even when all the designated receivers (and the signer) are honest—
it suffices to guarantee that the validity of a signature can only be efficiently
determined with the secret key given as input [27]. However, this is not the case.
Consider for example, the case where the sender and the designated receivers
share the signing key dsk of some (traditional) Digital Signature Scheme (DSS)

26 As one might note, the resulting DVS scheme can only meet our weaker composable
notion if the underlying ring signature scheme meets the stronger Anonymity against
Attribution Attacks [4, Def. 4].

32

(with the corresponding verification key dvk being publicly known), and where
the MDVS signature σm for each message m also includes a signature σm

′ under
dsk on m. Then, while to verify the validity of an MDVS signature σm one
may need the secret verification key for the MDVS scheme, by verifying the
corresponding σm

′ using dvk signature a third party already gets convinced, in
the case where the sender and all the designated receivers are honest, that the
really signer signed m. This same reasoning also explains why, in general, MAC
schemes cannot be used per se as DVS schemes (in the stronger sense, captured
by our stronger composable notion) for the two party case: it may not be feasible
to simulate MAC schemes which look just like real ones.

References

1. Backes, M., Hofheinz, D.: How to break and repair a universally composable
signature functionality. In: Zhang, K., Zheng, Y. (eds.) ISC 2004: 7th International
Conference on Information Security. Lecture Notes in Computer Science, vol. 3225,
pp. 61–72. Springer, Heidelberg (Sep 2004)

2. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Cryptology ePrint Archive, Report 2004/082 (2004),
https://eprint.iacr.org/2004/082

3. Badertscher, C., Maurer, U., Tackmann, B.: On composable security for digital
signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018: 21st International Confer-
ence on Theory and Practice of Public Key Cryptography, Part I. Lecture Notes
in Computer Science, vol. 10769, pp. 494–523. Springer, Heidelberg (Mar 2018).
https://doi.org/10.1007/978-3-319-76578-5˙17

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006: 3rd
Theory of Cryptography Conference. Lecture Notes in Computer Science, vol. 3876,
pp. 60–79. Springer, Heidelberg (Mar 2006). https://doi.org/10.1007/11681878˙4

5. Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

6. Canetti, R.: Universally composable signatures, certification and au-
thentication. Cryptology ePrint Archive, Report 2003/239 (2003),
https://eprint.iacr.org/2003/239

7. Canetti, R.: Universally composable signature, certification, and au-
thentication. In: 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. p. 219.
IEEE Computer Society (2004). https://doi.org/10.1109/CSFW.2004.24,
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24

8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007: 4th Theory of Cryptography
Conference. Lecture Notes in Computer Science, vol. 4392, pp. 61–85. Springer,
Heidelberg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7˙4

9. Chow, S.S.M.: Multi-designated verifiers signatures revisited. Int. J. Netw. Secur.
7(3), 348–357 (2008), http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-
n3-p348-357.pdf

33

https://eprint.iacr.org/2004/082
https://doi.org/10.1007/978-3-319-76578-5_17
https://doi.org/10.1007/11681878_4
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://doi.org/10.1109/CSFW.2004.24
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-540-70936-7_4
http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-n3-p348-357.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-n3-p348-357.pdf

10. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channels - public-key encryption revisited. In: Sako, K., Sarkar,
P. (eds.) Advances in Cryptology – ASIACRYPT 2013, Part I. Lecture Notes
in Computer Science, vol. 8269, pp. 134–153. Springer, Heidelberg (Dec 2013).
https://doi.org/10.1007/978-3-642-42033-7˙8

11. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptography Conference, Part II.
Lecture Notes in Computer Science, vol. 12551, pp. 229–260. Springer, Heidelberg
(Nov 2020). https://doi.org/10.1007/978-3-030-64378-2˙9

12. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Journal
of Cryptology 28(3), 423–508 (Jul 2015). https://doi.org/10.1007/s00145-013-9160-
y

13. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) Advances in Cryptology – EUROCRYPT’96.
Lecture Notes in Computer Science, vol. 1070, pp. 143–154. Springer, Heidelberg
(May 1996). https://doi.org/10.1007/3-540-68339-9˙13

14. Jost, D., Maurer, U.: Overcoming impossibility results in composable security
using interval-wise guarantees. In: Micciancio, D., Ristenpart, T. (eds.) Advances
in Cryptology – CRYPTO 2020, Part I. Lecture Notes in Computer Science, vol.
12170, pp. 33–62. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-
030-56784-2˙2

15. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed
System Security Symposium – NDSS 2000. The Internet Society (Feb 2000)

16. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 04: 6th International Conference on Information
and Communication Security. Lecture Notes in Computer Science, vol. 3269, pp.
495–507. Springer, Heidelberg (Oct 2004)

17. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.) SCN
04: 4th International Conference on Security in Communication Networks. Lecture
Notes in Computer Science, vol. 3352, pp. 105–119. Springer, Heidelberg (Sep 2005).
https://doi.org/10.1007/978-3-540-30598-9˙8

18. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated verifier signature: Definition, frame-
work and new constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao,
J. (eds.) Ubiquitous Intelligence and Computing, 4th International Conference, UIC
2007, Hong Kong, China, July 11-13, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4611, pp. 1191–1200. Springer (2007). https://doi.org/10.1007/978-3-
540-73549-6 116, https://doi.org/10.1007/978-3-540-73549-6 116

19. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005: 32nd International Colloquium on Au-
tomata, Languages and Programming. Lecture Notes in Computer Science, vol. 3580,
pp. 459–471. Springer, Heidelberg (Jul 2005). https://doi.org/10.1007/11523468˙38

20. Maurer, U.: Constructive cryptography—a new paradigm for security definitions
and proofs. In: Proceedings of Theory of Security and Applications, TOSCA
2011. Lecture Notes in Computer Science, vol. 6993, pp. 33–56. Springer (2012).
https://doi.org/10.1007/978-3-642-27375-9˙3

21. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) ICS 2011:
2nd Innovations in Computer Science. pp. 1–21. Tsinghua University Press (Jan
2011)

34

https://doi.org/10.1007/978-3-642-42033-7_8
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-030-56784-2_2
https://doi.org/10.1007/978-3-030-56784-2_2
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/11523468_38
https://doi.org/10.1007/978-3-642-27375-9_3

22. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and
back). In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B: 14th Theory of Cryptography
Conference, Part I. Lecture Notes in Computer Science, vol. 9985, pp. 3–24. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53641-4˙1

23. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
Advances in Cryptology – EUROCRYPT 2002. Lecture Notes in Computer
Science, vol. 2332, pp. 110–132. Springer, Heidelberg (Apr / May 2002).
https://doi.org/10.1007/3-540-46035-7˙8

24. Maurer, U.M., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture Notes
in Computer Science, vol. 4622, pp. 130–149. Springer, Heidelberg (Aug 2007).
https://doi.org/10.1007/978-3-540-74143-5˙8

25. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and
its application to secure message transmission. In: 2001 IEEE Symposium on
Security and Privacy. pp. 184–200. IEEE Computer Society Press (May 2001).
https://doi.org/10.1109/SECPRI.2001.924298

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in Computer Science,
vol. 2248, pp. 552–565. Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-
540-45682-1˙32

27. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.I., Lee, D.H. (eds.) ICISC 03: 6th International
Conference on Information Security and Cryptology. Lecture Notes in Computer
Science, vol. 2971, pp. 40–54. Springer, Heidelberg (Nov 2004)

28. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signa-
tures. In: Laih, C.S. (ed.) Advances in Cryptology – ASIACRYPT 2003. Lecture
Notes in Computer Science, vol. 2894, pp. 523–542. Springer, Heidelberg (Nov / Dec
2003). https://doi.org/10.1007/978-3-540-40061-5˙33

29. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard Schnorr/RSA
signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou,
J. (eds.) PKC 2004: 7th International Workshop on Theory and Practice in Public
Key Cryptography. Lecture Notes in Computer Science, vol. 2947, pp. 86–100.
Springer, Heidelberg (Mar 2004). https://doi.org/10.1007/978-3-540-24632-9˙7

30. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. In: Ra-
bin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes in
Computer Science, vol. 6223, pp. 411–428. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7˙22

31. Zhang, Y., Au, M.H., Yang, G., Susilo, W.: (strong) multi-designated verifiers
signatures secure against rogue key attack. In: Xu, L., Bertino, E., Mu, Y. (eds.)
Network and System Security - 6th International Conference, NSS 2012, Wuyishan,
Fujian, China, November 21-23, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7645, pp. 334–347. Springer (2012). https://doi.org/10.1007/978-3-
642-34601-9 25, https://doi.org/10.1007/978-3-642-34601-9 25

35

https://doi.org/10.1007/978-3-662-53641-4_1
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-24632-9_7
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25

Appendix

A Proofs

A.1 Proof of Theorem 1

In order to prove Theorem 1 it suffices showing that simulator sim (specified in
Algorithm 11) and reduction system C (specified in Algorithm 12) are such that,
for any D, the advantage of D in distinguishing the real world system from the
ideal world system with the simulator attached is bounded by AdvCons(DC): the
advantage of DC in winning the Consistency game for the underlying MDVS
scheme Π. By the definition of the ε-ball of a specification (Eq. (2.3), Sect. 2.1)
we then have that Theorem 1 follows from Lemma 1 below.

Lemma 1. For PH = RH , reduction system C (see Algorithm 12) and simulator
sim (see in Algorithm 11) are such that for any distinguisher D∣∣∣∣∣∆D

(
RcvR

H

[KGA, INS], simR
H∪{A,E}

[
〈A→ R〉R

H∪{A,E}
R∪{A,E}

])∣∣∣∣∣
≤ AdvCons(DC).

Proof. Simulator sim, specified in Algorithm 11, initially generates the necessary
keys and public parameters. Additionally, sim contains an internal repository
SimRep to which each party P ∈ RH ∪ {A,E} can both read and write (i.e.

SimRep := SimRep
RH∪{A,E}
RH∪{A,E}

). More, the simulator also has a mapping Gener-

atedSignatures from register ids to signatures, a set AdvWrites of ids of registers
generated by adversarial writes, and stores a verifier key-pair (vpkh, vskh) of an
honest designated receiver Bh ∈ RH (if there is one), which is used to decide
whether each write into the repository is valid.

Let R denote the real world system, i.e.

R := RcvR
H

[KGA, INS],

and S denote the ideal world system, i.e.

S := simR
H∪{A,E}[〈A→ R〉].

We now show that systems R and S always behave indistinguishably, unless
a distinguisher D performs a Write operation with input (m∗, σ∗) at one of

the adversarial interfaces RH , A,E, returning an identifier id, such that there
are two later ReadBuffer invocations on the repository at interfaces Bh and
Bh′ (where Bh, Bh′ ∈ RH) such that one of them returns a list containing id

and the other returns a list not containing id. Let us denote this event by ξ.
This means that the random systems R and S are indistinguishable up to event

36

Algorithm 11 Simulator sim for Lemma 1. The simulator is attached to the
interfaces of the parties in RH ∪ {A,E}. In the following k ∈ N is the (implicitly
defined) security parameter.

Initialization
SimRep-Initialization
GeneratedSignatures ← ∅
AdvWrites ← ∅
(pp, msk)← Π.Setup(1k)
(spk, ssk)← Π.GS(pp, msk)
(vpkh, vskh)← (null, null)
for each Bj ∈ R do

(vpkj , vskj)← Π.GV (pp, msk)

if Bj ∈ RH ∧ (vpkh, vskh) = (null, null) then
(vpkh, vskh)← (vpkj , vskj)

(P ∈ RH ∪ {A,E})-PublicParameters
P -Output(pp)

(P ∈ RH ∪ {A,E})-SignerKeyPair(A)
P -Output(spk, ssk)

(P ∈ RH ∪ {A,E})-SignerPublicKey(A)
P -Output(spk)

(P ∈ RH ∪ {A,E})-VerifierKeyPair(Bj ∈ RH)
P -Output(vpkj , vskj)

(P ∈ RH ∪ {A,E})-VerifierPublicKey(Bj ∈ R)
P -Output(vpkj)

(P ∈ RH ∪ {A,E})-Write((m,σ) ∈ M× S)
if (vpkh, vskh) 6= (null, null) ∧ Π.Vfy(pp, spk, vskh, {vpkj}Bj∈R,m, σ) then

id ← 〈A→ R〉-P -Write(m)
GeneratedSignatures ← (id, σ)

else
id ← SimRep-P -Write(m,σ)
AdvWrites ← id

P -Output(id)

(P ∈ RH ∪ {A,E})-ReadBuffer
P -Output(〈A→ R〉-P -ReadBuffer ∪ SimRep-P -ReadBuffer)

(P ∈ RH ∪ {A,E})-ReadRegister(id)
if id ∈ AdvWrites then

(m,σ) ← SimRep-P -ReadRegister(id)
else

m← 〈A→ R〉-P -ReadRegister(id)
σ ←GeneratedSignatures(id)

P -Output(m,σ)

37

Algorithm 12 Reduction C for Lemma 1.
Initialization

RedRep-Initialization
GCons-Initialization

(P ∈ RH ∪ {A,E})-PublicParameters
P -Output(OPP)

(P ∈ RH ∪ {A,E})-SignerKeyPair(A)
P -Output(OSK(A))

(P ∈ RH ∪ {A,E})-SignerPublicKey(A)
P -Output(OSPK(A))

(P ∈ RH ∪ {A,E})-VerifierKeyPair(Bj ∈ RH)
P -Output(OV K(Bj))

(P ∈ RH ∪ {A,E})-VerifierPublicKey(Bj ∈ R)
P -Output(OV PK(Bj))

(P ∈ RH ∪ {A,E})-Write((m,σ) ∈ M× S)
P -Output(P -Write(m,σ))

(P ∈ RH ∪ {A,E})-ReadBuffer
P -Output(P -ReadBuffer)

(P ∈ RH ∪ {A,E})-ReadRegister(id)
P -Output(P -ReadRegister(id))

(Bj ∈ RH)-ReadBuffer
outputList ← ∅
for each id ∈ Bj-ReadBuffer do

(m,σ)← Bj-ReadRegister(id)

GCons-Submit(m,A,R, σ)
if OV (A,Bj ,R,m, σ) then

outputList ← id

Bj-Output(outputList)

(Bj ∈ RH)-ReadRegister(id)
(m,σ)← Bj-ReadRegister(id)
if OV (A,Bj ,R,m, σ) then

Bj-Output(m)

38

ξ occurring, which implies that the distinguishing advantage between the two
systems is bound by the probability of triggering event ξ to occur (i.e. R ≡ξ S).

We now prove R ≡ξ S. Next, we will bound the probability of ξ occurring by
the success probability of an adversary in winning the consistency game of the
underlying MDVS scheme. To argue about the indistinguishability of the random
systems, note that their behavior is as follows:

Initialization Upon a call to this method by the distinguisher D, the KGA
resource in the real world system and the simulator sim in the ideal world
system both initialize, generating the public parameters and every signer and
verifier key-pair necessary. The method has no output.

PublicParameters Upon a call to this method by the distinguisher D at
the interface of any party P ∈ RH ∪ {A,E}, the public parameters pp

for the underlying MDVS scheme generated by an invocation to Setup are
returned to D. For both systems, the public parameters and master secret
key have the same distribution, and hence the public parameters have the
same distribution.

SignerKeyPair Upon a call to this method by the distinguisher at the interface
of any party P ∈ RH∪{A,E} with input A, the signer key-pair of A is output
back to D at the same interface. Again, in this case the output distribution
is the same for both random systems.

SignerPublicKey Upon an invocation of this method by D at the interface of
any party P ∈ RH ∪ {A,E}, the public key of the signer passed as input to
the method is returned. Following from the previous case, the public keys
output in both systems have the same distribution.

VerifierKeyPair Upon a call to this method by D at the interface of a party
P ∈ RH ∪ {A,E} with input Bj ∈ RH , the verifier key-pair of Bj is output
back to D (at the same interface P). The key-pairs output have the same
distribution for both random systems.

VerifierPublicKey Upon a call by D at any party’s interface P ∈ RH ∪
{A,E}, the public key of the verifier passed as input to the method is
returned to D again through P ’s interface. Again, as a consequence of the
previous case, the public keys output by the random systems have the same
distribution.

Write First, note that Write operations can only be issued at the interfaces
of dishonest parties, as the only honest parties are the subset RH of the
designated receivers R. Upon a call to this method by D at the interface of
party P ∈ RH ∪ {A,E} with input (m,σ) ∈M×S, the id of a new register
is returned through P ’s interface back to D. It is assumed that this id is
unique among all repositories, and that the distribution of identifiers is the
same for any repository. Thus, the output distribution is the same for both
random systems upon any call to this method by D. Regarding the internal
effects of such invocations, in the ideal world system if σ is a valid signature
on m with respect to sender A and designated receivers R, then m is written
into the ideal repository (〈A→ R〉) and σ is associated this write by being
stored in the GeneratedSignatures mapping of the converter; if σ is not a

39

valid signature on m with respect to sender A and designated receivers R,
then (m,σ) is stored in the internal repository SimRep of the converter.

ReadBuffer for honest party Upon a call to this method by D through the
interface of any party P ∈ RH , a list of register identifiers, where the list
contains only the identifiers of registers which were authentically written
into the ideal repository 〈A→ R〉, is returned. First, note that assuming
event ξ does not occur, the number of register identifiers in the list returned
back to D as the result of the call in the real world is the same regardless of
which party P ∈ RH ’s interface D made the invocation through. Upon an
invocation to the ideal world system, the list returned back to D is always the
same, regardless of which party P ∈ RH ’s interface D made the invocation
through. Second, given that the identifiers of the registers are identically
distributed in the real and ideal world systems, the lists returned back to the
distinguisher have the same distributions in both the real and ideal world
systems.

ReadBuffer for dishonest party When D invokes this method through any
party P ’s interface (P ∈ RH ∪ {A,E}), a list of (all) register identifiers is
returned. Since the distribution of register identifiers is the same for the
repository as a whole in both the real and ideal worlds, then the distribution
of the output which is sent back to D is the same.

ReadRegister for honest party When D invokes this method through any
honest party P ’s interface (P ∈ RH) giving as input the identifier of a register
id, the message m stored in the register with the given id is returned. The
conditional distribution of the output messages m given the input identifier
id and the previous inputs and outputs to the system is the same in both the
real and the ideal world systems under the assumption that the ReadBuffer
output is also indistinguishable, which in turn boils down to the assumption
that ξ does not occur.

ReadRegister for dishonest party Finally, when a dishonest party invokes
this method giving as input some register id, a pair (m,σ) is returned back
to the caller. It is easy to see that the conditional distribution of the output
is the same in both the real and the ideal world systems.

To prove the construction statement, we now bound the probability that
event ξ occurs. The reduction system C specified in Algorithm 12 has an internal
repository RedRep, and emulates the real world R when given oracle access
to the consistency game GCons. During the emulation, C tries to win the game
by submitting message-signature pairs input by D through dishonest parties
interfaces as challenges to the game. It is easy to see from C’s specification (Algo-
rithm 12) that the behaviors of R and of CGCons are perfectly indistinguishable,
and the probability that ξ occurs is upper bounded by the probability that the
adversary DC wins GCons (as all the conditions for winning the game are met).
Thus,

PrDR[ξ] = PrDCGCons

[ξ] ≤ AdvCons(DC).

40

Finally, since event ξ cannot occur in the ideal world by definition, PrDS[ξ] = 0.
Thus, for any distinguisher D,∣∣∣∆D(R,S)

∣∣∣ ≤ PrDR[ξ] ≤ AdvCons(DC).

ut

A.2 Proof of Theorem 2

Theorem 2 follows from Lemma 2 ahead, which we now prove.

Lemma 2. For PH = {A} ∪ RH , there is an explicit reduction system C′, a
reduction system C (see Algorithm 14) and a simulator sim (see Algorithm 13)
are such that for any distinguisher D:∣∣∣∣∣∆D

(
SndARcvR

H

[KGA, INS], simR
H∪{E}

[
RH∪{E}〈A→ R〉{A}R∪{E}

])∣∣∣∣∣
≤ AdvUnforg(DC) + AdvCorr(DC′)

Proof. Simulator sim, specified in Algorithm 13, has an internal repository
SimRep to which each party P ∈ RH ∪ {E} can both read and write (i.e.

SimRep := SimRep
RH∪{E}
RH∪{E}

), stores a mapping GeneratedSignatures from reg-

ister ids to signatures and also stores a set AdvWrites of ids of registers generated
by adversarial writes.

Let R denote the real world system, i.e.

R := SndARcvR
H

[KGA, INS],

and S denote the ideal world system, i.e.

S := simR
H∪{E}

[
RH∪{E}〈A→ R〉{A}R∪{E}

]
.

Next we will show that systems R and S always behave indistinguishably,
unless a distinguisher D

1. performs a Write operation with input (m∗, σ∗) at one of the adversarial

interfaces RH , E returning an identifier id such that (a) D did not previously
issue a Write operation at the A interface with input m∗, and (b) there is
a later ReadBuffer invocation at the interface of some (honest) receiver
Bj ∈ RH in which the register’s identifier id is returned;

2. performs a Write operation with input m∗ at interface A returning an
identifier id such that there is a later ReadBuffer invocation on the
repository at the interface of some (honest receiver) Bj ∈ RH and id is not
in the list returned by the invocation. 27

27 Note that this event can only occur when D is interacting with the real world system
R.

41

Algorithm 13 Simulator sim for Lemma 2. The simulator is attached to the
interfaces of parties in RH ∪ {E}. Security parameter k ∈ N is implicitly defined.

Initialization
SimRep-Initialization
GeneratedSignatures ← ∅
AdvWrites ← ∅
(pp, msk)← Π.Setup(1k)
(spk, ssk)← Π.GS(pp, msk)
for each Bi ∈ R do

(vpki, vski)← Π.GV (pp, msk)

(P ∈ RH ∪ {E})-PublicParameters
P -Output(pp)

(P ∈ RH ∪ {E})-SignerPublicKey(A)
P -Output(spk)

(P ∈ RH ∪ {E})-VerifierKeyPair(Bj ∈ RH)
P -Output(vpkj , vskj)

(P ∈ RH ∪ {E})-VerifierPublicKey(Bj ∈ R)
P -Output(vpkj)

(P ∈ RH ∪ {E})-Write((m,σ) ∈ M× S)
validSig ← false
for each Bj ∈ RH do

if Π.Vfy(pp, spk, vskj , {vpki}Bi∈R,m, σ) then
validSig ← true

if validSig then
copied ← false
for each id′ ∈ 〈A→ R〉-P -ReadBuffer do

if m = 〈A→ R〉-P -ReadRegister(id′) ∧ ¬ copied then
id ← 〈A→ R〉-P -CopyRegister(id′)
GeneratedSignatures ← (id, σ)
copied ← true

else
id ← SimRep-P -Write(m,σ)
AdvWrites ← id

P -Output(id)

(P ∈ RH ∪ {E})-ReadBuffer
P -Output(SimRep-P -ReadBuffer ∪ 〈A→ R〉-P -ReadBuffer)

(P ∈ RH ∪ {E})-ReadRegister(id)
if id ∈ AdvWrites then

(m,σ)← SimRep-P -ReadRegister(id)
else

m← 〈A→ R〉-P -ReadRegister(id)
if id 6∈ GeneratedSignatures then

GeneratedSignatures ← (id, Π.Sign(pp, ssk, {vpki}Bi∈R,m))

σ ←GeneratedSignatures(id)

P -Output(m,σ)

42

Algorithm 14 Reduction C for Lemma 2.
Initialization

RedRep-Initialization
GUnforg-Initialization

(P ∈ RH ∪ {E})-PublicParameters
P -Output(OPP)

(P ∈ RH ∪ {E})-SignerPublicKey(A)
P -Output(OSPK(A))

(P ∈ RH ∪ {E})-VerifierKeyPair
P -Output(OV K(Bj))

(P ∈ RH ∪ {E})-VerifierPublicKey(Bj ∈ R)
P -Output(OV PK(Bj))

(P ∈ RH ∪ {E})-Write((m,σ) ∈ M× S)
P -Output(P -Write(m,σ))

(P ∈ RH ∪ {E})-ReadBuffer
P -Output(P -ReadBuffer)

(P ∈ RH ∪ {E})-ReadRegister(id)
P -Output(P -ReadRegister(id))

A-Write(m ∈ M)
A-Output(A-Write(m,OS(A,R,m)))

(Bj ∈ RH)-ReadBuffer
outputList ← ∅
for each id ∈ Bj-ReadBuffer do

(m,σ)← Bj-ReadRegister(id)

GUnforg-Submit(m,A,R, σ)
if OV (A,Bj ,R,m, σ) then

outputList ← id

Bj-Output(outputList)

(Bj ∈ RH)-ReadRegister(id)
(m,σ)← Bj-ReadRegister(id)
if OV (A,Bj ,R,m, σ) then

Bj-Output(m)

43

Let us denote the first event by ξ1, the second by ξ2, and the event that at least
one of ξ1 or ξ2 occurs by ξ. This means that the random systems R and S are
indistinguishable up to event ξ occurring, which implies that the distinguishing
advantage between the two systems is bounded by the probability of triggering
event ξ, i.e. R ≡ξ S. Noting that PrDS[ξ1] = PrDS[ξ2] = 0, it follows PrDS[ξ] = 0.

We now show that R and S are conditionally indistinguishable up to event
ξ occurring, meaning that if ξ does not occur, then the systems are perfectly
indistinguishable. Next, we will prove that the probability of ξ occurring is
bounded by the sum of the success probability of an adversary in winning the
unforgeability game together with the probability that a fresh signature does
not verify correctly. To argue about the indistinguishability of the real and ideal
world random systems, note that their behavior is as follows:

Initialization Upon a call to this method by the distinguisher D, the KGA
resource in the real world system and the simulator sim in the ideal world
system both initialize, generating the public parameters and every signer and
verifier key-pair necessary. The method has no output.

PublicParameters Upon a call to this method by the distinguisher D at the
interface of any party P ∈ RH ∪ {E}, the public parameters pp for the
underlying MDVS scheme generated by an invocation to Setup are returned
to D. For both systems, the public parameters and master secret key have the
same distribution, and hence an invocation of this procedure has the same
behavior for both the real and the ideal world (with the simulator attached).

SignerPublicKey Upon an invocation of this method by D at the interface
of any party P ∈ RH ∪ {E}, the public key of the signer passed as input to
the method is returned. Again, in this case the output distribution is the
same for both random systems, as the signer’s key-pair is honestly generated
in both cases. Thus, the public keys output in both systems have the same
distribution.

VerifierKeyPair Upon a call to this method by D at the interface of a
dishonest party P ∈ RH ∪ {E} with input Bj ∈ RH , the verifier key-pair of
Bj is output back to D (at the same interface P). The key-pairs output have
the same distribution for both random systems.

VerifierPublicKey Upon a call by D at any party’s interface P ∈ RH ∪ {E},
the public key of the verifier passed as input to the method is returned to D
again through P ’s interface. Again, as a consequence of the previous case, the
verifier public keys output by the random systems have the same distribution.

Write When D issues a Write operation at the interface of the sender A, then
the id of a new register is output back to D at the same interface. If D
issues a Write operation at the interface of a dishonest party P ∈ RH ∪{E}
with input (m,σ) ∈M×S, the id of a new register is returned through P ’s
interface back to D. It is assumed that this id is unique among all repositories,
and that the distribution of identifiers is the same for any repository. Thus,
the output distribution is the same for both random systems upon any call
to this method by D. Regarding the internal effects of such invocations, in
the ideal world system if σ is a valid signature on m with respect to sender

44

A, set of designated receivers R and any verifier secret key vskj of an honest
receiver Bj ∈ RH , and in addition there is a register in the ideal world
repository containing message m′ = m, then the register is copied and σ is
associated with this new (copied) register’s id. If σ is not a valid signature,
then a new register is created at the internal (insecure) repository of the
simulator. Finally, in the real world, a new register is created in the insecure
repository.

ReadBuffer for honest party Upon a call to this method by D through the
interface of any party P ∈ RH , a list of register identifiers containing only the
identifiers of registers which were authentically written into the repository is
returned. First, note that assuming event ξ does not occur, the number of
register identifiers in the list returned back to D as the result of the call in
the real world is the same regardless of which party P ∈ RH ’s interface D
made the invocation through. Upon an invocation to the ideal world system,
the list returned back to D is always the same, regardless of which party
P ∈ RH ’s interface D made the invocation through. Second, given that the
identifiers of the registers are identically distributed in the real and ideal
world systems, the lists returned back to the distinguisher have the same
distributions in both the real and ideal world systems.

ReadBuffer for dishonest party When D invokes this method through any
party P ∈ RH ∪ {E}’s interface, a list of (all) register identifiers is returned.
Since the distribution of register identifiers is the same for the repository as
a whole in both the real and ideal worlds, then the distribution of the output
which is sent back to D is the same.

ReadRegister for honest party When D invokes this method through any
honest party P ∈ RH ’s interface giving as input the identifier of a register
id, the message m stored in the register with the given id is returned. The
conditional distribution of the output messages m given the input identifier
id and the previous inputs and outputs to the system is the same in both the
real and the ideal world systems under the assumption that the ReadBuffer
output is also indistinguishable, which in turn boils down to the assumption
that ξ does not occur.

ReadRegister for dishonest party Finally, when a dishonest party invokes
this method giving as input some register id, a pair (m,σ) is returned back
to the caller. It is easy to see that the conditional distribution of the output
is the same in both the real and the ideal world systems.

To prove the construction statement, we now bound the probability that
event ξ occurs. By definition of ξ, it suffices to bound the probability that at
least one of ξ1 or ξ2 occurs.

ξ1 occurs Reduction system C (specified in Algorithm 14) satisfies R ≡ CGUnforg

and is such that the probability for ξ1 to occur is upper bounded by the
probability that DC wins the unforgeability game for the underlying MDVS
scheme, i.e.

PrDR[ξ1] = PrDCGUnforg

[ξ1] ≤ AdvUnforg(DC);

45

ξ2 occurs The probability that ξ2 occurs is bounded by the probability that
the underlying MDVS scheme does not work correctly. It is easy to see that
there is an explicit reduction system C′ satisfying R ≡ C′GCorr such that
for any distinguisher D the probability that ξ2 occurs is upper bounded by
the probability that DC′ wins the correctness game, i.e.

PrDR[ξ2] = PrDC′GCorr

[ξ2] ≤ AdvCorr(DC′).

The reduction system C (specified in Algorithm 14) has an internal repository
RedRep which it uses to store message-signature pairs and a set HonestWrites
which it uses to keep track of all messages written into A’s interface. During
the emulation C tries to win the game by submitting message-signature pairs
input by D through dishonest parties interfaces as challenges to the game. It
is easy to see that the behaviors of R and of CGUnforg are indeed perfectly
indistinguishable, and that the probability that ξ1 occurs is upper bounded by
the probability that the DC wins the game, as all the required winning conditions
are met. Since, as already mentioned, PrDS[ξ] = 0, it follows∣∣∆D(R,S)

∣∣ ≤ PrDR[ξ]

≤ PrDR[ξ1] + PrDR[ξ2]

≤ AdvUnforg(DC) + AdvCorr(DC′).

ut

A.3 Proof of Theorem 3

To prove Theorem 3, we prove the following result.

Lemma 3. For PH = {A} ∪ RH and for any signature forgery algorithm Forge
suitable for the Off-The-Record security notion (see Definition 5), there is a
protocol πForge (see Algorithm 6) such that reduction system C (see Algorithm 16)
and simulator sim (see Algorithm 15) satisfy, for any distinguisher D:∣∣∣∣∆D

(
⊥R

H

(πForge)R
H
(
SndARcvR

H

[KGA, INS]
)
, sim{E}

[
〈A→ R〉R

H∪{A}
{E}

])∣∣∣∣
= AdvOTR-Forge(DC).

Proof. As specified in Algorithm 6, when a party Bj ∈ RH invokes method
Write to πForge giving as input a message m ∈M, πForge first fetches the public
parameters, the public key of the signer and of each of the designated verifiers,
and the secret keys of each of the dishonest verifiers, and then uses these to
simulate a signature σ on m. Finally, the converter writes the pair (m,σ) into
the insecure repository.

Simulator sim (specified in Algorithm 15) initially generates the necessary
keys and public parameters. Additionally, sim contains an internal repository

46

Algorithm 15 Simulator sim for Lemma 3. The simulator, which is attached
to the interface of E, uses an algorithm Forge to forge signatures. Again, in the
following k ∈ N is the (implicitly defined) security parameter.

Initialization
SimRep-Initialization
GeneratedSignatures ← ∅
AdvWrites ← ∅
(pp, msk)← Π.Setup(1k)
(spk, ssk)← Π.GS(pp, msk)
for each Bi ∈ R do

(vpki, vski)← Π.GV (pp, msk)

E-PublicParameters
E-Output(pp)

E-SignerPublicKey(A)
E-Output(spk)

E-VerifierKeyPair(Bj ∈ RH)
E-Output(vpkj , vskj)

E-VerifierPublicKey(Bi ∈ R)
E-Output(vpki)

E-Write((m,σ) ∈ M× S)
id ← SimRep-E-Write(m,σ)
AdvWrites ← id
E-Output(id)

E-ReadBuffer
E-Output(SimRep-E-ReadBuffer ∪ 〈A→ R〉-E-ReadBuffer)

E-ReadRegister(id)
if id ∈ AdvWrites then

(m,σ)← SimRep-E-ReadRegister(id)
else

m← 〈A→ R〉-E-ReadRegister(id)
if id 6∈ GeneratedSignatures then

if RH = ∅ then
GeneratedSignatures ← (id, Π.Sign(pp, ssk, {vpki}Bi∈R,m))

else
GeneratedSignatures ← (id,Forge(pp, spk, {vpkl}Bl∈R, {vskc}Bc∈RH ,m))

σ ← GeneratedSignatures(id)

E-Output(m,σ)

47

Algorithm 16 Reduction C for Lemma 3. The reduction system internally
interacts with an instance of a game system GOTR-Forge

b , for any b ∈ {0, 1}.
Initialization

RedRep-Initialization

GOTR-Forge
b -Initialization

E-PublicParameters
E-Output(OPP)

E-SignerPublicKey(A)
E-Output(OSPK(A))

E-VerifierKeyPair(Bj ∈ RH)
E-Output(OV K(Bj))

E-VerifierPublicKey(Bj ∈ R)
E-Output(OV PK(Bj))

E-Write((m,σ) ∈ M× S)
E-Output(E-Write(m,σ))

E-ReadBuffer
E-Output(E-ReadBuffer)

E-ReadRegister(id)
E-Output(E-ReadRegister(id))

A-Write(〈A→ R〉, m ∈ M)

A-Output(A-Write(m,OChallengeSign(sign,m,A,R,RH)))

(Bj ∈ RH)-Write(m ∈ M) . This interface does not exist when RH = ∅.
Bj-Output(Bj-Write(m,OChallengeSign(forge,m,A,R,RH)))

48

SimRep := SimRep
{E}
{E} to which E can both read and write. The simulator

also stores a mapping GeneratedSignatures from register ids to signatures, and a
set AdvWrites of ids of registers generated by adversarial writes.

Let R denote the real world system, i.e.

R := ⊥R
H(
πForge

)RH(
SndARcvR

H

[KGA, INS]
)
,

and S denote the ideal world system, i.e.

S := sim{E}
[
〈A→ R〉R

H∪{A}
{E}

]
.

Reduction system C, specified in Algorithm 16, has an internal repository
RedRep that it uses to store message signature pairs. The reduction C es-
sentially relies on the oracles provided by the game systems to emulate the
KGA resource and uses the OChallengeSign oracle to get signatures on messages

that are inserted at the interfaces of A and of any dishonest receiver RH . More
concretely, if a message is input at A, C queries OChallengeSign with sign, as the
message was input by the honest party A; if a message is input at the interface
of party in RH , then the reduction queries OChallengeSign with forge, as the

message was input by a dishonest party in RH . It is easy to see that, regardless
of whether RH = ∅, C perfectly emulates the real world R when connected to
the game system GOTR-Forge

0 (i.e. R ≡ CGOTR-Forge
0) and the ideal world S when

connected to GOTR-Forge
1 (i.e. S ≡ CGOTR-Forge

1). Thus, for any distinguisher D,

|∆D(R,S)| = |Pr[DS = 1]− Pr[DR = 1]|
= |Pr[DS = 1] + Pr[DR = 0]− 1|

=
∣∣∣Pr[DCGOTR-Forge

1 = win]

+ Pr[DCGOTR-Forge
0 = win]− 1

∣∣∣
= AdvOTR-Forge(DC).

ut

A.4 Proof of Theorem 4

Theorem 4 follows from Lemma 4, which we now prove.

Lemma 4. Consider a setting where RH , RH , SH and SH are all non-empty.
There is an explicit reduction system C′, a simulator sim (defined in Algorithm 17)
and reduction systems C (see Algorithm 18), CCons (see Algorithm 19) and

49

CUnforg (see Algorithm 20) satisfying, for any distinguisher D∣∣∣∣∣∆D

(
SndArbS

H

RcvArbR
H

[KGA, INS],

simP
H

[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

)∣∣∣∣∣
≤ AdvCons(DCCCons) + AdvUnforg(DCCUnforg) + AdvCorr(DC′).

Proof. Simulator sim, specified in Algorithm 17, initially generates the necessary
keys and public parameters. Additionally, sim contains an internal repository
SimRep to which each party P ∈ PH can read and write (i.e. SimRep :=

SimRepP
H

PH). More, the simulator also has a mapping GeneratedSignatures from
register ids to quadruples message-signature-sender-receivers and a set AdvWrites
of ids of registers generated by adversarial writes.

Let R denote the real world system

R := SndArbS
H

RcvArbR
H

[KGA, INS],

S′ denote the ideal repository

S′ :=

[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

 , (A.1)

and S denote the ideal world system

S := simP
H

S′.

Consider the following events:

ξ1 D performs a Write operation with input (m∗, σ∗, (Ai
∗,V∗)), where Ai

∗ ∈
SH , at one of the adversarial interfaces PH , returning an identifier id, such
that there are two later ReadBuffer invocations at interfaces Bh and Bh′

(where Bh, Bh′ ∈ VH) such that one of them returns a list containing an
entry of the form (id, ·) and the other returns a list not containing any such
entry;

ξ2 D performs a Write operation with input (m∗, σ∗, (Ai
∗,V∗)), where Ai

∗ ∈
SH at one of the adversarial interfaces PH , returning an identifier id, such
that 1. D did not previously issue a Write operation at the interface of party
Ai
∗ ∈ SH for 〈Ai∗ → V∗〉 with input m∗, and 2. there is a later ReadBuffer

invocation at the interface of some (honest) receiver Bj ∈ VH
∗

for 〈Ai∗ → V∗〉
in which a list containing an entry of the form (id, ·) is returned;

50

Algorithm 17 Simulator sim for Lemma 4. The simulator is attached to the
interfaces of the parties in PH . In the following, k ∈ N is the (implicitly defined)
security parameter, S′ is as defined in Eq. (A.1), and 2S denotes the powerset of
some set S.

Initialization
SimRep-Initialization
GeneratedSignatures ← ∅
AdvWrites ← ∅
(pp, msk)← Π.Setup(1k)
for each Ai ∈ S do

(spki, sski)← Π.GS(pp, msk)

for each Bj ∈ R do
(vpkj , vskj)← Π.GV (pp, msk)

(P ∈ PH)-PublicParameters
P -Output(pp)

(P ∈ PH)-SignerKeyPair(Ai ∈ SH)
P -Output(spki, sski)

(P ∈ PH)-SignerPublicKey(Ai ∈ S)
P -Output(spki)

(P ∈ PH)-VerifierKeyPair(Bj ∈ RH)
P -Output(vpkj , vskj)

(P ∈ PH)-VerifierPublicKey(Bj ∈ R)
P -Output(vpkj)

(P ∈ PH)-Write((m,σ, (Ai,V)) ∈ M× S × (S × 2R))
id← null
for each Bj ∈ VH do

if id = null ∧ Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m, σ) then

if Ai ∈ SH then
for each (id′, 〈Ax → V′〉) ∈ S′-P -ReadBuffer do

m′ ← S′-P -ReadRegister(id′)
if m = m′ ∧ Ai = Ax ∧ V = V′ then

id ← S′-P -Copy(id′)

else
id← S′-P -Write(〈Ai → V〉,m)

if id 6= null then
GeneratedSignatures ← (id, (m,σ, (Ai,V)))

else
id ← SimRep-P -Write(m,σ, (Ai,V))
AdvWrites ← id

P -Output(id)

(P ∈ PH)-ReadBuffer
outputList ← ∅
for each (id, ·) ∈ SimRep-P -ReadBuffer ∪ S′-P -ReadBuffer do

outputList ← (id, INS)

P -Output(outputList)

(P ∈ PH)-ReadRegister(id)
if id ∈ AdvWrites then

(m,σ, (Ai,V)) ← SimRep-P -ReadRegister(id)
else

if ∃〈Ai → V〉: (id,〈Ai → V〉) ∈ S′-P -ReadBuffer then
m← S′-P -ReadRegister(id)
if id 6∈ GeneratedSignatures then

σ ← Π.Sign(pp, sski, {vpkj}Bj∈V ,m)

GeneratedSignatures ← (id,(m,σ, (Ai,V)))

(m,σ, (Ai,V))←GeneratedSignatures(id)

P -Output(m,σ, (Ai,V))

51

Algorithm 18 Reduction C for Lemma 4. The reduction system connects
internally to yet another reduction system CX which emulates game system for
security notion X while given access to another game system (where X is either
Cons for Consistency, or Unforg for Unforgeability). For set S, the powerset of S
is denoted 2S .

Initialization
RedRep-Initialization
CX -Initialization

(P ∈ PH)-PublicParameters
P -Output(OPP)

(P ∈ PH)-SignerKeyPair(Ai ∈ SH)
P -Output(OSK(Ai))

(P ∈ PH)-SignerPublicKey(Ai ∈ S)
P -Output(OSPK(Ai))

(P ∈ PH)-VerifierKeyPair(Bj ∈ RH)
P -Output(OV K(Bj))

(P ∈ PH)-VerifierPublicKey(Bj ∈ R)
P -Output(OV PK(Bj))

(P ∈ PH)-Write((m,σ, (Ai,V)) ∈ M× S × (S × 2R))
P -Output(P -Write(m,σ, (Ai,V)))

(P ∈ PH)-ReadRegister(id)
P -Output(P -ReadRegister(id))

(P ∈ PH)-ReadBuffer
P -Output(P -ReadBuffer)

(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)
Ai-Output(Ai-Write(m,OS(Ai,V,m), (Ai,V)))

(Bj ∈ RH)-ReadBuffer
outputList ← ∅
for each (id, ·) ∈ Bj-ReadBuffer do

(m,σ, (Ai,V))← Bj-ReadRegister(id)
if Bj ∈ V then

GUnforg-Submit(m,Ai,V, σ)

GCons-Submit(m,Ai,V, σ)
if OV (Ai, Bj ,V,m, σ) then

outputList ←(id, 〈Ai → V〉)
Bj-Output(outputList)

(Bj ∈ RH)-ReadRegister(id)
(m,σ, (Ai,V))← Bj-ReadRegister(id)
if Bj ∈ V ∧ OV (Ai, Bj ,V,m, σ) then

Bj-Output(m)

52

Algorithm 19 Reduction CCons for Lemma 4. The reduction implicitly gives
access to the game oracles provided by GCons. CCons further (implicitly) emulates
the oracles that GUnforg would give to an adversary. The reduction system then
gives the adversary access to oracles OPP , OSK , OSPK , OV K and OV PK .

Initialization
GCons-Initialization

OS(Ai ∈ S, V ⊆ R, m ∈ M)
pp← OPP

for each Bl ∈ V do
vpkl ← OV PK(Bl)

sski ← OSK(Ai)
σ ← Π.Sign(pp, sski, {vpkl}Bl∈V ,m)
return σ

GUnforg-Submit(m ∈ M, Ai ∈ S, V ⊆ R, σ ∈ S)
No-Operation

Algorithm 20 Reduction CUnforg for Lemma 4.
Initialization

GUnforg-Initialization

OV (Ai ∈ S, Bj ∈ R, V ⊆ R, m ∈ M, σ ∈ S)
pp← OPP

spki ← OSPK(Ai)
vskj ← OV K(Bj)
for each Bl ∈ V do

vpkl ← OV PK(Bl)

σ ← Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m)
return σ

GCons-Submit(m ∈ M, Ai ∈ S, V ⊆ R, σ ∈ S)
No-Operation

53

ξ3 D performs a Write operation at the interface of party Ai ∈ SH giving
as input label 〈Ai∗ → V∗〉 and some message m, and the operation returns
an identifier id such that there is a later ReadBuffer invocation at the
interface of some (honest) receiver Bj ∈ VH

∗
in which there is no entry of

the form (id, ·) in the list returned by the invocation.

It is easy to see, from an argument along the lines of the ones in Lemma 1 and
in Lemma 2, that R ≡ξ S, for ξ = ξ1 ∨ ξ2 ∨ ξ3. Furthermore, note that the three
events defined above, ξ1, ξ2, and ξ3, can only occur when D is interacting with
the real world system R, meaning that PrDS[ξ] = 0. With this, we now bound
the probability for ξ to occur.

Consider the reduction systems C (see Algorithm 18), CCons (see Algo-
rithm 19) and CUnforg (see Algorithm 20). First, note that CConsG

Cons ≡
CUnforgG

Unforg. Furthermore, analogously to Lemma 2 and to Lemma 1, it
is easy to see, on one hand, that R ≡ CCConsG

Cons ≡ CCUnforgGUnforg, and on
the other hand that

ξ1 the probability for ξ1 to occur is bounded by the probability that adversary
DCCCons wins GCons (as all the conditions for winning the consistency game
are met), implying

PrDR[ξ1] = PrDCCConsG
Cons

[ξ1] ≤ AdvCons(DCCCons);

ξ2 the probability that ξ2 occurs is bounded by advantage of adversary DCCUnforg

in winning GUnforg (as all the winning conditions for the unforgeability game
are met), implying

PrDR[ξ2] = PrDCCUnforgG
Unforg

[ξ2] ≤ AdvUnforg(DCCUnforg);

ξ3 there is an explicit reduction system C′ satisfying R ≡ C′GCorr and for which
the probability for ξ3 to occur is bounded by the probability that adversary
DC′ wins GCorr (as all the conditions for winning the correctness game are
met), implying

PrDR[ξ3] = PrDC′GCorr

[ξ3] ≤ AdvCorr(DC′).

Since, as already mentioned, PrDS[ξ] = 0, we then have∣∣∆D(R,S)
∣∣ ≤ PrDR[ξ]

≤ PrDR[ξ1] + PrDR[ξ2] + PrDR[ξ2]

≤ AdvCons(DCCCons) + AdvUnforg(DCCUnforg) + AdvCorr(DC′).

ut

A.5 Proof of Theorem 5

To prove Theorem 5, we prove the following result.

54

Lemma 5. Consider a setting where RH , RH , SH and SH are all non-empty.
For any signature forgery algorithm Forge suitable for the Off-The-Record security
notion (see Definition 5), there is a protocol πForge (see Algorithm 10) such that
reduction systems C (see Algorithm 22) and C′ (see Algorithm 23) and simulator
sim (see Algorithm 21) satisfy, for any distinguisher D∣∣∣∣∣∆D

(
(πForge)S

H∪RH
(⊥Arb)R

H
(
SndArbS

H

RcvArbR
H

{[KGA, INS]}
)
,

sim{E}

[
〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R

)∣∣∣∣∣
≤ AdvOTR-Forge(DC) + AdvCons(DC′).

Proof. As specified in Algorithm 10, when a party P ∈ SH ∪RH invokes method
Write to πForge giving as input a label 〈Ai → V〉 and a message m ∈M, πForge

first fetches the public parameters, the public keys of the signer Ai and of each
of the designated verifiers in V, and the secret keys of each of the dishonest
verifiers (if any), and then uses these to simulate a signature σ on m. Finally,
the converter writes (m,σ, (Ai,V)) into the insecure repository.

Simulator sim (specified in Algorithm 21) initially generates the necessary
keys and public parameters. Additionally, sim contains an internal repository

SimRep := SimRep
{E}
{E} to which E has both read and write access. More,

the simulator also stores a mapping GeneratedSignatures from register ids to
signatures, and a set AdvWrites of ids of registers generated by adversarial writes.

Let R denote the real world system

R := (πForge)S
H∪RH

(⊥Arb)R
H
(
SndArbS

H

RcvArbR
H

{[KGA, INS]}
)
,

S′ denote the ideal repository

S′ :=

[
〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R

 , (A.2)

and S denote the ideal world system

S := sim{E}S′.

Let ξ denote the event that D issues a Write operation at the interface of
E with input (m∗, σ∗, (Ai

∗,V∗)), where Ai
∗ ∈ SH , returning an identifier id,

such that there are two later ReadBuffer invocations at interfaces Bh and Bh′
(where Bh, Bh′ ∈ VH) with one of them returning a list containing an entry of
the form (id, ·) and the other returning a list not containing any such entry. It is
easy to see that PrDS[ξ] = 0.

55

Algorithm 21 Simulator sim for Lemma 5. The simulator is attached to the
interface of E. Again, in the following k ∈ N is the (implicitly defined) security
parameter, S′ is as defined in Eq. (A.2), and 2S denotes the powerset of some set
S.

Initialization
SimRep-Initialization
GeneratedSignatures ← ∅
AdvWrites ← ∅
(pp, msk)← Π.Setup(1k)
for each Ai ∈ S do

(spki, sski)← Π.GS(pp, msk)

for each Bj ∈ R do
(vpkj , vskj)← Π.GV (pp, msk)

E-PublicParameters
E-Output(pp)

E-SignerKeyPair(Ai ∈ SH)
E-Output(spki, sski)

E-SignerPublicKey(Ai ∈ S)
E-Output(spki)

E-VerifierKeyPair(Bj ∈ RH)
E-Output(vpkj , vskj)

E-VerifierPublicKey(Bj ∈ R)
E-Output(vpkj)

E-Write((m,σ, (Ai,V)) ∈ M× S × (S × 2R))
id← null
for each Bj ∈ VH do

if id = null ∧ Ai ∈ SH ∧ Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m, σ) then

id← S′-E-Write(〈Ai → V〉,m)

if id 6= null then
GeneratedSignatures ← (id, (m,σ, (Ai,V)))

else
id ← SimRep-E-Write(m,σ, (Ai,V))
AdvWrites ← id

P -Output(id)

E-ReadBuffer
outputList ← ∅
for each (id, ·) ∈ SimRep-E-ReadBuffer ∪ S′-E-ReadBuffer do

outputList ← (id, INS)

E-Output(outputList)

E-ReadRegister(id)
if id ∈ AdvWrites then

(m,σ, (Ai,V)) ← SimRep-E-ReadRegister(id)
else

if ∃〈Ai → V〉: (id,〈Ai → V〉) ∈ S′-E-ReadBuffer then
if id 6∈ GeneratedSignatures then

m← S′-E-ReadRegister(id)
σ ← Forge(pp, spki, {vpkl}Bl∈V , {vskc}Bc∈VH ,m)

GeneratedSignatures ← (id,(m,σ, (Ai,V)))

(m,σ, (Ai,V))←GeneratedSignatures(id)

E-Output(m,σ, (Ai,V))

56

Algorithm 22 Reduction C for Lemma 5. The reduction system internally
interacts with an instance of a game system GOTR-Forge

b , for any b ∈ {0, 1}.
Initialization

RedRep-Initialization

GOTR-Forge
b -Initialization

E-PublicParameters
E-Output(OPP)

E-SignerKeyPair(Ai ∈ SH)
E-Output(OSK(Ai))

E-SignerPublicKey(Ai ∈ S)
E-Output(OSPK(Ai))

E-VerifierKeyPair(Bj ∈ RH)
E-Output(OV K(Bj))

E-VerifierPublicKey(Bj ∈ R)
E-Output(OV PK(Bj))

E-Write((m,σ, (Ai,V)) ∈ M× S × (S × 2R))
E-Output(E-Write(m,σ, (Ai,V)))

E-ReadBuffer
E-Output(E-ReadBuffer)

E-ReadRegister(id)
E-Output(E-ReadRegister(id))

(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)

Ai-Output(Ai-Write(m,OChallengeSign(sign,m,Ai,V,VH), (Ai,V)))

(P ∈ SH ∪RH)-Write(〈Ai → V〉, m ∈ M)

P -Output(P -Write(m,OChallengeSign(forge,m,Ai,V,VH), (Ai,V)))

(Bj ∈ RH)-ReadBuffer . Emulates the ⊥Arb converter.
outputList ← Bj-GetValidIds
validIds← ∅
for each (id, 〈Ai → V〉) ∈ Bj-ReadBuffer do

if Ai ∈ SH then
validIds← (id, 〈Ai → V〉)

Bj-Output(validIds)

(Bj ∈ RH)-ReadRegister(id)
if id ∈ Bj-GetValidIds then . Double verification to emulate ⊥Arb perfectly.

(m,σ, (Ai,V))← Bj-ReadRegister(id)
if OV (Ai, Bj ,V,m, σ) then

Bj-Output(m)

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interfaces.
outputList ← ∅
for each (id, ·) ∈ Bj-ReadBuffer do

(m,σ, (Ai,V))← Bj-ReadRegister(id)
if Bj ∈ V then

if OV (Ai, Bj ,V,m, σ) then
outputList ←(id, 〈Ai → V〉)

return outputList

57

Algorithm 23 Reduction C′ for Lemma 5. The reduction system internally
interacts with an instance of a game system GCons.

Initialization
RedRep-Initialization
GCons-Initialization

E-PublicParameters
E-Output(OPP)

E-SignerKeyPair(Ai ∈ SH)
E-Output(OSK(Ai))

E-SignerPublicKey(Ai ∈ S)
E-Output(OSPK(Ai))

E-VerifierKeyPair(Bj ∈ RH)
E-Output(OV K(Bj))

E-VerifierPublicKey(Bj ∈ R)
E-Output(OV PK(Bj))

E-Write((m,σ, (Ai,V)) ∈ M× S × (S × 2R))
E-Output(E-Write(m,σ, (Ai,V)))

E-ReadBuffer
E-Output(E-ReadBuffer)

E-ReadRegister(id)
E-Output(E-ReadRegister(id))

(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)
Ai-Output(Ai-Write(m,Forge(Ai,V,m), (Ai,V)))

(P ∈ SH ∪RH)-Write(〈Ai → V〉, m ∈ M)
P -Output(P -Write(m,Forge(Ai,V,m), (Ai,V)))

(Bj ∈ RH)-ReadBuffer
outputList ← ∅
for each (id, ·) ∈ Bj-ReadBuffer do

(m,σ, (Ai,V))← Bj-ReadRegister(id)

GCons-Submit(m,Ai,V, σ)

if Bj ∈ V ∧ Ai ∈ SH then
if OV (Ai, Bj ,V,m, σ) then

outputList ←(id, 〈Ai → V〉)
Bj-Output(outputList)

(Bj ∈ RH)-ReadRegister(id)
(m,σ, (Ai,V))← Bj-ReadRegister(id)

GCons-Submit(m,Ai,V, σ)

if Bj ∈ V ∧ Ai ∈ SH ∧ OV (Ai, Bj ,V,m, σ) then
if OV (Ai, Bj ,V,m, σ) then . Double verification to emulate ⊥Arb perfectly.

Bj-Output(m)

Forge(Ai, V, m) . Local procedure. Operation not available at outside interface.
pp← OPP

(spki, sski)← OSK(Ai)
for each Bl ∈ V do
{vpkl} ← OV PK(Bl)

if VH = ∅ then
σ ← Π.Sign(pp, sski, {vpkl}Bl∈V ,m)

else
for each Bc ∈ VH do
{(vpkc, vskc)} ← OV K(Bc)

σ ← Forge(pp, spki, {vpkl}Bl∈V , {vskc}Bc∈VH ,m)

return σ

58

Reduction system C, specified in Algorithm 22, has an internal repository
RedRep that it uses to store message signature pairs. C relies on the oracles
provided by the game systems to emulate the KGA resource and uses the
OChallengeSign oracle to get signatures on messages that are inserted at the
interfaces of honest senders in SH and of dishonest senders and receivers in
SH ∪RH . As in Lemma 3, it is easy to see that C perfectly emulates:

– the real world R when connected to the game system GOTR-Forge
0 (i.e. R ≡

CGOTR-Forge
0);

– the ideal world S when connected to GOTR-Forge
1 as long as event ξ does not

occur (i.e. S ≡ξ CGOTR-Forge
1).

To conclude the proof, we now bound the probability for ξ to occur. The
reduction system C′ specified in Algorithm 23 has an internal repository RedRep,
and emulates CGOTR-Forge

1 when connected to the consistency game GCons.
During the emulation, C tries to win the game by submitting inputs from D as
challenges to the game. It is easy to see from the specification of C′ (Algorithm 23)

that the behaviors of CGOTR-Forge
1 and of C′GCons are perfectly indistinguishable,

and that the probability that ξ occurs is upper bounded by the probability that
the adversary DC′ wins GCons (as all the conditions for winning the game are
met). Thus, we have

PrDCGOTR-Forge
1 [ξ] = PrDC′GCons

[ξ] ≤ AdvCons(DC′),

implying, since PrDS[ξ] = 0, that∣∣∆D(CGOTR-Forge
1 ,S)

∣∣ =
∣∣∆D(C′GCons,S)

∣∣ ≤ AdvCons(DC′).

Finally, for any distinguisher D,∣∣∆D(R,S)
∣∣ ≤ ∣∣∆D(R,CGOTR-Forge

0)
∣∣

+
∣∣∆D

(
CGOTR-Forge

0 ,CGOTR-Forge
1

)∣∣
+
∣∣∆D(CGOTR-Forge

1 ,S)
∣∣

=
∣∣∣Pr[DCGOTR-Forge

1 = win]

+ Pr[DCGOTR-Forge
0 = win]− 1

∣∣∣
+ AdvCons(DC′)

= AdvOTR-Forge(DC) + AdvCons(DC′).

ut

A.6 Proof of Theorem 6

Proof. In the following, we (implicitly) assume that the set of parties P is such

that all of RH , RH , SH and SH are non-empty sets. We also assume A1 ∈ SH ,
B1 ∈ RH , and B2 ∈ RH .

59

We construct Π ′ from Π as follows: Π ′ = (S,GS ,GV ,Sign′,Vfy′), where Sign′

and Vfy′ internally use Sign and Vfy, respectively, but where Sign′ now appends
an extra bit 0 to each signature generated by Sign and Vfy′ ignores this last bit
and internally uses Vfy to verify the signature.

It is easy to see via a reduction argument that if Π is secure as in Theorem 4
with respect to ε-ball εΠ-4 and Theorem 5 with respect to ε-ball εΠ-5 then
Π ′ is also secure as in each of these two theorems and for the same ε-balls as
Π, i.e. εΠ-4 for Theorem 4 and εΠ-5 for Theorem 5—note that any signature
forgery algorithm Forge assumed to exist for Π can be trivially adapted into one
suitable for Π ′, say Forge′ then yielding an explicit protocol πForge′ as required
by Theorem 5.

We now show that an adversary Am playing the Off-The-Record game for
MDVS scheme Π ′ will win the game with high probability. Am behaves as follows.
It submits a query

OChallengeSign(sign,m,A1, {B1, B2}, {B1}),

where A1 is an honest signer, B1 a dishonest verifier and B2 an honest verifier.
Then Am gets σ || 0 as output from the game. Next, Am submits a query

OV (A1, B2, {B1, B2},m, σ || 1).

If σ||1 is a valid signature for m, then OV outputs 1 and Am guesses that it is

interacting with GOTR-Forge
0 since this game produces a valid signature. But if

the signature was generated by the Forge algorithm, i.e. Am is interacting with
GOTR-Forge

1 , then the signature will be recognized as invalid by OV and Am will
make the corresponding guess.

The proof is however not completely straightforward, because the scheme
might not have perfect correctness or perfect authenticity: there might be a
chance that GOTR-Forge

0 produces an invalid signature (when correctness fails) or

that GOTR-Forge
1 produces a valid signature (when authenticity fails).

Let δcorr denote the probability that the signature produced is invalid (for
honest receiver B2), i.e. for σ = Sign(pp, ssk1, {vpk1, vpk2},m),

δcorr = Pr [Vfy(pp, spk1, vsk2, {vpk1, vpk2},m, σ) = 0] .

And let δauth denote the probability that the signature produced by the forgery
algorithm is valid (to honest receiver B2), i.e. for

σ = Forge(pp, spk1, {vpk1, vpk2}, {vsk1},m),

δauth = Pr [Vfy(pp, spk1, vsk2, {vpk1, vpk2},m, σ) = 1] .

We then have

Pr[AmGOTR-Forge
0 = lose] = δcorr

and

Pr
[
AmGOTR-Forge

1 = lose
]

= δauth

60

Hence,

AdvΠ
′-OTR-Forge(Am) =

∣∣∣Pr[AmGOTR-Forge
0 = win]

+ Pr[AmGOTR-Forge
1 = win]− 1

∣∣∣
=
∣∣∣1− Pr[AmGOTR-Forge

0 = lose]

+ 1− Pr[AmGOTR-Forge
1 = lose]

− 1
∣∣∣

= 1− Pr[AmGOTR-Forge
0 = lose]

− Pr[AmGOTR-Forge
1 = lose]

= 1− δcorr − δauth.

ut

61

	Giving an Adversary Guarantees (Or: How to Model Designated Verifier Signatures in a Composable Framework)

