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Abstract. In this paper we propose Fasta, a stream cipher design optimised for
implementation over popular fully homomorphic encryption schemes. A number of
symmetric encryption ciphers have been recently proposed for FHE applications,
e.g. the block cipher LowMC, and the stream ciphers Rasta (and variants), FLIP
and Kreyvium. The main design criterion employed in these ciphers has typically
been to minimise the multiplicative complexity of the algorithm. However, other
aspects affecting their efficient evaluation over common FHE libraries are often
overlooked, compromising their real-world performance. Whilst Fasta may also
be considered as a variant of Rasta, it has its parameters and linear layer espe-
cially chosen to allow efficient implementation over the BGV scheme, particularly
as implemented in the HElib library. This results in a speedup by a factor of 25
compared to the most efficient publicly available implementation of Rasta. Fasta’s
target is BGV, as implemented in HElib, however the design ideas introduced in
the cipher could also be potentially employed to achieve improvements in the homo-
morphic evaluation in other popular FHE schemes/libraries. We do consider such
alternatives in this paper (e.g. BFV and BGVrns, as implemented in SEAL and
PALISADE), but argue that, unlike BGV in HElib, it is more challenging to make
use of their parallelism in a Rasta-like stream cipher design.
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1 Introduction

Fully homomorphic encryption (FHE) is a relatively new and active research area in cryp-
tography. FHE schemes allow arbitrary operations to be performed on ciphertexts, to
produce some encrypted result, which when decrypted results in data that would be ob-
tained if we had decrypted the ciphertexts first and then performed the operations on the
plaintexts.

FHE opens up for new and exciting secure applications, in particular in cloud comput-
ing. The party doing the operations on the ciphertexts does not need to have the decryption
key. One can therefore upload FHE-encrypted ciphertexts to the cloud and have the cloud
provider perform the necessary operations on the ciphertexts. Since the cloud does not
need the decryption key, there is no need to place any trust in the cloud provider. This
gives a higher level of security as the cloud provider does not have the ability to read the
plaintext information.

The main drawback of FHE is that it is very computationally demanding. Since Gentry
demonstrated the first FHE scheme [Gen09] in 2009 many improvements in efficiency have



been made [CIM16,DM15,CHK20], but the most useful applications still struggle with
being practical. This impracticality comes not least because clients of a cloud need to
perform FHE encryptions themselves. One notices however that the computing power of
a cloud is much higher than that of a typical client, so research has gone into finding ways
to transfer most of the burden of doing FHE encryptions from the clients to the cloud.

A solution for achieving this goal is to let the client encrypt its data using a symmetric
cipher, which is computationally very cheap, and upload the symmetrically encrypted
ciphertexts to the cloud. The cloud also receives the key used for the symmetric encryption,
but only as a ciphertext encrypted under the FHE scheme. The cloud is then in a position to
homomorphically remove the symmetric encryption and end up with the FHE encryption
of the client’s data.

A number of symmetric ciphers designed for use together with FHE have been proposed,
e.g. the block cipher LowMC [ARS+15], and the stream ciphers Kreyvium [CCF+16], FLIP
[MJSC16], and Rasta [DEG+18] (and variants [HL20,HKC+20,DGH+21b]). Their main
design criterion has been to minimise the multiplicative complexity of the algorithms since
homomorphic multiplications are the most expensive operations in FHE. However, as a rule
they have mostly overlooked an important aspect for their application target: how suitable
they are for their homomorphic evaluation over existing FHE schemes, as implemented in
the main libraries. For example, the HElib and PALISADE libraries [HS20,PAL] implement
the BGV scheme [BGV12], which offers a good degree of parallelism by utilising slots in
BGV ciphertexts. The BFV scheme, implemented in PALISADE and SEAL [SEA20],
also offer the same kind of parallelism. Since these are some of the most popular FHE
implementations, one may argue that a symmetric encryption design should – in addition
to minimising multiplicative complexity – also select its components and parameters to
take advantage of the libraries’ features to allow their efficient homomorphic evaluation.

In this paper we propose Fasta, a stream cipher design optimised for implementation
over HElib. Fasta may be considered as a variant of Rasta, but has its parameters and
linear layers especially chosen to allow efficient implementation over the BGV scheme. The
selected parameters utilise the parallelism offered by BGV, where the slots in ciphertexts
are packed to achieve full parallelisation when evaluating the non-linear layer. However the
packing is inefficient when the linear layer consists of random matrices (as with Rasta).
Thus Fasta also features a new BGV-friendly linear layer. These changes result in Fasta
running more than 6 times faster than a corresponding (modified) Rasta instance, and 25
times faster than the original Rasta, when evaluated homomorphically.

Whilst Fasta’s target is BGV, as implemented in the HElib library, we also look into
the BFV scheme implemented in PALISADE and SEAL, and the variant of BGV called
BGVrns that is implemented in PALISADE. We consider the implementation features in
these libraries and explain why it is more challenging to make good use of their parallelism
in Rasta-like stream ciphers.

The paper is organised as follows. In Section 2 we give an overview of the main concepts
and schemes discussed in the paper. Section 3 focuses on the design of symmetric key linear
layers for efficient FHE evaluation. We specify the Fasta stream cipher in Section 4, and
provide a security analysis in Section 5. We describe the homomorphic implementation of
Fasta in Section 6, and close with our conclusions in Section 7.
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Fig. 1: FHE hybrid encryption: the client only needs to encrypt the key K with an FHE scheme
HE; the plaintext P is encrypted with symmetric algorithm E . The cloud gets the bits of K
encrypted under HE, it encrypts the ciphertext bits ci with HE, and homomorphically evaluates
the decryption circuit of E to obtain HE(P, pk).

2 Preliminaries

In this section we briefly recall a main use case for using symmetric ciphers with homomor-
phic encryption schemes. We also review the Rasta stream cipher and the BGV scheme,
in particular how the latter is implemented in popular FHE libraries.

2.1 FHE Hybrid Encryption: Combining Symmetric Ciphers with Fully
Homomorphic Encryption

The concept of Fully Homomorphic Encryption (FHE) was first described in [RAD78].
However no actual FHE schemes were found before Gentry proposed a construction in
2009 [Gen09]. Since then much work has been invested in this field, not least because FHE
gives strong solutions to privacy problems related to cloud computing. The problem that
FHE faces today concerns computational efficiency. Significant improvements have been
made in recent years, but efficiency is still a bottleneck for deploying practical and useful
FHE applications.

One approach to address the efficiency issue is to combine FHE schemes with symmetric
ciphers as shown in Figure 1. This is often referred to as FHE hybrid encryption. The
idea is that clients in a cloud system, who typically have much less computational power
than the cloud provider, rather than homomorphically encrypting a (potentially large)
plaintext P , will instead encrypt P using a symmetric cipher E under a secret key K,
and then only homomorphically encrypt K under the FHE scheme HE using a public
key pk. Both the ciphertext C = EK(P ) and the FHE-encrypted key K∗ are uploaded to
the cloud.3 The cloud will now encrypt the bits in C using HE under the public key pk,

3 To avoid confusion between symmetric and FHE ciphertexts, we will normally use an asterisk
“*” as a superscript on any literal denoting a FHE ciphertext.
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and homomorphically run the decryption circuit of E on the inputs C∗ = HE(C, pk) and
K∗ = HE(K, pk). The homomorphic properties of HE ensure that the output from doing
this is HE(P, pk).4 In other words, the effect of the symmetric cipher can be removed,
and the cloud is now left with a pure FHE encryption of P , which may then be used for
further processing. The benefit of this construction is that the client side only needs to
encrypt K using HE – in fact it needs not be the same device that encrypts the plaintext
P with E , and K with HE. All other homomorphic encryptions and evaluations are done
by the cloud.

The basic homomorphic operations performed in a circuit are additions and multi-
plications, corresponding to the bit-wise XOR and AND operations when the plaintext
space is F2. Both of these operations have a cost in terms of the growth of noise, and
multiplication is by far the most expensive. Thus, to support such FHE hybrid encryp-
tion construction, there has been much research effort in designing symmetric ciphers that
minimise the multiplicative complexity – the number of bit-wise AND-gates, both in the
total number and in a critical path (i.e. the AND-depth) – of their decryption circuit. Ex-
amples include LowMC[ARS+15], FLIP [MJSC16], Kreyvium [CCF+16], and Rasta and
its variants Dasta, Masta and Pasta [DEG+18,HL20,HKC+20,DGH+21b].

2.2 The Rasta stream cipher

Rasta is a family of stream ciphers proposed by Dobraunig et al. [DEG+18]. The target
application for the ciphers is the use as a component in secure computation constructions
based on MPC and FHE schemes, particularly the latter. In these applications, symmetric
key algorithm designs will seek to minimise multiplications as much as possible. In the
Rasta construction, the designers aimed to minimise two multiplicative metrics of interest:
AND-depth and ANDs per encrypted bit. Rasta uses a cryptographic permutation based
on a public and fixed substitution layer, and variable affine layers (which are derived from
public information), iterated for d rounds. The construction achieves AND-depth d, while
requiring only d ANDs per encrypted bit.

In more detail, the Rasta keystream generator is based on a n-bit permutation fea-
turing the A(SA)d structure, where S is the χ-transformation (prominently also used in
Keccak [BDPA11]), and the jth-round affine layers Aj,N,i are generated pseudorandomly
based on a nonce N and a counter i. To produce the keystream, it applies the permutation
in feed-forward mode, with the n-bit secret key K as input. Figure 2 shows a diagrammatic
representation of the Rasta keystream generator.

The generation procedure for the affine layers Aj,N,i results in pseudorandomly gen-
erated n × n invertible binary matrices and n-bit round constants, which since they are
based on unique (N, i), are unlikely to be re-used during encryption under the same key.
To ensure S is invertible, we require n to be odd. If the permutation has d rounds, it is
straightforward to show that the Rasta construction achieves AND-depth d and requires
d ANDs per encrypted bit.

In [DEG+18], the authors suggest several parameter sets for 80-, 128- and 256-bit
security. For example, Rasta with a 6-round permutation with block/key size of 219 bits
should provide 80 bits of security. Same for a 4-round permutation with 327-bit block/key.
On the other hand, Rasta based on a 6-round permutation with block/key size 351 bits

4 Strictly speaking, the result will be in fact a ciphertext which will decrypt to P under the FHE
private key sk.
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Fig. 2: The r-round Rasta keystream generator construction (from [DEG+18]).

is expected to provide 128 bits of security (see Table 1 of [DEG+18] for other proposed
parameters). In general, the authors suggest the number of rounds to be between 4 and
6, while the key size will typically be at least three times larger than the security level.
However they also propose a more “aggressive” version of the cipher (Agrasta), for which
the block size coincides with the security level (plus one, to ensure n is odd). For example,
Agrasta based on an 81-bit, 4-round permutation, claims 80 bits of security.

In order to derive and justify Rasta’s parameter choices, the authors provide a detailed
security analysis of the construction in [DEG+18]. To our best knowledge, the only other
publicly available cryptanalysis of Rasta5 (and variants) is the recent work [LSMI21],
proposing algebraic attacks that contradict some of the security claims in [DEG+18].

Rasta’s designers also discuss a few areas for future work, in particular how to improve
the cipher’s affine layer. They state in [DEG+18] that “[n]ew ideas for linear-layer design
are needed which impose structure in one way or another which on one hand allows for
significantly more efficient implementations while at the same time still resist attacks
and allows for arguments against such attacks.” A variant of Rasta, called Dasta [HL20]
was later proposed, considering a particular efficiency aspect: it features a more efficient
generation procedure for the linear layer, which does not make use of a XOF algorithm. In
this paper we consider another implementation efficiency aspect: the evaluation of Rasta-
like ciphers over popular FHE schemes and libraries.

We note that, in [DEG+18], the designers did describe a few experiments for the
main use case for Rasta – namely, the homomorphic evaluation of the cipher in a hybrid
symmetric/FHE construction. However these experiments, using BGV as implemented in
HElib, appeared to have been carried out mainly to “validate” the Rasta design approach,
as well as a means to compare it with other prominent ciphers, e.g. FLIP, Kreyvium and
LowMC. In particular, there appeared to be no efforts to take advantage of features of
BGV/HElib in a more efficient implementation, which in turn might have fed into more
efficient design choices for the cipher (beyond simply minimising AND-depth and AND
per bit). More recent variants of Rasta [HKC+20,DGH+21b] do take into account FHE
schemes’ features in their design, and come accompanied by comprehensive experiments.
However they feature more distinctive structures, e.g. they are defined over fields of prime
characteristic p > 2. In contrast, in this paper we propose Fasta as a closer variant
of Rasta, also defined over the binary field, in which however we carefully consider the
features of BGV in the design of its keystream generator.

5 The designers also mention in [DEG+18] the technical report “Algebraic cryptanalysis of
RASTA”, by Bile, Perret and Faugère. However we were unable to publicly locate this work.
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2.3 The BGV scheme

The BGV homomorphic encryption scheme [BGV12] was proposed by Brakerski, Gentry
and Vaikuntanathan in 2012 and is implemented in the HElib and PALISADE libraries.
BGV is a levelled FHE scheme, which means that the multiplicative depth of the circuit
one wants to evaluate must be known at the time the parameters of the cipher are chosen.

The starting point for the BGV scheme is the m-th cyclotomic polynomial over the inte-
gers Φm(X). Plaintexts in BGV can be seen as elements of the quotient ring Zpr [X]/(Φm(X)),
where p is a prime and Φm(X) is the image of Φm(X) in Zpr [X]. In this paper we are only
interested in encrypting bits as plaintext, i.e. p = 2 and r = 1, and so in fact our plaintexts
can be seen as polynomials over F2 of degree less than φ(m), where φ(·) is Euler’s totient
function. A very useful feature of BGV is that one ciphertext may encrypt several plaintext
bits. The notion is that one ciphertext contains multiple slots. The number of slots in a
ciphertext is denoted by s, which is understood differently in HElib and PALISADE. In
HElib the number of slots is given as s = φ(m)/d, where d is the multiplicative order of
the size of the plaintext space (in our case, 2) modulo m. In PALISADE the number of
slots is given as s = φ(m). In both cases we use the notation

c∗ = {(b1, b2, . . . , bs)}
to indicate that the ciphertext c∗ encrypts the plaintext bits b1, . . . , bs.

The homomorphic properties of BGV apply slot-wise. If c∗a = {(a1, . . . , as)} and c∗b =
{(b1, . . . , bs)} are two ciphertexts, then

c∗a + c∗b = {(a1 ⊕ b1, . . . , as ⊕ bs)},
c∗a × c∗b = {(a1 · b1, . . . , as · bs)},

where ⊕ and · denote the bit-wise XOR and AND operations, respectively.

BGV in HElib. If we have φ(m) = s · d as above, it follows from the structure of the
ring F2[X]/(Φm(X)) that the plaintext space in HElib can be understood to be instead
in F2d , and multiplications and additions work homomorphically in this field (see [HS20]).
As F2 ⊂ F2d , we can use HElib for our purpose, and ciphertexts will encrypt s plaintext
bits.

HElib contains functions to manipulate the slots in a ciphertext, and two of these will
be important to us. The first is mul(c∗,M), where c∗ is a ciphertext and M is a binary
s × s matrix. The function6 returns a ciphertext that encrypts the slots in c∗ multiplied
with M , and so when c∗ = {(b1, . . . , bs)}, we have

mul(c∗,M) = {((b1, . . . , bs) ·M)}.

The second function we would like to highlight is rotate(c∗, a). This function returns a
ciphertext that encrypts the slots of c∗ cyclically rotated by a positions to the right. We
also use the notation (c∗ >> a) for the rotate operation, so for c∗ = {(b1, . . . , bs)} we have

rotate(c∗, a) = (c∗ >> a) = {(bs−a+1, . . . , bs, b1, . . . , bs−a)}.

We note that both rotate and additions of ciphertexts are computationally very cheap to
do, while mul is not.

6 The mul function was optimised in HElib in March 2018, the earlier name for the same function
was matMul [HS18].
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BGV in PALISADE. PALISADE implements the BGV scheme using residue number
systems, and works in a different fashion from HElib. This particular scheme is denoted
by BGVrns.7 As noted above, the number of slots in PALISADE is s = φ(m), and will
therefore always be an even number. In PALISADE v.1.11.4 (the latest version at the
time of writing [PRRC21]), the plaintext space of BGVrns can only be integers modulo
a chosen plaintext modulus p. Addition and multiplication in the slots will be performed
as integer additions and multiplications modulo p. As we are only interested in doing
operations in F2 and not in any extension field, this is again sufficient for our purpose. In
BGVrns the plaintext modulus needs to be odd, but by selecting p to be high enough that
our computation never reaches it, the computations will simply be done over the integers.
After decryption we then only need to reduce the plaintext returned by PALISADE modulo
2 to get the desired result.

PALISADE does not yet implement a function similar to HElib’s mul. It does however
have a function that cyclically rotates a ciphertext by a given number of positions, called
evalAtIndex. Like HElib, both evalAtIndex and additions are computationally cheap to do
in BGVrns, but the number of slots in PALISADE’s BGVrns is much higher.

3 Linear layers in symmetric ciphers for FHE hybrid encryption

The purpose of the linear layer in a symmetric cipher is to provide “diffusion”. The concept
of diffusion is often not precisely formalised, but intuitively we would like a linear layer
to provide an avalanche effect, i.e. that any single bit of the cipher state at a particular
point of the encryption process quickly influences as many bits in the cipher state as
possible after a few rounds. Deploying linear layers with good diffusion – together with
good non-linear layers – in iterated constructions should ensure that, for the entire cipher,
the output bits are described via complex expressions in all input bits.

The notion of optimal diffusion for symmetric encryption linear layers was introduced
in [Dae95,RDP+96], together with a metric to quantify the diffusion of a linear layer L.
The branch number of L is defined as the minimum of the sums of the weights of inputs
and corresponding outputs of L. For matrices of dimension n over F2r (r > 1), it was
shown how maximum distance separable (MDS) codes of length 2n and dimension n can
be used to construct invertible linear transformations providing optimal diffusion.

In this work we are interested in large, invertible linear transformations over F2, which
can offer good diffusion. Given our parameters, the use of the MDS construction is not
possible, and measuring the branch number of individual matrices seems infeasible. Similar
to the approach in [ARS+15,DEG+18], we will instead define a family of linear transfor-
mations which we will argue offer good diffusion properties. Fasta’s iterated construction
will then use linear layers that are pseudorandomly generated from this family. We claim
that the construction should then provide strong diffusion after just a few rounds.

Most existing work on quantifying diffusion have focused on features of one particular
linear transformation used multiple times in a cipher. Our case is different: we will make
use of a family of linear transformations, from which we will draw transformations to be
used only once during encryption. We therefore introduce the notion of “ideal diffusion”
which we will use in our construction.

7 See [HPS18] for a discussion on the very similar BFVrns scheme.
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Definition 1. Let L be a family of invertible n× n matrices over F2, where |L| is a large
even number. Let e0, . . . , en−1 be the canonical basis of (F2)n. Then we say that L offers
ideal diffusion if, for all 0 ≤ i, j ≤ n− 1, we have

Pr
L∈L

[〈eiL, ej〉 = 1] = 1/2.

Intuitively it means that if L is a member of a family of matrices offering ideal diffusion,
then if w = v · L, we expect that every bit of v influences each bit of w with probability
1/2. In cryptographic applications, we expect that the iteration of randomly generated
members of L should maximise the diffusion of the entire construction.

Some designers of FHE-friendly symmetric ciphers, e.g. in [ARS+15,DEG+18], have
adopted a similar approach, using L = GL(n,F2) the family of all invertible n× n binary
matrices. The ciphers’ round linear transformations are then randomly generated from
L. This seems in principle to make sense: designers mainly focused on minimising the
number of AND gates and the AND-depth of the decryption circuit, under the argument
that linear operations on FHE ciphertexts are almost for free compared to multiplications.
Moreover, with no particular structure in the linear layer that a cryptanalyst can exploit
in an attack, this approach also simplifies the arguments in the security analysis. However
this approach seems also to indicate that little attention was paid to how the structure
of the linear layer may affect the performance of the ciphers’ homomorphic evaluation in
practice.

While it is true that addition of homomorphic ciphertexts is cheap compared to multi-
plication, a tacit assumption is that ciphertexts only encrypt a single bit each. As discussed
in Section 2.3, popular FHE libraries have the ability to pack multiple plaintext bits into
a single FHE ciphertext, and operate on all bits encrypted into each ciphertext in parallel.
Packing the full state of a symmetric cipher into a few, or perhaps only one, FHE cipher-
texts can give big speed-ups when processing the non-linear layer of a symmetric cipher.
For example, an S-box layer of LowMC that covers 3/4 of the state can be processed with
only three FHE multiplications, while the χ transformation used in Rasta (Section 2.2)
can be performed with only one homomorphic multiplication.

However, when packing the state of a symmetric cipher into few FHE ciphertexts, the
additions carried out in a linear layer will now fall into two categories:

1. additions of elements in the same slot positions from two FHE ciphertexts;
2. additions of elements from two FHE ciphertexts in different slots, or addition of ele-

ments from different slots inside a single FHE ciphertext.

The first type is in fact the addition of two FHE ciphertexts, and is therefore quick
and easy to perform. The second type is however slower and more involved, as it mixes
elements inside a single FHE ciphertext, or moves elements inside a ciphertext to make
them line up in the same slot. Type 2 additions are thus not homomorphic additions
per se. For a randomly generated linear layer, most additions will be of type 2; that in
turn will outweigh much of the gains that packed ciphertexts give in the non-linear layer.
A natural question is then to investigate whether we can find another family of linear
transformations, which only uses additions of type 1, but is still expected to offer ideal
diffusion.

We now describe the design of a family of linear layers that only use rotations and
additions of type 1, which we employ in Fasta. Of course, linear transformations drawn
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from this family are no longer random, and some structure may be found in them. Never-
theless, we aim to construct linear transformations that are still expected to provide ideal
diffusion, as per Definition 1, and which in respect to the diffusion at least, behave as
randomly generated binary matrices.

3.1 Rotation-based linear layers

In Fasta, we follow the principle introduced in Rasta to (pseudorandomly) draw linear
transformations from a large family L, to be used only once in a particular instantiation of
the cipher. Below we describe a general method for constructing a family of FHE-friendly
linear transformations, with the aim of providing ideal diffusion. In Section 4 we use this
method to construct the specific class of linear transformations used in Fasta. In the
following explanation we use the notation v[i] to indicate bit number i in a bit-string
v, and v[i, j], i < j to indicate the sequence of bits from position i up to and including
position j in v.

The linear transformations we produce are based on column parity mixers [SD18]. Let
the cipher state consist of bs bits, split into b words w0, . . . , wb−1 of s bits each. A column
parity mixer works by first computing u = w0 ⊕ . . . ⊕ wb−1 and then applying a simple
linear transformation Θ to the sum to compute v = Θ(u). The word v is added back onto
the input words to form the output words w′i of the column parity mixer, as w′i = wi + v.
See Figure 3 for a schematic description. In the following we also refer to one application
of the column parity mixer as an iteration.

We are concerned with constructing a class of linear transformations L of dimension
bs over F2 that provides close to ideal diffusion. Let x0, . . . , xb−1 be the input words to
any L ∈ L, and y0, . . . , yb−1 be the output words. For any 0 ≤ i, k < b and 0 ≤ j, l < s,
we want xi[j] to appear in the linear expression for yk[l] for approximately half of the
linear transformations in L. As we will only use rotations of words and the column parity
mixer construction, we can without loss of generality focus on x0[0] and ensure this bit will
appear in approximately half of the linear combinations giving output bits yk[l]. We say
that a bit in any word wi during the computation of the linear transformation is affected
if it has a non-zero probability of depending on x0[0]. We propose the following general
strategy for constructing a family of rotation-based linear layers:

1. Define a column parity mixer based on a transformation Θ that uses rotations of low
amounts compared to s, in such a way that all bits in a small neighbourhood of w0[0]
will be affected in all words output from the column parity mixer (see Figure 6 in
Section 4 for an example of such Θ, as used in Fasta).

2. Rotate the words wi between applications of the column parity mixer such that the
affected parts are spread to larger portions of the cipher state.

3. Iterate applications of column parity mixers interleaved with word rotations as many
times as required until the whole cipher state is affected.

We note that if b is even the column parity mixer (step 1 above) is an involution; if
b is odd, the column parity mixer operation is invertible iff (Θ + I) is invertible [SD18].
Moreover, let w′0, . . . , w

′
b−1 be the cipher state after the application of the column parity

mixer. Then Θ should be designed such that w′i[0, a − 1] is affected for all 0 ≤ i < b and
some value of a relatively small compared to s. This is shown in Figure 3.
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Fig. 3: One iteration of a column parity mixer used to construct rotation-based linear layers
(Step 1). Gray areas indicate affected bits.

After the first iteration the a least significant bits of each output word w′i will be
affected. More generally, assume that in the output of any one iteration of the column parity
mixer, the A least significant bits of each output word are affected, for some A ≥ a. Here
we will denote these words as wi, as the input to the word rotation operation (step 2). For
these rotations, we choose to have the word w0 left unchanged, while wi for 1 ≤ i < b are
rotated as follows: every word wi is rotated by i ·A/2+ri positions, where ri ∈ [0, A/2−1].
The output of step 2 is denoted as w′0, . . . , w

′
b−1. See Figure 4 for an illustration of how

each word is rotated.

These rotation amounts ensure three properties. First, the affected parts of wi−1 and wi
will overlap in at least one bit when added together in the next iteration, for i = 1, . . . , b−1.
So there cannot be any “gap” where some bit in a word will not be affected. Second, after
rotations the least significant bit of the affected part of wi−1 cannot overlap with the
affected part of wi, for i = 1, . . . , b−1. In other words, the affected parts of wi and wj may
not overlap exactly when i 6= j, for any choice of ri and rj . Two neighboring wi-words may
therefore not cancel out when added together in the input to the next iteration. Third,
the input to Θ in the next iteration will then be affected in (at least) all bits in positions
0, . . . , (b + 1)A/2. Hence the size of the block of affected bits will increase by a factor of
at least (b+ 1)/2 from one iteration to the next.

Using this strategy, the number of affected bits in w0, . . . , wb−1 will grow exponentially
with the number of iterations, and after dlog(b+1)/2(s)e iterations we are guaranteed the
whole cipher state will be affected.

3.2 The structure in rotation-based linear layers

One can imagine many other ways of designing a linear transformation acting on a state
consisting of s-bit words, using only rotations within the words and XOR additions of
whole words. We show below that any linear transformation within these constraints will
have a particular structure.

Assume that the state consists of w0, . . . , wb−1, where each wi is a word of s bits. We let
the state block w be a binary vector of length bs, given as the concatenation of the words:
w = (w0|| . . . ||wb−1). Let M be the bs × bs matrix over F2 that realises a rotation-based
linear transformation L, such that the output of L is given as L(w) = wM .
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(i)

(ii)

(iii)

A/2 A/2

wi 0 ≤ i ≤ 3

w′0 = w0

w′1 = w1 << (A/2 + r1)

w′2 = w2 << (A+ r2)

w′3 = w3 << (3A/2 + r3)

⊕
w′i 0 ≤ i ≤ 3

≥ 5A/2

Fig. 4: Word rotation operation (step 2), applied between two iterations of the column parity
mixer, acting on states with b = 4 words. The output words of the previous the column parity
mixer, each with A least significant bits affected, are represented in region (i). The word rotation
operation itself is shown in region (ii). Region (iii) represents the initial sum operation in the
next iteration of the column parity mixer, with at least 5A/2 affected bits in the input to next
iteration’s Θ. The block of affected bits can be anywhere in the light grey areas, depending on
the values of ri.

Proposition 1. The matrix M can be decomposed into b2 sub-matrices Mi,j for 0 ≤
i, j ≤ b − 1 of size s × s each. Let Mi,j [r] be row r in Mi,j, for 0 ≤ r ≤ s − 1. Then
Mi,j [r] = Mi,j [0] << r.

Proof. Let the state ei be given as the state where bit number i in ei is 1, and all others
are 0, for 0 ≤ i ≤ bs− 1. Then the top row of M is given as L(e0). Whatever bits are set
in L(e0), they are all a result of the single 1-bit in e0 being added multiple times onto the
words, with rotations of the words in between.

The second row of M is given as L(e1). The exact same additions and rotations that
produced L(e0) from the single set input bit will also produce L(e1), except everything
happens shifted by one position to the left, modulo s. Hence every word in L(e1) will be
equal to the same word in L(e0), but shifted by one position. This repeats for every row
of M , so M0,j [r] = M0,j [r − 1] << 1.

Row s of M is produced as L(es). The single set bit in the input then jumps from
appearing in w0 of the state to w1. The word w1 is rotated independently of w0, so the
cancellations and additions from the single set bit in es that occurs when producing L(es)
are different from those that produced L(es−1). Hence row s of M , and the top row of
each M1,j , will be unrelated to row s−1 of M . However, each row M1,j [r] will be rotations
of M1,j [0] by the same reason given above. This argument repeats every time the single
set bit in ei jumps from one word to the next, and the result follows.

Proposition 1 essentially states that M can be decomposed into b2 circulant matrices.
This can also be observed by noticing that M may be considered as the binary represen-
tation of a linear transformation over the module Rb, where R is the ring F2[X]/(Xs+ 1).
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We provide more details in Appendix A. Also in the Appendix, Figure 9 gives an example
of a matrix realising a rotation-based linear layer with b = 5 and s = 329 (as used in
Fasta). For comparison, it also shows a matrix realising five parallel applications of Rasta
(with same parameters). The block structure is clearly visible in the rotation-based linear
transformation, whilst the comparable matrix for Rasta is a block diagonal matrix with
random blocks.

4 Specification of FASTA

In this section we define Fasta, a stream cipher whose circuit for generating the keystream
has been designed to be efficiently evaluated homomorphically. As the name suggests,
Fasta is based on Rasta and is fast to execute when implemented in HElib using the BGV
levelled homomorphic encryption scheme (see Section 2.3). We define a single instantiation
of Fasta, with parameters selected to give 128 bits of security, both as a stand-alone
symmetric cipher and when used in tandem with a specific instantiation of the BGV
scheme it is designed for. We follow Rasta’s approach for setting the data limit, that at
most 264/1645 calls to Fasta with the same key can be made.8

⊕ ⊕ ⊕ ⊕ ⊕

K K << 1 K << 2 K << 3 K << 4

keystream keystream keystream keystream keystream

Aα0

Aα5

Aα6

χ

χ

χ

χ

χ

χ

χ

χ

χ

χ

K K K K K

Fig. 5: High-level description of Fasta.

4.1 High-level overview

Fasta takes a 329-bit secret key K and produces 1645 bits of keystream at each call.
The cipher state consists of five words w0, . . . , w4 of 329 bits each that are initialised as

8 Since Fasta has a 1645-bit state, this sets the maximum length of the keystream generated
under the same key to 264 bits.
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wi = (K << i), for the secret key K. The choice of word length (329 bits) follows a
search for values of m as an instatiation of BGV, that provided 128 bits of security (as
FHE scheme) and gave a large, odd number of slots s. The value selected was the prime
m = 30269, so that φ(m) = 30268 = 329× 92, giving s = 329 slots (see Section 2.3). The
number of state words (five) provided a good trade-off between the size of the state and
the number of iterations required to generate invertible rotation-based linear layers which
are expected to offer ideal diffusion.

Each application of Fasta takes in 7 · (63 + 1645) = 11956 pseudo-random bits for
specifying the particular permutation that produces a keystream block. These bits are
labelled α = (α0, . . . , α6), where each αj is a 1708-bit value. In the same way as Rasta,
the contents of α are pseudorandomly generated based on a counter and a nonce N which
are fed into a XOF (see Figure 2).

The keystream generation applies a round function 6 times. The round function consists
of an affine layer Aαj

, indexed by αj for 0 ≤ j ≤ 5, followed by a non-linear transformation
of the cipher state. The keystream generation ends with a final affine layer Aα6

and a feed-
forward of the secret key XORed onto each of the words. The resulting output is taken as
1645 bits of keystream. The cipher is shown in Figure 5.

4.2 The non-linear layer

The non-linear layer uses the χ-function proposed in [Dae95], which is also used in Rasta
and Keccak. It is applied on each of the five words of the state in parallel as shown in
Figure 5. If we label the input bits to χ as x0, . . . , x328, the output bits yi are given by

yi = xi+1xi+2 + xi + xi+2,

where all indices are computed modulo 329.

4.3 The affine layer

Affine layers in Fasta consist of a rotation-based F2-linear transformation, followed by
the addition of a round constant. The linear transformation is constructed as described
in Section 3.1, with b = 5 and s = 329, and will consist of four iterations. A guiding
principle in Rasta, which we also follow in Fasta, is that every linear transformation is
pseudorandomly generated from a large family of transformations and is used only once in
an instantiation of Fasta. The affine transformation we use is parameterised by a 1708-bit
value αj , which will select instances from the class of linear mappings from Section 3.1, as
well as selecting the constant to be added after the linear transformation.

The Θ-function in each iteration is shown in Figure 6. It ensures that the number of
affected bits in the output is increased by 9 from the number of affected bits in the input.
Moreover, as b is odd, the possible choices for rotation values ensure that the resulting
column parity mixer operation, and therefore the entire affine layer, is invertible.

Recall that the affected part of each word at any point is defined as the bits that may
depend on the bit x0[0] at the input of the linear transformation. After the first iteration,
the number of affected bits in each word will be 10. The rotations before the next iteration
are therefore given as:

w1 = (w1 << 5 + i1), w3 = (w3 << 15 + i3)
w2 = (w2 << 10 + i2), w4 = (w4 << 20 + i4)

, where 0 ≤ i∗ ≤ 4.
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Fig. 6: The Θ-function used in Fasta’s linear layer. The values of r1 and r2 are generated
randomly from the nonce N , and the value given for r3 ensures invertibility of the resulting
column parity mixer operation.

The number of affected bits in the block going into the second Θ will therefore be at least
20 + 10 = 30, and the number of affected bits in each word after the second iteration will
be at least 39. The words w1, . . . , w4 are then rotated by

w1 = (w1 << 19 + j1), w3 = (w3 << 57 + j3)
w2 = (w2 << 38 + j2), w4 = (w4 << 76 + j4)

, where 0 ≤ j∗ ≤ 18.

The affected part of the word going into Θ in the third iteration will then cover at least
the 39 + 76 = 115 least significant bits, and the output will have at least 124 affected bits.
The output is added onto every word, so the 124 least significant bits of every wi will be
affected. The words w1, . . . , w4 are then rotated by the following amounts before going
into the fourth and last iteration:

w1 = (w1 << 62 + l1), w3 = (w3 << 186 + l3)
w2 = (w2 << 124 + l2), w4 = (w4 << 248 + l4)

, where 0 ≤ l∗ ≤ 61.

Note that the most significant bits of the affected part of the word w4 (located in positions
123, 122, . . .) wraps around when rotated by 248 positions, as the words have length 329.
This means that the entire input block to Θ in the last iteration will be affected, and after
adding the output of Θ onto each wi the entire cipher state is affected. The complete linear
transformation is depicted in Figure 7.

Pseudorandomly generating the rotation-based affine layers Aαj . The rotation
values of the linear transformations and the constant part of the affine layers Aαj

are
defined based on 1708-bit values αj generated pseudorandomly (using a XOF). We take
1645 bits from αj to define the constants value. The remaining 63 bits are used to define 24
rotation values (three used in each of the four instances of Θ and four in each of the three
word rotations between Θ-iterations). Details on how this is done are given in Appendix B.

4.4 Comparing FASTA with other ciphers for hybrid encryption

Rasta is a family of stream ciphers, with the benefit of having a low and constant multi-
plicative depth regardless of how much keystream is produced (Section 2.2). As discussed,
Fasta is a variant of Rasta with a dedicated design for the efficient evaluation over FHE
schemes. In fact, as shown in Figure 5, Fasta could be seen as five parallel calls of Rasta
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w0 w1 w2 w3 w4

Θ-iteration

Θ-iteration

Θ-iteration

Θ-iteration

<< 5 + i1 << 10 + i2 << 15 + i3 << 20 + i40 ≤ i∗ ≤ 4

<< 19 + j1 << 38 + j2 << 57 + j3 << 76 + j40 ≤ j∗ ≤ 4

<< 62 + l1 << 124 + l2 << 186 + l3 << 248 + l40 ≤ l∗ ≤ 4

Fig. 7: The linear transformation of Fasta. The exact rotation amounts i∗, j∗, l∗ and in
the Θ-iterations are determined by αj .

(with block size s = 329 and 6 rounds), but with one main difference. In the 5-parallel
Rasta calls, the combined affine transformations Ai would be represented by a block di-
agonal matrix, with each 329× 329 block being generated pseudorandomly. On the other
hand, in Fasta the Ai are 1645 × 1645 rotation-based transformations, essentially tying
the transformations of the five blocks together. Motivation for the choices for the value
of s and the structure of Ai were given early in this section. As shown in Section 6, this
structure and parameter choices will allow Fasta to be homomorphically evaluated much
more efficiently in BGV/HElib, when compared to five parallel calls of Rasta.

Another drawback from Rasta is the inefficiency of requiring many random linear
transformations, which need to be generated and stored. Other variants have also been
proposed to address this feature. Dasta [HL20] simplifies the generation of the linear layers,
by using a single fixed matrix composed with a permutation of the bits in the cipher
block. These permutations are constructed by cyclically rotating smaller bit sequences
that are part of the cipher block. This means much less randomness is needed from the
XOF. However, rotating only part of a cipher block is difficult to achieve in a packed
FHE implementation of Dasta. Thus Fasta presents the same advantages when evaluated
homomorphically compared to Dasta.

Masta [HKC+20] abandons Fs2 as the native plaintext space, and can be seen as a
Rasta variant with plaintext elements in Fp for a prime p > 2. The linear transformations
of Masta are then simply chosen as a multiplication with an element chosen pseudo-
randomly from Fps , where s is the number of slots in the FHE ciphertext. The designers
state that this speeds up the homomorphic evaluation of the cipher by a factor of more
than 3000 compared to Rasta. However, this comparison should be done with caution as
Masta is tailored to computations on integers and Rasta (and Fasta) was designed for
binary circuits.

The most recent Rasta variant proposal is called Pasta [DGH+21b]. In contrast to
Fasta, Pasta has the plaintext elements taken from the field Fp, where p is a large prime.
The linear layers in Pasta are chosen in a structured way, requiring only the sampling of
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s random elements from Fp to generate an s× s matrix. All together, this leads to Pasta
being up to 6 times faster than Masta in certain scenarios.

Other symmetric key ciphers proposed for hybrid encryption include LowMC [ARS+15],
FLIP [MJSC16] and Kreyvium [CCF+16]. LowMC is a family of block ciphers, with multi-
plicative depth at least 12, while Kreyvium is a stream cipher based on Trivium. Kreyvium
has the drawback that the multiplicative depth for producing keystream increases with
the output length. For comparison with Fasta, producing 1645 bits of keystream with
Kreyvium requires multiplicative depth of at least 17 (compared to 6 for Fasta). FLIP
is also a stream cipher, with the benefit that the multiplicative depth for producing key
stream is held constant at 4. However, FLIP was successfully cryptanalysed in [DLR16].
Finally, we also mention Ciminion [DGGK21], a recent proposal oriented around a large
field Fq, which aims to minimise the number of field multiplications in its design. However,
while the total number of field multiplications in Ciminion might arguably be small (at
least 56), they all appear sequentially. This leads to a multiplicative depth of Ciminion of
at least 56, making it very unsuitable for hybrid encryption in the FHE setting.

Overall, among the ecosystem of FHE-friendly stream ciphers, Fasta has been specif-
ically designed to improve on the efficiency of both Rasta and Dasta, while keeping the
original plaintext elements as bits in F2.

5 Security Analysis

Fasta is a Rasta variant, which introduces a new idea for a FHE-friendly linear-layer
design. Like Rasta, it also uses the A(SA)d structure, with the non-linear layer S based
on the χ-transformation, and affine round transformations drawn from a large family of
affine mappings. Moreover, as discussed above, Fasta can be seen as five parallel calls of a
particular Rasta instance, however under the operation of different enlarged linear layers
– Fasta’s composed of a rotation-based transformation and the 5-parallel Rasta a block
diagonal matrix, in both cases pseudo-randomly generated. As a result of these design
choices, we claim that we can leverage most of the analysis originally performed for Rasta
in [DEG+18] to assess the security of Fasta. For example, like Rasta we also disallow
related-key attacks, and thus differential-type attacks should likewise not apply to Fasta.
In this section we will therefore only discuss a subset of attacks considered in [DEG+18],
indicating when required how to adapt the original discussion to Fasta’s setting. We first
consider the properties of the rotation-based linear transformations introduced earlier, and
used in Fasta. We also discuss the feasibility of attacks based on the algebraic structure of
the cipher, and of linear approximation based attacks, again leveraging the corresponding
discussions from [DEG+18].

5.1 On the structure of FASTA’s linear transformation

Ideal diffusion of FASTA’s family of linear transformations. The Θ function used
Fasta’s linear layer has the property that every input bit in position i, for 0 ≤ i ≤
328, will affect the output bits in positions i, . . . , i+ 9 mod 329. As explained in Section
4.3, the influence of x0[0] will spread to the entire cipher state after applying the linear
transformation once. By rotational symmetry, this applies to every bit in the input words,
so every bit in the output of the linear transformation may have any of the input bits in
its linear expression.
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(a) Distribution of the percentage of set bits in
the matrices.

(b) Distribution of measured values of
Pr[〈eiL, ej〉] across the matrices, for all 0 ≤
i, j ≤ 1644.

Fig. 8: Statistics for 10000 random matrices used in Fasta.

When adding words together at the start of every iteration, some of the affected parts
of the input words will overlap. As an input bit to Θ is spread to approximately half of
the bits in its neighbourhood of the output, this makes approximately half of the affected
part of the cipher state depend on approximately half of the input bits it depends on. In
total, we therefore expect ideal diffusion for the linear layers in our family.

To confirm this, we have generated 10000 matrices appearing as linear transformations
in Fasta, and considered their statistics. Figure 8a shows the distribution of the percentage
of set bits in these matrices. The distribution appears to be well approximated by a normal
distribution with mean 50%, a behaviour we would expect for random matrices.

In Figure 8b we have measured how well a sample of 10000 matrices satisfies ideal
diffusion according to Definition 1. More precisely, for a given pair of numbers (i, j),
0 ≤ i, j ≤ 1644 we measured Pr[〈eiL, ej〉 = 1] across the 10000 matrices. We did this for
all 1645×1645 = 2706025 different pairs (i, j), and counted the frequencies of probabilities
seen. The plot is shown in Figure 8b. As we can see, all probabilities are clustered around
1/2, normally distributed with a small variance.

Pairwise dependence/independence of entries in the linear transformation. The
Fasta state consists of 5 words with 329 bits each. Proposition 1 decomposes the linear
transformation matrix M into 25 submatrices, each of size 329 × 329. Each of these 25
submatrices are defined in terms of their respective top row. Looking at each submatrix
in isolation, each of its rows is a cyclic rotation by 1 of the row above. Let D be a
submatrix of M , and Di,j be an entry in D. It follows from the row rotation property that
Di+1,j+1 = Di,j , which generalizes to D0,j = Da,j+a, for 0 ≤ a, j ≤ 328 and where indices
are computed modulo 329.

As M displays random behaviour and is expected to provide ideal diffusion, we will
make the reasonable assumption that pairwise entries are independent, for any of the 25
submatrices in M . Furthermore, two entries from different submatrices are also treated as
independent.
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5.2 Algebraic attacks

Given the keystream Z = (z0, . . . , z1644) produced on a call to Fasta’s keystream generator
for an unknown key K = (k0, . . . , k328), it is possible to express the keystream bits as
polynomials in k0, . . . , k328 to get a set of polynomial equations over F2:

f0(k0, . . . , k328) + z0 = 0
f1(k0, . . . , k328) + z1 = 0

...
f1644(k0, . . . , k328) + z1644 = 0

(1)

The attacker may repeat calls to the keystream generator to gather more such equa-
tions. The fact that new linear layers will be applied for each repetition means that new
functions fi will be used to define these fresh equations, up to 264 due to the cipher’s data
limit. We therefore consider algebraic attacks to be the most promising cryptanalytical
technique against Fasta, and consider its feasibility below.

Standard linearization-based attack. The equation system (1) forms the foundation
of the standard linearization attack. In such an attack, given a system of non-linear mul-
tivariate polynomial equations, all monomials are substituted with a new “variable”, and
the resulting set is considered as a system of linear equations over these variables. To fully
solve this system, an attacker needs to collect as many equations as there are variables,
which then allows for a unique solution to be found through Gaussian elimination. Thus,
the complexity of solving such a system based on this method is directly dependent on the
number of monomials in the original system.

The maximum number of different monomials we can get is dependent on the algebraic
degree of each fi. For Fasta, the algebraic degree of fi is upper bounded by 26 = 64, since
the degree doubles with every application of χ and Fasta has six rounds. Thus the size
of the linearized system will be at most

∑64
i=0

(
329
i

)
≈ 2535.

This value is computed by only considering χ in the forward direction. It is well known
that the inverse of χ has high degree, but through careful study of the relationships between
input and output bits to the χ operation, the authors of [LSMI21] have derived further
equations arising in the last round of Rasta, Dasta, and in fact Fasta. There are two
important consequences of this find. Firstly, 3 × 1645 = 4935 equations can be derived
per application of Fasta, instead of only 1645. Secondly, the last round can effectively
be peeled off since the equations describing χ in the last round do not multiply inputs
together, only inputs and outputs. The outputs of χ in the last round can be described as
linear polynomials in k0, . . . , k328, and the inputs will be polynomials of degree 32. So the
number of monomials in the generated equations is reduced to at most

U =

33∑
i=0

(
329

i

)
≈ 32933 ≈ 2276. (2)

Under the assumption that all U monomials of degree up to 33 over the 329 variables
are present in the system of equations, the complexity of such attack (solving a system of
linear equations of size ≈ 2276) is way higher than the security level claimed for Fasta (128
bits of security). This is the behaviour we may expect for large random systems. However,
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for Fasta (and Rasta) we are not guaranteed that U is the number of monomials which
will actually occur in the system. We explore this question in Appendix C, and conclude
that the expected number of monomials appearing in the algebraic equations linking the
unknowns k0, . . . , k328 to the keystream bits is indeed approximated by U . Thus, similar
to Rasta, linearization-based attacks are not a threat to Fasta.

Other algebraic approaches The maximum number U of monomials could be reduced
by guessing g key bits, at the cost of increasing the complexity of the linearization attack
by a factor of 2g. This implies a cut-off for guessing bits at g = 128, where the complexity
increase alone will equal the claimed security level.

Even when guessing 128 of the bits in K, we are still left with U =
∑33
i=0

(
201
i

)
≈ 2252

monomials to linearize. As the data complexity is limited to 264/1645 ≈ 254 calls to Fasta
for a given key K, the maximum number of equations we can generate, taking [LSMI21]
into account, is 3 · 1645 · 264/1645 < 266. We can therefore conclude that an attacker will
not be able to generate enough equations for a linearization attack to succeed.

A more advanced form of algebraic attacks is based on Gröbner basis algorithms. In
this case, the cipher’s non-linear system is considered in its original form, and attempted
to be solved using, e.g. Faugère’s F5 algorithm [Fau02]. The complexity of Gröbner ba-
sis algorithms is not fully understood for systems arising from cryptographic algorithms.
Although they have been applied successfully in cryptanalysis, given the sizes involved in
the Fasta system, we do not consider GB-based attacks a threat to Fasta.

5.3 Attacks based on linear approximations

To assess the feasibility of attacks based on linear approximations against Fasta, we refer
to the discussion in [DEG+18, Section 3.2]. There, the authors of Rasta derive upper
bounds for the correlation of linear approximations after d = 2r rounds based on the
properties of the χ transformation. This is done by estimating the number of active bits in
the input/output of applications of χ, under the assumption the linear layers are randomly
generated. For example, they conclude that Rasta with block n = 351 and d = 6 rounds
is not susceptible to attacks based on linear approximations.

For Fasta, the transformations in the linear layer are not random, but rather pseudo-
randomly generated among the rotation-based matrices defined in Section 3. More impor-
tantly however, the non-linear layer in Fasta consists of five parallel applications of the χ
transformation. Given the diffusion properties that the linear layer is expected to feature,
we expect that any linear trail over two rounds of Fasta will have a correlation of much
lower magnitude than for Rasta (which would consist of six applications of χ, compared
to 5 × 6 = 30 for Fasta). Our conclusion is therefore that, as with Rasta, attacks based
on linear approximations are not feasible against the parameters chosen for Fasta.

5.4 Other classical attacks

Differential attacks, higher-order differential attacks, cube attacks, and integral attacks all
try to exploit the structure of a cipher in one way or another. A differential attack looks
for advantageous characteristics present in the structure, before attempting to find pairs of
plaintexts which satisfy these characteristics. Higher-order attacks and cube attacks exploit
the algebraic degree of the output bits of a primitive, while integral attacks make use of
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curated sets of plaintexts. They all have in common a need to evaluate the cryptographic
primitive more than once and with different inputs. With Fasta, the circuit generating a
block of keystream is only used once. Furthermore, the attacker does not have the freedom
to choose different inputs to Fasta’s keystream generation function, as it is always the
secret key. We therefore conclude that these attacks are infeasible to execute against Fasta.

6 Homomorphic implementation of FASTA

Software libraries implementing FHE or levelled homomorphic encryption (LHE) schemes
have gone through extensive development over the last years. They now appear as quite
robust, well documented, and user friendly. The libraries and schemes we have considered
during the design of Fasta were: HElib and PALISADE with their implementations of
the BGV scheme; SEAL and PALISADE with the BFV scheme; TFHE with the torus-
based FHE scheme; and PALISADE’s FHEW scheme. HElib, PALISADE, and SEAL also
implement the CKKS scheme, but as CKKS is an approximate LHE scheme with real
numbers as the plaintext space, it is not suitable for implementing Boolean circuits.

We have designed Fasta to be fast when evaluated homomorphically, while also being
based on a dedicated symmetric cipher for FHE, namely Rasta. In order to ensure fast
evaluation, the parallelism offered by multiple slots in the FHE scheme is used to pack
many bits of the cipher state into one FHE ciphertext. The TFHE library does not yet
support such parallelism, and has therefore not been a target for the design of Fasta.

Both the BFV and BGV schemes provide ciphertexts with multiple slots, but BFV
needs the number of slots to be a power of 2. Also, the BGVrns scheme will always have
an even number of slots. As we use the χ-transformation in Fasta’s non-linear layer, this
makes BFV and BGVrns less suitable since χ is only invertible when the cipher state
words going through χ have an odd number of bits. Implementing Fasta (or Rasta for
that matter) in BFV using packing will then have to use dummy slots, i.e. slots in the FHE
ciphertext that are not used, but still need to be accounted for when doing rotations, as
discussed below.

As the number of slots in BFV and BGVrns is much higher than 329, typically in the
range 213 to 216 for parameters giving 128-bit security, we will only use the 329 first slots
of a ciphertext c∗ = {(c1, c2, . . . , c329, 0, 0, . . . , 0)}, and need to do cyclic rotations over
only these slots. A natural way to rotate c by a positions in the 329 first slots is to first
rotate c by a positions to the right, c∗r = (c∗ >> a), then by 329− a positions to the left,
c∗l = (c∗ << (329− a)), and add the two ciphertexts:

c∗r = {(
329 first slots︷ ︸︸ ︷

0, . . . , 0, c1, c2, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0)}

c∗l = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, 0, . . . , 0, 0, . . . , 0, c1, . . . , c329−a)}

c∗l + c∗r = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, c1, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0, c1, . . . , c329−a)}

This effectively does a cyclic rotation of the first 329 slots, but leaves non-zero plaintext
values in the dummy slots, which need to be zeroed out to prevent them from being shifted
back in on subsequent rotations. This can be done by masking, multiplying with a plaintext
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that is 1 in the 329 first slots and zero elsewhere. Unfortunately, a plaintext-ciphertext mul-
tiplication is only somewhat cheaper in terms of noise growth than a ciphertext-ciphertext
multiplication, so making a customized rotation in BFV or BGVrns to accommodate for
dummy slots is simply too costly in a practical implementation.

On the other hand, the BGV scheme as implemented in HElib have instances with
an odd number of slots in each ciphertext. We have therefore designed Fasta to take
advantage of these features, and thus enable particularly efficient homomorphic evaluation
with BGV in HElib. The basis for the BGV scheme is the cyclotomic polynomial Φm, where
m is chosen by the user. The parameter m decides the number of slots, and together with
the noise budget in fresh ciphertexts, a parameter denoted by bits in HElib, also decides
the estimated security level for the instance of BGV. Searching for suitable values of m
we found that m = 30269 gives 329 slots in HElib and a security level of just over 128 bits
when bits = 500 (if bits is lower, the security level increases). Hence we designed Fasta to
give 128-bit security in itself, and to be used with the particular instance of BGV where
m = 30269. Running Fasta in HElib with m = 30269 consumes approximately 260 bits ,
leaving up to 240 bits more for further computations in an actual use case.

Implementing Fasta in HElib starts by encrypting the 329-bit key K five times into
five different HElib ciphertexts w∗0 , . . . , w

∗
4 with 329 slots each. Five copies of w∗i are

then made for the feed-forward of the key at the end of Fasta. The initial rotations
are done by setting w∗i = (w∗i << i), before the first affine layer is executed using only
rotations and additions of the five ciphertexts. The χ-transformation works on each w∗i
individually, and is done by making two copies of w∗i that are rotated by 1 and 2 positions
respectively: u∗1 = (w∗i << 1) and u∗2 = (w∗i << 2). The output of χ is then computed
as u∗1 × u∗2 + w∗i + u∗2, using only a single ciphertext-ciphertext multiplication. The rest
of Fasta is executed homomorphically in the same way, using only rotations, additions
and a single multiplication for each word in the non-linear layer of each round. Finally the
initial copies of w∗i are added to the five ciphertexts in the end to produce a block of 1645
bits of key stream encrypted under FHE.

6.1 Timings of implementations

We made both packed and bit-sliced implementations of Fasta and Rasta in some of
the libraries, and timed the execution times. The packed version of Rasta used mul when
multiplying with random matrices in the linear layer, and the block size was modified from
351 to 329 to make the block fit exactly in the BGV ciphertext (we denote this version as
Rasta∗ in Table 1). In addition we also ran 6-round Rasta implementations published at
[DGH+21a]. Parameters in the BFV and BGV schemes used were chosen to give roughly
500 bits in noise budget, for equal comparison. The timings were done on a MacBook Pro
with a 2.3 GHz Intel Core i5 processor and 16 GB RAM. The results are given in Table 1.

Unsurprisingly, the packed implementations are faster than the bit-sliced ones encrypt-
ing only a single bit in each ciphertext. The bit-sliced implementations were all optimized
with ”the method of the four russians” in the matrix multiplication. In the user manual
of PALISADE [PRRC21, Sec. 9.3] it is noted that both the XOR and AND gates take
the same amount of time in that library’s implementation of FHEW. Hence the very large
number of XOR gates in the matrix multiplication of Rasta explains the extremely high
execution time. Note that the packed implementation from [DGH+21a] uses the 351-bit
block size specified for Rasta, and therefore needs to use masking in its operations. This
explains the faster run times we have for Rasta with 329-bit block.
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Table 1: Amortized time (in seconds) to produce one bit of key stream when executing
homomorphic implementations of Rasta and Fasta.
(Rasta∗ denotes the cipher with a 329-bit block.)

Library(Scheme) Cipher FHE time χ time time
encoding lin. trans. total

Implementations TFHE Rasta (6 r.) bit-sliced 0.3640 13.902 14.266
from HElib(BGV) Rasta (6 r.) bit-sliced 3.079 0.510 3.589

[DGH+21a] SEAL(BFV) Rasta (6 r.) bit-sliced 0.6122 0.1918 0.8040
HElib(BGV) Rasta (6 r.) packed 0.0956 1.0083 1.1039

PALISADE (FHEW) Rasta (6 r.) bit-sliced 15.73 1197.8 1213.6
Our own TFHE Rasta (6 r.) bit-sliced 0.2296 11.331 11.56

implementations HElib(BGV) Rasta∗ (6 r.) packed 0.0166 0.2670 0.2836
HElib(BGV) Fasta (6 r.) packed 0.0166 0.0260 0.0427

For the packed versions, we find that Fasta is 25 times faster than Rasta, and more
than 6 times faster than the ”optimized” version of Rasta where the block size fits the
FHE ciphertext. The difference in runtimes for Rasta with 329-bit block and Fasta is
entirely due to the linear layer of Fasta having been designed for fast execution in HElib.

7 Conclusions

The design of symmetric ciphers for use with FHE has so far focused primarily on minimis-
ing multiplicative complexity. However the libraries implementing various FHE schemes
have matured over the last years, with some attractive implementation features, and are
now more robust and user friendly than the early versions. This motivated us to study
the implementation and homomorphic evaluation of a prominent family of FHE-friendly
ciphers, Rasta, on the most well-known FHE libraries.

We found that the parameters of Rasta make it difficult to efficiently use the parallelism
offered by some of the FHE schemes, namely BGV and BFV. The reason for this is that
these schemes are quite inflexible when it comes to the number of slots available in a single
FHE ciphertext. In the case of BFV and BGVrns, the number of slots becomes much larger
than we need when these schemes are instantiated with parameters giving 128-bit security.
On the other hand, for BGV in HElib the number of slots in a single ciphertext is more in
line with the block size of a symmetric cipher, but it is still determined by the m-parameter
and cannot be chosen freely by the user. This led us to propose Fasta.

Our research showed that when packing the bits of the symmetric cipher state into
single FHE ciphertexts, only two operations are cheap to do: additions of full FHE cipher-
texts, and cyclic rotations. Multiplications, both between two ciphertexts and between
plaintext and ciphertext, are expensive and should be kept to a minimum. Moreover we
also found that for efficient implementations, it is important to fit the cipher block exactly
into FHE ciphertexts. Otherwise, excessive slots need to be zeroed out after rotations,
which invokes multiplications with a plaintext mask.

Typical FHE-friendly symmetric designs, focusing primarily on low multiplicative com-
plexity, appear to assume bit-sliced implementations of the cipher, where we only encrypt a
single bit into each FHE ciphertext and do not need to worry about slots. They are indeed
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easy to implement, but these choices lead to a high run-time when evaluated homomor-
phically. As computational complexity is the major bottleneck for FHE it is crucial that
implementations can take advantage of packing features in the main FHE libraries. Our
proposal Fasta demonstrates that by taking into account the features of FHE libraries
and schemes in the design process we may achieve a secure and efficient FHE-friendly
symmetric cipher.
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A Matrix structure of rotation-based linear transformations

To observe and study the structure of rotation-based linear transformation matrices intro-
duced in Section 3.1, we recall the steps for constructing a rotation-based linear transfor-
mation acting on b s-bit words w0, . . . , wb−1.

1. Define a column parity mixer based on a Θ operation using rotations of low amounts
(compared to the word length s; see Figure 3).

2. Apply rotations to the words wi between applications of the column parity mixer.
3. Iterate applications of column parity mixers with rotations in between, as much as

needed until the entire cipher state is affected.

To describe the structure of (binary) matrices defined as above, it is helpful to consider
rotation-based linear transformations as operations over the module Rb, where R is the
ring F2[X]/(Xs + 1). In this case, each wi can be considered as a polynomial wi(X) =
as−1X

s−1+. . .+a2X
2+a1X+1, where aj ∈ F2. Note that the XOR operation of two words

wi, wj corresponds to addition in R, while the rotation operation wi << r corresponds to
the multiplication of wi(X) by Xr.

Then let w = (w0, . . . , wb−1) ∈ Rb be the input of a rotation-based linear transforma-
tion L defined as above. The application of a column parity mixer based on a Θ operation
using rotations/XORs (step 1) corresponds to:

(i) (w0, . . . , wb−1) 7→ (w0 + . . .+ wb−1) = w ∈ R
(ii) w 7→ w·pΘ, where pΘ ∈ R is a polynomial defined by the rotations and XOR operations

in Θ.
(iii) w · pΘ 7→ (w0 + w · pΘ, . . . , wb−1 + w · pΘ) ∈ Rb.

Thus application of a column parity mixer operation on w = (w0, . . . , wb−1) ∈ Rb can be
represented as a matrix over R given by

PΘ =


pΘ + 1 pΘ . . . pΘ
pΘ pΘ + 1 . . . pΘ
. . . . . . . . . . . .
pΘ pΘ . . . pΘ + 1


Likewise, the application of rotations << ri to the individual words wi of the state

(step 2) can be represented as a matrix

Rv =


Xr0 0 . . . 0

0 Xr1 . . . 0
. . . . . . . . . . . .
0 0 . . . Xrb−1

 ,

where v = (r0, r1, . . . , rb−1). These two operations are then iterated n times, using different
Θi and word rotations vi = (r0, . . . rb−1) (step 3). It follows that the matrix M representing
a rotation-based linear transformation over Rb can be defined as

M = PΘ1
·Rv1 · PΘ2

·Rv2 · . . . ·Rvn−1
· PΘn

Every entry of M is a univariate polynomial of degree at most s− 1. Note that the multi-
plication of wi ∈ R by a polynomial p ∈ R, when considered as a F2-linear transformation,
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can be represented as a binary circulant matrix. It follows that, when considered as a F2-
linear transformation acting on the state block w ∈ (F2)bs, the bs× bs matrix M realising
a rotation-based linear transformation L, with L(w) = wM , can be decomposed into b2

sub-matrices as described in Proposition 1.

For example in Fasta, we have b = 5 and s = 329. Moreover, Θ can be realised by
multiplication by the polynomial pΘ = Xr3 +Xr2 +Xr1 +1 (where 1 ≤ r1 ≤ 3, 4 ≤ r2 ≤ 6,
and 7 ≤ r3 ≤ 9; refer to Figure 6), and the word rotation operations Rv are defined as
given in Figure 7. Four iterations are required to generate the matrix M . As discussed
in Section 4, these choices ensure that the matrices PΘ, Rv, and as consequence M , are
invertible. An example of such a matrix M generated following this method can be seen
in Figure 9a. Each of the 25 blocks is a 329× 329 circulant matrix over F2.

For the purpose of comparison, we also include the matrix for a linear transformation
realising five parallel calls to Rasta with same parameters (Figure 9b). In this case, the
resulting linear transformation can be represented as a block diagonal matrix, with random
329× 329 sub-matrices in the diagonal, and all zero matrices elsewhere.

(a) Matrix realising a rotation-based linear
transformation with 5 words of length 329.

(b) Matrix for linear layer tying five parallel
applications of Rasta together.

Fig. 9: Structure of matrices for Fasta and five parallel calls to Rasta. Black pixels indicate
1-bits and blue pixels are 0-bits.
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B Mapping αj to rotation values and round constant

Let r
(t)
1 , r

(t)
2 and r

(t)
3 be the rotation amounts used in Θ in iteration t, for 1 ≤ t ≤ 4. There

are then 24 rotation amounts that need to be decided from αj . The r
(t)
1 and r

(t)
2 can take

3 values each, and r
(t)
3 is computed from these, for a total of nine different instances of

Θ. Each of the four i∗, j∗, l∗ can take 5, 19, and 62 values each, respectively. There are
therefore T = 38 · 54 · 194 · 624 ≈ 262.78 different instances in the class L of rotation-based
linear transformations we have defined.

We split αj into αj = (αrj , α
c
j), where αrj is 63 bits and αcj is 1645 bits. The 24 rotation

values are computed from αrj , as in Algorithm 1. Apart from the r
(t)
3 values, what we are

essentially doing is first computing B = αrj mod T , and then writing B in a mixed base:
the eight least significant digits in base 3, the next four digits in base 5, the next four in

base 19, and the four most significant digits in base 62. Keeping in mind that r
(t)
1 and r

(t)
2

will have 1 and 4 added to them, the rotation amounts can then be read out as the digits
of B, written in this mixed base:

B = k3 · 623 · 194 · 54 · 38 + k2 · 622 · 194 · 54 · 38 + . . .

+r
(2)
2 · 35 + r

(1)
2 · 34 + r

(4)
1 · 33 + r

(3)
1 · 32 + r

(2)
1 · 3 + r

(1)
1 .

After applying the linear transformation, the 1645-bit value αcj is XORed onto the state
to produce the affine layer output.

Algorithm 1: Determining rotation amounts from αrj .

Result: Rotation amounts for linear transformation are fixed.
B ← αrj mod T
for t = 1 to 4 do
r
(t)
1 ← 1 + (B mod 3)
B ← bB/3c

end for
for t = 1 to 4 do
r
(t)
2 ← 4 + (B mod 3)

r
(t)
3 ← 7 + (2r

(t)
1 + r

(t)
2 + 1 mod 3)

B ← bB/3c
end for
for t = 1 to 4 do
it ← B mod 5
B ← bB/5c

end for
for t = 1 to 4 do
jt ← B mod 19
B ← bB/19c

end for
for t = 1 to 4 do
lt ← B mod 62
B ← bB/62c

end for
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C Standard linearization-based attack against FASTA

We examine the question of the number of monomials actually occurring in an algebraic
description of Fasta, following a similar discussion from [DEG+18].

Let M be the matrix over F2 that realises one of Fasta’s rotation-based linear trans-
formations, let x = (x0, . . . , x1644) be the input state and A(x) = M · x + c. From the
description of χ in the non-linear layer S, one round S ◦ A(x) of Fasta can be described
by the following equations (from [DEG+18]):

S ◦A(x)i =

k−1∑
j=0

k−1∑
l=j+1

aij,l · xj · xl +

k−1∑
j=0

bij · xj + gi, (3)

where i denotes the polynomial representing the i-th bit in the cipher block after S ◦A(x).
As the word size is 329, i+ 1 and i+ 2 “wrap around”, i.e. they are calculated as i− 328
and i− 327 when i mod 329 = 328 and 327. The coefficients of S ◦A(x)i are given by

aij,l = Mi+1,j ·Mi+2,l +Mi+2,j ·Mi+1,l,

bij = Mi,j + ci+2 ·Mi+1,j + (1 + ci+1) ·Mi+2,j ,

gi = ci + ci+2 + ci+1 · ci+2.

We can see that the term containing the coefficient aij,l contains the only multiplication,

meaning it is the only place where the algebraic degree may increase. We only need aij,l = 1
for at least one i for the corresponding monomial to be present in the output. We first find
the probability that each coefficient aij,l is 0. From the above equations we get

P [aij,l = 0] = P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 0] + P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 1]
(4)

In Section 5.1, we found when two entries in M are equal with certainty, due to the
rotational structure in M , and when they are considered independent. Put into context of
Equation 4, we have that two entries Mi+1,j and Mi+2,l are equal when

l =

{
j + 1 for j 6= 328 mod 329

j − 328 for j = 328 mod 329

Otherwise, Mi+1,j and Mi+2,l are considered as independent in our analysis.

The equal entries are split into two cases, depending on whether j or l are crossing
from one sub matrix to another or not, i.e., to handle “wrap-around” of sub-matrices.

We expect each entry in M to be present with probability one half, following the
discussion in Section 5.1. This allows us to calculate P [aij,l = 0]. We begin with the case
where the two entries from M are equal, i.e, in general when l = j + 1:

P [aij,j+1 = 0] = P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 0]

+ P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 1]

=
1

2
· 3

4
+

1

2
· 1

4
=

1

2
.

28



For all independent entries, we get instead:

P [aij,l = 0] =

(
3

4

)2

+

(
1

4

)2

=
5

8
.

This last result is the same as expected for any two entries in a random matrix. It follows
that the probability that all the coefficients for the product xj · xl are equal to 0 can be
estimated as

P [aij,l = 0, ∀i = 0, . . . , 328] ≤
(

5

8

)329

.

In other words, at least one of these coefficients are 1 with probability at least 1−
(
5
8

)329
.

If we consider the monomials of degree 2, it follows that we can expect an average
number of monomials in each word wi of degree 2 to be at least(

329

2

)
·

(
1−

(
5

8

)329
)
'
(

329

2

)
.

We can use the same reasoning we used for monomials of degree 1, resulting in an ex-
pected number of these monomials to be 329 ·(1−2−329) ≈ 329. This argument can also be
applied for monomials of higher degrees. We therefore conclude that the expected number
of monomials appearing in the algebraic equations linking the unknowns k0, . . . , k328 to
the keystream bits is approximated by U , the maximum possible number of monomials.
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