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Abstract

Key dependent message (KDM) security is a security notion that guarantees confidentiality of
communication even if secret keys are encrypted. KDM security has found a number of applications in
practical situations such as hard-disk encryption systems, anonymous credentials, and bootstrapping
of fully homomorphic encryptions. Recently, it also found an application in quantum delegation
protocols as shown by Zhang (TCC 2019).

In this work, we investigate the KDM security of existing practical public-key encryption (PKE)
schemes proposed in the quantum random oracle model (QROM). Concretely, we study a PKE
scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM.
FO transformations are applied to IND-CPA secure PKE schemes and yield IND-CCA secure key
encapsulation mechanisms (KEM). Then, we show the following results.

• We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived
from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA
security of the underlying PKE scheme, without square root security loss. For this result, we
use one-time-pad (OTP) as DEM to convert KEM into PKE.

• We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived
from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to
the IND-CPA security of the underlying PKE scheme, without square root security loss. For
this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we
require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.

In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma
proposed by Kuchta et al. (EUROCRYPT 2020). In the context of KDM security, there is a technical
hurdle for using double-sided O2H lemma due to the circularity issue. Our main technical contribution
is to overcome the hurdle.

Keywords: Fujisaki-Okamoto transformations, quantum random oracle model, key dependent
message security
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1 Introduction

1.1 Background

Post-quantum security is emerging as a de facto standard since quantum technology has been making
rapid progress. In particular, since the NIST post-quantum cryptography standardization project started,
IND-CCA security in the quantum random oracle model (QROM) have been extensively studied to
design practical and post-quantum secure public-key encryption (PKE) [BHH+19, AHU19, HKSU20,
JZM19a, HHK17, JZC+18, SXY18, TU16, KSS+20]. IND-CCA [RS92, DDN00] is the gold standard
security notion for PKE since chosen-ciphertext attacks are realistic in many practical applications [Ble98].
The random oracle model (ROM) [BR93] is an idealized model where hash functions are modeled as
ideal random functions in security proofs. This idealized model helps us to design extremely efficient
cryptographic primitives. In the QROM [BDF+11], a random oracle query is a superposition query
since adversaries are modeled as quantum polynomial-time algorithms and hash functions are locally
computable.

Although IND-CCA is suitable for many practical applications, a stronger security goal than standard
confidentiality is required in some settings. Key-dependent message (KDM) security [BRS03] is such
an example. KDM security guarantees that adversaries cannot distinguish encryption of f0(sk) from
encryption of f1(sk) where sk is a secret key and f0, f1 are arbitrary functions. The KDM situation is
realistic in hard disk encryption systems like BitLocker [BHHO08] and bootstrapping fully homomorphic
encryption [Gen09]. We also use KDM secure encryption as a building block of cryptographic primitives
and protocols such as anonymous credentials [CL01]. In particular, (non-adaptive) KDM secure
secret-key encryption (SKE) against quantum adversaries is used to achieve delegation of quantum
computation [Zha19b]. The KDM situation also naturally arises in formal verification of cryptographic
protocols [AR02].

Thus, a natural question is:

Can we achieve practical KDM-CPA/CCA secure PKE in the QROM?
or

Do existing practical IND-CPA/CCA secure PKE satisfy KDM security in the QROM?

The difficulty of this question depends on what level of security and efficiency we achieve.
Security analysis in the QROM usually deviates from one in the classical ROM. One significant

issue is that, in the QROM, we cannot directly use the observability of the classical ROM, which says
reduction algorithms can observe input points where adversaries make random oracle queries. In the
QROM, reduction algorithms need to measure superposition queries to observe random oracle queries,
but this prevents reduction since adversaries can detect measurement. Superposition queries also prevent
us from straightforwardly applying the adaptive programming technique. These problems make it more
challenging to achieve CCA and KDM security in the QROM since each property is one of the crucial
properties in the proofs for CCA and KDM [FO13, KMHT16]. New techniques have been proposed to
solve the security-proof problems in the QROM. The one-way to hiding (O2H) lemma [Unr15] and its
variants [AHU19, BHH+19, KSS+20] are the most well-known useful tools to solve the problem above
and achieve secure encryption in the QROM.

Roughly speaking, the (original) O2H lemma is as follows. A quantum distinguisher A is given oracle
access to an oracle O, which is either a random function H : X → Y or G : X → Y such that ∀x /∈ S,
H(x) = G(x). Let z be a random classical string or quantum state ((G, H, S, z) may have an arbitrary
distribution). Let D be a quantum algorithm that is given input z and oracle access to H, measures A’s
query, and outputs the result. The distinguishing advantage of A , εA , is bounded by the square root of the
search advantage of D, εD , that finds an element in S.1 All O2H lemmas except the variant by Kuchta,

1Here, we ignore security loss by the number of queries and constants for simplicity.
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Sakzad, Stehlé, Steinfeld, and Sun [KSS+20] incur a square root security loss. A square root security loss
significantly degrades the performance of cryptographic primitives since we need to use much longer
security parameters for building blocks to guarantee a reasonable security level, say, 128-bit security.2
Thus, to achieve practical KDM secure PKE schemes, we should avoid a square root loss. When we
focus on tight security, both security advantages and the running time of reductions are crucial factors.
However, in most PKE schemes (and all our schemes), the running time of reductions does not incur much
overhead and is not a dominant factor. Thus, we focus on security loss.

At first glance, the O2H lemma by Kuchta et al. [KSS+20] (denoted by O2H with MRM) seems
to immediately answer our question since it does not incur a square root security loss. However, this
is not the case. O2H with MRM is a variation of the double-sided O2H lemma by Bindel, Hamburg,
Hövelmanns, Hülsing, and Persichetti [BHH+19], where D is given oracle access to both H and G. Thus,
in O2H with MRM, D is given oracle access to a random oracle H and a modified random oracle G.
This is not an issue for proving IND-CPA/CCA security. However, it is a serious issue for proving KDM
security because correlated information about secret keys could remain in the modified random oracle G
in known proofs for KDM in the classical ROM. See Section 1.4 for the detail. Kuchta et al. [KSS+20]
left relaxing their double-sided O2H with MRM to a single-sided variant as an open question. However,
that question remains elusive. In the KDM setting, we cannot directly apply a double-sided type O2H
lemma. Achieving KDM security with a double-sided O2H lemma is independent of interest. Thus, our
question is more precisely described as follows.

Can we achieve practical KDM-CPA/CCA secure PKE without a square root security loss in the QROM?
or

Do existing practical IND-CPA/CCA secure PKE satisfy KDM security without a square root security loss
in the QROM?

1.2 Our Result

In this work, we affirmatively answer the question above. We prove the following.

• We can obtain KDM-CPA secure PKE without a square root security loss by applying a Fujisaki-
Okamoto transformation (denoted by FO) [FO13, HHK17] to IND-CPA secure PKE and combining
one-time pad (OTP) as DEM.

• We can obtain KDM-CCA secure PKE without a square root security loss by applying an
FO [FO13, BHH+19] to IND-CPA secure PKE and combining OTP and strong one-time MAC3
(that is, OTP-then-MAC) as DEM.

Note that our goal is PKE (not KEM) since we can consider the KDM setting only in PKE. We need
OTP to achieve PKE since FO yields KEM [FO13, HHK17]. Our results are extremely versatile since
we can convert IND-CPA secure PKE to KDM-CPA/CCA secure PKE by the well-known general
transformations. FO yields practical KEM/PKE schemes and is employed in many candidates of the
NIST PQC standardization to achieve CCA security. Note that we do not need the perfect correctness
of the building block PKE. However, for the result on KDM-CCA secure PKE, we require that a
derandomized version of the building block PKE is injective as in the CCA schemes in some previous
works [BHH+19, KSS+20]. Bindel et al. argue that injectivity is commonly satisfied by many practical
schemes [BHH+19]. We also note that we use PKE in the multi-user setting [BBM00] as the building
block PKE in the transformation since the KDM setting is the multi-user setting by default.4

2Saito, Xagawa, and Yamakawa [SXY18] estimate that we need 376-bit security of underlying trapdoor functions for 128-bit
security of the IND-CCA KEM scheme by Boneh et al. [BDF+11] if the number of queries is 260 due to a square root security
loss.

3Strong one-time MAC unconditionally exists.
4We can achieve PKE in the `-user setting with advantage ε′ from standard PKE with advantage ε such that ε′ ≈ ` · ε.
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To explain our result more precisely, we recall that an FO can be decomposed into two transformations
T and U. This was first observed by Hofheinz, Hövelmanns, and Kiltz [HHK17]. In this work, we adopt
variants of T and U defined by Bindel et al. [BHH+19]. The only difference between the transformations
by Hofheinz et al. and those by Bindel et al. is that the validity check by encryption in the decryption
algorithm is performed as a part of T in the former while it is performed as a part of U in the latter. Thus,
the resulting FO is the same regardless of which definitions of T and U we use.

T transformation transforms an IND-CPA secure PKE scheme into an OW-CPA secure deterministic
PKE scheme. U transformation transforms an OW-CPA secure deterministic PKE scheme into an
IND-CCA secure KEM. Regarding U, there are six variants, U⊥, U 6⊥, U⊥,keyconf, U⊥m , U

6⊥
m , and U⊥,keyconf

m .
Here, ⊥ and 6⊥ mean explicit and implicit rejection in decryption, respectively, and no subscript and
subscript m mean a hash function takes a ciphertext as a part of the input or not. Superscript keyconf
(key confirmation) means that we add a hash value of a plaintext to a ciphertext and check the hash value
in decryption. Bindel et al. [BHH+19] prove that U⊥, U 6⊥, and U⊥,keyconf yield IND-CCA KEM if and
only if U⊥m , U 6⊥m , and U⊥,keyconf

m yield IND-CCA KEM, respectively. It does not matter whether a hash
function takes a ciphertext as the input or not. This is also the case in the context of KDM security. Thus,
in this work, we focus on U⊥m , U 6⊥m , and U⊥,keyconf

m .
To solve the correlated information problem above, we introduce a new security notion called seed-

dependent message one-wayness against related seed attacks (SDM-OW-RSA). This notion is a technical
contribution and plays a crucial role in this work (defined in Section 2.3). Then, we show that if we apply
the U⊥m transformation to SDM-OW-RSA deterministic PKE, the resulting scheme is KDM-CPA secure by
combining OTP as DEM.We also show that if we apply U⊥,keyconf

m to SDM-OW-RSA secure deterministic
PKE with injectivity, the resulting scheme is KDM-CCA secure by combining OTP-then-MAC as DEM.
Although we need O2H with MRM in this part to avoid a square root security loss, we can overcome the
double-sided oracle issue due to SDM-OW-RSA security.

In order to complete the proof for the KDM security of FO transformations, we go to the following path.
We first introduce a variant of T that we call T transformation with hash key generation THKG, and show
that if we apply THKG to IND-CPA PKE, the resulting deterministic PKE scheme satisfies SDM-OW-RSA
without square root security loss. Combined with the above, we see that U⊥m (resp. U⊥,keyconf

m ) together
with THKG can be used to obtain a KDM-CPA (resp. KDM-CCA) secure PKE scheme from an IND-CPA
secure PKE scheme without square root loss. Finally, we show that THKG in those constructions can be
replaced with T, thus prove the KDM security of FO transformations.

Although we omit in this paper, we can see that we can prove the KDM-CPA security without a square
root security loss even if we use U 6⊥m instead of U⊥m . Interestingly, if we use U 6⊥m instead of U⊥,keyconf

m , it is
not clear whether we can prove the KDM-CCA security without a square root loss. In the IND-CCA
case, U 6⊥m provides us with IND-CCA security without a square root security loss [KSS+20, BHH+19].
See Section 1.4 for the detail. We summarize these results in Table 1.

1.3 Related Work

Our work is the first study on KDM secure PKE in the QROM. Our work also focuses on tighter reductions.
Zhang constructs a non-adaptive KDM-CPA SKE scheme in the QROM to achieve delegation of quantum
computation [Zha19b]. To the best of our knowledge, other advanced security notions for PKE (such
as leakage-resilience [AGV09], selective opening security [BHY09]) have not been investigated in the
QROM yet.

Backes, Dürmuth, and Unruh [BDU08] study the KDM security of the OAEP transformation [BR95]
in the classical ROM. They prove that OAEP is KDM-secure in the classical ROM if the underlying
trapdoor permutation is partial-domain one-way. Note that there is no post-quantum secure trapdoor
permutation so far. Davies and Stam [DS14] study the KDM security in the KEM/DEM framework. They
prove that if a key derivation function (KDF) is used in between the KEM and DEM part and the KDF
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Table 1: Summary of our results. Here, U⊥m,OTP and U⊥,keyconf
m,OTP+MAC denote U⊥m with OTP and

U⊥,keyconf
m with OTP-then-MAC, respectively. Let εΣ and dF be the attacker advantage

in scheme Σ and the query depth of queries to random oracle F, respectively. Note
that dF ≤ qF where qF is the number of random oracle queries. We use PKE in the
multi-user setting for the building block PKE (denoted by PKE). Open Q. means that it is
an open question whether we can achieve KDM-CCA security by using U 6⊥m,OTP[PKE1, H]
transfromation.

Transformation Security implication Security bound Condition

PKE1 := THKG[PKE, G] (§ 5) IND-CPA⇒ SDM-OW-RSA O(dG · εPKE) none
U⊥m,OTP[PKE1, H] (§ 4) SDM-OW-RSA⇒ KDM-CPA O(dH · εPKE1 ) none
U⊥m,OTP[T[PKE, G], H] (§ 6) IND-CPA⇒ KDM-CPA O(dH · dG · εPKE)

a none
U 6⊥m,OTP[T[PKE, G], H] IND-CPA⇒ KDM-CPA O(dH · dG · εPKE)

a none
U⊥,keyconf

m,OTP+MAC[PKE1, H] (§ B) SDM-OW-RSA⇒ KDM-CCA O(dH · εPKE1 ) injectivity
U⊥,keyconf

m,OTP+MAC[T[PKE, G], H] (§ B&6) IND-CPA⇒ KDM-CCA O(dH · dG · εPKE)
a injectivity

U 6⊥m,OTP[PKE1, H] open Q.⇒ KDM-CCA open Q. open Q.

a This is a simplified bound. See Section 6 for the detail.

function is modelled as a classical random oracle, the resulting PKE scheme is KDM-secure. See the
reference for security requirements. Kitagawa, Matsuda, Hanaoka, and Tanaka [KMHT16] prove that the
FO transformation [FO13] satisfies KDM-CCA security in the classical ROM.5

We also briefly introduce previous works on IND-CCA secure PKE/KEM in the QROM. Let ε and
εbb be the advantages of IND-CCA PKE/KEM and the building block, respectively. Let qH be the number
of random oracle queries (and we set dH := qH for simplicity). Below, we omit “IND-CCA” and “in the
QROM” since all results are about them. We also ignore the differences between FO and FO variants.

Boneh et al. [BDF+11] use a KEM variant of Bellare-Rogaway transformation [BR93] to obtain
their KEM from trapdoor functions and ε ≈ qH

√
εbb. Targhi and Unruh [TU16] use FO to obtain their

PKE from OW-CPA PKE and ε ≈ q1.5
H

4
√

εbb. They also use an OAEP variant to obtain their PKE from
partial domain trapdoor injective OWFs and ε ≈ poly(qH) 8

√
εbb. Hofheinz et al. [HHK17] present

modular analysis for FO, but their KEM does not improve the construction by Targhi and Unruh. Saito et
al. [SXY18] use FO to obtain their KEM from disjoint simulatable deterministic PKE and ε ≈ εbb. They
also obtain their KEM from IND-CPA PKE with perfect correctness and ε ≈ qH

√
εbb. Jiang, Zhang,

Chen, Wang ,and Ma [JZC+18] use FO and obtain their KEM from OW-CPA PKE and ε ≈ qH
√

εbb.
Jiang, Zhang, and Ma [JZM19a] achieve the same bound as those by Jiang et al. [JZC+18] and Saito et
al. [SXY18] by using the same assumptions and FO with explicit rejection. Ambainis, Hamburg, and
Unruh [AHU19] prove an improved variant of the original O2H lemma (semi-classical O2H lemma) and
its bound is εA ≈

√
qH
√

εD (the query loss is improved). The semi-classical O2H lemma leads to KEM
with improved bounds in the query part [AHU19, HKSU20, JZM19b]. Bindel et al. [BHH+19] prove the
double-sided O2H lemma whose bound is εA ≈

√
εD . They use FO to obtain their KEM from IND-CPA

PKE with injectivity, but its bound is essentially the same as that of schemes using the semi-classical
O2H lemma. Kuchta et al. [KSS+20] prove O2H with MRM and obtain their KEM from IND-CPA PKE
with injectivity via FO, and ε ≈ q2

Hεbb.

5Precisely speaking, the FO transformations studied in the context of QROM are somewhat different from the original FO
transformation [FO13].
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1.4 Technical Overview

We provide the technical overview of this work. Our goal here is to show that the KDM security in the
QROM of the PKE scheme U⊥m,OTP(T(PKE, Genc), H)6 can be reduced to the IND-CPA security of the
underlying PKE without square root security loss. Roughly speaking, the difficulty is that in the setting
of KDM security, double-sided O2H lemmas [BHH+19, KSS+20] cannot be applied straightforwardly,
which is currently the only tool that enables us to circumvent square root security loss in the QROM.

We first explain how we circumvent square root security loss and prove the KDM security in the
QROM of the PKE scheme U⊥m,OTP = U⊥m,OTP(dPKE, H) whose ciphertext is described as

(dEnc(pk, s), H(s)⊕m),

where dEnc is the encryption algorithm of a deterministic PKE scheme dPKE with the message space
M, s ← M, and H is a random oracle. We identify that the KDM security in the QROM of U⊥m,OTP
can be reduced without square root loss to the security notion of dPKE that we call seed-dependent
message one-wayness (SDM-OW security). Then, we explain that the SDM-OW security in the QROM
of a tweaked version of T = T(PKE, Genc) can be reduced to the IND-CPA security of the underlying
PKE scheme PKE without square root security loss. We call the tweaked version T transformation
with hash key generation THKG = THKG(PKE, (Gkg, Genc)) where Gkg and Genc are random oracles.
From these facts, we see that the KDM security in the QROM of U⊥m,OTP(THKG(PKE, (Genc, Gkg)), H)
can be reduced to the IND-CPA security of PKE without square root security loss. Finally, we state
that the KDM security of U⊥m,OTP(T(PKE, Genc), H) immediately follows from the KDM security of
U⊥m,OTP(THKG(PKE, (Genc, Gkg)), H).

Below, we start with how to prove the KDM security of U⊥m,OTP in the classical ROM. For simplicity,
in this overview, we consider the following simplified KDM security. Given a ciphertext of fb(sk), any
adversary cannot predict b correctly better than random guessing, where b← {0, 1} is the challenge bit
and f0 and f1 are any a-priori fixed two functions. The actual KDM security requires indistinguishability
holds for multiple pairs of functions adaptively chosen by an adversary under multiple public and secret
key pairs.

KDM security of U⊥m,OTP in the classical ROM. Let A be an adversary. A is given the challenge
ciphertext and the random oracle access, which are described as

CT : (dEnc(pk, s), H(s)⊕ fb(sk)) and RO : H(x).

We first make a conceptual change to the security game so that the challenge ciphertext and the random
oracle are described as

CT : (dEnc(pk, s), u) and RO : V(x) =

{
u⊕ fb(sk) (if x = s)
H(x) (otherwise),

where u is a uniformly chosen value independent of H and fb(sk). We can confirm that this is a purely
conceptual change since V behaves as a random function and the challenge ciphertext is computed as
(dEnc(pk, s), V(s)⊕ fb(sk)) = (dEnc(pk, s), u). Therefore, it does not change A’s advantage. Then,
we further change the security game so that A can access to H instead of V, but the challenge ciphertext
is still generated using V. Thus, the challenge ciphertext is not changed from (dEnc(pk, s), u). In other
words, except for the generation of the challenge ciphertext, we program the output value of the random
oracle at point s from V(s) = u⊕ fb(sk) into H(s). The view of A is now

CT = (dEnc(pk, s), u) and RO : H(x).

6 We again note that we use variants of T and U transformations defined by [BHH+19] in this work.
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We see that in the final game, the challenge bit b is completely hidden from the view of A , and thus
A’s advantage is 0. Therefore, we must estimate how much the advantage of A is changed by the above
programming of the random oracle. From the difference lemma7, this can be bounded by the probability
that A queries s to H in the final security game. In the final game, information of fb(sk) is completely
eliminated from the view of A . Thus, we can use the security of dPKE in order to estimate the probability.
Concretely, the probability is estimated by using the OW-CPA security of dPKE. This completes the
proof. Of course, square root security loss does not occur in this proof.

KDM security of U⊥m,OTP in the QROM? When we try to prove KDM security of U⊥m,OTP in the
QROM, we need a different tool from the difference lemma. This is because “the probability that A
queries s to H” is not well-defined in this case since A can make a query to the random oracle in
super-position. In the QROM, in many cases, we can use one-way to hiding (O2H) lemma [Unr15] and its
variants [AHU19, BHH+19, KSS+20] as drop-in replacements of the difference lemma in the security
proof done in the classical ROM. Roughly speaking, the O2H lemma guarantees that there exists an
extractor D such that the distinguishing gap caused by a programming of a quantumly-accessible random
oracle can be bounded by the probability that D extracts the programmed point. O2H lemma is classified
into two categories. The first one is a single-sided O2H lemma where D can access either pre-programmed
or post-programmed random oracles. The other one is a double-sided O2H lemma where D can access
both of them. In order to circumvent the square root security loss, we currently need to use double-sided
O2H lemma proposed in [KSS+20] called O2H with measure-rewind-measure (MRM) lemma.

Suppose to prove KDM security of U⊥m,OTP in the QROM, we follow the same strategy as the case of
the classical ROM (i.e., make a conceptual change and program V into H) and use O2H lemma instead of
the difference lemma. Since our goal here is to prove the KDM security of U⊥m,OTP in the QROM without
square root security loss, we use O2H lemma with MRM. By doing so, we can say that there exists a QPT
extractor D such that∣∣∣Pr

[
b← A |V〉(z)

]
− Pr

[
b← A |H〉(z)

]∣∣∣ ≤ 4d · Pr
[
s← D |V,H〉(z)

]
,

where z = (dEnc(pk, s), u) and d is the query depth of A to the random oracle.8 Thus, if we can in
turn bound the probability Pr

[
s← D |V,H〉(z)

]
by using the security of the underlying dPKE, we can

complete the entire security proof. However, it turns out that it cannot be done straightforwardly using the
OW-CPA security of dPKE as before. The reason is that since D has access to not only H but also V that
has information of fb(sk), it is not clear whether we can use the OW-CPA security of dPKE. Recall that
in the proof in the classical ROM case, when estimating “the probability that A queries s to H” using the
OW-CPA security of dPKE, information of fb(sk) is eliminated from the view of A since A does not have
access to V.

In summary, in the proof in the classical ROM, we can successfully reduce the KDM security of
U⊥m,OTP to the OW-CPA security of dPKE by eliminating information of fb(sk) using programming of the
random oracle. However, in the case of the QROM, if we use O2H with MRM lemma, it seems difficult to
eliminate the information of fb(sk) by programming the random oracle. This is because we finally need
to handle the extractor D who can access both pre-programmed and post-programmed random oracles.

Note that even if V does not have information of fb(sk), it might not be clear whether an OW-CPA
adversary can simulate two random oracles V and H at the same time for D. The reason is that the
differing point s of the two random oracles is the solution of the OW-CPA game itself. This problem can
be handled by using the correctness of dPKE. As shown by [LW21], the correctness of dPKE implies
that under a randomly generated key (pk, sk), a randomly generated message m does not have a collision,

7The lemma states that if Pr[A ∧ ¬C] = Pr[B ∧ ¬C], |Pr[A]− Pr[B]| ≤ Pr[C] holds for any events A,B, and C.
8The notation A |O〉 indicates that A is allowed to make a query to O in super-position. Also, for the definition of query depth,

see Section 3.

6



that is another message m′ such that dEnc(pk, m) = dEnc(pk, m′), with overwhelming probability. If
ct = dEnc(pk, s) has unique pre-image s, the OW-CPA adversary can check the condition “if x = s” by
checking “if dEnc(pk, x) = ct” (in super-position), thus can simulate V and H at the same time if V
does not have information of fb(sk).

Reduction toSDM-OWsecurity. Although it seems difficult to bound the probabilityPr
[
s← D |V,H〉(z)

]
using the OW-CPA security of dPKE, we show that it can be bounded if dPKE satisfies SDM-OW security
introduced in this work. Hereafter, we assume that the message spaceM of dPKE is an abelian group with
the operation “+” and the random coin space of the key generation algorithm dKG of dPKE is contained
inM. Then, SDM-OW security is a security notion that guarantees that given (s, dEnc(pk, r + s)), an
adversary cannot compute r + s, where s←M, and r ∈ M is the random coin used to generate (pk, sk)
(i.e., (pk, sk)← dKG(1λ; r)).

The estimation is done after adding the following changes to z and V that do not affect the view of D.
First, we replace s in z and V with r + s, where r ∈ M is the random coin used to generate (pk, sk).
Namely, we change z and V as

z = (dEnc(pk, r + s), u) and V(x) =

{
u⊕ fb(sk) (if x = r + s)
H(x) (otherwise).

(1)

This change does not affect the view of D since s is chosen uniformly at random and independently of r.
Then, we further replace V with the following

V(x) =

{
u⊕ f̂b(x) (if x = r + s)
H(x) (otherwise),

(2)

where f̂b is a function that is given x as an input, computes (pk, sk)← KG(1λ; x− s), and outputs fb(sk).
We can check that V in Equation (1) and V in Equation (2) are functionally equivalent. Thus, this change
also does not affect the view of D. Moreover, we finally replace the condition “if x = s + r” in V with “if
dEnc(pk, x) = dEnc(pk, r + s)”. As noted before, this can be justified from the correctness of dPKE.

We see that by the above changes, z and V (i.e., the entire view of D) can now be simulated by an
SDM-OW adversary B who is given (s, dEnc(pk, r + s)). Moreover, B can break the SDM-OW security
if the simulated D successfully extracts the differing point of V and H, that is, r + s. This means that
Pr
[
s← D |V,H〉(z)

]
can be bounded by using the SDM-OW security of dPKE.

From the above arguments, we see that the KDM security of U⊥m,OTP in the QROM can be reduced to
the SDM-OW security of dPKE without square root security loss.

SDM-OWsecurity of a variant ofT. Wenext explain the SDM-OWsecurity ofTHKG = THKG(PKE, (Gkg, Genc))
can be reduced to the IND-CPA security of the underlying PKE scheme PKE without square roof security
loss, where Gkg and Genc are random oracles. THKG is a tweaked version of T = T(PKE, Genc) transfor-
mation. T transformation converts a (randomized) IND-CPA secure PKE scheme into an OW-CPA secure
deterministic PKE scheme. The encryption algorithm of T is described as Enc(pk, m; Genc(m)), where
Enc is the encryption algorithm of the underlying PKE. The key generation and decryption algorithms of
T are those of PKE themselves. In THKG, we also generate a key pair (pk, sk) by using a random coin
generated by the random oracle Gkg, that is, (pk, sk)← KG(1λ; Gkg(r)), where r ←M.

Bindel et al. [BHH+19] showed that the OW-CPA security of T can be reduced to the IND-CPA
security of PKE without square root security loss. The important thing is that the target security notion is
one-wayness (not indistinguishability) here. Essentially, Bindel et al. avoided the square root security
loss by relying on the fact that if the target security notion is one-wayness and the starting security notion
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is indistinguishability, we can avoid square root security loss by using single-sided O2H lemma called
semi-classical O2H lemma [AHU19]. In this work, we show that such a reduction to IND-CPA security
without square root loss is possible even when we prove THKG’s SDM-OW security, which can be seen as
one-wayness for a kind of key dependent messages. In fact, there is no difficulty based on the circularity
issue as before since we use single-sided O2H lemma in this step, not double-sided one. Roughly speaking,
when we use single-sided O2H lemma, we can eliminate correlations between keys, encryption random
coins, and plaintexts by random oracle programming in the security proof even in the context of QROM.
We give the overview of this proof in Section 5.2. More specifically, we provide a high-level idea of how
to solve the correlations after we describe a few hybrid games for the proof, and complete the proof.

The KDM security of U⊥m,OTP(T(PKE, Genc), H). From the discussions so far, we see that the KDM
security of U⊥m,OTP(THKG(PKE, (Gkg, Genc)), H) can be reduced to the IND-CPA security of PKE without
square root security loss. This immediately implies the same holds for U⊥m,OTP(T(PKE, Genc), H).
This is because adversaries cannot detect whether the public and secret key pair is generated using
a random oracle or not. The KDM security of U⊥m,OTP(T(PKE, Genc), H) can be reduced to that of
U⊥m,OTP(THKG(PKE, (Gkg, Genc)), H).

Some remarks. We finally make some remarks.

• In the actual security game of KDM security, an adversary can choose a pair of functions ( f0, f1)
adaptively and obtain a ciphertext of fb(sk) multiple times under the existence of multiple key
pairs. Also, to capture a wide range of usage scenarios, we allow those functions to access random
oracles. We handle these issues by using adaptive reprogramming technique for QROM [Unr14] and
introducing a security notion we call SDM-OW-RSA security which is an extension of SDM-OW
security.

• Our proof technique is also compatiblewithKDM-CCA security. Concretely, we can prove theKDM-
CCAsecurity of a PKE scheme constructed by usingU⊥,keyconf

m = U⊥,keyconf
m (dPKE, H) [BHH+19]

as KEM and OTP-then-MAC as DEM without square root security loss. We assume the underlying
dPKE is SDM-OW-RSA secure and additionally satisfies injectivity. The security proof is a
combination of our proof for the KDM security of U⊥m,OTP and the proof for the IND-CCA security
of U⊥,keyconf

m by [BHH+19, KSS+20]. Thus, we mainly focus on KDM-CPA security in the main
body, and we provide the results on KDM-CCA security in Appendix B.

As shown by [BHH+19], U⊥,keyconf
m and U 6⊥m are IND-CCA secure KEMs that are compatible

with double-sided O2H lemma such as O2H lemma with MRM. To use U⊥,keyconf
m as the KEM

part in the above construction is essential. If we use U 6⊥m as the KEM part, it seems difficult to
prove the KDM-CCA security of the construction. U 6⊥m returns a random value generated by using
pseudo-random functions (PRF) if the decryption algorithm detects a given ciphertext is not valid
to make it possible to simulate the decryption oracle without using secret keys. In the KDM-CCA
security game of a PKE scheme whose KEM part is U 6⊥m , the keys of PRF are also encrypted. In
that case, we cannot use the security of PRF and cannot simulate the decryption oracle. It is an
interesting open problem to prove KDM-CCA security of a PKE scheme whose KEM part is U 6⊥m
without square root security loss.

• Our proof strategy explained so far can be realized more easily for SKE where the secret key is
used for encryption. A ciphertext of a simple SKE scheme is (s, H(sk‖s)⊕m), where H is a
random oracle. The simple scheme has a good structure to apply our proof strategy because the
secret key sk can be recovered from the differing point sk‖s when programming the random oracle
in the security proof. Zhang [Zha19b] showed the non-adaptive KDM security of the SKE scheme
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with security bound
√

poly(q,qkdm,q f ,`)
2λ , where q is the number of random oracle queries, qkdm is

the number of KDM queries, q f is the number of random oracle queries by KDM functions, `
is the number of secret keys, and λ is the length of sk. Using our proof strategy, we can prove
the non-adaptive KDM security of the SKE scheme with security bound roughly poly(q,qkdm,q f ,`)

2λ .
We formally prove it in Appendix C. The proof of this is much easier than the proof of our main
construction U⊥m,OTP. The former can be a warming-up for the latter.

2 Preliminaries

2.1 Notations

In this paper, for a finite set X and a distribution D, x ← X denotes selecting an element from X uniformly
at random, x ← D denotes sampling an element x according to D. Let y ← A(x) denotes assigning
to y the output of a probabilistic or deterministic algorithm A on an input x. When we explicitly show
that A uses randomness r, we write y← A(x; r). When A is allowed to access to an oracle O, we write
y ← AO(x). Let [a] and [a, b] denote the sets of integers {1, · · · , a} and {a, · · · , b}, respectively. λ
denote a security parameter. PPT and QPT algorithms stand for probabilistic polynomial-time algorithms
and polynomial-time quantum algorithms, respectively. Let negl denote a negligible function.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG, Enc, Dec) of PPT algorithms. LetM
be the message space of PKE. The key generation algorithm KG, given a security parameter 1λ, outputs a
public key pk and a secret key sk. The encryption algorithm Enc, given a public key pk and message
m ∈ M, outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk and ciphertext
CT, outputs a message m̃ ∈ {⊥} ∪M.

Definition 2.1 (Correctness of PKE). We say that PKE is δ-correct if

E

[
max
m∈M

Pr[Dec(sk, Enc(pk, m)) 6= m]

∣∣∣∣(pk, sk)← KG(1λ)

]
≤ δ .

If PKE is constructed in the random oracle model, the expectation is taken over the choice of (pk, sk)←
KG(1λ) and the random oracle.

We say that PKE is deterministic PKE if Enc(pk, ·) is a deterministic function. We introduce the
correctness notion that is specific to deterministic PKE. In addition to the ordinary correctness above, it
requires that under a randomly generated key (pk, sk), a randomly generated message m does not have a
collision, that is another message m′ such that dEnc(pk, m) = dEnc(pk, m′). This correctness notion is
useful when we use double-sided O2H lemmas [BHH+19, KSS+20].

Definition 2.2 (Correctness of deterministic PKE). We say that a deterministic PKE scheme dPKE =
(dKG, dEnc, dDec) with the message spaceM is (δ1, δ2)-correct if it is δ1-correct and it holds that

Pr
[
∃m′ ∈ M : dEnc(pk, m′) = dEnc(pk, m)|(pk, sk)← dKG(1λ), m←M

]
≤ δ2 .

If dPKE is constructed in the random oracle model, the probability is taken over the choice of
(pk, sk)← dKG(1λ), m←M, and the random oracle.

We introduce a multi-instance and multi-challenge version of IND-CPA security for PKE.
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Definition 2.3 (IND-CPA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme. We define
Expind-m-cpa

PKE,`,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b ← {0, 1}. Next, the challenger generates
(pkk, skk)← KG(1λ) for every k ∈ [`]. The challenger executes b′ ← AOIND((pkk)k∈[`]).

OIND: On the i-th call with input (ki, mi,0, mi,1), where ki ∈ [`] and |mi,0| = |mi,1|, it returns cti ←
Enc(pkki , mi,b).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is IND-CPA secure if for any polynomial ` = `(λ) and QPT adversary A , we have
Advind-m-cpa

PKE,`,A (λ) =
∣∣∣Pr
[
1← Expind-m-cpa

PKE,`,A (1λ)
]
− 1

2

∣∣∣ = negl(λ).

We introduce the definition of KDM-CPA security for PKE. In the main body of the paper, we mainly
focus on KDM-CPA security. We provide the definition of KDM-CCA security in Appendix B.

Definition 2.4 (KDM-CPA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme. We define
Expkdm-cpa

PKE,`,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b r←− {0, 1}. Next, the challenger generates
(pkk, skk) ← KG(1λ) for every k ∈ [`]. The challenger sets sk := (sk1, . . . , sk`), and executes
b′ ← AOKDM((pkk)k∈[`]).

OKDM: On the i-th call with input (ki, fi,0, fi,1), where ki ∈ [`] and fi,0 and fi,1 are efficiently computable
functions with the same output length, it returns cti ← Enc(pkki , fi,b(sk)).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is KDM-CPA secure if for any polynomial ` = `(λ) and QPT adversary A , we have

Advkdm-cpa
PKE,`,A (λ) =

∣∣∣∣Pr
[
1← Expkdm-cpa

PKE,`,A (1λ)
]
− 1

2

∣∣∣∣ = negl(λ).

Remark 2.5 (KDM security in QROM). In order to capture a wide variety of situations, we allow KDM
functions to access to random oracles if the scheme is constructed in the (quantum) random oracle model.
We allow only classical access random oracles for KDM functions, while adversaries can access random
oracles in super-position. This setting is sufficient when honest entities are classical.

2.3 SDM-OW-RSA Security

We introduce a new security notion seed-dependent message one-wayness against related seed attacks
(SDM-OW-RSA security). This notion plays a crucial role in achieving KDM security from IND-CPA
security in the QROM without square roof security loss.

Definition 2.6 (SDM-OW-RSA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme such
that the message spaceM is an abelian group with the operation +, and the random coin space of KG is
M. We define Expsdm-ow-rsa

PKE,`,qsdm,A(1
λ) for an adversary A as follows.

Initialize: The challenger first generates r ← M. The challenger then generates ∆k ← M and
(pkk, skk) ← KG(1λ; r + ∆k) for every k ∈ [`]. Next, for every k ∈ [`] and i ∈ [qsdm], the
challenger generates si,k ←M and computes cti,k ← Enc

(
pkk, r + si,k

)
. Finally, the challenger

executes T ← A((pkk, ∆k)k∈[`], (si,k, cti,k)i∈[qsdm],k∈[`]).
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Finalize: The challenger outputs 1 if and only if T contains r′ such that r′ = r + si,k holds for some
i ∈ [qsdm] and k ∈ [`].

We say that PKE is SDM-OW-RSA secure if for any polynomial ` = `(λ) and qsdm = qsdm(λ) and
QPT adversary A , we have

Advsdm-ow-rsa
PKE,`,A (λ) = Pr

[
1← Expsdm-ow-rsa

PKE,`,A (1λ)
]
= negl(λ).

3 Quantum Random Oracle and Useful Lemmas

Given a function H : X → Y, a quantum-accessible oracle O of H is modeled by a unitary transformation
UH operating on two registers in and out, in which |x〉 |y〉 is mapped to |x〉 |y⊕ H(x)〉, where⊕ denotes
XOR group operation on Y. Following [AHU19, BHH+19, KSS+20], we model a quantum algorithm A
making parallel queries to a quantum oracle O as a quantum algorithm making d ≤ q queries to an oracle
O⊗n consisting of n = q/d parallel copies of oracle O. Given an input state of n pairs of in/out registers
|x1〉 |y1〉 · · · |xn〉 |yn〉, the oracle O⊗n maps it to the state |x1〉 |y1 ⊕ H(x1)〉 · · · |xn〉 |yn ⊕ H(xn)〉. We
call d the algorithm’s query depth, n the parallelization factor, and q = n · d the total number of oracle
queries. We write A |O〉 to denote that the algorithm A’s oracle O is a quantum-accessible oracle.

Simulation of quantum random oracles. In this paper, following many previous works in the
QROM, we give quantum-accessible random oracles to reduction algorithms if needed. This is just a
convention. We can efficiently simulate quantum-accessible random oracles by using the compressed
oracle technique [Zha19a].

3.1 One-Way to Hiding (O2H) Lemma

Definition 3.1 (Punctured oracle). Let F : X → Y be any function, and S ⊂ X be a set. The oracle
F \ S(“F punctured by S”) takes as input a value x ∈ X. It first computes whether x ∈ S into an auxiliary
register and measures it. Then it computes F(x) and returns the result. Let Find be the event that any of
the measurements returns 1.

Lemma 3.2 (Semi-classical O2H [AHU19, Theorem 1]). Let G, H : X → Y be random functions, z
be a random value, and S ⊆ X be a random set such that G(x) = H(x) for every x /∈ S. The tuple
(G, H, S, z) may have arbitrary joint distribution. Furthermore, let A be a quantum oracle algorithm.
Let Ev be any classical event. Then we have∣∣∣∣√Pr

[
Ev : A |G〉(z)

]
−
√

Pr
[
Ev∧ ¬Find : A |H\S〉(z)

]∣∣∣∣ ≤ √(d + 1) · Pr
[
Find : A |H\S〉(z)

]
,

where d is the query depth of A for G and H \ S.

Lemma 3.3 (Search in semi-classical oracle [AHU19, Theorem 2]). Let H : X → Y be a random
function, let z be a random value, and let S ⊂ X be a random set. (H, S, z) may have arbitrary joint
distribution. Let A be a quantum oracle algorithm. If for each x ∈ X, Pr[x ∈ S] ≤ ε (conditioned on H
and z), then we have

Pr
[
Find : A |H\S〉(z)

]
≤ 4qε ,

where q is the number of queries to H \ S by A .

Note that the above lemma is originally introduced in [AHU19], but we use a variant that is closer to
Lemma 4 in [BHH+19].
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Lemma 3.4 (Adapted version of O2H with MRM [KSS+20, Lemma 3.3]). Let G, H : X → Y be
functions, and S ⊆ X be a set such that G(x) = H(x) for every x /∈ S. Also, let z be a value and Oaux
be a function. The tuple (G, H, S, z, Oaux) may have arbitrary joint distribution. Furthermore, let A be a
quantum oracle algorithm. Then we can construct an algorithm D such that

• The running time of D is roughly three times longer than that of A . Moreover, if A makes at most q
queries to G and H with query depth d, D makes at most O(q) queries to each of those oracles
with query depth O(d), and outputs a list T ⊆ X of size at most O(q).

• It holds that∣∣∣Pr
[
1← A |G,Oaux〉(z)

]
− Pr

[
1← A |H,Oaux〉(z)

]∣∣∣ ≤ 4d · Pr
[

T ∩ S 6= ∅ : T ← D |G,H,Oaux〉(z)
]

,

where d is the query depth of A for the first oracle.

Remark 3.5 (On the difference from the original version). There are some differences between Lemma 3.4
and the original O2H lemma with MRM [KSS+20, Lemma 3.3]. First, in Lemma 3.4, we allow the
algorithm A to access to an additional oracle Oaux, which is not explicitly appeared in the original version.
Second, in Lemma 3.4, we explicitly state the size of D’s output T is at most O(q) while the original
lemma does not refer to the size of T. For the first one, it is easy to see that even if we introduce such an
additional oracle, the lemma still holds. (This extension is used in also [LW21].) For the second, the
concrete extractor D constructed in [KSS+20] satisfies this condition. Since we need the upper bound on
the size of T in order to estimate the security bound in our proof, we place the requirement.

3.2 Additional Lemma

Lemma 3.6 ([Unr14, Lemma 13 in the eprint version]). Let δx(·) be a point function that outputs 1 if
and only if it is given x. Let δ⊥(·) be the constant function that outputs 0 for all inputs. Let A be an
oracle QPT algorithm making at most q queries. Let ρ0 denote the final state of A together with x in the
following experiment: Pick x ←M and run A |δx〉. Let ρ1 denote the final state of A together with x in
the following experiment: Pick x ←M and run A |δ⊥〉. Then, we have ‖ρ0 − ρ1‖tr ≤

2q√
|M|

.

Using Lemma 3.6, we can prove the following lemma which is a multi-point version of adaptive
reprogramming of QRO used in the proof of adaptive O2H lemma [Unr14, Lemma 14 in the eprint
version]. The following lemma is needed to handle KDM queries that are adaptively made.

Lemma 3.7 (Adaptive reprogramming of QRO). We consider the following Expadp-prog
qprog,A (1λ).

Initialization The challenger first generates the challenge bit b ← {0, 1} and a fresh random oracle
V0 : X → Y. Then, the challenger executes b′ ← A |V0〉,Oprog(1λ), where Oprog is defined as
follows.

Oprog: On the i-th call, it first generates si ← X. If b = 0, it just returns (si, V0(si)). Otherwise, it
generates ui ← Y, updates the random oracle A can access to into Vi defined as

Vi(x) =

{
uj (if x = sj holds for some j ≤ i)
H(x) (otherwise),

and returns (si, Vi(si)) = (si, ui).

Finalization The challenger outputs 1 if b = b′ and 0 otherwise.

Then, for any integer qprog and an oracle algorithm A that makes at most q queries to Ob, we have∣∣∣Pr
[
1← Expadp-prog

qprog,A (1λ)
]
− 1

2

∣∣∣ ≤ 2q·qprog√
|X|

.
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Proof. We consider the following intermediate games for i∗ ∈ [0, qprog].

Game i∗: This is the same as Expadp-prog
A (1λ) where b = 0 except that Oprog behaves as follows.

Oprog: On the i-th call, it generates si ← X. If i > i∗, it returns (si, Vi∗(si)). Otherwise, it also generates
ui ← Y, updates the oracle A can access to into Vi defined as

Vi(x) =

{
uj (if ∃j ≤ i : x = sj)

V0(x) (otherwise)

and returns (si, Vi(si)) = (si, ui).

Game i∗: This game is the same as Game i∗ except that for i ≤ i∗, Vi is replaced with Vi{si∗+1} defined
as

Vi{si∗+1}(x) =


⊥ (if x = si∗+1)

uj (if ∃j ≤ i : x = sj)

V0(x) (otherwise)
.

Ĝame i∗: This game is the same as Game i∗ except that on the i∗ + 1-th call, Oprog updates the oracle A
can access to into Vi∗+1 defined as

Vi∗+1(x) =

{
uj (if ∃j ≤ i∗ + 1 : x = sj)

V0(x) (otherwise)

and returns (si∗+1, Vi∗+1(si∗+1)) = (si∗+1, ui∗+1), where ui∗+1 ← Y. Also, on the i-th call for
i > i∗ + 1, Oprog returns (si, Vi∗+1(si)).

Let ONEX, ONEX, ÔNEX be the event that A outputs 1 as the final output in Game X, Game X, and
Ĝame X, respectively. Game 0 (resp. Game qprog) is exactly the same as Expadp-prog

A (1λ) where b = 0
(resp. b = 1). Thus, we have∣∣∣∣Pr

[
1← Expadp-prog

qprog,A (1λ)
]
− 1

2

∣∣∣∣
≤ 1

2

∣∣Pr[ONE0]− Pr
[
ONEqprog

]∣∣
≤ 1

2 ∑
i∈[0,qprog−1]

|Pr[ONEi]− Pr[ONEi+1]|

≤ 1
2 ∑

i∈[0,qprog−1]
|Pr[ONEi]− Pr[ONEi]|+

∣∣Pr[ONEi]− Pr
[
ÔNEi

]∣∣+ ∣∣Pr
[
ÔNEi

]
− Pr[ONEi+1]

∣∣ .

We show that |Pr[ONEi∗ ]− Pr[ONEi∗ ]| ≤ 2q√
|X|

for every i∗ ∈ [0, qprog − 1] using Lemma 3.6.

Consider the following oracle algorithm B that has oracle access to a function F : X → {0, 1}.

B: B first generates a fresh random oracle V0 : X → Y. Then, B executes A |V
′
0〉,Oprog(1λ) just before A

makes the i∗ + 1-th query to Oprog, where V ′0 is defined as

V ′0(x) =

{
⊥ (if F(x) = 1)
V0(x) (otherwise)

and Oprog is simulated as follows.
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Oprog: On the i-th call, it generates si ← X. It also generates ui ← Y, updates the oracle A can
access to into V ′i defined as

V ′i (x) =


⊥ (if F(x) = 1)
uj (if ∃j ≤ i : x = sj)

V0(x) (otherwise)

and returns (si, Vi(si)) = (si, ui).

If F equals δ⊥ (that is, a constant function that outputs 0 for all inputs), then V ′i is functionally
equivalent to Vi. If F equals δsi∗+1 (that is, a point function that outputs 1 only for si∗), then V ′i is
functionally equivalent to Vi{si∗+1}. B simulates Game i∗ (resp. Game i∗) for A just before A makes the
i∗ + 1-th query to Oprog if F = δ⊥ (resp. F = δsi∗+1). Thus, from Lemma 3.6, the trace distance between
the internal state of A in Game i∗ and that in Game i∗ at the point just before A makes i∗ + 1-th query to
Oprog can be bounded by 2q√

|X|
. Moreover, the remaining procedures of Game i∗ and Game i∗ are exactly

the same. Therefore, we obtain |Pr[ONEi∗ ]− Pr[ONEi∗ ]| ≤ 2q√
|X|

.

Similarly to |Pr[ONEi∗ ]− Pr[ONEi∗ ]|, we can obtain
∣∣Pr
[
ÔNEi∗

]
− Pr[ONEi∗+1]

∣∣ ≤ 2q√
|X|

. Also,

we can see that the difference between Game i∗ and Ĝame i∗ is only conceptual, and thus we have∣∣Pr[ONEi∗ ]− Pr
[
ÔNEi∗

]∣∣ = 0.
Overall, we obtain

∣∣∣Pr
[
1← Expadp-prog

qprog,A (1λ)
]
− 1

2

∣∣∣ ≤ 2q·qprog√
|X|

. � (Lemma 3.7)

4 KDM-CPA Security of U⊥m with OTP as DEM

In this section, we show that the KDM-CPA security in the QROM of a PKE scheme U⊥m,OTP =

U⊥m,OTP(dPKE, H) can be reduced to the SDM-OW-RSA security of the underlying dPKE without square
root security loss. U⊥m,OTP is constructed by using U⊥m(dPKE, H) [BHH+19] as KEM and OTP as DEM.
Since we focus on KDM-CPA security here, U⊥m,OTP omits the ciphertext validity check by re-encryption
in the decryption algorithm, which is performed in U⊥m . For the construction of U⊥m , see Appendix A.

4.1 Construction

Construction 4.1. Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme whose message space
isM. We assume thatM is an abelian group and denote the operation inM as+. Let H :M→ {0, 1}∗
be a hash function. We construct U⊥m,OTP = (KG, Enc, Dec) as follows.

KG(1λ): Return (pk, sk)← dKG(1λ).

Enc(pk, m): Generate s←M and compute ct← dEnc(pk, s) and t = H(s)⊕m. ReturnCT = (ct, t).

Dec(sk, CT′): Parse CT′ = (ct′, t′), compute s′ ← dDec(sk, ct′), and return ⊥ if s′ = ⊥. Otherwise,
return t′ ⊕ H(s′).

We see that if dPKE is (δ1, δ2)-correct, then U⊥m,OTP is δ1-correct for any δ1.
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4.2 Security Proof

We prove the following theorem.

Theorem 4.2. Let ` = `(λ) be a polynomial and dPKE be a (δ1, δ2)-correct deterministic PKE. Let A be
a QPT adversary against the KDM-CPA security of U⊥m,OTP = U⊥m,OTP(dPKE, H) making q (superposition)
random oracle queries to H with query depth d and qkdm (classical) queries to OKDM. Also, let q f be the
upper bound of the total number of (classical) random oracle queries made by KDM functions. Then,
there exists a QPT adversary B such that

Advkdm-cpa
U⊥m,OTP,`,A

(1λ) ≤ 4d · Advsdm-ow-rsa
dPKE,`,qkdm,B(1

λ) +
4(q + q f )qkdm√

|M|
+ (4d + 1) · qkdm · δ2 . (3)

Proof. We complete the proof using hybrid games. Let SUCX be the event that the final output is 1
in Game X. We assume that A makes at least one KDM query before the first set of random oracle
queries and between d∗-th set of random oracle queries and (d∗ + 1)-th set of random oracle queries for
every d∗ ∈ [d− 1]. This assumption is without loss of generality in the sense that any adversary can be
transformed into one satisfying this condition without changing the number and depth of random oracle
queries.

Game 1: This is Expkdm-cpa
U⊥m,OTP,`,A

(1λ).

Initialize: First, the challenger chooses a challenge bit b← {0, 1}. The challenger also generates
a fresh random oracle H. Next, the challenger generates (pkk, skk) ← dKG(1λ) for every
k ∈ [`]. The challenger sets sk := (sk1, . . . , sk`) and pk := (pk1, . . . , pk`), and executes
b′ ← A |H〉,OKDM(pk). OKDM behaves as follows.

OKDM: On the i-th call with input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Compute ti = H(si)⊕ f H

i,b(sk).
3. Set CTi ← (cti, ti).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

Game 2: This is the same as Game 1 except the behavior of OKDM. In this game, OKDM adaptively
reprograms the random oracle that A (and functions queried by A) can access every time it is
invoked. The detailed description is as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and compute ti = ui ⊕ f Vi−1

i,b (sk).

3. Set CTi ← (cti, ti).
Also, it updates the random oracle into

Vi(x) =

{
uj (if ∃j ≤ i : x = sj)

H(x) (otherwise),

From Lemma 3.7, we have |Pr[SUC1]− Pr[SUC2]| =
4(q+q f )qkdm√

M .
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Game 3: This game is the same as Game 2 except that ui is replaced with ui ⊕ f Vi−1
i,b (sk) for every

i ∈ [qkdm]. More concretely, the behavior of OKDM is changed as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, it updates the random oracle into

Vi(x) =

uj ⊕ f
Vj−1

j,b (sk) (if ∃j ≤ i : x = sj)

H(x) (otherwise),

This change does not affect the view of A since ui is chosen uniformly at random and independently
of f Vi−1

i,b (sk) for every i ∈ [qkdm]. Thus, we have |Pr[SUC2]− Pr[SUC3]| = 0.

Game 4: This game is the same as Game 3 except for the following. The challenger first generates r ←M.
The challenger then generates ∆1, . . . , ∆` ←M and generates (pkk, skk)← dKG(1λ; r + ∆k) for
every k ∈ [`].

The above change does not affect the view of A since the distribution of (pkk, skk)k∈[`] does not
change. Thus, we have |Pr[SUC3]− Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except that si is replaced with r + si. More concretely, the
challenger generates cti as cti ← dEnc(pkki , r + si) for every i ∈ [qkdm]. Also, the challenger sets
Vi as

Vi(x) =

{
uj ⊕ f

Vj−1

j,b (sk) (if ∃j ≤ i : x = r + sj)

H(x) (otherwise)

for every i ∈ [qkdm].

We have |Pr[SUC4]− Pr[SUC5]| = 0 since this change also does not affect the view of A .
From the next game, we use the function f̂i,b described in Figure 1. f̂i,b is designed so that it computes

f Vi−1
i,b (sk) if it has oracle access to H and is given r + si as an input. For this aim, f̂ H

i,b sequentially
computes Vj from V1, V2, ..., Vi−1 using H. They are denoted as V̂j in the description of f̂ H

i,b. Here, the
computation of V̂j by f̂ H

j,b is local, and thus f̂ H
j,b does not perform the updates of the random oracle that A

can access.

Game 6: For every i ∈ [qkdm], we define a function . Then, Game 6 is the same as Game 5 except that
the challenger sets Vi as

Vi(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i : x = r + sj)

H(x) (otherwise)

for every i ∈ [qkdm].
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f̂ H
i,b

[
(sj, uj, f j,b)j∈[i], (∆

k)k∈[`]
]
(x) :

Hardwired: (sj, uj, f j,b)j∈[i], (∆
k)k∈[`].

Oracle H.
Input: x ∈ M.

1. Compute w = x− si and (pkk, skk)← dKG(1λ; w + ∆k) for every k ∈ [`], and set sk = (sk1, . . . , sk`).
2. Repeat the following from j = 1 to i− 1, where V̂0 = H.

(a) Compute vj = uj ⊕ f
V̂j−1

j,b (sk).

(b) Set V̂j as

V̂j(x′) =

{
vj′ (if ∃j′ ∈ [qkdm] : j′ ≤ j and x′ = w + sj′ )

H(x′) (otherwise).

3. Return f V̂i−1
i,b (sk).

Figure 1: The description of f̂ H
i,b.

Since f̂i,b correctly computes f Vi−1
i,b (sk) if it has oracle access to H and is given r + si as an input

for every i ∈ [qkdm], the functionality of Vi does not change between Game 5 and 6 for every i ∈ [qkdm].
Therefore, we have |Pr[SUC5]− Pr[SUC6]| = 0.

Game 7: This game is the same as Game 6 except that for every i ∈ [qkdm], Vi is defined as

Vi(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i : dEnc(pkk j , x) = ctj)

H(x) (otherwise).

If cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], the functionality of Vi does
not change for every i ∈ [qkdm] between Game 6 and 7. Thus, from the correctness of dPKE, we have
|Pr[SUC6]− Pr[SUC7]| ≤ qkdm · δ2.

At Game 7, A can access to information of the challenge bit b only through d sets of random oracle
queries. Below, we use d more hybrid games and remove information of b from those d sets of random
oracle queries one by one.

Game 7 + d∗ (d∗ = 1, . . . , d): This is the same game as Game 7 except OKDM defers updating the random
oracle. Concretely, OKDM does not update the random oracle until A makes the d∗-th set of random
oracle queries. The detailed description of OKDM is as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, if A already makes d∗-th set of queries to the random oracle, it updates the random
oracle into

Vi(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i : dEnc(pkk j , x) = ctj)

H(x) (otherwise).
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We have
∣∣Pr[SUC7+d]− 1

2

∣∣ = 0 since in Game 7 + d, the view of A is completely independent of
b. In order to estimate |Pr[SUC7+d∗−1]− Pr[SUC7+d∗ ]| for every d∗ ∈ [d], we consider the following
procedure Setupd∗ .

Setupd∗: First, the challenger chooses a challenge bit b ← {0, 1}. The challenger also generates a
fresh random oracle H. Next, the challenger generates (pkk, skk) ← dKG(1λ; r + ∆k), where
r ←M and ∆k ←M for every k ∈ [`]. The challenger sets pk := (pk1, . . . , pk`), and executes
A |H〉,OKDM(pk) just before A makes the d∗-th set of random oracle queries. OKDM behaves as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then, the challenger sets
Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkk j , x) = ctj)

H(x) (otherwise)

and Si∗ = {x|∃j ∈ [i∗] : dEnc(pkk j , x) = ctj}. The challenger also generates si,k ← M and
generates cti,k ← dEnc(pkk, r + si,k) for every i ∈ [i∗ + 1, qkdm] and k ∈ [`]. The challenger then
sets

z = (|st〉 , b, pk, (∆k)k∈[`], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[`]) , (4)

where |st〉 is the internal state of A at this point. The challenger outputs (Vi∗ , H, Si∗ , z, Oaux = H).

Also, we consider the following QPT algorithm Ad∗ that has oracle access to O ∈ {Vi∗ , H} and
Oaux = H.

Ad∗: Given an input z, Ad∗ parse it as Equation (4) and executes A |O〉,OKDM from A’s d∗-th set of random
oracle queries using |st〉 as the internal state of A at that point. Ad∗ simulates OKDM as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Set cti ← cti,ki (and set si ← si,ki ).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, it updates the random oracle that A can access to into

Vi(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i : dEnc(pkk j , x) = ctj)

H(x) (otherwise).

When A terminates with output b′, Ad∗ outputs 1 if b = b′ and 0 otherwise.

Suppose we execute Setupd∗ and Ad∗ successively. They simulate the view of A in Game 7 + d∗ − 1
(resp. Game 7 + d∗) if O = Vi∗ (resp. O = H). Also, Ad∗ outputs 1 if and only if the output of
the simulated games is 1. Thus, we have Pr[SUC7+d∗−1] = Pr

[
1← A |O=Vi∗ ,Oaux=H〉

d∗ (z) : Setupd∗
]
and
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Pr[SUC7+d∗ ] = Pr
[
1← A |O=H,Oaux=H〉

d∗ (z) : Setupd∗
]
. From Lemma 3.4, there exists a QPT algorithm

Dd∗ such that

|Pr[SUC7+d∗−1]− Pr[SUC7+d∗ ]| ≤ 4 · Pr
[

T ∩ Si∗ 6= ∅
∣∣∣ T ← D |Vi∗ ,H,Oaux=H〉

d∗ (z), Setupd∗
]

.

Note that Ad∗ makes queries to O ∈ {Vi∗ , H} with depth 1 by the following reason. Ad∗ is supposed to
simulate Game 7 + d∗ − 1 (resp. Game 7 + d∗) for A from the point that A makes d∗-th set of random
oracle queries when Ad∗ accesses to O = Vi∗ (resp. O = H). The answers to A’s (d∗ + 1) to d-th set
of random oracle queries are identical between Game 7 + d∗ − 1 and 7 + d∗. (Here, A makes at least
one KDM query between the d∗-th and (d∗ + 1)-th set of random oracle queries due to the assumption.
Thus, they are answered using an updated random oracle.) Ad∗ can simulate them by using Oaux = H
and information included in z. Therefore, Ad∗ uses its oracle O only for answering to A’s d∗-th set of
random oracle queries, and thus Ad∗’s query depth to O is 1.

We bound the right-hand side probability. In order to bound it, using Dd∗ , we construct the following
adversary Bd∗ against the SDM-OW-RSA security of dPKE.

Bd∗: Given pk = (pk1, . . . , pk`), (∆k)k, and (si,k, cti,k)i∈[qkdm],k∈[`], Bd∗ first simulates Setupd∗ . Bd∗

chooses a challenge bit b ← {0, 1} and prepares a fresh random oracle H. Bd∗ then executes
A |H〉,OKDM(pk) just before A makes the d∗-th set of random oracle queries, where OKDM is simulated
as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Set cti ← cti,ki (and set si ← si,ki ).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then, Bd∗ sets Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂ H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkk j , x) = ctj)

H(x) (otherwise).

Bd∗ also sets

z = (|st〉 , b, pk, (∆k)k∈[`], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[`]) ,

where |st〉 is the internal state of A at this point. Finally, Bd∗ outputs T ← D |Vi∗ ,H,Oaux=H〉
d∗ (z).

Bd∗ perfectly simulates a successive execution of Setupd∗ and Dd∗ . Also, in the simulated execution,
if T ∩ Si∗ 6= ∅ occurs and cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], Bd∗ wins.
Thus, we have

Pr[T ∩ Si∗ 6= ∅ : T ← D |Vi∗ ,H,Oaux=H〉
d∗ (z), Setupd∗ ] ≤ Advsdm-ow-rsa

dPKE,`,qkdm,Bd∗
(1λ) + qkdm · δ2.

From the discussions so far, by settingB asBd∗ such thatAdvsdm-ow-rsa
dPKE,`,qkdm,Bd∗

(1λ) ≤ Advsdm-ow-rsa
dPKE,`,qkdm,B(1

λ)

for every d∗ ∈ [d], we see that there exists a QPT B that satisfies Equation (3). � (Theorem 4.2)

5 SDM-OW-RSA Secure Deterministic PKE

In this section, we show that the SDM-OW-RSA security in the QROM of a tweaked version of T
transformation [BHH+19] can be reduced to the IND-CPA security of the underlying PKE scheme. For
the construction of the original T transformation, see Appendix A.
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5.1 Construction

Construction 5.1. Let PKE = (KG, Enc, Dec) be a PKE scheme whose message space is an abelian group
M with the operation+. We also let the random coin space of KG and Enc beRkg andRenc, respectively.
Let G = (Gkg, Genc) be a pair of hash functions, where Gkg :M→Rkg and Genc :M→Renc . We
construct T transformation with hash key generation THKG = THKG(PKE, G) = (dKG, dEnc, dDec) as
follows.

dKG(1λ; r): Return (pk, sk)← KG(1λ; Gkg(r)).

dEnc(pk, m): Return ct← Enc(pk, m; Genc(m)).

dDec(sk, CT): Return m← Dec(sk, ct).

Recall that we define a deterministic PKE scheme is (δ1, δ2)-correct if it is δ1-correct, and under a
randomly generated key (pk, sk), the probability that a randomly generated message m has a collision, that
is, another message m′ such that dEnc(pk, m) = dEnc(pk, m′) is bounded by δ2. Under this definition,
as shown by [LW21, Lemma 4], T(PKE, Genc) is (δ, 2δ)-correct if PKE is δ-correct for any δ. We
can easily see that the correctness of THKG(PKE, G) can be reduced to that of T(PKE, Genc), and thus
THKG(PKE, G) is (δ, 2δ)-correct if PKE is δ-correct for any δ.

5.2 Security Proof

We prove the following theorem.

Theorem 5.2. Let ` = `(λ) and qsdm = qsdm(λ) be polynomials and PKE be a PKE scheme. Let A be a
QPT adversary against SDM-OW-RSA security of THKG = THKG(PKE, G) making total q (superposition)
random oracle queries to Gkg and Genc with query depth d, and outputs a list of size at most t as the final
output. Then, there exists a QPT adversary B such that

Advsdm-ow-rsa
THKG,`,qsdm,A(λ) ≤ (d + 2) ·

(
2 · Advind-m-cpa

PKE,`,B (1λ) +
4(q + t)`(qsdm + 1)

|M|

)
. (5)

Proof. Without loss of generality, we assume that A makes random oracle queries to a single random
oracle G = Gkg × Genc instead of separate two random oracles Gkg and Genc in the security games. Let
Â be a QPT adversary that runs in the same way as A except that before it terminates, Â computes and
discards G(r′) for all r′ contained in A’s final output T. Then, Â makes at most q + t queries to G with
query depth d + 1, and we have Advsdm-ow-rsa

THKG,`,qsdm,A(λ) = Advsdm-ow-rsa
THKG,`,qsdmÂ(λ). We estimate the latter using

hybrid games. Let SUCX be the event that the final output is 1 in Game X.

Game 1: This is Expsdm-ow-rsa
THKG,`,qsdm,Â(1

λ).

Initialize: The challenger generates r ←M and generates (pkk, skk)← KG(1λ; Gkg(r + ∆k)),
where ∆k ← M for every k ∈ [`]. Then, for every k ∈ [`] and i ∈ [qsdm], the challenger
generates si,k ←M and computes cti,k ← Enc(pkk, r + si,k; Genc(r + si,k)). The challenger
executes T ← Â |G〉((pkk, ∆k)k∈[`], (si,k, cti,k)i∈[qsdm],k∈[`]).

Finalize: The challenger outputs 1 if and only if T contains r′ such that r′ = r + si,k holds for
some i ∈ [qsdm] and k ∈ [`].
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Game 2: This game is the same as Game 1 except that G = Gkg × Genc is replaced with

V(x) =


uk (if ∃k ∈ [`] : x = r + ∆k)

vi,k (if ∃i ∈ [qkdm] and k ∈ [`] : x = r + si,k)

G(x) (otherwise),

where uk, vi,k ← Rkg ×Renc for every k ∈ [`] and i ∈ [qkdm].

We have |Pr[SUC1]− Pr[SUC2]| = 0 since this change does not affect the view of A . Below, we let
S = {r + ∆k}k∈[`] ∪ {r + si,k}i∈[qsdm],k∈[`].

Before proceeding the hybrid games, We provide the high level overview of the rest of games. In Game
2, the key generation randomness Gkg(r + ∆k) and encryption randomness Genc(r + si,k) correlate with
the encrypted plaintexts r + si,k. Thus, next, at transition from Game 2 to 3, we eliminate the correlation
by programming the random oracle. Concretely, in Game 3, the above randomnesses are generated by
using V, but Â can access to only the punctured oracle G \ S, not V. In order to justify the programming,
we use semi-classical O2H lemma (Lemma 3.2). By doing so, we can justify the programming without
square root security loss, and obtain Pr[SUC2] ≤ (d + 2)Pr[Find3], where FindX be the event that the
punctured oracle G \ S returns 1 in Game X. Thus, all we have to do is to bound Pr[Find3]. At Game 3,
from the view of A , the key generation randomness and encryption randomness are uniformly random
strings that are independent of r, that is, uk and vi,k. Namely, the correlation issue above are solved. Thus,
at transition from Game 3 to 4, we use the IND-CPA security of PKE, and eliminate information of r
from cti,k. In Game 4, except the punctured oracle G \ S, r is completely hidden from the view of Â .
Therefore, by using Lemma 3.3, we can bound Pr[Find4] and complete the proof.

Game 3: This game is the same as Game 2 except that Â can access to the punctured oracle G \ S.
(pkk, skk) and cti,k are still generated using V for every k ∈ [`] and i ∈ [qsdm].

Let FindX be the event that the punctured oracle G \ S returns 1 in Game X. From the definition of
Â , we have Pr [SUC3 ∧ ¬Find3] = 0. Thus, we have√

Pr[SUC2] =

∣∣∣∣√Pr[SUC2]−
√

Pr [SUC3 ∧ ¬Find3]

∣∣∣∣ .

By applying Lemma 3.2, we obtain∣∣∣∣√Pr[SUC2]−
√

Pr [SUC3 ∧ ¬Find3]

∣∣∣∣ ≤ √(d + 2) · Pr[Find3] .

Therefore, we also obtain Pr[SUC2] ≤ (d + 2)Pr[Find3].

Game 4: This game is the same as Game 3 except that cti,k is generated as cti,k ← Enc(pkk, 0) for every
k ∈ [`] and i ∈ [qsdm].

In order to estimate |Pr[Find3]− Pr[Find4]|, using Â , we construct the following QPT adversary B
against the IND-CPA security of PKE. In the description, a function Test takes a value x and a set X as
inputs and outputs 1 if x ∈ X and 0 otherwise.

Initialize: Given (pkk)k, B first generates r ← M. B then generates ∆k ← M for every k ∈ [`],
si,k ←M for every i ∈ [qsdm] and k ∈ [`], and a fresh random oracle G. Next, for every i ∈ [qsdm]
and k ∈ [`], B queries (k, r + si,k, 0) to its oracle OIND and obtains cti,k. Finally, B sets b′ = 0 and
executes T ← Â |G\S〉((pkk, ∆k)k∈[`], (si,k, cti,k)i∈[qsdm],k∈[`]), where G \ S is simulated as follows.
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G \ S: When Â makes a (superposition) query |x〉 |y〉 to G \ S, B first computes |x〉 |y〉 |Test(x, S)〉
and measures |Test(x, S)〉. If the result is 0, B just returns |x〉 |y⊕ G(x)〉 to Â . Otherwise, B set
the value of b′ to 1, and returns |x〉 |y⊕ G(x)〉 to Â .

Finalize: If Â terminates, B terminates with output b′.

Let the challenge bit in Expind-m-cpa
PKE,`,B be b. B perfectly simulates Game 3 and 4 for A when b = 0

and b = 1, respectively. Also, B outputs b′ = 1 if and only if Find3 and Find4 occur in the simulated
Games. Thus, we have

Advind-m-cpa
PKE,`,B (1λ) =

∣∣∣∣Pr
[
b = b′

]
− 1

2

∣∣∣∣
=

1
2

∣∣Pr
[
b′ = 1|b = 0

]
− Pr

[
b′ = 1|b = 1

]∣∣
=

1
2
|Pr[Find3]− Pr[Find4]| .

Finally, we bound Pr[Find4]. In Game 4, conditioned on (pkk, ∆k)k∈[`] and (si,k, cti,k)i∈[qsdm],k∈[`],
we have Prr←M[m ∈ S] ≤ `(qsdm+1)

|M| for any m ∈ M. Thus, from Lemma 3.3, we obtain Pr[Find4] ≤
4(q+t)`(qsdm+1)

|M| .

Overall, we see that there exists a QPT B that satisfies Equation (5). � (Theorem 5.2)

6 Conclusion: KDM Security of FO Transformations

In the conclusion, we show that the KDM security in the QROM of FO transformations can be reduced to
the IND-CPA security of the underlying PKE scheme without square root security loss.

Wefirst provide the security bound for theKDM-CPAsecurity of the PKE schemeU⊥m,OTP(THKG(PKE, G), H)
in terms of the IND-CPA security of the underlying PKE. In order to capture the most general setting, we
allow adversaries for the KDM-CPA security of U⊥m,OTP(THKG(PKE, G), H) and KDM functions queried
by them to access to not only H but also G. The security proof we provide in Section 4.2 still goes
through in that setting. Then, the following theorem holds.

Theorem 6.1. Let ` = `(λ) be a polynomial and PKE be a δ-correct PKE scheme. Let Akdm be an
adversary for the KDM-CPA security of U⊥m,OTP(THKG(PKE, G), H) making qkdm KDM queries. Suppose
Akdm makes at most qG (resp. qH) super-position random oracle queries to G (resp. H) with query depth
dG (resp. dH). Also, suppose KDM functions queried by Akdm makes at most qG

f (resp. qH
f ) classical

random oracle queries to G (resp. H). Then, there exists a QPT adversary Aind such that

Advkdm-cpa
U⊥m,OTP(THKG(PKE,G),H),`,Akdm

(1λ)

≤ 4dH ·O(dG + dH · qG
f )

(
2 · Advind-m-cpa

PKE,`,Aind
(1λ) +

O(qG + qH · (`+ qG
f )) · ` · (qkdm + 1)

|M|

)

+
4(qH + qH

f )qkdm√
|M|

+ 2(4dH + 1) · qkdm · δ . (6)
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Proof. We estimate the number of queries to G made by Bd∗ appeared in the proof of Theorem 4.2 when
Akdm is used inside of it. First, Bd∗ make O(qG) queries with depth O(dG) in order to simulate queries to
G made by Dd∗ . Also, every time Dd∗ makes a query to Vi∗ , Bd∗ needs to make at most O(`+ qG

f ) queries
to G with depth O(qG

f ) in order for the computation of f̂i,b. Since Dd∗ makes at most O(qH) queries to
Vi∗ with depth O(dH), to simulate Dd∗’s queries to Vi∗ , Bd∗ needs to make at most O(qH · (`+ qG

f ))

queries to G with query depth O(dH · qG
f ). Therefore, Bd∗ makes at most O(qG + qH · (`+ qG

f )) queries
to G with query depth O(dG + dH · qG

f ). This holds for every d∗ ∈ [d]. Also, Since Dd∗ outputs a list of
size O(qH), so does Bd∗ for every d∗ ∈ [d]. From this fact and Theorems 4.2 and 5.2, we see that there
exists a QPT Aind that satisfies Equation (6). � (Theorem 6.1)

Remark 6.2 (On the value of qG
f and qH

f .). Note that the values of qG
f and qH

f are determined depending on
usage scenarios and independent of the adversary’s behavior. For example, in the usage scenario where
we need only circular security such as anonymous credential [CL01], we can set qG

f = qH
f = 0. In that

case, the multiplicative term of Advind-m-cpa
PKE,`,Aind

(1λ) in Equation (6) is roughly the square of the query depth
of Akdm to the random oracles. It is asymptotically the same as the multiplicative term appeared in the
proof of IND-CCA secure KEM using O2H lemma with MRM [KSS+20]. In order to capture a wide
range of applications, we allow KDM functions to access the random oracles in this work, but we think
qG

f and qH
f are not large in many applications.

LetFO⊥m,OTP(PKE, Genc, H) be a PKE scheme constructed by combining theKEMU⊥m(T(PKE, Genc), H)

with OTP as DEM. We provide the formal description of T and U⊥m in Appendix A. From Theorem 6.1,
we can show that FO⊥m(PKE, Genc, H) satisfies KDM-CPA security with asymptotically the same security
loss with respect to the underlying IND-CPA secure PKE as Equation (6). Concretely, we have the
following theorem.

Theorem 6.3. Let ` = `(λ) be a polynomial and PKE be a PKE scheme. Let Akdm be an adversary for
the KDM-ATK security of FO⊥m,OTP(PKE, Genc, H) where ATK ∈ {CPA,CCA}. Then, it holds that for
atk ∈ {cpa, cca}

Advkdm-atk
FO⊥m,OTP(PKE,Genc,H),`,Akdm

(1λ) ≤ Advkdm-atk
U⊥m,OTP(THKG(PKE,G),H),`,Akdm

(1λ) +
`(`− 1)

2|M| .

Proof. Suppose we modify the security game Expkdm-atk
FO⊥m,OTP,`,Akdm

(1λ) so that the k-th key pair (pkk, skk) is

generated by using Gkg(rk) as the random coin for KG for every k ∈ [`], where Gkg : M→ Rkg is a
random oracle and rk ←M for every k ∈ [`]. If r1, . . . , r` are mutually different, then the distribution of
` key pairs does not change by this modification. Thus, by the modification, Akdm’s advantage is changed
at most `(`−1)

2|M| . We can see that the security game is now exactly Expkdm-atk
U⊥m,OTP(THKG(PKE,G),H),`,Akdm

(1λ).
Therefore, we obtain the theorem. � (Theorem 6.3)

Thus, we see that the KDM-CPA security of FO⊥m,OTP(PKE, Genc, H) is reduced to that of U⊥m,OTP(THKG

(PKE, G), H) with additional security loss `(`−1)
2|M| which is absorbed by the additive term of Equation (6).

Extension to KDM-CCA security. In the main body of this paper, we focused on KDM-CPA security.
Our proof technique is also compatible with KDM-CCA security. Concretely, we can prove the KDM-CCA
security of a PKE scheme constructed by using a variant of U⊥m called U⊥,keyconf

m = U⊥,keyconf
m (dPKE, H)

as KEM and OTP-then-MAC as DEM without square root security loss if the underlying dPKE is
SDM-OW-RSA secure and additionally satisfies injectiveness. The security proof is a combination of
our proof for the KDM-CPA security of U⊥m,OTP and the proof for the IND-CCA security of U⊥,keyconf

m
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by [BHH+19, KSS+20]. We provide the formal description of this construction and security proof for the
KDM-CCA security of it in Appendix B.

By following a similar argument as the case of KDM-CPA security, we can show that the KDM-CCA
security of the KEM FO⊥,keyconf

m (PKE, Genc, H) = U⊥,keyconf
m (T(PKE, Genc), H) combined with OTP-

then-MAC as DEM, can be reduced to the IND-CPA security of PKE. The multiplicative term in the
security bound with respect to the underlying PKE is roughly the same as Equation (6) though some
additive terms are added to the security bound.
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A T, U⊥m, and U⊥,keyconf
m Transformations

We Recall the two transformations T and U that together yield FO. T and U are first introduced by
Hofheinz et al. [HHK17]. In this work, we adopt variants of T and U defined by Bindel et al. [BHH+19].
The only difference between the transformations by Hofheinz et al. and those by Bindel et al. is that the
validity check by encryption in the decryption algorithm is performed as a part of T in the former while it
is performed as a part of U in the latter. Thus, the resulting FO is the same regardless of which definitions
of T and U we use.

ConstructionA.1 (T transformation). Let PKE = (KG, Enc, Dec) be a PKE scheme whose message space
isM. We also let the random coin space of Enc beRenc. Let Genc :M→Renc be a hash function. T
transformation T = T(PKE, Genc) = (KGT, EncT, DecT) is described as follows.

KGT(1λ): Return (pk, sk)← KG(1λ).

EncT(pk, m): Return ct← Enc(pk, m; Genc(m)).

DecT(sk, CT): Return m← Dec(sk, ct).

Construction A.2 (U⊥m transformation). Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme
whose message space isM. Let H : M → {0, 1}∗ be a hash function. A KEM scheme U⊥m =
U⊥m(dPKE, H) = (KGU⊥m , EncU⊥m , DecU⊥m ) is described as follows.

KGU⊥m (1
λ): Return (pk, sk)← dKG(1λ).

EncU⊥m (pk): Generate s←M and compute ct← dEnc(pk, s). Return ct as a ciphertext and H(s) as a
session key.

DecU⊥m (sk, ct′): Compute s′ ← dDec(sk, ct′) and return ⊥ if s′ = ⊥ or ct 6= dEnc(pk, s′). Otherwise,
return H(s′).

Construction A.3 (U⊥,keyconf
m transformation). Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE

scheme whose message space isM. Let H : M → {0, 1}∗ be a hash function. A KEM scheme
U⊥,keyconf

m = U⊥,keyconf
m (dPKE, H) = (KGU⊥,keyconf

m
, EncU⊥,keyconf

m
, DecU⊥,keyconf

m
) is described as follows.

KGU⊥,keyconf
m

(1λ): Return (pk, sk)← dKG(1λ).

EncU⊥,keyconf
m

(pk): Generate s ←M and compute ct ← dEnc(pk, s) and seskey‖kc ← H(s). Return
(ct, kc) as a ciphertext and seskey as a session key.

DecU⊥,keyconf
m

(sk, (ct′, kc′)): Compute s′ ← dDec(sk, ct′) and return ⊥ if s′ = ⊥ or ct′ 6= dEnc(pk, s′).
Otherwise, compute seskey′‖kc′′ ← H(s′) and returns seskey′ if kc′ = kc′′ and ⊥ otherwise.
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B KDM-CCA Security of U⊥,keyconf
m with OTP-then-MAC as DEM

In this section, we show that a PKE scheme that we denote U⊥,keyconf
m,OTP+MAC = U⊥,keyconf

m,OTP+MAC(dPKE, H) satisfies
KDM-CCA security in the QROM without square root security loss if the underlying dPKE satisfies
SDM-OW-RSA security and injectiveness.

B.1 Definitions

Definition B.1 (KDM-CCA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme. We
define Expkdm-cca

PKE,`,A (1
λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b ← {0, 1}. Next, the challenger generates
(pkk, skk) ← KG(1λ) for every k ∈ [`]. The challenger sets sk := (sk1, . . . , sk`), and executes
b′ ← AOKDM,ODec((pkk)k∈[`]).

OKDM: On the i-th call with input (ki, fi,0, fi,1), where ki ∈ [`] and fi,0 and fi,1 are efficiently computable
functions with the same output length, it returns CTi ← Enc(pkki , fi,b(sk)).

ODec: On input (k′, CT′), it returns ⊥ if (k′, CT′) = (k j, CTj) for j ≤ i, where i is the number of KDM
queries already made at this point. Otherwise, it returns Dec(skk′ , CT′).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is KDM-CCA secure if for any polynomial ` = `(λ) and QPT adversary A , we have
Advkdm-cca

PKE,`,A (λ) =
∣∣∣Pr
[
1← Expkdm-cca

PKE,`,A (1
λ)
]
− 1

2

∣∣∣ = negl(λ).

Definition B.2 (Injectivity of deterministic PKE).We say that a deterministic PKE scheme dPKE =
(dKG, dEnc, dDec) is η-injective if

Pr
[
dEnc(pk, ·) is not injective |(pk, sk)← dKG(1λ)

]
≤ η .

If dPKE is constructed in the random oracle model, the probability is taken over the choice of (pk, sk)←
dKG(1λ) and the random oracle.

Definition B.3 (Finding failing ciphertext). Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE
scheme. We define Exptffc

dPKE,A(1
λ) for an adversary A as follows.

Initialize: First, the challenger generates (pk, sk) ← dKG(1λ). The challenger executes Lffc ←
A(pk, sk).

Finalize: The challenger outputs 1 if there exists (m, CT) ∈ M× Lffc such that CT = dEnc(pk, m)
and dDec(sk, CT) 6= m. Otherwise, the challenger outputs 0.

We define Advffc
dPKE,A(λ) = Pr

[
1← Exptffc

dPKE,A(1
λ)
]
.

The above definition is slightly different from the original definition used in [BHH+19, KSS+20]. In
the original definition, A is given only the public key pk, but in Definition B.3, (pk, sk) is given to A . As
shown below, we bound Advffc

PKE,A(λ) statistically, and thus the difference is not a big issue.
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Lemma B.4. Let PKE = (KG, Enc, Dec) be a δ-correct PKE scheme whose message space is an abelian
group M with the operation +. We also let the random coin space of KG and Enc be Rkg and
Renc, respectively. Let G = (Gkg, Genc) be a pair of hash functions, where Gkg : M → Rkg and
Genc :M→Renc. Suppose THKG = THKG(PKE, G) constructed as Construction 5.1 is η-injective. Let
A be an adversary that runs in Exptffc

THKG,A(1
λ) and makes at most q queries to G with query depth d and

returns Lffc of size at most qdec. Then, we have Advffc
THKG,A(λ) ≤ ((4d + 1) · δ +

√
3η) · (q + qdec) + η.

This lemma can be proven in almost the same way as Lemma 6 in [BHH+19] that guarantees the
same bound for T. We omit the formal proof.

Definition B.5 (Strong OT-MAC). A strong OT-MAC MAC is a three tuple (MGen, Tag, Vrfy) of PPT
algorithms. Below, let Dmac be the domain of MAC.

• MGen(1λ) : Given a security parameter 1λ, outputs a key mk.

• Tag(mk, m) : Given a key mk and a message m ∈ Dmac, outputs mac.

• Vrfy(mk, m, mac) : Given a key mk, message m ∈ Dmac, and mac, outputs > or ⊥.

We require the following properties.

Correctness: For every m ∈ Dmac and mk← MGen(1λ), we have Vrfy(mk, m, Tag(mk, m)) = >.

Security: For any QPT adversary A , it holds that

Advsot-mac
MAC,A (1λ) = Pr

[
Vrfy(mk, m, mac) = >∧
(m, mac) 6= (m1, mac1)

∣∣∣∣ mk← MGen(1λ)

(m, mac)← A(1λ)Tag(mk,·)

]
≤ negl(λ),

where A can access the oracle only once and m1 is the query from A and mac1 is the response.

We have the following theorem.

Theorem B.6. There exists an information-theoretically secure strong OT-MAC.

B.2 Construction

ConstructionB.7. LetMAC = (MGen, Tag, Vrfy) be a strong OT-MAC. Let dPKE = (dKG, dEnc, dDec)
be a deterministic PKE scheme whose message space isM. We assume thatM is an abelian group
and denote the operation in M as +. Let H be a hash function. We construct U⊥,keyconf

m,OTP+MAC =

U⊥,keyconf
m,OTP+MAC(dPKE, H) = (KG, Enc, Dec) as follows.

KG(1λ): Return (pk, sk)← dKG(1λ).

Enc(pk, m): Generate s←M and compute ct← dEnc(pk, s) and otp‖mk‖kc← H(pk‖s). Compute
t = otp⊕m and mac← Tag(mk, t). Return CT = (ct, kc, t, mac).

Dec(sk, CT′): Parse CT′ = (ct′, kc′, t′, mac′), compute s′ ← dDec(sk, ct′) and return ⊥ if s′ = ⊥ or
ct′ 6= dEnc(pk, s′). Otherwise, compute otp′‖mk′‖kc′′ ← H(pk‖s′) and return ⊥ if kc′ 6= kc′′.
Otherwise, return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

We see that if dPKE is (δ1, δ2)-correct, then U⊥,keyconf
m,OTP+MAC is δ1-correct for any δ1.

Remark B.8 (On hashing pk with s). In the above construction, pk is fed into H together with s. As stated
by [BHH+19], we usually need to do this to prove a security notion defined in the security game where
there are multiple public and secret key pairs, especially in the case of CCA security.
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B.3 Security Proof

We prove the following theorem.

Theorem B.9. Let ` = `(λ) be any polynomial, dPKE be a (δ1, δ2)-correct and η-injective deterministic
PKE scheme, and MAC be a strong OT-MAC. Let A be a QPT adversary against the KDM-CCA security
of U⊥,keyconf

m,OTP+MAC = U⊥,keyconf
m,OTP+MAC(dPKE, H) making q (superposition) random oracle queries with query

depth d to H, qkdm (classical) queries to OKDM, and qdec (classical) queries to ODec. Also, let q f be the
upper bound of the total number of (classical) random oracle queries made by KDM functions. Then,
there exists QPT adversaries B, Bffc, and Bmac such that

Advkdm-cca
U⊥,keyconf

m,OTP+MAC,`,A
(1λ) ≤ 8d · Advsdm-ow-rsa

dPKE,`,qkdm,B(1
λ) + ` · Advffc

dPKE,Bffc
(1λ) + qkdm · Advsot-mac

MAC,Bmac
(1λ)

+
4(q + q f )qkdm√

|M|
+

qdec

2|kc| + ` · η + qkdm · δ1 + 2(4d + 1) · qkdm · δ2 . (7)

Proof. We complete the proof using hybrid games. Let SUCX be the event that the final output is 1
in Game X. We assume that A makes at least one KDM query before the first set of random oracle
queries and between d∗-th set of random oracle queries and (d∗ + 1)-th set of random oracle queries for
every d∗ ∈ [d− 1]. This assumption is without loss of generality in the sense that any adversary can be
transformed into one satisfying this condition without changing the number and depth of random oracle
queries.

Game 1: This is Expkdm-cca
U⊥,keyconf

m,OTP+MAC,`,A
(1λ).

Initialize: First, the challenger chooses a challenge bit b← {0, 1}. The challenger also generates
a fresh random oracle H. Next, the challenger generates (pkk, skk) ← dKG(1λ) for every
k ∈ [`]. The challenger sets sk := (sk1, . . . , sk`) and pk := (pk1, . . . , pk`), and executes
b′ ← A |H〉,OKDM,ODec(pk). OKDM and ODec behave as follows.

OKDM: On the i-th call with input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Compute otpi‖mki‖kci ← H(pkki‖si).
3. Compute ti = otpi ⊕ f H

i,b(sk) and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns⊥ if (k′, CT′) = (k j, CTj) for j ≤ i,
where i is the number of KDM queries already made at this point. Otherwise, it responds as
follows.
1. Compute s′ ← dDec(skk′ , ct′).
2. Return ⊥ if ⊥ = s′ or ct′ 6= dEnc(pkk′ , s′). Otherwise, compute otp′‖mk′‖kc′′ ←

H(pkk′‖s′). Return ⊥ if kc′ 6= kc′′.
3. Return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

Game 2: This is the same as Game 1 except the behavior of OKDM. In this game, OKDM adaptively
reprograms the random oracle that A (and functions queried by A) can access every time it is
invoked. The detailed description is as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
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1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.

3. Compute ti = otpi ⊕ f Vi−1
i,b (sk) and maci ← Tag(mki, ti).

4. Set CTi ← (cti, kci, ti, maci).
Also, it updates the random oracle into

Vi(pk‖x) =
{

uj (if ∃j ≤ i : pk‖x = pkk j‖sj)

H(pk‖x) (otherwise),

We can show that |Pr[SUC1]− Pr[SUC2]| =
4(q+q f )qkdm√

M by using a modified version of Lemma 3.7.
The reason why we cannot use Lemma 3.7 directly is that the programmed point here is pkki‖si, but
Lemma 3.7 requires a programmed point be chosen uniformly at random. However, even if we allow a
programmed point to be the form of z‖x, where z is an adversarially chosen value and x is a uniformly at
random value, we can have the same bound as Lemma 3.7. We omit the formal proof.

Game 3: This is the same as Game 2 except ODec behaves as follows, where R is a random oracle.

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns⊥ if (k′, CT′) = (k j, CTj) for j ≤ i,
where i is the number of KDM queries already made at this point. Otherwise, it responds as
follows.
1. Compute s′ ← dDec(skk′ , ct′).
2. Compute otp′‖mk′‖kc′′ ← R(pkk′‖ct′) if s′ = ⊥ or ct′ 6= dEnc(pkk′ , s′). Otherwise, com-

putes otp′‖mk′‖kc′′ ← H(pkk′‖s′). Return ⊥ if kc′ 6= kc′′.
3. Return t′ ⊕ otp′ if > = Vrfy(mk′, mac′) and ⊥ otherwise.

R is used only inside ODec. Then, for the first decryption query (k′, CT′) = (k′, (ct′, kc′, t′, mac′))
such that s′ = ⊥ or ct′ 6= dEnc(pkk′ , s′), the probability that kc′ = kc′′ holds is 1

2|kc| , where s′ ←
dDec(skk′ , ct′) and otp′‖mk′‖kc′′ ← R(pkk′‖ct′). Thus, ODec returns ⊥ for the decryption query
without the probability 1

2|kc| . By repeating this argument, we obtain |Pr[SUC2]− Pr[SUC3]| ≤ qdec

2|kc| .

Game 4: This game is the same as Game 3 except that H is replaced with

V0(pk‖x) =
{

R(pk‖dEnc(pk, x)) (if ∃k ∈ [`] : pk = pkk)

H(pk‖x) (otherwise),
(8)

where R is the random oracle introduced in the previous game.

We define an event FFCX as follows.

FFCX: In Game X, A makes a decryption query (k′, CT′) = (k′, (ct′, kc′, t′, mac′)) satisfying the
condition that there exists m′ ∈ M such that ct′ = dEnc(pkk′ , m′) but m′ 6= dDec(skk′ , ct′).

If FFC3 and FFC4 does not occur, R is used inside ODec only for pkk‖ct′ such that there does not exists
m′ ∈ M satisfying ct′ = dEnc(pkk, m′) for every k ∈ [`]. On the other hand, inside V0, R is used
for pkk‖ct such that there exists m ∈ M satisfying ct = dEnc(pkk, m). Moreover, if dEnc(pkk, ·) is
injective for every k ∈ [`], R(pkk‖dEnc(pkk, x)) and R(pkk‖dEnc(pkk, x′)) are independent random
values for any different x and x′. Thus, we have |Pr[SUC3]− Pr[SUC4]| ≤ Pr[FFC4] + ` · η.

We see that there exists a QPT adversary Bffc such that Pr[FFC4] ≤ ` · Advffc
dPKE,Bffc

(1λ).
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Game 5: This is the same as Game 4 except ODec behaves as follows.

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns ⊥ if there exists j ≤ i such that
k′ = k j and ct′ = ctj, where i is the number of KDM queries already made at that point.
Otherwise, it responds in the same way as Game 4.

We define an event BDX as follows.

BDX: InGame X, A makes a decryption query (k′, CT′) = (k′, (ct′, kc′, t′, mac′)) satisfying the following
conditions for some j ≤ i, where i is the number of KDM queries already made at that point.

• It holds that k′ = k j and ct′ = ctj.
• (t′, mac′) 6= (tj, macj).
• > = Vrfy(mkj, t′, mac′).

Suppose cti is correctly decrypted to si using skki for every i ∈ [qkdm]. In Game 4, for a decryption
query (k′, CT′) = (k′, (ct′, kc′, t′, mac′)) such that k′ = k j and ct′ = ctj holds for some j ∈ [qkdm], Odec
returns ⊥ unless > = Vrfy(mkj, t′, mac′) (regardless of whether kc′ = kcj holds or not). Thus, we have
|Pr[SUC4]− Pr[SUC5]| ≤ Pr[BD5] + qkdm · δ1.

We see that now ODec behave as follows without using (skk)k∈[`].

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns ⊥ if there exists j ≤ i such that k′ = k j
and ct′ = ctj, where i is the number of KDM queries already made at this point. Otherwise, it
responds as follows.

1. Compute otp′‖mk′‖kc′′ ← R(pkk′‖ct′). Return ⊥ if kc′ 6= kc′′.
2. Return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

Game 6: This game is the same as Game 5 except that ui is replaced with ui ⊕ f Vi−1
i,b (sk)‖0L for every

i ∈ [qkdm], where L = |mk|+ |kc|. More concretely, the behavior of OKDM is changed as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.
3. Compute ti = otpi and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

Also, it updates the random oracle into

Vi(pk‖x) =

uj ⊕ f
Vj−1

j,b (sk)‖0L (if ∃j ≤ i : pk‖x = pkk j‖sj)

V0(pk‖x) (otherwise),

This change does not affect the view of A since ui is chosen uniformly at random and independently of
f Vi−1
i,b (sk) for every i ∈ [qkdm]. Thus, we have |Pr[SUC5]− Pr[SUC6]| = 0 and |Pr[BD5]− Pr[BD6]| = 0.

Game 7: This game is the same as Game 6 except for the following. The challenger first generates r ←M.
The challenger then generates ∆1, . . . , ∆` ←M and generates (pkk, skk)← dKG(1λ; r + ∆k) for
every k ∈ [`].

The above change does not affect the view of A since the distribution of (pkk, skk)k∈[`] does not
change. Thus, we have |Pr[SUC6]− Pr[SUC7]| = 0 and |Pr[BD6]− Pr[BD7]| = 0.
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f̂ V0
i,b

[
(sj, uj, f j,b)j∈[i], (∆

k)k∈[`]
]
(x) :

Hardwired: (sj, uj, f j,b)j∈[i], (∆
k)k∈[`].

Oracle V0.
Input: x ∈ M.

1. Compute w = x− si and (pkk, skk)← dKG(1λ; w + ∆k) for every k ∈ [`], and set sk = (sk1, . . . , sk`).
2. Repeat the following from j = 1 to i− 1, where V̂0 = V0.

(a) Compute vj = uj ⊕ f
V̂j−1

j,b (sk)‖0L.

(b) Set V̂j as

V̂j(pk‖x′) =
{

vj′ (if ∃j′ ∈ [qkdm] : j′ ≤ j and pk‖x′ = pkk j′ ‖w + sj′ )

V0(pk‖x′) (otherwise).

3. Return f V̂i−1
i,b (sk).

Figure 2: The description of f̂ V0
i,b .

Game 8: This game is the same as Game 7 except that si is replaced with r + si. More concretely, the
challenger generates cti as cti ← dEnc(pkki , r + si) for every i ∈ [qkdm]. Also, the challenger sets
Vi as

Vi(pk‖x) =
{

uj ⊕ f
Vj−1

j,b (sk)‖0L (if ∃j ≤ i : pk‖x = pkk j‖r + sj)

V0(pk‖x) (otherwise),

for every i ∈ [qkdm].

We have |Pr[SUC7]− Pr[SUC8]| = 0 and |Pr[BD7]− Pr[BD8]| = 0 since this change also does not
affect the view of A .

Game 9: For every i ∈ [qkdm], we define a function f̂i,b as described in Figure 2. Then, Game 9 is the
same as Game 8 except that the challenger sets Vi as

Vi(pk‖x) =
{

uj ⊕ f̂ V0
j,b (x)‖0L (if ∃j ≤ i : pk‖x = pkk j‖r + sj)

V0(pk‖x) (otherwise)

for every i ∈ [qkdm].

We see that for every i ∈ [qkdm], f̂i,b correctly computes f Vi−1
i,b (sk) if it has oracle access to V0 and is

given r + si as an input. Therefore, the functionality of Vi does not change between Game 8 and 9 for
every i ∈ [qkdm], and thus we have |Pr[SUC8]− Pr[SUC9]| = 0 and |Pr[BD8]− Pr[BD9]| = 0.

Game 10: This is the same as Game 9 except that the challenger sets Vi as

Vi(pk‖x) =
{

uj ⊕ f̂ V0
j,b (x)‖0L (if ∃j ≤ i : pk = pkk j ∧ dEnc(pkk j , x) = ctj)

V0(pk‖x) (otherwise)

for every i ∈ [qkdm].
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If cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], the functionality of Vi does not
change for every i ∈ [qkdm] between Game 9 and 10. Thus, from the correctness of dPKE, we have
|Pr[SUC9]− Pr[SUC10]| ≤ qkdm · δ2 and |Pr[BD9]− Pr[BD10]| ≤ qkdm · δ2.

Game 10 + d∗ (d∗ = 1, . . . , d): This is the same game as Game 9 except OKDM defers updating the
random oracle. Concretely, OKDM does not update the random oracle until A makes the d∗-th set of
random oracle queries. The detailed description of OKDM is as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.
3. Compute ti = otpi and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

Also, if A already makes d∗-th set of queries to the random oracle, it updates the random
oracle into Vi.

We have
∣∣Pr[SUC10+d]− 1

2

∣∣ = 0 since in Game 10 + d, the view of A is completely independent of b.
Also, we can see that there exists a QPT adversary Bmac such that Pr[BD10+d] ≤ qkdm · Advsot-mac

MAC,Bmac
(1λ).

In order to estimate |Pr[SUC10+d∗−1]− Pr[SUC10+d∗ ]| for every d∗ ∈ [d], we consider the following
procedure Setupd∗ .

Setupd∗: First, the challenger chooses a challenge bit b← {0, 1}. The challenger also generates a fresh
random oracle H and R. Next, the challenger generates ` key pairs (pkk, skk)← KG(1λ; r + ∆k),
where r ← M and ∆k ← M for every k ∈ [`]. The challenger sets pk := (pk1, . . . , pk`) and
V0 as Equation (8), and executes A |V0〉,OKDM,ODec(pk) just before A makes the d∗-th set of random
oracle queries. OKDM and ODec behave as follows.

OKDM: On the i-th call with input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.
3. Compute ti = otpi and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns ⊥ if there exists j ≤ i such that
k′ = k j and ct′ = ctj, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.
1. Compute otp′‖mk′‖kc′′ ← R(pkk′‖ct′). Return ⊥ if kc′ 6= kc′′.
2. Return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then, the challenger sets
Vi∗ as

Vi∗(pk‖x) =
{

uj ⊕ f̂ V0
j,b (x)‖0L (if ∃j ≤ i∗ : pk = pkk j ∧ dEnc(pkk j , x) = ctj)

V0(pk‖x) (otherwise).

and Si∗ = {pk‖x | ∃j ∈ [i∗] : pk = pkk j ∧ dEnc(pkk j , x) = ctj}. The challenger also generates
si,k ←M and generates cti,k ← dEnc(pkk, r + si,k) for every i ∈ [i∗ + 1, qkdm] and k ∈ [`]. The
challenger then sets

z = (|st〉 , b, pk, (∆k)k∈[`], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[`]) , (9)
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where |st〉 is the internal state of A at this point. The challenger outputs (Vi∗ , V0, Si∗ , z, Oaux =
(V0, R)).

Also, we consider the following QPT algorithm Ad∗ that has oracle access to O ∈ {Vi∗ , V0} and
Oaux = (V0, R).

Ad∗: Given an input z, Ad∗ parse it as Equation (4) and executes A |O〉,OKDM,ODec from A’s d∗-th set of
random oracle queries using |st〉 as the internal state of A at that point. Ad∗ simulates OKDM and
ODec as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Set cti ← cti,ki (and set si ← si,ki ).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.
3. Compute ti = otpi and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

Also, it updates the random oracle that A can access to into

Vi(pk‖x) =
{

uj ⊕ f̂ V0
j,b (x)‖0L (if ∃j ≤ i : pk = pkk j ∧ dEnc(pkk j , x) = ctj)

V0(pk‖x) (otherwise).

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns ⊥ if there exists j ≤ i such that
k′ = k j and ct′ = ctj, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.
1. Compute otp′‖mk′‖kc′′ ← R(pkk′‖ct′). Return ⊥ if kc′ 6= kc′′.
2. Return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

When A terminates with output b′, Ad∗ outputs 1 if b = b′ and 0 otherwise.

Suppose we execute Setupd∗ and Ad∗ successively. They simulate the view of A in Game 10 + d∗ − 1
(resp. Game 10 + d∗) if O = Vi∗ (resp. O = V0). Also, Ad∗ outputs 1 if and only if the output of
the simulated games is 1. Thus, we have Pr[SUC10+d∗−1] = Pr

[
1← A |O=Vi∗ ,Oaux=(V0,R)〉

d∗ (z) : Setupd∗
]

and Pr[SUC10+d∗ ] = Pr
[
1← A |O=V0,Oaux=(V0,R)〉

d∗ (z) : Setupd∗
]
. From Lemma 3.4, there exists a QPT

algorithm Dd∗ such that

|Pr[SUC10+d∗−1]− Pr[SUC10+d∗ ]| ≤ 4 · Pr
[

T ∩ Si∗ 6= ∅ : T ← D |Vi∗ ,V0,Oaux=(V0,R)〉
d∗ (z), Setupd∗

]
.

(10)

Note that Ad∗ uses its oracle O ∈ {Vi∗ , V0} only for simulating A’s d∗-th set of random oracle queries.
Thus, Ad∗ make queries to O with depth 1.

We bound the right-hand side probability. In order to bound it, using Dd∗ , we construct the following
adversary Bd∗ against the SDM-OW-RSA security of dPKE.

Bd∗: Given pk = (pk1, . . . , pk`), (∆k)k, and (si,k, cti,k)i∈[qkdm],k∈[`], Bd∗ first simulates Setupd∗ . Bd∗

chooses a challenge bit b ← {0, 1}, prepares a fresh random oracles H and R, and set V0 as
Equation (8). Bd∗ then executes A |V0〉,OKDM,ODec(pk) just before A makes the d∗-th set of random
oracle queries, where OKDM and ODec are simulated as follows.

OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
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1. Set cti ← cti,ki (and set si ← si,ki ).
2. Generate ui ← {0, 1}∗ and parse it as otpi‖mki‖kci.
3. Compute ti = otpi and maci ← Tag(mki, ti).
4. Set CTi ← (cti, kci, ti, maci).

ODec: On input (k′, CT′) = (k′, (ct′, kc′, t′, mac′)), it returns ⊥ if there exists j ≤ i such that
k′ = k j and ct′ = ctj, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.
1. Compute otp′‖mk′‖kc′′ ← R(pkk′‖ct′). Return ⊥ if kc′ 6= kc′′.
2. Return t′ ⊕ otp′ if > = Vrfy(mk′, t′, mac′) and ⊥ otherwise.

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then, Bd∗ sets Vi∗ as

Vi∗(pk‖x) =
{

uj ⊕ f̂ V0
j,b (x)‖0L (if ∃j ≤ i∗ : pk = pkk j ∧ dEnc(pkk j , x) = ctj)

V0(pk‖x) (otherwise).

Bd∗ also sets

z = (|st〉 , b, pk, (∆k)k∈[`], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[`]) ,

where |st〉 is the internal state of A at this point. Finally, Bd∗ outputs T ← D |Vi∗ ,V0,Oaux=(V0,R)〉
d∗ (z).

Bd∗ perfectly simulates a successive execution of Setupd∗ and Dd∗ . Also, in the simulated execution,
if T ∩ Si∗ 6= ∅ occurs and cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], Bd∗ wins.
Thus, we have

Pr
[

T ∩ Si∗ 6= ∅ : T ← D |Vi∗ ,V0,Oaux=(V0,R)〉
d∗ (z), Setupd∗

]
≤ Advsdm-ow-rsa

dPKE,`,qkdm,Bd∗
(1λ) + qkdm · δ2.

From the discussions so far, by settingB ′ asBd∗ such thatAdvsdm-ow-rsa
dPKE,`,qkdm,Bd∗

(1λ) ≤ Advsdm-ow-rsa
dPKE,`,qkdm,B ′(1

λ)

for every d∗ ∈ [d], we see that there exists a QPT B ′ such that |Pr[SUC10]− Pr[SUC10+d]| ≤
4d · (Advsdm-ow-rsa

dPKE,`,qkdm,B ′(1
λ) + qkdm · δ2).

Similarly, we can show that there exists a QPT B ′′ such that |Pr[BD10]− Pr[BD10+d]| ≤ 4d ·
(Advsdm-ow-rsa

dPKE,`,qkdm,B ′′(1
λ) + qkdm · δ2). Note that we can efficiently check whether BDX occurs or not without

using (skk)k∈[`].
From the discussions so far, by setting B appropriately, we see that there exists B, Bffc, and Bmac

satisfying Equation (7). � (Theorem B.9)

C Non-Adaptively KDM Secure SKE

Zhang [Zha19b] showed that a simple random oracle based SKE scheme satisfies non-adaptive KDM-CPA

security with security bound roughly
√

poly(q,qkdm,q f ,`)
2λ , where q and qkdm are the number of (super-position)

random queries and (classical) KDM queries made by adversaries, q f is the number of (classical) random
oracle queries made by KDM functions, ` be the number of secret keys, and λ is the length of secret keys.
In this section, we show the construction’s KDM-CPA security with better security bound poly(q,qkdm,q f ,`)

2λ

using our proof strategy.
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C.1 Definition

A secret-key encryption (SKE) scheme SKE is a three tuple (Gen, E, D) of PPT algorithms. LetM be the
message space of SKE. The key generation algorithm Gen, given a security parameter 1λ, outputs a secret
key sk. The encryption algorithm E, given a secret key sk and message m ∈ M, outputs a ciphertext ct.
The decryption algorithm D, given a secret key sk and ciphertext ct, outputs a message m̃ ∈ {⊥} ∪M.
As correctness, we require D(sk, E(sk, m)) = m for every m ∈ M and sk← Gen(1λ).

Definition C.1 (Non-adaptive KDM-CPA security for SKE). Let SKE = (Gen, E, D) be an SKE
scheme. We define Expna-kdm-cpa

SKE,`,(ki , fi,0, fi,1)i∈[qkdm ],A
(1λ) for an adversary A as follows, where ki ∈ [`] and fi,0

and fi,1 are efficiently computable functions of the same output length for every i ∈ [qkdm].

Initialize: The challenger chooses the challenge bit b ← {0, 1}, generates skk ← Gen(1λ) for every
k ∈ [`], and sets sk = (sk1, . . . , sk`). The challenger generates cti ← E(skki , fi,b(sk)) for every
i ∈ [qkdm]. Then, the challenger executes b′ ← A((cti)i∈[qkdm]).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that SKE is non-adaptively KDM-CPA secure if for any polynomial ` = `(λ) and qkdm =
qkdm(λ), tuples (ki, fi,0, fi,1), and QPT adversary A , we have

Advna-kdm-cpa
SKE,`,(ki , fi,0, fi,1)i∈[qkdm ],A

(λ) =

∣∣∣∣Pr
[
1← Expna-kdm-cpa

SKE,`,(ki , fi,0, fi,1)i∈[qkdm ],A
(1λ)

]
− 1

2

∣∣∣∣ = negl(λ).

C.2 Additional Lemma

The following lemma is used to prove the non-adaptive KDM security of the SKE scheme in Appendix C.3.

Lemma C.2 (Inverting QRO with correlated inputs). Let ` = `(λ) be a polynomial and A be an
oracle QPT algorithm that makes at most q queries with query depth d, and outputs a list T of size at
most t as the final output. We consider the following Expci-inv

`,A (1λ).

Initialization The challenger first generate a fresh random oracle H : X → Y. Then, the challenger
also generates s ← X and ∆k ← X for every k ∈ [`]. Then, the challenger executes T ←
A |H〉((∆k, H(s + ∆k))k∈[`]).

Finalization The challenger outputs 1 if T contains z such that z = s + ∆k holds for some k ∈ [`] and 0
otherwise.

Then, we have Pr
[
1← Expci-inv

`,A (1λ)
]
≤ 4(d+2)(q+t)`

|X| .

Proof. Let Â be a QPT adversary that runs in the same way as A except that before it terminates, Â
computes and discards H(z) for every z ∈ T, where T is the final output of A . Then, A makes at most q+ t
queries to H with the query depth d + 1, and we have Pr

[
1← Expci-inv

`,A (1λ)
]
= Pr

[
1← Expci-inv

`,Â (1λ)
]
.

We estimate the latter.
We complete the proof using hybrid games. We define Game 1 as Expci-inv

`,Â (1λ). Let SUCX be the
event that the challenger outputs 1 as the final output in Game X. We also let S = {s + ∆1, . . . , s + ∆`}.

Game 2: This game is the same as Game 1 except that V defined as

V(x) =

{
yk (if ∃k ∈ [`] : x = s + ∆k)

H(x) (otherwise),

is used instead of H, where yk ← Y for every k ∈ [`].
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We have |Pr[SUC1]− Pr[SUC2]| = 0 since Game 1 and 2 are exactly the same from the view of Â .

Game 3: This game is the same as Game 2 except that Â can access to the punctured oracle H \ S. In
other words, the challenger executes T ← A |H\S〉((∆k, yk)k∈[`]) at the end of the initialization step.

Let FindX be the event that the punctured oracle H \ S returns 1 in Game X. From the definition of
Â , we have Pr [SUC3 ∧ ¬Find3] = 0. Thus, we have√

Pr[SUC2] =

∣∣∣∣√Pr[SUC2]−
√

Pr [SUC3 ∧ ¬Find3]

∣∣∣∣ .

By applying Lemma 3.2, we obtain∣∣∣∣√Pr[SUC2]−
√

Pr [SUC3 ∧ ¬Find3]

∣∣∣∣ ≤ √(d + 2) · Pr[Find3] .

Therefore, we also obtain Pr[SUC2] ≤ (d + 2)Pr[Find3].
Finally, we bound Pr[Find3]. In Game 3, conditioned on (∆k, yk)k, we have Prs←X[x ∈ S] ≤ `

|X|

for any x ∈ X. Thus, from Lemma 3.3, we obtain Pr[Find3] ≤ 4(q+t)`
|X| .

From the discussions so far, we obtain Pr
[
1← Expci-inv

`,A (1λ)
]
≤ 4(d+2)(q+t)`

|X| . � (Lemma C.2)

C.3 Construction

Construction C.3. Let H : {0, 1}2λ → {0, 1}∗ be a hash function. We construct the following
SKEkdm = (Gen, E, D).

Gen(1λ): Return sk← {0, 1}λ.

E(sk, m): Generate s← {0, 1}λ, compute t = H(sk‖s)⊕m, and return (s, t).

D(sk, ct): Parse ct = (s, t) and return t⊕ H(sk‖s).

The construction clearly satisfies correctness.

C.4 Security Proof

We prove the following theorem.

Theorem C.4. Let ` = `(λ) and qkdm = qkdm(λ) be polynomials. Let ki ∈ [`] and fi,0 and fi,1 are
efficiently computable functions of the same output length for every i ∈ [qkdm]. Let A be any (possibly
computationally unbounded) adversary against the non-adaptive KDM-CPA security of SKEkdm making q
(superposition) random oracle queries to H with query depth d. Also, let q f be the upper bound of the
total number of (classical) random oracle queries made by KDM functions queried by A . Then, it holds
that

Advna-kdm-cpa
SKEkdm,`,(ki , fi,0, fi,1)i∈[qkdm ],A

(1λ) ≤
O(q f · qkdm + d2 · q · `)

2λ
.
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Proof. We prove this theorem using hybrid games. Let SUCX be the event that A wins in Game X.

Game 1: This is Expna-kdm-cpa
SKEkdm,`,(ki , fi,0, fi,1)i∈[qkdm ],A

(1λ).

Initialize: The challenger chooses the challenge bit b ← {0, 1}, generates skk ← {0, 1}λ for
every k ∈ [`], and sets sk = (sk1, . . . , sk`). The challenger generates cti = (si, ti) for every
i ∈ [qkdm] as follows.
1. Generate si ← {0, 1}λ.
2. Compute ti = H(skki‖si)⊕ f H

i,b(sk).

Then, the challenger executes b′ ← A |H〉((cti)i∈[qkdm]).
Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

Game 2: This game is the same as Game 1 except that H is replaced with

V(x‖w) =

{
ui (if ∃i ∈ [qkdm] : x‖w = skki‖si)

H(x‖w) (otherwise),

where ui ← {0, 1}∗ for every i ∈ [qkdm].

Game 1 and 2 are exactly the same from the view of A . Thus, we have |Pr[SUC1]− Pr[SUC2]| = 0.

Game 3: This game is the same as Game 2 except that KDM functions fi,b can access to H instead of V
for every i ∈ [qkdm].

Game 2 and 3 differs only when fi,b calls one of skk1‖s1, . . . , skkqkdm‖sqkdm for some i ∈ [qkdm]. Since
s1, . . . , sqkdm are chosen uniformly at random and independently from ( fi,b)i∈[qkdm] and (sk

k)k∈[`], we have
|Pr[SUC2]− Pr[SUC3]| ≤

q f ·qkdm

2λ .

Game 4: This game is the same as Game 3 except that ui is replaced with ui ⊕ f H
i,b(sk) for every

i ∈ [qkdm]. Concretely, ti is set as ti ← ui for every i ∈ [qkdm], and V is defined as

V(x‖w) =

{
ui ⊕ f H

i,b(sk) (if ∃i ∈ [qkdm] : x‖w = skki‖si)

H(x‖w) (otherwise).

This change does not affect the view of A since ui is chosen uniformly at random and completely
independent of f H

i,b(sk) for every i ∈ [`]. Thus, we have |Pr[SUC3]− Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except how the challenger generates sk1, . . . , sk`. Concretely,
the challenger first generates sk ← {0, 1}λ and ∆k ← {0, 1}λ for every k ∈ [`]. Then, the
challenger sets skk = sk⊕ ∆k for every k ∈ [`].

We have |Pr[SUC4]− Pr[SUC5]| = 0 since the change does not affect the view of A .
From the next game, we use the function f̂i,b described in Figure 3. f̂i,b is designed so that it computes

f H
i,b(sk) if it has oracle access to H and is given skki as an input.
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f̂ H
i,b

[
fi,b, ki, (∆k)k∈[`]

]
(x) :

Hardwired: fi,b, ki, (∆k)k∈[`].
Oracle H.
Input: x ∈ {0, 1}λ.

1. Compute skk = x⊕ ∆ki ⊕ ∆k for every k ∈ [`], and set sk = (sk1, . . . , sk`).
2. Return f H

i,b(sk).

Figure 3: The description of f̂ H
i,b.

Game 6: This game is the same as Game 5 except that V is defined as

V(x‖w) =

{
ui ⊕ f̂ H

i,b(x) (if ∃i ∈ [qkdm] : x‖w = skki‖si)

H(x‖w) (otherwise).

Since for every i ∈ [qkdm], f̂i,b correctly computes f H
i,b(sk) if it has oracle access to H and is given

skki as an input, the functionality of V does not change between Game 5 and 6. Therefore, we have
|Pr[SUC5]− Pr[SUC6]| = 0.

Game 7: This game is the same as Game 6 except that V is defined as

V(x‖w) =

{
ui (if ∃i ∈ [qkdm] : P(x)‖w = P(skki)‖si)

H(x‖w) (otherwise),

where P : {0, 1}λ → {0, 1}3λ is a random function.

If P is injective, Game 6 and 7 are exactly the same from the view of A . Thus, we have
|Pr[SUC6]− Pr[SUC7]| ≤ 2λ(2λ−1)

2 · 1
23λ ≤ 1

2λ .

Game 8: This game is the same asGame 7 except thatA can access to H instead ofV though ct1, . . . , ctqkdm

are generated by using V.

We see that Pr[SUC8] = 1/2 since the information of b is completely hidden from the view of A . In
order to estimate |Pr[SUC7]− Pr[SUC8]|, we consider the following procedure Setup.

Setup: The challenger chooses the challenge bit b ← {0, 1} and fresh random oracles H and P. The
challenger then generates sk← {0, 1}λ and∆k ← {0, 1}λ for every k ∈ [`], and sets skk = sk⊕∆k

for every k ∈ [`] and sk = (sk1, . . . , sk`). The challenger also computes pkk ← P(skk) for every
k ∈ [`]. Next, the challenger generates si ← {0, 1}λ and ui ← {0, 1}∗, and sets cti ← (si, ui) for
every i ∈ [qkdm]. The challenger sets V as

V(x‖w) =

{
ui ⊕ f̂ H

i,b(x) (if ∃i ∈ [qkdm] : P(x)‖w = pkki‖si)

H(x‖w) (otherwise)
,

S = {x‖w|∃i ∈ [qkdm] : P(x)‖w = pkki‖si}, and z = (b, (cti)i∈[qkdm]). The challenger outputs
(V, H, S, z).
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Also, for O ∈ {V, H}, we consider a QPT algorithm A ′|O〉 that is given z = (b, (cti)i∈[qkdm]) as input,
executes b′ ← A |O〉((cti)i∈[qkdm]), and outputs 1 if b = b′ and 0 otherwise.

Suppose we execute Setup and A ′ successively. They simulate the view of A in Game 7 (resp.
Game 8) if O = V (resp. O = H). Also, A ′ outputs 1 if and only if the output of the simulated games
is 1. Thus, we have Pr[SUC7] = Pr

[
1← A ′|V〉(z) : Setup

]
and Pr[SUC8] = Pr

[
1← A ′|H〉(z) : Setup

]
.

From Lemma 3.4, there exists a QPT algorithm D such that

|Pr[SUC7]− Pr[SUC8]| ≤ 4d · Pr
[

T ∩ S 6= ∅ : T ← D |V,H〉(z), Setup
]

.

We estimate the right-hand side probability of the above inequality. This can be done by using
Lemma C.2. Consider the following adversary B run in Expci-inv

`,B (1λ).

B: B has oracle access to P. Given (∆k, pkk)k∈[`] as an input, B first chooses the challenge bit b← {0, 1}
and fresh random oracles H. Next, B generates si ← {0, 1}λ and ui ← {0, 1}∗, and sets
cti ← (si, ui) for every i ∈ [qkdm]. B sets V as

V(x‖w) =

{
ui ⊕ f̂ H

i,b(x) (if ∃i ∈ [qkdm] : P(x)‖w = pkki‖si)

H(x‖w) (otherwise)
,

and z = (b, (cti)i∈[qkdm]). B outputs T ← D |V,H〉(z).

B perfectly simulates a successive execution of Setup and D. In the simulated execution, if T ∩ S 6= ∅
occurs andP is injective,B wins. Thus, fromLemmaC.2, we havePr

[
T ∩ S 6= ∅ : T ← D |V,H〉(z), Setup

]
≤

O(d·q·`)
2λ .
From the discussions so far, we obtain

Advna-kdm-cpa
SKEkdm,`,(ki , fi,0, fi,1)i∈[qkdm ],A

(1λ) ≤
q f · qkdm

2λ
+

1
2λ

+ 4d · O(d · q · `)
2λ

=
O(q f · qkdm + d2 · q · `)

2λ
.
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