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Abstract

We introduce the notion of elementary MPC reductions that allow us to se-
curely compute a functionality f by making a single call to a constant-degree “non-
cryptographic” functionality g without requiring any additional interaction. Roughly
speaking, “non-cryptographic” means that g does not make use of cryptographic prim-
itives, though the parties can locally call such primitives.

Classical MPC results yield such elementary reductions in various cases including
the setting of passive security with full corruption threshold t < n (Yao, FOCS’86;
Beaver, Micali, and Rogaway, STOC’90), the setting of full active security against
a corrupted minority t < n/2 (Damg̊ard and Ishai, Crypto’05), and, for NC1 func-
tionalities, even for the setting of full active (information-theoretic) security with full
corruption threshold of t < n (Ishai and Kushilevitz, FOCS’00). This leaves open the
existence of an elementary reduction that achieves full active security in the dishonest
majority setting for all efficiently computable functions.

Our main result shows that such a reduction is unlikely to exist. Specifically, the
existence of a computationally secure elementary reduction that makes black-box use
of a PRG and achieves a very weak form of partial fairness (e.g., that holds only when
the first party is not corrupted) would allow us to realize any efficiently-computable
function by a constant-round protocol that achieves a non-trivial notion of information-
theoretic passive security. The existence of the latter is a well-known 3-decade old
open problem in information-theoretic cryptography (Beaver, Micali, and Rogaway,
STOC’90).

On the positive side, we observe that this barrier can be bypassed under any of the
following relaxations: (1) non-black-box use of a pseudorandom generator; (2) weaker
security guarantees such as security with identifiable abort; or (3) an additional round
of communication with the functionality g.

1 Introduction

The design and analysis of secure multiparty computation (MPC) protocols crucially rely
on the notion of secure reductions. For example, the classical completeness results of
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Yao [47] and Goldreich, Micali and Wigderson [25] can be interpreted as saying that the
problem of securely computing a general n-party functionality f efficiently reduces to the
problem of securely computing the elementary finite 2-party Oblivious Transfer (OT) func-
tionality [44, 21]. This paradigm of reducing a complicated f to a “simpler” randomized
functionality g is especially useful when the reduction is non-interactive. That is, the par-
ties compute f by making a non-interactive call to the n-party functionality g without any
additional interaction. For example, Yao’s celebrated garbled circuit technique [47] can
be viewed as a non-interactive passively-secure reduction from any 2-party functionality
f to a functionality g that can be represented by a vector of constant-degree polyno-
mials. Extensions to the multiparty setting and to the information-theoretic setting for
NC1 functionalities were presented by Beaver, Micali and Rogaway [14] and by Ishai and
Kushilevitz [35, 36]. Overall for passively secure protocols, we have the following satisfying
picture.

Theorem 1.1 (Non-Interactive Passive Reductions [47, 14, 35, 36]). Let f be an n-party
functionality.

— If f is in NC1, then there exists a non-interactive reduction from f to a constant-
degree functionality g. The reduction preserves information-theoretic passive security
against an adversary that corrupts up to n− 1 parties.

— If f is efficiently computable (e.g., by a polynomial-size circuit family) and pseudo-
random generators (PRG) exist, then there exists a non-interactive reduction from f
to a constant-degree functionality g. The reduction preserves computational passive
security against an adversary that corrupts up to n− 1 parties.

The above theorem and its many variants form the basis of most known general-purpose
constant-round MPC protocols. Indeed, Theorem 1.1 non-interactively reduces the task
of securely computing f to the task of securely computing a constant-degree function – a
problem that can be solved within a constant number of rounds via standard protocols
(e.g., [25, 15, 18]). Theorem 1.1 has also found, under the framework of randomized encod-
ing (RE) [8], several surprising applications beyond MPC and even beyond cryptography.
(See the surveys [34, 4].)

Elementary reductions. One important feature of the above theorem is the fact that,
even in the computational setting, the reduction makes a black-box use of the PRG
and the functionality g is completely independent of the PRG. In more detail, a non-
interactive reduction consists of a preprocessing phase where each party Pi applies some
local preprocessing computation prei to its input xi and its random tape ri, and sends
the result yi = prei(xi; ri) to the g-oracle, which, in turn, computes a vector of outputs
(v1, . . . , vn) = g(y1, . . . , yn) and delivers vi to the i-th party. Each party then applies some
local postprocessing function posti to its local view, and generates the final the output zi
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Figure 1: Elementary non-interactive reduction (dotted arrows represent oracle queries).

(See Figure 1). The computational non-interactive reduction of Theorem 1.1 is elementary
in the following sense: The parties make only black-box calls to the PRG as part of prei
and posti, and the constant-degree functionality g is independent of the PRG and depends
only on f .1 We refer to such a reduction as elementary and point out that this feature and
especially the fact that g is independent of the PRG, makes the reduction highly efficient
(since one does not have to “garble” the PRG). Moreover, from a theoretical point of view,
elementary reductions enable to base constant-round protocols on PRGs via fully black-box
reductions which forms an important feasibility result.

Actively-secure elementary reductions? The status of elementary reductions in the
active (aka malicious) setting, where parties may deviate from the protocol, is less clear.
For NC1 functionalities, the information-theoretic part of Theorem 1.1 holds even in the
active setting, and it provides an information-theoretic actively-secure reduction against an
arbitrary coalition. In fact, the reduction preserves fairness, (namely, if one party receives
its output then all parties do) and even guaranteed output delivery (i.e., honest parties
are guaranteed to successfully complete the computation). That is, assuming an ideal re-
alization of g with fairness (resp., guaranteed output delivery) against an adversary that
actively corrupts a coalition T , we get a protocol for f with the same security guarantees.
Adopting the perspective of Gordon et al. [28], the above result can be casted as a com-
pleteness result for fair secure computation of NC1 functionalities: The only resource that
is needed in order to fairly compute an NC1 functionality is the ability to fairly compute a
constant-degree functionality.

Unfortunately, no such result is known for the more general case of efficiently-
computable functionalities (even for computational security), instead we only have weaker
results. In particular, assuming PRGs in NC1, the work of [9] shows that every efficiently

1For the reader who is familiar with garbled circuits, we point out that g computes the “encrypted
tables” of each gate which can be written as a degree-3 (multi-output function) over random mask bits,
and pairs of the form (s, z) where s is a random seed that is chosen locally by some party and z = PRG(s)
is pre-computed as part of the preprocessing phase.
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computable function f , non-interactively reduces to a constant-degree function g with
fairness (and even guaranteed output delivery). However, the reduction is non-elementary
since the function g depends (in a non-black-box way) on the code of the PRG. Elementary
reductions that achieve weaker forms of security are implicit in the literature. This includes
protocols that achieve guaranteed output delivery in the presence of honest majority [20],
or dishonest-majority protocols that achieve (unfair) security with abort for single-receiver
functionalities in the two-party setting [40] and in the multiparty setting [46, 32]. This
leaves open the following natural question:

Is it possible to reduce every efficiently computable functionality to a constant-
degree functionality via an elementary actively-secure reduction that preserves
fairness, or even guaranteed output delivery, against arbitrary corruptions?

1.1 Our Results

Our main result shows that it is unlikely to obtain an elementary fair reduction for general
efficiently computable functions in the dishonest majority setting. Of course, we do not
expect to obtain an unconditional negative result, since such a result would rule out the ex-
istence of information-theoretic elementary reductions for efficiently computable functions
(a longstanding open problem in information-theoretic cryptography), and would imply
complexity-theoretic groundbreaking results such as P 6= NC1. Instead, we show that the
existence of computationally-secure elementary fair reductions is essentially equivalent to
the question of information-theoretic elementary reduction. That is, if f fairly-reduces to
a non-cryptographic functionality g via a non-interactive reduction that makes a black-box
use of a PRG, then these calls can be essentially removed. In fact, this holds even if the
elementary reduction works only in the 2-party setting and only achieves fairness against
an active adversary that only corrupts the second party (aka partial fairness [26]).2 Fur-
thermore, this result holds even if the PRG is modeled as a random oracle.

Theorem 1.2. Suppose that every efficiently-computable 2-party functionality f , reduces
to some constant-degree 2-party functionality g via an elementary reduction that makes
black-box calls to a random oracle while providing partial fairness. Then, every efficiently-
computable 2-party functionality f reduces to a constant-degree functionality g via a non-
interactive reduction in the CRS model with inverse-polynomial average-case information-
theoretic privacy against passive adversaries.

The theorem’s hypothesis is, in a sense, minimal – if the parties are allowed to have
an additional single round of interaction after calling g then one can achieve partial fair-
ness by using an elementary reduction that delivers an output to the second party (e.g.,

2Note that a multiparty fair elementary reduction implies a 2-party elementary fair reduction, which in
turn implies a 2-party elementary reduction with partial fairness. Therefore if we rule out the latter, we
also rule out the former.
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based on the appendix of [40]) and then ask the second party to deliver the outcome to
the first party. Let us elaborate on the “implication part” of Theorem 1.2. The notion of
inverse-polynomial average-case information-theoretic privacy relaxes the standard notion
of information-theoretic privacy by considering a scenario in which the honest party’s in-
put is chosen at random (and the adversary’s input may be arbitrary) and by requiring
only a fixed inverse polynomial simulation error as opposed to negligible.3 In addition,
the derived reduction is not completely non-interactive since the parties need an access to
a common reference string (that can be removed at the expense of making the reduction
non-uniform). These caveats can be removed under some circumstances (e.g., if the pre-
processing algorithms make only random queries to the random-oracle which is the case in
all existing constructions that employ a PRG – See Section 4).

Even with these minor caveats, the theorem’s implication is highly non-trivial since it
implies constant-round information-theoretic MPC protocols that are far beyond the cur-
rent state-of-the-art. For example, the implication of Theorem 1.2 allows us to compute
every efficiently-computable two-party functionality using a constant-round protocol with
inverse-polynomial average-case information-theoretic security in the OT-hybrid model.
This, in turn, leads to a constant-round protocol for any efficiently-computable 3-party
functionality with inverse-polynomial average-case information-theoretic security.4 The ex-
istence of such protocols is a well-known 3-decade old open problem in information-theoretic
cryptography that goes back to the seminal work of Beaver, Micali and Rogaway [14]. (See
also the discussions in [37, 34, 45].) While the original question is typically formulated with
respect to standard security, the relaxation to inverse-polynomial average-case security does
not seem to make it more tractable.

We complement our main result with some positive results. First, we observe that
any passively-secure elementary reduction can be compiled into an actively-secure non-
interactive, yet non-elementary, reduction.

Observation 1. Suppose that the functionality f reduces to a constant degree functionality
g via a non-interactive passively-secure reduction Π. Then, f reduces to a constant-degree
functionality g′ via a non-interactive actively-secure reduction Π′ with guaranteed output
delivery. Moreover, if Π is information-theoretically secure then so is Π′. The description
of g′ and Π′ depends on the description of the preprocessing part of Π. Specifically, if Π
makes use of a PRG in the preprocessing phase, then Π′ and g′ depend on the code of the
PRG.

This simple observation (whose proof is deferred to the Section A)
(whose proof is deferred to the full-version of this paper) shows that an elemen-

tary information-theoretic passively-secure reduction can be upgraded “for-free” to an

3This relaxation applies only to privacy, and correctness holds for arbitrary inputs except with negligible
probability. Also, we can support an arbitrary inverse polynomial privacy error α, at the expense of a
poly(1/α) slow-down in the running-time of the protocol.

4Both results can be lifted to the active setting as well.
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information-theoretic actively-secure elementary reduction. Specifically, it can used to
upgrade the implication in Theorem 1.2 to the active setting (however the reduction still
achieves only inverse polynomial average-case security).

Getting back to the computational setting, by combining Observation 1 with the
passively-secure elementary reductions from Theorem 1.1, we derive the following corollary.

Corollary 1.1. Assuming the existence of pseudorandom generators, every efficiently-
computable functionality f reduces to a constant-degree functionality g via a non-interactive
computationally-secure reduction with guaranteed output delivery against an active adver-
sary. The reduction and the functionality g make a non-black-box use of the PRG.

Previously, such a result was known only based on an NC1-computable PRG [9] (or
equivalently NC1-computable one-way function; see [3, Chapter 5]). The combination of
Theorems 1.2 and Corollary 1.1, provides another interesting example for a gap between a
black-box use of a primitive and a non-Black-Box use of a primitive. (See Section 1.3 for
further discussion.)

Finally, we ask what level of active security can be obtained via elementary reductions.
It turns out that it is possible to obtain the following notion of security with identifiable
abort [11]: Upon abort every honest party learns the identity of some corrupted party.
(This additional feature provides several advantages – see [39] for a discussion.)

Theorem 1.3. Every efficiently-computable functionality reduces to a constant-degree
functionality via an elementary computationally-secure reduction that achieves active se-
curity with identifiable abort.

This result can be extracted from the recent constant-round protocol of Baum et al. [13].
We provide a self-contained proof that highlights the main ingredients needed for elemen-
tary reductions. Our construction also has a minor advantage: It natively supports fairness
at the expense of an additional round of interaction. That is, if the parties are allowed
to interact with g twice (or, equivalently, replace g with two sequential calls to memo-
ryless constant-degree functionalities g1 and g2) then full fairness can be obtained! (See
Remarks 3 and 4.)

1.2 Technical Overview

Let us start by examining the computationally-secure passive elementary reductions from
Theorem 1.1 and see why they fail to achieve active security.

Attacking existing protocols. At a high-level, the garbled circuit technique non-
interactively reduces the computation of the target functionality f to the computation
of some form of a distributed encryption scheme. To make the reduction efficient for
high-depth circuits, one has to use an encryption scheme whose keys are shorter than the
message. The latter can be based on a PRG. Since the PRG should be employed locally,
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we ask each party Pi to compute, in the preprocessing phase, the PRG values on many
random seeds (s1, . . . , st) and send each of these seeds, sj , together with the outcome,
PRG(sj), to the functionality g. The functionality g then combines these values together
(via a low-degree operation) and outputs a bunch of ciphertexts for each gate of the cir-
cuit, together with some keys (seeds) for the input wires. In the postprocessing phase,
each party Pi decodes the output of f by decrypting some of the ciphertexts (according
to the computation path of the garbled circuit). As part of this decryption operation, Pi
computes the PRG on seeds that were selected locally during the preprocessing phase by
each of the participating parties. This structure ensures that this non-interactive reduction
is indeed elementary: The functionality g is independent of the PRG, and the PRG is being
invoked only locally and only in a black-box way.

Unfortunately, in the active setting, this independence can be exploited. An active
adversary can send an invalid pair of the from (s, y 6= PRG(s)), and the functionality g,
being “unaware” of the PRG, will not be able to detect such a cheating. As a result, honest
parties are likely to get garbage values during the postprocessing phase and the decoding
is likely to fail. Moreover, if the adversary knows an actual seed s′ for which y = PRG(s′),
then the adversary can, in principle, recover the correct value of f(x1, . . . , xn), violating
the fairness of the protocol. Our main theorem shows that this problem is not specific to
the current instantiations of garbled circuits: Such an attack is inherent in the setting of
elementary reductions and it can be avoided only if the PRG is not “really needed”.

Attacking general protocols. For simplicity let us focus on the two party case. We
assume that the PRG is instantiated with a random oracle H and, for now, let us further
assume that the parties invoke the oracle on randomly chosen seeds. Loosely speaking,
we apply a variant of the above attack in which the second (corrupted) party samples a
local independent random oracle G and uses this oracle in the preprocessing phase instead
of using the publicly available oracle H. We argue that the reduction cannot detect such
a cheating. Moreover, we note that the second party can still correctly recover the final
outcome of the protocol. Indeed, except with negligible probability, the parties do not
query the oracle on the same input, and so one can pretend that they honestly invoked the
protocol on a new random oracle that is obtained by combining the oracles H and G. Both
oracles are available to the second party and so she can use them in the postprocessing
phase to correctly recover the output f(x1, x2). Now if the protocol is indeed fair, then,
intuitively, the first party should also be able to recover the output correctly (by accessing
onlyH and without an access to the local oracleG). Furthermore, it can be shown that even
under this attack the honest party, P1, learns nothing on the input of the corrupted party
P2.5 Therefore, we get a modified protocol in which the preprocessing and postprocessing

5Both statements regarding the view of P1 (“fairness leads to correct output for P1” and “P1 learns
nothing on P2’s input”) are not immediate. First, the formal simulation-based definition of fairness only
ensures that P1 generates an output f(x1, x

′
2) with respect to some “effective input” x′2 of P2 and not

necessarily with respect to the “real” input x2 that is given to P2. This technicality is solved by working
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computation of P1 depends only on H, the preprocessing part of P2 depends only on G,
and its postprocessing computation depends on both G and H. We can therefore further
modify the protocol by asking P1 (resp., P2) to locally sample its own oracle H (resp.,
G), while removing the postprocessing phase of P2 and replacing it with an empty output.
(Formally, we also change the functionality g so that it hands to P2 an empty value ⊥.) This
gives us an information-theoretic passively-secure non-interactive reduction that delivers
an output only to the first party. We can easily fix this caveat and distribute an output
to both parties, by running two copies of the reduction in parallel where P1 is the receiver
in one copy and P2 is the receiver in the other copy. We can further make the reduction
actively-secure by invoking Observation 1.

The above description is over-simplistic since we assumed that the parties call the
PRG on uniform independent seeds. While this is a reasonable assumption (especially if
the random oracle models a PRG), it can be removed via standard techniques. Specifically,
the above argument holds as long as the calls to G and H in the preprocessing phase do not
intersect. To avoid such an event, we identify “heavy” queries [12], and let P2 use its local
oracle G only on non-heavy queries. This modification introduces several technicalities,
which eventually allow us to obtain only inverse-polynomial average-case security. We can
make sure that this problem does not affect the correctness of the protocol by adding to
the functionality g a “detect-and-reveal” mechanism that identifies a “collision event” and
releases, when such an event occurs, the private inputs of the parties. Thus, even when
the event happens correctness remains unaffected. This additional mechanism increases
the complexity of g to NC1, and we can reduce its degree to a constant, by replacing the
functionality with an NC0 information-theoretic RE.

About the proofs of positive results. As already mentioned, there are non-interactive
reductions that preserve full active security (including guaranteed output delivery) either
with information-theoretic security for NC1 functionalities [35, 36] or with computational
security for polynomial-size circuits assuming a non-black-box access to a PRG in NC1 [9].
These results are based on constant-degree information-theoretic/computational REs. In-
terestingly, REs essentially correspond to extremely simple non-interactive reductions in
which the parties do not apply any preprocessing computation and submit their inputs
directly to the randomized functionality g. This feature is obtained by “pushing all the
computation” to functionality g; For NC1 functionalities this can be done by plugging an
information-theoretic encryption scheme (e.g., one-time pad) into the garbled circuit con-
struction, and in the computational setting, this is essentially done by relying on a PRG
whose complexity is low enough so that it can be computed by g.

In order to derive Observation 1, we note that instead of pushing the computation of
the preprocessing part to g, it suffices to let g verify that the preprocessing of Pi was done

with “authenticated functionalities”. Second, the standard MPC definition provides no guarantees on the
privacy of a party P2 that deviates from the protocol. So the fact that P1 learns nothing requires concrete
justification.
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properly and to replace Pi’s input to g with some default value if this condition fails. It is
well known that such a verification procedure can be implemented via an NC1 functionality
by asking each party to supply all the intermediate values of the preprocessing circuit, and
by checking a list of degree-2 constraints, one for each gate. We can further replace this
NC1 functionality with its constant-degree randomized encoding and derive Observation 1.

Finally, in order to obtain an elementary reduction with identifiable abort (Theo-
rem 1.3), we consider the garbled circuit construction and abstract the syntax of dis-
tributed encryption scheme that suffices for deriving elementary reduction. Roughly, the
underlying encryption scheme should satisfy the following non-standard syntactic prop-
erties. Despite being a symmetric-key cryptosystem, the key-generation algorithm (that
will be run locally by each party) generates pairs of encryption/decryption keys, and is
allowed to access a PRG. The encryption algorithm (which will be embedded inside g) uses
multiple encryption keys, one from each party, and some internal randomness, to encrypt
a message. This algorithm should be in NC1 and should be PRG-independent. Finally, the
decryption algorithm takes a ciphertext and decryption keys, and recovers the plaintext
or outputs an error flag. This algorithm will be embedded in the postprocessing phase
and is therefore allowed to call the PRG. We further require an expansion property, that
is, the decryption keys should be shorter than the messages. We define different forms of
robustness against malicious key-generation, and show how they affect the security of the
resulting elementary reduction. While similar ideas have appeared implicitly in previous
works (e.g., [14, 20, 38, 41, 31, 13]), we believe that our formulation clarifies the necessary
conditions that enable elementary reductions. We present a new instantiation of distributed
encryption whose security suffices for “identifiable abort”, and for fairness given an addi-
tional round of interaction. The construction is based on information-theoretic MACs and
cut-and-choose ideas.

1.3 Discussion and other related works

MPC reductions and Fairness. There is a rich body of works studying fairness in
MPC. (A summary of some central lower-bounds and upper-bounds can be found in [29]
and in [27, 43].) Most relevant to us is the work of Gordon et al. [28] on complete primitives
for fairness. This work studies the ability to reduce fair protocols for general functionalities
f to fair protocols for simpler functionalities g where “simplicity” is measured with respect
to the input length of g. Our work complements this study by considering a different form
of simplicity (low degree) and more restricted type of reductions (non-interactive).

Elementary reductions to degree-2 functionalities. Recent results regarding the
exact round complexity of MPC, have motivated the study of the exact degree of the func-
tionality g for which f reduces to. While the original randomized encoding tools achieve
degree-3, the breakthrough results of [23, 16] suggested that it may be possible to non-
interactively reduce every efficiently-computable function to a degree-2 function. Indeed,
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such reductions were obtained explicitly in [6, 7, 10], and implicitly in [22, 1, 2], both for ac-
tive and passive adversaries. For the honest majority setting, these reductions are elemen-
tary (with computational security for polynomial-size circuits and information-theoretic
security for NC1 circuits). However, for the dishonest majority setting, these reductions
rely on a non-black-box use of oblivious transfer. The latter non-black-box dependency
was shown to be necessary in [5] even if one is allowed to treat the oblivious transfer as a
two-round functionality and allow the reduction to have two rounds of interaction.

Other limitations of random oracles in secure computation. Haitner, Omri and
Zarosim [30] and Mahmoody, Maji and Prabhakaran [42] showed that random oracles
are essentially “useless” for secure 2-party computation of various functionalities. Specifi-
cally, they extended the Impagliazzo-Rudich separation [33] (and its tighter analysis given
in [12]) and showed that, under mild conditions on the underlying functionality, any
passively-secure protocol that makes use of a random oracle (RO) can be compiled into an
information-theoretic protocol that does not depend on the random oracle. (In the active
setting, the random oracle can be traded with an ideal commitment scheme.) While this
result somewhat resembles our main theorem there are several important differences that
suggest that our work captures a different limitation than the one captured in [30, 42].
Details follow.

Firstly, the results of [30, 42] work in the plain model while our results operate in
a hybrid model in which the parties have access to a trusted party that implements a
multiparty functionality. The power and usefulness of RO significantly changes in the
presence of such a trusted party and one cannot easily transfer results from the plain
model to the hybrid model. Indeed, our theorem is very sensitive to the exact notion of
security that is being used and to the non-interactive nature of the reduction. In particular,
Theorem 1.2 becomes incorrect if one allows an additional round of interaction or if one
relaxes security to passive or even to security with abort as shown in Theorem 1.3. Secondly,
from a technical point of view, our proof strongly exploits the fact that the functionality
g is unaware of the structure of the PRG, together with the fairness properties of the
protocol. These issues are unique to our setting and they do not appear in [30, 42]. On
the other hand, while the proofs of [30, 42] tackle the challenging task of locally simulating
the correlation that is induced in a RO-based interactive protocol, in our non-interactive
setting this issue is handled easily based on simple machinery. (Specifically, we employ an
extremely degenerate version of heavy-query learners. See Section 4.) Finally, and perhaps
most importantly, we know that a non-black-box access to PRGs does help in our setting,
and it can be used to bypass the negative result (i.e., to obtain computationally-secure fair
non-interactive reductions as shown in Corollary 1.1). No similar result is known in the
plain model.

Taking a more general perspective, our work provides an interesting example for a cryp-
tographic task for which (1) we cannot rule out the existence of an information-theoretic
solution; (2) we can show that a black-box use of a given primitive is useless; but (3) a
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non-black-box use of the primitive allows us to solve the problem. While we are aware of ex-
amples in which (1) and (2) hold (e.g., [30, 42]), and examples where (2) and (3) hold (most
closely to our work, the impossibility of elementary reductions to oblivious transfer [5]),
the current combination of (1), (2), and (3) seems rather unique to our setting.

2 Standard Preliminaries

Definition 2.1 (Pseudorandom Generator (PRG)). A psedudorandom generator (PRG)
is a determinstic poly-time algorithm PRG, satisfying two conditions:

— Expansion: There exists a polynomial `(λ) : N→ N satisfying that `(λ) > λ for all
λ ∈ N, such that |PRG(x)| = `(|x|) for all x ∈ {0, 1}∗.

— Pseudorandomness: The distribution ensembles {PRG(Uλ)}λ∈N and {U`(λ)}λ∈N
are computationally indistinguishable, where Un denoted the uniform distribution over
n-bit strings.

The stretch of a PRG is defined as |PRG(x)| − |x|.

Definition 2.2 (Randomized Encoding of Functions [35, 8]). Let f : X → Y be a function.
We say that a function f̂ : X ×R→ Z is a perfect randomized encoding of f if there exist
a pair of randomized algorithms, decoder Dec and simulator Sim, for which the following
hold:

— Correctness: For any input x ∈ X, and r ∈ R, it holds that Dec(f̂(x; r)) = f(x).

— Privacy: For every x ∈ X the distribution Sim (f(x)) is identical to the distribution
f̂(x; r) induced by sampling r←$R.

The definition naturally extends to functions over infinite domains and to ensembles of
functions (see [35, 8]).

3 Elementary Reductions

In this section, we formalize the notion of elementary reductions. At a high level, an
elementary reduction from an n-input functionality f to another n-input, constant de-
gree, non-cryptographic functionality g, is a non-interactive reduction that yields a non-
interactive secure MPC protocol realizing f , where the parties make a single query to a
trusted implementation of g. We refer to such protocols as elementary g-oracle protocols.
We start by formally defining the syntax of such protocols. A pictorial representation of
an elementary g-oracle protocol appears in Figure 1.
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Definition 3.1 (Non-interactive g-oracle Protocol). A non-interactive g-oracle protocol
is an n-party MPC protocol in the g-hybrid model that makes a single non-interactive
call to the functionality g. Such a protocol is defined by a tuple of PPT algorithms
(pre1, . . . , pren, post1, . . . , postn), where the parties make a single call to the n-input ideal
functionality g as follows:

1. Pre-processing: Each party Pi (for i ∈ [n]) runs the pre-processing algorithm prei
on its input xi and randomness ri to obtain yi.

2. g-oracle: Each party Pi (for i ∈ [n]) invokes the functionality g using its pre-
processed input yi. The functionality returns output vi to party Pi.

3. Post-processing: Each party Pi (for i ∈ [n]) runs the post-processing algorithm
posti on the output vi received from g to obtain the final output zi.

6

The protocol is elementary if the preprocessing and postprocessing algorithms make only
black-box calls to a PRG and g is a constant-degree functionality (i.e., each of its outputs
can be written as a constant degree polynomial over the binary field) whose description is
independent of the PRG.

The security of g-oracle Protocol is defined by following the standard real/ideal
paradigm using the standard extension to the hybrid model (see, for exam-
ple, [24, Chapter 7] and [17]), and can be instantiated with different variants of
security (e.g., computational/information-theoretic, passive/active, guaranteed-output-
delivery/fairness/security-with-abort/security-with-identifiable abort). We postpone the
exact specification to the technical sections.

Remark 1 (Non-Interactive Reductions and Randomized Encoding). Given a non-
interactive g-oracle protocol for f and a randomized encoding ĝ(y; ρ) of g(y), one can
always obtain a non-interactive g′-oracle protocol where g′(y, ρ1, . . . , ρn) := ĝ(x;

∑
i ρi), the

original preprocessing functions are extended by letting each party send a random string
ρi to the functionality g′ (in addition to the original (yi, ri) parts) and the postprocessing
algorithm is extended with the RE decoder. This transformation preserves all the types of
security that are considered in this paper (including information-theoretic security), and
does not rely on computational assumptions/tools. Since NC1 functionalities can be en-
coded by constant-degree functionalities [36] or even by NC0 functionalities [8], we can
freely move from a liberal definition of elementary protocols in which g is allowed to be an
NC1 (possibly randomized) functionality, to a more restricted definition in which g should
be a constant-degree deterministic functionality or even an NC0 functionality.

6In principle, one could allow posti to depend on the entire view of Pi which consists of vi as well as xi
and ri. However, one can always remove this dependency by assuming that Pi sends (xi, ri) to g as part of
yi and that g delivers these values back to Pi as part of vi.
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4 Lower Bound for Elementary Reduction with Fairness

4.1 The Set-up

In this section, we focus for simplicity on two-party functionalities f : X1 ×X2 → Z1 ×Z2

where fi : X1×X2 → Zi denote the restriction of f to its i-th output. LetH be a probability
distributions over functions from D to R. An elementary non-interactive reduction Π from
f to a two-party functionality g : Y1× Y2 → V1× V2 in the H model consists of four oracle
aided algorithms (pre1, post1, pre2, post2) which are sometimes grouped as P1 = (pre1, post1)
and P2 = (pre2, post2). Formally, all the above objects are parameterized by a security
parameter λ, and they are required to be computationally-efficient with respect to this
parameter. For simplicity (and without loss of generality), we assume that the fλ is defined
over {0, 1}λ × {0, 1}λ and so we can think of the input length as the security parameter
(which will be kept implicit most of the time). For concreteness, we also think of the domain
Dλ and range Rλ of Hλ as {0, 1}λ. (Though, our results are insensitive to this choice, and
any domain and range can be used as long as there exists a poly(λ)-time algorithm that
uniformly samples an element from these sets.)

We assume that when the parties are honest the outputs generated by the reduction
are correct except with negligible error. The reduction should also achieve passive security
against an adversary that corrupts the first party (aka privacy) and a weak form of partial
fairness against an active adversary that corrupts the second party. We formalize these
notions below for general protocols in the H-model. (These definitions will be applied to
MPC reductions, and specifically, to non-interactive g-oracle protocols.)

Passive security in the H model. Following the standard convention, when working
with respect to random oracles we assume that adversaries are computationally unbounded
but make a polynomially-bounded number of queries to the oracle (see, e.g., [30, 42, 5]).
We also introduce an average-case version of privacy.

Definition 4.1 (privacy and AVG-privacy). A protocol Π in the H-hybrid model realizes f
with α-privacy against party i if there exists an efficient randomized simulator Sim(xi, zi)
whose output consists of a view w and a stateful randomized oracle H such that for every
computationally-unbounded distinguisher A that makes at most poly(λ) queries to its oracle
and for every λ-bit inputs (x1, x2) it holds that

∆A,Π,i(x1, x2) :=∣∣∣∣ Pr
H ←$Hλ

[AH(x1, x2, view
H
Π,Pi(x1, x2)) = 1]− Pr

(w,H)←$ Sim(xi,fi(x1,x2))
[AH(x1, x2, w) = 1]

∣∣∣∣,
is upper-bounded by α(λ), where viewHΠ,Pi(x1, x2) denotes the view of Pi in an execution of

ΠH(x1, x2) with fresh randomness for both parties and oracle H. If α is negligible, we say
that Π is IND-private against party i.
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We say that the protocol is α-AVG-private against the first party if for every
computationally-unbounded distinguisher A that makes at most poly(λ) queries to its oracle
and for every λ-bit input x1, it holds that

Ex2 [∆A,Π,1(x1, x2)] ≤ α(λ).

The notion of α-AVG-privacy against the second party is defined analogously, i.e., for
every x2, we require that Ex1 [∆A,Π,2(x1, x2)] ≤ α(λ).

We mention that our proof goes through even if one uses a slightly weaker definition
in which the oracle queries of the distinguisher A may depend only on the input of the
corrupted party. We prefer the current definition due its simplicity.

The random oracle model corresponds to the case whereH is distributed uniformly over
all functions from Dλ to Rλ. Also, observe that the notion of information-theoretic IND-
privacy in the standard model can be derived from the above definition by instantiating H
with some fixed simple function (like the all zero function or the identity function.)

Fairness against P2. Following Goldwasser and Lindell [26], we require fairness against
an active adversary that corrupts only the second party (aka partial fairness).7 Roughly
speaking, this means that when P1 is honest, complete fairness is essentially achieved (i.e.,
either all parties abort or all parties receive correct outputs). But when P1 is actively
corrupt, fairness may be violated. In fact, unlike the notion of partial fairness from [26],
we make no requirement at all in this case (i.e., an actively corrupted P1 can learn the
input of P2). Again, this makes the result stronger.

Definition 4.2 (Fairness against P2). A protocol Π in the H-hybrid model realizes f with
fairness against an adversary that corrupts P2 if for every computationally-unbounded dis-
tinguisher A that makes at most poly(λ) queries to its oracle, there exists a simulator Sim
whose running-time is polynomial in the running time of A, such that for every pair of in-
puts x1, x2 ∈ {0, 1}λ the distributions Idealf,Sim(x1, x2)and RealHΠ,A(x1, x2),where H←$Hλ
cannot be distinguished by any computationally-unbounded distinguisher D with advantage
better than negligible.

As usual, the random variable RealHΠ,A(x1, x2) corresponds to the joint outputs of P1 and
the A (who corrupts P2) in the execution of Π over the inputs x1 and x2 and with respect
to the oracle H. The random variable Idealf,Sim(x1, x2) = (z1, z2) corresponds to the joint
outputs of the first party and Sim in an ideal-world execution in which the parties access
to an f -oracle that either computes f or sends an abort symbol to both parties (depending
on the choice of the simulator). That is, Sim(x2) computes some x′2 ∈ X2 ∪{⊥} and sends
it to f . If x′2 = ⊥ the functionality sets the output z1 of P1 to ⊥ and returns z′2 = ⊥ to

7As mentioned in the introduction, unlike full fairness which is impossible in the plain model without
honest majority [19], partial fairness can be achieved (using multiple rounds) in the plain model assuming
the existence of OT.
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the simulator, and if x′2 6= ⊥ the functionality returns z1 = f1(x1, x
′
2) and z′2 = f2(x1, x

′
2).

The simulator terminates with the output z2 which is computed based on z′2 and its internal
state.

Remark 2 (weak fairness). We remark that for our purposes, it suffices to assume that
fairness holds only for computationally-bounded adversary A and even if the corresponding
simulator is allowed to be computationally unbounded. Even more importantly, we only need
to consider the following specific (computationally-bounded) distinguisher D that given a
pair (z1, z2) (supposedly sampled from IdealHf,Sim(x1, x2) or from RealHΠ,A(x1, x2)) outputs 1
if

z1 6= f1(x1, x2)
∧
z2 = f2(x1, x2).

Equivalently, one can think of a game (that can be played both in the ideal world and real
world) in which the adversary A(x2) (resp., simulator Sim(x2)) wins when interacting with
P1(x1), if she outputs the “right” value f2(x1, x2) while the honest party P1 errs and outputs
some z1 6= f1(x1, x2). We say that a protocol achieves weak-fairness against P2 if for any
such adversary A, there exists an ideal-world simulator Sim such that for every x1, x2, the
winning probability in the real execution is upper-bounded by the winning probability in the
ideal execution (plus some negligible quantity).

Weak fairness is implied by fairness, and it can be viewed as an extension of the cor-
rectness property of the protocol. (Indeed, if, for example, the honest party outputs the
“right” value, we do not care whether an active adversary gets to learn the honest party’s
input.)

Authenticated functionality. Fairness will be mostly useful when it is applied to so-
called authenticated functionalities. Formally, given an arbitrary 2-party functionality
f1(x1, x2) that delivers an output only to P1, we define a 2-party functionality f((x1, k), x2)
that delivers f1(x1, x2) to P1 and delivers MACk(x2) to P2 where k is a λ-bit key for a one-
time information-theoretic secure message authentication-code MAC. We refer to f as the
P1-authenticated version of f1.

4.2 Main Results

We can now state our key theorem whose proof will be deferred to the following subsections.
In the following, we say that a reduction Π in the random-oracle model makes input-
independent queries if the calls to the oracle H that a party Pi makes are statistically-
independent of its input xi. We say that the reduction makes uniform queries if, in addition,
each query to H in the preprocessing phase is sampled uniformly and independently of all
the other queries. Known elementary reductions (that make use of PRG’s) satisfy these
additional properties.

15



Theorem 4.1. Let f be the P1-authenticated version of some functionality f1. Assume
the existence of an elementary non-interactive reduction Π from f to a constant-degree
two-party functionality g : Y1 × Y2 → V1 × V2 in the random-oracle model that achieves
privacy against P1 and weak fairness against P2. Then, for every inverse polynomial α(λ),
there exists an efficient two-round reduction Σ from f1 to an NC1 functionality g′ with the
following properties.

1. (Syntax) At the first round P1 sends a message to P2 that consists of random coins.
Then, both parties make a call to g′ (who delivers output only to P1) and then P1

applies some postprocessing computation and terminates with an output. (The other
party terminates with an empty output.)

2. (Correctness) For every input x1, x2 the output of P1 is f1(x1, x2) except with negli-
gible probability.

3. (Privacy against P2) The reduction achieves information-theoretic privacy against
the second party.

4. (AVG-privacy against P1) The reduction achieves information-theoretic α-AVG-
privacy against the first party. Moreover, if the original reduction Π makes only
input-independent queries then the reduction Σ is O(α)-private, and if the reduction
makes uniform queries then Σ is private (with negligible privacy error).8

Since the first message sent from P1 to P2 in Σ consists of only random coins, we can
think of Σ as a non-interactive reduction in a CRS model where the parties get an access
to a shared random string. (For passively-secure protocols, the CRS model is equivalent
to a two-round model in which the first message contains random coins.)

By repeating the reduction twice (while replacing the roles of P1 and P2) we can make
sure that both parties receive an output. Moreover, we can reduce the complexity of g′ from
NC1 to a an NC0 functionality (following Remark 1), and derive Theorem 1.2. Furthermore,
by exploiting the fact that NC0 functionalities can be evaluated by making a single round
of parallel calls to an ideal OT-functionality with passive information-theoretic privacy
(using a variant of Yao’s protocol), we get the following corollary.

Corollary 4.1. Suppose that every efficiently-computable two-party functionality f can be
reduced to some constant-degree two-party functionality in the random-oracle model via an
elementary reduction that achieves privacy against P1 and weak fairness against P2.

Then, every such functionality can be computed in the CRS model by making only
parallel calls to Oblivious-Transfer with information-theoretic O(α)-AVG-privacy for any
a-priory given inverse polynomial α. Furthermore, if the hypothesis holds with respect to
reductions that make input-independent queries then the resulting protocol is O(α)-private,

8In fact, it suffices to assume that only the preprocessing algorithm of P2 makes input-
independent/uniform queries.
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and if the hypothesis holds with respect to uniform queries then the resulting protocol is
private (with negligible privacy error).

We note that the above yields an efficient constant-round multiparty protocol for n ≥
3 in the plain model with passive O(α)-AVG-privacy against any single party. Indeed,
consider, wlog, the single-output functionality f(x1, . . . , xn) that delivers its output to P1.
Then each party i shares its input xi via 2-out-of-2 secret-sharing and hands one share ri
to P1 and another share x′i = ri ⊕ xi to P2. Then, P1 and P2 run the OT-based protocol
(promised by Corollary 4.1) for the two-party functionality f ′((r1, . . . , rn), (x′1, . . . , x

′
n))

where the OT-channel is being replaced by a constant-round protocol (e.g., BGW) for
computing the degree-2 OT functionality.

Notation. The following notation will be extensively used throughout the proof of Theo-
rem 4.1. For a pair of oracles G,H : D → R and a set S ⊂ D, we define the oracle G[S]∪H
to be the oracle that given q returns G(q) if q ∈ S and otherwise, returns H(q). For an
oracle-aided algorithm A(x; r) with input x and randomness r we let Q(AH(x; r)) denote
the tuple of queries that A(x; r) makes to H. When r is omitted, Q(AH(x)) denotes the
random variable that contains all the queries that A makes when executed with x, H and
a uniformly chosen r.

4.3 Tools: Finding Heavy queries

To prove Theorem 4.1, we will need the following simple lemma that can be viewed as a
(very) degenerate version of the Barak-Mahmoody [12] heavy-query learner.

Lemma 4.1. Let A be a randomized input-less oracle-aided algorithm that makes at most
T queries to a random oracle H : D → R and runs in time t. Then, there exists an oracle-
aided randomized “heavy-query finder” algorithm F ·A(ε, δ) with the following properties:

1. (efficiency) FHA (ε, δ) runs in time poly(1/ε, log(1/δ), t) and makes at most
poly(T, 1/ε, log(1/δ)) queries to its oracle H. The output of FHA (ε, δ), denoted by
Qh, is the list of queries that F issued to its oracle H.

2. (Hitting heavy queries) For every fixing of the oracle H, with probability 1 − δ over
the internal coins of F the output Qh of FHA (ε, δ) satisfies the following

∀w /∈ Qh, Pr
rA,G

[w ∈ Q(AH[Qh]∪G(rA))] ≤ ε, (1)

where rA denotes the random tape of A.

That is, in a random execution of A in which queries that belong to Qh are answered
by H and other queries are answered by an independent random oracle G, every string
w /∈ Qh will be hit by a query of A with probability at most ε.
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Proof. Let us assume without loss of generality that A never makes the same query twice.
For i ∈ [T ], we let Ai denote a modified version of the algorithm A which is halted after i
queries. (Thus AT = A.) The algorithm F proceeds as follows.

1. Take ε′ = ε/T and let ` = O((1/ε′) log(T/(δ · ε)), and initializes an empty list Qh.

2. For i = 1 to T do:

(a) Sample ` random inputs, r1, . . . , r` for A, use “lazy sampling” to sample ` ran-
dom oracles G1, . . . , G` and invoke ` executions Ai(r

1), . . . , Ai(r
`) where the first

i− 1 queries of the j-th instance are answered according to H[Qh] ∪Gj .
(b) Given the i-th tuple of queries (q1, . . . , q`) (hereafter referred to as the i-queries)

we mark every string w that appears in at least ε′/2 locations as “heavy” and
add it to Qh.

For i ∈ [T ] let Qh[i] denote the set Qh at the end of the i-th iteration and let Qh[0] denote
the empty set. Call Qh[i] good if (1) holds wrt to Qh[i], the algorithm Ai, and the error
parameter εi = i · ε/T . Since Qh[0] is trivially good, it suffices to show that for every
i ∈ [T ],

Pr[Qh[i] is good | Qh[i− 1] is good ] ≥ 1− δ/T,

and conclude, via a union-bound, that Qh = QT is good with probability 1−δ, as required.
Fix some i, and condition on Qh[i − 1] being good. We prove a lower-bound on the

probability that Qh[i] is good. Call a string w /∈ Qh[i−1] heavy if Pr[qi = w] > ε′, where qi
is the random variable that represents the i-th query of A in a random execution where all
the queries in Qh[i− 1] are answered by H and all other queries are answered by a random
oracle G. (So the probability is taken over the randomness of A and the randomness of
G.) Such a heavy query is expected to appear in at least ε′-fraction of the i-queries, and
therefore, by a Chernoff bound, a fixed heavy string w will be marked and added to Qh[i]
except with probability of exp(−Ω(ε′`)). Since there are at most 1/ε′ heavy strings, we
conclude that, except we probability exp(−Ω(ε′`))/ε′ ≤ δ/T , all heavy strings are added
to Qh[i]. In this case, Qh[i] is indeed good, since the probability (over rA and G) that some
w /∈ Qh[i] is being queried by AH[Qh]∪G(rA) is at most εi−1 + ε′ = (i − 1)ε/T + ε/T = εi,
as required.

4.4 Proof of Theorem 4.1

Let Π = (P1 = (pre1, post1), P2 = (pre2, post2)) be an elementary non-interactive reduction
from f to g(y1, y2) = (v1, v2) in the random-oracle model. Let T = T (λ) be an upper-bound
on the number of queries that are made by both P1 and P2. For an inverse polynomial
parameter α := α(λ) set ε = α/(2T ) and δ = α/2, and let F = F ·pre2(ε, δ) denote the heavy-
query finder applied to pre2, viewed as a randomized algorithm. (That is, we concatenate
the input x2 of pre2 to its random tape r1.) Observe that the running time of F is poly(λ).
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Recall that f denotes the P1-authenticated version of f1. Accordingly, the input of P1

consists of a pair (x1, k) where k is a MAC-key. Throughout this section, we assume that
P1 chooses k at random. Most of the time we will keep k implicit as part of the random
tape r1 of P1. That is, we let r1 = (k, r′1) where r′1 denotes the random tape of P1 that is
consumed during the execution of the protocol.

4.4.1 An intermediate protocol Π1 and the no-collision event

We consider the following modified reduction Π1 = (P1, P
′
2) in which the second party

gets an access to the standard random oracle H and an additional private random oracle
G. (Jumping ahead, the oracle G will be sampled locally by the second party via lazy
sampling.) Specifically, the party P ′2 acts as follows:

— (preprocessing step) First P ′2 calls the heavy-query finder FH with randomness rF ,
and gets a list of queries Qh. Then P ′2 invokes pre2(x2; r2) with the oracle H[Qh]∪G
where G is a private oracle defined by coins rG; That is, all the queries that are issued
to the RO are answered by using the private oracle G unless they belong to Qh.

— (postprocessing phase) P ′2 first generates the list L of all queries that were issued to
G in the preprocessing step. Next, P ′2 invokes post2(v2; r2) with the oracle G[L]∪H.
That is, whenever a query q is issued to the random oracle, she answers the query
with G(q) if q ∈ L, and answers it with H(q) otherwise.

Our main goal is to show that P1 is likely to output the correct value. This will follow
from a sequence of claim, but first it will be useful to define some “good” event under
which correctness holds. (This event will also serves us in the following sections.)

The good “no-collision” event E. Informally, the “no collision” event happens if in
the preprocessing phase P1 does not query any point that is sent in the preprocessing phase
of P ′2 to G. Formally, let QG denote the list of oracle queries that the preprocessing phase
of P ′2 sends to G when it is invoked with input x2, r2 and rF and with the oracles H and
G, and let Q1 = Q(preH1 (x1; r1)) denote the list of oracle queries that P1 sends to H when
it is invoked with inputs x1, r1 and oracle H, we define the “no-collision” event to be

E := Q1 and QG are disjoint.

Observe that E depends on the values (H,x1, r1, x2, r2, rF , G). The following claim follows
from the properties of the algorithm F .

Claim 1 (Collisions are rare). For every H,x1 and r1, we have Prx2,r2,G,rF [¬E] ≤ α.

Proof. By definition, for every fixing of H,x1 and r1, it holds that

Pr[¬E] = Pr
x2,r2,G,rF

[∃q ∈ Q1 s.t. q ∈ QG]
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which, by a union-bound, is upper-bounded by

Pr
rF

[FH fails] +
∑
q∈Q1

Pr
x2,r2,G

[q ∈ QG] ≤ δ + Tε ≤ α.

Here we say that FH fails if it does not satisfy (1). The claim follows.

Let β(x1, x2) := PrH,G,r1,r2,rF [¬E(H,x1, r1, x2, r2, rF , G)]. By Claim 1, for every x1,
the expectation Ex2 [β(x1, x2)] is at most α. If the reduction makes input-independent
queries or uniform queries, a stronger bound can be easily derived.

Claim 2. If pre2 makes input-independent queries (resp., uniform queries) then for every
x1, x2, it holds that β(x1, x2) is upper-bounded by α (resp., by a negligible function in λ).

Proof. For input-independent queries, β(x1, x2) is independent of x2. Therefore, for every
x1, x2 we have that β(x1, x2) = Ex2 [β(x1, x2)] which, by Claim 1, is at most α. In the case
of uniform queries, for every x1, x2, the probability that QG intersects with Q1 is at most
|QG| · |Q1| · 2−λ = neg(λ).

4.4.2 Correctness of Π1

We move on and show that, conditioned on E, the party P ′2 is likely to output the “correct”
value. Let outHP1,P ′

2
(x1, x2; (r1, r2, rF , G)) = (z′1, z

′
2) denote the outputs of P1 and P ′2 on

inputs (x1, x2), oracle H, and random tapes r1, r2 and rF and local oracle G.

Claim 3 (P ′2 is typically correct). For every inputs x1, x2, consider the output distribution
outHP1,P ′

2
(x1, x2; (r1, r2, rF , G))) = (z′1, z

′
2) induced by randomly chosen r1 = (k, r′1), r2, rF

and H,G. Then,
Pr[z′2 6= f2((x1, k), x2)|E] ≤ neg(λ). (2)

We remark that the claim actually holds over a worst-case choice of k (though we will
not need this property).

Proof. Fix x1, r1, x2, r2, rF . We will show that conditioned on the event E, the random
variable z′2 (defined above) is distributed identically to the output distribution of P2 in an
execution of the original reduction Π over x1, r1, x2, r2 and relative to a random oracle U .
Thus the claim will follow from the correctness of the original reduction.

Define a mapping ρx2,r2,rF that maps a pair of oracles G,H : D → R to an oracle
U : D → R as follows. Let QG denote the list of oracle queries that the preprocessing
phase of P ′2 sends to G when it is invoked with input x2, r2 and rF and with the oracles
H and G. Then, set U = G[QG] ∪H; That is, for every possible q ∈ D, set U(q) to G(q)
if q ∈ QG and otherwise set it to H(q). We claim that, for any fixed (x2, r2, rF ), when the
mapping ρx2,r2,rF is applied to a pair of random oracles G and H the resulting oracle U is
uniformly distributed over all functions from D to R. To see this observe that U is defined
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by a procedure that (adaptively) send queries to G and H with the property that a query
q is never issued twice, and whenever q is sent to O ∈ {G,H} the value of U(q) is being
committed to O(q).

Conditioned on the good (no-collision) event E, the joint output of the preprocess-

ing phase, (preH1 (x1; r1), pre
H[Qh]∪G
2 (x2; r2)), in the Π1 execution, is distributed identically

to the joint output, (preU1 (x1; r1), preU1 (x2; r2)), of the preprocessing phase in an hon-
est execution of Π relative to the oracle U . Moreover, the postprocessing of P ′2 takes

v2 = g2((preH1 (x1; r1), pre
H[Qh]∪G
2 (x2; r2))) and outputs exactly the value postU2 (v2; r2) that

an honest P2 would output in Π relative to the oracle U . We conclude that, under E, the
final output z′2 of P ′2 and the final output z2 of P2 in outUP1,P2

(x1, x2; (r1; r2)) = (z1, z2) are
identically distributed, and so the claim follows by the correctness of the original reduction
Π.

By using partial fairness (and the security of the MAC), we will show that P1 is likely
to output the correct value whenever P2 does it. Formally, we prove the following claim.

Claim 4 (P1 is correct when P ′2 is correct). For every input x1 and x2,

Pr
H,r1,r2,rF ,G

[z′1 6= f1(x1, x2)
∧
z′2 = f2((x1, k), x2)] ≤ neg(λ), (3)

where outH,G
P1,P ′

2
(x1, x2; (rF , r1, r2))) = (z′1, z

′
2) and r1 = (k, r′1).

Proof. Fix some (x1, x2) and assume that r1 = (k, r′1), r2, rF , G and H are uniformly
distributed and that (z′1, z

′
2) denote the corresponding output of the protocol. We can

think of Π1 as an execution of Π under an adversary P ′2 that corrupts the second party.
Therefore, there exists a simulator Sim, promised by partial fairness of Π, that makes a
single query to the ideal functionality f with some input x′2 that depends only on x2, on
the simulator’s randomness and on H. Denote by (z1, z2) the outputs of the simulator and
P1 under an ideal execution when the input of the simulator is x2 and the input of P1 is
(x1, k). By the security of the simulator, it holds that the probability of the “ideal-world”
event

B : z1 6= f1(x1, x2)
∧
z2 = f2((x1, k), x2)

and the probability of the “real-world” event

B′ : z′1 6= f1(x1, x2)
∧
z′2 = f2((x1, k), x2)

are within a neg(λ) difference. (Otherwise a distinguisher can efficiently distinguish be-
tween the two worlds.) Therefore, to prove (3) it suffices to show that the “ideal-world”
event B happens with negligible probability.

First, observe that B can happen only if the simulator submits to f an input x′2 6= x2.
(Otherwise, if x′2 = x2 then the output z1 of P1 is f1(x1, x2), and the first condition of
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B is violated.) However, when x′2 6= x2 the functionality f2 returns to the simulator a
MAC-tag over x′2 (or a ⊥ symbol) and the probability that the simulator can guess the
authentication tag on x2 is negligible. It follows that, except with negligible probability,
the output of the simulator z2 is not equal to MACk(x2), which violates the second part of
B.

By combining all three claims we derive the following lemma.

Lemma 4.2 (P1 is typically correct). For every input x1 and x2,

Pr
r1=(r′1,k),r2,rF ,G,H

[z′1 6= f1(x1, x2)|E] ≤ neg(λ) (4)

where outH,G
P1,P ′

2
(x1, x2; (rF , r1, r2))) = (z′1, z

′
2).

Proof. The LHS is upper-bounded by

Pr
H,r1,r2,rF ,G

[z′1 6= f1(x1, x2)
∧
z′2 = f2((x1, k), x2)|E] + Pr

H,r1,r2,rF ,G
[z′2 6= f2((x1, k), x2)|E].

By Claims 1 and (4), the first summand is negligible, and by Claim 3 the second summand
is also negligible.

4.4.3 Privacy of Π1

Our next goal is to show that Π1 preserves privacy against a passive adversary that corrupts
the first party P1. Recall that the view of P1 (both in Π and in Π1) consists of the following
values: the input x1, the random tape r1, a list of the preprocessing queries Q1 and a list
of all the oracle responses R1, the value v1 given to the first party by the functionality g,
and a list S1 of queries that are performed in the postprocessing step and the list of the
corresponding oracle answers T1.

We relate the P1-privacy of Π1 to the P1-privacy of Π by showing that the view in
both experiments is statistically close. In fact, it will be useful to prove this even when P1

gets to see the randomness rF used by P ′2 for sampling Qh. Let us refer to this modified
protocol as Π2. (E.g., think of rF as being taken from a shared random tape.)

Claim 5. There exists an efficent randomized oracle-aided procedure ρ(·)(·) that takes a
P1-view w under Π and outputs a P1-view w′ under Π2 and lazy-samples an oracle H such
that the following holds. For every (x1, x2) the distribution of

(H,w′) = ρV (viewVΠ,P1
(x1, x2; r1, r2)) where V, r1, r2 are uniform,

is O(β(x1, x2))-statistically close to

(H, viewHΠ2,P1
(x1, x2; r1, r2, rF , G)) where H, r1, r2, rF , G are uniform.
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Recall that β(x1, x2) := PrH,G,r1,r2,rF [¬E(H,x1, r1, x2, r2, rF , G)].

Proof. Given w = (x1, r1, Q1, R1, v1, S1, T1) (supposedly a P1-view under Π) and an oracle
V , the mapping ρ does the following:

— Sample a random tape rF for F , let Qh = F V (rF ), and let H be a fresh random
oracle that is consistent with V on the queries Q1 ∪Qh.

— Invoke postH1 (v1; r1) with the oracle H and collect all the queries and their answers
in the lists (S′1, T

′
1).

— Output w′ = (x1, r1, rF , Q1, R1, v1, S
′
1, T

′
1).

Fix x1 and x2 and let w be a random view of P1 that corresponds to the experiment
ΠV (x1, r1, x2, r2) with randomly chosen tapes r1 and r2 and random oracle V . We will
show that w′ is statistically-close to viewHΠ2,P1

(x1, x2; r1, r2, G) where the oracle G is defined
as follows.

For every fixing of x2, r2 and rF , let us denote by L the list of queries that P ′2 sends
to its “local” oracle when its global oracle is set to V and its local oracle is also set to V .
Formally, L = Q2 \Qh where Qh = F V (rF ) and Q2 = Q(preV2 (x2; r2)). Then, the oracle G
is defined to be V [L] ∪ U where U is a fresh oracle.

Let β = β(x1, x2). We begin by showing that the joint distribution

(H,G) is 3β-close to uniform. (∗)

Since E happens with probability 1−β, it suffices to show that the conditional distribution
((H,G)|E) is β-close to uniform. Next, note that under E the oracles G and H are
statistically independent (since G and H are based on disjoint entries of V ), and therefore
it suffices to show that (G|E) is β-close to uniform and that (H|E) is β-close to uniform.
Indeed, without conditioning, the marginal distribution of G (resp., H) is uniform and so
the conditional distribution deviates from uniform by at most Pr[¬E] = β, and (∗) follows.

From now on, fix the random tapes r1, r2, rF and the oracles V , H and G. We
begin by showing that the response that the oracle g sends to P1 in an execution of
ΠH

2 (x1, x2; r1, r2, rF , G) is equal to v1. Indeed, the values (x1, r1, Q1, R1) in the ex-
ecution of ΠV (x1, r1, x2, r2) are identical to the ones that are computed in the exe-
cution ΠH

2 (x1, r1, x2, r2, rF , G). (Since Q1 = Q(preV1 (x1; r1)) = Q(preH1 (x1; r1)) and
R1 = V (Q1) = H(Q1).) Consequently, in both experiments, P1 sends the same mes-
sage y1 to the oracle g. Furthermore, in both experiments, P2 sends the same message y2

to the oracle g since y2 = preV2 (x2; r2) = pre
H[Qh]∪G
2 (x2; r2). We conclude that the ideal

functionality g is applied to the same input in both experiments and therefore, conditioned
on the above, the message, v1, that is being delivered by g to P1 is distributed identi-
cally in both experiments. Finally, the postprocessing queries S′1 and their answers T ′1 are
generated in both experiments by applying the deterministic procedure postH1 (v1; r1).
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We can now prove the following lemma.

Lemma 4.3 (P1-privacy). There exists a simulator against a passive P1 adversary such
that for every (x1, x2) the statistical deviation of the simulator from the real distribution,
as defined in Definition (4.1), is upper-bounded by O(β(x1, x2)) + neg(λ).

Consequently, by Claim 1 the protocol Π2 is O(α)-AVG-private against the first party.
Moreover, by Claim 2, if pre2 makes input-independent queries then the protocol is O(α)-
private, and if pre2 makes uniform queries then Π1 is private (with negligible privacy error).

Proof. Given an input/output pair (x1, z1) for P1, we define a P1-simulator Sim2(x1, z1)
for Π2 as follows. Call the P1-simulator Sim(x1, z1) of Π and generate a view w =
(x1, r1, Q1, R1, v1, S1, T1) together with a simulated random oracle V . Generate a view w′

of the new protocol together with an oracle H, by calling the procedure ρV (w) promised
in Claim 5.

We show that for every (x1, x2), the simulated view deviates from the real view by
O(β(x1, x2))+neg(λ). Indeed, fix an oracle-aided distinguisher DH that distinguishes with
advantage ∆ between the Π2-simulated view, Sim2(x1, z1), to the real view viewHΠ2,P1

(x1, x2)
where H (and the local random tapes) are random. We construct a distinguisher D′ against
Π as follows: Given w and an oracle access to V , compute ρV (w) = (H,w′) and output
DH(w′).

By definition, it holds that

Pr
(V,w)←$ Sim(x1,z1)

[D′V (w) = 1] = Pr
(H,w′)←$ Sim2(x1,z1)

[DH(w′) = 1].

Also, by Claim 5,∣∣Pr[D′V (viewVΠ,P1
(x1, x2)) = 1]− Pr[DH(viewHΠ2,P1

(x1, x2)) = 1]
∣∣ ≤ 3β(x1, x2).

By the privacy of Π1, we conclude that ∆+3β(x1, x2) ≤ neg(λ) and the lemma follows.

4.4.4 Deriving Theorem 4.1

We can now remove the random oracle and derive Theorem 4.1. Let g′ denote a modified
version of g whose input, in addition to (y1, y2), consists of the query list Q1 that the
first party issued to H in the preprocessing phase, and the list L that the second party in
Π2 issued to its local oracle during the preprocessing stage. In addition, the functionality
takes the private input x2 from the second party. The functionality g′ checks if there is a
collision between the lists Q1 and L (i.e., if ¬E happens) and if this is the case it sends a
flag e = 0 together with x2 to the first party. Otherwise, it computes g(y1, y2) = (v1, v2),
sends v1 to the first party with the flag e = 1. In any case, g′ delivers a ⊥ to the second
party.

Consider the following reduction Σ from f1 to g′.
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1. The first party lazy samples a random oracle H and samples random tapes rF and r1.
She computes Qh = FH(rF ) and sends to the second party the list of query/response
pairs (q,H(q))q∈Qh . (Note that it suffices to send rF and all the H-answers that are
provided to FH(rF ) and therefore the first message consists of a sequence of random
coins.)

2. The two parties generate g-queries (y1, y2) like in Π1. Namely, the first party com-

putes y1 = preH1 (x1; r1) and the second party computes y2 = pre
H[Qh]∪G
2 (x2; r2) where

r2 is a fresh random tape and G is a private oracle that is sampled locally. The parties
call g′ with the inputs (y1, Q1 = Q(preH1 (x1; r1))) for the first party and the inputs

y2, x2 and L = Q(pre
H[Qh]∪G
2 (x2; r2)) \Qh for the second party.

3. In the postprocessing phase, the first party checks the received flag e. If e = 1 it
retrieves the value v1 from the oracle g′ and outputs postH1 (v1; r1). Otherwise, it
retrieves the value x2 and outputs f1(x1, x2). In any case, the second party aborts
with an empty output.

The syntax of Σ satisfies the syntax promised in Theorem 4.1 (item 1). Indeed, to see that
g′ can be implemented in NC1, we observe that each pair of strings (q1, q2) in Q1×QG are
of bit length ` = poly(λ) and so we can check if q1 = q2 by an O(`)-size circuit of depth
log(`) + O(1). Since the number of pairs in |Q1 × QG| is polynomial in λ, we can check
all pairs in parallel and aggregate the result via an “OR-tree”. Overall we can detect if E
happens by an NC1 circuit, and combine it with the original NC1 circuit of g (promised by
the fact that it is a constant-degree functionality).

Also, the only value that P2 receives is (q,H(q))q∈Qh which is distributed independently
of P1’s input. Therefore, the protocol is private against the second party. To analyze
privacy against the first party, observe that, for every x1, x2 and oracle H, conditioned on
the event E, the view of P1 in Σ is distributed identically to its view under Π2. Hence,
by Lemma 4.3, there exists a simulator that on (x1, x2) has a statistical deviation of
O(β(x1, x2)) + negl(n)(λ). Consequently, by Claim 1 the protocol Σ is O(α)-AVG-private
against the first party. Moreover, by Claim 2, if pre2 makes input-independent queries
then the protocol is O(α)-private, and if pre2 makes uniform queries then Σ is private
(with negligible privacy error).

As for correctness, observe that, conditioned on E, the output distribution of Σ(x1, x2)
is identical to the output distribution of ΠH

1 (x1, x2). Therefore, Lemma 4.2 guarantees
correctness under E (except with negligible error probability). When E does not happen,
correctness holds trivially since x2 is being revealed.
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5 Distributed Encryption

5.1 Definitions

In this section, we define a new notion of a multi-party symmetric-key encryption scheme,
which we call a distributed encryption scheme. In this primitive, each party samples a
key independent of the other parties, and the message is simultaneously encrypted under
each party’s key. Although this is a symmetric-key primitive, we distinguish between
two types of keys: “encryption” keys that are being used by the encryption algorithm,
and “decryption” keys that are being used by the decryption algorithm. This will allow
us to define the encryption algorithm in a way that is independent of the underlying
cryptographic primitive (e.g., a PRG), without giving-up on the benefits of computational
security; Notably, it will be crucial to have decryption keys whose bit-length is shorter than
the message’s length. We define different forms of privacy and correctness properties which
hold as long as the adversary is efficient (i.e., runs in non-uniform probabilistic polynomial-
time in the security parameter λ) and corrupts at most t(n) out of the n parties. We refer
to t = t(n) as the corruption threshold. (The reader may think of t = n− 1 as the default
value of t.)

Definition 5.1 (Distributed Encryption: Syntax and Correctness). A distributed encryp-
tion scheme is defined by a triple of PPT algorithms (KeyGen,Enc,Dec) as follows:

— KeyGen(1λ, 1n, 1`) → (ek, dk): On input the security parameter λ, the number of
parties n = n(λ) and the bit-length of the messages `, the randomized key generation
algorithm outputs a decryption key dk and an encryption key ek. The length of dk is
required to be p(λ) for some fixed polynomial p that is independent of n and `. We
further assume, by default, that dk is simply the coins used by λ.

— Enc(1λ, 1n, 1`,m, ek1, . . . , ekn) → ct: On input the security parameter λ, a message
m ∈ {0, 1}` and a set of encryption keys ek1, . . . , ekn, the randomized encryption
algorithm outputs a ciphertext ct.

— Dec(ct, dk1, . . . , dkn)→ (b,m, bad): Given a ciphertext ct and a set of decryption keys
(dk1, . . . , dkn) as inputs, the deterministic decryption algorithm outputs a validity bit
b ∈ {0, 1}, the message m ∈ {0, 1}` ∪ {⊥} and a set bad ⊂ [n].

The scheme should be perfectly correct: For every λ, n, `, every vector of keys (eki, dki)i∈[n],

where eki, dki is in the support of KeyGen(1λ, 1n, 1`), and every message m ∈ {0, 1}` it holds
that

Pr[Dec(Enc(1λ, 1n, 1`,m, ek1, . . . , ekn), dk1, . . . , dkn) = (1,m, ∅)] = 1.

Our syntax for the encryption algorithm is somewhat degenerate since ` and n can be
extracted from m and ek1, . . . , ekn. We therefore typically omit these parameters except
for special cases where we wish to emphasize the restriction of Enc to concrete lengths.
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We now proceed to define three properties of a distributed encryption scheme: privacy,
security with abort, and security with identifiable abort.

Privacy. An adversary who is allowed to choose a subset of the encryption keys, should
not be able distinguish between encryptions of any two messages of its choice.

Definition 5.2 (t(n)-Privacy). A distributed encryption scheme is said to have one-time
t(n)-privacy (where t(n) < n) if every n.u PPT adversary A cannot win the following game
with more than 1

2 + µ(λ) probability where µ is some negligible function:

— A(1λ) selects the following values and sends them to the challenger: parameters 1n

and 1`, a pair of messages m0,m1 ∈ {0, 1}`, a t(n)-subset I ⊂ [n], and a tuple of
arbitrary encryption keys {eki}i∈I for the corrupted parties.

— The challenger samples keys for the remaining parties, i.e., for each i ∈ [n] \
I, (eki, dki)← KeyGen(1λ, 1n, 1`) and samples a bit b←$ {0, 1} uniformly at random.
It then sends the ciphertext ct← Enc(1λ,mb, ek1, . . . , ekn) to A.

— The adversary responds with a bit b′ and wins if b′ = b.

Security with Abort. In addition to privacy, we require different flavors of correctness
which hold even against active adversaries that corrupt the keys. Our first variant requires
security-with-abort. Formally,

Definition 5.3 (t(n)-Security with Abort). A distributed encryption scheme is said to
have one-time t(n)-security with abort (where t(n) < n) if it satisfies t(n)-privacy and
satisfies the following additional property. There exists an efficiently computable random-
ized predicate P that outputs “pass” (1) or “abort” (0), such that for every polynomials
n = n(λ), ` = `(λ), every t(n)-subset I ⊂ [n], every message m ∈ {0, 1}`, every tuple of
corrupted keys {eki, dki}i∈I and every tuple of honest keys (eki, dki)i∈[n]\I that are in the

support of KeyGen(1λ, 1n, 1`), the following detection property holds.
Let ct← Enc(1λ,m, ek1, . . . , ekn) and ~dk = (dk1, . . . , dkn), then

Pr[Dec(ct, ~dk) = (1,m, ∅) ∨ Dec(ct, ~dk) = (0,⊥, ∅)] ≥ 1− ε(λ),

and
Pr[Dec1(ct, ~dk) = P((eki, dki)i∈[n])] ≥ 1− ε(λ),

where Dec1 denotes the first output of the decryption algorithm (the validity bit), the prob-
ability is taken over the choice of ct and the internal randomness of P, and ε(·) is some
negligible function.
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Few comments are in place. First, observe that the adversary wins if it can make the
decryption algorithm err (output a value different than m or ⊥). In addition, the above
definition essentially implies that the event of aborting cannot depend on the message m
(since the predicate P should simulate it without knowing m). Moreover, this simula-
tion should succeed even when we condition on a fixed value of the honestly generated
decryption/encryption keys.

We construct a distributed encryption scheme satisfying (n − 1)-security with abort
based on message-authentication codes in Section 5.2.

Security with Identifiable Abort. In the following we strengthen our requirement so
that when abort happens a bad party is identified.

Definition 5.4 (t(n)-Security with Identifiable Abort). A distributed encryption scheme
is said to have one-time t(n)-security with identifiable abort (where t(n) < n) if it has
t(n)-privacy and there exists an efficiently computable randomized algorithm P that given a
vector of encryption/decryption keys (eki, dki)i∈[n], outputs a a validity bit a ∈ {0, 1} (where
zero indicates “abort” and one indicates “pass”) and a subset bad ⊂ [n] such that for every
polynomials n = n(λ), ` = `(λ), every t(n)-subset I ⊂ [n], every message m ∈ {0, 1}`,
every tuple of corrupted keys {eki, dki}i∈I and every tuple of honest keys (eki, dki)i∈[n]\I
that are in the support of KeyGen(1λ, 1n, 1`), the following identification property holds.

Let ct← Enc(1λ,m, ek1, . . . , ekn) and ~dk = (dk1, . . . , dkn), then

Pr[Dec(ct, ~dk) = (1,m, ∅) ∨
(

(Dec(ct, ~dk) = (0,⊥, bad) ∧ ∅ 6= bad ⊂ I
)

] ≥ 1− ε(λ), (5)

and
Pr[Dec1,3(ct, ~dk) = P((eki, dki)i∈[n])] ≥ 1− ε(λ), (6)

where Dec1,3 denotes the first and last outputs of the decryption algorithm (the validity bit
and the set), the probability is taken over the choice of ct and the internal randomness of
P, and ε(·) is some negligible function.

Identification is a strictly stronger property than detection which ensures identification
of malformed key pairs. In other words, if the decrypted message is ⊥, the decryption
algorithm also outputs a non-empty set bad ⊆ [n] consisting of at least one corrupted party.
Additionally, the algorithm P can perfectly simulate the validity bit and the set bad given
only the vector of encryption/decryption keys. Moreover, this simulation should succeed
even when we condition on a fixed value of the honestly generated decryption/encryption
keys.

In Section 5.3 we show how to upgrade any distributed encryption scheme satisfying
(n− 1)-security with abort into an (n− 1)-secure scheme with identifiable abort.
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5.2 Distributed Encryption Satisfying Security with Abort

In this section we present our construction of a distributed encryption scheme that satisfies
(n − 1)-security with abort. The construction naturally follows the MAC-and-Encrypt
paradigm while exploiting the internal randomness of the encryption algorithm for the use
of MAC.

Theorem 5.1. Assuming the existence of a pseudorandom generator, there exists a dis-
tributed encryption scheme that satisfies (n − 1)-security with abort. Moreover, the key-
generation and decryption algorithms make a black-box use of the PRG and the encryption
algorithm is independent of the PRG and is in NC1 whenever n and ` are polynomial in
λ.9

Information-theoretic MAC. For the proof of the theorem, we will need to em-
ploy an information theoretic one-time secure MAC scheme (M.KeyGen,MAC) where
M.KeyGen(1`, 1λ) samples a key mk such that MACmk : {0, 1}` → {0, 1}λ is pair-wise
independent hash function. That is, for every pair of inputs x 6= y ∈ {0, 1}`, for
mk ← M.KeyGen(1`, 1λ), the random variable (MACmk(x),MACmk(y)) is uniform over
{0, 1}λ × {0, 1}λ. In standard implementation (e.g., using Toeplitz-based affine trans-
formation) the key-length is of size ` + 2λ, and both (M.KeyGen,MAC) can be computed
by an NC1 circuit of size polynomial in ` and λ.

Lemma 5.1. The construction in Figure 2 satisfies (n− 1)-security with abort.

Proof. We prove privacy and detection separately.

Privacy. For privacy, assume for the sake of contradiction, that the construction in Figure
2 is not private. This implies that there exist messages m0,m1 ∈ {0, 1}`, keys (eki)i∈I and
a polynomial time adversary A corrupting an (n − 1)-subset I ⊂ [n] of parties, that can
distinguish between Enc(1λ,m0, (eki)i∈[n]) and Enc(1λ,m1, (eki)i∈[n]) with non-negligible

probability ε(λ) where (eki, dki)← KeyGen(1λ) for every i /∈ I. We use a hybrid argument
to get a contradiction. Let j /∈ I be some honest party. Fix arbitrary values for the keys
(eki, dki)i 6=j , and consider the following hybrids:

H1 :ct← Enc(1λ,m0, (eki)i∈[n]) where ekj = PRG(dkj), dkj ← Uλ

H2 :ct← Enc(1λ,m0, (eki)i∈[n]) where ekj←$ {0, 1}λ+`

H3 :ct← Enc(1λ,m1, (eki)i∈[n]) where ekj←$ {0, 1}λ+`

H4 :ct← Enc(1λ,m1, (eki)i∈[n]) where ekj = PRG(dkj), dkj ← Uλ

9More precisely, for every fixed polynomials n(λ) and `(λ), the encryption algorithm, viewed as an
infinite sequence of functions {Encλ}λ∈N that is parameterized solely by λ, can be realized by a poly-time
uniform NC1 circuit family. This notion of efficiency, that will be also used in the next subsection, suffices
for our needs.
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DE Secure with Abort

— KeyGen(1λ, 1n, 1`): Sample a random decryption key dk←$ {0, 1}λ. Expand dk into
a pseudorandom string ek ∈ {0, 1}λ+` using the pseudorandom generator PRG :
{0, 1}λ → {0, 1}λ+`, i.e., set ek = PRG(dk) and output (ek, dk). (Note that the
key-generation is independent of the number of keys n.)

— Enc(1λ,m, ek1, . . . , ekn): Sample a random MAC key mk ← M.KeyGen(1`, 1λ), and
output the ciphertext:

ct =

(m||MAC (m,mk))⊕
⊕
i∈[n]

eki

 ,mk

 .
— Dec(ct, dk1, . . . , dkn): Parse ct = (ct′,mk) and compute (m′||tag′) = ct′ ⊕⊕

i∈[n] PRG(dki). If MACmk(m
′) = tag′ output (1,m′, ∅), else output (0,⊥, ∅), where

∅ denotes the “null” set.

Figure 2: A distributed encryption scheme that satisfies (n− 1)-security with abort

Since there are 4 hybrids, there must be a j ∈ [3] such that A can distinguish between
neighboring hybrids Hj and Hj+1 with probability ε(λ)/4. However, if this is the case,
then we can show that A can be used to distinguish a randomly chosen string from an
output of PRG. Since H2 and H3 are identically distributed, therefore j ∈ {1, 3}. Let j = 1
(the case for j = 3 is similar), i.e., A can distinguish between neighboring hybrids H1 and
H2 with probability ε(λ)/4. Given a string z of length λ + ` (that is either sampled from
PRG(Uλ) or from Uλ+`), we can set ekj = z and compute ct = Enc(1λ,m0, {eki}i∈[n]). If z
is sampled from PRG(Uλ), then this is distributed exactly as H1, else if it is sampled from
Uλ+`, then this is identically distributed to H2. Hence, we can now use A to break the
pseudorandomness of PRG, which is a contradiction.

Detection. For detection, let us start by describing the predicate P. Given the set of all
encryption/decryption key pairs, (eki, dki)i∈[n] the predicate P computes, for each i ∈ [n]
the values ∆i = eki ⊕ PRG(dki) and checks if ∆ =

⊕
i∈[n] ∆i is the all-zero string. If this

check goes through, it outputs 1 (pass), and otherwise it outputs 0 (abort).
We prove detection with respect to the predicate P. Fix a vector of keys (eki, dki)i∈[n]

and let ∆ be the sum of differences as defined above. Fix a message m and observe that
the corresponding ciphertext is distribute as ct = (ct′,mk) where

ct′ =

(m||tag)⊕
⊕
i∈[n]

eki

 ,mk← M.KeyGen(1`, 1λ), and tag = MAC (m,mk) .
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We prove that if the predicate output “pass” then decryption succeeds, and if the predicate
outputs “abort”, the decryption aborts, except with negligible probability. The first step
of the decryption algorithm outputs the value(

m′||tag′
)

= ct′ ⊕
⊕
i∈[n]

PRG(dki) = (m||tag)⊕∆.

If P((eki, dki)i∈[n]) = 1 then ∆ is the all-zero string, tag′ = tag, and therefore
Dec(ct, dk1, . . . , dkn) = (1,m, ∅), as required. On the other hand, if ∆ is not the all zero
string then, by the pairwise independence of the MAC, the probability that tag′ = tag is
at most 2−λ. We conclude that in this case, the decryption algorithm outputs (0,⊥, ∅),
except with negligible probability.

This completes the proof of Lemma 5.1.

5.3 Distributed Encryption Satisfying Security with Identifiable Abort

Theorem 5.2. Assuming the existence of a distributed encryption scheme
(KeyGen,Enc,Dec) that satisfies one-time (n − 1)-security with abort there exists a
distributed encryption scheme that satisfies (n − 1)-security with identifiable abort.
Moreover, if the key-generation and decryption algorithms of the original scheme make a
black-box use of the PRG, then so do the new key-generation and decryption algorithms,
and if the orignal encryption algorithm is independent of the PRG and is in NC1 (whenever
n and ` are polynomial in λ) then so is the new encryption algorithm.

The proof is based on a simple cut-and-choose approach. We let each party generate k =
O(λn) many keys for the underlying encryption (that satisfies security-with abort) and let
the encryption algorithm sample a random subset of the encryption keys. The selected keys
are used for encrypting many copies of the message under the selected keys, and the keys
that were not selected are published as part of the ciphertext. The decryption algorithm
checks that the revealed encryption keys are well-formed (with respect to the corresponding
decryption keys), and if they are all well-formed, it decrypts all the ciphertexts under
the corresponding keys and takes the majority value. Roughly, we show that, except
with negligible probability, either decryption reveals a mal-formed key (and can identify
a cheater) or most of the ciphertexts decrypt well and the final outcome is correct. The
scheme is formally described in Figure 3, and its security is analyzed in Lemma 5.2.10

Remark 3 (Secrecy-preserving identifiable abort). Our construction (Figure 3) provides
a useful feature of “Secrecy-preserving identifiable abort”. That is, we can augment the
encryption algorithm to output the decryption keys (dkji )i∈[n],j∈S as part of the cipher-
text, and think of the ciphertext as being composed of two parts: a “tag” that consists of
S, (ekji , dk

j
i )i∈[n],j∈S and a “data” {ctj}j∈[2nλ]\S). Note that the secrecy of the message is

10The construction presented here simplifies the one that appears in the conference version of this paper.
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DE Secure with Identifiable Abort

— KeyGen(1λ, 1n, 1`): Let s = λn and k = 2s. A key-pair consists of k key-pairs of
the underlying secure with abort distributed encryption scheme. That is, for j ∈
[k], sample (ekj , dkj) ← KeyGen(1λ, 1n, 1`) and output (ek = (ek1, . . . , ekk), dk =
(dk1, . . . , dkk)).

— Enc(1λ,m, ek1, . . . , ekn): For each i ∈ [n], parse eki = (ek1
i , . . . , ek

k
i ). Sample a

random s-subset S ⊂ [k] and let S = [k]\S denote its complement. For each j ∈ S
compute ctj ← Enc(1λ,m, ekj1, . . . , ek

j
n) and output ct = (S, (ekji )i∈[n],j∈S , (ct

j)j∈S).

— Dec(ct, dk1, . . . , dkn): For each i ∈ [n], parse dki = (dk1
i , . . . , dk

k
i ) and ct =

(S, (ekji )i∈[n],j∈S , (ct
j)j∈S). Initialize bad = ∅ and for each i ∈ [n] do:

– For each j ∈ S if (ekji , dk
j
i ) are inconsistent with KeyGen, insert i to bad.a

If bad is non-empty, output (0,⊥, bad). Else, for each j ∈ S, compute mj =
Dec(ctj , dkj1, . . . , dk

j
n) ∈ {0, 1}` ∪ {⊥}. Set m′ to be the majority of (mj : mj 6=

⊥)j∈S and output (1,m′, ∅).
aRecall that we assume by default that dk is simply the coins of the key-generation algorithm and so

the above condition can be checked.

Figure 3: A distributed encryption scheme that satisfies (n− 1)-security with identifiable
abort

still preserved even given the tag information, and so it is safe to append it to ciphertext.
Moreover, the abort decision of the decryption algorithm is performed solely based on the
“tag”. That is, the decryption algorithm is composed of two stages: detection and recovery.
The detection algorithm decides whether to abort or not (and in case of abort it identifies a
bad party) solely based on the tag information. If detection passes without abort, then the
recovery algorithm should be able to decrypt successfully. This feature allows us to check the
abort event without leaking information on the encrypted message, and can be eventually
used in order to get a fair protocol at the expense of adding an extra round of interaction.

Lemma 5.2. The construction in Figure 3 satisfies (n−1)-security with identifiable abort.

Proof of Lemma 5.2. We prove privacy and identification separately.

Privacy. The privacy follows from the privacy of the underlying scheme in a straight
forward way. For completeness, we sketch the proof. Assume, towards a contradiction,
that the construction in Figure 3 is not private. Fix some polynomials n = n(λ) and
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` = `(λ) > log λ, and let A be an efficient adversary corrupting an (n−1)-subset I ⊂ [n] of
parties, that chooses a vector of corrupted keys {eki}i∈I and a pair of messages m0,m1 ∈
{0, 1}`, such that A can distinguish with non-negligible probability ε(λ) between

Enc(1λ,m0, (eki)i∈[n]) and Enc(1λ,m1, (eki)i∈[n]) (7)

where for every i /∈ I it holds that

eki = (ekji )j∈[k], dki = (dkji )j∈[k] and (ekji , dk
j
i )← KeyGen(1λ, 1n, 1`).

We use a hybrid argument to get a contradiction. Fix an arbitrary s-subset S ⊂ [k] and
let S denote its complement. For 0 ≤ i ≤ λ, let S[: i] denote the first i elements of S and
let S[i + 1 :] denote the last s − i elements of λ. For every i ∈ [s], define the ith hybrid
encryption Enci(1

λ,m1, (eki)i∈[n]) to output (S, (ekji )i∈[n],j∈S together with the vector of
ciphertexts

(Enc(1λ,m1, ek
j
1, . . . , ek

j
n))j∈S[:i], (Enc(1

λ,m0, ek
j
1, . . . , ek

j
n))j∈S[i+1:]).

By the n − 1 privacy of the original scheme, every pair of neighboring hybrids are indis-
itinguishable. Since there are polynomially many hybrids, this implies that the extreme
hybrids, that correspond to the distributions in Eq. (7), are indistinsguishable, as required.

Identification. For identification, we start by describing the predicate P. For each i ∈
[n], P parses eki = (ekji )j∈[k] and dki = (dkji )j∈[k]. The predicate samples a random s-subset
SP ⊂ [k] and computes a set bad by running the first part of the decryption algorithm (up
to the “If bad is non-empty” part) over SP, (ek

j
i )i∈[n],j∈SP

and (dkji )i∈[n],j∈SP
. If the outcome

set bad is non-empty, the predicate outputs (0, bad) and otherwise it outputs (1, ∅).
We prove that P satisfies the (n−1)-identification property. Fix a message m, a set I of

corrupted parties, and a vector of encryption/decryption keys (eki, dki)i∈[n]. Let S be the
random set chosen by the encryption algorithm. First observe that Eq. (6) holds. Indeed,
S and SP are identically distributed, and when S = SP, the decryption “fails” (outputs
(0,⊥, bad)) if and only if the predicate outputs (0, bad).

To establish Eq. (5), we begin by noting that when decryption “fails” bad must be a
(non-empty) subset of I since an honest party i /∈ I prepares all its sub-keys (ekji , dk

j
i )j∈[2λ]

honestly by calling KeyGen, and so it never enters into bad. It remains to show that when
the decryption succeeds and outputs (1,m′, ∅) the resulting message m′ equals to m, except
with negligible probability over the choice of S. Let Ni denote the number of sub-keys of
(eki, dki) that are inconsistent with with KeyGen and let N =

∑
i∈[n]Ni denote the total

number of inconsistent sub-keys. We distinguish between two cases:

1. N < s. In this case, there exists at least a single index j ∈ S such that all the
jth sub-keys (ekji , dk

j
i )i∈[n] are honestly generated and so, the value mj as defined by

33



the decryption algorithm will be equal to m (by the correctness of the underlying
decryption algorithm). Moreover, by the detection property of the underlying scheme,
except for negligible probability, it holds that for every j ∈ S, the decrypted value
mj is either m or ⊥, and therefore, except with negligible probability, the output of
the decryption algorithm is m.

2. N ≥ s. In this case, by an averaging argument, there exists i ∈ I, such that Ni ≥ s/n.
We show that, in this case, except with negligible probability, the decryption (and
predicate) output (0,⊥, bad). Indeed, the probability that a random s-subset S of
[k] completely misses all the Ni bad sub-keys of (eki, dki) is at most(

k−Ni
s−Ni

)(
k
s

) ≤ O
(

2k−Ni

2k/k

)
≤ O(λn2−λ) ≤ 2−Ω(λ),

where in the first inequality we make use of the fact that k = 2s and of the bound(
k
k/2

)
= Ω(2k/k), the second inequality follows by plugging-in the values k = 2λn and

Ni ≥ s/n ≥ λ, and the third inequality follows by recalling that n is polynomial in
λ.

The lemma follows.

6 Elementary Reduction using Distributed Encryption

In this section, we prove our main positive result. We show how to convert a distributed
encryption scheme that satisfies security with identifiable abort into a non-interactive re-
duction from any efficiently computable functionality f to a constant-degree functionality
g that satisfies security with identifiable abort.

Theorem 6.1. Let f = {fλ} be an n-party efficiently-computable functionality where n =
n(λ) is polynomial in the security parameter. Assuming the existence of a distributed
encryption scheme, (KeyGen,Enc,Dec), with (n− 1) security with identifiable abort (resp.,
with abort), there exists an n-input functionality g such that f elementary reduces to g with
(n− 1) security with identifiable abort (resp., with abort). Moreover, g can be computed by
an NC0-circuit with oracle gates to Enc(1λ, 1n, 1`, ·), where ` = O(λ, n).

The encryption algorithm of the distributed encryption scheme from Theorem 5.2 is in
NC1, and so, by Remark 1, we derive Theorem 1.3. The elementary reduction promised in
Theorem 6.1 is described in Section 6.1 and its analysis appears in Section B.

6.1 Proof of Theorem 6.1: The Reduction

Notation. Let f be an n-party functionality where n = n(λ). We assume for the sake of
simplicity (and without loss of generality) that the functionality returns the same output
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to all parties. Let (KeyGen,Enc,Dec) be a distributed encryption scheme that achieves
security with abort (or identifiable abort). We further assume, without loss of generality,
that the scheme supports messages of bit-length ` = 2nλ + 2 with decryption keys of
bit-length λ.

Looking ahead, for our elementary reduction we will encrypt messages under two key
vectors. For this we consider a double encryption gadget denoted by (Doub.Enc,Doub.Dec),
defined as follows:

— Doub.Enc(1λ,m,
−→
ek1,
−→
ek2): The double encryption algorithm samples a random

r←$ {0, 1}`, computes two ciphertexts, ct1 ← Enc(1λ,m ⊕ r,
−→
ek1) and ct2 ←

Enc(1λ, r,
−→
ek2) and outputs ct = (ct1, ct2).

— Doub.Dec(ct,
−→
dk1,
−→
dk2): The double decryption algorithm parses ct = (ct1, ct2), and

sets (b1,m1, bad1) = Dec(ct1,
−→
dk1) and (b2,m2, bad2) = Dec(ct2,

−→
ek2). If either b1 or

b0 equal to zero, we say that decryption “aborts” with the output bad = bad1 ∪ bad2.
Otherwise, we say that decryption succeeds and output m = m1 ⊕m2.

Let C be a boolean circuit that represents f . We assume without loss of generality that
the fan-in and fan-out of every gate in C is two, since any circuit can be transformed to
satisfy this condition with constant multiplicative overhead in the size. Let W be the set
of all wires in this circuit C. Let Win ⊂W be the set of input wires and Wout ⊂W be the
set of output wires. We let Γ = Γ(λ) denote the number of gates in C and assume that
the gates are indexed from 1 to Γ according to some topological order. We represent each
such gate as a tuple (G, a, b, c, d) where G : {0, 1}2 → {0, 1} is the gate’s operator, a, b are
the indices of the incoming wires and c, d are the indices of the outgoing wires.

Reduction. The reduction proceeds as follows:

— Pre-Processing. For each wire w ∈W in the circuit C and for every (a, b) ∈ {0, 1}2,
each party i, with input xi, samples

(
ekwi,a,b, dk

w
i,a,b

)
← KeyGen(1λ). Each party then

invokes the oracle implementing functionality g on its actual input xi and on these
keys {ekwi,a,b, dkwi,a,b}w∈W,(a,b)∈{0,1}2 .

— g-Oracle. Upon invocation, oracle g parses the inputs as{
xi,
{
ekwi,a,b, dk

w
i,a,b

}
w∈W,(a,b)∈{0,1}2

}
i∈[n]

and sets x = x1|| . . . ||xn. For each wire w ∈ W , it samples a random mask

δw←$ {0, 1} and for each (a, b) ∈ {0, 1}2, it sets
−→
ekwa,b = (ekw1,a,b, . . . , ek

w
n,a,b) and

−→
dkwa,b = (dkw1,a,b, . . . , dk

w
n,a,b). Also, for each w ∈ W and each a ∈ {0, 1}, we use

−→
ekwa

to denote
−→
ekwa,0||

−→
ekwa,1 and

−→
dkwa to denote

−→
dkwa,0||

−→
dkwa,1. It then proceeds as follows:
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1. Gates: For every j ∈ [Γ], the reduction considers the jth gate (G, a, b, c, d)
and computes four ciphertexts defined as follows. For each (α, β) ∈ {0, 1}2, let
γα,β = G(α⊕ δa, β ⊕ δb) and define

mα,β = ((
−→
dkcγα,β⊕δc ||γα,β ⊕ δ

c)||(
−→
dkdγα,β⊕δd ||γα,β ⊕ δ

d))

ctjα,β ← Doub.Enc(1λ,mα,β,
−→
ekaα,β,

−→
ekbβ,α).

2. Output: For every gate index j ∈ [Γ], and for each (α, β) ∈ {0, 1}2, output
all the four ciphertexts ctjα,β. Let yw denote the value induced by x on wire w.
For each input wire w, output the masked input ŷw := yw ⊕ δw along with the

decryption key
−→
dkwŷw corresponding to the masked input. For each output wire

w ∈Wout, output the mask δw.

— Post-Processing. Upon receiving {ctjα,β}(α,β)∈{0,1}2 for each gate’s index j ∈ [Γ],

(
−→
dkwŷw , ŷw) for each input wire w ∈ Win, and δw for each output wire w ∈ Wout from

the g-oracle, each party locally computes the following.

1. Traverse the circuit according to a topological order from inputs to out-

puts, while maintaining for each wire w, the pair (
−→
dkwŷw , ŷw). Specifically,

for each gate j ∈ [Γ], with incoming wires a, b and outgoing wires c, d, call

Doub.Dec(ctjŷa,ŷb ,
−→
dkwŷa,ŷb ,

−→
dkwŷb,ŷa). If the decryption fails with output bad, we

halt with output (⊥, bad). If the decryption succeeds with output mŷa,ŷb we

parse mŷa,ŷb = ((
−→
dkcŷc ||ŷc)||(

−→
dkdyd ||ŷd)), and continue to the next gate.

2. If all the calls to the decryption algorithm succeed, then, for each output wire
w ∈Wout, output ŷw ⊕ δw.

Remark 4 (An interactive variant with fairness). By changing g into a reactive functional-
ity to which the parties are allowed to make 2 sequential calls, one can obtain full fairness.
First, let us assume that the ciphertexts of the underlying distributed encryption scheme
are augmented with tags as explained in Remark 3. Next, break g to a pair of functionalities
g1 and g2 as follows. The input to g1 is the same as in g but its output consists of the
ciphertext tuples that are computed for each gate, together with an encrypted version of all
other outputs of g. The encryption is performed by using a one-time pad where the key
K is chosen using the internal randomness of the functionality. Given these values each
party checks if the ciphertexts of the gates are valid using the public detection algorithm. If
a party Pi, detects a problem it sends a flag-bit bi = 1 to the functionality g2, if no problem
occurs the flag is set to zero. The functionality g2 releases the key K if and only if none of
the flags indicate that there is a problem. The original postprocessing can be applied when
g2 releases the key; otherwise the parties abort.

The current analysis can be easily adopted to show that the reduction achieves full
fairness. While the current description assumes that the functionalities maintain a shared
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state (the key K) one can easily remove it using secret sharing and message-authentication
codes. Specifically, we augment g1 and let it send to each party i, a share Ki of the
key K (computed via n-out-of-n secret sharing), a sequence of authentication keys Ai =
(Ai,1, . . . , Ai,n) and a vector of n authentication tags Ti = (MACA1,i(Ki), . . . ,MACAn,i(Ki)))
where MAC is a one-time secure information-theoretic MAC. The functionality g2 receives
from each party Pi a flag bit, bi, as before, together with (Ki, Ai, Ti). If all the validity bits
are OK, and all the tags pass the authentication, the functionality recovers the key K and
send it to all parties. Otherwise, it sends an abort signal.
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A Proof of Observation 1

Given a passively secure non-interactive reduction Σ = (pre1, . . . , pren, post1, . . . , postn)
from f to a constant degree functionality g we define a new actively-secure non-interactive
reduction Σ′ = (pre′1, . . . , pre

′
n, post

′
1, . . . , post

′
n) from f to a related NC1 functionality g′,

and then reduce g′ to a constant-degree functionality via Remark 1. The reduction Σ′ and
the functionality g′ are defined as follows.

For every i, the preprocessing pre′i(xi, ri) outputs the original output yi = prei(xi, ri)
together with all the intermediate values that are induced in the circuit that computes
prei(xi, ri). Denote the concatenation of the latter values by πi. The functionality g′ first
checks, for each i, whether the values that are given in πi are self-consistent and that
the output of the computation is indeed yi. (This condition can be checked in NC1 or
even in AC0.) If the condition passes set y′i to yi and if the condition fails, set yi to
prei(0,0) (the latter value is hardwired into the reduction). Finally, g′ send the outputs
(v1, . . . , vn) = g(y′1, . . . , y

′
n). The postprocessing part is identical to the postprocessing

computation of the original reduction.
It is not hard to see that the new reduction realizes f with full active security and guar-

anteed output delivery. Indeed, any “cheating” during the preprocessing phase, translates
into an invocation of the protocol with fixed zero inputs.

B Proof of Theorem 6.1: Security Analysis

For an arbitrary functionality f , we define [f ]id−abort to be the corresponding functionality
with identifiable abort, which behaves as f with the following modifications. Each party
(including the simulator) can send inputs to the functionality. In addition, the simulator
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can either send a continue command and in this case the outputs are delivered to all parties,
or send a special (abort, bad) command. In the latter case, the functionality verifies that
bad is a non-empty subset of the corrupted parties, and sets the output of all (honest)
parties to (⊥, bad), and delivers the output to the adversary. If the verification fails, the
functionality treats this command as a continue command. The model of security with
abort is defined similarly, except that the functionality [f ]abort drops the bad input (i.e.,
does not apply any verification and does not deliver it to the honest parties).11

Simulator. For an efficient adversary A corrupting a set of parties I ⊂ [n], the simulator,
on input xI = (xi)i∈I and advice a, proceeds as follows.

1. Adversarial preprocessing: The simulator invokes A(xI , a) and gets the values
(x′i, (ek

w
i,a,b, dk

w
i,a,b)w∈W,(a,b)∈{0,1}2)i∈I that A sends to the g-oracle.

2. Honest preprocessing and local randomness: For each wire w ∈ W , the sim-
ulator Sim samples a random value ŷw ∈ {0, 1}. Let I = [n] \ I denote the set of
honest parties. For each honest party i ∈ I and for each (a, b) ∈ {0, 1}2, the simulator
samples keys (ekwi,a,b, dk

w
i,a,b)← KeyGen(1λ).

3. Preparing the ciphertexts: The simulator traverses the gates as follows. For the
jth gate (G, a, b, c, d), the simulator does the following:

(a) Compute mŷa,ŷb = ((
−→
dkcŷc ||ŷc)||(

−→
dkdŷd ||ŷd)) and set the ciphertexts

ctjŷa,ŷb ← Doub.Enc(1λ,mŷa,ŷb ,
−→
ekaŷa,ŷb ,

−→
ekbŷb,ŷa)

ctj1−ŷa,ŷb ← Doub.Enc(1λ, 0`,
−→
eka1−ŷa,ŷb ,

−→
ekbŷb,1−ŷa)

ctj1−ŷa,1−ŷb ← Doub.Enc(1λ, 0`,
−→
eka1−ŷa,1−ŷb ,

−→
ekb1−ŷb,1−ŷa)

ctjŷa,1−ŷb ← Doub.Enc(1λ, 0`,
−→
ekaŷa,1−ŷb ,

−→
ekb1−ŷb,ŷa).

(b) Compute

(Pa, bad
′
a) = P((ekai,ŷa,ŷb , dk

a
i,ŷa,ŷb

)i∈[n]) and (Pb, bad
′
b) = P((ekbi,ŷb,ŷa , dk

b
i,ŷb,ŷa

)i∈[n]).

If either Pa = 0 or Pb = 0 (i.e., failure) set Fj = 0 (“failure”) and badj =
bad′a ∪ bad′b. Else, set Fj = 1.

11The more standard version of security with abort [39] allows the simulator to take its decision
(abort/continue) after seeing the output of the computation. In contrast, in our notion the simulator
has to take its decision (abort/continue) before seeing the output, and so it achieves a stronger form of
security. This is possible since we are assuming an ideal g-hybrid model. Of course, if the oracle g is
instantiated with an actual protocol that achieves the standard (weaker) form of security-with-abort then
the resulting protocol for f will inherit the same level of security.
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4. Calling the ideal functionality: If a failure has been recorded, the simulator takes
j to be the smallest index for which Fj = 0, and queries the ideal functionality on
inputs (x′i)i∈I and (abort, badj) to instruct the ideal functionality to send (⊥, badj)
as output to all the honest parties. Else, (if Fj = 1 for all j ∈ [Γ]), the simulator
queries the ideal functionality on inputs (x′i)i∈I and continue, to instruct the ideal
functionality to send the correct output to all the honest parties.

5. Output for the Adversary: Upon receiving output z from the trusted functional-
ity, the simulator retrieves, for every output wire w, the value yw that is induced by
the output z on the wth output wire, and sets

δw = ŷw ⊕ yw.

The simulator sends to the adversary the values

(ctjα,β)j∈[Γ],α,β∈{0,1}, (ŷw,
−→
dkwŷw)w∈Win

, (δw)w∈Wout ,

and terminates with the output of the adversary.

Analysis. Fix an an efficient (non-uniform) adversary A, and let Sim denote the corre-
sponding simulator, as defined above. Let D be an efficient distinguisher and let ∆D(X;Y )
denote the distinguishing advantage of D between the distributions X and Y . To complete
the proof of security, we need to show that, for every input x = (xi)i∈[n] and every advice
a,

∆D(Idealf,I,Sim(a)(x) ; Realπ,I,A(a)(x))

is negligible in λ, where the former random variable consists of the output of Sim(a, (xi)i∈I)
concatenated with the output of the honest parties as computed in an ideal execution
over the input x (at the presence of an [f ]id−abort-oracle or [f ]abort-oracle), and the latter
ensemble consists of the output ofA(a, (xi)i∈I) concatenated to the output of honest parties
in a real execution over the input x.

Fix an input x, an advice a, and a random tape of the adversary, and therefore also fix
the preprocessing values, (x′i, (ek

w
i,a,b, dk

w
i,a,b)w∈W,(a,b)∈{0,1}2)i∈I , that are submitted by the

adversary to the g-oracle. Denote by yw the value that the inputs induce on the wth wire
of C. Let us condition on the event that, for every wire w, the simulated values ŷw and
random mask δw selected by g in an ideal execution satisfy the equation

δw = ŷw ⊕ yw.

Furthermore, let us condition on the event that for every honest party i ∈ I, and every
pair of wires (a, b) that enter the same gate, the “on-path” keys (ekwi,ŷa,ŷb , dk

w
i,ŷa,ŷb

) in
the simulation and in the real world are equal. (Recall that in both cases these keys
are selected by calling the key-generation algorithm.) From now on, we assume that all
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these values are fixed, and show that the D cannot distinguish between the conditional
distribution Ideal′f,I,Sim(x) from the conditional distribution Real′π,I,A(x) with more than
negligible probability. To this end, we define a sequence of hybrids as follows. Let Γ be
the total number of gates in C, and assume that the gates are indexed from 1 to Γ under
the same topological order that is being used in the protocol and in the simulation. Our
hybrids Hk are indexed by 0 ≤ k ≤ Γ and are defined as follows. (We focus on the case of
identifiable abort, the proof for the case of security with abort is almost identical.)

The hybrid Hk. For each honest party i ∈ I and for each (a, b) 6= (ŷa, ŷb), sample the
“off-path” keys (ekwi,a,b, dk

w
i,a,b)← KeyGen(1λ). For j = 1 to Γ do the following:

— Let (G, a, b, c, d) denote the jth gate. Compute mŷa,ŷb = ((
−→
dkcŷc ||ŷc)||(

−→
dkdŷd ||ŷd)) and

set the ciphertext

ctjŷa,ŷb ← Doub.Enc(1λ,mŷa,ŷb ,
−→
ekaŷa,ŷb ,

−→
ekbŷb,ŷa).

— If j ≤ k, for every (α, β) 6= (ŷa, ŷb) let

γα,β = G(α⊕ δa, β ⊕ δb), mα,β = ((
−→
dkcγα,β⊕δc ||γα,β ⊕ δ

c)||(
−→
dkdγα,β⊕δd ||γα,β ⊕ δ

d)),

and compute

ctjα,β ← Doub.Enc(1λ,mα,β,
−→
ekaα,β,

−→
ekbβ,α). (8)

In addition, call Doub.Dec(ctjŷa,ŷb ,
−→
dkwŷa,ŷb ,

−→
dkwŷb,ŷa). If the decryption fails with output

bad, set Fj = 0 and let badj = bad. Otherwise, set Fj = 1.

— If j > k, define:

ctj1−ŷa,ŷb ← Doub.Enc(1λ, 0`,
−→
eka1−ŷa,ŷb ,

−→
ekbŷb,1−ŷa)

ctj1−ŷa,1−ŷb ← Doub.Enc(1λ, 0`,
−→
eka1−ŷa,1−ŷb ,

−→
ekb1−ŷb,1−ŷa) (9)

ctjŷa,1−ŷb ← Doub.Enc(1λ, 0`,
−→
ekaŷa,1−ŷb ,

−→
ekb1−ŷb,ŷa).

Compute (Pa, bad
′
a) = P((ekai,ŷa,ŷb , dk

a
i,ŷa,ŷb

)i∈[n]) and (Pb, bad
′
b) =

P((ekbi,ŷb,ŷa , dk
b
i,ŷb,ŷa

)i∈[n]). If Pa = 0 or Pb = 0 (i.e., failure) set Fj = 0 and
badj = bad′a ∪ bad′b.

— If a failure has been recorded, the output of the honest parties is defined to be
(⊥, badj) where j is the smallest index for which Fj = 0. Otherwise, the output
of the honest parties is defined to be (yw)w∈Wout . The output of the adversary is
obtained by sending the values

(ctjα,β)j∈[Γ],α,β∈{0,1}, (ŷw,
−→
dkwŷw)w∈Win

, (δw)w∈Wout ,

to A and outputting its output.
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We begin by noting that the extreme hybrids correspond to the ideal/real experiments.
Let ε = ε(λ) be a negligible function that upper-bounds the failure probabilities of the
identification property of the distributed encryption. (See Definition 5.4.)

Claim 6. The statistical distance between the hybrid H0 and Ideal′f,I,Sim(x) is at most O(ε)
and the statistical distance between the hybrid HΓ and Real′π,I,A(x) is at most O(Γ · ε).

Consequently, D cannot distinguish H0 from Ideal′f,I,Sim(x) (resp., HΓ from
Real′π,I,A(x)) with more than negligible advantage.

Proof. The hybrid H0 is computed identically to the Ideal′f,I,Sim(x) except for the way that
the output to the honest parties is computed. Let j denote the minimal index for which
Fj = 0. (If no such j exist then in both cases the output of the honest parties is (yw)w∈Wout .)
By the “security with Identifiable Abort” property of the underlying encryption (Defini-
tion 5.4), it holds that, except with probability O(ε), the set badj is a non-empty subset
of I. Therefore, except with probability O(ε), when the simulator in the ideal execution
sends an abort command (abort, badj) to [f ]id−abort, this command will be accepted, and
the output of the honest party will be (⊥, badj) just like in H0.

We move on to analyze the hybrid HΓ. Here, too, the hybrid HΓ is computed identically
to the computation in Real′π,I,A(x) except for the way that the output to the honest parties
is computed. Let j denote the minimal index for which Fj = 0. If no such index exist,
set j = Γ + 1. Consider the post-processing phase of the real execution and let E denote
the event that for each wire w that is visited before the jth gate is visited it holds that

the value (
−→
dkwŷw , ŷw) computed by the honest parties equals to the corresponding “on-path”

keys/masked-values (that were previously fixed). We claim that this event E happens with
all but probability O(Γ · ε) over the randomness of the encryption. Indeed, this follows
by induction (on the depth of the wire) and by the “security with Identifiable Abort”
property of the underlying encryption (Definition 5.4). Finally, observe that, conditioned
on the event E, the output of the honest parties in both experiments is identical. That is,
if j = Γ + 1, the output is (yw)w∈Wout and, otherwise, the output is (⊥, badj) where badj is

the set outputted by Doub.Dec(ctjŷa,ŷb ,
−→
dkwŷa,ŷb ,

−→
dkwŷb,ŷa).

We continue by showing that any pair of neighboring hybrids, Hk−1 and Hk are com-
putationally indistinguishable. Let δ(λ) be a negligible function that upper-bounds on
the distinguishing advantage of an efficient adversary that tries to break the privacy of
the distributed encryption scheme. (It suffices to consider non-uniform adversaries whose
circuit-size is upper-bounded by the size of A plus the size of D.)

Claim 7. For every k ∈ [Γ], it holds that ∆D(Hk−1;Hk) ≤ O(δ + ε).

Sketch. The first difference between these hybrids is in the way the off-path ciphertexts of
the kth gate,

ctkα,β where (α, β) 6= (ŷa, ŷb),
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are computed. A standard argument shows that, by the privacy of the distributed en-
cryption, the ciphertext ctkα,β computed for the kth gate in Hk−1 per Eq. (9), is δ-

indistinguishable from the ciphertext ctkα,β computed for the kth gate in Hk per Eq. (8).

Moreover, for this it suffices to assume that, for each i ∈ I, the keys (ekai,α,β, dk
w
i,α,β) are

sampled independently according to KeyGen(1λ). (Therefore, one can treat each ciphertext
independently.)

The second difference between the hybrids Hk−1 and Hk is in the way the values
(Fk, badk) are computed. By the security with identifiable abort property of the distributed
encryption scheme, the values (Fk, badk) as computed in Hk−1 (based on the decryption
algorithm) and the values (Fk, badk) as computed in Hk based on the predicate algorithm)
are ε-indistinguishable. (Here the probability is taken only over the randomness of the
encryption algorithm and over the randomness of the predicate.)

Overall, D cannot distinguish between Ideal′f,I,Sim(x) and Real′π,I,A(x) with more than
negligible advantage of O(Γ(ε+ δ)). This completes the proof of Theorem 6.1.
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