
PSImple: Practical Multiparty Maliciously-Secure Private Set Intersection∗

Aner Ben Efraim
Ariel University

anermosh@post.bgu.ac.il

Olga Nissenbaum
Ariel University

olga@nissenbaum.ru

Eran Omri
Ariel University

omrier@ariel.ac.il

Anat Paskin-Cherniavsky
Ariel University

anatpc@ariel.ac.il

Abstract

Private set intersection (PSI) protocols allow a set of mutu-
ally distrustful parties, each holding a private set of items, to
compute the intersection over all their sets, such that no other
information is revealed. PSI has a wide variety of applications
including online advertising (e.g., efficacy computation), se-
curity (e.g., botnet detection, intrusion detection), proximity
testing (e.g., COVID-19 contact tracing), and more. PSI is a
rapidly developing area and there exist many highly efficient
protocols. However, almost all of these protocols are for the
case of two parties or for semi-honest security. In particu-
lar, prior to our work, there has been no concretely efficient,
maliciously secure multiparty PSI protocol.

We present PSImple, the first concretely efficient
maliciously-secure multiparty PSI protocol. Our protocol is
based on garbled Bloom filters, extending the 2-party PSI
protocol of Rindal and Rosulek (Eurocrypt 2017) and the
semi-honestly secure multiparty protocol of Inbar, Omri, and
Pinkas (SCN 2018).

To demonstrate the practicality of the PSImple protocol,
we implemented our protocol and ran experiments with on
up to 32 parties and 218 inputs. We incorporated several opti-
mizations into our protocol, and compared our protocol with
the 2-party protocol of Rindal and Rosulek and with the semi-
honest protocol of Inbar et al.

Finally, we also revisit the parameters used in previous
maliciously secure PSI works based on garbled Bloom filters.
Using a more careful analysis, we show that the size of the
garbled Bloom filters and the required number of oblivious
transfers can be significantly reduced, often by more than
20%. These improved parameters can be used both in our
protocol and in previous maliciously secure PSI protocols
based on garbled Bloom filters.

∗Research supported by ISF grant 152/17, and by the Ariel Cyber Innova-
tion Center in conjunction with the Israel National Cyber directorate in the
Prime Minister’s Office.

1 Introduction

Private set intersection (PSI) protocols allow a set of mutually
distrustful parties, each holding a private data set, to compute
the intersection over all data sets. PSI has a wide variety of
applications including online advertising (e.g., efficacy com-
putation), security (e.g., botnet detection, intrusion detection),
proximity testing (e.g., COVID-19 contact tracing), and more.

Indeed, PSI is a special case of secure multiparty com-
putation (MPC), allowing a set of parties to compute some
computational tasks over their private input, while guarantee-
ing several security properties, even in the face of adversarial
behavior. Two of the most basic security properties are cor-
rectness and privacy, roughly requiring that the correct output
is learned and that no other information is revealed. There
exist two main adversarial models. Semi-honest adversaries
are assumed to follow the prescribed protocol honestly, but
may try to infer additional information seeing their view in
the protocol execution. A more realistic adversarial model
is that of malicious adversaries that may instruct the parties
that they corrupt to deviate from the prescribed protocol in an
arbitrary manner.

Our focus in this work is on the construction of con-
cretely efficient PSI-tailored protocols (where by “concrete
efficiency" we mean faster run-time in practice). It is instruc-
tive to note that a protocol may have very good asymptotic
efficiency, but perform poorly in practical scenarios. This is
usually due to extensive use of public-key operations, typi-
cally requiring exponentiation, which result in large constants.
In particular, for 2-party malicious PSI protocols, Rindal and
Rosulek [36] showed that the protocol of [10], which is based
on Diffie-Helman, despite requiring significantly less commu-
nication, is more than an order of magnitude slower than their
protocol, which is based on oblivious transfer1 and garbled
Bloom filters.

Concretely efficient generic MPC protocols (e.g., [2, 9, 15,

1While OT is based on public key operations, modern MPC protocols use
OT extension [19], in which only a small amount of OTs require public key
operations, and the rest are generated using symmetric-key primitives.

1

21, 38]) are less suitable for the PSI problem, as their com-
plexity highly depends on the circuit size, which is large for
PSI (typically, incurring a slowdown of two orders of magni-
tude, see [25]). Over the last decade, substantial research has
been dedicated to the construction of concretely efficient PSI
protocols. However, these protocols were either restricted to
the two-party setting (e.g., [10,11,22,27,31,32,34,36,37]) or
were restricted to deal with semi-honest adversaries [18, 25].

1.1 Review of Related Previous Works
The PSImple protocol relies on two main primitives, oblivi-
ous transfer (OT) [33] and garbled Bloom filters (GBF) [11].
K-out-of-N oblivious transfer is a cryptographic primitive,
allowing a receiver to interact with a sender, holding N strings
s0, . . . ,sN , such that the receiver learns some K of these strings,
at its choice, but nothing else. The sender learns nothing
(specifically, not which of the strings the receiver chose to
learn). A Bloom filter (BF) [3] is a data structure used to en-
code a set S over some domain D of n elements as a Boolean
array of length N > n. It is attributed with k hash functions
h1, . . . ,hk. An element x∈D is encoded into the BF by setting
all indices h1(x), . . . ,hk(x) in the BF to be 1.

We next review the existing ideas for PSI protocols based
on GBFs, starting with the two-party semi-honest construction
of [11].
Two-party semi-honest PSI of [11]. Say that two parties
P0,P1 wish to compute the intersection between their respec-
tive sets S0 and S1. Using the above primitive it is natural to
consider the following idea. First, each party constructs the
BF, according to its private set. Then, they engage in an OT
protocol so that P0 (as the receiver) learns the values from
P1’s BF – only in the indices holding a 1 value in P0’s BF. Fi-
nally, by taking the bit-wise AND from both BFs, P0 learned
the BF of the intersection.

While the above protocol is correct, it is not secure, as
P0 may learn about 1 value indices in P0’s BF, even if they
where set to one on account of elements that are not in the
intersection (but are in P1’s set). To overcome this leakage,
Dong et al. [11] introduced a variant of Bloom filters, called
garbled Bloom filters (GBF). A GBF is attributed with same k
hash functions as its respective BF. In each coordinate of the
GBF there is a a σ long random string. The strings are chosen
independently and uniformly, with the only requirement, that
for any element x ∈ D in the underlying set, the XOR over
all strings in indices h1(x), . . . ,hk(x) in the GBF equals some
value yx.

The protocol of [11] follows as before with the only differ-
ence that P0 learns the desired coordinates (with value 1 in
the Bloom filter of P0) from the garbled Bloom filter of P1.
In the GBF variant proposed by [11], it is predetermined that
yx = x for any x. Thus, given the appropriate strings, P0 can
test whether an element x is in the intersection by checking if
the XOR over all strings in indices h1(x), . . . ,hk(x) (which it

got from P1’s GBF) equals x. On the other hand, for any x′

that does not belong to P0’s set, P0 learns nothing but random
and independent strings.

Two-party malicious PSI of [36]. The construction of [11]
works only for semi-honest adversaries, as malicious parties
can use an input set that is much larger than the allowed set
size. Rindal and Rosulek [36] suggested an efficient transla-
tion to the malicious setting: First, to prevent P0 from cheat-
ing, they needed to use a maliciously secure K-out-of-N OT
protocol. Second, to prevent P1 from cheating (pretending to
have a larger set), they use the following idea. Rather than
having a predetermined value yx for every possible element
x, the strings of the GBF are chosen uniformly and indepen-
dently, and yx is taken to be the result of these choices, i.e., yx
is simply the XOR over all strings in indices h1(x), . . . ,hk(x).
Finally, after P0 has learned t of the strings, P1 needs to send
to P0 the values of yx for every element x in its set. This,
indeed, puts a limit on the number of elements P1 can use.
We note that in order for P0 to find the intersection, given the
(encoded) items of P1, it is required to perform ω(N logN)
comparisons in the number of items in a data set (reduced
from a quadratic number by sorting).

Unfortunately, there is no known concretely efficient K-
out-of-N OT protocol with malicious security. Rindal and Ro-
sulek [36] overcome this problem by constructing a concretely
efficient, maliciously secure, approximate random oblivious
transfer protocol. They show that this primitive suffices for
the security of the above protocol, with a caveat that a mali-
cious P0 can use a slightly larger set than the bound for honest
parties. For more details on this protocol, see Section 2.1.

Multiparty semi-honest PSI of [18]. Inbar et al. [18] ex-
tended the work of [11] to the multiparty setting for aug-
mented semi-honest security.3 To compute the intersection
over a set of t+1 parties {P0,P1, . . . ,Pt}, they used the XOR
secret sharing scheme. Specifically, each party Pi computes
a GBF Gi for its set – using another variant of GBF, where
yx = 0 for every element x. Then, Pi shares its GBF Gi among
all parties (making the share of each party P j an independent
uniform string s j and making its own share the XOR of all
other s js with the GBF Gi, i.e., according to the XOR secret
sharing scheme). Next each party locally XORs all the shares
it got from all parties. It follows, by the GBF variant used, that
the XOR all these shares is a valid GBF of the intersection.
However, P0 cannot learn this GBF, as it may extract infor-
mation from it by removing the randomness incorporated by
corrupt parties. Hence, P0 uses a (semi-honest secure) OT to
learn only the coordinates attributed to its subset. To compute
the intersection, P0 computes a cumulative GBF G∗ by XOR-
ing all the GBFs it obtained from all other parties. Finally. P0
outputs all elements x in its set, for which the XOR of the
coordinates in G∗ that are attributed with x is zero.

2

1.2 Contributions
Given the current state for concretely efficient PSI, the main
problem we tackle in this work is:

Construct a concretely efficient multiparty protocol
for computing private set intersection, secure
against malicious adversaries, scaling well with the
number of parties and with data set size.

Our main contributions can be summarized as follows.

1. We present PSImple, the first concretely efficient, multi-
party PSI protocol that is secure against malicious ad-
versaries, corrupting any subset of parties.

2. We implemented PSImple and incorporated several code
optimizations. We ran experiments to show the prac-
ticality of PSImple, showing that PSImple is competi-
tive even against similar protocols that are limited to 2-
parties [36] or give a weaker security guarantee [18, 39].

3. We revisit the parameter analysis of previous works on
efficient PSI based on garbled Bloom filters (GBF) in
several ways. Performing a careful analysis, we are able
to reduce the number of required oblivious transfer (OT)
calls by up to 25%.

We next elaborate on each of these contributions.

The PSImple protocol – A multiparty PSI protocol in the
malicious model. A key idea in the two-party malicious
PSI protocol of [36] is to somehow “bind" each party to a
restricted subset of the coordinates (of the computed GBF for
the intersection) that will be correlated with the other party’s
GBF. For party P0, this is obtained by the K-out-of-N OT it
performs (as a receiver) with P1. For P1 the binding effect
comes from the fact that P1 can only send a fixed number of
codewords to P0.

Trying to combine the ideas from [36] and [18], we note
that it is possible to let P0 perform an (approximated, random)
K-out-of-N OT with each of the other parties separately (i.e.,
the first part of the [36] protocol). After this phase, P0 holds
a garbled Bloom filter for every party, however, it does not
know the appropriate codewords (i.e., yxs). Obviously, the
parties cannot just send the codewords to P0, as P0 is not
allowed to learn the intersection of its set with the set any
proper subset of the honest parties.

A possible idea for completing the protocol is to let the
parties secret share their GBFs (using the XOR scheme) and
then reveal the codewords of these XORed shares to P0. This
is indeed secure, and it allows P0 to find the intersection
by finding codewords, one from each party, that sum to its
own codeword. However, all known algorithms for finding
these codewords grow exponentially in the number of parties.
Therefore, we take a different path, revisiting the construction
of [36].

A new two-party malicious PSI. In our two-party malicious
construction, the parties start in the same way as in [36], by
P0 (as the receiver) performing an (approximated, random)
K-out-of-N OT with P1 (as the sender), letting P0 learn the
appropriate parts in the GBF G1 of P1. As in the construc-
tion of [36], this binds P0 to choose a bounded subset of
coordinates from P1’s that may affect the output GBF. To
similarly bind P1, in a second phase, the parties switch roles
and perform an (approximated, random) K-out-of-N OT with
P1 as the receiver and P0 as the sender, letting P1 learn the
appropriate parts in the GBF G0 of P0.

Now, if P0 XORs G0 with its part of G1 and also P1 XORs
G1 with its part of G0, then they would both hold GBFs that
agree on the codewords of elements in the intersection, that is,
if they XOR these two GBFs, then the result would be a GBF,
where for every element x in the intersection, the codeword yx
is 0. However, P1 cannot just send this GBF to P0, as it may
reveal additional information about elements in P1’s set that
are not in the intersection.

To solve the above issue, we introduce the notion of re-
randomizing a GBF. That is, given a GBF G for a set S,
selecting a uniformly random GBF G′ that agrees with G
on all codewords for elements in S. One way to implement
this operation is to XOR G with a random GBF for S with all
codewords yx being 0, for every x∈ S. A more direct algorithm
to rerandomize a GBF appears in Appendix B. We can thus
complete the protocol by P1 sending to P0 a re-randomized
version of the GBF it obtained.

We note that this alternative protocol more than doubles the
communication complexity compared with [36], but reduces
the number of comparisons to be linear in the size of each set.
While this has little effect in the two-party case, in the case of
more than two parties, the saving is drastic – in PSImple the
number of comparisons remains linear in the size of P0’s set.
In contrast, the above direct extension of [36] to the multiparty
setting would require finding codewords (one from each party)
that XOR to 0. To the best of our knowledge, the best solution
to this problem is still exponential in the number of parties.

A new multiparty PSI protocol. In the two party construc-
tion, to impose on each party Pi a restriction on the size of
the data set it uses when interacting with P j, we let Pi act as
the receiver in a (approximated, random) K-out-of-N OT exe-
cution with P j. Since in the multiparty setting we allow any
subset of the parties to be corrupted, it is natural to assume
that it is necessary to have every pair of parties perform two
executions of the K-out-of-N OT protocol (with the roles be-
ing reversed at each time). We prove, however, that it suffices
for security to only have P0 perform two executions of the
approximated, random K-out-of-N OT protocol with each of
the other parties.

Indeed, to generalize our two-party protocol to the multi-
party case, we first let P0 perform two approximated, random
K-out-of-N OT execution with each party Pi. Then, P0 XORs
all 2t GBFs it obtained in these executions. Let G0 be the re-

3

sulting (cumulative) GBF of P0. Similarly, let Gi be the GBF
obtained by party Pi as the XOR of the two GBFs it saw in
the interaction with P0. As before, each Pi needs to rerandom-
ize Gi before sending it to P0. Let G∗i be the rerandomized
version of Gi.

It follows that G0⊕
⊕

i∈[t] G
∗
i is a GBF for the intersection

of all the parties, where the codeword for every element x
in the intersection is the zero string. This is because any
codeword for x that appeared in any of the original GBFs
(say in the interaction of P0 with party Pi), appears twice in
the above summation, once for P0 and once for Pi. So the
idea is to allow P0 to learn the above summation. However,
if each Pi simply sends G∗i to P0, then security is breached
as Pi can compute the intersection with each party separately.
To overcome this, we let the parties first share their G∗i in a t-
out-of-t additive secret sharing scheme, and then locally sum
all the shares they received. Finally, by sending the summed
shares to P0, they allow P0 to reconstruct the GBF of the
intersection G0⊕

⊕
i∈[t] G

∗
i , but nothing else.

Implementation, Code Optimizations, and Experiments.
We implemented PSImple and incorporated several code opti-
mizations that significantly reduced the communication and
the required memory, and also allowed us to move much of
the computation to the offline phase (i.e., can be done before
the inputs are known to the parties). We ran experiments with
2 to 32 parties and input size of 28 to 218, in order to demon-
strate the practicality of PSImple, and analyzed the runtime to
understand the asymptotics and the cost of the various steps.
We compare our results with existing protocols that are based
on GBFs, in particular the 2-party maliciously secure PSI pro-
tocol of [36] and the multiparty PSI protocols of [18, 39] that
give a significantly weaker security guarantee. As PSImple is
specifically designed as a multiparty PSI protocol with mali-
cious security, we expected PSImple to be significantly slower
than these protocols. However, somewhat surprisingly, our
experimental results show that PSImple is quite competitive
and in some cases even faster.

Improved analysis and choice of parameters. The two-
party maliciously-secure PSI protocol of [36] uses the cut-and-
choose technique over NOT executions of random oblivious
transfer (ROT) – to allow two parties to jointly select a GBF of
length NBF <NOT of the intersection. Specifically, some Ncc <
NOT−NBF of the strings selected in the ROTs are revealed to
prove honest behavior. Performing a more careful analysis of
the Bloom filter and cut-and-choose parameters we are able
to reduce the number of required ROTs NOT by up to 25%
compared to [36], as can be seen in Table 1. Since ROT is
often the bottleneck in PSI protocols based on GBFs, this
improvement has a great effect on the overall efficiency of
these protocol. In particular, our analysis directly improves
PSImple, as well as the protocols of [36, 39].

1.3 Additional Related Work

Currently, the state-of-the-art in two-party maliciously se-
cure PSI are the protocols of [37] and [27], both concretely-
efficient, have quasi-linear and linear communication com-
plexities, respectively, and are almost as efficient as the fastest
semi-honest PSI protocol [24]. The benchmarks made in [27]
suggest that it is currently the fastest two-party, maliciously
secure, PSI protocol. We remark that [27] uses a primitive
called PaXoS, of which garbled Bloom filters is a special case.
Following this work, it is interesting to see if the techniques
of [27] can also be extended to the multiparty setting.

Apart from [18], an additional PSI protocol in the semi-
honest multiparty setting is the protocol of [25], which is
based on symmetric-key techniques. The protocol of [25] is
significantly faster than [18] for a small amount of parties.
However, it does not scale as well with the number of parties,
and we do not know if it can be efficiently extended to the
malicious setting.

Regarding maliciously-secure multiparty PSI protocols,
the works of [16] and [12] both have very good asymptotic
communication complexity. However, both of these protocols
are not concretely efficient and, therefore, have not been im-
plemented. We remark that [12] achieve a stronger security
guarantee than PSImple and [16], because in the protocol
of [12] all the parties output the intersection.

Zhang et al. [39] recently made an interesting attempt to
build a concretely efficient maliciously secure protocol ex-
tending the protocol of [36]. However, their solution is in a
non-standard security model, as it assumes that the adversary
either does not corrupt P0 or does not corrupt another desig-
nated party P1. If these parties do collude, then the corrupt
parties may learn the intersection of the Bloom filters of the
honest parties. In particular, in the three party setting, this
implies leaking the BF of the honest party. Furthermore, this
leakage occurs even in the semi-honest setting. Hence, the
security model they dealt with is significantly more relaxed
than the standard malicious security model we assume.

Additionally, there is a line of work that is based on cir-
cuits [17, 28–30]. In [29], the authors managed to reduce the
size of the circuit to linear in a number of items, vs. quadratic
for the naïve solution and quasi-linear in the sorting solution
of [17]. However, these works are mainly for the semi-honest
two-party case, and the techniques are not easily extendable.

2 Background and Definitions

In this section we give the necessary definitions and nota-
tions, and briefly describe the cryptographic primitives that
we use in our protocol. Additionally, we provide here a brief
description of the PSI protocols of Rindal and Rosulek [36]
and Inbar, Omri and Pinkas [18].

4

n 28 212 216 220

Protocol Our MPSI [36] Our MPSI [36] Our MPSI [36] Our MPSI [36]
k 147 94 134 94 131 91 129 90

NBF 64,733 88,627 851,085 1,121,959 12,660,342 16,579,297 197,052,485 257,635,123
NOT 74,379 99,372 901,106 1,187,141 12,948,963 16,992,857 198,793,103 260,252,093

Table 1: Comparison of our ΠAppROT parameters k, NBF and NOT with [36] for set size n, statistical security λ = 40, computational
security σ = 128.

Notations. We denote the computational security parame-
ter by σ, and the statistical security parameter by λ. In our
implementation, σ = 128 and λ = 40. For l ∈ N, [l] denotes
the set {1, ..., l}.

We use the notation P = (P0, ...,Pt) for the set of parties,
where P0 is the evaluating party, and the remaining t parties
are non-evaluating parties. The size of the input set of any
honest party is bounded by n, and D is the domain of the
input items.

Private Set Intersection. In a private set intersection pro-
tocol, a set of parties P = (P0, ...,Pt), each having up to n
items from domain D as their private inputs, compute the
intersection of their input sets. As a result of the protocol, the
evaluating party P0 learns (only) the intersection of those sets,
and all other parties learn nothing.

We assume a malicious adversary that may corrupt up to t
parties (i.e., all parties but one). The adversary has full control
over these parties, and may instruct them to arbitrarily deviate
from the prescribed protocol. Following the real vs. ideal
paradigm for proving security, our goal is to prove that such
an adversary cannot do more harm than a very limited (ideal-
world) adversary. In particular, the ideal-world adversary may
only choose the inputs of the corrupted parties. We note that
the size of these adversarial input sets n′ could be slightly
larger than the prescribed bound, i.e., n′ > n (it is possible to
show that using our parameters n′ must be smaller than 4n).
Indeed, this is less standard in secure computation, however,
we inherit this assumption from the work of [36]. The ideal
functionality FMPSI is given in Figure 1.

Additive Secret Sharing. An additive secret sharing
scheme enables a set of t parties to share a secret S such
that no proper subset of them can learn any information about
S (apart from its length). However, all t parties together are
able to reconstruct the secret. Each party Pi receives a value Si
of length |S|, called Pi’s share of S, such that S = S1⊕ ...⊕St .
To obtain such a sharing, t−1 of the shares can be selected
uniformly at random, and the last share is set to be the XOR
of these t−1 shares and the secret S.

Additive secret-sharing is linear, so in particular, given
two additive sharings of secrets S1 and S2, parties can locally
compute shares of the sum S1⊕ S2 by XORing their own
shares of S1 and S2.

Bloom Filters and Garbled Bloom Filters. A Bloom filter
is a compact data structure [3] to store a set of items that
allows efficient probabilistic membership testing. It consists
of NBF bits and associated with k independent random hash
functions h1,...,hk: {0,1}∗ → [NBF]. Initially, all the bits of
the Bloom filter are set to 0. To add an item x to the Bloom
filter, the bits at indices h1(x),...,hk(x) are set to 1 (regardless
of whether their current value is 0 or 1).

If all the bits in the Bloom filter at indices h1(x),..., hk(x)
equal 1, then this is interpreted as if x is a member of the
set. Note that this might be a false positive result (i.e., x is
misidentified as being represented in the Bloom filter), if
other elements of the set turn the Bloom filter bits at indices
h1(x),...,hk(x) to 1’s.

We denote by pFalse the false-positive probability for a
given Bloom filter, i.e., the probability of a positive result for
some randomly chosen item. This probability depends (apart
from the length of the Bloom filter NBF and the number of
hash-functions k) on the number of items currently stored
in the Bloom filter (more precisely, on the number on 1’s in
Bloom filter). The analysis of the false positive probability of
a Bloom filter is less trivial than it may initially seem [4, 10,
14, 26]. In this paper we used the refined formula from [14].

Garbled Bloom filters (GBF) were introduced by Dong et
al. [11] as the garbled version of a Bloom filter, obtained by
expanding each bit in the original BF to a σ-long bit string.
The compactness of the original Bloom filter is somewhat
compromised in a GBF for the sake of obtaining an oblivious-
ness property. As before, any element x is attributed with k
coordinates in the GBF, i.e., the hash-values h1(x), ...,hk(x).
Intuitively, this obliviousness property means that for a given
element x, it is impossible to learn anything on whether x is
in the data set without querying the GBF on all k coordinates
attributed to x. On the other hand, given the strings in all
coordinates attributed with x, we compute the codeword yx as
follows.

yx =
⊕

i∈h∗(x)

GBF[i], (1)

where h∗(x)
de f
= {h j(x) : j ∈ [k]}. 2 If the GBF and x are given,

and it is known what the codeword of x should be, then it is
possible to check if x is in the GBF using Equation (1).

2We stress that the summation in (1) is performed over the set of indices
without repetitions. Pinkas et al. [31] showed that the probability of a col-
lision hi(x) = h j(x) is noticeable, which may lead to the elimination of the
corresponding GBF string from the sum.

5

FMPSI

t +1 – number of parties;
P0,P1, ...,Pt - parties; Pi holds Xi = {xi1,xi2, ...,xini}, ni ≤ n – the private input of the party;
n – the maximal size of the input set of any honest party; n′ ≥ n – the maximal allowed size of the input set of any malicious
party;
D – the domain of the items in the set of each party;
σ – computational security parameter; λ – statistical security parameter.
Inputs: Xi from each party Pi, n, σ.
Computation: If size of the corrupt party input set is bigger than n′, then functionality aborts. Else it computes the intersection
of all data sets: X = ∩t

i=0Xi.
Outputs: Party P0 receives X from the functionality, all other parties receive no output.

Figure 1: FMPSI – Ideal multiparty private set intersection functionality

Fixing the length and hash functions of a Bloom filter, a
set of items uniquely determines the associated Bloom filter.
In contrast, there usually exist many distinct garbled Bloom
filters for any given set, even if the codewords are fixed as well.
Based on the GBF construction algorithm of Dong et al. [11],
we construct an efficient algorithm to rerandomize a garbled
Bloom filter G for a fixed set X . That is, to select a uniformly
random GBF G′ that agrees with G on the codewords of
the elements X . For completeness, this algorithm is given in
Appendix B.1.

Observe that if BF1 and BF2 are two Bloom filters (of the
same length and using the same hash-functions) of sets X1 and
X2, then BF1∧BF2 (i.e, the bitwise AND of the arrays) is a
Bloom filter of X1∩X2. Similarly, if GBF1 and GBF2 are two
garbled Bloom filters (of the same length and using the same
hash-functions) of sets X1 and X2, then GBF1⊕GBF2 is the
GBF of X1∩X2, where codewords for any element is XOR of
its codewords in YX1 and YX2 . In particular, if the equal items
in X1 and X2 have the same codewords in GBF1 and GBF2,
then all the items from X1 ∩X2 have all-zero codewords in
GBF1⊕GBF2.

Random Oblivious Transfer. In a 1-out-of-2 random
oblivious transfer (ROT) protocol there are two parties: a
sender and a receiver. The private input of the receiver is its
choice bit b, while the sender has no input. As a result of the
ROT, the sender receives two random values: m0 and m1, and
the receiver receives mb. The sender learns no information
about b, and the receiver learns nothing about m1−b. Another
functionality we will need, which realizes N parallel instances
of 1-out-of-2 ROT for σ-bit strings appears in Figure 2.

In a K-out-of-N random OT protocol, the private input
of the receiver is its set of choice indices of size K, de-
noted by J = { j1, ..., jK}, where ji ∈ [N], i ∈ [K], while the
sender has no input. As a result of the K-out-of-N ROT, the
sender receives N random values: M = {m1, ...,mN}, and
the receiver receives only the values indexed by J, namely
MJ = {m j1 , ...,m jK}. The sender learns no information about
I, and the receiver learns nothing about M \MJ .

Cut-and-Choose. Cut-and-choose is a common technique
to ensure that secret data has been constructed according
to an agreed method. The high-level idea is that after the
secret data has been created, a random part of the data is
opened and checked. If the checked part has been constructed
honestly, the rest of the data, which remains secret, is assumed
to be constructed honestly as well, and used in the protocol.
Note that this implies that the amount of secret data initially
generated needs to be larger than the required secret data
needed for the protocol.

2.1 The Two-Party Protocol of Rindal and Ro-
sulek [36]

The starting point of our protocol is the maliciously secure
two-party PSI protocol of Rindal and Rosulek [36]. We de-
scribe the main ideas of their protocol here, as they are impor-
tant for understanding our protocol.

The high-level idea of [36] for finding the intersection be-
tween the data sets of two parties is to let the parties construct
GBFs that agree on the codewords of their joint items. This
can be achieved using a K-out-of-N random OT protocol,
by allowing P0 to learn K of the N random strings that P1
learns. P0 then chooses a permutation over [N] that relocates
these K strings in indices that are equal 1 in P0’s BF. To turn
these N (permuted) strings into a GBF, all P1 needs to do is
compute the resulting codewords attributed with its elements
(i.e., to obtain the codeword for an element x, it computes
h1(x)⊕ . . .⊕hk(x)). Finally, P1 sends these codewords to P0.

Approximate K-out-of-N Random OT ΠAppROT . Unfor-
tunately, to the best of our knowledge, no concretely-efficient
maliciously-secure K-out-of-N OT protocol exists. Instead,
[36] implement an approximate K-out-of-N Random OT, al-
lowing the receiver to request slightly more than K strings.
Rindal and Rosulek [36] show that their PSI protocol remains
secure with a proper choice of parameters, which guaran-
tee that the false-positive probability (pFalse) of the resulting
Bloom filter is still negligible. This, in turn, means that it is

6

Functionality F σ,N
ROT

Parties: the sender, the receiver.
Parameters: N is the number of resulting parallel random OT’s for σ-bit length of the OT strings.
Inputs: {c1, ...,cN}, where ci ∈ {0,1} (i ∈ [N]) from the receiver.
Computation: The functionality samples uniformly at random vectors M0 = {m10, ...,mN0}, M1 = {m11, ...,mN1}, where
mi j←{0,1}σ (i ∈ [N], j ∈ {0,1}).
Outputs: Give output Mc = {m1c1 , ...,mNcN} to the receiver and give (M0,M1) to the sender.

Figure 2: F σ,N
ROT – Ideal N parallel random 1-out-of-2 OT’s for σ-bit strings functionality

impossible for the adversary to test the intersection for items
that were not part of its input set.

The approximate K-out-of-N subprotocol of Rindal and
Rosulek, which we denote by ΠAppROT (formally described in
Figure 4), implements the functionality FAppROT , appearing
in Figure 3. We next give a rough overview of the ΠAppROT
protocol. In the first phase, the two parties invoke NOT paral-
lel executions of a maliciously secure two-party 1-out-of-2
random OT, where in a known fraction of these execution
the receiver P0 requests to learn the string m1, and in all
others to learn m0. In the second phase, the parties use the
cut-and-choose technique to verify that P0 behaved honestly.
Specifically, the sender P1 asks P0 to reveal a random subset
of its choices and verifies that the right fraction of 0-string
choices appear. If not, P1 aborts the execution.

Finally, the unrevealed choice strings are reordered by P0
so that they are attributed to its desired locations. Because
the cut-and choose set is chosen by the sender, the receiver
initially forms the requests sequence at random. Therefore,
the reordering at the final stage is necessary. The full Rindal
and Rosulek’s PSI protocol is given in Appendix A.

Remark. We mention that in the PSI protocol of [36] the
possible input set size of the adversary n′ may be larger than n,
and the PSImple protocol inherits this property. This happens
because in the cut-and-choose check only the number of 1’s
in the Bloom filter is bounded, but not n itself. It is shown
in [36] that n′ < 2NBF/σ (the authors stress that this is a very
rough bound given for the worst case); we refer the reader
to [36] for the detailed analysis.

We note that with the choice of parameters in [36], NBF <
3nσ, so n′ < 6n. With our choice of parameters , since NBF
is comparatively lower (see Tables 1 & 4), NBF < 1.73nσ so
n′ < 3.46n. Thus, it seems that our improved parameters also
give a slightly better security guarantee.

2.2 The Semi-Honest Multiparty PSI Protocol
of Inbar et al. [18]

We briefly review the augmented semi-honest secure multi-
party PSI protocol of Inbar et al. [18].3 Using a semi-honest

3 An augmented semi-honest adversary is an adversary that may choose
to change its input, but then follows the prescribed protocol honestly. We

K-out-of-N OT, the evaluating party P0 might receive the ap-
propriate K coordinates from the GBFs of all other parties
(such that the codeword of any encoded item is 0). The dif-
ficulty is that if each party now sends its GBF to P0, then
P0 would not only recover the intersection of all the parties’
inputs, but also the intersection of its input set with the input
set of each other party separately.

To make sure P0 learns the intersection and nothing else,
each non-evaluating party begins by additively sharing its
GBF among all other parties. The cumulative GBF, i.e., the
sum of all the shares Pi got, is then used as the inputs the
sender Pi in a K-out-of-N OT interaction with P0 as the re-
ceiver. Note that the XOR of all these cumulative GBFs is
a GBF of the intersection of all parties but P0 (this follows
by the linear secret sharing and the fact that all codewords
equal 0). However, as P0 only selected the K coordinates in
accordance with its input set, by summing (XORing) all the
GBFs it received, P0 computes the GBF of the intersection
of the sets of all parties, including P0 itself. Note that this
protocol is not secure in the malicious setting as there is no
mechanism to prevent the parties from using all-ones Bloom
filters, which represents the entire domain of the items.

3 The PSImple Protocol

In this Section we explain in detail our multiparty maliciously-
secure PSI protocol, PSImple, and the underlying techniques
we use. As mentioned above, we build on the techniques
of [36] and [18] (both works, in turn, extend [11]).

As a warm up, we first describe in Section 3.1 the protocol
for the two-party case. We do not suggest to use PSImple
in the two-party scenario, because it is less efficient than
the protocol of [36].4 For more than two parties, however,
PSImple is the only concretely efficient PSI protocol secure
against malicious adversaries. The full fledged multiparty
PSImple protocol is described in Section 3.2. The formal
description of the PSImple protocol appears in Figure 5.

note that the semi-honest secure protocol of [18] is less efficient as every pair
of parties need to perform a K-out-of-N OT protocol.

4This is because our protocol uses two instances of ΠAppROT , which is the
heaviest part of the protocol in terms of communication complexity, whereas
the protocol of Rindal and Rosulek uses only a single instance of ΠAppROT .

7

FAppROT

Parties: a sender, a receiver.
Parameters:
σ – computational security parameter; λ – statistical security parameter;
k – number of hash-functions in Bloom filter;
N – number of items to create.
Inputs:
From the receiver: I = {i j} j∈[K]; from the sender: no input.
Outputs:
Upon receiving I from the sender, samples the uniformly random M = {m1,m2, ...,mN}, where mis are σ-bit strings, and
computes M∗ = {mi1 ,mi2 , ...,miK}. Gives M to the sender, gives M∗ to the receiver.

If the adversary corrupts the receiver
The functionality works in two steps:

1. The corrupt receiver chooses K′′ and sends it to the ideal functionality.
Upon receiving K′′ from the receiver, computes pFalse – the false-positive probability in the Bloom filter of length N, with
k hash-functions and K′′ cells consisting 1’s. If pFalse ≥ 2−σ, then gives ⊥ to the sender and to the receiver. Otherwise
samples and gives to the receiver the uniformly random M′ = {m′1,m′2, ...,m′K′′}, where m′is are σ-bit strings.

2. After the response from the functionality, the receiver chooses and sends either ⊥ or a partial injective mapping I′ =(
i1 i2 ... iK′
j1 j2 ... jK′

)
, where is ∈ [K′′], js ∈ [N], s ∈ [K′], K′′ ≥ K′ ≥ K.

Upon receiving ⊥ from the receiver, gives ⊥ to the sender.
Upon receiving I′ from the receiver, computes

m j =

{
m′is , if j = js, s ∈ [K′];
fresh random, else.

The functionality gives M = {mi}i∈[N] to the sender.

If the adversary corrupts the sender.

The functionality works in two steps:

1. Upon receiving I from the receiver, samples and gives to the sender the uniformly random M′′ = {m′′1 ,m′′2 , ...,m′′NOT
}, where

m′′i s are σ-bit strings.

2. Receives from the corrupt sender either ⊥ or C ⊆ [NOT]: |C| = Ncc. Upon receiving ⊥ from the sender, gives ⊥ to the
receiver.
Upon receiving C from the sender, samples the uniformly random N-permutation ψ : [NOT] \C→ [N], computes M =
ψ(M′′) = {m1,m2, ...,mN} and M∗ = {mi1 ,mi2 , ...,miK}. Gives M to the sender and M∗ to the receiver.

Figure 3: FAppROT – Ideal approximate K-out-of-N Random OT functionality

8

Protocol ΠAppROT

Parties: A sender and a receiver.
Inputs (used only in the online phase): The receiver inputs its choice bit-array B; the sender has no input.
Offline phase Π

O f f line
AppROT :

1. [random OTs] The sender and the receiver call F σ,NOT
ROT (performing NOT random OTs). The receiver chooses bits c1, ...,cNOT

with N1
OTs ‘1’s among them, and NOT−N1

OT ‘0’s (randomly permuted). As a result, in the jth ROT, the sender learns
random strings m j0, m j1 (of length σ), while the receiver uses its choice bit c j and learns m j∗ = m jc j .

2. [cut-and-choose challenge] The sender randomly chooses the set C ⊆ [NOT] of size Ncc and sends C to the receiver.

3. [cut-and-choose response] The receiver checks that |C|= Ncc, then computes and sends to the sender the set R = { j ∈
C|c j = 0}. To prove that it used the choice bit ‘0’ in the OTs indexed by R, it also sends r∗ =

⊕
j∈R m j∗. The sender aborts

if r∗ 6=
⊕

j∈R m j0 or if |C|− |R|> Nmaxones, where Nmaxones is the maximal number of ‘1’s allowed in the cut-and-choose
OTs.

Online phase ΠOnline
AppROT :

4. [permute unopened OTs] The receiver chooses a random injective function π : [|B|]→ ([NOT]\C) such that B[j] = cπ(j),
and sends π to the sender.
The receiver permutes its random values m j∗ according the π, and the sender permutes m j1 according to π.

Outputs: The receiver outputs M∗ = {m j∗} j∈[|B|]; the sender outputs M = {m j1} j∈[|B|].

Figure 4: Protocol ΠAppROT

Before moving on to describe the protocol, let us first con-
sider what may seem as the direct way to extend the protocol
of [36] to the multiparty case, using the ideas of [18], and
why it does not work for us. The idea is to have P0 to perform
ΠAppROT with each other party Pi independently and then
have P0 XOR all the GBFs received from the ΠAppROT ’s to
compute its cumulative GBF, denote it by G∗.

Recall that the codeword for an element x with respect to
a GBF G with hash functions h1, . . . ,hk is the XOR over the
strings in coordinates h1(x), . . . ,hk(x). Now, if each party Pi
sends to P0 the codewords attributed to its set Xi and its GBF,
then P0 can compute the intersection of all parties, however, it
can also compute the intersection with party separately, which
is not allowed. To avoid this leakage, each Pi can additively
share the its GBF among all parties P j (j ∈ [t]), and then
compute the cumulative GBF G∗i as the XOR of all the shares
it holds. After that, each party Pi sends to P0 the codewords
attributed to its set Xi and its cumulative GBF G∗i . Finally, P0
concludes that an item x in its input set with codeword yx is
in the intersection, if there exist codewords y1, . . . ,yt received
from P1, . . . ,Pt , respectively, such that yx = y1⊕ . . .⊕ yt .

The above is indeed correct and secure. However, an ex-
haustive search for a combination of codewords that sum to
yx grows exponentially with number of parties, and we do not
know of any solution that is not exponential in the number of
parties.

3.1 PSImple, Two-Party Case

One of the key points of the PSI protocol of [36] protocol is
in some sense to “bind" each of the two parties to a Bloom

filter of a restricted size set. By this we mean that there is
a stage in the protocol in which each party must choose a
limited number of coordinates (of the resulting GBF) that may
become correlated with the BF of the other party, whereas
all other coordinates remain independent of the other party’s
BF. It is important to note that these choices are made before
the party learns any meaningful information in the protocol.
In the protocol of [36], such a binding is achieved for P0 by
participating in ΠAppROT as the receiver. The binding for P1
is achieved when it sends the codewords that correspond to
its elements to P0.

As explained above, when moving to the multiparty setting,
the amount of work done by P0 to find a sum of these code-
words that match its own grows exponentially in the number
of parties. Thus, one of the key points of PSimple is to achieve
this binding without sending the codewords. To this end, the
parties execute a second instance of ΠAppROT , with the par-
ties playing reversed roles. In this way, the binding of P1 is
achieved similarly to the binding of P0.

As a result, each partyPi receives two garbled Bloom filters,
one from each execution of ΠAppROT . Put differently, Pi holds
its own full GBF, and the k coordinates it chose from the GBF
of P1−i (padded with random strings to complete a GBF). By
XORing these GBFs locally,Pi obtains the cumulative garbled
Bloom filter GBFi. It follows that GBFIS = GBF0⊕GBF1

(i.e., the XOR of the two cumulative GBFs) is a GBF that has
the zero string on all coordinates that where chosen by both
P0 as a receiver and P1 as a receiver, and has a random string
in all other coordinates.

On the positive side, we have that for any element x in the
intersection, it holds that the codeword of x with respect to

9

GBFIS is 0. Thus, the intersection could now be reconstructed
as follows: P1 sends GBF1 to P0, who concludes that x ∈ X0
is in the intersection if x has the 0-codeword in GBFIS. On the
negative side, however, this method is insecure, as it allows
P0 to identify coordinates that were queried by P1, even if
they are not coordinates of an element in the intersection. This
occurs if both parties choose the same coordinate s, as in this
case GBFIS[s] = 0.

To avoid this, P1 rerandomizes its cumulative GBF. Denote
the result by GBF1∗. Recall that the codewords of GBF1∗ are
equal to those of GBF1 for items in the set X1, but there is no
longer a connection between the individual indices GBF0[s]
and GBF1∗[s], for any s.

Next, P1 sends GBF1∗ to P0. Since rerandomization does
not affect the codewords, it follows that if x is in X0∩X1, then
it has the same codeword in both GBF0 and GBF1∗. In other
words, GBF∗ = GBF0⊕GBF1∗ is a garbled Bloom filter of
the set X1∩X2, in which the codewords of the items are equal
to zero. Therefore, P0 can check, for each item x0 j in its input,
if x0 j is in the intersection, by testing

⊕
s∈h∗(x0 j)

GBF∗[s] = 0.

3.2 PSImple, Multiparty Case
In this section we explain how to extend PSImple to the
multiparty setting. Similarly to the two-party case, the par-
ties achieve a “binding" of each party to its Bloom filter by
executing ΠAppROT . Initially, it would seem that each party
needs to perform two instances of ΠAppROT , in reverse roles,
with each other party. However, we show in the proof, that to
achieve this binding, it suffices that each party only performs
two instances of ΠAppROT with P0.

After the executions of ΠAppROT , the protocol proceeds
as in the 2-party case, with each party XORing the garbled
Bloom filters it received from its executions of ΠAppROT , and
rerandomizing them. Recall that the rerandomization opera-
tion is done to hide coinciding requested coordinates in the
executions of ΠAppROT , while preserving the property that
codewords for joint elements are equal.

Let GBF0 be the cumulative GBF of P0, i.e., the sum of
all the 2t GBFs it saw in its 2t interactions in ΠAppROT . Let
GBFi∗ be the rerandomized version of the cumulative GBF
obtained by Pi in the two interactions of ΠAppROT it had with
P0. The idea is to let P0 learn GBF∗ = GBF0⊕i∈[t] GBFi∗,
which corresponds to a garbled Bloom filter of the intersection
of all parties, with all-zero codewords. Then, P0 would be
able to compute the intersection similarly to the two-party
case: For each element x0 j of its input set, it outputs x0 j as
the member of the intersection, if

⊕
s∈h∗(x0 j)

GBF∗[s] = 0.
However, we cannot simply let each party Pi send GBFi∗

to P0 as in the 2-party case, since this would be identical to t
independent 2-party PSImple executions. Hence, P0 would
be able to recover its intersection with each party Pi indepen-
dently, which is not secure.

To avoid this, the parties first additively share their GBFs

and let P0 reconstruct the sum. From the linear property of
additive secret-sharing, it follows that P0 recovers the sum
of these GBFs, i.e., GBF∗, and from the secrecy property it
follows that P0 learns nothing but GBF∗.

The PSImple multi-party protocol is described formally in
Figure 5. Following the offline/online paradigm, we divide
our MPSI protocol ΠMPSI into two phases: an offline-phase
Π

O f f line
MPSI , which can be executed by the parties before they

know their inputs, and an online-phase ΠOnline
MPSI , which is exe-

cuted after the parties learn their inputs.

Asymmetric Set Sizes. In the PSImple description above,
we considered n as the exact set size for all the honest parties.
However, n should be treated as an upper bound on set sizes,
allowing honest parties to have only ni ≤ n items. To this end,
each party Pi computes its Bloom filter BFi from its input
set Xi and n−ni additional random dummy items, to perform
ΠAppROT ’s. This way, the behaviour of Pi with ni items is
indistinguishable (from the point of view of the adversary)
from its behavior with n items. In the rerandomization step,
Pi uses its ni-elements to compute GBF i (dummy items are
not treated as items in the rerandomization procedure). As
shown in the proof of Theorem 1 (App. F), the withdrawal of
items while computing GBF i∗ doesn’t affect the view of the
adversary.

3.3 Security and Correctness
We prove the security of a protocol via the real vs. ideal
paradigm (specifically, in the UC model). In Appendix F,
we provide a complete proof for the the following theorem,
stating the security of the PSImple protocol.

Theorem 1. The ΠMPSI protocol of Figure 5 securely realizes
the functionality FMPSI with computational UC-security with
abort in the presence of a static, non-uniform computationally
bounded, malicious adversary A corrupting any number of
parties in the F σ,N

ROT,FRO -hybrid model, where the Bloom filter
hash functions are modeled as (non-programmable) random
oracles, and the other protocol parameters are chosen as
described in Section 4.

We next sketch the ideas behind the proof, referring to it
correctness and privacy separately.

Correctness. Our goal here is to prove that in an honest
execution of the protocol the output of P0 is indeed the in-
tersection. Let x be an item in the intersection of all sets.
It follows by construction, as previously explained, that P0
outputs x as part of the intersection. Specifically, for every
i ∈ [t] in the interactions between P0 and Pi, both parties are
going to request the coordinates attributed with x from the
other party. Thus, both codewords for x (for both P0 and Pi)
are going to be summed into the cumulative GBF of each of

10

Protocol of Malicious-secure Multiparty PSI ΠMPSI

Parameters:
σ - computational security parameter; λ - statistical security parameter; NBF - size of the Bloom filter;
NOT > NBF - number of random OTs to perform; N1

OT, Ncc, Nmaxones – parameters for ΠAppROT computed as in Sec. 4.
Inputs: Each party Pi, i ∈ {0, ..., t}, inputs its set of items Xi = {xi1,xi2, ...,xini}, ni ≤ n, xi j ∈D .

Offline-phase Π
O f f line
MPSI :

1. [hash seeds agreement]
Parties run a coin-tossing protocol to agree on random hash-functions h1, h2, ... ,hk: {0,1}→ [NBF].

2. [symmetric approximate ROT-offline] Parties perform in parallel (with parameters NOT, N1
OT, Ncc, and Nmaxones):

(a) P0 as a receiver performs Π
O f f line
AppROT with each Pi, i ∈ [t].

(b) Each Pi, i ∈ [t], as a receiver performs Π
O f f line
AppROT with P0.

3. [random shares] Each Pi, i ∈ [t], sends Sil = (sil
1 , ...,s

il
NBF

) to any Pl , l ∈ [t]\{i}, where sil
r

R←− {0,1}σ , r ∈ [NBF].

Online-phase ΠOnline
MPSI :

4. [compute Bloom filters] Each party Pi, i ∈ [t]∪{0}, locally computes the Bloom filter BFi of its input set Xi. If ni < n,
then Pi computes the Bloom filter of the joint set Xi with (n−ni) random dummy items.

5. [symmetric approximate ROT-online]

(a) Using BF0 as its input, P0 performs ΠOnline
AppROT with every other party to finish ΠAppROT s started on Step 2a. As a

result, it receives t arrays Mi
∗, Pi learns Mi, where Mi

∗ and Mi are NBF-size arrays of σ-bit values.

(b) Using BFi as its input, every party Pi performs ΠOnline
AppROT with P0 to finish ΠAppROT s started on Step 2b. As a result,

Pi learns M̂i
∗, and P0 receives M̂i’s, where M̂i and M̂i

∗ are NBF-size arrays of σ-bit values.

(c) P0 computes GBF0 =
⊕

i∈[t]
(
Mi
∗⊕ M̂i). Each Pi, i ∈ [t], computes GBFi = Mi⊕ M̂i

∗.

6. [re-randomize GBFs] Each Pi locally re-randomizes its garbled Bloom filter GBFi for items and corresponding codewords
only from Xi (without dummy items) (Algorithm ReRandGBF B.1) .

7. [secret-sharing of GBFs] Each Pi, i ∈ [t], locally computes

GBFi∗ = GBFi
⊕

l∈[t]\{i}

[
Sli⊕Sil

]
and sends GBFi∗ to P0.

8. [reconstructing the GBF of the intersection] P0 computes GBF∗ =
⊕

i∈[t] GBFi∗⊕GBF0. Recall that this corresponds
to a GBF of the intersection with codewords 0 for all items in the intersection.

9. [output] For each x0 j ∈ X0, P0 outputs x0 j as a member of the intersection, if⊕
r∈h∗(x0 j)

GBF∗[r] = 0.

Figure 5: The PSImple Multiparty protocol

11

them. In addition, Pi will still keep these codewords in the
rerandomization process. Finally, as all GBFs are XORed by
P0, these all codeword will cancel out.

If x is not in the intersection, then there exists a party Pi for
i∈ [t]∪{0} whose set does not contain x. Thus, except for the
overwhelmingly small probability of a false positive in the
underlying BF (i.e., probability pFalse), in the OT interaction
as a receiver Pi is not going to request all coordinates for x.
Thus, the codeword for x from this interaction for Pi will be
a completely independent uniform σ-long string. Hence, the
probability that x is in the output is 2−σ, which is negligible.
A proof of the consistency appears in Appendix F.1.

Malicious Security of ΠMPSI . Proving the security of MPC
protocols is a delicate task, requiring a rigorous analysis. We
next present a very high level overview of the security proof
of our protocol. The main goal of the proof is to construct a
simulator for the adversary, i.e., an ideal world adversary that
interacts with the honest parties via the ideal PSI functionality
and simulates a view that is closely distributed to the view
real-world adversary in an execution of the protocol.

The first challenge of the simulator is to extract the effec-
tive inputs of the corrupted parties (i.e., the inputs that they
actually use). To this end, we use the fact the hash functions
are random oracles. Once this is done, the simulator can go
to the ideal functionality with the intersection of all sets of
malicious parties (this is possible, as the ideal adversary is
allowed to change the inputs of corrupted parties). In addition
all OT interactions with the malicious parties, the simulator
acts as honest parties would, holding arbitrarily chosen inputs.
Finally, as the simulator receives the output intersection from
the functionality (in the case P0 is corrupt), all the simulator
needs to do is to send GBF shares that are consistent with
this output and with all the random shares that the corrupted
parties have seen so far. By the properties of secret sharing
schemes, this is indeed possible.

3.4 Asymptotic Complexity

In Table 2, we compare the communication complexity of
PSImple with that of the multiparty PSI protocols of [12, 16,
18, 23]. The distribution of the communication complexity in
the offline and online phases is given in Table 3.

We observe that the overall communication complexity is
asymptotically approximately the same as the protocol of [18],
which is only semi-honestly secure. The communication com-
plexity is slightly worse than the protocols of [16] and [12].
However, we recall that these protocols are not concretely
efficient. Additionally, PSImple scales somewhat better with
respect to the number of parties.

We note that the workload in PSImple is not balanced:
the majority of communication is with the evaluating party
P0, while for each other party it is t times less.5 A detailed

Protocol Communication complexity
overall P0

semi-honest security
IOP18 [18] O(tnσk) O(tnσk)
malicious security
KS05 [23] O(t3nσ) O(t2nσ)

HV17 [16] O(t3σ+ tnσ log(n)) O(t2σ+ tnσ log(n))
GN19 [12] O(t3σ+ tnσ) O(t2σ+ tnσ)

PSImple O(tnσ2 + tnσ log(nσ)) 5 O(tnσ2 + tnσ log(nσ))

Table 2: Comparison of communication complexity.

Party offline online
P0 O(tnσ2) O(tnσ(log(nσ)+σ))

Pi O(nσ2)5 O(nσ(log(nσ)+σ))

Table 3: Theoretical communication complexity of PSImple
in offline and online phases.

analysis of the asymptotic communication and computation
complexity of PSImple is given in Appendix E.

4 Protocol Parameters

In this section, we revisit the parameter analysis of [36] for the
parameters of ΠAppROT . We show that the size of the garbled
Bloom filters and the number of required OTs can, in some
cases, be reduced by 23-25% (see Table 1). These improved
parameters can used in our protocol, as well as in previous PSI
protocols based on GBFs and cut-and-choose such as [36,39].

The first difference from the analysis of [36] is the fol-
lowing: The number of OTs depends on the number of 1’s
that would be necessary to build the Bloom filter of the re-
ceiver. For n items in the input set of the receiver, with k
hash-functions, the upper bound of required 1’s is nk (k in-
dices per each of n items), which is sufficient even if each item
has a separate set of hash-indices. However, the probability
of collisions is quite high, and the number of 1’s in a Bloom
filter has a Poisson distribution with very low deviation. Thus,
instead of requiring a sufficient number of 1’s after the cut-
and-choose to build any Bloom filter, as done in [36], we
require this number to be sufficient to build almost all Bloom
filters (this implies that the GBF can later be constructed in
the protocol with overwhelming probability.) This change
significantly reduces the total number of required 1’s from
the OT, and consequently, the total number of required OTs.

The second difference from the analysis of [36] is technical:
in [36], the sender chooses bits to check with the probabil-
ity pchk, whereas in our version of ΠAppROT , the size of the
checked set is deterministic. Fixing the size of the checked

5With a standard optimization of generating the secret shares from pre-
shared random seeds (see Section 5). Without it, the communication complex-
ity forPi is O(tnσ2+nσ log(nσ)), and the overall communication complexity
is O(t2nσ2 + tnσ log(nσ)).

12

set simplifies the protocol instructions and the simulation in
the security proof.

Below we give a brief explanation about the restrictions
which allow us to build the optimization problem, and the
algorithm for the calculating the parameters. Additionally,
we give the optimal parameters for several input sizes, and
compare them with the parameters used in [36].
GBF parameters:
NOT – number of ROTs in ΠAppROT ;
NBF – size of the Bloom filter of the receiver;
N1

OT – number of ones that an honest receiver should have
among NOT choice bits;
k – number of Bloom filter hash functions;
Ncc – number of bits to choose for the cut-and-choose check;
Nmaxones – the maximal number of 1’s among the Ncc choice
bits allowed in order to pass the cut-and-choose check.

As before, σ is the computational security parameter and
λ is the statistical security parameter. Informally, we can
formulate the parameter requirements as follows:

• After the cut-and-choose, the receiver has enough ones
and zeroes to build the Bloom filter.

• A malicious receiver has too few ones to find a false
positive.

• An honest receiver passes the cut-and-choose check with
overwhelming probability.

Recall that pFalse is the probability of a false-positive in the
Bloom filter of the receiver. The second condition requires
that pFalse is negligible, even if the receiver is malicious. I.e.
that Pr[pFalse ≥ 2−σ]≤ 2−λ.

Fixing n, σ and λ, we have to set k, NBF, Ncc, NOT, Nmaxones
and N1

OT. As we have three conditions and six variables, three
of parameters are free. It is reasonable to take k and NBF free
and find the values of the other parameters that minimize NOT,
because the number of random OT is the heaviest part of the
protocol.6

We prove that for any positive n, σ and λ there exist k, NBF,
Ncc, NOT, Nmaxones and N1

OT that meet the above requirements,
and construct an algorithm to find the optimal parameter val-
ues. Based on the view of constrains, the feasible region of
the parameters is bounded from below by k and NBF, and the
minimum of NOT is located near their minimum values. For
reasons of the guaranteed existence of a solution for k > σ and
that NBF = O(nk), we heuristically adopted the search bound-
aries kmin = σ, kmax = 2σ, NBF,min = nk and NBF,max = 3nk.
The algorithm then works by going over all the possible val-
ues of NBF and k in this region and taking the parameters
which result in the minimal NOT. A formal description of the

6We note that for the online-phase, NBF is more critical. However, trying
to optimize NBF results in a very poor NOT. More details can be found in
Appendix C.

Algorithm for computing parameters for
ΠAppROT

1. Set k = kmin.
2. Set NBF = NBF,min.
3. If NBF > NBF,max then set k = k+1 and go to Step 2.
4. Calculate

N1 =

⌈
NBF

(
1− e−

nk
NBF

)
+

√
nkλ ln2

2

⌉
,

N =
⌈

NBF +
√

2nkλ ln2
⌉
, α = N1/N.

5. Calculate a = α

min(α,1−α)

√
λln2

2 , c =
√

2λ ln2N,

b = NBF
2σ/k

[
1+ k(k−1)

2NBF

(1
α
−1
)]− 1

k −αN− λ ln2
min(α,1−α)

,

D = b2−4ac.
6. If D≤ 0 or b≤

√
D then NBF =NBF+1, and go to Step 3.

7. Take the minimal integer Ncc: (b−
√

D)2

4a2 ≤Ncc ≤ (b+
√

D)2

4a2

such that Nmaxones−Nmaxhonest > 0, where

Nmaxones =

b+ λ ln2
min(α,1−α)

+αN

N +N∆

Ncc−
√

λ ln2Ncc

2

 ,

Nmaxhonest =

⌈
αNcc +

√
λ ln2Ncc

2

⌉
, N∆ =

⌈ a
α

√
Ncc

⌉
.

If there is no appropriate Ncc then set NBF = NBF +1, and
go to Step 3.
8. Calculate NOT = N+N∆+Ncc, N1

OT = dαNOTe, and save
the tuple (k, NBF, Ncc, NOT, N1

OT, Nmaxones), if NOT value
is less than before.
9. If k < kmax then set k = k+1, and go to Step 2.
10. Output the tuple with minimal NOT.

Figure 6: Numerical algorithm for computing parameters for
ΠAppROT

algorithm is presented in Figure 6. The full parameter analysis
appears in Appendix C.

Running the constructed algorithm with λ = 40, σ = 128,
we obtained the parameters presented in Table 4. A compari-
son with the parameters used in [36] is given in Table 1.

5 Implementation, Code Optimizations, and
Experimental Results

We wrote our code in C++, using the LibOTe library [35]
for the cryptographic primitives and the maliciously secure
OT extension of Keller et al. [20]. The hash functions are
computed using fixed-key AES and taking modulus.7 We

7This restricts the input items’ domain to 120 bits, as it requires 8 bits for
the hash function selection. Note also that this makes some assumptions on
the randomness of AES, and that taking modulus NBF already implies that
this is not fully random. However, since NBF is significantly smaller than the

13

Parameters n = 28 n = 210 n = 212 n = 214 n = 216 n = 218 n = 220

k 147 139 134 132 131 130 129
NBF 64,733 229,055 851,085 3,253,782 12,660,342 49,786,942 197,052,485
NOT 74,379 250,684 901,106 3,373,092 12,948,963 50,491,817 198,793,103
N1

OT 32,885 116,132 428,425 1,637,989 6,376,614 25,026,621 98,728,744
Ncc 7,473 17,748 42,882 105,863 262,924 655,322 1,644,397

Nmaxones 3,627 8,719 21,160 52,620 131,385 327,830 821,450

Table 4: Optimal (in NOT) ΠAppROT parameters for set size n, statistical security λ = 40, and computational security σ = 128.

separate the protocol into two phases: an offline phase, which
can be run before the parties know their inputs, and an online
phase, which is run after the parties know their inputs. In
many scenarios, the parties can communicate much before
they require to find the intersection. In such cases, it is often
preferable that the online time is as short as possible, while
the offline phase can be significantly longer. We note that
currently the proof of security is not given in offline-online
setting, but rather treats the protocol as a whole. We defer the
adaption to the offline-online model to the full version of the
paper.

We have made the following code optimizations: As sug-
gested by Araki et al. [1], we have performed the additive
secret-sharing in the offline phase, and using seeds.8 This
way, generating shares can be done locally. Additionally, we
have moved memory allocation to the offline phase and re-
duced the required amount of memory by XORing results
directly into the cumulative GBF on the fly. As we executed
the experiments on machines with only 2 cores (see below),
we chose to use a single thread for each instance of AppROT,
which implies that the total number of threads in P0 is 2t, and
for every party is 2. For stronger machines, it makes sense to
use more threads per party. Our code is available on Github:
https://github.com/ArielCyber/Malicious-MPSI.

To benchmark PSImple, we ran experiments on Amazon
Web Server using t3.xlarge machines (2 cores and 16 GB
RAM) with Unix OS, running on a LAN network with 1ms
latency and 5Gb bandwidth. We tested the protocol with 2-32
parties, and with input size of 28-218 per party. The results are
given in Table 5. We observed that for large inputs and large
amount of parties the code crashed due to insufficient mem-
ory.9 Thus, we reran the experiments on stronger machines,
and the results will be updated soon.

As can be observed from the results, the running time of
PSImple grows approximately linearly both in the number of
parties and in the number of inputs.10 This is illustrated in

output size other hash function, taking modulus does not create problems in
practice.

8We remark that this optimization requires the random oracle assumption,
which we already require for our proof.

9Notice that the memory required by all the parties is linear in NOT (which
is approx. linear in the number of inputs). Furthermore, in order to perform
the computations in parallel, the memory required by P0 is linear in the
number of parties. Therefore, for large inputs and large number of parties,
the memory of P0 was insufficient.

10The offline complexity of PSImple is linear in NOT and the online com-

parties n = 28 n = 210 n = 212 n = 214 n = 216 n = 218

2 0.315 0.466 0.956 3.052 10.717 42.701
4 0.558 0.736 1.310 3.891 14.242 56.875
8 1.188 1.529 2.414 6.334 23.240 *

12 1.826 2.335 3.571 9.280 32.820 *
16 2.474 3.124 5.549 12.983 41.965 *
32 5.066 6.420 9.804 24.815 * *

Table 5: The total runtime of PSImple in seconds for 2-32
parties and input size 28-218. * signifies that the protocol
crashed due to insufficient memory.

Figures 7 and 8, respectively.

Figure 7: Total time for different number of parties

We next consider at the cost of the various steps of PSIm-
ple. An interesting aspect of the runtime is that, for a small
number of parties (e.g., 2,4), the main bottleneck is the reran-
domization step. However, the runtime of the rerandomization
step remains constant with the number of parties. As a result,
for a small amount of parties, the runtime is dominated by
the rerandomization (in the online phase), while for a large
amount of parties the runtime is dominated by the OTs (in the
offline phase). The computation complexity of the rerandom-
ization algorithm ReRand is O(nk). Thus, it is possible that
for a small amount of parties, PSImple would run faster using
a different set of parameters, in which the number of hash
functions, k, is smaller at the cost of increasing the number
of OTs. An interesting question is if the ReRand algorithm
can be computed more efficiently using parallel computation,

plexity is (quasi-)linear in Nb f . Both NOT and Nb f are (asymptotically)
linear in the input size.

14

Figure 8: Total time for different size inputs. Note that there is
a missing point for 8 parties and input size 218, as the protocol
crashed due to insufficient memory

as this would drastically improve the runtime of this step. We
plan to look into this question further.

We next compare PSImple’s runtime with the reported
runtimes of IOP [18] (multiparty augmented semi-honest pro-
tocol), Zhang et al. [39] (multiparty, non-standard security
model), and [36] (two-party malicious protocol).11 We chose
to compare with these protocols as they are similarly based
on GBFs. Note that a more appropriate comparison would be
with a maliciously secure multiparty PSI protocol, but pre-
vious maliciously secure multiparty PSI protocols were not
concretely efficient and, therefore, were not implemented.

Comparison with IOP [18] and Zhang et al. [39]. In Ta-
bles 6 and 7 we compare PSImple’s runtime with the reported
runtimes of the multiparty PSI protocols of [18] and [39],
respectively. Recall that [18] only achieves augmented semi-
honest security and therefore should be significantly faster
than PSImple as it requires only semi-honest OT, no cut-and-
choose, and there is no need to perform OT in both directions.
The protocol of [39] is in a very non-standard security model,
since it makes the assumption that two dedicated parties, P0
and P1, are not simultaneously corrupted. This relaxation of
the security model allows them to have a significantly simpler
protocol, which is insecure in the standard malicious model.

Surprisingly, despite the fact that PSImple achieves much
stronger security guarantees, the runtime of PSImple in our
experiments is not significantly slower, and in some cases
even faster, than the reported runtimes of [18] and [39]. We
attribute this to the fact that [18] wrote their code in Java,
and that both [18] and [39] ran their experiments on slightly
weaker testing platforms. Nevertheless, this shows that mov-
ing to maliciously security using PSImple does not incur a

11Importantly, the runtime heavily depends on the machines and network
used for the experiments. Therefore, in order to make a more fair comparison
with these protocols, we plan to run them on the same machines as our
protocol soon.

very high penalty.

sec. model n = 28 n = 216 n = 218

4 [18] semi-honest 2.08 25.03 91.48
parties PSImple malicious 0.558 14.242 56.875

12 [18] semi-honest 2.29 38.53 195.51
parties PSImple malicious 1.826 32.82 *

Table 6: Comparison of PSImple with [18] in total runtime.

sec. model n = 28 n = 212 n = 216

4 [39] non-standard malicious 0.76 2.95 40.91
parties PSImple malicious 0.558 1.310 14.242

Table 7: Comparison of PSImple with [39] in total runtime.

Comparison with RR [36]. Recall that the maliciously se-
cure protocol of [36] is limited to two-parties, while PSImple
is intended as a multiparty protocol. As explained, directly
extending [36] to the multiparty scenario would make the
computation complexity grow exponentially with the number
of parties, while PSImple only grows approx. linearly with
the number of parties. Thus, even for modest parameters such
as 4 parties and input size n = 216, we expect the direct multi-
party extension of [36] to be barely practical, while this takes
less than 10 seconds using PSImple. For a larger number of
parties, we expect the direct multiparty extension of [36] to
be completely impractical, while PSImple’s runtime grows
linearly in the number of parties.

For the two-party scenario, PSImple requires two instances
of ΠAppROT , while [36] requires only a single instance. Addi-
tionally, PSImple’s online phase requires both more compu-
tation, due to the additional rerandomization step, and more
communication, since it requires two executions of ΠOnline

AppROT
and in the last communication round the entire GBF is sent,
while [36] requires a single execution of ΠOnline

AppROT and only
the codewords are sent in the last round. Furthermore, [36]
benchmarked their protocol using stronger machines.

For the above reasons, we expected PSImple to be outper-
formed by [36] in the 2-party scenario. Although our compar-
ison in Table 8 confirms our expectation, we observe that the
total runtime is not significantly slower than [36]. In contrast,
the online time of PSImple, dominated by the rerandomiza-
tion step, is significantly slower than the online time reported
by [36].

n = 28 n = 212 n = 216

total [36] (single thread) 0.2 0.9 9.7
time [36] (4 threads) 0.17 0.63 4.3

PSImple (2 threads) 0.315 0.956 10.717
online [36] 0.003 0.04 0.7
time PSImple 0.027 0.487 8.054

Table 8: Comparison of 2-party PSImple with [36].

15

References

[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel
Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority.
ACM CCS ’16, page 805–817, 2016.

[2] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Tur-
bospeedz: Double your online SPDZ! improving SPDZ
using function dependent preprocessing. In Robert H.
Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, Applied Cryptography and Network Se-
curity - 17th International Conference, ACNS 2019, Bo-
gota, Colombia, June 5-7, 2019, Proceedings, volume
11464 of Lecture Notes in Computer Science, pages 530–
549. Springer, 2019.

[3] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[4] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Ma-
heshwari, Pat Morin, Jason Morrison, Michiel Smid, and
Yihui Tang. On the false-positive rate of bloom filters.
Information Processing Letters, 108(4):210–213, 2008.

[5] Ran Canetti. Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13(1):143–202, 2000.

[6] Charalambos A Charalambides. Enumerative combina-
torics. CRC Press, 2002.

[7] Ken Christensen, Allen Roginsky, and Miguel Jimeno.
A new analysis of the false positive rate of a bloom
filter. Information Processing Letters, 110(21):944–949,
2010.

[8] Vasek Chvátal. The tail of the hypergeometric distribu-
tion. Discrete Mathematics, 25(3):285–287, 1979.

[9] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In Jason Crampton, Sushil Jajodia,
and Keith Mayes, editors, Computer Security - ESORICS
2013 - 18th European Symposium on Research in Com-
puter Security, Egham, UK, September 9-13, 2013. Pro-
ceedings, volume 8134 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2013.

[10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik.
Linear-complexity private set intersection protocols se-
cure in malicious model. In International Conference
on the Theory and Application of Cryptology and Infor-
mation Security, pages 213–231. Springer, 2010.

[11] Changyu Dong, Liqun Chen, and Zikai Wen. When
private set intersection meets big data: An efficient and
scalable protocol. In the ACM Conference on Computer
and Communications Security, CCS’13, pages 789–800.
ACM, 2013.

[12] Satrajit Ghosh and Tobias Nilges. An algebraic ap-
proach to maliciously secure private set intersection. In
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 154–185.
Springer, 2019.

[13] Oded Goldreich. The Foundations of Cryptography,
volume 2. Cambridge University Press, 2004.

[14] Fabio Grandi. On the analysis of bloom filters. Infor-
mation Processing Letters, 129:35–39, 2018.

[15] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez.
Low cost constant round MPC combining BMR and
oblivious transfer. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer
Science, pages 598–628. Springer, 2017.

[16] Carmit Hazay and Muthuramakrishnan Venkitasubrama-
niam. Scalable multi-party private set-intersection. In
IACR International Workshop on Public Key Cryptogra-
phy, pages 175–203. Springer, 2017.

[17] Yan Huang, David Evans, and Jonathan Katz. Private set
intersection: Are garbled circuits better than custom pro-
tocols? In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California,
USA, February 5-8, 2012. The Internet Society, 2012.

[18] Roi Inbar, Eran Omri, and Benny Pinkas. Efficient
scalable multiparty private set-intersection via garbled
bloom filters. In International Conference on Secu-
rity and Cryptography for Networks, pages 235–252.
Springer, 2018.

[19] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extend-
ing oblivious transfers efficiently. In D. Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 145 – 161.
Springer, 2003.

[20] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Ac-
tively secure ot extension with optimal overhead. In An-
nual Cryptology Conference, pages 724–741. Springer,
2015.

16

[21] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: Making SPDZ great again. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Pro-
ceedings, Part III, volume 10822 of Lecture Notes in
Computer Science, pages 158–189. Springer, 2018.

[22] Myungsun Kim, Hyung Tae Lee, and Jung Hee Cheon.
Mutual private set intersection with linear complexity.
In International Workshop on Information Security Ap-
plications, pages 219–231. Springer, 2011.

[23] Lea Kissner and Dawn Song. Privacy-preserving set
operations. In Annual International Cryptology Confer-
ence, pages 241–257. Springer, 2005.

[24] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious prf with ap-
plications to private set intersection. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829, 2016.

[25] Vladimir Kolesnikov, Naor Matania, Benny Pinkas,
Mike Rosulek, and Ni Trieu. Practical multi-party pri-
vate set intersection from symmetric-key techniques. In
the ACM Conference on Computer and Communications
Security, CCS’17, 2017.

[26] Michael Mitzenmacher and Eli Upfal. Probability and
computing: Randomization and probabilistic techniques
in algorithms and data analysis. Cambridge university
press, 2017.

[27] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Psi from paxos: Fast, malicious private set in-
tersection. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 739–767. Springer, 2020.

[28] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In Jaeyeon Jung and
Thorsten Holz, editors, 24th USENIX Security Sympo-
sium, USENIX Security 15, Washington, D.C., USA, Au-
gust 12-14, 2015, pages 515–530. USENIX Association,
2015.

[29] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based psi with linear communication. In Annual
International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 122–153.
Springer, 2019.

[30] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science,
pages 125–157. Springer, 2018.

[31] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
Proceedings of the 23rd USENIX Security Symposium,
pages 797–812. USENIX Association, 2014.

[32] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on ot extension.
ACM Transactions on Privacy and Security (TOPS),
21(2):1–35, 2018.

[33] M. O. Rabin. How to exchange secrets by oblivious
transfer. TR-81, Harvard, 1981.

[34] Amanda C Davi Resende and Diego F Aranha. Faster
unbalanced private set intersection. In International
Conference on Financial Cryptography and Data Secu-
rity, pages 203–221. Springer, 2018.

[35] Peter Rindal. libOTe: an efficient, portable, and easy
to use Oblivious Transfer Library. https://github.
com/osu-crypto/libOTe.

[36] Peter Rindal and Mike Rosulek. Improved private set
intersection against malicious adversaries. In Advances
in Cryptology – EUROCRYPT 2017, pages 235–259,
2017.

[37] Peter Rindal and Mike Rosulek. Malicious-secure pri-
vate set intersection via dual execution. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1229–1242, 2017.

[38] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-scale secure multiparty computation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 39–56. ACM, 2017.

[39] En Zhang, Feng-Hao Liu, Qiqi Lai, Ganggang Jin, and
Yu Li. Efficient multi-party private set intersection
against malicious adversaries. In Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, pages 93–104, 2019.

17

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

A Rindal and Rosulek Malicious-Secure Two-Party PSI Protocol

Protocol [36] (Malicious-secure Two-Party PSI):

Parameters:
X is Alice’s input, Y is Bob’s input. NBF is the required Bloom filter size; k is the number of Bloom filter hash functions; NOT
is the number of OTs to generate. H is modeled as a random oracle with output length σ. α is the fraction of ones, pchk is
the probability of choosing each particular bit in cut-and-choose, Nmaxones is the maximal number of ones recovered in the
cut-and-choose set to pass the check.

1. [setup] The parties perform a secure coin-tossing subprotocol to choose (seeds for) random Bloom filter hash functions
h1,...,hk: {0,1}∗→ [NBF].

2. [random OTs] Bob chooses a random string b = b1, ...,bNOT with an α fraction of 1s. Parties perform NOT OTs of random
messages (of length σ), with Alice as sender. In the ith OT, Alice learns random strings mi,0, mi,1 chosen by the functionality.
Bob uses choice bit bi and learns m∗i = mi,bi .

3. [cut-and-choose challenge] Alice chooses a set C ⊆ [NOT] by choosing each index with independent probability pchk. She
sends C to Bob. Bob aborts if |C|> NOT−NBF.

4. [cut-and-choose response] Bob computes the set R = {i ∈C|bi = 0} and sends R to Alice. To prove that he used choice
bit 0 in the OTs indexed by R, Bob computes r∗ =

⊕
i∈R m∗i and sends it to Alice. Alice aborts if |C|− |R|> Nmaxones or if

r∗ 6=
⊕

i∈R mi,0.

5. [permute unopened OTs] Bob generates a Bloom filter BF containing his items Y . He chooses a random injective function
π : [NBF]→ ([NOT]\C) such that BF[i] = bπ(i), and sends π to Alice.

6. [randomized GBF] For each item x in Alice’s input set, she computes a summary value

Kx = H

x||
⊕

i∈h∗(x)

mπ(i),1

 ,

where h∗(x) = {hi(x) : i ∈ [k]}. She sends a random permutation of K = {Kx|x ∈ X}.

7. [output] Bob outputs
{

y ∈ Y |H(y||
⊕

i∈h∗(y) m∗
π(i)) ∈ K

}
.

Figure 9: Malicious-secure two-party PSI protocol of Rindal and Rosulek

18

B Algorithms for the Garbled Bloom Filter

B.1 Re-randomization Algorithm for a Garbled Bloom Filter
Algorithm ReRandGBF (X ,Y,H∗,n,NBF,σ)

Input:
The set of items X = (x1, ...,xn);
the set of codewords Y = (y1, ...,yn): |yi|= σ, (i ∈ [n]);
family of hash-indices H∗ = (h∗(x1), ...,h∗(xk)): h∗(xi) =

{
s|h j(xi) = s, j ∈ [k]

}
, (i ∈ [n]).

Algorithm:
1: GBF = empty NBF-size array of σ-long strings
2: for i=1 to n do
3: finalInd=–1
4: finalShare=yi
5: for each j ∈ h∗(xi) do
6: if GBF[j] is empty then
7: if finalInd==–1 then
8: finalInd= j
9: else
10: GBF[j] R←− {0,1}σ

11: finalShare=finalShare⊕GBF[j]
12: else
13: finalShare=finalShare⊕GBF[j]
14: GBF[finalInd] =finalShare 12

15: for i = 0 to NBF−1 do
16: if GBF[i] is empty then
17: GBF[i] R←− {0,1}σ

18: return GBF
Output: GBF – garbled Bloom filter of set X with codewords from Y with hash-functions h1, ...,hk.

B.2 Algorithm for Computation of the Hash-Indices Set h∗(x)

Algorithm HashIndicesGBF(x,H,NBF)
Input:
Item x;
NBF – length of GBF;
family of hash-functions H = (h1, ...,hk): hi : {0,1}∗→{0,1}NBF , (i ∈ [k]).
Algorithm:
1: h∗(x) = empty 0-size array
2: for i=1 to k do
3: if hi(x) 6∈ h∗(x) then
4: add hi(x) to h∗(x)
Output: h∗(x) – set of indices of item x from the family of hash-functions H = {h1, ...,hk}.

B.3 Algorithm for Computation of the Codeword from the Garbled Bloom Filter
Algorithm CodewordGBF(GBF,x,h∗(x),NBF,σ)

Input:
x – item;
GBF – random garbled Bloom filter;
NBF – length of GBF;

12Note, that the probability of fail in this algorithm, that can appear in case finalInd==-1, is the probability of false- positive for one of n items. According (7),
pFalse < 2−σ, so the union bound over all x ∈ X is n2−σ, which is still negligible in σ.

19

σ – bitlength of string in GBF;
h∗(x) – set of hash-indices of x; ∀i ∈ h∗(x), i ∈ [NBF].

Algorithm:
1: y=0
2: for each i ∈ h∗(x) do
3: y=y⊕GBF[i]
Output: y – codeword for x in garbled Bloom filter GBF indexed by h∗(x).

20

C Parameters of ΠAppROT

In this section we explain in more detail our parameter choices for the number of required OTs and the Bloom filter size.
Experimental results, given in Table 1, show that our parameter choice results in a 23-25% reduction in the number of required
ROTs in comparison with [36], as well as smaller Bloom filter sizes.

The informal requirements from the parameter choice should ensure that:

• After the cut-and-choose, the receiver has enough ones and zeroes to build the Bloom filter.

• Both an honest and a malicious receiver have too few ones to find false positive.

• An honest receiver passes cut-and-choose with the overwhelming probability.

All the random OTs and cut-and-choose check are performed in Π
o f f line
AppROT , when the receiver may not know its Bloom filter.

The first requirement means that the number of ones and zeroes among input bits of the receiver after the cut-and-choose check
should be such that the receiver can construct from them the Bloom filter of its inputs. The probability of fail should be negligible
in λ.

Definition 1. A function µ : N→ N is negligible if for every positive polynomial p(·) and all sufficiently large x it holds that
µ(x) < 1/p(x). In our case, we require that the value of the functions is less than 2−λ for statistical security and 2−σ for
computational security.

The main difference of our analysis from the analysis of [36] is that instead of requiring a sufficient number of 1’s after the
cut-and-choose to build any Bloom filter, as done in [36], we require this number to be sufficient to build almost all Bloom filters.
This change significantly reduces the total number of required 1’s from the OT, and consequently, the total number of required
OTs. Note that this change implies that there might not be enough 1’s to construct the GBF in the protocol, but this happens only
with negligible probability.

The constraints on pFalse come from the second and the third requirements. Namely, the sender rejects the cut-and-choose
response, if Pr[pFalse ≥ 2−σ]> 2−λ. Therefore, the choice of parameters should ensure that the false positive probability of the
Bloom filters, denoted pFalse, is negligible. Until 2008, it was believed that pFalse = pk [26], where p is the proportion of ones,
and k is the number of the Bloom filter hash-functions. However, in 2008 Bose et al. [4] showed that this formula is only a lower
bound for pFalse. They further presented the precise formula for pFalse, as well as a non-trivial upper bound. However, they did
not provide any efficient algorithm for computing these formulas. In 2010, Christensen et al. [7] presented an algorithm for
computing pFalse. However, finding the maximal number of 1’s in the Bloom filter from pFalse remained hard. Therefore, we use
the second-order Taylor’s approximation of the false-positive probability presented by Grandi [14] in 2018, as it allows to more
easily compute the maximal number of 1’s from pFalse.

We next give the formal details:

GBF parameters:

NOT : number of ROTs in ΠAppROT ;

NBF : size of the Bloom filter of the receiver;

N1
OT : number of 1’s among NOT choice bits of the receiver;

k : number of Bloom filter hash functions;

Ncc : number of bits to choose for the cut-and-choose check;

Nmaxones : the maximal number of 1’s among the Ncc choice bits allowed in order to pass the cut-and-choose check.

Claim C.1. By choosing the parameters of ΠAppROT under the following constraints

N0 =

⌈
NBFe−

nk
NBF +

√
nkλ ln2

2

⌉
, N1 =

⌈
NBF

(
1− e−

nk
NBF

)
+

√
nkλ ln2

2

⌉
, N = N0 +N1,α = N1/N; (2)

Ncc > 0 : Nmaxones−Nmaxhonest > 0, where (3)

21

Nmaxones =

⌊
NBFNcc

N +N∆

2−
σ

k

[
1+

k(k−1)
2NBF

(
1
α
−1
)]− 1

k
−
√

λNcc ln2
2

⌋
, Nmaxhonest =

⌈
αNcc +

√
λNcc ln2

2

⌉
, and (4)

N∆ =

⌈
1

min(α,1−α)

√
λNcc ln2

2

⌉
, NOT = N +N∆ +Ncc, N1

OT = dαNOTe, (5)

the following requirements hold:

1. the honest receiver after cut-and-choose has enough ones to build Bloom filter (with parameters NBF, k, n) with the
probability at least 1−2−λ+1;

2. Pr[pFalse ≥ 2−σ]≤ 2−λ with either honest or malicious receiver in ΠAppROT ;

3. an honest receiver passes the cut-and-choose check successfully with probability at least 1−2−λ.

In the following proof, we use the following two tail inequalities.

• The Azuma-Hoeffding inequality [26, p 355] for the distribution of zeroes in the Bloom filter is connected with the problem
of the number of empty bins in the Balls and Bins model as follows: Suppose we are throwing m balls independently and
uniformly at random into n bins. Let F be the number of empty bins after m balls are thrown. Then Pr[|F−E(F)| ≥ ε]≤
2e−

2ε2
m . In our case, the number of bins is nk, and we are interested only in the right tail of distribution.

• The tail inequality, obtained by V. Chvatal in [8] for hypergeometric distribution. Namely, for HG(M,N,n) by 0 < t < pn,

we have Pr[X ≥ (p+ t)n]≤
((

p
p+t

)p+t (1−p
1−p−t

)1−p−t
)N

≤ e−2t2n.

Proof. Consider every constraint one by one.

1. The honest receiver after cut-and-choose has enough ones to build Bloom filter (with parameters NBF, k, n) with the
probability at least 1−2−λ+1.

Compute the number of ones and zeroes required to build the Bloom filter. Denote the number of zeroes in the Bloom

filter by N0, and of ones by N1. The probability of every given bit in Bloom filter to be 0 is q = (1−1/NBF)
nk ≈ e−

nk
NBF

and to 1 is p = 1−q [26, p 116]. Using the Azuma-Hoefding inequality [26, p 355], we get Pr [N0−E(N0)≥ ε]≤ e−
2ε2
nk .

We require that the number of zeroes is not enough to build the Bloom filter with the negligible in λ probability. Hence

e−
2ε2
nk ≤ 2−λ; solving this inequality, we get ε ≥

√
nkλ ln2

2 . Therefore we should have at least N0 =

⌈
NBFq+

√
nkλ ln2

2

⌉
zeroes after cut-and-choose.

By implementation of the Azuma-Hoeffding inequality to the number of ones in the Bloom filter, we get

N1 =

⌈
NBF p+

√
nkλ ln2

2

⌉
ones needed after cut-and-choose, which gives (2). Denote N = N0 +N1. Then α = N1/N is the

proportion of ones in the choice sequence of the receiver.

We need to be sure that after the cut-and-choose, the receiver has at least N1 ones. This requires some extra supply of
ones and zeroes N∆ = NOT−N. Let the honest receiver chooses NOT bits, with N1

OT = dαNOTe ones among them. The
other party chooses Ncc arbitrary bits to check. We require that among the remaining N +N∆ bits be at least N1 ones
with probability ≥ 1− 2−λ. It means, that among Ncc cut-and-choose bits are no more than N1

OT−N1 = αNOT−N1 =
α(N +N∆ +Ncc)−αN = α(N∆ +Ncc) bits.

The number of ones in the cut-and-choose set is distributed hypergeometrically HG(αNOT,NOT,Ncc). Using the V. Chvatal
inequality for hypergeometric distribution [8], we get

Pr [X ≥ α(N∆ +Ncc)] = Pr
[
X ≥

(
α+ αN∆

Ncc

)
Ncc

]
≤ e−2 (αN∆)2

Ncc ≤ 2−λ. Hence we need to have N∆ ≥ 1
α

√
Nccλ ln2

2 extra bits
in random OT.

Analogically, we require that the number of zeroes after cut-and-choose remain at least N0 with the probability at least

1−2−λ. Hence, N∆ ≥ 1
1−α

√
Nccλ ln2

2 . Consequently, N∆ =

⌈
1

min(α,1−α)

√
Nccλ ln2

2

⌉
, which is (5).

22

2. Pr[pFalse ≥ 2−σ]≤ 2−λ with either honest or malicious receiver in ΠAppROT .

Denote by N1rest number of 1’s left by the receiver after the opening of Ncc cut-and-choose bits. The choice of parameters
according to this requirement depends on the false positive probability for the Bloom filter size of NBF with N1rest bits set to
1 and k hash-functions, that we denote as pFalse. The upper bound for it (in our conditions of the experiment) is obtained in
Appendix D from [14]:

pFalse < pk
[

1+
k(k−1)

2NBF

(
1
p
−1
)]

. (6)

Turning to the cut-and-choose in ΠAppROT , the sender doesn’t see the actual number of items n nor the actual number of ones
(that is N1rest in our notation). With known N1rest , one can express p = N1rest/NBF. With the probability at least 1−2−λ,
because N1rest is greater or equal to N1 with the such a probability (according to the first statement in this claim), holds
1/p = NBF/N1rest < NBF/N1 < N/N1 = 1/α. Hence, with probability at least 1−2−λ, from (6),

pFalse <

(
N1rest

NBF

)k [
1+

k(k−1)
2NBF

(
1
α
−1
)]

. (7)

We require that Pr [pFalse ≥ 2−σ] ≤ 2−λ. Using (7), we can rewrite the expression in parentheses as

N1rest ≥ NBF2−
σ

k

[
1+ k(k−1)

2NBF

(1
α
−1
)]−1/k

.

Suppose that the malicious party chooses more ones than required, and the proportion of ones now is α̂ > α, and the sender
observes α̃ proportion of ones among Ncc opened bits. Latter is the unbiased estimator of α̂ with Pr

[
α̂Ncc ≥ (α̃+ δ̃)Ncc

]
≤

e−2σ̃2Ncc ≤ 2−λ. Hence σ̃≥
√

λ ln2
2Ncc

.

Then, using (7), the number of ones in the remained set with the overwhelming probability is N1rest < (α̃+ σ̃)(N +N∆)≤

(α̃+
√

λ ln2
2Ncc

)(N +N∆)≤ NBF2−
σ

k /
[
1+ k(k−1)

2NBF

(1
α
−1
)] 1

k . As the number of observed ones is α̃Ncc, we have the inequality

for the maximal number of opened ones as Nmaxones ≤ α̃Ncc ≤ NBFNcc
N+N∆

2−
σ

k

[
1+ k(k−1)

2NBF

(1
α
−1
)]− 1

k −
√

λNcc ln2
2 . Equality (4)

follows.

3. An honest receiver passes the cut-and-choose check successfully with probability at least 1−2−λ.

Denote by Nmaxhonest the maximal number of ones in the cut-and-choose set in the case of an honest receiver, and

Pr [Nmaxhonest ≥ (α+δ)Ncc] ≤ e−2σ2Ncc ≤ 2−λ, hence Nmaxhonest =

⌈
αNcc +

√
λNcc ln2

2

⌉
. If Nmaxones−Nmaxhonest > 0, then

the honest receiver passes the cut-and-choose check.

Considering N∆ = 1
min(α,1−α)

√
Nccλ ln2

2 , this expression is transformable to the following square inequality:

α

min(α,1−α)

√
λ ln2

2
Ncc−

(
NBF

2σ/k

[
1+

k(k−1)
2NBF

(
1
α
−1
)]− 1

k
−αN− λ ln2

min(α,1−α)

)
√

Ncc +
√

2λ ln2N < 0. (8)

Thus, if a suitable Ncc exists, its value lies between the squares of non-negative roots of the corresponding square equation.
If both roots are negative, or if there are no roots, then there are no suitable parameters in this case.

According to the desire to have as few OTs as possible, we have to take the minimal non-negative value of Ncc from the
interval determined by this inequality. Nevertheless, because of roundings in parameter calculations, the actual interval
is, as a rule, narrower. Therefore we should, besides, check that indeed Nmaxones−Nmaxhonest > 0 by this particular Ncc. (3)
follows.

We next show that there exist suitable parameters σ, λ for any n.

Claim C.2. For any choice of positive n, σ, λ there exist positive k, NBF, Ncc, NOT, Nmaxones, N1
OT such that (2)-(5) hold.

23

Proof. Considering the asymptotic when NBF→ ∞, we compute the following limits:

lim
NBF→∞

NBF

(
1− e

−nk
NBF

)
= lim

NBF→∞
NBF

(
1−
(

1+
1

NBF

)−nk
)

= lim
NBF→∞

NBF

(
1−
(

1+
nk

NBF

)−1
)

= lim
NBF→∞

NBFnk
NBF +nk

= nk;

lim
NBF→∞

α = lim
NBF→∞

N1

N
= lim

NBF→∞

NBF

(
1− e

−nk
NBF

)
+
√

nkλ ln2/2

NBF +
√

2nkλ ln2
= lim

NBF→∞

nk+
√

nkλ ln2/2

NBF +
√

2nkλ ln2
= lim

NBF→∞

nk+
√

nkλ ln2/2
NBF

= 0.

(9)
Due to (9), in the asymptotics we can only consider the case α≤ 0.5, and hence min(α,1−α) = α.

After fixing k and NBF, the rest of the parameters can be computed directly, with the exception of Ncc, which is derived
from Inequality (8). So, the question of the existence of suitable parameters is the question of existence of positive roots in the

square equation ax2−bx+ c = 0, where, taking min(α,1−α) = α, a =
√

λln2
2 , b = NBF

2σ/k

[
1+ k(k−1)

2NBF

(1
α
−1
)]− 1

k −αN− λ ln2
α

,

c =
√

2λ ln2N. For the existence of two positive roots, it is sufficient to have b > 0, D = b2−4ac > 0. Let fix some value of
k > σ and prove that there exists some NBF such that those conditions hold. From (9),

lim
NBF→∞

b = lim
NBF→∞

NBF

2σ/k

[
1+

k(k−1)
2NBF

(
1
α
−1
)]− 1

k
−αN− λ ln2

α
=

= lim
NBF→∞

NBF

2σ/k

[
1+

k(k−1)
2NBF

NBF

nk+
√

nkλ ln2/2

]− 1
k

−
nk+

√
nkλ ln2/2

NBF

(
NBF +

√
2nkλ ln2

)
− λ ln2NBF

nk+
√

nkλ ln2/2
=

= lim
NBF→∞

NBF

(
2σ

[
1+

k(k−1)

2nk+
√

2nkλ ln2

])− 1
k
−nk−

√
nkλ ln2/2−NBF

λ ln2
nk+

√
nkλ ln2/2

=

= lim
NBF→∞

NBF

[(
2σ

[
1+

k(k−1)

2nk+
√

2nkλ ln2

])− 1
k
− 2λ ln2

nk+
√

2nkλ ln2

]
.

The asymptotic of b is linear in NBF. The value in outer square parentheses is constant by fixed n, λ, k, and σ. If k > σ,

then
(

2σ

[
1+ k(k−1)

2nk+
√

2nkλ ln2

])− 1
k tends to 1 when k grows, while 2λ ln2

nk+
√

2nkλ ln2
tends to 0. Thus, for sufficiently large k = k1,

lim
NBF→∞

b = lim
NBF→∞

C1NBF, where C1 > 0. Hence there exists a sufficiently large NBF such that b > 0.

Now consider the asymptotic of the discriminant when k ≥ k1:
lim

NBF→∞
(b2−4ac) = lim

NBF→∞

(
(C1NBF)

2−4Nλln2
)
= lim

NBF→∞

(
(C1NBF)

2−4NBFλ ln2−4
√

2nk(λ ln2)3/2
)
= lim

NBF→∞
(C1NBF)

2.

Again, by the sufficiently large k there exists the sufficiently large NBF such that b2−4ac > 0. That implies that two positive
roots of the square equation can be found, and therefore there exists Ncc that satisfies Equation (8).

In the proof of Claim C.1 below, we use several tail inequalities for different distributions.

• The Azuma-Hoeffding inequality [26, p 355] for the distribution of zeroes in the Bloom filter is connected with the problem
of the number of empty bins in the Balls and Bins model as follows: Suppose we are throwing m balls independently and
uniformly at random into n bins. Let F be the number of empty bins after m balls are thrown. Then Pr[|F−E(F)| ≥ ε]≤
2e−

2ε2
m . In our case, the number of bins is nk, and we are interested only in the right tail of distribution.

• The tail inequality, obtained by V. Chvatal in [8] for hypergeometric distribution. Namely, for HG(M,N,n) by 0 < t < pn,

we have Pr[X ≥ (p+ t)n]≤
((

p
p+t

)p+t (1−p
1−p−t

)1−p−t
)N

≤ e−2t2n.

Using the relations proved in Claim C.1, we construct the algorithm in Figure 6 and found the parameters for several values of
n which optimize NOT, when σ = 128 and λ = 40. The parameters are given in Table 4.

Remark. For the online-phase, NBF is more critical. In Table 9 we give the optimal by NBF parameters, where the improvement
in NBF is from 10,4% for n = 28, to 1,4% for n = 220 in comparison with the optimization of NOT. However, achieving this
improvement for NBF requires significantly more OTs (from 20,6% for n = 28 to 46,7% for n = 220) and increases the size of the
cut-and-choose set (from 287% for n = 28 to 5793,9% for n = 220), which results in a large increase in the overall cost.

24

Parameters n = 28 n = 210 n = 212 n = 214 n = 216 n = 218 n = 220

k 139 133 130 129 129 128 128
NBF 57,993 210,014 797,706 3,107,680 12,265,989 48,735,894 194,288,832
NOT 89,772 320,253 1,206,819 4,681,730 18,439,057 73,183,339 291,592,668
N1

OT 41,257 152,908 587,848 2,310,232 9,183,449 36,421,202 145,456,131
Ncc 28,994 104,963 398,851 1,553,817 6,132,901 24,367,378 97,143,998

Nmaxones 13,960 51,323 196,635 771,384 3,063,672 12,145,310 48,495,359

Table 9: Optimal (in NBF) ΠAppROT parameters for set size n, statistical security λ = 40, and computational security σ = 128.

D False-Positive Probability of a Bloom Filter

In this section we compute an upper bound for pFalse relative to the proportion of 1’s in the Bloom filter. This is because the
sender who evaluates this probability knows p, the proportion of 1’s, but does not know n, the number of items.

The second-order Taylor’s approximation of the false-positive probability in the Bloom filter, derived in [14], is:

pFalse =

(
E[X]

m

)k

+
σ2

X
2

k(k−1)
m2

(
E[X]

m

)k−2

, (10)

where m is the length of Bloom filter (in our notation, it is NBF), k is the number of hash-functions, X is the number of ones
presented in Bloom filter, E[X] = m

[
1− (1−1/m)kn

]
is the expectation of the number of ones, and

σ
2
X = m

(
1− 1

m

)kn
[

1−m
(

1− 1
m

)kn

+(m−1)
(

1− 1
m−1

)kn
]

is the standard deviation of the number of ones. In all those equations, n is the number of items already presented in the Bloom
filter. Recall that if the receiver is malicious then the number of items can be higher than n (which is the event that the sender is
trying to prevent in cut-and-choose).

From [26], it follows that p =
[
1− (1−1/m)kn

]
and E[X] = mp. Also notice that 1− 1

m−1 < 1− 1
m . Thus, we can rewrite σ2

X
as

σ
2
X = m(1− p)

[
1−m(1− p)+(m−1)

(
1− 1

m−1

)kn
]
< m(1− p) [1−m(1− p)+(m−1)(1− p)] = mp(1− p). (11)

From (10) and (11), we get

pFalse < pk +
p(1− p)

2
k(k−1)

m
pk−2 = pk

[
1+

k(k−1)
2m

1− p
p

]
= pk

[
1+

k(k−1)
2m

(
1
p
−1
)]

. (12)

Replacing m by NBF according to our notation, we got (6).

25

E Complexity Analysis

In this section we give further details on the complexity analysis of PSImple. In Tables 10 and 11 we present the communication
and computational cost of the main operations of our protocol. The tables are split into the evaluating party P0, and each other
party Pi (i.e., P1, ...,Pt). Recall that the workload of P0 is significantly higher, as P0 performs 2t instances of ΠAppROT , t as a
sender and t as a receiver, while every other Pi performs only two instances, one as a sender and one as a receiver.

The communication of Π
O f f line
AppROT is dominated by random OTs with communication complexity O(nσ2) – in order to compute

NOT random OTs of length σ = 128 with statistical security λ = 40, the ROT-extension of Keller, Orsini, and Scholl [20]
requires sending σNOT bits+10KB. The communication of ΠOnline

AppROT consists mainly of sending/receiving the permutations of
the unopened OTs; again, here P0 performs 2t instances of ΠOnline

AppROT , while every other Pi only 2 instances of ΠAppROT . Apart
from ΠOnline

AppROT , in the online phase of PSImple, each Pi is required to send its GBF to P0. Table 10 summarizes the number of bits
that are sent or received by the parties in the different steps of the protocol. Based on this table, we computed the communication
complexity of PSImple in Tables 2 and 3, with respect to NOT ≈ NBF = O(nk) = O(nσ) and Ncc << NBF.

The main computational costs are summarized in Table 11. To compute NOT ROTs, the ROT-extension of Keller, Orsini, and
Scholl [20] requires 2NOT +336 hashes.

Party
Step P0 Pi

Offline-phase
Random OTs 2tNOTσ 2NOTσ

Cut-and-choose challenge tNcc log2 NOT Ncc log2 NOT
Cut-and-choose response t(Ncc log2 NOT +σ) Ncc log2 NOT +σ

Online-phase
Permutation tNBF log2 NOT NBF log2 NOT

Sending/receiving GBFi∗ tNBFσ NBFσ

Table 10: Number of sent and received bits

Party
Computation P0 Pi

Offline-phase
Hashes for random OTs 2tNOT 2NOT

PRG of σ-bit strings to compute secret shares - (t−1)NBF−n
Online-phase

Hashes for the Bloom filter nk
Performed permutations 2t 2

XORs of σ-bit strings for codewords and GBFs nk+2tnk
PRG of σ-bit strings for rerandomization of GBF - NBF−n

XORs of σ-bit strings for the intersection 2tNBF +nk -

Table 11: Number of performed operations

26

F Security Proof

In this appendix we give necessary lemmas and calculations behind security statements in Section 3.3. The proof of the
consistency F.1 relates to the correctness statement.

F.1 Consistency of PSImple
Consistency follows from next: consider GBF∗ that P0 learns on the step 8.

GBF∗ =
⊕
i∈[t]

GBFi∗⊕GBF0 =
⊕

i∈[t]∪{0}
GBFi

⊕
i,l∈[t],i 6=l

(
Sli⊕Sil

)⊕
i∈[t]

(
Mi
∗⊕ M̂i)= ⊕

i∈[t]∪{0}
GBFi

⊕
i∈[t]

(
Mi
∗⊕ M̂i) .

GBFi is the re-randomised Mi⊕M̂i
∗, and the re-randomization performed by Pi doesn’t affect codewords of its items, therefore

for any xi j ∈ Xi the codeword yi j =⊕s∈h∗(x)GBFi[s] =⊕s∈h∗(x)
(
Mi[s]⊕ M̂i

∗[s]
)
=⊕s∈h∗(x)

(
Mi
∗[s]⊕ M̂i[s]

)
.

Hence, for every item x ∈ ∩i∈[t]Xi with codewords yis, we have

⊕
s∈h∗(x)

GBF∗[s] =
⊕

s∈h∗(x)

GBFi[s]
⊕
i∈[t]

(
Mi
∗[s]⊕ M̂i[s]

)=
⊕
i∈[t]

(yi⊕ yi) = 0.

F.2 Security
Notation. Let W = {w1, ...,wn} be a set of n elements. A partial injective and onto mapping ξ : A→ B where |B| = k, and
|A|= n is called a k-permutation from n [6, p. 40]. We usually denote such mappings by a k−tuple over A. For such a permutation
ξ, given a vector X indexed by elements of A, we denote by Y = ξ(X) a vector indexed by elements of B, where yi = xξ−1(i) for
each i ∈ B. For some ordering I of B, we denote by J = ξ(I) the ordering For indices we write j = ξ(i) if we use the permutation
to define the mapping.

Definition 2. A function µ : N→ N is negligible if for every positive polynomial p(·) and all sufficiently large x it holds that
µ(x)< 1/p(x).

Definition 3. We say that two distribution ensembles {X(κ,a)}κ∈N,a∈{0,1}∗ and {Y (κ,a)}κ∈N,a∈{0,1}∗ are statistically close,

denoted {X(κ,a)}
s
≈ {Y (κ,a)}, if for every non-uniform distinguisher D there exists a negligible function µ such that for all a

and κ, |Pr[D(X(κ,a)) = 1]−Pr[D(Y (κ,a)) = 1]| ≤ µ(κ).

Model. We prove our results in the standard UC model [5], assuming private authenticated channels between the parties (in
fact, authentication of sender’s identity is already guaranteed due to the fact that the adversary may only reorder messages, delay
or delete messages sent between a pair of parties but not modify them). The latter can be modeled by assuming communication
via ideal channel functionalities that allow for the suitable adversarial behavior (allowing interventions as above, but adding
secrecy of message content), see [5] for more details - the following is a brief recap of the setting, which is identical to the
standard setting of [5], except of assuming channels as above, instead of the ‘bare bones’ network.

The parties, the adversary A and the environment Z are modeled as polynomial-time non-uniform ITMs. All parties, including
Z (for which it is an only input) have a public parameter 1k provided as input. Furthermore, it is known that for defining UC
security, it suffices to consider a ‘dummy adversary’, which merely relays messages between Z, parties and instances of idealized
functionalities. That is, at the beginning it corrupts a set of parties Z instructs it to corrupt. Then, every time a party p sends it
a message m (intended for party p′), it sends Z a message that ‘p requested to send a message to p′’. Note that as we assume
private channels, it does not see the content of m unless p is corrupt, in which case it also reports to Z the content of the message.
It also receives commands from Z to relay a message waiting to be sent, or send a given message m′ from a corrupted party p to
some party p′ or as a message to an idealized functionality. We also assume Z has access to the entire state of A , including the
state of all parties corrupted by it so far. In some more detail:

Real World execution. Very briefly, as standard in the UC setting, at the beginning of a protocol execution Z is initialized
with a public security parameter and invokes other machines - the adversary A and protocol participants which are also give
1k as a security parameter. Z provides the inputs to the protocol participants by writing to their input tapes. More precisely, a

27

party Pi in a (sub)protocol Π (one of possibly many to be executed by Z) starts its execution of a given protocol, by having
an ITM identified by some ID playing its role activated by Z writing (SIDΠ,x) the string x as its intended input in a protocol
Π (identified by session id SIDΠ). Other parties’ roles are played by other ITMs, running the program intended for the same
session ID. 13 The scheduling of messages is asynchronous and is controlled by the adversary (to the extent explained above).
The execution by an uncorrupted Pi in a given protocol is resumed once it receives the next prescribed message according to the
protocol (on its communication tape). At the end of a protocol’s execution, each honest party writes its output to Z’s ‘subroutine
output tape’, making their outputs part of Z’s view.

Corruption is modeled by special ‘corrupt’ messages, and F is immediately informed regarding the corruption. Since we
always consider the dummy adversary whose program is only to perform instructions from Z, we consider RealΠ,Z(k) (instead of
RealΠ,Z,A(k)), omitting the specification of A .Corruptions are modeled by having an adversary send a special ‘corrupt’ message
to the newly corrupted party. By IdealF ,Z,S (k) we denote the output distribution of Z’s output in an ideal world implementation
of the functionality F , in the presence of a simulator S , when running with a public security parameter 1k. By IdealF ,Z,S we
denote the ensemble {IdealF ,Z,S (1k)}k∈N, by RealΠ,Z – the ensemble {RealΠ,Z(1k)}k∈N.

Ideal World - evaluating a functionality F . For our purposes, the setting is conceptually similar to the ideal world in the
stand alone setting [13]. In particular, the distinguishing entity (i.e., Z) cannot observe the content of messages between the ideal
functionality F and corrupted parties. One difference is that we use an extended notion of a functionality F , which specifies an
additional interface with the adversary (possibly of an interactive form), giving it power beyond the prescribed output in case
these parties were honest.

Definition 4. A protocol Π is said to computationally UC-securely compute a given ideal functionality F against a static
adversary, if there exists an ideal-world adversary S (a simulator), such that for every nonuniform polynomially bounded
environment Z running in the presence of a dummy adversary A , corrupting parties at the outset of the protocol (before sending
or receiving any other messages via A),

IdealF ,Z,S
c
≈ RealΠ,Z .

Similarly, for statistical and perfect security, the indistinguishability notion above is
s
≈ and

p
≈ respectively.14 15

Definition 5. A protocol Π is said to realize F with type security with abort (type is either computational, statistical, or perfect)
if it type-securely realizes F ′, defined exactly as F, but it additionally allows the adversary to send⊥ after receiving the prescribed
output of the corrupted parties, and before sending outputs to honest parties. If ⊥ was sent, the functionality sends ⊥ to each
honest party, instead of its prescribed output [13, Chapter 7] and [5].16

F.3 Approximate K-out-of-N ROT
Parties in our PSImple protocol use ΠAppROT – approximate K-out-of-N random OT protocol to obtain garbled Bloom filters for
the Bloom filter of length N = NBF consisting of K 1’s. We give this protocol in F σ,N

ROT-hybrid model in Figure 10. To make the
security proof clearer, we explicitly define the default values for the cut-and-choose challenge, and the ⊥- and "continue"-replies,
which are omitted in the main text. The oblivious transfer functionality we use in our security setting is F σ,N

ROT (Fig. 2) with
N = NOT parallel instances of 1-out-of-2 random OT.

Lemma 1. The protocol ΠAppROT realizes the functionality FAppROT with statistical UC-security with abort in the presence
against static malicious (non-uniform polynomial-time) adversaries in the F σ,N

ROT-hybrid model.17

Proof. In the following analysis, we do not need to explicitly deal with delaying or deleting messages by Z. This is because in
the real protocol, if a message is delayed, then the other party simply waits. Since, this is a two-party protocol, in the ideal-world,

13Note that a given ITM may participate in several sessions concurrently. To distinguish which message belongs to which protocol, every message delivered in
Π is labeled by SIDΠ.

14Note that the above requirement is only for real executions which terminate, in the sense that all parties wrote some value to the output tape of Z. Nothing is
guaranteed before the execution has terminated.

15The standard notion for statistical and perfect security allows the simulator run in polynomial time in the runtime of A , and does not require that A and
Z are unbounded. In our case we need to limit the number of accesses to the RO of the adversary for security to hold, so for simplicity, we limit A ,Z to be
polynomially bounded. In fact, we could handle somewhat super-polynomial adversaries.

16F ′ is a specific kind of a generalized F functionalities, allowing for extra ‘abort after seeing output’ capabilities for the adversary.
17In fact, this protocol is even secure in the more standard statistical UC-model, where the adversary may be unbounded, and simulator is polynomial in

adversaries’ runtime.

28

Protocol ΠAppROT in F σ,N
ROT-hybrid model

Parties: Sender, Receiver.
Parameters: σ – length of the OT strings (computational security parameter); λ – statistical security parameter;
N = NBF is the number of OTs required; NOT > N is the number of random OTs to generate;
N1

OT, Ncc, Nmaxones are parameters of cut-and-choose described in Section 4.
K is the number of 1’s in Bloom filter of the receiver.
Inputs: B is the choice vector of the receiver (B[i] ∈ {0,1}, i ∈ [NBF]) of size N = NBF consisting K 1’s.

1. [random OTs] The sender and the receiver call F σ,NOT
ROT performing NOT random OTs in parallel. The receiver chooses

requests c1, ...,cNOT with N1
OTs ones among them, and NOT−N1

OT zeroes (randomly permuted). As a result, in the jth ROT,
the sender learns random strings m j0, m j1 (of length σ). Receiver uses choice bit c j and learns m j∗ = m jc j .

2. [cut-and-choose challenge] The sender chooses set C ⊆ [NOT] of size Ncc uniformly random and sends C to the receiver.

3. [cut-and-choose response] The receiver checks if |C|= Ncc; if |C|> Ncc, then truncates it, if |C|< Ncc, then adds indices
by default (for example, 1,2, ...). Receiver computes and sends to the sender the set R = { j ∈C|c j = 0}. To prove that he
used choice bit 0 in the OTs indexed by R, it also sends r∗ =

⊕
j∈R m j∗. The sender replies with ⊥ if |C|− |R|> Nmaxones

or if r∗ 6=
⊕

j∈R m j0, and with "continue" otherwise.

4. [permute unopened OTs] The receiver chooses random injective function π : [N]→ ([NOT]\C) such that B[j] = cπ(j),
and sends π to Sender.
The receiver permutes its random values m j∗ according the π, and the sender permutes m j1 according to π. If π is formed
incorrectly (not from the domain [NOT]\C or not to [N]), then use a default value (N consecutive values from [NOT]\C).

Outputs: the receiver has output m j∗ (j ∈ [N] such that B[j] = 1); the sender has m j1, (j ∈ [N]).

Figure 10: Protocol ΠAppROT in F σ,N
ROT-hybrid model

the simulator S can simply emulate this behavior, i.e., wait for the delayed message. Also, we may assume wlog. that the input of
the uncorrupted party are provided by Z before any messages are sent in the protocol. This is so because it is a 2PC protocol,
and the first message received by the corrupted party comes from FAppROT , which requires participation of both parties (but the
honest one is waiting).

Security in face of a corrupted receiver. the simulator S , once activated by Z, emulates the protocol towards Z.18

1. In the 1st step of the protocol, when emulating F σ,N
ROT and obtaining the input c1,c2, ...,cNOT from Z, S randomly chooses a

set C ⊆ [NOT], where |C|= Ncc, and computes
K′′ = ∑

i∈[NOT]\C
ci.

Then, S passes K′′ as an input of the receiver to FAppROT and receives either M′ = {m′1,m′2, ...,m′K′′} or ⊥.

If the simulator received ⊥ from FAppROT , it passes to Z {m j∗} j∈NOT of uniformly random σ-bit strings as the output of
F σ,N

ROT of the 2nd step of the protocol, sends to it C as the cut-and-choose request and, upon getting the answer, passes Z ⊥
as sender’s reply, appends {m j∗} j∈NOT , and halts.

If S receives M′, for any j ∈ [NOT]\C, with c j = 1 it computes

ψ(j) = ∑
i∈[NOT]\C, i≤ j

ci

and the function φ : [K′′]→ [NOT]\C, as the inverse of ψ. I.e., φ(i) = j, whenever ψ(j) = i for i ∈ [K′′], j ∈ [NOT]\C such
that c j = 1. The simulator constructs the injective mapping For any j ∈ [NOT] it constructs m j∗ = m′ψ j

, if j ∈ [NOT]\C and

c j = 1, or m j∗
R←{0,1}σ, otherwise. Simulator gives

{
m j∗
}

j∈[NOT]
to Z as the output of F σ,N

ROT in 1st step.

The simulator sends C to Z as the message of 2nd step of the protocol.

2. S waits for a message from the receiver in 2nd step of the protocol. Upon receiving the response (R,r∗) it checks that
|C \R| ≤ Nmaxones, r∗ = ⊕ j∈Rm j∗, and c j = 0 ∀ j ∈ R. If not, then passes ⊥ to the ideal functionality as an input of the

18As mentioned above, A is fixed to just relays messages from Z to the parties and back. Intuitively, S attempts to do the same.

29

receiver and sends Z ⊥ as sender’s round-3 message. If the receiver passes the check, then sends him Continue and waits
for the permutation.

Upon receiving permutation π from Z in 4th step, S checks, that π : [NOT]\C→ [N]. If not, then uses a default value for π

(N consecutive values from [NOT]\C).

If yes, then computes I′ =
(

i1 i2 ... iK′
π(φ(i1)) π(φ(i2)) ... π(φ(iK′))

)
where is ∈ [K′′] such that ∃π(φ(is)) and gives it to the

ideal functionality as the input of the receiver.

Proof of security in face of a corrupted receiver. Consider an environment running on some fixed public parameters 1σ,
1λ, k, N as input. Let x denote the input vector to all parties given at the outset by Z to all parties.In step 1, Z asks S to send
F σ,N

ROT the set Q of the requests to F σ,N
ROT, where Q′ ⊆ Q is the set of 1-requests, and the rest are 0-requests. It receives a sequence

m j∗ (j ∈ [NOT]) of random strings in response (by specification of F σ,N
ROT). By definition of S , the distributions m j∗ in the real

and ideal worlds are identical (as the inputs x were fixed by Z to be the same). In more detail, Q′ is identical in both worlds.
As to m j∗, S picks C and sends K′′ to the ideal functionality, where K′′ = |Q′∩ ([NOT]\C)|. The emulated m j∗’s at locations
j ∈ Q′∩ ([NOT]\C) are taken from the functionality’s step-1 output to receiver if it does not equal ⊥, and random independent
values picked by S otherwise. In both cases, the other values S sends emulating replies of F σ,N

ROT are random values independent
of all others. Now, in the real world, the sender chooses C, and either

|C \R|> Nmaxones (13)

holds or not for R induced by C and Q′ (for the honest receiver). Since the simulator and sender pick C according to the same
distribution in both worlds, that does not depend of receiver’s view so far, the probability that (13) is satisfied is identical in both.
Then Z responds with the same R (identical in both worlds). Consider the case when the inequality (13) holds:

• In the real world, the receiver either reported the correct R in which case sender certainly aborts, or reported a larger R so
that the equation |C \R|> Nmaxones no longer holds. In the latter case, there is at least one value j ∈ R, for which m j0 is
not known to the receiver. Thus guessing r∗ expected by the sender occurs with probability at most 2−σ over the sender’s
randomness. Overall, the sender aborts in step 3 with probability at least 1−2−σ (over the choice of r). S also appends ⊥ to
the simulated view as the sender’s message.

• In the ideal world, the simulator sets K′′ as the number of 1-OT requests in [NOT]\C on behalf of the receiver in step 1 (of
the adversary’s interaction with the functionality). With our choice of parameters, according Claim C.1, the evaluation of
pFalse computed for the Bloom filter of length N with K′′ 1’s in it, is larger than 2−σ except with negligible (in λ) probability,
since (13) holds. Therefore, the ideal functionality sends ⊥ to both parties and aborts by the end of step 1.

To summarize, the joint view of the adversary and the sender’s output is this case is at statistical distance at most 2−σ +neg(λ).

IdealF ,Z,S
s
≈ RealΠ,Z

s
≈ (D,⊥). (14)

Here D is the distribution over the receiver’s view up until step 2 in the real world, as described above.
Now, consider the case when (13) is not satisfied in the real world. If Z sends R∗ (which differs from R induced by its F σ,N

ROT’s
inputs) so that (13) is satisfied for C,R∗, or r∗ 6=

⊕
j∈R m j0 the sender outputs ⊥ and halts immediately. By construction of S , it

sends ⊥ in step 2 as receiver’s input, and replies with ⊥ to both parties. S again appends ⊥ as sender’s message to the simulated
view. Thus, if (14) holds with 0-error (in particular, over the entire support of RealΠ,Z , the sender’s output is ⊥). Otherwise, in
the real world, Z proceeds by picking π (based on its entire view so far), and sends it to the sender, who permutes the values
m j1 it picked previously according to π. In particular, the m j1’s for the K′ j’s for which π(j) ∈ Q′ are also output to the sender
at positions π(j), and all other m j′1’s output to sender are random values, independent of receiver’s view so far (as it never
received these values). In the ideal world, S receives (the same) π from Z, and sets I′ sent to the ideal functionality in step 2 in
a way that ensures the sender’s output at positions π(j) for j with π(j) ∈ Q′, equal the m j1 at this position from the receiver’s
view. The rest are random independent values, as initially generated by the functionality. We conclude that in this latter case
IdealF ,Z,S

s
≈ RealΠ,Z with 0-error.

Overall, we get a statistical distance of at most neg(λ)+2−σ between IdealF ,Z,S and RealΠ,Z .

30

Security in face of a corrupted sender. As in the previous case, following the delivery of inputs to all the parties by Z
(written by it to their input tapes), the simulator S , once activated by Z, operates as follows.

1. In the first step of the protocol, S calls the ideal functionality FAppROT (with no input on behalf of the sender) and receives
M′′ = {m′′1 ,m′′2 , ...,m′′NOT

}. Then samples the uniformly random M0 =
{

m j0
}

j∈[NOT]
, and computes M1 =

{
m j1
}

j∈[NOT]
= M′′.

It gives M0 and M1 to Z as the sender’s reply from emulated F σ,N
ROTs.

2. In 2nd step of the protocol, S waits for the message C from Z. If |C|> Ncc, then truncates it, if |C|< Ncc, then adds indices
by default (1,2, ...). It samples the number of 1’s |C \R| hypergeometrically HG(NOT,N1

OT, |C|) (N1
OT is determined in

Section 4), computes |R|= |C|− |C \R| and distributes |R| 0-indices uniformly random over the indices from C to build the
set R⊂C as the set of indices of 0. Then S computes r∗ =

⊕
j∈R m j0. It gives R and r∗ to Z as the message in 3rd step of

the protocol.

If the simulator receives ⊥ from Z in 3rd step, if gives it to FAppROT and halts. Else gives C to FAppROT as an input of the
sender.

Upon receiving M, M∗ from FAppROT , computes the N-permutation π : [NOT]\C→ [N] at random such that M = π(M′′)
and gives it to Z as a message in 4th step of the protocol.

Proof of security in face of a corrupted sender. Consider an environment Z running on some fixed public parameters 1σ, 1λ,
k, N. Let x denote the input vector to all parties given at the outset by Z to all parties, as in the previous case. The environment Z
(via S) receives from F σ,N

ROT two sets M0 = {m j0} j∈[NOT] and M1 = {m j1} j∈[NOT], whose distributions are identical and independent
on x in both real and ideal (from F σ,N

ROT’s emulated by S) worlds by the construction of the simulator.
Then Z responds with the set C ⊂ [NOT] such that |C| = Ncc based on (x,M0,M1) and receives (R,r∗) in response. R is

distributed identical in the real and ideal world by S construction. As for r∗, it deterministically depends on M0 and R and
therefore is also identical in the real and ideal worlds.

The environment Z responses with either ⊥ or Continue, which it chooses basing on his view (x,M0,M1,R,r∗), which is, in
its turn, depend only on x. If it sends ⊥, then it receives nothing in response, the execution stops in both real and ideal worlds,
and the adversary has ⊥ as an output. If Z sends Continue, it receives the N-permutation π : [NOT]\C→ [N]. This permutation
is random and has the same distribution in both protocol and simulation. In both worlds it is constructed so that it places m j1’s
over input indices of the receiver j to the same positions in outputs of the sender and of the receiver.

We conclude, that the joint view of the adversary and the receiver’s output is statistically indistinguishable, with 0-error.

Consistency of FAppROT . Now we show that for the honest sender and honest receiver, ΠAppROT protocol realizes FAppROT
ideal functionality. The honest receiver sends to the protocol the choice bits c1, ...,cNOT , recovers the subset C ∈ [NOT] received
from the sender and sends the permutation π : [NOT]\C→ [N] such that π(c1, ...,cNOT) = B.

First, note that, if the receiver is honest, with our choice of parameters it passes the cut-and-choose check with the overwhelming
probability. Also with the overwhelming probability, it succeed in finding the suitable π, as there is enough 1’s among the choice
bits remaining after cut-and-choose.

After F σ,NOT
ROT , the sender has (m11, ...,mNOT1) and (m10, ...,mNOT0). The receiver has

(
m1c1 , ...,mNOTcNOT

)
. Applying the

permutation π to (m11, ...,mNOT1) and
(

m1c1 , ...,mNOTcNOT

)
accordingly, the sender gets M =

(
mπ(i1)1, ...,mπ(iN)1

)
, and the

receiver gets M∗ =
(

mπ(i1)cπ(i1)
, ...,mπ(iN)cπ(iN)

)
=
(
mπ(i1)B[1], ...,mπ(iN)B[N]

)
, where i1 = min([NOT] \C), iN = max([NOT] \C).

Thus, the elements of M and M∗ at the indices i such that B[i] = 1 collude, and at the other indices differ. As the set of indices i
such that B[i] = 1, i ∈ N defines I – the input set of the honest receiver to FAppROT , the receiver has the values from the sender’s
output set at indices from I, as described by the functionality FAppROT .

F.4 PSI protocol in the hybrid model
Figure 11 describes the PSImple protocol in random oracle, FAppROT -hybrid model. Note that as the hash functions are modeled
by the random oracle, the coin-tossing step for hash-seed agreement (Step 1 in Figure 5) is omitted in Figure 11. Additionally,
the ideal functionality FAppROT is not separated into offline and online phases. Furthermore, we need to add a padding after
FAppROT , since this functionality does not provide a padding for the receiver’s garbled Bloom filter. Note that this padding does
not affect security, since the strings in the padding are replaced in the following rerandomization step. For clarity, in Figure 11
we explicitly describe all the ⊥-replies that parties can send (as we consider security with abort and asynchronous execution).

31

Protocol of Malicious-secure Multiparty PSI ΠMPSI in the FAppROT -hybrid model

Parameters:
n - the maximal size of the input set of the party; σ - computational security parameter; λ - statistical security parameter;
NBF - size of the Bloom filter; D – a domain of input items;
Inputs: Pi inputs Xi = {xi1,xi2, ...,xini}, ni ≤ n – the set of items from D (i ∈ {0, ..., t}).

Offline Phase:

1. [(R0) random shares] Each Pi, i ∈ [t], sends Sil = (sil
1 , ...,s

il
NBF

) to any Pl , l ∈ [t]\{i}, where sil
r

R←− {0,1}σ , r ∈ [NBF].

Online Phase:

2. [(R1) compute Bloom filters] Pi (i ∈ [t]∪{0}) computes Bloom filter BFi of its items from Xi. If ni < n, then Pi computes
the Bloom filter of the joint set Xi with (n−ni) random dummy items.

3. [(R1) symmetric approximate ROTs] Parties perform in parallel:

(a) Using BF0’s 1’s indices set J as input, P0 calls |J|-out-of-NBF FAppROT as the receiver with each of the other parties
Pi (i ∈ [t]). As a result, it receives t sets of string Mi

∗[j] for each j ∈ J, Pi learns Mi. P0 let Mi
∗[j] = 0 for j ∈ [NBF]\J.

(b) Using BFi 1’s indices set J as input, each Pi (i ∈ [t]) calls |J|-out-of-NBF FAppROT as the receiver with P0. As a
result, Pi learns M̂i

∗[j] for each j ∈ J, and P0 receives M̂i. Pi sets M̂i
∗[j] = 0 for j ∈ [NBF]\ J.

4. [(R2) compute and re-randomize GBFs] If P0 did not receive ⊥ from FAppROT , it computes GBF0 =
⊕

i∈[t]
(
Mi
∗⊕ M̂i).

If Pi did not receive ⊥ from FAppROT , it computes GBFi = Mi⊕ M̂i
∗, codewords yi j =

⊕
r∈h∗(xi j) GBFi[r] (j ∈ [ni]) and

re-randomizes GBFi from Xi and codewords yi j (j ∈ [ni]) according to algorithm BuildGBF from B.1.

5. [(R2) cumulative GBFs of Pis] If Pi (i ∈ [t]) did not receive ⊥ from FAppROT , it computes and sends to P0 the cumulative
garbled Bloom filter:

GBFi∗ = GBFi
⊕

l∈[t]\{i}

[
Sli⊕Sil

]
.

Else it sends ⊥.

6. [(R2) cumulative GBF of P0] If P0 did not receive ⊥ from FAppROT or from Pi in the previous step, it computes
GBF∗ =

⊕
i∈[t] GBFi∗⊕GBF0.

7. [(R2) output] If P0 did not receive⊥ from FAppROT or from Pi in the 6th step, it outputs x0 j as a member of the intersection,
if ⊕

r∈h∗(x0 j)

GBF∗[r] = 0, j ∈ [n0].

Else it outputs ⊥.

Figure 11: The PSImple multiparty protocol in the FAppROT -hybrid model

32

In Lemma 2 and consequently in Theorem 1 we require a non-uniform polynomial-time adversary in sense of polynomially-
bounded requests to the Random Oracle. This follows from the next: the union bound of the probability of having at least one false-
positive result over |Q| requests is |Q|pFalse < |Q|2−σ. To keep it negligible, |Q|= poly(σ). In the case of polynomially-bounded
(in σ) domain D, this requirement is fulfilled automatically, otherwise (for example, it the typical case of an exponential-size
domain) we require a computationally bounded (in σ) adversary in Theorem 1.

Lemma 2. The protocol ΠMPSI securely realizes the functionality FMPSI with statistical UC-security with abort in presence
of static (non-uniform polynomial-time) malicious adversary corrupting up to t parties in the F σ,N

ROT, FAppROT -hybrid model,
where the Bloom filter hash functions are non-programmable random oracles, and the other protocol parameters are chosen as
described in subsection 4.

Proof. In our protocol and functionality, we take n′ such that for the Bloom filter consisting n′ or less elements, pFalse ≤ 2−σ,
and for the Bloom filter with n′+1 and more elements, pFalse > 2−σ. It means, that the malicious receiver in FAppROT receives
⊥ from the first step of FAppROT functionality if and only if its effective Bloom filter consists more than n′ items.

Consider the case when evaluating party P0 is honest, and some subset of other parties I ⊆ {P1, ...,Pt} are corrupt.

Simulator description. The simulator S , once activated by Z, emulates FAppROT towards Z. We stress, that all the corrupt
parties are emulated asynchronously, according to the message scheduling decided by Z - one message at a time. We only
describe the simulation by order of steps in the protocol for convenience. In step 1 (preprocessing), S sends to Z uniformly
random shares Sil , as honest Pi’s would do according the protocol, to any corrupt party Pl ∈ I, and learns Slis from Z.

In step 2, S make queries Qi = {qi j| j ∈ [ni]} on behalf of corrupt parties Pi ∈ I as requested by Z (where ni ≥ n is polynomially
bounded, as Z is), to the random oracle to compute Bloom filter’s hash-indices.19 Denote Q = ∪i|Pi∈IQi – the joint query set of
corrupt parties.

In step 3, S plays FAppROT functionality towards Z for any corrupt party. Once both inputs of FAppROT have been requested by
Z to be delivered:

• For Pi acting as a corrupt sender, the simulator samples uniformly at random M′′i of length NOT and gives as the first part of
the output to Z. Upon receiving from Pi either ⊥ or set C, gives to Z for Pi the vector Mi or /0.20

• For any Pi acting as a corrupt receiver, upon receiving K′′ the simulator samples uniformly at random and gives M̂′
i

of
length K′′, or gives ⊥, then the simulator receives set of indices Ji (and then can extract the effective Bloom filter B̃Fi) or ⊥.

First, all of them receive M′′i’s, and then each of them in its turn sends its inputs to FAppROT ’s.

The simulator remembers each of the Mi’s and computes M̂i
∗’s (from M̂′

i
and Ji as FAppROT would compute M in the case

of corrupt receiver) for all Pi ∈ I, and extracts a set of Bloom filters B̃Fi for any Pi (the second string of the mapping Ji is the
sequence of 1’s indices of B̃Fi), if all the calls to emulated FAppROT are completed successfully (without ⊥’s).

In step 4, parties have no interaction, so S does nothing.
At the 5th step, once all round-1 and round-2 executions have completed, S observes GBFi∗s or ⊥s sent by Z on behalf of

corrupt Pi ∈ I.

• If there were no ⊥’s as an outputs of the simulated FAppROT s or as the messages of the 5th step, S computes the sum
GBF∗I =

⊕
i∈I GBFi∗. Now S can subtract all the secret shares sent and received to corrupt parties on behalf of honest and

vice versa:
GBFI = GBF∗I

⊕
Pi∈I

⊕
Pl∈P\(I∪P0)

(
Sil⊕Sli

)
.

GBFI is the effective value of
⊕

Pi∈I GBFi. Now the simulator extracts the effective input of corrupt parties as

X̃I =

q ∈ Q|
⊕

r∈h∗(q)

GBFI [r] =
⊕
Pi∈I

r∈h∗(q)

(Mi[r]⊕ M̂i
∗[r])

 ,

sends it to the ideal functionality, and receives either X̃ or ⊥ as the output of FMPSI.

• Else, the simulator sends the effective input of the adversary ⊥ to the ideal functionality and receives ⊥ as its output.
19For the simplicity, we suppose that Z makes queries to the random oracle right before the computation of the Bloom filter. After R1, when all the FAppROT ’s

done, the adversary can also make queries, but the probability of the new item is in the existing Bloom filter is pFalse, which is negligible.
20Recall, that according the FAppROT specification, Mi = ψi(M′′i), where ψi : [NOT]\C→ [NBF] is the uniformly random NBF-permutation.

33

Simulator Analysis. Consider an environment Z running on some fixed public parameters 1σ, 1λ, t, n, k, NBF. We assume
first that all parties parties receive inputs from Z (written by it to their input tapes), at the onset of the execution. We will later
show how to get rid of this assumption. Denote by X = {Xi}Pi∈P\(I∪P0) – inputs of honest parties. We prove indistinguishability
by induction on the message graph of Z - sent messages to the various parties, and to FAppROT throughout the execution,
starting with the inputs provided, and messages received from honest parties (emulated by S in the ideal world) are statistically
indistinguishable. The induction is on the message number according to the order of message delivery by Z in the real world
(which S follows). As P0 is honest, we have to also prove the indistinguishability of the joint view of Z with the output of
the honest P0 in the simulation and in the real-world execution of the protocol (conditioned in Z’s view, for an overwhelming
fraction of the views, as we shall show).

At the start, the (partial) view of Z is clearly the same in both worlds (as Z and other parties receive the same public parameters)
at the onset of the execution. Clearly, step 1 any value sent and received by an honest party from Z, or sent from an honest party
to Z (a random share of 0) are identically distributed.
{M̂′i/⊥}Pi∈I , {M′′i}Pi∈I , {Mi/ /0}Pi∈I : these messages to Z are identically distributed to the values received by the corrupted

sender/receiver in the real world protocol, by definition of FAppROT , and the fact that at any step of interaction of the FAppROT
instances, the view of each emulated Pi is distributed identically to the real world. Note that in particular, these values do not
depend on X .

Let us compare the output distribution of P0. In the ideal world, H = X̃I
⋂(⋂

Pi∈P\I∪{P0}Xi

)
is the output of P0, or ⊥ if the

simulator sent ⊥ to the ideal functionality.
In case S did not send ⊥ to the ideal functionality, H is a subset of the real-world output of P0, as the honest parties act

honestly, and the contribution of the malicious parties does not ‘spoil’ the equality verified, for each of the items in X0 that P0
checks the condition in step 7 for (GBF re-randomization in step 5 by honest parties does not take place in the ideal world, but
does not affect their codewords yi j’s, and thus does not affect the condition in step 7). Now, malicious parties may have chosen
1-items in their FAppROT executions, at locations outside of the query set Q. However, then they either query too many 1’s in that
FAppROT execution, in which case, in the ideal world as well, S notices it, and sends ⊥ on behalf of Pi ∈ I as input to the ideal
functionality (and thus we are in a different case than assumed). Otherwise, each corrupted receiver, requests sufficiently few 1’s
adding any element in the intersection of the honest parties sets H1 =

⋂
Pi∈P\I∪{P0}Xi with the probability at most pFalse (for

instance, by using the received Mi⊕ M̂∗i at all 1-positions in GBFi, without re-randomizing) for each given party. Since elements
not known to all of them are complemented by P0 by a random string, the probability of adding an element is upper bounded by
the probability of a fixed corrupted party Pi adding it, and the result follow. By union bound, adding an element in H1 by Pi
occurs with probability ≤ n · pFalse. Assuming no extra elements not covered by Q were added by all malicious parties, for each
x ∈ X0 \H, let j denote some index for which some Pl ∈ I did not learn M̂i[j]. The probability of P0 adding x0s to the output due
to passing verification in the step 7 is at most 2−σ, which is the probability of Pi guessing M̂i[j] by the adversary.

In the simulation, the ideal functionality receives ⊥ if and only if either it is initialized by the adversary (which has the same
probability for any adversarial input) or if the corrupt party’s input is larger than n′ (which is equivalent because of FAppROT).

Summarizing the above, with statistical distance between real and ideal worlds is at most neg(σ).
Finally, consider a situation when the inputs are not provided by Z at the onset of the protocol, but rather at some intermediate

point. We are still able to preserve our indistinguishability invariant, since all Z sees before deciding to provide an input to some
honest Pi are random independent values: either shares picked in step 1, or FAppROT replies from step 3. Correlating honest
parties’ inputs with these values does not break the indistinguishability invariant for our protocol and S above in any way.

Now consider the case of corrupt P0, and some number of other parties (including zero) I ⊂ {P1, ...,Pt} are corrupt.
Note that at least one party is honest.

Simulator description. As before, the simulator interacts with Z through the dummy adversary. It simulates the replies of
FAppROT and of the honest parties towards Z, by order of its requests. Recall that Z is responsible for giving corrupted parties
their input, and these do not go through S .

In step 1 (preprocessing), S sends to corrupt parties Pl ∈ I uniformly random values Sil , as honest Pis would do, and gets Slis
to be delivered by corrupted parties Pl from Z.

In step 2, corrupt parties make queries Qi = {qi j| j ∈ [ni]} (Pi ∈ I∪{0}), where ni ≥ n is polynomially bounded, to the random
oracle to compute Bloom filter hash-functions.21 The simulator observes them and computes Q = ∪Qi – the joint query set of
corrupt parties.

21In fact, they could make them at the later round 2 as well, for that particular party.

34

In step 3, the simulator plays FAppROT functionality for P0 in its interaction with any honest Pi. Simulating its outputs as
follows.

• for P0 acting as a corrupt receiver in the simulated interaction with any honest Pi, upon receiving K′′ the simulator samples
M′i uniformly random of length K′′, or ⊥ as FAppROT would. then the simulator receives set of indices Ji (and then can
extract the effective Bloom filter B̃F0i) or ⊥;

• for P0 acting as a corrupt sender in the simulated interaction with any honest Pi, the simulator samples uniformly at random
M̂′′

i
of length NOT and gives as the first part of the output. Upon receiving from P0 either ⊥ or set C, gives to P0 the vector

M̂i or /0.

We stress, that S delivers messages asynchronously, by the order Z sends messages to parties of FAppROT , and the above
presentation is written (reporting messages from honest parties is done once an honest party requests to deliver a given message).

If the simulated FAppROT ’s completed successfully (without ⊥’s, and in particular did complete at all), the simulator extracts
a set of Bloom filters B̃F0i from any instance between corrupt P0 and honest Pi and computes Mi (Pi ∈ P \ {I ∪P0}) as the
functionality FAppROT would compute the output for the honest sender (from M′i and Ji). If and once all FAppROT executions are
completed, S extracts an effective input of the adversary as X̃I =

{
q ∈ Q|∀s ∈ h∗(q),∀ j /∈ I, B̃F0 j[s] = 1

}
– queries which are

presented in all the extracted Bloom filters of P0.
After both steps 3a,3b are emulated, when the effective malicious input X̃I is extracted, S sends either it or ⊥ to the ideal

functionality as the input of each of the corrupted parties FMPSI, and receives either X̃ or ⊥ as the output. In the above, ⊥ is sent
if and only if at least one of the emulated FAppROT ’s ended with ⊥, the simulator gives ⊥, which is the effective input of the
adversary, to FMPSI and receives ⊥ from there.

To simulate a step-5 message by an honest party Pi /∈ I replied to Z, right after all the FAppROT ’s of Pi are completed, even if
there are another running FAppROT ’s for other parties:

• If Pi received ⊥ from FAppROT , S sends ⊥ to Z as the message for P0.

• If Pi’s FAppROT ’s are completed successfully, and Pi is not the last honest party whose FAppROT ’s done, S sends a uniformly
random GBFi∗ to Z as the message for P0.

• If all the FAppROT ’s are completed, but there were at least one ⊥, and Pi is the last honest party whose FAppROT ’s done
(without ⊥), S sends a uniformly random GBFi∗ to Z as the message for P0.

• If all the FAppROT ’s are completed successfully, and Pi is the last honest party whose FAppROT ’s done, then S performs the
following:

– computes Bloom filters BF j for the set X̃ for all j such that P j /∈ (I∪P0);

– computes GBF j = M j ⊕M̂ j for all j such that P j /∈ (I∪P0);

– computes codewords y js from GBF j as in the protocol, but only for items x js ∈ X̃ for all j such that P j /∈ (I∪P0);

– computes re-randomized GBF j for items x js ∈ X̃ and their codewords y js as in B.1; note, that positions at indices r
such that BF j[r] = 0 are entirely and uniformly random.

– computes GBF j∗
temp honestly as in 5th step of the protocol for all j such that P j /∈ (I∪P0), and

GBFi∗ =
⊕

P j /∈(I∪P0)
GBF j∗

temp
⊕

j 6=i,P j /∈(I∪P0)
GBF j∗ (here GBF j∗ are messages sent by S on behalf of other honest

parties in 5th step).

– S sends GBFi∗ to Z as the message for P0.

Simulator Analysis. Fix a certain Z, running on the public parameters 1σ, 1λ, k, N. S proceeds as follows. We prove
indistinguishability by induction on the message graph of Z - sent messages to the various parties, and to FAppROT throughout
the execution, starting with the inputs provided, and messages received from honest parties (emulated by S in the ideal world)
are statistically indistinguishable. The induction is on the message number according to the order of message delivery by Z in
the real world (which S follows). At the start, the (partial) view of Z is clearly the same in both worlds (as Z and other parties
receive the same public parameters) at the onset of the execution. We prove the claim in two steps. First, we consider input
distribution of the call graph, with messages corresponding to steps 1-4 for some given party, and step 5, before the last honest
party sends its step-5-message. In the second part we analyze the last message delivered in step 5. Let us first assume Z hands all
inputs to honest parties at the onset of the protocol (we later explain how to get rid of this assumption).

35

In step 1, as in the previous case, {Sil}Pi∈P\(I∪P0)
Pl∈I

sent from honest parties are random i.i.d strings (sampled by S in ideal

world), and have the same (uniform) distribution in both ideal and real worlds. In step 2, {M′i/⊥}Pi∈P\(I∪P0), {M̂′′
i}Pi∈P\(I∪P0),

{M̂i/ /0}Pi∈P\(I∪P0): these are identically distributed to the values received by the corrupted sender in the real world protocol,
by definition of FAppROT , and the fact that at any step of interaction of the FAppROT instances, the view of each emulated Pi
is distributed identically to the real world. In both cases (by inspection) when one of the parties is corrupted, the output of
FAppROT does not depend on the input of the honest party, and is properly emulated by S above. As the input to the FAppROT ’s
are distributed identically (resulting from the same Z), so are the outputs. To see this, note that when a round-2 (step 5) message
from one or more honest party was not yet sent when another honest party Pl′ sends its step-5 message and other honest parties
Pl have not contributed their step-5 shares ⊕ j/∈I∪{P0}∪{Pl}S

jl yet, they send an additive share of the final sum (the distribution of
which we analyze below). In particular, if an honest Pl has not received its step-3 output share, it in particular hasn’t sent its
step-5 message yet, and every other party is not the last, and the value the latter would sent is a random independent sting (share).
Calls to the RO also don’t break indistinguishability, because they actually refer to the same RO in both worlds.

Let us now compare the effect of step 5, assuming all executions of FAppROT with honest parties have completed. Assume
first they have completed without any ⊥’s in the real world. In this case, (after canceling the shares Sil contributed by the
malicious parties Pi, which are known to Z), ⊕iGBF i∗ sent in the real world by honest parties, along with 0-shares

⊕
i/∈I Sil

for l ∈ I are random additive shares of a randomized GBF, G, containing the intersection of honest parties’ input with X̃ ,
H = X̃

⋂(⋂
Pi∈P\I∪{P0}Xi

)
, encoded via the corresponding

⊕
i
(
Mi⊕ M̂i

)
, at entries in {h∗(q)|q ∈ H} with overwhelming

probability. Such a GBF, G, has fixed sums at the locations corresponding to elements of H (determined by M, M̂), and is
random otherwise.22 The overwhelming probability is due to two observations. (1) G[j] is random for every j not in ∪xi(h∗(xi))
for some Xi where Pi is honest, as Z does not know the corresponding M̂i[j] used by it (randomly complemented by Pi upon
rerandomizing this 0-entry in step 5). (2) If (1) does not happen, for j outside of a set h∗(x) we queried in 3(a) as 1’s by P0 for
some element x, G[j] is distributed uniformly at random, due to the fact that Mi[j] is not learned by Z. (3) Words x used by P0
in step 3a (from all parties) on which the RO was not queried (resulting in no indices from the first or second kind). As no ⊥
occurred in any FAppROT call, the probability of this is ≤ pFalse < 2−σ.

Now let us now consider the case when at least one of the FAppROT ’s resulted in ⊥ in the real world. In this case S sends ⊥ to
FMPSI, and thus receives ⊥. The simulation of step 5’s messages is perfect in this case, since at least one of the shares is not
delivered by at least one honest parties for each GBF entry, resulting in random i.i.d entries.

Finally, let us address a situation where Z does not give input to (at least) one of the parties until a certain point in the protocol.
In this case, by analysis similar to the above, all Z sees in the real execution of our protocol until the last party receives its
input and advances through the protocol to complete step 5, are random values (crucially, as the values provided by FAppROT
are freshly random in each execution, and only the locations of the values selected can be influenced by receiver’s input). S
emulates this distribution perfectly. In particular, all of this happens during the first phase of our call graph construction. Random
independent values are again obtained in step 5 due to part of the shares contributed by the stalled party missing.

F.5 Proving Theorem 1

We prove our protocol satisfies the standard UC security [5]. We will need the F σ,N
ROT defined above and the FRO, which is a

variant of the standard random oracle in Figure 12.
Theorem 1 follows directly from Lemmas 1 and 2, by an application of the Universal composition theorem..
Note that in the resulting protocol, the "offline" part appearing in the protocol in Figure 5 indeed line up at the beginning of

our protocol, and all computation performed there does not depend on the inputs. Therefor, following instantiation of F σ,N
ROT, we

may move the corresponding parts to an offline phase, as in ΠMPSI .

22In other words, this is a solution to a certain linear equation system over the field F2σ , since the coefficients of the system are in F2.

36

FRO

Parameters:
k – number of hash-functions;
N – size of input domain;
`(N) – size of output domain of each hash function.
Initialization: Initialize Q to be an empty list of prior queries. Output: upon receiving a query x ∈ [N] from party (SID,PID)
or the adversary S.

1. If no item of the form (x,∗) is not in Q, sample a random vector v ∈ [`(N)]k, and add (x,v) to the list Q.

2. Let (x,v) be the (unique) item in Q of the form (x,∗). Return v.

Figure 12: Random Oracle functionality

37

	Introduction
	Review of Related Previous Works
	Contributions
	Additional Related Work

	Background and Definitions
	The Two-Party Protocol of Rindal and Rosulek RR17
	The Semi-Honest Multiparty PSI Protocol of Inbar et al. IOP18

	The PSImple Protocol
	PSImple, Two-Party Case
	PSImple, Multiparty Case
	Security and Correctness
	Asymptotic Complexity

	Protocol Parameters
	Implementation, Code Optimizations, and Experimental Results
	Rindal and Rosulek Malicious-Secure Two-Party PSI Protocol
	Algorithms for the Garbled Bloom Filter
	Re-randomization Algorithm for a Garbled Bloom Filter
	Algorithm for Computation of the Hash-Indices Set h*(x)
	Algorithm for Computation of the Codeword from the Garbled Bloom Filter

	Parameters of AppROT
	False-Positive Probability of a Bloom Filter
	Complexity Analysis
	Security Proof
	Consistency of PSImple
	Security
	Approximate K-out-of-N ROT
	PSI protocol in the hybrid model
	Proving Theorem 1

