
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PSImple: Practical Multiparty Maliciously-Secure Private Set
Intersection

Aner Ben Efraim
Ariel University

Department of Computer Science
Ariel, Israel

anermosh@post.bgu.ac.il

Olga Nissenbaum
Ariel University

Department of Computer Science
Ariel, Israel

olga@nissenbaum.ru

Eran Omri
Ariel University

Department of Computer Science
Ariel, Israel

omrier@ariel.ac.il

Anat Paskin-Cherniavsky
Ariel University

Department of Computer Science
Ariel, Israel

anatpc@ariel.ac.il

ABSTRACT
Private set intersection (PSI) protocols allow a set of mutually dis-
trustful parties, each holding a private set of items, to compute
the intersection over all their sets, such that no other information
is revealed. PSI has a wide variety of applications including on-
line advertising (e.g., efficacy computation), security (e.g., botnet
detection, intrusion detection), proximity testing (e.g., COVID-19
contact tracing), and more. Private set intersection is a rapidly de-
veloping area and there exist many highly efficient protocols. How-
ever, almost all of these protocols are for the case of two parties or
for semi-honest security. In particular, despite the high interest in
this problem, prior to our work there has been no concretely effi-
cient, maliciously secure multiparty PSI protocol.

We present PSImple, the first concretely efficient maliciously-
secure multiparty PSI protocol. Our construction is based on obliv-
ious transfer and garbled Bloom filters. To demonstrate the practi-
cality of the PSImple protocol, we implemented the protocol and
ran experiments with up to 32 parties and 220 inputs.We show that
PSImple is competitive even with the state-of-the-art concretely ef-
ficient semi-honest multiparty PSI protocols.

Additionally, we revisit the garbled Bloomfilter parameters used
in the 2-party PSI protocol of Rindal and Rosulek (Eurocrypt 2017).
Using a more careful analysis, we show that the size of the gar-
bled Bloom filters and the number of oblivious transfers required
for malicious security can be significantly reduced, often by more
than 20%. These improved parameters can be used both in the 2-
party PSI protocol of Rindal and Rosulek and in PSImple.

KEYWORDS
private set intersection, secure multiparty computation, concrete
efficiency, malicious security, UC-security, garbled Bloom filters

1 INTRODUCTION
Private set intersection (PSI) protocols allow a set of mutually dis-
trustful parties, each holding a private data set, to compute the
intersection over all data sets. PSI has a wide variety of applica-
tions: As pointed out by Kolesnikov et al. [28], MPSI is useful for
targeted advertising, where several organizations wish to combine
their data to find a target audience for an ad campaign and test the

advertisement efficacy, and for network monitoring, where a set of
enterprises which have private audit logs of connections to their
corporate networks, and wish to identify similar activities in all
networks.

PSI is also useful for collaborative botnet attack detection and
collaborative intrusion detection, where agencies aim to find sus-
picious IP addresses by looking at the intersection of their user IP
sets or their suspected IPs, without disclosing their entire user list
or the users they suspect. Additional possible uses of PSI include
computing proximity testing that informs only if necessary (e.g.,
for COVID-19 contact tracing), and many more.

Despite the many uses and high interest in this problem, prior
to this work there has been no concretely efficient maliciously se-
cure multiparty PSI protocol. Note that while threshold PSI might
bemore appropriate for some applications, concretely-efficientma-
liciously secure threshold PSI is still an open problem, so a mali-
ciously secure multiparty PSI can be used instead.

Indeed, PSI is a special case of secure multiparty computation
(MPC), allowing a set of parties to perform some computational
task over their private input, while guaranteeing several security
properties, even in the face of adversarial behavior. Two of the
most basic security properties are correctness and privacy, roughly
requiring that the correct output is learned and that no other infor-
mation is revealed. There exist two main adversarial models. Semi-
honest adversaries are assumed to follow the prescribed protocol
honestly, but may try to infer additional information seeing their
view in the protocol execution. A more realistic adversarial model,
which we focus on, is that of malicious adversaries that may in-
struct the parties that they corrupt to deviate from the prescribed
protocol in an arbitrary manner.

Our focus in this work is on the construction of concretely ef-
ficient PSI-tailored protocols (where by “concrete efficiency” we
mean fast run-time in practice). It is instructive to note that a proto-
col may have very good asymptotic efficiency, but perform poorly
in practical scenarios.This is usually due to extensive use of public-
key operations, typically requiring exponentiations, which result
in large constants. For example, Rindal and Rosulek [39] presented

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a 2-partymaliciously-secure PSI protocol, based on oblivious trans-
fer1 and garbled Bloom filters, and showed that it is more than
an order of magnitude faster than the protocol of [13], which is
based on Diffie-Hellman, even though the latter requires signifi-
cantly less communication.

Concretely efficient generic MPC protocols (e.g., [2, 12, 18, 24,
41]) are less suitable for the PSI problem than PSI-tailored proto-
cols, as their complexity highly depends on the circuit size, which
is large for PSI (typically, incurring a slowdown of two orders of
magnitude, see [28]). Over the last decade, substantial research has
been dedicated to the construction of concretely efficient PSI proto-
cols. However, these protocols were either restricted to the two-
party setting (e.g., [13, 14, 25, 30, 34, 35, 37, 39, 40]) or were re-
stricted to deal with semi-honest adversaries [21, 28]. Given the
current state for concretely efficient PSI, the main problem we
tackle in this work is:

Construct a concretely efficient multiparty protocol
for computing private set intersection, which is
secure against malicious adversaries and scales well
with the number of parties and the data set size.

1.1 Review of Prior Works Based on GBFs
In this work, we present the PSImple protocol.This construction re-
lies on twomain cryptographic primitives, oblivious transfer (OT) [36]
and garbled Bloom filters (GBF) [14]. A𝐾-out-of-𝑁 oblivious trans-
fer allows a receiver to interact with a sender, holding 𝑁 strings
𝑠1, . . . , 𝑠𝑁 , such that the receiver learns some 𝐾 of these strings, at
its choice, but nothing else. The sender learns nothing (specifically,
not which of the strings the receiver chose to learn). A Bloom fil-
ter (BF) [3] is a data structure used to encode a set 𝑆 over some
domain D of 𝑛 elements as a Boolean array of length 𝑁 > 𝑛. It is
attributed with 𝑘 hash functions ℎ1, . . . , ℎ𝑘 . An element 𝑥 ∈ D is
encoded into the BF by setting all indicesℎ1 (𝑥), . . . , ℎ𝑘 (𝑥) in the BF
to be 1. We next review the existing ideas for PSI protocols based
on Bloom filters, but first note that the domain D is assumed to
be very large (e.g. 2128), so using 𝐾-out-of-𝑁 OT directly on the
domain size is infeasible.

The first naïve solution is the following: Say that two parties
P0,P1 wish to compute the intersection between their respective
sets 𝑆0 and 𝑆1. First, each party constructs a BF, according to its
private set. Then, they engage in an OT protocol so that P0 (as the
receiver) learns the values of P1’s BF, but only in the indices that
are 1 in P0’s BF. Finally, by computing the bit-wise AND over the
two BFs, P0 can learn the BF of the intersection. While this proto-
col is correct, it is not secure even in the semi-honest setting, as P0
may learn about 1 value indices in P0’s BF, even if they were set to
one on account of elements that are not in the intersection (but are
in P1’s set). Thus, this naïve solution leaks additional information.
Two-party semi-honest PSI of [14]. Dong et al. [14] overcame
the leakage in the above naïve solution, by introducing a new vari-
ant of Bloom filters, called garbled Bloom filters (GBF). A GBF is
attributed with same 𝑘 hash functions as its respective BF, but in
each coordinate of the GBF there is a 𝜎 long random string (instead

1While OT is based on public key operations, modern MPC protocols use OT exten-
sion [22], in which only a small amount of OTs require public key operations, and the
rest are generated using symmetric-key primitives.

of a single bit as in BF). The strings of a GBF are chosen indepen-
dently and uniformly, with the only requirement being that for any
element 𝑥 in the underlying set, the sum (XOR) of the strings in the
GBF corresponding to the indices ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥) equals to some
value 𝑦𝑥 , called the codeword of 𝑥 . In [14], 𝑦𝑥 was predetermined
to be 𝑦𝑥 = 𝑥 .

The protocol of [14] follows roughly as the above naïve solu-
tion, with the main difference that P0 learns the desired coordi-
nates (with value 1 in the Bloom filter of P0) from the garbled
Bloom filter of P1. Then, P0 can test whether an element 𝑥 is in
the intersection by checking if the sum of all the strings in indices
ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥) (which it got from P1’s GBF) equals 𝑦𝑥 = 𝑥 . On
the other hand, for any𝑥 ′ that does not belong toP0’s set,P0 learns
nothing but random and independent strings.

Note that this construction is secure only for semi-honest adver-
saries, as a malicious P0 can also ask for indices that are 0 in its
Bloom filter, and a malicious P1 can create a GBF corresponding
to significantly more than 𝑛 elements.2

Multiparty semi-honest PSI of [21]. Inbar et al. [21] extended
the work of [14] to the multiparty setting for augmented semi-
honest security,3 with 𝑡 + 1 parties {P0,P1, . . . ,P𝑡 }, by using ad-
ditive secret sharing. Specifically, P0 computes the Bloom filter
of its input set, and each other party P𝑖 computes a GBF for its
set, but using a variant of GBF where 𝑦𝑥 = 0 for every element 𝑥 .
Then, each P𝑖 shares its GBF among all the parties and sums all
the shares it received from the other parties. It follows by the lin-
earity of the secret-sharing scheme and the GBF variant used, that
the parties now hold shares for the GBF of the intersection, i.e.,
𝑦𝑥 = 0 if 𝑥 ∈ ∩𝑖∈{1,...,𝑡 }𝑆𝑖 . Next, each party engages in an OT pro-
tocol with P0, to allow P0 to learn the coordinates from the share
of P𝑖 that correspond to 1 in P0’s BF. Thus, for every 𝑥 in its input
set 𝑆0, it receives the indices ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥) of the share of each
party. Then, by reconstruction of the shares and checking whether
𝑦𝑥 = 0, P0 learns if 𝑥 also belongs to ∩𝑖∈{1,...,𝑡 }𝑆𝑖 , in which case
𝑥 ∈ ∩𝑖∈{0,...,𝑡 }𝑆𝑖 .

We again observe that this construction is secure only for aug-
mented semi-honest adversaries, as a malicious P0 can also ask for
indices that are 0 in its Bloom filter, and a malicious P𝑖 , 𝑖 ≥ 1 can
create a GBF corresponding to significantlymore than𝑛 elements.4

Two-party malicious PSI of [39]. Rindal and Rosulek [39] pre-
sented an efficient translation of Dong et al.’s 2-party protocol to
the malicious setting:

In the first part, as in [14], for each 𝑥 ∈ 𝑆0, P0 computes 𝑦𝑥
as the sum of the indices ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥), which it receives us-
ing OT. However, to ensure that P0 does not ask for significantly
more indices than the number of 1s in its BF, they used a mali-
ciously secure, approximate 𝐾-out-of-𝑁 OT protocol. Rindal and
Rosulek [39] show that this ensures that a malicious P0 can only

2In MPC, malicious parties may choose their inputs. In the context of PSI, however,
security should still ensure some bound on the size of their input sets.
3An augmented semi-honest adversary is an adversary that may choose to change its
input, but then follows the prescribed protocol honestly.
4This protocol is also not semi-honestly secure because a corrupt P0 may cancel out
the effect of the inputs of other corrupt parties ([21] also have a semi-honestly se-
cure protocol, but it is less efficient). To prove augmented semi-honest security, the
simulator sets the inputs of all corrupt parties to be the same as P0’s input.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PSImple: Practical Multiparty Maliciously-Secure PSI

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

use a slightly larger input set than the bound for honest parties.
For more details, see Section 2.

In the second part, to prevent a malicious P1 from using a larger
set than the bound for the honest parties, they use the following
idea: In P1’s GBF, rather than having a predetermined value 𝑦𝑥
as in [14, 39], 𝑦𝑥 is chosen randomly by P1. After P0 has learned
(approx.) 𝐾 of the strings in P1’s GBF from the first part above, P1
sends to P0 the codewords 𝑦𝑥 for every element 𝑥 in its input set.
This puts a firm limit on the number of elements P1 can use.

Note that for security reasons, the codewords sent in the second
part cannot be labelled (i.e., P1 cannot reveal that 𝑦𝑥 corresponds
to 𝑥 , as this would reveal that 𝑥 ∈ 𝑆1); in fact, theymust be sent in a
random order. Therefore, in order for P0 to find the intersection, it
needs to check for each 𝑥 ∈ 𝑆0 if there exists a codeword sent in the
second part that is equal to𝑦𝑥 it computed in the first part.The task
of checking for all 𝑛 inputs if their codeword was sent can be done
in 𝑂 (𝑛 log𝑛) (using sorting) or expected 𝑂 (𝑛) (using hash tables).
However, as we shall see, this task becomes hard when moving to
the multiparty case.

1.2 Contributions
Our main contributions can be summarized as follows.

(1) We present PSImple, the first concretely efficient, multiparty
PSI protocol that is secure againstmalicious adversaries, cor-
rupting any subset of parties.

(2) We implemented PSImple, incorporated several code opti-
mizations, and ran experiments with up to 32 parties and
220 inputs to show the practicality of PSImple. The results
show that PSImple is competitive evenwith the state-of-the-
art concretely efficient multiparty PSI protocols [21, 28, 42],
which achieve weaker security guarantees, and orders of
magnitude faster than using a direct extension of the pro-
tocol of [39] to the multiparty setting.

(3) We revisit the parameter analysis of previous works on effi-
cient PSI, based on garbled Bloom filters (GBF). Performing
a careful analysis, we were able to reduce the number of
required oblivious transfer (OT) calls by up to 25%.

We next elaborate on each of these contributions. However, be-
fore this, we explain why directly extending [39] using the ideas
from [21] does not work. Note that although this idea is “natural”,
it is already non-trivial. We next show that while such a direct so-
lution is possible, it results in an inefficient protocol.
Direct combination of [39] and [21].The direct protocol works
as follows: Extending [39], each party 𝑃𝑖 , 𝑖 ≥ 1 creates a GBF with
random codewords𝑦𝑥 , and P0 performs an (approximate, random)
𝐾-out-of-𝑁 OT with each of the other parties separately (i.e., the
first part of the [39] protocol). After this phase, P0 holds a garbled
Bloom filter for every party, however, it does not know the ap-
propriate codewords (i.e., 𝑦𝑥 s). Obviously, the parties cannot just
send the codewords to P0, even unlabelled in a random order, as
P0 could learn the intersection of its set with the set of each other
party separately, which is not allowed.

Therefore, to complete the protocol, the parties P1, . . .P𝑡 secret
share their GBFs using additive secret-sharing, and sum the re-
ceived shares from all the parties. By linearity, the parties now
hold shares of the sum of their GBFs. Then, the parties send the

codewords 𝑦′𝑥 of their shares (i.e., 𝑦′𝑥 is the sum of the indices
ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥) in their share) to P0.

The crux of the idea, is that for any element 𝑥 ∈ ∩𝑖∈{0,...,𝑡 }𝑆𝑖 , the
sum of all the codewords 𝑦𝑥 received by P0 from the other parties
using the OT in the first part, is equal to the sum of the codewords
𝑦′𝑥 of all the parties sent to P0 in the second part; this follows from
the linearity of the secret-sharing scheme.

However, the problem is that in order for P0 to check if 𝑥 is
in the intersection, it needs to find codewords 𝑦′𝑥 , one from each
party, such that their sum is equal to 𝑦𝑥 ; recall that for security
reasons, these 𝑦′𝑥 s need to be sent unlabelled and in a random or-
der. Unfortunately, this problem is hard – all known algorithms
for finding these codewords grow exponentially in the number of
parties, i.e., 𝑛𝑂 (𝑡) . Hence, this protocol is inefficient.
The PSImple protocol – A multiparty PSI protocol in the ma-
licious model. As we saw, trying to directly combine the ideas
from [39] and [21] results in an inefficient protocol. Therefore, in
order to construct PSImple we take a different path, first revisiting
the 2-party construction of [39].

A new two-party malicious PSI.We observe that a key idea in the
two-partymalicious PSI protocol of [39] is to somehow “bind” each
party to a restricted subset of the coordinates (of the computedGBF
for the intersection) that will be correlated with the other party’s
GBF. For P1, the binding effect comes from the fact that P1 can
only send a fixed number of codewords to P0, but this results in an
exponential blowup when moving to the multiparty setting.

In our two-party malicious construction, the parties start in the
same way as in [39], by P0 (as the receiver) performing an (ap-
proximated, random) 𝐾-out-of-𝑁 OT with P1 (as the sender), let-
ting P0 learn the appropriate parts in the GBF 𝐺1 of P1. As in the
construction of [39], this binds P0 to choose a bounded subset of
coordinates from P1’s GBF.

Next we need to similarly bindP1, but without sending the code-
words as in the direct construction. Therefore, in a second phase,
the parties perform the first part again, with switched roles. I.e.,
P0 constructs a GBF and the parties then perform an (approx., ran-
dom) 𝐾-out-of-𝑁 OT with P1 as the receiver and P0 as the sender,
letting P1 learn the appropriate parts in the GBF of P0.

The important observation is that by summing their GBF with
the strings received from the OT (in the corresponding indices),
they now both hold GBFs that agree on the codewords of elements
in the intersection. In other words, they now hold additive shares
of a GBF in which for every element 𝑥 in the intersection, the code-
word 𝑦𝑥 is 0. This, however, leads to a new difficulty – P1 cannot
just send his GBF to P0, as this may reveal additional information
about elements in P1’s set that are not in the intersection.

To solve the above issue, we introduce the notion of rerandom-
izing a GBF , and present a simple and efficient rerandomization
algorithm. That is, given a GBF 𝐺 for a set 𝑆 , the rerandomization
algorithm selects a uniformly random GBF 𝐺 ′ that agrees with 𝐺
on all the codewords for elements in 𝑆 . We can thus complete the
protocol by P1 sending to P0 a rerandomized version of the GBF
it obtained. Then P0 sums the received rerandomized GBF with its
own GBF. Since rerandomization does not affect the codewords of
the elements in the set, the above observation remains valid. Hence,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

P0 can recover the intersection by checking, for each element 𝑥 in
its input set, if 𝑦𝑥 = 0 in the sum of the GBFs.

We note that this alternative protocol more than doubles the
communication compared with [39], and hence we do not recom-
mend to use it in the 2-party case. However, this protocol avoids
the task of finding codewords sent from P1 that are equal to the
codewords computed by P0, and replaces it with the tasks of reran-
domizing the GBF and of summing the garbled Bloomfilters.While
this has little effect in the two-party case, in the case of more
than two parties, the saving is drastic – the above direct extension
of [39] to the multiparty setting requires finding, for each input 𝑥 ,
codewords 𝑦′𝑥 (one from each party) that sum to 𝑦𝑥 , the codeword
computed by P0. To the best of our knowledge, the best solution to
this problem is still exponential in the number of parties, i.e.,𝑛𝑂 (𝑡) .
In contrast, rerandomizing the GBF is independent of the number
of parties and summing the garbled Bloom filters only grows lin-
early with the number of parties.

A new multiparty PSI protocol. In the two party construction, to
impose on each party P𝑖 a restriction on the size of the data set it
uses when interacting with P𝑗 , we let P𝑖 act as the receiver in a
(approximated, random) 𝐾-out-of-𝑁 OT execution with P𝑗 . Since
in the multiparty setting we allow any subset of the parties to be
corrupted, it is natural to assume that it is necessary to have ev-
ery pair of parties perform two executions of the 𝐾-out-of-𝑁 OT
protocol (with the roles being reversed at each time). We prove,
however, that it suffices for security to only have P0 perform two
executions of the approximated, random 𝐾-out-of-𝑁 OT protocol
with each of the other parties.

Indeed, to generalize our two-party protocol to the multiparty
case, we first let P0 perform two approximated, random 𝐾-out-of-
𝑁 OT execution with each party P𝑖 . Then, P0 sums all 2𝑡 GBFs it
obtained in these executions. Let 𝐺0 be the resulting (cumulative)
GBF of P0. Similarly, let𝐺𝑖 be the GBF obtained by party P𝑖 as the
sum of the two GBFs it saw in the interaction with P0. As before,
each P𝑖 needs to rerandomize𝐺𝑖 before sending it to P0. Let𝐺∗𝑖 be
the rerandomized version of 𝐺𝑖 .

By generalizing our observation in the 2-party case, it follows
that 𝐺0 ⊕

⊕
𝑖∈[𝑡] 𝐺

∗
𝑖 is a GBF for the intersection of all the par-

ties, where 𝑦𝑥 = 0 for every element 𝑥 in the intersection. This is
because any codeword for 𝑥 that appeared in any of the original
GBFs (say in the interaction of P0 with party P𝑖), appears twice in
the above summation, once for P0 and once for P𝑖 . So the idea is to
allow P0 to learn the above summation. However, if each P𝑖 simply
sends𝐺∗𝑖 to P0, then security is breached as P0 can compute the in-
tersection with each party separately. To overcome this, we let the
parties first share their 𝐺∗𝑖 in a 𝑡-out-of-𝑡 additive secret sharing
scheme, and then locally sum all the shares they received. Finally,
by sending the summed shares to P0, they allow P0 to reconstruct
the GBF of the intersection 𝐺0 ⊕

⊕
𝑖∈[𝑡] 𝐺

∗
𝑖 , but nothing else.

Implementation, Code Optimizations, and Experiments.We
implemented PSImple and incorporated several code optimizations
that significantly reduced the communication and the requiredmem-
ory, and also allowed us to move much of the computation to the
offline phase (i.e., can be done before the inputs are known to the
parties). We ran experiments with 4 to 32 parties and input size of
28 to 220, in order to demonstrate the practicality of PSImple, and

analyzed the runtime to understand the asymptotics and the cost of
the various steps. In table 2 we compare the runtimes, on the same
platform5, with existing implementations of state-of-the-art multi-
party PSI protocols [21, 28, 42], which give a significantly weaker
security guarantee. As PSImple achieves security against a mali-
cious adversary, we expected PSImple to be significantly slower
than these protocols. However, somewhat surprisingly, our experi-
mental results show that PSImple is quite competitive, and in some
cases even faster. Additionally, we compare PSImple with our im-
plementation of the direct extension of [39] to the multiparty set-
ting (denoted byDirect in Table 2), and show that PSImple is orders
of magnitude faster.
Improved analysis and choice of parameters.Theapproximate
𝐾-out-of-𝑁 oblivious transfer (OT) protocol of [39] uses the cut-
and-choose technique over 𝑁OT executions of 1-out-of-2 OTs to al-
low the receiver to learn approximately𝐾 indices from the sender’s
GBF of length . Specifically, some of the strings selected in the OTs
are revealed to prove honest behavior. Performing a more careful
analysis of the parameters of the garbled Bloom filter and the cut-
and-choose process, we reduced the number of required 1-out-of-2
OTs in the protocol by up to 25% compared to [39]. Table 1 demon-
strates some examples for the actual parameter choices compared
to [39]. Since OT is often the bottleneck in PSI protocols based
on GBFs, this improvement has a great effect on the overall effi-
ciency of these protocols. In particular, our analysis directly im-
proves PSImple, as well as the protocols of [39, 42].

Table 1: Comparison of Π𝐴𝑝𝑝𝑅𝑂𝑇 parameters for different in-
put set sizes 𝑛.
Parameters: 𝑘 – number of Bloom filter hash-functions
𝑁BF – Bloom filter length
𝑁OT – number of OTs

𝑛 Analysis 𝑘 𝑁BF 𝑁OT

28
[39] 94 88,627 99,372

This work 147 64,733 74,379

212
[39] 94 1,121,959 1,187,141

This work 134 851,085 901,106

216
[39] 91 16,579,297 16,992,857

This work 131 12,660,342 12,948,963

220
[39] 90 257,635,123 260,252,093

This work 129 197,052,485 198,793,103

1.3 Additional Related Work
Currently, the state-of-the-art in two-party maliciously secure PSI
are the protocols of [40] and [30], both concretely-efficient, have
quasi-linear and linear communication complexities, respectively,
and are almost as efficient as the fastest semi-honest PSI proto-
col [27]. The benchmarks made in [30] suggest that it is currently
the fastest two-party, maliciously secure, PSI protocol. We remark
that [30] uses a primitive called PaXoS, of which garbled Bloom
filters is a special case. Following this work, it is interesting to see
if the techniques of [30] can also be extended to the multiparty
setting.

Apart from [21], an additional PSI protocol in the semi-honest
multiparty setting is the protocol of [28], which is based on symmetric-
key techniques.The protocol of [28] is significantly faster than [21]
5 Zhang et al. [42] did not publish their implementation. Therefore, we used their
reported results instead of measuring their runtime.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PSImple: Practical Multiparty Maliciously-Secure PSI

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Total runtime comparison of PSImple with other multiparty PSI protocols.
Key: – an unreported result5
* the protocol crashed
** Direct crashed on 4 parties and 216 inputs; on 4 parties and 214 inputs it took 109.055 seconds, while PSImple finished in 1.723 seconds

parties protocol sec. model n = 28 n = 212 n = 216 n = 218 n = 220

4

[21] augmented semi-honest 1.626 2.113 9.909 36.702 *
[28] semi-honest 0.075 0.277 3.642 12.095 47.687
[42]5 non-standard 0.76 2.95 40.91 – 513.27
Direct malicious 0.194 5.474 ** * *

PSImple malicious 0.201 0.550 6.623 27.086 128.248

6

[21] augmented semi-honest 1.611 2.257 10.213 39.473 *
[28] semi-honest 0.116 0.383 6.057 21.804 82.643

Direct malicious 5.135 * * * *
PSImple malicious 0.237 0.580 6.906 30.117 141.277

10
[21] augmented semi-honest 1.711 2.230 14.259 56.842 *
[28] semi-honest 0.161 0.748 11.718 46.345 174.908

PSImple malicious 0.302 0.868 7.963 31.378 147.292

16
[21] augmented semi-honest 1.746 2.714 19.296 * *
[28] semi-honest 0.252 1.122 16.626 61.019 241.864

PSImple malicious 0.367 0.911 13.177 47.334 *

for a small number of parties. However, it does not scale as well
with the number of parties, and we do not know if it can be effi-
ciently extended to the malicious setting.

Regardingmaliciously-securemultiparty PSI protocols, the early
works [9, 26] have high asymptotic communication complexity.
Additionally, they use expensive homomorphic encryptions, poly-
nomial interpolations and evaluations, and zero-knowledge proofs,
which are known to take a very long time in practice. The recent
works of [19] and [15] both have very good asymptotic communi-
cation complexity, but were not implemented and are most likely
not concretely efficient as well: The solution of [19] requires𝑂 (𝑛2)
exponentiations, rendering it impractical for real-world scenarios.

The solution of [15] requires expensive interpolation and eval-
uation, which were shown (e.g., in [30]) to often be even more
dominant in runtime than communication. Additionally, party P0
in [15] performs 8𝑡𝑛 OLEs, and the OLE protocol itself requires
some additional interpolation and evaluation. Furthermore, [15]
requires significantly more communication rounds (overall and in
the online phase) than PSImple, several of which are broadcast
rounds. It should also be noted that despite having seemingly slightly
better asymptotic communication than PSImple, it has large hid-
den constants.Thus, for the standard security parameter𝜎 = 128, [15]
does not concretely require less communication than PSImple, and
unlike PSImple,most of the communication and computation of [15]
is performed in the online phase.

Since [15] did not attempt to implement their protocol, we can-
not determine whether it is concretely efficient or not, but it seems
safe to conclude that [15] will at least be significantly slower than
PSImple. However, we note that [15] achieve a stronger security
guarantee than PSImple and [19], because in the protocol of [15]
all the parties output the intersection.

Zhang et al. [42] recently made an interesting attempt to build a
concretely efficient maliciously secure protocol extending the pro-
tocol of [39]. However, their solution is in a non-standard security
model, as it assumes that the adversary either does not corrupt P0
or does not corrupt another designated party P1. If these parties do

collude, then the corrupt parties may learn the intersection of the
sets of the honest parties. In particular, in the three party setting,
this implies leaking the Bloom filter of the set of the honest party.
Furthermore, this leakage occurs even in the semi-honest setting.
Hence, the security model they dealt with is significantly more re-
laxed than the standard malicious security model we assume.

Additionally, there is a line of work that is based on circuits [20,
31–33]. In [32], the authors managed to reduce the size of the cir-
cuit to linear in a number of items, vs. quadratic for the naïve so-
lution and quasi-linear in the sorting solution of [20]. However,
these works are mainly for the semi-honest two-party case, and
the techniques are not easily extendable.

2 BACKGROUND AND DEFINITIONS
In this section we give the necessary definitions and notations, and
briefly describe the cryptographic primitives that we use in our
protocol. The formal definitions of the corresponding functionali-
ties appear in Appendix A.

Notation. Wedenote the computational security parameter by𝜎 ,
and the statistical security parameter by 𝜆. In our implementation
and experiments, 𝜎 = 128 and 𝜆 = 40. For 𝑙 ∈ N, [𝑙] denotes the set
{1, ..., 𝑙}. We use the notation P = (P0, ...,P𝑡) for the set of parties,
where P0 is the evaluating party, and the remaining 𝑡 parties are
non-evaluating parties.The size of the input set of any honest party
is bounded by 𝑛, and D is the domain of the input items.

The security model. The security of our protocol is proved in the
Universal Composability framework of Canetti [6]. We assume a
static, malicious adversary that may corrupt up to 𝑡 parties (i.e., all
parties but one). The adversary has full control over these parties,
and may instruct them to arbitrarily deviate from the prescribed
protocol. We assume all parties are connected via secure point-to-
point channels. We also assume that all parties have access to (the
same) global random oracle (that is, the same oracle may also be
used in the executions of other protocols).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Private Set Intersection. In a private set intersection protocol, a
set of parties P = (P0, ...,P𝑡), each having up to𝑛 items from some
domain D as their private inputs, compute the intersection over
their input sets. As a result of the protocol, the evaluating party
P0 learns (only) the intersection of those sets, and all other parties
learn nothing.

Following the real vs. ideal paradigm, security is definedwith re-
spect to an ideal functionality, by proving that a real-world adver-
sary cannot do more harm than a very limited (ideal-world) adver-
sary interacting with the honest parties via the ideal functionality.
The ideal functionality FMPSI is given in Figure 1.

We point out a couple of properties that are less standard, which
we inherit from previous work on PSI. First, as mentioned above,
only a designated party P0 receives the output. Second, as in the
work of [39], the size 𝑛′ of the input sets of corrupted parties could
be slightly larger than the prescribed bound, i.e., 𝑛′ > 𝑛. It is pos-
sible to show that using our parameters, 𝑛′ must be smaller than
3.46𝑛, which significantly improves over the bound of 6𝑛 using the
parameters given by [39]; see Remark 1 for more details.

FMPSI

P0,P1, ...,P𝑡 - parties; P𝑖 holds 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛𝑖 }, 𝑛𝑖 ≤ 𝑛
– the private input of the party;
𝑛 – the maximal size of the input set of any honest party;
𝑛′ ≥ 𝑛 – the maximal allowed size of the input set of any mali-
cious party;
Inputs: 𝑋𝑖 from each party P𝑖 , 𝑛, 𝜎 .
Computation: If size of the corrupt party input set is bigger than
𝑛′, then the functionality aborts. Else it computes the intersection
of all the data sets: 𝑋 = ∩𝑡𝑖=0𝑋𝑖 .
Outputs: Party P0 receives 𝑋 from the functionality, all other
parties receive no output.

Figure 1: FMPSI – Ideal multiparty private set intersection
functionality

Additive Secret Sharing. An additive secret sharing scheme en-
ables a set of 𝑡 parties to share a secret 𝑆 such that no proper subset
of them can learn any information about 𝑆 (apart from its length).
However, all 𝑡 parties together are able to reconstruct the secret.

In the case of binary fields (which can also be used for bitstrings
by considering them as elements of a binary field), each party P𝑖
receives a value 𝑆𝑖 of length |𝑆 |, called P𝑖 ’s share of 𝑆 , such that
𝑆 = 𝑆1 ⊕ ... ⊕ 𝑆𝑡 . To obtain such a sharing, 𝑡 − 1 of the shares can
be selected uniformly at random, and the last share is set to be the
XOR of these 𝑡 − 1 shares and the secret 𝑆 .

Additive secret-sharing is linear. In particular, given two ad-
ditive sharings of secrets 𝑆1 and 𝑆2, parties can locally compute
shares of the sum 𝑆1 ⊕ 𝑆2 by XORing their shares of 𝑆1 and 𝑆2.

Bloom Filters and Garbled Bloom Filters. A Bloom filter is a com-
pact data structure [3] to store a set of items that allows efficient
probabilistic membership testing. It consists of𝑁BF bits and is asso-
ciatedwith𝑘 independent randomhash functionsℎ1,…,ℎ𝑘 : {0, 1}∗ →
[𝑁BF]. Initially, all the bits of the Bloom filter are set to 0. To add
an item 𝑥 to the Bloom filter, the bits at indices ℎ1 (𝑥),…,ℎ𝑘 (𝑥) are
set to 1 (regardless of whether their current value is 0 or 1).

If all the bits in the Bloom filter at indices ℎ1 (𝑥),…, ℎ𝑘 (𝑥) equal
1, then this is interpreted as if 𝑥 is a member of the set. Note that

this might be a false positive result (i.e., 𝑥 is misidentified as being
in the underlying set), if other elements of the set turn the Bloom
filter bits at indices ℎ1 (𝑥),…,ℎ𝑘 (𝑥) to 1’s.

Denote by 𝑝𝐹𝑎𝑙𝑠𝑒 the false-positive probability for a given Bloom
filter, i.e., the probability of a positive result for some randomly
chosen item. This probability depends on the length of the Bloom
filter 𝑁BF, the number of hash-functions 𝑘 , and on the number
of items currently stored in the Bloom filter (more precisely, on
the number on 1’s in Bloom filter). The analysis of the false pos-
itive probability of a Bloom filter is less trivial than it initially
seems [4, 13, 17, 29]. In this paper we used the refined formula
from [17].

Garbled Bloom filters (GBF) were introduced by Dong et al. [14]
as the garbled version of a Bloom filter, obtained by expanding
each bit in the original BF to a 𝜎-long bit string. The compact-
ness of the original Bloom filter is somewhat compromised in a
GBF for the sake of obtaining an obliviousness property. As be-
fore, any element 𝑥 is attributed with 𝑘 coordinates in the GBF,
i.e., the hash-values ℎ1 (𝑥), ..., ℎ𝑘 (𝑥). Intuitively, this obliviousness
property means that for a given element 𝑥 , it is impossible to learn
anything on whether 𝑥 is in the data set without querying the GBF
on all 𝑘 coordinates attributed to 𝑥 . On the other hand, given the
strings in all coordinates attributed with an element 𝑥 in the GBF,
we compute the codeword 𝑦𝑥 as follows.

𝑦𝑥 =
⊕

𝑖∈ℎ∗ (𝑥)
GBF[𝑖], (1)

where ℎ∗ (𝑥)
𝑑𝑒𝑓
= {ℎ 𝑗 (𝑥) | 𝑗 ∈ [𝑘]}. 6 If the GBF and 𝑥 are given, and

it is known what the codeword of 𝑥 should be, then it is possible
to check if 𝑥 is in the GBF using Equation (1).

Fixing the length and hash functions of a Bloom filter, a set
of items uniquely determines the associated Bloom filter. In con-
trast, there usually exist many distinct garbled Bloom filters for
any given set, even if the codewords are fixed as well. Based on
the GBF construction algorithm of Dong et al. [14], we construct
an efficient algorithm to rerandomize a garbled Bloom filter 𝐺 for
a fixed set 𝑋 . That is, to select a uniformly random GBF 𝐺 ′ that
agrees with 𝐺 on the codewords of the elements 𝑋 . For complete-
ness, this algorithm is given in Appendix B.1.

Observe that if BF1 and BF2 are two Bloom filters (of the same
length and using the same hash-functions) of sets 𝑋1 and 𝑋2, then
BF1 ∧ BF2 (i.e, the bitwise AND of the arrays) is a Bloom filter
of 𝑋1 ∩ 𝑋2. Similarly, if GBF1 and GBF2 are two garbled Bloom
filters (of the same length and using the same hash-functions) of
sets𝑋1 and𝑋2, then GBF1 ⊕GBF2 is the GBF of𝑋1∩𝑋2, where the
codeword for any element is the XOR of its codewords in 𝑌𝑋1 and
𝑌𝑋2 . In particular, if the items that are in both 𝑋1 and 𝑋2 have the
same codewords in GBF1 and GBF2, then all the items of 𝑋1 ∩ 𝑋2
have all-zero codewords in GBF1 ⊕ GBF2.

Oblivious Transfer. A 1-out-of-2 oblivious transfer (OT) involves
two parties: a sender and a receiver. The input of the receiver is its
choice bit 𝑏, the input of the sender are two values:𝑚0 and𝑚1. The
output of the receiver is𝑚𝑏 , while the sender has no output.
6The summation in (1) is performed over the set of indices without repetitions. Pinkas
et al. [34] showed that the probability of a collision ℎ𝑖 (𝑥) = ℎ 𝑗 (𝑥) is noticeable,
which may lead to the elimination of the corresponding GBF string from the sum.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PSImple: Practical Multiparty Maliciously-Secure PSI

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

In a𝐾-out-of-𝑁 randomOT, the input of the receiver is its set of
choice indices of size𝐾 , denoted by 𝐽 = { 𝑗1, ..., 𝑗𝐾 }, where 𝑗𝑖 ∈ [𝑁],
𝑖 ∈ [𝐾]. The sender has no input. The output of the sender are 𝑁
random values: 𝑀 = {𝑚1, ...,𝑚𝑁 }, and the output of the receiver
values indexed by 𝐽 , namely𝑀𝐽 = {𝑚 𝑗1 , ...,𝑚 𝑗𝐾 }.

Cut-and-Choose. Acommon technique to ensure that secret data
has been constructed according to an agreed method. The high-
level idea is that after the secret data has been created, a random
part of the data is opened and checked. If the checked part has been
constructed honestly, the rest of the data, which remains secret, is
assumed to be constructed honestly as well, and used in the proto-
col. Note that this implies that the amount of secret data initially
generated needs to be larger than the required secret data needed
for the protocol.

Approximate 𝐾-out-of-𝑁 Random OT Π𝐴𝑝𝑝𝑅𝑂𝑇 . We recall that
Rindal and Rosulek [39] require a maliciously secure 𝐾-out-of-𝑁
OT protocol to ensure that P0 does not ask for significantly more
indices than the number of 1s in its BF. To the best of our knowl-
edge, no concretely-efficientmaliciously-secure𝐾-out-of-𝑁 OTpro-
tocol exists. To circumvent this, [39] implement a maliciously se-
cure approximate 𝐾-out-of-𝑁 Random OT, allowing the receiver
to request slightly more than 𝐾 strings. Rindal and Rosulek [39]
show that their PSI protocol remains secure with a proper choice
of parameters, which guarantee that the false-positive probability
(𝑝𝐹𝑎𝑙𝑠𝑒) of the resulting Bloom filter is still negligible. This, in turn,
means that it is impossible for the adversary to test the intersection
for items that were not part of its input set.

The approximate𝐾-out-of-𝑁 subprotocol of Rindal and Rosulek,
which we denote by Π𝐴𝑝𝑝𝑅𝑂𝑇 , is formally described in Figure 2.
We next give a rough overview of the Π𝐴𝑝𝑝𝑅𝑂𝑇 protocol. In the
first phase, the two parties invoke 𝑁OT parallel executions of a
maliciously secure two-party 1-out-of-2 OT (where the inputs of
the sender are random strings𝑚0,𝑚1). In a known fraction of these
executions the receiverP0 requests to learn the string𝑚1, and in all
others it requests to learn𝑚0. In the second phase, the parties use
the cut-and-choose technique to verify that P0 behaved honestly.
Specifically, the sender P1 asks P0 to reveal a random subset of
its choices and verifies that the right fraction of 0-string choices
appear. If not, P1 aborts the execution.

Finally, the unrevealed choice strings are reordered by P0 so
that they are attributed to its desired locations. Because the cut-
and choose set is chosen by the sender, the receiver initially forms
the requests sequence at random. Therefore, the reordering at the
final stage is necessary.

RemaRK 1. In the PSI protocol of [39], the possible input set size
of the adversary 𝑛′ may be larger than 𝑛, and the PSImple protocol
inherits this property. This happens because in the cut-and-choose
check only the number of 1’s in the Bloom filter is bounded, but not
𝑛 itself. In [39] they showed that 𝑛′ < 2𝑁BF/𝜎 (the authors stress
that this is a very rough bound given for the worst case); we refer the
reader to [39] for the detailed analysis.

We note that with the choice of parameters in [39], 𝑁BF < 3𝑛𝜎 ,
so 𝑛′ < 6𝑛. With our choice of parameters in Section 4, since 𝑁BF is
comparatively lower (see Tables 1 & 4), 𝑁BF < 1.73𝑛𝜎 so 𝑛′ < 3.46𝑛.
Thus, our improved parameters also give a better security guarantee.

Protocol Π𝐴𝑝𝑝𝑅𝑂𝑇
Parties: A sender and a receiver.
Inputs (used only in the online phase):The receiver inputs its
choice bit-array 𝐵; the sender has no input.
Offline phase Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 :

(1) [1-out-of-2 OTs] The sender and the receiver call
F𝜎,𝑁OT
OT (performing 𝑁OT 1-out-of-2 OTs). The receiver

chooses bits 𝑐1, ..., 𝑐𝑁OT with 𝑁 1
OT ‘1’s among them, and

𝑁OT − 𝑁 1
OT ‘0’s (randomly permuted), and the sender

chooses uniformly random 𝑀0 = {𝑚10, ...,𝑚𝑁OT0 } and
𝑀1 = {𝑚11, ...,𝑚𝑁OT1 }. As a result, in the 𝑗 th OT, the
receiver uses its choice bit 𝑐 𝑗 and learns𝑚 𝑗∗ = 𝑚 𝑗𝑐 𝑗 (of
length 𝜎).

(2) [cut-and-choose challenge] The sender randomly
chooses the set 𝐶 ⊆ [𝑁OT] of size 𝑁𝑐𝑐 and sends 𝐶 to
the receiver.

(3) [cut-and-choose response] The receiver checks that
|𝐶 | = 𝑁𝑐𝑐 , then computes and sends to the sender the set
𝑅 = { 𝑗 ∈ 𝐶 |𝑐 𝑗 = 0}. To prove that it used the choice bit
‘0’ in the OTs indexed by 𝑅, it also sends 𝑟 ∗ =

⊕
𝑗∈𝑅𝑚 𝑗∗.

The sender aborts if 𝑟 ∗ ≠
⊕

𝑗∈𝑅𝑚 𝑗0 or if |𝐶 | − |𝑅 | >
𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 , where 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 is the maximal number of
‘1’s allowed in the cut-and-choose OTs.

Online phase Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 :
(4) [permute unopened OTs] The receiver chooses a ran-

dom injective function 𝜋 : [|𝐵 |] → ([𝑁OT] \ 𝐶) such
that 𝐵 [𝑗] = 𝑐𝜋 (𝑗) , and sends 𝜋 to the sender.
The receiver permutes its random values𝑚 𝑗∗ according
the 𝜋 , and the sender permutes𝑚 𝑗1 according to 𝜋 .

Outputs: The receiver outputs 𝑀∗ = {𝑚 𝑗∗ } 𝑗∈[|𝐵 |] ; the sender
outputs𝑀 = {𝑚 𝑗1 } 𝑗∈[|𝐵 |] .

Figure 2: Approximate 𝐾-out-of-𝑁 Random OT Protocol

3 THE PSIMPLE PROTOCOL
In this Section we explain in detail our multiparty maliciously-
secure PSI protocol, PSImple, and the underlying techniques we
use. We first give some motivation, by showing that the “natural”
way to combine the techniques from [39] and [21] results in an inef-
ficient protocol. Then, in Section 3.1, we describe the PSImple pro-
tocol for the two-party case.7 Finally, the full fledged multiparty
PSImple protocol is described in Section 3.2. The formal descrip-
tion of the PSImple protocol appears in Figure 3.

Before moving on to describe PSImple, let us consider what may
be seen as the direct way to extend the protocol of [39] to the mul-
tiparty case, using the ideas of [21], and why it is inefficient. The
idea is to have P0 to perform Π𝐴𝑝𝑝𝑅𝑂𝑇 with each other party P𝑖
independently and then have P0 XOR all the GBFs received from
the Π𝐴𝑝𝑝𝑅𝑂𝑇 ’s to compute its cumulative GBF, denote it by 𝐺∗.

Recall that the codeword for an element 𝑥 with respect to a GBF
𝐺 with hash functions ℎ1, . . . , ℎ𝑘 is the XOR over the strings from
the GBF at indices ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥). Now, if each party P𝑖 sends to
P0 the codewords attributed to its set 𝑋𝑖 with respect to its GBF,
then P0 can compute the intersection of all parties, however, it can

7We do not suggest to use PSImple in the 2-party case, as it is less efficient than the
state-of-the-art 2-party PSI protocols. For more than two parties, however, PSImple is
the only concretely efficient PSI protocol secure against malicious adversaries.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

also compute the intersection with party separately, which is not
allowed.

To avoid this leakage, eachP𝑖 can additively share its GBF among
all parties P𝑗 (𝑗 ∈ [𝑡]), and then compute the cumulative GBF 𝐺∗𝑖
as the XOR of all the shares it holds. After that, each party P𝑖 sends
to P0 the codewords attributed to its set 𝑋𝑖 with respect to its cu-
mulative GBF 𝐺∗𝑖 . Finally, P0 concludes that an item 𝑥 in its in-
put set with codeword 𝑦𝑥 is in the intersection, if there exist code-
words 𝑦1, . . . , 𝑦𝑡 received from P1, . . . ,P𝑡 , respectively, such that
𝑦𝑥 = 𝑦1 ⊕ . . . ⊕ 𝑦𝑡 .

The above is indeed correct and secure. However, an exhaustive
search for a combination of codewords that sum to 𝑦𝑥 grows expo-
nentially with number of parties, i.e., 𝑛𝑂 (𝑡) , and we do not know
of any solution that is not exponential in the number of parties.

3.1 PSImple, Two-Party Case
One of the key points of the PSI protocol of [39] protocol is in
some sense to “bind” each of the two parties to a Bloom filter of
a restricted size set. By this we mean that there is a stage in the
protocol in which each party must choose a limited number of co-
ordinates (of the resulting GBF) that may become correlated with
the BF of the other party, whereas all other coordinates remain
independent of the other party’s BF. It is important to note that
these choices are made before the party learns any meaningful in-
formation in the protocol. In the protocol of [39], such a binding is
achieved for P0 by participating in Π𝐴𝑝𝑝𝑅𝑂𝑇 as the receiver. The
binding for P1 is achieved when it sends the codewords that cor-
respond to its elements to P0.

As explained above, when moving to the multiparty setting, the
amount of work done by P0 to find a sum of codewords, one from
each party, that match its own grows exponentially in the number
of parties. Thus, one of the key points of PSImple is to achieve this
binding without sending the codewords. To this end, the parties
execute a second instance of Π𝐴𝑝𝑝𝑅𝑂𝑇 , with the parties playing
reversed roles. In this way, the binding of P1 is achieved similarly
to the binding of P0.

As a result, each party P𝑖 receives two garbled Bloom filters,
one from each execution of Π𝐴𝑝𝑝𝑅𝑂𝑇 . Put differently, P𝑖 holds its
own full GBF, and the 𝑘 coordinates it chose from the GBF of P1−𝑖
(padded with random strings to complete a GBF). By XORing these
GBFs locally, P𝑖 obtains the cumulative garbled Bloom filter GBF𝑖 .
It follows that GBFIS 𝑑𝑒𝑓

= GBF0 ⊕ GBF1 (i.e., the XOR of the two
cumulative GBFs) is a GBF that has the zero string on all indices
that where chosen by both P0 as a receiver and P1 as a receiver,
and has a random string in all other coordinates.

On the positive side, we have that for any element 𝑥 in the in-
tersection, it holds that the codeword of 𝑥 with respect to GBFIS is
0. Thus, the intersection could now be reconstructed as follows: P1
sends GBF1 to P0, who concludes that 𝑥 ∈ 𝑋0 is in the intersection
if 𝑥 has the 0-codeword in GBFIS. On the negative side, however,
this method is insecure, as it allows P0 to identify indices that were
queried by P1, even if they are not indices of an element in the in-
tersection. This occurs if for some index 𝑠 there is a 1 in the BF of
both parties, as in this case GBFIS [𝑠] = 0.

To avoid this, P1 rerandomizes its cumulative GBF. Recall that
the codewords of GBF1∗ are equal to those of GBF1 for items in the

set 𝑋1, but there is no longer a connection between the individual
indices GBF0 [𝑠] and GBF1∗ [𝑠], for any 𝑠 .

Next, P1 sends GBF1∗ to P0. Since rerandomization does not
affect the codewords, it follows that if 𝑥 is in𝑋0∩𝑋1, then it has the
same codeword in bothGBF0 andGBF1∗. In other words,GBF∗ 𝑑𝑒𝑓=
GBF0 ⊕GBF1∗ is a garbled Bloom filter of the set𝑋1∩𝑋2, in which
the codewords of the items are equal to zero. Therefore, P0 can
check, for each item 𝑥0𝑗 in its input, if 𝑥0𝑗 is in the intersection, by
testing

⊕
𝑠∈ℎ∗ (𝑥0𝑗) GBF

∗ [𝑠] = 0.

3.2 PSImple, Multiparty Case
In this section we explain how to extend PSImple to the multi-
party setting. Similarly to the two-party case, the parties achieve a
“binding” of each party to its Bloom filter by executing Π𝐴𝑝𝑝𝑅𝑂𝑇 .
Initially, it would seem that each party needs to perform two in-
stances of Π𝐴𝑝𝑝𝑅𝑂𝑇 , in reverse roles, with each other party. How-
ever, we show in the proof, that to achieve this binding, it suffices
that each party only performs two instances of Π𝐴𝑝𝑝𝑅𝑂𝑇 with P0.

After the executions of Π𝐴𝑝𝑝𝑅𝑂𝑇 , the protocol proceeds as in
the 2-party case, with each party XORing the garbled Bloom fil-
ters it received from its executions of Π𝐴𝑝𝑝𝑅𝑂𝑇 , and rerandomiz-
ing them. Recall that the rerandomization operation is done to hide
coinciding requested coordinates in the executions of Π𝐴𝑝𝑝𝑅𝑂𝑇 ,
while preserving the property that codewords for joint elements
are equal.

Let GBF0 be the cumulative GBF of P0, i.e., the sum of all the
2𝑡 GBFs it saw in its 2𝑡 interactions in Π𝐴𝑝𝑝𝑅𝑂𝑇 . Let GBF𝑖∗ be
the rerandomized version of the cumulative GBF obtained by P𝑖
in the two interactions of Π𝐴𝑝𝑝𝑅𝑂𝑇 it had with P0. The idea is

to let P0 learn GBF∗
𝑑𝑒𝑓
= GBF0 ⊕𝑖∈[𝑡] GBF𝑖∗, which corresponds

to a garbled Bloom filter of the intersection of all parties, with
all-zero codewords. Then, P0 would be able to compute the inter-
section similarly to the two-party case: For each element 𝑥0𝑗 of
its input set, it outputs 𝑥0𝑗 as the member of the intersection, if⊕

𝑠∈ℎ∗ (𝑥0𝑗) GBF
∗ [𝑠] = 0.

However, we cannot simply let each party P𝑖 send GBF𝑖∗ to P0
as in the 2-party case, since this would be identical to 𝑡 indepen-
dent 2-party PSImple executions. Hence, P0 would be able to re-
cover its intersection with each party P𝑖 independently, which is
not secure. To avoid this, the parties first additively share their
GBFs and let P0 reconstruct the sum. From the linear property of
additive secret-sharing, it follows that P0 recovers the sum of these
GBFs, i.e., GBF∗, and from the secrecy property it follows that P0
learns nothing but GBF∗.

The PSImple multi-party protocol is described formally in Fig-
ure 3. Following the offline/online paradigm, we divide our MPSI
protocolΠ𝑃𝑆𝐼𝑚𝑝𝑙𝑒 into two phases: an offline-phaseΠ𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒

𝑃𝑆𝐼𝑚𝑝𝑙𝑒
, which

can be executed by the parties before they know their inputs, and
an online-phaseΠ𝑂𝑛𝑙𝑖𝑛𝑒

𝑃𝑆𝐼𝑚𝑝𝑙𝑒
, which is executed after the parties learn

their inputs.

Asymmetric Set Sizes. In the PSImple description above, we con-
sidered 𝑛 as the exact set size for all honest parties. However, 𝑛
should be treated as an upper bound on set sizes, allowing hon-
est parties to have only 𝑛𝑖 ≤ 𝑛 items. To this end, each party P𝑖

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PSImple: Practical Multiparty Maliciously-Secure PSI

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

computes its Bloom filter BF𝑖 from its input set 𝑋𝑖 and 𝑛 − 𝑛𝑖 ad-
ditional random dummy items, to perform Π𝐴𝑝𝑝𝑅𝑂𝑇 ’s. However,
these dummy items are not treated as input items in the rerandom-
ization procedure. See Appendix F for more details.

3.3 Security and Correctness
We prove the security of the protocol via the real vs. ideal par-
adigm (specifically, in the universal composability framework of
[6]). In Appendix F, we provide a complete proof for the following
theorem, stating the security of the PSImple protocol.The theorem
refers to a hybrid model with two functionalities. The F 𝜎,𝑁OT func-
tionality constitutes 𝑁 parallel ideal instances of 1-out-of-2 𝜎-long
string oblivious transfer. The FgRO functionality is an ideal formu-
lation of a global random oracle that is used by many protocols in
parallel – this functionality better models the situation in the real-
world, where the same random oracle realization (e.g., SHA 256) is
used by many protocols, concurrently.

TheoRem 3.1. The Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 protocol of Figure 3 securely realizes
the functionality FMPSI with statistical UC-security with abort in the
presence of a static, malicious adversary corrupting any number of
parties in the F 𝜎,𝑁OT , FgRO-hybrid model, where the adversary makes
a polynomially-bounded number of queries to FgRO (where the FgRO
models the Bloom filter’s hash functions), assuming the protocol pa-
rameters are chosen as described in Section 4.

For simplicity, the above theorem refers to Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 as a single
shot protocol. In Section G, we prove the security of our construc-
tion for the offline-online setting. We next sketch the ideas behind
the proof, addressing its correctness and privacy separately.

Correctness. Our goal here is to prove that in an honest execu-
tion of the protocol the output of P0 is indeed the intersection.
Let 𝑥 be an item in the intersection of all the sets. Then, for every
𝑖 ∈ [𝑡] in the interactions between P0 and P𝑖 , each of the two par-
ties is going to request the coordinates attributed with 𝑥 from the
other party. Thus, both codewords for 𝑥 (for both P0 and P𝑖) are
going to be summed into the cumulative GBF of each of them. In
addition, P𝑖 will still keep these codewords in the rerandomization
process. Finally, as all GBFs are XORed by P0, all these codewords
will cancel out, and hence, P0 will indeed output 𝑥 as part of the
intersection.

If 𝑥 is not in the intersection, then there exists a party P𝑖 for
𝑖 ∈ [𝑡] ∪ {0} whose set does not contain 𝑥 . Thus, except for the
overwhelmingly small probability of a false positive in the under-
lying BF (i.e., probability 𝑝𝐹𝑎𝑙𝑠𝑒), in the OT interaction as a receiver
P𝑖 is not going to request all coordinates for 𝑥 . Thus, the codeword
for 𝑥 from this interaction for P𝑖 will be a completely independent
uniform 𝜎-long string. Hence, the probability that 𝑥 is in the out-
put is 2−𝜎 , which is negligible. A proof of the consistency appears
in Appendix F.1.

Malicious Security of Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 . Proving the security of MPC
protocols is a delicate task, requiring a rigorous analysis. We next
present very high level ideas behind the security proof of our pro-
tocol. The main goal of the proof is to construct a simulator for the
adversary, i.e., an ideal world adversary that interacts with the hon-
est parties via the ideal FMPSI functionality and simulates a view

that is closely distributed to the view real-world adversary in an
execution of the protocol.

The main challenge of the simulator is to extract the effective
inputs of the corrupted parties (i.e., the inputs that they actually
use). To this end, we use the fact the hash functions are random
oracles. Thus, for any element 𝑥 on which the adversary made no
query to the oracle, it cannot know the Bloom filter coordinates
that are attributed with 𝑥 . Using the global oracle formulation via
the FgRO functionality, the simulator is informed of all queries ever
made to oracle. This constitutes a list of possible elements that the
adversary may use as inputs.

Once this is done, the simulator can extract the effective inputs
for the corrupt parties, from the OT interactions of malicious par-
ties, together with the secret shares they send to honest parties
(recall that when interacting with the adversary, the simulator em-
ulates for both the honest parties and the F 𝜎,𝑁OT functionality).This
is done as follows.

IfP0 is corrupt, then it suffices to send to the functionality the ef-
fective set of P0. To obtain that we do the following. The simulator
obtains the Bloom filter of P0 from it choices in the OT interactions
via F 𝜎,𝑁OT . Finally, for each random oracle query (i.e., possible item)
the simulator tests whether this item is in the Bloom filter of P0.

If P0 is honest, then the simulator needs to obtain the inter-
section over the effective sets of malicious parties. The simulator
obtains the Bloom filter of each corrupt P𝑖 from its OT interac-
tions with P0. In addition, it learns the sum of shares of the re-
randomized GBFs of corrupt parties from the messages sent to the
P0 (omitting the shares of honest parties). Finally, for each ran-
dom oracle query (i.e., possible item) the simulator tests whether
the effective GBF of the intersection over corrupt parties’ sets.

Once this is done, the simulator can go to the ideal functionality
with the intersection of all sets of malicious parties. Finally, if P0
is corrupt, then upon receiving the output from the functionality,
the simulator can send the missing GBF shares to P0 that would
result in the reconstruction of the correct output.

3.4 Asymptotic Complexity
In Table 3, we compare the communication complexity of PSImple
with that of the multiparty PSI protocols of [9, 15, 19, 21, 26, 28] in
the offline and online phases.

We observe that the overall communication complexity (total
complexity of all the parties) is asymptotically approximately the
same as the protocol of [21], which is only semi-honestly secure.
The communication complexity is significantly better than the ma-
liciously secure protocols of [9, 26], but slightly worse than the
protocols of [19] and [15]. However, we recall that these proto-
cols are not concretely efficient. Additionally, PSImple scales some-
what better with respect to the number of parties. We note that the
workload in PSImple is not balanced: the majority of communica-
tion is with the evaluating party P0, while for each other party it is
𝑡 times less. A detailed analysis of the asymptotic communication
and computation complexity of PSImple is given in Appendix E.

4 PROTOCOL PARAMETERS
In this section, we revisit the parameter analysis of [39] for the pa-
rameters of Π𝐴𝑝𝑝𝑅𝑂𝑇 . We show that the size of the garbled Bloom

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Protocol of Malicious-secure Multiparty PSI Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒
Parameters: 𝜎 - computational security parameter; 𝜆 - statistical security parameter; 𝑁BF - size of the Bloom filter; 𝑁OT > 𝑁BF - number of
random OTs to perform; 𝑁 1

OT, 𝑁𝑐𝑐 , 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 – parameters for Π𝐴𝑝𝑝𝑅𝑂𝑇 computed as in Sec. 4.
Inputs: Each party P𝑖 , 𝑖 ∈ {0, ..., 𝑡 }, inputs its set of items 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛𝑖 }, 𝑛𝑖 ≤ 𝑛, 𝑥𝑖 𝑗 ∈ D.
Offline-phase Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒

𝑃𝑆𝐼𝑚𝑝𝑙𝑒
:

(1) [hash seeds agreement] Parties run a coin-tossing protocol to agree on random hash-functions ℎ1, ℎ2, … ,ℎ𝑘 : {0, 1} → [𝑁BF].
(2) [symmetric approximate ROT-offline] Parties perform in parallel (with parameters 𝑁OT, 𝑁 1

OT, 𝑁𝑐𝑐 , and 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠):
(a) P0 as a receiver performs Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with each P𝑖 , 𝑖 ∈ [𝑡].
(b) Each P𝑖 , 𝑖 ∈ [𝑡], as a receiver performs Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with P0.

(3) [random shares] Each party P𝑖 , 𝑖 ∈ [𝑡]
(a) Chooses a random seed𝑖𝑙

𝑅←− {0, 1}𝜎 , sends seed𝑖𝑙 to party P𝑙 , and receives seed𝑙𝑖 from P𝑙 , for every 𝑙 ∈ [𝑡] \ {𝑖 }.
(b) Locally computes 𝑆𝑖𝑙 = 𝑃𝑅𝐺 (seed𝑙𝑖) and 𝑆𝑙𝑖 = 𝑃𝑅𝐺 (seed𝑙𝑖) for every 𝑙 ∈ [𝑡] \ {𝑖 }, where 𝑃𝑅𝐺 : {0, 1}𝜎 → {0, 1}𝑁BF𝜎 is a

pseudorandom generator.
Online-phase Π𝑂𝑛𝑙𝑖𝑛𝑒𝑃𝑆𝐼𝑚𝑝𝑙𝑒 :

(4) [compute Bloom filters] Each party P𝑖 , 𝑖 ∈ [𝑡] ∪ {0}, locally computes the Bloom filter BF𝑖 of its input set 𝑋𝑖 . If 𝑛𝑖 < 𝑛, then P𝑖
computes the Bloom filter of the joint set 𝑋𝑖 with (𝑛 − 𝑛𝑖) random dummy items.

(5) [symmetric approximate ROT-online]
(a) Using BF0 as its input, P0 performs Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with every other party to finish Π𝐴𝑝𝑝𝑅𝑂𝑇 s started on Step 2a. As a result, it receives

𝑡 arrays𝑀𝑖∗ , P𝑖 learns𝑀𝑖 , where𝑀𝑖∗ and𝑀𝑖 are 𝑁BF-size arrays of 𝜎-bit values.
(b) Using BF𝑖 as its input, every party P𝑖 performs Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with P0 to finish Π𝐴𝑝𝑝𝑅𝑂𝑇 s started on Step 2b. As a result, P𝑖 learns

�̂�𝑖∗ , and P0 receives �̂�𝑖 ’s, where �̂�𝑖 and �̂�𝑖∗ are 𝑁BF-size arrays of 𝜎-bit values.
(c) P0 computes GBF0 =

⊕
𝑖∈[𝑡]

(
𝑀𝑖∗ ⊕ �̂�𝑖

)
. Each P𝑖 , 𝑖 ∈ [𝑡], computes GBF𝑖 = 𝑀𝑖 ⊕ �̂�𝑖∗ .

(6) [re-randomize GBFs] Each P𝑖 locally re-randomizes its garbled Bloom filterGBF𝑖 for items and corresponding codewords only from
𝑋𝑖 (without dummy items) (Algorithm ReRandGBF B.1) .

(7) [secret-sharing of GBFs] Each P𝑖 , 𝑖 ∈ [𝑡], locally computes

GBF𝑖∗ = GBF𝑖
⊕

𝑙∈[𝑡]\{𝑖}

[
𝑆𝑙𝑖 ⊕ 𝑆𝑖𝑙

]
and sends GBF𝑖∗ to P0.

(8) [reconstructing the GBF of the intersection] P0 computes GBF∗ =
⊕

𝑖∈[𝑡] GBF
𝑖∗⊕GBF0. Recall that this corresponds to a GBF

of the intersection with codewords 0 for all items in the intersection.
(9) [output] For each 𝑥0𝑗 ∈ 𝑋0, P0 outputs 𝑥0𝑗 as a member of the intersection, if⊕

𝑟∈ℎ∗ (𝑥0𝑗)
GBF∗ [𝑟] = 0.

Figure 3: The PSImple Multiparty protocol
Table 3: Comparison of overall communication complexity
Parameters: 𝑡 – number of parties
𝑛 – size of the input set
𝜆 , 𝜎 – statistical and computational security parameters, respectively.

Protocol Security offline online
IOP18 [21] semi-honest - 𝑂 (𝑡2𝑛𝜆2)

KMPRT17 [28] semi-honest - 𝑂 (𝑡2𝑛𝜆)
IOP18 [21] augmented semi-honest 𝑂 (𝑡2𝜎) 𝑂 (𝑡𝑛𝜆2)

KMPRT17 [28] augmented semi-honest 𝑂 (𝑡2𝜎) 𝑂 (𝑡𝑛𝜆)
CJS12 [9] malicious (honest maj.) 𝑂 (𝑡5𝜎) 𝑂 (𝑡3𝑛𝜎)
KS05 [26] malicious 𝑂 (𝑡3𝑛𝜎) 𝑂 (𝑡3𝑛2𝜎)
HV17 [19] malicious 𝑂 (𝑡2𝜎) 𝑂 (𝑡3𝜎 + 𝑡𝑛𝜎 log(𝑛))
GN19 [15] malicious 𝑂 (𝑡2𝜎) 𝑂 (𝑡3𝜎 + 𝑡𝑛𝜎)
PSImple malicious 𝑂 (𝑡𝑛𝜎2) 𝑂 (𝑡𝑛𝜎 (log(𝑛𝜎) + 𝜎))

filters and the number of required OTs can, in some cases, be re-
duced by 23-25% (see Table 1). These improved parameters can
used in our protocol, as well as in previous PSI protocols based
on GBFs and cut-and-choose such as [39, 42].

The first difference from the analysis of [39] is the following:
The number of OTs depends on the number of 1’s that would be

necessary to build the Bloomfilter of the receiver. For𝑛 items in the
input set of the receiver, with 𝑘 hash-functions, the upper bound of
required 1’s is 𝑛𝑘 (𝑘 indices per each of 𝑛 items), which is sufficient
even if each item has a separate set of hash-indices. However, the
probability of collisions is quite high, and the number of 1’s in a
Bloom filter has a Poisson distribution with very low deviation.
Thus, instead of requiring a sufficient number of 1’s after the cut-
and-choose to build any Bloom filter, as done in [39], we require
this number to be sufficient to build almost all Bloom filters (this
implies that the GBF can later be constructed in the protocol with
overwhelming probability.) This change significantly reduces the
total number of required 1’s from the OT, and consequently, the
total number of required OTs.

The second difference from the analysis of [39] is technical: in [39],
the sender chooses bits to check with probability 𝑝𝑐ℎ𝑘 , whereas
in our version of Π𝐴𝑝𝑝𝑅𝑂𝑇 , the size of the checked set is deter-
ministic. Fixing the size of the checked set simplifies the protocol
instructions and the simulation in the security proof.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

PSImple: Practical Multiparty Maliciously-Secure PSI

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Below we give a brief explanation about the restrictions which
allow us to build the optimization problem, and the algorithm for
calculating the parameters. Additionally, we give the optimal pa-
rameters for several input sizes, and compare them with the pa-
rameters used in [39].
GBF parameters:
𝑁OT – number of OTs in Π𝐴𝑝𝑝𝑅𝑂𝑇 ;
𝑁BF – size of the Bloom filter of the receiver;
𝑁 1
OT – number of 1’s that an honest receiver should have among

𝑁OT choice bits;
𝑘 – number of Bloom filter hash functions;
𝑁𝑐𝑐 – number of bits to choose for the cut-and-choose check;
𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 – the maximal number of 1’s among the 𝑁𝑐𝑐 choice bits
allowed in order to pass the cut-and-choose check.

As before, 𝜎 is the computational security parameter and 𝜆 is
the statistical security parameter. Informally, we can formulate the
parameter requirements as follows:
• After the cut-and-choose, the receiver has enough ones and
zeroes to build the Bloom filter.
• A malicious receiver has too few ones to find a false positive.
• An honest receiver passes the cut-and-choose check with over-
whelming probability.

Recall that 𝑝𝐹𝑎𝑙𝑠𝑒 is the probability of a false-positive in the
Bloom filter of the receiver. The second condition requires that
𝑝𝐹𝑎𝑙𝑠𝑒 is negligible, even if the receiver is malicious. I.e. that
Pr[𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎] ≤ 2−𝜆 .

Fixing𝑛, 𝜎 and 𝜆, we have to set 𝑘 ,𝑁BF,𝑁𝑐𝑐 ,𝑁OT,𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 and
𝑁 1
OT. As we have three conditions and six variables, three of the

parameters are free. It is reasonable to take 𝑘 and 𝑁BF free and find
the values of the other parameters that minimize 𝑁OT, because the
number of OT’s is the heaviest part of the protocol.8

For any positive 𝑛, 𝜎 , and 𝜆, there exist 𝑘 , 𝑁BF, 𝑁𝑐𝑐 , 𝑁OT, 𝑁 1
OT,

and 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 that meet the above requirements, and we construct
an algorithm to find the optimal parameter values; the proof and
the full algorithm appear in Appendix C. We next briefly explain
the algorithm: Based on the constrains, the feasible region of the
parameters is bounded from below by𝑘 and𝑁BF, and theminimum
of 𝑁OT is located near their minimum values. We heuristically
adopted the search boundaries𝑘𝑚𝑖𝑛 = 𝜎

2 ,𝑘𝑚𝑎𝑥 = 2𝜎 ,𝑁BF,min = 𝑛𝑘
and𝑁BF,max = 3𝑛𝑘 .The algorithm thenworks by going over all the
possible values of 𝑁BF and 𝑘 in this region and taking the parame-
ters which result in the minimal 𝑁OT. The full parameter analysis
and a formal description of the algorithm appear in Appendix C.

Running the constructed algorithm with 𝜆 = 40, 𝜎 = 128, we
obtained the parameters presented in Table 4. A comparison with
the parameters used in [39] is given in Table 1.

5 IMPLEMENTATION, CODE
OPTIMIZATIONS, AND EXPERIMENTAL
RESULTS

We wrote our code in C++, using the LibOTe library [38] for the
cryptographic primitives and the maliciously secure OT extension
of Keller et al. [23].

8We note that for the online-phase, 𝑁BF is more critical. However, trying to optimize
𝑁BF results in a very poor 𝑁OT . More details can be found in Appendix C.

Table 4: Optimized 𝑁OT parameter in Π𝐴𝑝𝑝𝑅𝑂𝑇 for different
input set sizes 𝑛, with 𝜆 = 40, 𝜎 = 128.

Parameter 𝑛 = 28 𝑛 = 212 𝑛 = 214 𝑛 = 216 𝑛 = 218 𝑛 = 220

𝑘 147 134 132 131 130 129
𝑁BF 64,733 851,085 3,253,782 12,660,342 49,786,942 197,052,485
𝑁OT 74,379 901,106 3,373,092 12,948,963 50,491,817 198,793,103
𝑁 1
OT 32,885 428,425 1,637,989 6,376,614 25,026,621 98,728,744
𝑁𝑐𝑐 7,473 42,882 105,863 262,924 655,322 1,644,397

𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 3,627 21,160 52,620 131,385 327,830 821,450

We separate the protocol into two phases: an offline phase, which
can be run before the parties know their inputs, and an online
phase, which is run after the parties know their inputs. In scenar-
ios where the parties can communicate much before they need to
find the intersection the online phase should be as short as possible,
while the offline phase can be significantly longer.

We have made the following code optimizations: The BF hash
functions are computed using fixed-key AES and taking modulus.9
As suggested by Araki et al. [1], we have performed the additive
secret-sharing in the offline phase, and using seeds. This way, gen-
erating shares can be done locally. Additionally, we have moved
memory allocation to the offline phase and reduced the required
amount of memory by XORing results directly into the cumulative
GBF on the fly. We used parallel computation, and in particular
used 36 threads for computing Steps 4 (Bloom filter) and 9 (output).
Additionally, we used up to 4 threads in each instance of Π𝐴𝑝𝑝𝑅𝑂𝑇 ,
which implies that the maximal number of threads in Steps 2 and
5 (Π𝐴𝑝𝑝𝑅𝑂𝑇) are 8𝑡 in P0 and 8 for every other party P𝑖 . Our code
will be made available on Github.

To benchmark PSImple, we ran experiments on Amazon Web
Server using a c5.18xlarge machine (36 cores and 144 GB RAM)
for P0 and c5.4xlarge machines (8 cores and 32 GB RAM) for each
other P𝑖 , all with Unix OS, running on a LAN network with 1ms
latency and 10Gb bandwidth. We tested the protocol with 4-32 par-
ties and input size of 28-220 per party. The results are given in Ta-
ble 5. The running time of PSImple grows approximately linearly
both in the number of parties and in the number of inputs,10 as
illustrated in Figures 4 and 5, respectively.

Table 5: Total runtime and online time (in parenthesis) of
PSImple, in seconds.
* signifies that the protocol crashed due to insufficient memory.

parties n = 28 n = 212 n = 214 n = 216 n = 218 n = 220

4 .20(.01) .55(.22) 1.72 (.97) 6.62(4.18) 27.09(17.31) 128.25(76.81)
6 .24(.02) .58(.23) 1.83 (1.02) 6.91(4.29) 30.12(19.47) 141.28(79.19)
8 .25(.02) .66(.24) 1.94 (1.02) 7.62(4.77) 30.82(18.75) 143.20(78.1)
12 .31(.02) .74(.26) 2.22 (1.08) 8.78(4.51) 35.5(20.43) *
16 .37(.02) .91(.31) 2.44 (1.21) 13.18(6.65) 47.33(28) *
32 .8(.25) 1.60(.6) 5.12 (2.53) 21.54(11.92) 85.37(48.87) *

We next consider the cost of the various steps of PSImple. An
interesting aspect of the runtime is that, for a small number of
parties (e.g., 4, 6), the main bottleneck is the rerandomization step.
However, the runtime of the rerandomization step remains con-
stant with the number of parties. As a result, for a small number
9This restricts the input items’ domain to 120 bits, as it requires 8 bits for the hash
function selection, and also makes some assumptions on the randomness of AES.
10The offline complexity of PSImple is linear in 𝑁OT and the online complexity is
(quasi-)linear in 𝑁BF . Both 𝑁OT and 𝑁BF are (asymptotically) linear in the input size.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 4: Total time for different number of parties

Figure 5: Total time for different size inputs.

of parties, the runtime is dominated by the rerandomization (in
the online phase), while for a large number of parties the runtime
is dominated by the OTs (in the offline phase). The computation
complexity of the rerandomization algorithm ReRand is 𝑂 (𝑛𝑘).
Possibly, for a small number of parties, PSImple would run faster
using a different set of parameters, i.e., reducing the number of
hash functions, 𝑘 , at the cost of increasing the number of OTs. An
interesting question is whether rerandomization can be computed
efficiently using parallel computation, as this would drastically im-
prove the online time. We plan to look into this question further.

In Table 2 we compare PSImple’s performance with that of exist-
ing concretely efficient multiparty PSI protocols in the literature,
in particutlar with [21, 28, 42]. A more appropriate comparison
is with a maliciously secure multiparty PSI protocol, but previous
maliciously secure multiparty PSI protocols were not concretely
efficient and, therefore, were not implemented. Hence, in order to
compare with a maliciously secure multiparty PSI protocol, we im-
plemented the direct extension of the Rindal and Rosulek proto-
col [39] (two-party malicious) to the multiparty setting. This pro-
tocol, which is described in the beginning of Section 3, appears in
Table 2 as Direct.

RemaRK 2. We ran the codes of all the protocols, with the excep-
tion of [42], on the same testing platform described above. Unfortu-
nately, [42] did not publish their code, so we used their reported times.

Comparison with the protocols of Inbar et al. [21] and Zhang et
al. [42]. The protocols of Inbar et al. [21] and Zhang et al. [42]
are similarly based on GBFs. Recall that [21] only achieves aug-
mented semi-honest security and therefore should be significantly
faster than PSImple as it requires only semi-honest OT, no cut-and-
choose, and there is no need to perform OT in both directions. The
protocol of [42] is in a very non-standard security model, since
it makes the assumption that two dedicated parties, P0 and P1,
are not simultaneously corrupted. This relaxation of the security
model allows them to have a significantly simpler protocol, which
is insecure in the standard malicious and semi-honest models.

Surprisingly, despite the fact that PSImple achieves significantly
stronger security guarantees, the runtime of PSImple in our exper-
iments is not significantly slower, and in many cases even faster,
than the runtimes of [21] and [42]. We attribute much of this to
the implementation itself (e.g., [21] wrote their code in Java using
older OT extension protocols), and that [42] ran their experiments
on a slightly weaker testing platform. Nevertheless, this already
suggests that moving to malicious security using PSImple does not
incur a very high penalty.

Comparison with the semi-honest protocol of Kolsenikov et al. [28].
The protocol of Kolsenikov et al. [28] uses different techniques in
order to achieve a semi-honestly secure multiparty PSI protocol. Al-
though we see in Table 2 that for a small number of parties their
protocol is faster than PSImple, which achieves malicious security,
it is also evident that PSImple scales better with the number of
parties. Thus, for a large number of parties, we already see that
PSImple is faster, despite achieving stronger security.

Additionally, most of the runtime of [28] is in the online phase,
whereas in PSImple it is split more evenly, with the offline pro-
portion increasing with the number of parties. The experiments
suggest that the online phase of PSImple is generally faster than
that of [28] when the number of parties is ≥ 6.

We note that [28] mention that their augmented semi-honest
protocol is faster by a significant constant factor than their semi-
honest protocol. We therefore conjecture that this augmented semi-
honest protocol will be slightly faster than PSImple, but so far we
have not managed to run it; we hope to remedy this situation soon.
However, recall that this protocol offers a significantly weaker se-
curity guarantee than PSImple.

Comparison with the direct extension of RR [39]. As explained at
the beginning of Section 3, directly extending [39] to the multi-
party scenario makes the computation complexity grow exponen-
tially with the number of parties, i.e., 𝑛𝑂 (𝑡) , whereas PSImple only
grows approx. linearly with the number of parties. This makes the
direct protocol impractical except for a very small number of par-
ties and inputs, as is evident from Table 2 – even for modest param-
eters such as 4 parties and input size 𝑛 = 214, the direct multiparty
extension of [39] already takes almost 2 minutes, while this takes
less than 2 seconds using PSImple. For a larger number of parties,

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

PSImple: Practical Multiparty Maliciously-Secure PSI

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

the direct multiparty extension of [39] becomes completely imprac-
tical, while PSImple’s runtime grows only linearly in the number
of parties.

ACKNOWLEDGMENTS
This work was supported by ISF grant 152/17 and by the Ariel Cy-
ber Innovation Center in conjunction with the Israel National Cy-
ber directorate in the Prime Minister’s Office.

REFERENCES
[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. 2016. High-Throughput

Semi-Honest Secure Three-Party Computation with an Honest Majority. ACM
CCS (2016), 805–817. https://doi.org/10.1145/2976749.2978331

[2] A. Ben-Efraim, M. Nielsen, and E. Omri. 2019. Turbospeedz: Double Your Online
SPDZ! Improving SPDZ Using Function Dependent Preprocessing. ACNS (2019),
530–549.

[3] B. H. Bloom. 1970. Space/Time Trade-offs in Hash Codingwith Allowable Errors.
Commun. ACM 13, 7 (1970), 422–426.

[4] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and
Y. Tang. 2008. On the false-positive rate of Bloom filters. Inform. Process. Lett.
108, 4 (2008), 210–213.

[5] R. Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. J. of CRYPTOLOGY 13, 1 (2000), 143–202.

[6] R. Canetti. 2020. Universally Composable Security. J. ACM 67, 5 (2020), 28:1–94.
[7] R. Canetti, A. Jain, and A. Scafuro. 2014. Practical UC security with a Global

Random Oracle. ACM CCS (2014), 597–608.
[8] C. A. Charalambides. 2002. Enumerative combinatorics. CRC Press.
[9] J. H. Cheon, S. Jarecki, and J. H. Seo. 2012. Multi-Party Privacy-Preserving Set

Intersection withQuasi-Linear Complexity. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci. 95-A(8) (2012), 1366–1378.

[10] K. Christensen, A. Roginsky, and M. Jimeno. 2010. A new analysis of the false
positive rate of a bloom filter. Inform. Process. Lett. 110, 21 (2010), 944–949.

[11] V. Chvátal. 1979. The tail of the hypergeometric distribution. Discrete Mathe-
matics 25, 3 (1979), 285–287.

[12] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. 2013.
Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ
Limits. ESORICS 8134 (2013), 1–18.

[13] E. De Cristofaro, J. Kim, and G. Tsudik. 2010. Linear-complexity private set
intersection protocols secure in malicious model. ASIACRYPT (2010), 213–231.

[14] C. Dong, L. Chen, and Z. Wen. 2013. When private set intersection meets big
data: An efficient and scalable protocol. ACM CCS (2013), 789–800.

[15] S. Ghosh and T. Nilges. 2019. An algebraic approach to maliciously secure pri-
vate set intersection. EUROCRYPT (2019), 154–185.

[16] O. Goldreich. 2004. The Foundations of Cryptography, vol. 2. Cambridge Univer-
sity Press.

[17] F. Grandi. 2018. On the analysis of Bloom filters. Inform. Process. Lett. 129 (2018),
35–39.

[18] C. Hazay, P. Scholl, and E. Soria-Vazquez. 2017. Low Cost Constant Round MPC
Combining BMR and Oblivious Transfer. ASIACRYPT 10624 (2017), 598–628.

[19] C. Hazay and M. Venkitasubramaniam. 2017. Scalable Multi-Party Private Set-
Intersection. PKC (2017), 175–203.

[20] Y. Huang, D. Evans, and J. Katz. 2012. Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols? NDSS (2012).

[21] R. Inbar, E. Omri, and B. Pinkas. 2018. Efficient scalable multiparty private set-
intersection via garbled bloom filters. ICSCN (2018), 235–252.

[22] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. 2003. Extending Oblivious Transfers
Efficiently. CRYPTO 2729 (2003), 145 – 161.

[23] M. Keller, E. Orsini, and P. Scholl. 2015. Actively secure OT extension with
optimal overhead. CRYPTO (2015), 724–741.

[24] M. Keller, V. Pastro, and D. Rotaru. 2018. Overdrive: Making SPDZ Great Again.
EUROCRYPT 10822 (2018), 158–189.

[25] M. Kim, H. T. Lee, and J. H. Cheon. 2011. Mutual private set intersection with
linear complexity. WISA (2011), 219–231.

[26] L. Kissner and D. Song. 2005. Privacy-preserving set operations. CRYPTO (2005),
241–257.

[27] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. 2016. Efficient batched
oblivious PRF with applications to private set intersection. ACM CCS (2016),
818–829.

[28] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. 2017. Practical
Multi-party Private Set Intersection from Symmetric-Key Techniques. ACMCCS
(2017), 1257–1272.

[29] M. Mitzenmacher and E. Upfal. 2017. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge univer-
sity press.

[30] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. 2020. PSI from PaXoS: Fast, mali-
cious private set intersection. EUROCRYPT (2020), 739–767.

[31] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. 2015. Phasing: Private Set
Intersection Using Permutation-based Hashing. USENIX Security (2015), 515–
530.

[32] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. 2019. Efficient circuit-based
PSI with linear communication. EUROCRYPT (2019), 122–153.

[33] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. 2018. Efficient Circuit-Based
PSI via Cuckoo Hashing. EUROCRYPT 10822 (2018), 125–157.

[34] B. Pinkas, T. Schneider, and M. Zohner. 2014. Faster Private Set Intersection
Based on OT Extension. USENIX Security (2014), 797–812.

[35] B. Pinkas, T. Schneider, and M. Zohner. 2018. Scalable private set intersection
based on OT extension. ACM TOPS 21, 2 (2018), 1–35.

[36] M. O. Rabin. 1981. How to Exchange Secrets by Oblivious Transfer. Tech. Memo
TR-81, Aiken Computation Laboratory, Harvard University.

[37] A. C. D. Resende and D. F. Aranha. 2018. Faster unbalanced private set intersec-
tion. In FC. 203–221.

[38] P. Rindal. [n.d.]. libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

[39] P. Rindal and M. Rosulek. 2017. Improved Private Set Intersection Against Mali-
cious Adversaries. EUROCRYPT (2017), 235–259.

[40] P. Rindal and M. Rosulek. 2017. Malicious-secure private set intersection via
dual execution. ACM CCS (2017), 1229–1242.

[41] X. Wang, S. Ranellucci, and J. Katz. 2017. Global-Scale Secure Multiparty Com-
putation. ACM CCS (2017), 39–56.

[42] E. Zhang, F. Liu, Q. Lai, G. Jin, and Y. Li. 2019. Efficient Multi-Party Private Set
Intersection Against Malicious Adversaries. ACM CCSW (2019), 93–104.

13

https://doi.org/10.1145/2976749.2978331
https://github.com/osu-crypto/libOTe

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A BASIC FUNCTIONALITIES

F 𝜎OT
Parties: the sender, the receiver.
Parameters: 𝜎 is the length of the OT strings.
Inputs: 𝑏 ∈ {0, 1} from the receiver;𝑚0,𝑚1 ← {0, 1}𝜎 from the sender.
Outputs: Give output𝑚𝑏 to the receiver.

Figure 6: F 𝜎OT – Ideal 1-out-of-2 OT functionality

Functionality F 𝜎,𝑁OT
Parties: the sender, the receiver.
Parameters: 𝑁 is the number of resulting parallel OT’s for 𝜎-bit length of the OT strings.
Inputs: 𝑀0 = {𝑚10, ...,𝑚𝑁 0 } and 𝑀1 = {𝑚11, ...,𝑚𝑁 1 } where𝑚𝑖 𝑗 ← {0, 1}𝜎 (𝑖 ∈ [𝑁], 𝑗 ∈ {0, 1}) from the sender; {𝑐1, ..., 𝑐𝑁 }, where
𝑐𝑖 ∈ {0, 1} (𝑖 ∈ [𝑁]) from the receiver.
Outputs: Give output𝑀𝑐 = {𝑚1𝑐1 , ...,𝑚𝑁𝑐𝑁 } to the receiver.

Figure 7: F 𝜎,𝑁OT – Ideal 𝑁 parallel 1-out-of-2 OT’s for 𝜎-bit strings functionality

F𝐴𝑝𝑝𝑅𝑂𝑇
Parties: a sender, a receiver.
Parameters: 𝜎 – computational security parameter; 𝜆 – statistical security parameter;
𝑁 – number of items to create; 𝐾 ′ – the maximal allowed size of the request.
Inputs: From the receiver: 𝐼 = {𝑖 𝑗 } 𝑗∈[𝐾] , 𝐾 ≤ 𝐾 ′; from the sender: no input.
Outputs: Upon receiving 𝐼 from the sender, samples the uniformly random 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑁 }, where 𝑚𝑖 s are 𝜎-bit strings, and
computes𝑀∗ = {𝑚𝑖1 ,𝑚𝑖2 , ...,𝑚𝑖𝐾 }. Gives𝑀 to the sender, gives𝑀∗ to the receiver.

If the adversary corrupts the receiver
The functionality works in two steps:

(1) The corrupt receiver chooses 𝐾 ′′ ≤ 𝐾 ′ and sends it to the ideal functionality.
Upon receiving 𝐾 ′′ from the receiver, it samples and gives to the receiver the uniformly random𝑀′ = {𝑚′1,𝑚′2, ...,𝑚′𝐾 ′′ }, where𝑚′𝑖 s
are 𝜎-bit strings.

(2) After the response from the functionality, the receiver chooses and sends a partial injective mapping

𝐼 ′ =

(
𝑖1 𝑖2 ... 𝑖𝐾 ′

𝑗1 𝑗2 ... 𝑗𝐾 ′

)
, where 𝑖𝑠 ∈ [𝐾 ′′], 𝑗𝑠 ∈ [𝑁], 𝑠 ∈ [𝐾 ′], 𝐾 ′′ ≥ 𝐾 ′ ≥ 𝐾 and𝑚 𝑗 =

{
𝑚′𝑖𝑠 , if 𝑗 = 𝑗𝑠 , 𝑠 ∈ [𝐾 ′];
fresh random, else.

The functionality gives𝑀 = {𝑚𝑖 }𝑖∈[𝑁] to the sender and𝑀∗ = {𝑚𝑖 }𝑖∈[𝑁]:𝑖=𝑖𝑠 ,𝑠∈[𝐾 ′] to the receiver.
If the adversary corrupts the sender.
Upon receiving 𝐼 from the receiver, waits for 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑁 } from the corrupt sender, where 𝑚𝑖 s are 𝜎-bit strings. Gives 𝑀∗ =
{𝑚𝑖1 ,𝑚𝑖2 , ...,𝑚𝑖𝐾 } to the receiver.

Figure 8: F𝐴𝑝𝑝𝑅𝑂𝑇 – Ideal approximate 𝐾-out-of-𝑁 Random OT functionality

FgRO
Parameters:
𝑘 – number of hash-functions; 𝑁 – size of input domain; ℓ (𝑁) – size of output domain of the hash function;
F – a list of ideal functionality programs.
Initialization: Initialize𝑄 to be an empty list of prior queries.
Output: Upon receiving a query 𝑥 ∈ [𝑁] from party P = (PID, SID) or the adversary S do:

(1) • If there is a pair in a form (𝑥, 𝑣) in𝑄 , then return 𝑣 to P (or S);
• else, sample a uniformly random 𝑣 ∈ [ℓ (𝑁)]𝑘 , add (𝑥, 𝑣) to the list𝑄 and return 𝑣 to P (or S).

(2) Parse 𝑥 as (𝑠, 𝑥′) . If SID ≠ 𝑠 then add (𝑠, 𝑥′, 𝑣) to the (initially empty) list𝑄𝑠 of illegitimate queries for SID 𝑠 .
Upon receiving a request from an instance of an ideal functionality in the list F, with SID 𝑠 , return to this instance the list𝑄𝑠 of illegitimate
queries for SID 𝑠 .

Figure 9: FgRO – Global Random Oracle functionality

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

PSImple: Practical Multiparty Maliciously-Secure PSI

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

B ALGORITHMS FOR THE GARBLED BLOOM FILTER
B.1 Re-randomization Algorithm for a Garbled Bloom Filter
Algorithm ReRandGBF (𝑋,𝑌, 𝐻∗, 𝑛, 𝑁BF, 𝜎)

Input:
The set of items 𝑋 = (𝑥1, ..., 𝑥𝑛); the set of codewords 𝑌 = (𝑦1, ..., 𝑦𝑛): |𝑦𝑖 | = 𝜎 , (𝑖 ∈ [𝑛]);
the family of hash-indices 𝐻∗ = (ℎ∗ (𝑥1), ..., ℎ∗ (𝑥𝑘)): ℎ∗ (𝑥𝑖) =

{
𝑠 |ℎ 𝑗 (𝑥𝑖) = 𝑠, 𝑗 ∈ [𝑘]

}
, (𝑖 ∈ [𝑛]).

Algorithm:
1: GBF = empty 𝑁BF-size array of 𝜎-long strings
2: for 𝑖=1 to 𝑛 do
3: finalInd=–1
4: finalShare=𝑦𝑖
5: for each 𝑗 ∈ ℎ∗ (𝑥𝑖) do
6: if GBF[𝑗] is empty then
7: if finalInd==–1 then
8: finalInd= 𝑗
9: else
10: GBF[𝑗] 𝑅←− {0, 1}𝜎
11: finalShare=finalShare⊕GBF[𝑗]
12: else
13: finalShare=finalShare⊕GBF[𝑗]
14: GBF[finalInd] =finalShare 11

15: for 𝑖 = 0 to 𝑁BF − 1 do
16: if GBF[𝑖] is empty then
17: GBF[𝑖] 𝑅←− {0, 1}𝜎
18: return GBF
Output: GBF – A garbled Bloom filter of the set 𝑋 with the codewords from 𝑌 .

B.2 Algorithm for Computation of the Hash-Indices Set ℎ∗(𝑥)
Algorithm HashIndicesGBF(𝑥, 𝐻, 𝑁BF)

Input:
Item 𝑥 ;
𝑁BF – length of GBF;
family of hash-functions 𝐻 = (ℎ1, ..., ℎ𝑘): ℎ𝑖 : {0, 1}∗ → {0, 1}𝑁BF , (𝑖 ∈ [𝑘]).
Algorithm:
1: ℎ∗ (𝑥) = empty 0-size array
2: for 𝑖=1 to 𝑘 do
3: if ℎ𝑖 (𝑥) ∉ ℎ∗ (𝑥) then
4: add ℎ𝑖 (𝑥) to ℎ∗ (𝑥)
5: return ℎ∗ (𝑥)
Output: ℎ∗ (𝑥) – The set of indices for the item 𝑥 from the family of hash-functions 𝐻 = {ℎ1, ..., ℎ𝑘 }.

B.3 Algorithm for Computation of the Codeword from the Garbled Bloom Filter
Algorithm CodewordGBF(GBF, 𝑥, ℎ∗ (𝑥), 𝑁BF, 𝜎)

Input:
The item 𝑥 ; the garbled Bloom filter GBF; the length of GBF 𝑁BF; the bitlength of string in GBF – 𝜎 ;
ℎ∗ (𝑥) – set of hash-indices of 𝑥 ; ∀𝑖 ∈ ℎ∗ (𝑥), 𝑖 ∈ [𝑁BF].

Algorithm:
1: 𝑦=0
2: for each 𝑖 ∈ ℎ∗ (𝑥) do
3: 𝑦=𝑦 ⊕ GBF[𝑖]
4: return 𝑦
Output: 𝑦 – The codeword for 𝑥 in the garbled Bloom filter GBF indexed by ℎ∗ (𝑥).

11Note, that the probability of fail in this algorithm, that can appear in case finalInd==-1, is the probability of false- positive for one of 𝑛 items. According (7), 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 , so
the union bound over all 𝑥 ∈ 𝑋 is 𝑛2−𝜎 , which is still negligible in 𝜎 .

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

C PARAMETERS OF Π𝐴𝑝𝑝𝑅𝑂𝑇
In this section we explain in more detail our parameter choices for the number of required OTs and the Bloom filter size. Experimental
results, given in Table 1, show that our parameter choice results in a 23-25% reduction in the number of required ROTs in comparison
with [39], as well as smaller Bloom filter sizes.

The informal requirements from the parameter choice should ensure that:
• After the cut-and-choose, the receiver has enough ones and zeroes to build the Bloom filter.
• Both an honest and a malicious receiver have too few ones to find false positive.
• An honest receiver passes cut-and-choose with the overwhelming probability.

All the random OTs and cut-and-choose check are performed in Π
𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝐴𝑝𝑝𝑅𝑂𝑇 , when the receiver may not know its Bloom filter. The first

requirement means that the number of ones and zeroes among input bits of the receiver after the cut-and-choose check should be such that
the receiver can construct from them the Bloom filter of its inputs. The probability of fail should be negligible in 𝜆.

Definition C.1. A function 𝜇 : N → N is negligible if for every positive polynomial 𝑝 (·) and all sufficiently large 𝑥 it holds that
𝜇 (𝑥) < 1/𝑝 (𝑥). In our case, we require that the value of the functions is less than 2−𝜆 for statistical security and 2−𝜎 for computational
security.

Themain difference of our analysis from the analysis of [39] is that instead of requiring a sufficient number of 1’s after the cut-and-choose
to build any Bloom filter, as done in [39], we require this number to be sufficient to build almost all Bloom filters. This change significantly
reduces the total number of required 1’s from the OT, and consequently, the total number of required OTs. Note that this change implies
that there might not be enough 1’s to construct the GBF in the protocol, but this happens only with negligible probability.

The constraints on 𝑝𝐹𝑎𝑙𝑠𝑒 come from the second and the third requirements. Namely, the sender rejects the cut-and-choose response, if
𝑃𝑟 [𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎] > 2−𝜆 . Therefore, the choice of parameters should ensure that the false positive probability of the Bloom filters, denoted
𝑝𝐹𝑎𝑙𝑠𝑒 , is negligible. Until 2008, it was believed that 𝑝𝐹𝑎𝑙𝑠𝑒 = 𝑝𝑘 [29], where 𝑝 is the proportion of ones, and 𝑘 is the number of the Bloom
filter hash-functions. However, in 2008 Bose et al. [4] showed that this formula is only a lower bound for 𝑝𝐹𝑎𝑙𝑠𝑒 . They further presented
the precise formula for 𝑝𝐹𝑎𝑙𝑠𝑒 , as well as a non-trivial upper bound. However, they did not provide any efficient algorithm for computing
these formulas. In 2010, Christensen et al. [10] presented an algorithm for computing 𝑝𝐹𝑎𝑙𝑠𝑒 . However, finding the maximal number of 1’s
in the Bloom filter from 𝑝𝐹𝑎𝑙𝑠𝑒 remained hard. Therefore, we use the second-order Taylor’s approximation of the false-positive probability
presented by Grandi [17] in 2018, as it allows to more easily compute the maximal number of 1’s from 𝑝𝐹𝑎𝑙𝑠𝑒 .

We next give the formal details:
GBF parameters:
𝑁OT : number of OTs in Π𝐴𝑝𝑝𝑅𝑂𝑇 ;
𝑁BF : size of the Bloom filter of the receiver;
𝑁 1
OT : number of 1’s among 𝑁OT choice bits of the receiver;

𝑘 : number of Bloom filter hash functions;
𝑁𝑐𝑐 : number of bits to choose for the cut-and-choose check;
𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 : the maximal number of 1’s among the 𝑁𝑐𝑐 choice bits allowed in order to pass the cut-and-choose check.

TheoRem C.2. By choosing the parameters of Π𝐴𝑝𝑝𝑅𝑂𝑇 under the following constraints

𝑁0 =

⌈
𝑁BF𝑒

− 𝑛𝑘
𝑁BF +

√
𝑛𝑘𝜆 ln 2

2

⌉
, 𝑁1 =

⌈
𝑁BF

(
1 − 𝑒−

𝑛𝑘
𝑁BF

)
+

√
𝑛𝑘𝜆 ln 2

2

⌉
, 𝑁 = 𝑁0 + 𝑁1, 𝛼 = 𝑁1/𝑁 ; (2)

𝑁𝑐𝑐 > 0 : 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 − 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 > 0, where (3)

𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 =

⌊
𝑁BF𝑁𝑐𝑐
𝑁 + 𝑁Δ

2−
𝜎
𝑘

[
1 + 𝑘 (𝑘 − 1)

2𝑁BF

(
1
𝛼
− 1

)]− 1
𝑘

−
√
𝜆𝑁𝑐𝑐 ln 2

2

⌋
, 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 =

⌈
𝛼𝑁𝑐𝑐 +

√
𝜆𝑁𝑐𝑐 ln 2

2

⌉
, and (4)

𝑁Δ =

⌈
1

min(𝛼, 1 − 𝛼)

√
𝜆𝑁𝑐𝑐 ln 2

2

⌉
, 𝑁OT = 𝑁 + 𝑁Δ + 𝑁𝑐𝑐 , 𝑁 1

OT = ⌈𝛼𝑁OT⌉, (5)

the following requirements hold:

(1) the honest receiver after cut-and-choose has enough ones to build Bloom filter (with parameters 𝑁BF, 𝑘 , 𝑛) with the probability at least
1 − 2−𝜆+1;

(2) 𝑃𝑟 [𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎] ≤ 2−𝜆 with either honest or malicious receiver in Π𝐴𝑝𝑝𝑅𝑂𝑇 ;
(3) an honest receiver passes the cut-and-choose check successfully with probability at least 1 − 2−𝜆 .

In the following proof, we use the following two tail inequalities.
16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

PSImple: Practical Multiparty Maliciously-Secure PSI

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

• The Azuma-Hoeffding inequality [29, p 355] for the distribution of zeroes in the Bloom filter is connected with the problem of the
number of empty bins in the Balls and Bins model as follows: Suppose we are throwing 𝑚 balls independently and uniformly at
random into 𝑛 bins. Let 𝐹 be the number of empty bins after𝑚 balls are thrown. Then 𝑃𝑟 [|𝐹 − 𝐸 (𝐹) | ≥ 𝜀] ≤ 2𝑒−

2𝜀2
𝑚 . In our case, the

number of bins is 𝑛𝑘 , and we are interested only in the right tail of distribution.
• The tail inequality, obtained by V. Chvatal in [11] for hypergeometric distribution. Namely, for 𝐻𝐺 (𝑀, 𝑁,𝑛) by 0 < 𝑡 < 𝑝𝑛, we have

𝑃𝑟 [𝑋 ≥ (𝑝 + 𝑡)𝑛] ≤
((

𝑝
𝑝+𝑡

)𝑝+𝑡 (
1−𝑝

1−𝑝−𝑡
)1−𝑝−𝑡)𝑁

≤ 𝑒−2𝑡2𝑛 .

PRoof. Consider every constraint one by one.

(1) The honest receiver after cut-and-choose has enough ones to build Bloom filter (with parameters 𝑁BF, 𝑘 , 𝑛) with the probability at least
1 − 2−𝜆+1.
Compute the number of ones and zeroes required to build the Bloom filter. Denote the number of zeroes in the Bloom filter by𝑁0, and
of ones by 𝑁1. The probability of every given bit in Bloom filter to be 0 is 𝑞 = (1 − 1/𝑁BF)𝑛𝑘 ≈ 𝑒

− 𝑛𝑘
𝑁BF and to 1 is 𝑝 = 1−𝑞 [29, p 116].

Using the Azuma-Hoeffding inequality [29, p 355], we get 𝑃𝑟 [𝑁0 − 𝐸 (𝑁0) ≥ 𝜀] ≤ 𝑒−
2𝜀2
𝑛𝑘 . We require that the number of zeroes is not

enough to build the Bloom filter with the negligible in 𝜆 probability. Hence 𝑒−
2𝜀2
𝑛𝑘 ≤ 2−𝜆 ; solving this inequality, we get 𝜀 ≥

√
𝑛𝑘𝜆 ln 2

2 .

Therefore we should have at least 𝑁0 =

⌈
𝑁BF𝑞 +

√
𝑛𝑘𝜆 ln 2

2

⌉
zeroes after cut-and-choose.

By implementation of the Azuma-Hoeffding inequality to the number of ones in the Bloom filter, we get 𝑁1 =

⌈
𝑁BF𝑝 +

√
𝑛𝑘𝜆 ln 2

2

⌉
ones needed after cut-and-choose, which gives (2). Denote 𝑁 = 𝑁0 + 𝑁1. Then 𝛼 = 𝑁1/𝑁 is the proportion of ones in the choice
sequence of the receiver.
We need to be sure that after the cut-and-choose, the receiver has at least 𝑁1 ones. This requires some extra supply of ones and
zeroes 𝑁Δ = 𝑁OT−𝑁 . Let the honest receiver chooses 𝑁OT bits, with 𝑁 1

OT = ⌈𝛼𝑁OT⌉ ones among them.The other party chooses 𝑁𝑐𝑐
arbitrary bits to check. We require that among the remaining 𝑁 + 𝑁Δ bits be at least 𝑁1 ones with probability ≥ 1 − 2−𝜆 . It means,
that among 𝑁𝑐𝑐 cut-and-choose bits are no more than 𝑁 1

OT − 𝑁1 = 𝛼𝑁OT − 𝑁1 = 𝛼 (𝑁 + 𝑁Δ + 𝑁𝑐𝑐) − 𝛼𝑁 = 𝛼 (𝑁Δ + 𝑁𝑐𝑐) bits.
The number of ones in the cut-and-choose set is distributed hypergeometrically𝐻𝐺 (𝛼𝑁OT, 𝑁OT, 𝑁𝑐𝑐). Using the V. Chvatal inequality
for hypergeometric distribution [11], we get

𝑃𝑟 [𝑋 ≥ 𝛼 (𝑁Δ + 𝑁𝑐𝑐)] = 𝑃𝑟
[
𝑋 ≥

(
𝛼 + 𝛼𝑁Δ

𝑁𝑐𝑐

)
𝑁𝑐𝑐

]
≤ 𝑒−2

(𝛼𝑁Δ)2
𝑁𝑐𝑐 ≤ 2−𝜆 . Hence we need to have 𝑁Δ ≥ 1

𝛼

√
𝑁𝑐𝑐𝜆 ln 2

2 extra bits in
random OT.
Analogically, we require that the number of zeroes after cut-and-choose remain at least 𝑁0 with the probability at least 1 − 2−𝜆 .

Hence, 𝑁Δ ≥ 1
1−𝛼

√
𝑁𝑐𝑐𝜆 ln 2

2 . Consequently, 𝑁Δ =

⌈
1

min(𝛼,1−𝛼)

√
𝑁𝑐𝑐𝜆 ln 2

2

⌉
, which is (5).

(2) 𝑃𝑟 [𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎] ≤ 2−𝜆 with either honest or malicious receiver in Π𝐴𝑝𝑝𝑅𝑂𝑇 .
Denote by 𝑁1𝑟𝑒𝑠𝑡 number of 1’s left by the receiver after the opening of 𝑁𝑐𝑐 cut-and-choose bits. The choice of parameters according
to this requirement depends on the false positive probability for the Bloom filter size of 𝑁BF with 𝑁1𝑟𝑒𝑠𝑡 bits set to 1 and 𝑘 hash-
functions, that we denote as 𝑝𝐹𝑎𝑙𝑠𝑒 . The upper bound for it (in our conditions of the experiment) is obtained in Appendix D from [17]:

𝑝𝐹𝑎𝑙𝑠𝑒 < 𝑝𝑘
[
1 + 𝑘 (𝑘 − 1)

2𝑁BF

(
1
𝑝
− 1

)]
. (6)

Turning to the cut-and-choose in Π𝐴𝑝𝑝𝑅𝑂𝑇 , the sender doesn’t see the actual number of items 𝑛 nor the actual number of ones (that
is 𝑁1𝑟𝑒𝑠𝑡 in our notation). With known 𝑁1𝑟𝑒𝑠𝑡 , one can express 𝑝 = 𝑁1𝑟𝑒𝑠𝑡 /𝑁BF. With the probability at least 1− 2−𝜆 , because 𝑁1𝑟𝑒𝑠𝑡
is greater or equal to 𝑁1 with the such a probability (according to the first statement in this theorem), holds 1/𝑝 = 𝑁BF/𝑁1𝑟𝑒𝑠𝑡 <

𝑁BF/𝑁1 < 𝑁 /𝑁1 = 1/𝛼 . Hence, with probability at least 1 − 2−𝜆 , from (6),

𝑝𝐹𝑎𝑙𝑠𝑒 <

(
𝑁1𝑟𝑒𝑠𝑡

𝑁BF

)𝑘 [
1 + 𝑘 (𝑘 − 1)

2𝑁BF

(
1
𝛼
− 1

)]
. (7)

We require that 𝑃𝑟 [𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎] ≤ 2−𝜆 . Using (7), we can rewrite the expression in parentheses as𝑁1𝑟𝑒𝑠𝑡 ≥ 𝑁BF2
−𝜎𝑘

[
1 + 𝑘 (𝑘−1)2𝑁BF

(
1
𝛼 − 1

)]−1/𝑘
.

Suppose that the malicious party chooses more ones than required, and the proportion of ones now is 𝛼 > 𝛼 , and the sender observes
𝛼 proportion of ones among 𝑁𝑐𝑐 opened bits. Latter is the unbiased estimator of 𝛼 with 𝑃𝑟

[
𝛼𝑁𝑐𝑐 ≥ (𝛼 + 𝛿)𝑁𝑐𝑐

]
≤ 𝑒−2�̃�2𝑁𝑐𝑐 ≤ 2−𝜆 .

Hence �̃� ≥
√
𝜆 ln 2
2𝑁𝑐𝑐

.
17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Then, using (7), the number of ones in the remained set with the overwhelming probability is 𝑁1𝑟𝑒𝑠𝑡 < (𝛼 + �̃�)(𝑁 + 𝑁Δ) ≤ (𝛼 +√
𝜆 ln 2
2𝑁𝑐𝑐
)(𝑁 +𝑁Δ) ≤ 𝑁BF2

−𝜎𝑘 /
[
1 + 𝑘 (𝑘−1)2𝑁BF

(
1
𝛼 − 1

)] 1
𝑘 . As the number of observed ones is 𝛼𝑁𝑐𝑐 , we have the inequality for themaximal

number of opened ones as 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 ≤ 𝛼𝑁𝑐𝑐 ≤ 𝑁BF𝑁𝑐𝑐
𝑁+𝑁Δ

2−
𝜎
𝑘

[
1 + 𝑘 (𝑘−1)2𝑁BF

(
1
𝛼 − 1

)]− 1
𝑘 −

√
𝜆𝑁𝑐𝑐 ln 2

2 . Equality (4) follows.
(3) An honest receiver passes the cut-and-choose check successfully with probability at least 1 − 2−𝜆 .

Denote by𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 themaximal number of ones in the cut-and-choose set in the case of an honest receiver, and 𝑃𝑟 [𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 ≥ (𝛼 + 𝛿)𝑁𝑐𝑐] ≤

𝑒−2𝜎
2𝑁𝑐𝑐 ≤ 2−𝜆 , hence 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 =

⌈
𝛼𝑁𝑐𝑐 +

√
𝜆𝑁𝑐𝑐 ln 2

2

⌉
. If 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 − 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 > 0, then the honest receiver passes the cut-

and-choose check.
Considering 𝑁Δ = 1

min(𝛼,1−𝛼)

√
𝑁𝑐𝑐𝜆 ln 2

2 , this expression is transformable to the following square inequality:

𝛼

min(𝛼, 1 − 𝛼)

√
𝜆 ln 2
2

𝑁𝑐𝑐 −
(
𝑁BF

2𝜎/𝑘

[
1 + 𝑘 (𝑘 − 1)

2𝑁BF

(
1
𝛼
− 1

)]− 1
𝑘

− 𝛼𝑁 − 𝜆 ln 2
min(𝛼, 1 − 𝛼)

) √
𝑁𝑐𝑐 +

√
2𝜆 ln 2𝑁 < 0. (8)

Thus, if a suitable 𝑁𝑐𝑐 exists, its value lies between the squares of non-negative roots of the corresponding square equation. If both
roots are negative, or if there are no roots, then there are no suitable parameters in this case.
According to the desire to have as few OTs as possible, we have to take the minimal non-negative value of 𝑁𝑐𝑐 from the interval
determined by this inequality. Nevertheless, because of roundings in parameter calculations, the actual interval is, as a rule, narrower.
Therefore we should, besides, check that indeed 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 − 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 > 0 by this particular 𝑁𝑐𝑐 . (3) follows.

□

We next show that there exist suitable parameters 𝜎 , 𝜆 for any 𝑛.

TheoRem C.3. For any choice of positive 𝑛, 𝜎 , 𝜆 there exist positive 𝑘 , 𝑁BF, 𝑁𝑐𝑐 , 𝑁OT, 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 , 𝑁 1
OT such that (2)-(5) hold.

PRoof. Considering the asymptotic when 𝑁BF →∞, we compute the following limits:

lim
𝑁BF→∞

𝑁BF

(
1 − 𝑒

−𝑛𝑘
𝑁BF

)
= lim
𝑁BF→∞

𝑁BF

(
1 −

(
1 + 1

𝑁BF

)−𝑛𝑘)
= lim
𝑁BF→∞

𝑁BF

(
1 −

(
1 + 𝑛𝑘

𝑁BF

)−1)
= lim
𝑁BF→∞

𝑁BF𝑛𝑘

𝑁BF + 𝑛𝑘
= 𝑛𝑘 ;

lim
𝑁BF→∞

𝛼 = lim
𝑁BF→∞

𝑁1

𝑁
= lim
𝑁BF→∞

𝑁BF

(
1 − 𝑒

−𝑛𝑘
𝑁BF

)
+

√
𝑛𝑘𝜆 ln 2/2

𝑁BF +
√
2𝑛𝑘𝜆 ln 2

= lim
𝑁BF→∞

𝑛𝑘 +
√
𝑛𝑘𝜆 ln 2/2

𝑁BF +
√
2𝑛𝑘𝜆 ln 2

= lim
𝑁BF→∞

𝑛𝑘 +
√
𝑛𝑘𝜆 ln 2/2
𝑁BF

= 0. (9)

Due to (9), in the asymptotics we can only consider the case 𝛼 ≤ 0.5, and hence min(𝛼, 1 − 𝛼) = 𝛼 .
After fixing𝑘 and𝑁BF, the rest of the parameters can be computed directly, with the exception of𝑁𝑐𝑐 , which is derived from Inequality (8).

So, the question of the existence of suitable parameters is the question of existence of positive roots in the square equation 𝑎𝑥2 − 𝑏𝑥 + 𝑐 = 0,

where, takingmin(𝛼, 1−𝛼) = 𝛼 , 𝑎 =
√
𝜆𝑙𝑛2
2 , 𝑏 = 𝑁BF

2𝜎/𝑘

[
1 + 𝑘 (𝑘−1)2𝑁BF

(
1
𝛼 − 1

)]− 1
𝑘 −𝛼𝑁 − 𝜆 ln 2𝛼 , 𝑐 =

√
2𝜆 ln 2𝑁 . For the existence of two positive

roots, it is sufficient to have 𝑏 > 0, 𝐷 = 𝑏2 − 4𝑎𝑐 > 0. Let fix some value of 𝑘 > 𝜎 and prove that there exists some 𝑁BF such that those
conditions hold. From (9),

lim
𝑁BF→∞

𝑏 = lim
𝑁BF→∞

𝑁BF

2𝜎/𝑘

[
1 + 𝑘 (𝑘 − 1)

2𝑁BF

(
1
𝛼
− 1

)]− 1
𝑘

− 𝛼𝑁 − 𝜆 ln 2
𝛼

=

= lim
𝑁BF→∞

𝑁BF

2𝜎/𝑘

[
1 + 𝑘 (𝑘 − 1)

2𝑁BF

𝑁BF

𝑛𝑘 +
√
𝑛𝑘𝜆 ln 2/2

]− 1
𝑘

−
𝑛𝑘 +

√
𝑛𝑘𝜆 ln 2/2
𝑁BF

(
𝑁BF +

√
2𝑛𝑘𝜆 ln 2

)
− 𝜆 ln 2𝑁BF

𝑛𝑘 +
√
𝑛𝑘𝜆 ln 2/2

=

= lim
𝑁BF→∞

𝑁BF

(
2𝜎

[
1 + 𝑘 (𝑘 − 1)

2𝑛𝑘 +
√
2𝑛𝑘𝜆 ln 2

])− 1
𝑘

− 𝑛𝑘 −
√
𝑛𝑘𝜆 ln 2/2 − 𝑁BF

𝜆 ln 2

𝑛𝑘 +
√
𝑛𝑘𝜆 ln 2/2

=

= lim
𝑁BF→∞

𝑁BF

[(
2𝜎

[
1 + 𝑘 (𝑘 − 1)

2𝑛𝑘 +
√
2𝑛𝑘𝜆 ln 2

])− 1
𝑘

− 2𝜆 ln 2

𝑛𝑘 +
√
2𝑛𝑘𝜆 ln 2

]
.

Theasymptotic of𝑏 is linear in𝑁BF.The value in outer square parentheses is constant by fixed𝑛, 𝜆,𝑘 , and𝜎 . If𝑘 > 𝜎 , then
(
2𝜎

[
1 + 𝑘 (𝑘−1)

2𝑛𝑘+
√
2𝑛𝑘𝜆 ln 2

])− 1
𝑘

tends to 1 when 𝑘 grows, while 2𝜆 ln 2
𝑛𝑘+
√
2𝑛𝑘𝜆 ln 2

tends to 0. Thus, for sufficiently large 𝑘 = 𝑘1, lim
𝑁BF→∞

𝑏 = lim
𝑁BF→∞

𝐶1𝑁BF, where 𝐶1 > 0. Hence

there exists a sufficiently large 𝑁BF such that 𝑏 > 0.
18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

PSImple: Practical Multiparty Maliciously-Secure PSI

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Now consider the asymptotic of the discriminant when 𝑘 ≥ 𝑘1:
lim

𝑁BF→∞
(𝑏2 − 4𝑎𝑐) = lim

𝑁BF→∞

(
(𝐶1𝑁BF)2 − 4𝑁𝜆𝑙𝑛2

)
= lim
𝑁BF→∞

(
(𝐶1𝑁BF)2 − 4𝑁BF𝜆 ln 2 − 4

√
2𝑛𝑘 (𝜆 ln 2)3/2

)
= lim
𝑁BF→∞

(𝐶1𝑁BF)2.

Again, by the sufficiently large 𝑘 there exists the sufficiently large 𝑁BF such that 𝑏2 − 4𝑎𝑐 > 0. That implies that two positive roots of the
square equation can be found, and therefore there exists 𝑁𝑐𝑐 that satisfies Equation (8). □

Using the relations proved in Theorem C.2, we construct the algorithm in Figure 10 and found the parameters for several values of 𝑛
which optimize 𝑁OT, when 𝜎 = 128 and 𝜆 = 40. The parameters are given in Table 4.

Algorithm for computing parameters for Π𝐴𝑝𝑝𝑅𝑂𝑇
1. Set 𝑘 = 𝑘min.
2. Set 𝑁BF = 𝑁BF,min.
3. If 𝑁BF > 𝑁BF,max then set 𝑘 = 𝑘 + 1 and go to Step 2.
4. Calculate

𝑁1 =

⌈
𝑁BF

(
1 − 𝑒−

𝑛𝑘
𝑁BF

)
+

√
𝑛𝑘𝜆 ln 2

2

⌉
, 𝑁 =

⌈
𝑁BF +

√
2𝑛𝑘𝜆 ln 2

⌉
, 𝛼 =

𝑁1

𝑁
.

5. Calculate 𝑎 = 𝛼
min(𝛼,1−𝛼)

√
𝜆𝑙𝑛2
2 , 𝑐 =

√
2𝜆 ln 2𝑁 , 𝑏 = 𝑁BF

2𝜎/𝑘

[
1 + 𝑘 (𝑘−1)2𝑁BF

(1
𝛼 − 1

)]− 1
𝑘 − 𝛼𝑁 − 𝜆 ln 2

min(𝛼,1−𝛼) , 𝐷 = 𝑏2 − 4𝑎𝑐 .
6. If 𝐷 ≤ 0 or 𝑏 ≤

√
𝐷 then 𝑁BF = 𝑁BF + 1, and go to Step 3.

7. Take the minimal integer 𝑁𝑐𝑐 : (𝑏−
√
𝐷)2

4𝑎2
≤ 𝑁𝑐𝑐 ≤ (𝑏+

√
𝐷)2

4𝑎2
such that 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 − 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 > 0, where

𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 =

⌊
𝑏 + 𝜆 ln 2

min(𝛼,1−𝛼) + 𝛼𝑁
𝑁 + 𝑁Δ

𝑁𝑐𝑐 −
√
𝜆 ln 2𝑁𝑐𝑐

2

⌋
, 𝑁𝑚𝑎𝑥ℎ𝑜𝑛𝑒𝑠𝑡 =

⌈
𝛼𝑁𝑐𝑐 +

√
𝜆 ln 2𝑁𝑐𝑐

2

⌉
, 𝑁Δ =

⌈ 𝑎
𝛼

√
𝑁𝑐𝑐

⌉
.

If there is no appropriate 𝑁𝑐𝑐 then set 𝑁BF = 𝑁BF + 1, and go to Step 3.
8. Calculate 𝑁OT = 𝑁 + 𝑁Δ + 𝑁𝑐𝑐 , 𝑁 1

OT = ⌈𝛼𝑁OT ⌉, and save the tuple (𝑘, 𝑁BF, 𝑁𝑐𝑐 , 𝑁OT, 𝑁
1
OT, 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠) , if 𝑁OT value is less than

before.
9. If 𝑘 < 𝑘max then set 𝑘 = 𝑘 + 1, and go to Step 2.
10. Output the tuple with minimal 𝑁OT.

Figure 10: Numerical algorithm for computing parameters for Π𝐴𝑝𝑝𝑅𝑂𝑇
RemaRK 3. For the online-phase, 𝑁BF is more critical. In Table 6 we give the optimal by 𝑁BF parameters, where the improvement in 𝑁BF is

from 10,4% for 𝑛 = 28, to 1,4% for 𝑛 = 220 in comparison with the optimization of 𝑁OT. However, achieving this improvement for 𝑁BF requires
significantly more OTs (from 20,6% for 𝑛 = 28 to 46,7% for 𝑛 = 220) and increases the size of the cut-and-choose set (from 287% for 𝑛 = 28 to
5793,9% for 𝑛 = 220), which results in a large increase in the overall cost.

Table 6: Optimal (in 𝑁BF) Π𝐴𝑝𝑝𝑅𝑂𝑇 parameters for set size 𝑛, statistical security 𝜆 = 40, and computational security 𝜎 = 128.

Parameters 𝑛 = 28 𝑛 = 210 𝑛 = 212 𝑛 = 214 𝑛 = 216 𝑛 = 218 𝑛 = 220

𝑘 139 133 130 129 129 128 128
𝑁BF 57,993 210,014 797,706 3,107,680 12,265,989 48,735,894 194,288,832
𝑁OT 89,772 320,253 1,206,819 4,681,730 18,439,057 73,183,339 291,592,668
𝑁 1
OT 41,257 152,908 587,848 2,310,232 9,183,449 36,421,202 145,456,131
𝑁𝑐𝑐 28,994 104,963 398,851 1,553,817 6,132,901 24,367,378 97,143,998

𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 13,960 51,323 196,635 771,384 3,063,672 12,145,310 48,495,359

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

D FALSE-POSITIVE PROBABILITY OF A BLOOM FILTER
In this section we compute an upper bound for 𝑝𝐹𝑎𝑙𝑠𝑒 relative to the proportion of 1’s in the Bloom filter. This is because the sender who
evaluates this probability knows 𝑝 , the proportion of 1’s, but does not know 𝑛, the number of items.

The second-order Taylor’s approximation of the false-positive probability in the Bloom filter, derived in [17], is:

𝑝𝐹𝑎𝑙𝑠𝑒 =

(
𝐸 [𝑋]
𝑚

)𝑘
+
𝜎2𝑋
2
𝑘 (𝑘 − 1)
𝑚2

(
𝐸 [𝑋]
𝑚

)𝑘−2
, (10)

where𝑚 is the length of Bloom filter (in our notation, it is 𝑁BF), 𝑘 is the number of hash-functions, 𝑋 is the number of ones presented in
Bloom filter, 𝐸 [𝑋] =𝑚

[
1 − (1 − 1/𝑚)𝑘𝑛

]
is the expectation of the number of ones, and

𝜎2𝑋 =𝑚

(
1 − 1

𝑚

)𝑘𝑛 [
1 −𝑚

(
1 − 1

𝑚

)𝑘𝑛
+ (𝑚 − 1)

(
1 − 1

𝑚 − 1

)𝑘𝑛]
is the standard deviation of the number of ones. In all those equations, 𝑛 is the number of items already presented in the Bloom filter. Recall
that if the receiver is malicious then the number of items can be higher than 𝑛 (which is the event that the sender is trying to prevent in
cut-and-choose).

From [29], it follows that 𝑝 =
[
1 − (1 − 1/𝑚)𝑘𝑛

]
and 𝐸 [𝑋] =𝑚𝑝 . Also notice that 1 − 1

𝑚−1 < 1 − 1
𝑚 . Thus, we can rewrite 𝜎2𝑋 as

𝜎2𝑋 =𝑚(1 − 𝑝)
[
1 −𝑚(1 − 𝑝) + (𝑚 − 1)

(
1 − 1

𝑚 − 1

)𝑘𝑛]
< 𝑚(1 − 𝑝) [1 −𝑚(1 − 𝑝) + (𝑚 − 1) (1 − 𝑝)] =𝑚𝑝 (1 − 𝑝) . (11)

From (10) and (11), we get

𝑝𝐹𝑎𝑙𝑠𝑒 < 𝑝𝑘 + 𝑝 (1 − 𝑝)
2

𝑘 (𝑘 − 1)
𝑚

𝑝𝑘−2 = 𝑝𝑘
[
1 + 𝑘 (𝑘 − 1)

2𝑚

1 − 𝑝
𝑝

]
= 𝑝𝑘

[
1 + 𝑘 (𝑘 − 1)

2𝑚

(
1
𝑝
− 1

)]
. (12)

Replacing𝑚 by 𝑁BF according to our notation, we got (6).

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

PSImple: Practical Multiparty Maliciously-Secure PSI

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

E COMPLEXITY ANALYSIS
In this section we give further details on the complexity analysis of PSImple. In Tables 7 and 8 we present the communication and computa-
tional cost of the main operations of our protocol. The tables are split into the evaluating party P0, and each other party P𝑖 (i.e., P1, ...,P𝑡).
Recall that the workload of P0 is significantly higher, as P0 performs 2𝑡 instances of Π𝐴𝑝𝑝𝑅𝑂𝑇 , 𝑡 as a sender and 𝑡 as a receiver, while every
other P𝑖 performs only two instances, one as a sender and one as a receiver.

The communication of Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 is dominated by OTs with communication complexity 𝑂 (𝑛𝜎2) – in order to compute 𝑁OT OTs of
length 𝜎 = 128 with statistical security 𝜆 = 40, the OT-extension of Keller, Orsini, and Scholl [23] requires sending 𝜎𝑁OT bits+10KB.
The communication of Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 consists mainly of sending/receiving the permutations of the unopened OTs; again, here P0 performs 2𝑡
instances of Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , while every other P𝑖 only 2 instances of Π𝐴𝑝𝑝𝑅𝑂𝑇 . Apart from Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , in the online phase of PSImple, each P𝑖 is
required to send its GBF to P0. Table 7 summarizes the number of bits that are sent or received by the parties in the different steps of the
protocol. Based on this table, we computed the communication complexity of PSImple in Table 9,with respect to 𝑁OT ≈ 𝑁BF = 𝑂 (𝑛𝑘) =
𝑂 (𝑛𝜎) and 𝑁𝑐𝑐 << 𝑁BF.

The main computational costs are summarized in Table 8. To compute 𝑁OT OTs, the OT-extension of Keller, Orsini, and Scholl [23]
requires 2𝑁OT + 336 hashes.

Table 7: Number of sent and received bits

P0 P𝑖
Offline-phase

OT-extension 2𝑡𝑁OT𝜎 2𝑁OT𝜎
Cut-and-choose challenge 𝑡𝑁𝑐𝑐 log2 𝑁OT 𝑁𝑐𝑐 log2 𝑁OT
Cut-and-choose response 𝑡 (𝑁𝑐𝑐 log2 𝑁OT + 𝜎) 𝑁𝑐𝑐 log2 𝑁OT + 𝜎

Online-phase
Permutation 𝑡𝑁BF log2 𝑁OT 𝑁BF log2 𝑁OT

Sending/receiving GBF𝑖∗ 𝑡𝑁BF𝜎 𝑁BF𝜎

Table 8: Number of performed operations

P0 P𝑖
Offline-phase

Hashes for OT-extension 2𝑡𝑁OT 2𝑁OT
PRG of 𝜎-bit strings to compute secret shares - (𝑡 − 1)𝑁BF − 𝑛

Online-phase
Hashes for the Bloom filter 𝑛𝑘 𝑛𝑘
Performed permutations 2𝑡 2

XORs of 𝜎-bit strings for codewords and GBFs 𝑛𝑘 + 2𝑡𝑛𝑘 𝑛𝑘 + 2𝑡𝑛𝑘
PRG of 𝜎-bit strings for rerandomization of GBF - 𝑁BF − 𝑛

XORs of 𝜎-bit strings for the intersection 2𝑡𝑁BF + 𝑛𝑘 -

Table 9: Comparison of communication complexity; 𝑡 is the number of parties, 𝑛 is the size of the input set, 𝜆 and 𝜎 are the
statistical and computational security parameters respectively.

Protocol Security Communication complexity
overall P0

offline online offline online
IOP18 [21] semi-honest - 𝑂 (𝑡2𝑛𝜆2) - 𝑂 (𝑡𝑛𝜆2)

KMPRT17 [28] semi-honest - 𝑂 (𝑡2𝑛𝜆) - 𝑂 (𝑡𝑛𝜆)
IOP18 [21] augmented semi-honest 𝑂 (𝑡2𝜎) 𝑂 (𝑡𝑛𝜆2) 𝑂 (𝑡𝜎) 𝑂 (𝑡𝑛𝜆2)

KMPRT17 [28] augmented semi-honest 𝑂 (𝑡2𝜎) 𝑂 (𝑡𝑛𝜆) 𝑂 (𝑡𝜎) 𝑂 (𝑡𝑛𝜆)
CJS12 [9] malicious (honest maj.) 𝑂 (𝑡4𝜎) 𝑂 (𝑡3𝑛𝜎) 𝑂 (𝑡5𝜎) 𝑂 (𝑡2𝑛𝜎)
KS05 [26] malicious 𝑂 (𝑡3𝑛𝜎) 𝑂 (𝑡3𝑛2𝜎) 𝑂 (𝑡2𝑛𝜎) 𝑂 (𝑡2𝑛2𝜎)
HV17 [19] malicious 𝑂 (𝑡2𝜎) 𝑂 (𝑡3𝜎 + 𝑡𝑛𝜎 log(𝑛)) 𝑂 (𝑡2𝜎) 𝑂 (𝑡2𝜎 + 𝑡𝑛𝜎 log(𝑛))
GN19 [15] malicious 𝑂 (𝑡2𝜎) 𝑂 (𝑡3𝜎 + 𝑡𝑛𝜎) 𝑂 (𝑡𝜎) 𝑂 (𝑡2𝜎 + 𝑡𝑛𝜎)
PSImple malicious 𝑂 (𝑡𝑛𝜎2) 𝑂 (𝑡𝑛𝜎 (log(𝑛𝜎) + 𝜎)) 𝑂 (𝑡𝑛𝜎2) 𝑂 (𝑡𝑛𝜎 (log(𝑛𝜎) + 𝜎))

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

F PROVING THEOREM 3.1
In this section, we prove the main theorem of this work in the setting when there is no division in offline- and online-phases. We start by
restating the theorem.

TheoRem F.1 (Restating TheoRem 3.1). The Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 protocol of Figure 3 securely realizes the functionality FMPSI with statistical UC-

security with abort in the presence of a static, malicious adversary corrupting any number of parties in the F 𝜎,𝑁OT , FgRO-hybrid model, where
the adversary makes a polynomially-bounded number of queries to FgRO (where the FgRO models the Bloom filter’s hash functions), assuming
the protocol parameters are chosen as described in Section 4.

We prove Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 implements FMPSI with statistical UC security [5] with global random oracle (gRO) [7]. We will need the F 𝜎,𝑁OT
defined above and the FgRO, given in Figure 9. Theorem 3.1 follows from the consistency proof (appearing in Section F.1), together with an
application of the UC-composition theorem of [6] to Lemma F.6 (see Section F.3) and Lemma F.7 (see Section F.4).

UC-gRO security. The security proof for stand-alone protocols allows using random oracle model, where there is separate RO for each
protocol and each session, and the adversary canmake queries only trough the simulator.In particular, this framework assumes that different
protocols do not share state (or else security is not guaranteed), and a separate RO is assumed to exist for every subprotocol (marked by SID).
This assumption is often not consistent with the common practice of instantiating the RO with a global hash function, used throughout
the distributed system. To capture the need for proving UC security security in such a setting, a useful model of a ”global” RO (UC-gRO)
has been proposed in [7]. In a nutshell, the main difficulty in proving security in this model is that the environment can make queries
to the gRO via a different sub-protocol, without the simulator being aware of them, which often hinders simulation. To handle this, the
RO is augmented as follows, resulting in a gRO (global RO) functionality. Every RO query space is of the form (𝑆𝐼𝐷, 𝑥). If a party queries
gRO with an sid that does not match its own, that query is marked as ‘illegitimate’ by gRO (but is nevertheless answered by it). Now, in
addition to making regular queries to the RO, a functionality with ID SID can ask gRO for all of the illegitimate queries of the form (𝑆𝐼𝐷, ∗).
We also note that as Π𝐴𝑝𝑝𝑅𝑂𝑇 itself does not use the gRO at all, but the underlying OT’s do. In Section 5, we discuss implementations of
the idealized functionality F 𝜎,𝑁OT that are 𝑔𝑅𝑂-secure, which is essential for making our concrete implementation Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 𝑔𝑅𝑂-secure
(and in fact, even UC-secure at all, as Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 uses the same implementation of the the RO for all instances of Π𝐴𝑝𝑝𝑅𝑂𝑇 , which in our
implementation indeed make calls to the RO).

F.1 Consistency of PSImple
Consistency follows from next: consider GBF∗ that P0 learns on the step 8.

GBF∗ =
⊕
𝑖∈[𝑡]

GBF𝑖∗
⊕

GBF0 =
⊕

𝑖∈[𝑡]∪{0}
GBF𝑖

⊕
𝑖,𝑙 ∈[𝑡],𝑖≠𝑙

(
𝑆𝑙𝑖 ⊕ 𝑆𝑖𝑙

) ⊕
𝑖∈[𝑡]

(
𝑀𝑖
∗ ⊕ �̂�𝑖

)
=

⊕
𝑖∈[𝑡]∪{0}

GBF𝑖
⊕
𝑖∈[𝑡]

(
𝑀𝑖
∗ ⊕ �̂�𝑖

)
.

GBF𝑖 is the re-randomised 𝑀𝑖 ⊕ �̂�𝑖
∗, and the re-randomization performed by P𝑖 doesn’t affect codewords of its items, therefore for any

𝑥𝑖 𝑗 ∈ 𝑋𝑖 the codeword 𝑦𝑖 𝑗 = ⊕𝑠∈ℎ∗ (𝑥)GBF𝑖 [𝑠] = ⊕𝑠∈ℎ∗ (𝑥)
(
𝑀𝑖 [𝑠] ⊕ �̂�𝑖

∗ [𝑠]
)
= ⊕𝑠∈ℎ∗ (𝑥)

(
𝑀𝑖
∗ [𝑠] ⊕ �̂�𝑖 [𝑠]

)
.

Hence, for every item 𝑥 ∈ ∩𝑖∈[𝑡]𝑋𝑖 with codewords 𝑦𝑖s, we have⊕
𝑠∈ℎ∗ (𝑥)

GBF∗ [𝑠] =
⊕

𝑠∈ℎ∗ (𝑥)

©«GBF𝑖 [𝑠]
⊕
𝑖∈[𝑡]

(
𝑀𝑖
∗ [𝑠] ⊕ �̂�𝑖 [𝑠]

)ª®¬ =
⊕
𝑖∈[𝑡]

(𝑦𝑖 ⊕ 𝑦𝑖) = 0.

F.2 Security Model and Notation
Notation. Let𝑊 = {𝑤1, ...,𝑤𝑛} be a set of 𝑛 elements. A partial injective and onto mapping 𝜉 : 𝐴 → 𝐵 where |𝐵 | = 𝑘 , and |𝐴| = 𝑛 is

called a 𝑘-permutation from 𝑛 [8, p. 40]. We usually denote such mappings by a 𝑘 − 𝑡𝑢𝑝𝑙𝑒 over 𝐴. For such a permutation 𝜉 , given a vector
𝑋 indexed by elements of𝐴, we denote by 𝑌 = 𝜉 (𝑋) a vector indexed by elements of 𝐵, where 𝑦𝑖 = 𝑥𝜉−1 (𝑖) for each 𝑖 ∈ 𝐵. For some ordering
𝐼 of 𝐵, we denote by 𝐽 = 𝜉 (𝐼) the ordering For indices we write 𝑗 = 𝜉 (𝑖) if we use the permutation to define the mapping.

Definition F.2. A function 𝜇 : N → N is negligible if for every positive polynomial 𝑝 (·) and all sufficiently large 𝑥 it holds that 𝜇 (𝑥) <
1/𝑝 (𝑥).

Definition F.3. We say that two distribution ensembles {𝑋 (𝜅, 𝑎)}𝜅∈𝑁,𝑎∈{0,1}∗ and {𝑌 (𝜅, 𝑎)}𝜅∈𝑁,𝑎∈{0,1}∗ are statistically close, denoted
{𝑋 (𝜅, 𝑎)} 𝑠≈ {𝑌 (𝜅, 𝑎)}, if for every non-uniform distinguisher𝐷 there exists a negligible function 𝜇 such that for all 𝑎 and𝜅, |𝑃𝑟 [𝐷 (𝑋 (𝜅, 𝑎)) =
1] − 𝑃𝑟 [𝐷 (𝑌 (𝜅, 𝑎)) = 1] | ≤ 𝜇 (𝜅).

Model. We prove our results in the standard UC model [5] with global random oracle [7], assuming private authenticated channels be-
tween the parties (in fact, authentication of sender’s identity is already guaranteed due to the fact that the adversary may only reorder
messages, delay or delete messages sent between a pair of parties but not modify them). The latter can be modeled by assuming communi-
cation via ideal channel functionalities that allow for the suitable adversarial behavior (allowing interventions as above, but adding secrecy

22

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

PSImple: Practical Multiparty Maliciously-Secure PSI

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

of message content), see [5] for more details - the following is a brief recap of the setting, which is identical to the standard setting of [5],
except of assuming channels as above, instead of the ‘bare bones’ network.

The parties, the adversary A and the environment Z are modeled as polynomial-time non-uniform ITMs. All parties, including Z (for
which it is an only input) have a public parameter 1𝑘 provided as input. Furthermore, it is known that for defining UC security, it suffices
to consider a ‘dummy adversary’, which merely relays messages between Z, parties and instances of idealized functionalities. That is, at
the beginning it corrupts a set of partiesZ instructs it to corrupt. Then, every time a party P sends it a message𝑚 (intended for party P′),
it sends Z a message that ‘P requested to send a message to P′’. Note that as we assume private channels, it does not see the content of
𝑚 unless P is corrupt, in which case it also reports toZ the content of the message. It also receives commands fromZ to relay a message
waiting to be sent, or send a given message𝑚′ from a corrupted party P to some party P′ or as a message to an idealized functionality. We
also assumeZ has access to the entire state of A, including the state of all parties corrupted by it so far. In some more detail:

Real World execution. Very briefly, as standard in the UC setting, at the beginning of a protocol execution Z is initialized with a public
security parameter and invokes other machines - the adversaryA and protocol participants which are also give 1𝑘 as a security parameter.
Z provides the inputs to the protocol participants by writing to their input tapes. More precisely, a party P𝑖 in a (sub)protocol Π (one
of possibly many to be executed by Z) starts its execution of a given protocol, by having an ITM identified by some 𝐼𝐷 playing its role
activated by Z writing (SIDΠ, 𝑥) the string 𝑥 as its intended input in a protocol Π (identified by session id SIDΠ). Other parties’ roles
are played by other ITMs, running the program intended for the same session ID. 12 The scheduling of messages is asynchronous and is
controlled by the adversary (to the extent explained above). The execution by an uncorrupted P𝑖 in a given protocol is resumed once it
receives the next prescribed message according to the protocol (on its communication tape). At the end of a protocol’s execution, each
honest party writes its output toZ’s ‘subroutine output tape’, making their outputs part ofZ’s view.

Corruption is modeled by special ‘corrupt’ messages, and F is immediately informed regarding the corruption. Since we always consider
the dummy adversary whose program is only to perform instructions fromZ, we consider 𝑅𝑒𝑎𝑙Π,Z (𝑘) (instead of 𝑅𝑒𝑎𝑙Π,Z,A (𝑘)), omitting
the specification of A.Corruptions are modeled by having an adversary send a special ‘corrupt’ message to the newly corrupted party. By
𝐼𝑑𝑒𝑎𝑙F,Z,S (𝑘) we denote the output distribution ofZ’s output in an ideal world implementation of the functionality F , in the presence of a
simulator S, when running with a public security parameter 1𝑘 . By 𝐼𝑑𝑒𝑎𝑙F,Z,S we denote the ensemble {𝐼𝑑𝑒𝑎𝑙F,Z,S (1𝑘)}𝑘∈N, by 𝑅𝑒𝑎𝑙Π,Z
– the ensemble {𝑅𝑒𝑎𝑙Π,Z (1𝑘)}𝑘∈N.

Ideal World - evaluating a functionality F . For our purposes, the setting is conceptually similar to the ideal world in the stand alone
setting [16]. In particular, the distinguishing entity (i.e.,Z) cannot observe the content of messages between the ideal functionality F and
corrupted parties. One difference is that we use an extended notion of a functionality F , which specifies an additional interface with the
adversary (possibly of an interactive form), giving it power beyond the prescribed output in case these parties were honest.

Definition F.4. A protocol Π is said to computationally UC-securely compute a given ideal functionality F against a static adversary,
if there exists an ideal-world adversary S (a simulator), such that for every nonuniform polynomially bounded environmentZ running in
the presence of a dummy adversaryA, corrupting parties at the outset of the protocol (before sending or receiving any other messages via
A),

𝐼𝑑𝑒𝑎𝑙F,Z,S
𝑐≈ 𝑅𝑒𝑎𝑙Π,Z .

Similarly, for statistical and perfect security, the indistinguishability notion above is 𝑠≈ and
𝑝
≈ respectively.13 14

Definition F.5. A protocol Π is said to realize 𝐹 with type security with abort (type is either computational, statistical, or perfect) if it
type-securely realizes F ′, defined exactly as F , but it additionally allows the adversary to send ⊥ after receiving the prescribed output of
the corrupted parties, and before sending outputs to honest parties. If ⊥ was sent, the functionality sends ⊥ to each honest party, instead
of its prescribed output [16, Chapter 7] and [5].15

F.3 Approximate 𝐾-out-of-𝑁 ROT
Parties in our PSImple protocol use Π𝐴𝑝𝑝𝑅𝑂𝑇 – approximate 𝐾-out-of-𝑁 random OT protocol to obtain garbled Bloom filters for the Bloom
filter of length 𝑁 = 𝑁BF consisting of 𝐾 1’s. We give this protocol in F 𝜎,𝑁OT -hybrid model in Figure 11. To make the security proof clearer,
we explicitly define the default values for the cut-and-choose challenge, and the ⊥- and ”continue”-replies, which are omitted in the main
text. The oblivious transfer functionality we use in our security setting is F 𝜎,𝑁OT (Fig. 7) with 𝑁 = 𝑁OT parallel instances of 1-out-of-2 OT.

12Note that a given ITM may participate in several sessions concurrently. To distinguish which message belongs to which protocol, every message delivered in Π is labeled by
𝑆𝐼𝐷Π .
13Note that the above requirement is only for real executions which terminate, in the sense that all parties wrote some value to the output tape of Z. Nothing is guaranteed before
the execution has terminated.
14The standard notion for statistical and perfect security allows the simulator run in polynomial time in the runtime of A, and does not require that A and Z are unbounded. In
our case we need to limit the number of accesses to the RO of the adversary for security to hold, so for simplicity, we limit A,Z to be polynomially bounded. In fact, we could
handle somewhat super-polynomial adversaries.
15F′ is a specific kind of a generalized F functionalities, allowing for extra ‘abort after seeing output’ capabilities for the adversary.

23

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

Protocol Π𝐴𝑝𝑝𝑅𝑂𝑇 in F 𝜎,𝑁OT -hybrid model
Parties: Sender, Receiver.
Parameters: 𝜎 – length of the OT strings (computational security parameter); 𝜆 – statistical security parameter;
𝑁 = 𝑁BF is the number of OTs required; 𝑁OT > 𝑁 is the number of OTs to generate;
𝑁 1
OT, 𝑁𝑐𝑐 , 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 are parameters of cut-and-choose described in Section 4.

𝐾 is the number of 1’s in Bloom filter of the receiver.
Inputs: 𝐵 is the choice vector of the receiver (𝐵 [𝑖] ∈ {0, 1}, 𝑖 ∈ [𝑁BF]) of size 𝑁 = 𝑁BF consisting 𝐾 1’s.

(1) [1-out-of-2 OTs]The sender and the receiver call F𝜎,𝑁OT
OT performing 𝑁OT OTs in parallel. The receiver chooses requests 𝑐1, ..., 𝑐𝑁OT

with 𝑁 1
OTs ones among them, and 𝑁OT − 𝑁 1

OT zeroes (randomly permuted). The senders chooses uniformly at random 𝑀0 =
{𝑚10, ...,𝑚𝑁OT0 }, 𝑀1 = {𝑚11, ...,𝑚𝑁OT1 } (𝑚 𝑗0, 𝑚 𝑗1 are of length 𝜎). In the 𝑗 th OT, the receiver uses choice bit 𝑐 𝑗 and learns
𝑚 𝑗∗ =𝑚 𝑗𝑐 𝑗 .

(2) [cut-and-choose challenge] The sender chooses set𝐶 ⊆ [𝑁OT] of size 𝑁𝑐𝑐 uniformly random and sends𝐶 to the receiver.
(3) [cut-and-choose response] The receiver checks if |𝐶 | = 𝑁𝑐𝑐 ; if |𝐶 | > 𝑁𝑐𝑐 , then truncates it, if |𝐶 | < 𝑁𝑐𝑐 , then adds indices by

default (for example, 1, 2, ...). Receiver computes and sends to the sender the set 𝑅 = { 𝑗 ∈ 𝐶 |𝑐 𝑗 = 0}. To prove that he used choice bit
0 in the OTs indexed by 𝑅, it also sends 𝑟 ∗ =

⊕
𝑗∈𝑅𝑚 𝑗∗. The sender replies with ⊥ if |𝐶 | − |𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 or if 𝑟 ∗ ≠

⊕
𝑗∈𝑅𝑚 𝑗0,

and with ”continue” otherwise.
(4) [permute unopened OTs] The receiver chooses random injective function 𝜋 : [𝑁] → ([𝑁OT] \𝐶) such that 𝐵 [𝑗] = 𝑐𝜋 (𝑗) , and

sends 𝜋 to Sender.
The receiver permutes its random values𝑚 𝑗∗ according the 𝜋 , and the sender permutes𝑚 𝑗1 according to 𝜋 . If 𝜋 is formed incorrectly
(not from the domain [𝑁OT] \𝐶 or not to [𝑁]), then use a default value (𝑁 consecutive values from [𝑁OT] \𝐶).

Outputs: the receiver has output𝑚 𝑗∗ (𝑗 ∈ [𝑁] such that 𝐵 [𝑗] = 1); the sender has𝑚 𝑗1, (𝑗 ∈ [𝑁]).

Figure 11: Protocol Π𝐴𝑝𝑝𝑅𝑂𝑇 in F 𝜎,𝑁OT -hybrid model

Lemma F.6. The protocol Π𝐴𝑝𝑝𝑅𝑂𝑇 realizes the functionality F𝐴𝑝𝑝𝑅𝑂𝑇 with statistical UC-security with abort in the presence against static
(unbounded) malicious adversaries in the F 𝜎,𝑁OT -hybrid model, and 𝐾 ′ is an upper bound for number of 1’s in Bloom filter of length 𝑁 = 𝑁BF

such that 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 .16

PRoof. In the following analysis, we do not need to explicitly deal with delaying or deleting messages byZ. This is because in the real
protocol, if a message is delayed, then the other party simply waits. Since, this is a two-party protocol, in the ideal-world, the simulator S
can simply emulate this behavior, i.e., wait for the delayed message. Also, we may assume wlog. that the input of the uncorrupted party are
provided by Z before any messages are sent in the protocol. This is so because it is a 2PC protocol, and the first message received by the
corrupted party comes from F𝐴𝑝𝑝𝑅𝑂𝑇 , which requires participation of both parties (but the honest one is waiting).

Security in face of a corrupted receiver. the simulator S, once activated byZ, emulates the protocol towardsZ.17

(1) In the 1st step of the protocol, when emulating F 𝜎,𝑁OT and obtaining the input 𝑐1, 𝑐2, ..., 𝑐𝑁OT from Z, S randomly chooses a set
𝐶 ⊆ [𝑁OT], where |𝐶 | = 𝑁𝑐𝑐 , and computes

𝐾 ′′ =
∑

𝑖∈[𝑁OT]\𝐶
𝑐𝑖 .

• If 𝐾 ′′ ≤ 𝐾 ′, S passes 𝐾 ′′ as an input of the receiver to F𝐴𝑝𝑝𝑅𝑂𝑇 and receives𝑀 ′ = {𝑚′1,𝑚
′
2, ...,𝑚

′
𝐾 ′′}. For any 𝑗 ∈ [𝑁OT] \𝐶 with

𝑐 𝑗 = 1 it computes
𝜓 (𝑗) =

∑
𝑖∈[𝑁OT]\𝐶, 𝑖≤ 𝑗

𝑐𝑖

and the function 𝜙 : [𝐾 ′′] → [𝑁OT] \𝐶 , as the inverse of𝜓 . I.e., 𝜙 (𝑖) = 𝑗 , whenever𝜓 (𝑗) = 𝑖 for 𝑖 ∈ [𝐾 ′′], 𝑗 ∈ [𝑁OT] \𝐶 such that
𝑐 𝑗 = 1. For any 𝑗 ∈ [𝑁OT] it constructs𝑚 𝑗∗ =𝑚′𝜓 𝑗 , if 𝑗 ∈ [𝑁OT] \𝐶 and 𝑐 𝑗 = 1, or𝑚 𝑗∗

𝑅← {0, 1}𝜎 , otherwise. The simulator gives{
𝑚 𝑗∗

}
𝑗 ∈[𝑁OT] toZ as the output of F 𝜎,𝑁OT in 1st step, and 𝐶 as the message of 2nd step of the protocol.

• If 𝐾 ′′ > 𝐾 ′, the simulator passes toZ the vector {𝑚 𝑗∗} 𝑗 ∈𝑁OT of uniformly random 𝜎-bit strings as the output of F 𝜎,𝑁OT of the 1st
step of the protocol, sends to it 𝐶 as the cut-and-choose request and, upon getting the answer, passes ⊥ to Z as sender’s reply,
appends {𝑚 𝑗∗} 𝑗 ∈𝑁OT , and halts.

(2) S waits for a message from the receiver in 3rd step of the protocol. Upon receiving the response (𝑅, 𝑟∗) it sends back Continue and
waits for the permutation.
Upon receiving permutation 𝜋 from Z in 4th step, S checks, that 𝜋 : [𝑁OT] \ 𝐶 → [𝑁]. If not, then uses a default value for 𝜋 (𝑁
consecutive values from [𝑁OT] \𝐶).

16In fact, this protocol is even secure in the more standard statistical UC-model, where the adversary may be unbounded, and simulator is polynomial in adversaries’ runtime.
17As mentioned above, A is fixed to just relays messages from Z to the parties and back. Intuitively, S attempts to do the same.

24

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

PSImple: Practical Multiparty Maliciously-Secure PSI

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

If yes, then computes 𝐼 ′ =
(

𝑖1 𝑖2 ... 𝑖𝐾 ′
𝜋 (𝜙 (𝑖1)) 𝜋 (𝜙 (𝑖2)) ... 𝜋 (𝜙 (𝑖𝐾 ′))

)
where 𝑖𝑠 ∈ [𝐾 ′′] such that ∃𝜋 (𝜙 (𝑖𝑠)) and gives it to the ideal

functionality as the input of the receiver.

Proof of security in face of a corrupted receiver. Consider an environment running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 as input.
Let 𝑥 denote the input vector to all parties given at the outset byZ to all parties. In step 1,Z asks S to send F 𝜎,𝑁OT the set𝑄 of the requests
to F 𝜎,𝑁OT , where 𝑄 ′ ⊆ 𝑄 is the set of 1-requests, and the rest are 0-requests. It receives a sequence {𝑚 𝑗∗} 𝑗 ∈[𝑁OT] of random strings in
response. By definition of S, the distributions𝑚 𝑗∗ in the real and ideal worlds are identical (as the inputs 𝑥 were fixed byZ to be the same).
In more detail,𝑄 ′ is identical in both worlds. As to𝑚 𝑗∗, S picks𝐶 and sends 𝐾 ′′ to the ideal functionality, where 𝐾 ′′ = |𝑄 ′ ∩ ([𝑁OT] \𝐶) |.
The emulated𝑚 𝑗∗’s at locations 𝑗 ∈ 𝑄 ′ ∩ ([𝑁OT] \𝐶) are taken from the functionality’s step-1 output to receiver if 𝐾 ′′ ≤ 𝐾 ′, and random
independent values picked byS otherwise. In both cases, the other valuesS sends emulating replies of F 𝜎,𝑁OT are random values independent
of all others. Now, in the real world, the sender chooses 𝐶 , and either

|𝐶 \ 𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 (13)

holds or not for 𝑅 induced by𝐶 and𝑄 ′ (for the honest receiver). Since the simulator and sender pick𝐶 according to the same distribution in
both worlds, that does not depend of receiver’s view so far, the probability that (13) is satisfied is identical in both. Then Z responds with
the same 𝑅 (identical in both worlds). Consider the case when the inequality (13) holds:
• In the real world, the receiver either reported the correct 𝑅 in which case sender certainly aborts, or reported a larger 𝑅 so that the

equation |𝐶 \ 𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 no longer holds. In the latter case, there is at least one value 𝑗 ∈ 𝑅, for which𝑚 𝑗0 is not known to the
receiver. Thus guessing 𝑟∗ expected by the sender occurs with probability at most 2−𝜎 over the sender’s randomness. Overall, the
sender aborts in step 3 with probability at least 1− 2−𝜎 (over the choice of 𝑟). S also appends ⊥ to the simulated view as the sender’s
message.
• In the ideal world, the simulator sets 𝐾 ′′ as the number of 1-OT requests in [𝑁OT] \ 𝐶 on behalf of the receiver in step 1 (of

the adversary’s interaction with the functionality). With our choice of parameters, according Claim C.2, the evaluation of 𝑝𝐹𝑎𝑙𝑠𝑒
computed for the Bloom filter of length 𝑁 with 𝐾 ′′ 1’s in it, is larger than 2−𝜎 except with negligible (in 𝜆) probability, since (13)
holds. Therefore, the ideal functionality sends ⊥ to both parties and aborts by the end of step 1.

To summarize, the joint view of the adversary and the sender’s output is this case is at statistical distance at most 2−𝜎 + 𝑛𝑒𝑔(𝜆).

𝐼𝑑𝑒𝑎𝑙F,Z,S
𝑠≈ 𝑅𝑒𝑎𝑙Π,Z

𝑠≈ (𝐷,⊥) . (14)

Here 𝐷 is the distribution over the receiver’s view up until step 2 in the real world, as described above.
Now, consider the case when (13) is not satisfied in the real world. IfZ sends 𝑅∗ (which differs from 𝑅 induced by its F 𝜎,𝑁OT ’s inputs) so

that (13) is satisfied for 𝐶, 𝑅∗, or 𝑟∗ ≠
⊕

𝑗 ∈𝑅𝑚 𝑗0 the sender outputs ⊥ and halts immediately. By construction of S, it sends ⊥ in step 2 as
receiver’s input, and replies with ⊥ to both parties. S again appends ⊥ as sender’s message to the simulated view. Thus, if (14) holds with
0-error (in particular, over the entire support of 𝑅𝑒𝑎𝑙Π,𝑍 , the sender’s output is ⊥). Otherwise, in the real world, Z proceeds by picking 𝜋
(based on its entire view so far), and sends it to the sender, who permutes the values𝑚 𝑗1 it picked previously according to 𝜋 . In particular,
the𝑚 𝑗1’s for the 𝐾 ′ 𝑗 ’s for which 𝜋 (𝑗) ∈ 𝑄 ′ are also output to the sender at positions 𝜋 (𝑗), and all other𝑚 𝑗 ′1’s output to sender are random
values, independent of receiver’s view so far (as it never received these values). In the ideal world, S receives (the same) 𝜋 fromZ, and sets
𝐼 ′ sent to the ideal functionality in step 2 in a way that ensures the sender’s output at positions 𝜋 (𝑗) for 𝑗 with 𝜋 (𝑗) ∈ 𝑄 ′, equal the𝑚 𝑗1
at this position from the receiver’s view. The rest are random independent values, as initially generated by the functionality. We conclude
that in this latter case 𝐼𝑑𝑒𝑎𝑙F,Z,S

𝑠≈ 𝑅𝑒𝑎𝑙Π,Z with 0-error.
Overall, we get a statistical distance of at most 𝑛𝑒𝑔(𝜆) + 2−𝜎 between 𝐼𝑑𝑒𝑎𝑙F,𝑍,𝑆 and 𝑅𝑒𝑎𝑙Π,𝑍 .

Security in face of a corrupted sender. As in the previous case, following the delivery of inputs to all the parties by Z (written by it to
their input tapes), the simulator S, once activated byZ, operates as follows.

In the first step of the protocol, S obtains the inputs of the sender𝑀0 = {𝑚 𝑗0} 𝑗 ∈[𝑁𝑂𝑇] ,𝑀1 = {𝑚 𝑗1} 𝑗 ∈[𝑁𝑂𝑇] fromZ.
In 2nd step of the protocol, S waits for the message 𝐶 from Z. If |𝐶 | > 𝑁𝑐𝑐 , then truncates it, if |𝐶 | < 𝑁𝑐𝑐 , then adds indices by

default (1, 2, ...). It samples the number of 1’s |𝐶 \ 𝑅 | hypergeometrically 𝐻𝐺 (𝑁OT, 𝑁
1
OT, 𝑁𝑐𝑐) (𝑁

1
OT is determined in Section 4), computes

|𝑅 | = 𝑁𝑐𝑐 − |𝐶 \ 𝑅 | and distributes |𝑅 | 0-indices uniformly random over the indices from 𝐶 to build the set 𝑅 ⊂ 𝐶 as the set of indices of 0.
Then S computes 𝑟∗ =

⊕
𝑗 ∈𝑅𝑚 𝑗0. It gives 𝑅 and 𝑟∗ toZ as the message in 3rd step of the protocol.

Then it samples the uniformly random 𝑁 -permutation 𝜋 : [𝑁OT] \𝐶 → [𝑁] and gives it to Z as a message in 4th step of the protocol,
and gives𝑀 = 𝜋 (𝑀1) as an input of corrupt sender to F𝐴𝑝𝑝𝑅𝑂𝑇 .

Proof of security in face of a corrupted sender. Consider an environment Z running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 . Let 𝑥
denote the input vector to all parties given at the outset by Z to all parties, as in the previous case. The environment Z (via S) sends to
F 𝜎,𝑁OT two based on 𝑥 sets 𝑀0 = {𝑚 𝑗0} 𝑗 ∈[𝑁OT] and 𝑀1 = {𝑚 𝑗1} 𝑗 ∈[𝑁OT] , whose distributions are identical in both real and ideal worlds by
the construction of the simulator.

25

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

Then Z sends the set 𝐶 ⊂ [𝑁OT] such that |𝐶 | = 𝑁𝑐𝑐 based on 𝑥 and receives (𝑅,𝑟∗) in response. 𝑅 is distributed identical in the real
and ideal world by S construction. As for 𝑟∗, it deterministically depends on 𝑀0 and 𝑅 and therefore is also identical in the real and ideal
worlds.

The environment Z responses with either ⊥ or Continue, which it chooses basing on his view (𝑥,𝑀0, 𝑀1, 𝑅, 𝑟
∗), which is, in its turn,

depend only on 𝑥 . If it sends ⊥, then it receives nothing in response, the execution stops in both real and ideal worlds, and the adversary
has ⊥ as an output. IfZ sends Continue, it receives the 𝑁 -permutation 𝜋 : [𝑁OT] \𝐶 → [𝑁]. This permutation in ideal world is computed
randomly and in the real directly from the receiver with the same input and randoness, and has the same distribution in both protocol and
simulation. In both worlds it is constructed so that it places𝑚 𝑗1’s over input indices of the receiver 𝑗 to the same positions in outputs of
the sender and of the receiver.

We conclude, that the joint view of the adversary and the receiver’s output is statistically indistinguishable, with 0-error. □

Consistency of F𝐴𝑝𝑝𝑅𝑂𝑇 . Now we show that for the honest sender and honest receiver, Π𝐴𝑝𝑝𝑅𝑂𝑇 protocol realizes F𝐴𝑝𝑝𝑅𝑂𝑇 ideal func-
tionality. The honest receiver sends to the protocol the choice bits 𝑐1, ..., 𝑐𝑁OT , recovers the subset 𝐶 ∈ [𝑁OT] received from the sender and
sends the permutation 𝜋 : [𝑁OT] \𝐶 → [𝑁] such that 𝜋 (𝑐1, ..., 𝑐𝑁OT) = 𝐵.

First, note that, if the receiver is honest, with our choice of parameters it passes the cut-and-choose check with the overwhelming
probability. Also with the overwhelming probability, it succeed in finding the suitable 𝜋 , as there is enough 1’s among the choice bits
remaining after cut-and-choose.

The sender inputs to F 𝜎,𝑁OT
OT sequences (𝑚 𝑗0) 𝑗 ∈[𝑁OT] and (𝑚 𝑗1) 𝑗 ∈[𝑁OT] . The receiver has (𝑚 𝑗𝑐 𝑗) 𝑗 ∈[𝑁OT] as an output. Applying the

permutation 𝜋 to (𝑚 𝑗1) 𝑗 ∈[𝑁OT] and (𝑚 𝑗𝑐 𝑗) 𝑗 ∈[𝑁OT] accordingly, the sender gets 𝑀 =
(
𝑚𝜋 (𝑖1)1, ...,𝑚𝜋 (𝑖𝑁)1

)
, and the receiver gets 𝑀∗ =(

𝑚𝜋 (𝑖1)𝑐𝜋 (𝑖1) , ...,𝑚𝜋 (𝑖𝑁)𝑐𝜋 (𝑖𝑁)

)
=

(
𝑚𝜋 (𝑖1)𝐵 [1] , ...,𝑚𝜋 (𝑖𝑁)𝐵 [𝑁]

)
, where 𝑖1 = min([𝑁OT] \𝐶), 𝑖𝑁 = max([𝑁OT] \𝐶). Thus, the elements of𝑀

and𝑀∗ at the indices 𝑖 such that 𝐵 [𝑖] = 1 collude, and at the other indices differ. As the set of indices 𝑖 such that 𝐵 [𝑖] = 1, 𝑖 ∈ 𝑁 defines 𝐼 –
the input set of the honest receiver to F𝐴𝑝𝑝𝑅𝑂𝑇 , the receiver has the values from the sender’s output set at indices from 𝐼 , as described by
the functionality F𝐴𝑝𝑝𝑅𝑂𝑇 .

F.4 PSI protocol in the hybrid model
Figure 12 describes the 𝑃𝑆𝐼𝑚𝑝𝑙𝑒 protocol in FgRO, F𝐴𝑝𝑝𝑅𝑂𝑇 -hybridmodel. Note that as the hash functions aremodeled by the random oracle,
the coin-tossing step for hash-seed agreement (Step 1 in Figure 3) is omitted in Figure 12. Additionally, the ideal functionality F𝐴𝑝𝑝𝑅𝑂𝑇 is
not separated into offline and online phases, so as the Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 itself. Furthermore, we need to add a padding after F𝐴𝑝𝑝𝑅𝑂𝑇 , since this
functionality does not provide a padding for the receiver’s garbled Bloom filter. Note that this padding does not affect security, since the
strings in the padding are replaced in the following rerandomization step. For clarity, in Figure 12 we explicitly describe all the ⊥-replies
that parties can send (as we consider security with abort and asynchronous execution).

In Lemma F.7 and consequently in Theorem 3.1 we require a non-uniform polynomial-time adversary in sense of polynomially-bounded
requests to the global Random Oracle. This follows from the next: the union bound of the probability of having at least one false-positive
result over |𝑄 | requests is |𝑄 |𝑝𝐹𝑎𝑙𝑠𝑒 < |𝑄 |2−𝜎 . To keep it negligible, |𝑄 | = 𝑝𝑜𝑙𝑦 (𝜎). In the case of polynomially-bounded (in 𝜎) domain
D, this requirement is fulfilled automatically, otherwise (for example, it the typical case of an exponential-size domain) we require a
computationally bounded (in 𝜎) adversary in Theorem 3.1.

Lemma F.7. The protocol Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 securely realizes the functionality FMPSI with statistical UC-security with abort in presence of static
malicious adversary corrupting up to 𝑡 parties in the F𝐴𝑝𝑝𝑅𝑂𝑇 , FgRO-hybrid model, which makes a polynomially bounded number of queries to
FgRO, where the Bloom filter hash functions modelled as non-programmable global random oracle, and the other protocol parameters are chosen
as described in subsection 4.

PRoof. In our protocol and functionality, we take 𝑛′ such that for the Bloom filter consisting 𝑛′ or less elements, 𝑝𝐹𝑎𝑙𝑠𝑒 ≤ 2−𝜎 , and for
the Bloom filter with 𝑛′ + 1 and more elements, 𝑝𝐹𝑎𝑙𝑠𝑒 > 2−𝜎 . It means, that the malicious receiver in F𝐴𝑝𝑝𝑅𝑂𝑇 receives ⊥ from the first
step of F𝐴𝑝𝑝𝑅𝑂𝑇 functionality if and only if its effective Bloom filter contains more than 𝑛′ items.

Consider the case when evaluating party P0 is honest, and some subset of other parties 𝐼 ⊆ {P1, ...,P𝑡 } are corrupt.

Simulator description. The simulator S, once activated by Z, emulates F𝐴𝑝𝑝𝑅𝑂𝑇 towards Z. We stress, that all the corrupt parties are
emulated asynchronously, according to the message scheduling decided byZ - one message at a time. We only describe the simulation by
order of steps in the protocol for convenience. In step 1 (which we consider as a preprocessing step at Round 0, though it also could be
considered as Round-1 transaction performed in parallel with step 2), S sends toZ uniformly random shares 𝑆𝑖𝑙 , as honest P𝑖 ’s would do
according the protocol, to any corrupt party P𝑙 ∈ 𝐼 , and learns 𝑆𝑙𝑖s fromZ.

In step 2, S make queries (𝑞,PID, SID) to the global Random Oracle (to compute Bloom filter’s hash-indices) on behalf of corrupt parties
P𝑖 ∈ 𝐼 as requested byZ and writes them to sets𝑄𝑖 = {𝑞𝑖 𝑗 | 𝑗 ∈ [𝑛𝑖]}. Here index 𝑖 corresponds to PID of corrupt P𝑖 , 𝑛𝑖 ≥ 𝑛 is polynomially
bounded, as Z is. Denote 𝑄 = ∪𝑖 |P𝑖 ∈𝐼𝑄𝑖 – the joint query set of corrupt parties. The environment might continue making such a queries
up to the end of the protocol, and S adds them in 𝑄 up to the end of Step 5 (when the effective intersection of corrupt parties inputs is
extracted).

26

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

PSImple: Practical Multiparty Maliciously-Secure PSI

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

Protocol of Malicious-secure Multiparty PSI Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 in the F𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model
Parameters:
𝑛 - the maximal size of the input set of the party; 𝜎 - computational security parameter; 𝜆 - statistical security parameter;
𝑁BF - size of the Bloom filter; D – a domain of input items;
Inputs: P𝑖 inputs 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛𝑖 }, 𝑛𝑖 ≤ 𝑛 – the set of items from D (𝑖 ∈ {0, ..., 𝑡 }).

(1) [(R0) random shares] Each P𝑖 , 𝑖 ∈ [𝑡], sends 𝑆𝑖𝑙 = (𝑠𝑖𝑙1 , ..., 𝑠𝑖𝑙𝑁BF
) to any P𝑙 , 𝑙 ∈ [𝑡] \ {𝑖 }, where 𝑠𝑖𝑙𝑟

𝑅←− {0, 1}𝜎 , 𝑟 ∈ [𝑁BF].
(2) [(R1) compute Bloom filters] P𝑖 (𝑖 ∈ [𝑡] ∪ {0}) computes Bloom filter BF𝑖 of its items from 𝑋𝑖 . If 𝑛𝑖 < 𝑛, then P𝑖 computes the

Bloom filter of the joint set 𝑋𝑖 with (𝑛 − 𝑛𝑖) random dummy items.
(3) [(R1) symmetric approximate ROTs] Parties perform in parallel:

(a) Using BF0’s 1’s indices set 𝐽 as input, P0 calls | 𝐽 |-out-of-𝑁BF F𝐴𝑝𝑝𝑅𝑂𝑇 as the receiver with each of the other parties P𝑖 (𝑖 ∈ [𝑡]).
As a result, it receives 𝑡 sets of string𝑀𝑖∗ [𝑗] for each 𝑗 ∈ 𝐽 , P𝑖 learns𝑀𝑖 . P0 sets𝑀𝑖∗ [𝑗] = 0 for 𝑗 ∈ [𝑁BF] \ 𝐽 .

(b) Using BF𝑖 1’s indices set 𝐽𝑖 as input, each P𝑖 (𝑖 ∈ [𝑡]) calls | 𝐽𝑖 |-out-of-𝑁BF F𝐴𝑝𝑝𝑅𝑂𝑇 as the receiver with P0. As a result, P𝑖 learns
�̂�𝑖∗ [𝑗] for each 𝑗 ∈ 𝐽𝑖 , and P0 receives �̂�𝑖 . P𝑖 sets �̂�𝑖∗ [𝑗] = 0 for 𝑗 ∈ [𝑁BF] \ 𝐽𝑖 .

(4) [(R2) compute and re-randomize GBFs] If P0 did not receive ⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 , it computes GBF0 =
⊕

𝑖∈[𝑡]

(
𝑀𝑖∗ ⊕ �̂�𝑖

)
. If P𝑖 did

not receive ⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 , it computes GBF𝑖 = 𝑀𝑖 ⊕ �̂�𝑖∗ , codewords 𝑦𝑖 𝑗 =
⊕

𝑟∈ℎ∗ (𝑥𝑖 𝑗) GBF
𝑖 [𝑟] (𝑗 ∈ [𝑛𝑖]) and re-randomizes

GBF𝑖 from 𝑋𝑖 and codewords 𝑦𝑖 𝑗 (𝑗 ∈ [𝑛𝑖]) according to algorithm BuildGBF from B.1.
(5) [(R2) cumulative GBFs of P𝑖s] If P𝑖 (𝑖 ∈ [𝑡]) did not receive⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 , it computes and sends to P0 the cumulative garbled

Bloom filter:
GBF𝑖∗ = GBF𝑖

⊕
𝑙∈[𝑡]\{𝑖}

[
𝑆𝑙𝑖 ⊕ 𝑆𝑖𝑙

]
.

Else it sends ⊥.
(6) [(R2) cumulative GBF of P0] If P0 did not receive ⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 or from P𝑖 in the previous step, it computes GBF∗ =⊕

𝑖∈[𝑡] GBF
𝑖∗⊕GBF0.

(7) [(R2) output] If P0 did not receive ⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 or from P𝑖 in the 6th step, it outputs 𝑥0𝑗 as a member of the intersection, if⊕
𝑟∈ℎ∗ (𝑥0𝑗)

GBF∗ [𝑟] = 0, 𝑗 ∈ [𝑛0] .

Else it outputs ⊥.

Figure 12: The PSImple multiparty protocol in the F𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model

In step 3, S plays F𝐴𝑝𝑝𝑅𝑂𝑇 functionality towardsZ for any corrupt party. Once both inputs of F𝐴𝑝𝑝𝑅𝑂𝑇 have been requested byZ to
be delivered:
• For P𝑖 acting as a corrupt sender, the simulator receives𝑀𝑖 of length 𝑁BF or ⊥ from P𝑖 .
• For any P𝑖 acting as a corrupt receiver, upon receiving 𝐾 ′′ the simulator samples uniformly at random and gives �̂� ′𝑖 of length 𝐾 ′′,

or gives ⊥, then the simulator receives set of indices 𝐽𝑖 or ⊥.

The simulator remembers each of the 𝑀𝑖 ’s and computes �̂�𝑖
∗’s (from �̂� ′

𝑖 and 𝐽𝑖 as F𝐴𝑝𝑝𝑅𝑂𝑇 would compute 𝑀 in the case of corrupt
receiver) for all P𝑖 ∈ 𝐼 , if all the calls to emulated F𝐴𝑝𝑝𝑅𝑂𝑇 are completed successfully (without ⊥’s).

At the 5th step, once all round-1 and round-2 executions have completed, S observes GBF𝑖∗s or ⊥s sent byZ on behalf of corrupt P𝑖 ∈ 𝐼 .
Besides, it asks FgRO for all the illegitimate queries made with the current’s execution SID and append those queries to the set 𝑄 (which
remains polynomially bounded as A is).
• If there were no ⊥’s as an outputs of the simulated F𝐴𝑝𝑝𝑅𝑂𝑇 s or as the messages of the 5th step, S computes the sum GBF∗𝐼 =⊕

𝑖∈𝐼 GBF
𝑖∗. Now S can subtract all the secret shares sent and received to corrupt parties on behalf of honest and vice versa:

GBF𝐼 = GBF∗𝐼
⊕
P𝑖 ∈𝐼

⊕
P𝑙 ∈P\(𝐼∪P0)

(
𝑆𝑖𝑙 ⊕ 𝑆𝑙𝑖

)
.

GBF𝐼 is the effective value of
⊕

P𝑖 ∈𝐼 GBF
𝑖 . Now the simulator extracts the effective input of corrupt parties as

�̃�𝐼 =

𝑞 ∈ 𝑄
����� ⊕
𝑟 ∈ℎ∗ (𝑞)

GBF𝐼 [𝑟] =
⊕
P𝑖 ∈𝐼

𝑟 ∈ℎ∗ (𝑞)

(
𝑀𝑖 [𝑟] ⊕ �̂�𝑖

∗ [𝑟]
) ,

sends it to the ideal functionality, and receives either �̃� or ⊥ as the output of FMPSI.
• Else, the simulator sends the effective input of the adversary ⊥ to the ideal functionality and receives ⊥ as its output.

27

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

Simulator Analysis. Consider an environment Z running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑡 , 𝑛, 𝑘 , 𝑁BF. We assume first that all
parties receive inputs from Z (written by it to their input tapes), at the onset of the execution. We will later show how to get rid of this
assumption. Denote by X = {𝑋𝑖 }P𝑖 ∈P\𝐼 – inputs of honest parties. We prove indistinguishability by induction on the message graph ofZ
- sent messages to the various parties, and to F𝐴𝑝𝑝𝑅𝑂𝑇 throughout the execution, starting with the inputs provided, and messages received
from honest parties (emulated by S in the ideal world) are statistically indistinguishable.The induction is on the message number according
to the order of message delivery by Z in the real world (which S follows). As P0 is honest, we have to also prove the indistinguishability
of the joint view of Z with the output of the honest P0 in the simulation and in the real-world execution of the protocol (conditioned in
Z’s view, for an overwhelming fraction of the views, as we shall show).

At the start, the (partial) view ofZ is clearly the same in both worlds (asZ and other parties receive the same public parameters) at the
onset of the execution. Clearly, step 1 any value sent and received by an honest party fromZ, or sent from an honest party toZ (a random
share of 0) are identically distributed.
{�̂� ′𝑖/⊥}P𝑖 ∈𝐼 , {𝑀𝑖/∅}P𝑖 ∈𝐼 : these messages to Z are identically distributed to the values received by the corrupted sender/receiver in

the real world protocol, by definition of F𝐴𝑝𝑝𝑅𝑂𝑇 , and the fact that at any step of interaction of the F𝐴𝑝𝑝𝑅𝑂𝑇 instances, the view of each
emulated P𝑖 is distributed identically to the real world. Note that in particular, these values do not depend on X.

Let us compare the output distribution of P0. In the ideal world, 𝐻 = �̃�𝐼
⋂ (⋂

P𝑖 ∈P\𝐼 𝑋𝑖
)
is the output of P0, or ⊥ if the simulator sent

⊥ to the ideal functionality.
In case S did not send ⊥ to the ideal functionality, 𝐻 is a subset of the real-world output of P0, as the honest parties act honestly, and

the contribution of the malicious parties does not ‘spoil’ the equality verified, for each of the items in 𝑋0 that P0 checks the condition in
step 7 for (GBF re-randomization in step 5 by honest parties does not take place in the ideal world, but does not affect their codewords
𝑦𝑖 𝑗 ’s, and thus does not affect the condition in step 7). Now, malicious parties may have chosen 1-items in their F𝐴𝑝𝑝𝑅𝑂𝑇 executions, at
locations outside of the query set 𝑄 . However, then they either query too many 1’s in that F𝐴𝑝𝑝𝑅𝑂𝑇 execution, in which case, in the ideal
world as well, S notices it, and sends ⊥ on behalf of P𝑖 ∈ 𝐼 as input to the ideal functionality (and thus we are in a different case than
assumed). Otherwise, each corrupted receiver, requests sufficiently few 1’s adding any element in the intersection of the honest parties
sets 𝐻1 =

⋂
P𝑖 ∈P\𝐼 𝑋𝑖 with the probability at most 𝑝𝐹𝑎𝑙𝑠𝑒 (for instance, by using the received 𝑀𝑖 ⊕ �̂�∗𝑖 at all 1-positions in GBF𝑖 , without

re-randomizing) for each given party. Since elements not known to all of them are complemented by P0 by a random string, the probability
of adding an element is upper bounded by the probability of a fixed corrupted party P𝑖 adding it, and the result follow. By union bound,
adding an element in 𝐻1 by P𝑖 occurs with probability ≤ 𝑛 · 𝑝𝐹𝑎𝑙𝑠𝑒 . Assuming no extra elements not covered by 𝑄 were added by all
malicious parties, for each 𝑥 ∈ 𝑋0 \𝐻 , let 𝑗 denote some index for which some P𝑙 ∈ 𝐼 did not learn �̂�𝑖 [𝑗]. The probability of P0 adding 𝑥0𝑠
to the output due to passing verification in the step 7 is at most 2−𝜎 , which is the probability of P𝑖 guessing �̂�𝑖 [𝑗] by the adversary.

In the simulation, the ideal functionality receives ⊥ if and only if either it is initialized by the adversary (which has the same probability
for any adversarial input) or if the corrupt party’s input is larger than 𝑛′ (which is equivalent because of F𝐴𝑝𝑝𝑅𝑂𝑇).

Summarizing the above, with statistical distance between real and ideal worlds is at most 𝑛𝑒𝑔(𝜎).
Finally, consider a situation when the inputs are not provided by Z at the onset of the protocol, but rather at some intermediate point.

We are still able to preserve our indistinguishability invariant, since all Z sees before deciding to provide an input to some honest P𝑖 are
random independent values: either shares picked in step 1, or F𝐴𝑝𝑝𝑅𝑂𝑇 replies from step 3. Correlating honest parties’ inputs with these
values does not break the indistinguishability invariant for our protocol and S above in any way.

Now consider the case of corrupt P0, and some number of other parties (including zero) 𝐼 ⊂ {P1, ...,P𝑡 } are corrupt. Note that at least one
party is honest.

Simulator description. As before, the simulator interacts withZ through the dummy adversary. It simulates the replies of F𝐴𝑝𝑝𝑅𝑂𝑇 and
of the honest parties towardsZ, by order of its requests. Recall thatZ is responsible for giving corrupted parties their input, and these do
not go through S.

In step 1,S sends to corrupt parties P𝑙 ∈ 𝐼 uniformly random values 𝑆𝑖𝑙 , as honest P𝑖s would do, and gets 𝑆𝑙𝑖s to be delivered by corrupted
parties P𝑙 fromZ.

In step 2, S make queries (𝑞,PID, SID) to the global Random Oracle (to compute Bloom filter’s hash-indices) on behalf of corrupt parties
P𝑖 ∈ 𝐼 ∪ P0 as requested by Z and writes them to sets 𝑄𝑖 = {𝑞𝑖 𝑗 | 𝑗 ∈ [𝑛𝑖]}. Here index 𝑖 corresponds to PID of corrupt P𝑖 , 𝑛𝑖 ≥ 𝑛 is
polynomially bounded, asZ is. Denote𝑄 = ∪𝑖 |P𝑖 ∈𝐼∪P0

𝑄𝑖 – the joint query set of corrupt parties. The environment might continue making
such a queries up to the end of the protocol, and S adds them in𝑄 up to the end of Step 5 (when the effective intersection of corrupt parties
inputs is extracted).

In step 3, the simulator plays F𝐴𝑝𝑝𝑅𝑂𝑇 functionality for P0 in its interaction with any honest P𝑖 . Simulating its outputs as follows.

• for P0 acting as a corrupt receiver in the simulated interaction with any honest P𝑖 , upon receiving 𝐾 ′′ the simulator samples 𝑀 ′𝑖
uniformly random of length 𝐾 ′′ as F𝐴𝑝𝑝𝑅𝑂𝑇 would, or ⊥ if the Bloom filter with 𝐾 ′′ 1’s has more than 𝑛′ items. Then the simulator
receives set of indices 𝐽𝑖 (and then can extract the effective Bloom filter B̃F0𝑖) or ⊥;
• for P0 acting as a corrupt sender in the simulated interaction with any honest P𝑖 , the simulator receives �̂�𝑖 .

28

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

PSImple: Practical Multiparty Maliciously-Secure PSI

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

We stress, that S delivers messages asynchronously, by the order Z sends messages to parties of F𝐴𝑝𝑝𝑅𝑂𝑇 , and the above presentation is
written (reporting messages from honest parties is done once an honest party requests to deliver a given message).

If the simulated F𝐴𝑝𝑝𝑅𝑂𝑇 ’s completed successfully (without ⊥’s, and in particular did complete at all), the simulator computes a set
of Bloom filters B̃F0𝑖 from the input’s set of indexes 𝑗𝑖 in any instance between corrupt receiver P0 and honest sender P𝑖 , and computes
𝑀𝑖 (P𝑖 ∈ P \ {𝐼 ∪ P0}) as the functionality F𝐴𝑝𝑝𝑅𝑂𝑇 would compute the output for the honest sender (from 𝑀 ′𝑖 and 𝐽𝑖). If and once all
F𝐴𝑝𝑝𝑅𝑂𝑇 executions are completed, S asks FgRO for all the illegitimate queries with the session ID of current execution, append them to
𝑄 and extracts an effective input of the adversary as �̃�𝐼 =

{
𝑞 ∈ 𝑄 |∀𝑠 ∈ ℎ∗ (𝑞),∀𝑗 ∉ 𝐼 , B̃F0𝑗 [𝑠] = 1

}
– queries which are presented in all the

extracted Bloom filters of P0.
After both steps 3a, 3b are emulated, when the effective malicious input �̃�𝐼 is extracted, S sends either it or ⊥ to the ideal functionality

as the input of each of the corrupted parties FMPSI, and receives either �̃� or ⊥ as the output. In the above, ⊥ is sent if and only if at least
one of the emulated F𝐴𝑝𝑝𝑅𝑂𝑇 ’s ended with ⊥, the simulator gives ⊥, which is the effective input of the adversary, to FMPSI and receives ⊥
from there.

To simulate a step-5 message by an honest party P𝑖 ∉ 𝐼 replied toZ, right after all the F𝐴𝑝𝑝𝑅𝑂𝑇 ’s of P𝑖 are completed, even if there are
another running F𝐴𝑝𝑝𝑅𝑂𝑇 ’s for other parties:
• If P𝑖 received ⊥ from F𝐴𝑝𝑝𝑅𝑂𝑇 , S sends ⊥ toZ as the message for P0.
• If P𝑖 ’s F𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed successfully, and P𝑖 is not the last honest party whose F𝐴𝑝𝑝𝑅𝑂𝑇 ’s done,S sends a uniformly random
GBF𝑖∗ toZ as the message for P0.
• If all the F𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed, but there were at least one ⊥, and P𝑖 is the last honest party whose F𝐴𝑝𝑝𝑅𝑂𝑇 ’s done (without
⊥), S sends a uniformly random GBF𝑖∗ toZ as the message for P0.
• If all the F𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed successfully, and P𝑖 is the last honest party whose F𝐴𝑝𝑝𝑅𝑂𝑇 ’s done, thenS performs the following:
– computes Bloom filters BF𝑗 for the set �̃� for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);
– computes GBF𝑗 = 𝑀 𝑗

⊕
�̂� 𝑗 for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);

– computes codewords 𝑦 𝑗𝑠 from GBF𝑗 as in the protocol, but only for items 𝑥 𝑗𝑠 ∈ �̃� for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);
– computes re-randomized GBF𝑗 for items 𝑥 𝑗𝑠 ∈ �̃� and their codewords 𝑦 𝑗𝑠 as in B.1; note, that positions at indices 𝑟 such that
BF𝑗 [𝑟] = 0 are entirely and uniformly random.

– computes GBF𝑗∗𝑡𝑒𝑚𝑝 honestly as in 5th step of the protocol for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0), and
GBF𝑖∗ =

⊕
P𝑗∉(𝐼∪P0) GBF

𝑗∗
𝑡𝑒𝑚𝑝

⊕
𝑗≠𝑖,P𝑗∉(𝐼∪P0) GBF

𝑗∗ (here GBF𝑗∗ are messages sent by S on behalf of other honest parties in 5th
step).

– S sends GBF𝑖∗ toZ as the message for P0.

Simulator Analysis. Fix a certainZ, running on the public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 . S proceeds as follows. We prove indistinguishability
by induction on the message graph of Z - sent messages to the various parties, and to F𝐴𝑝𝑝𝑅𝑂𝑇 throughout the execution, starting with
the inputs provided, and messages received from honest parties (emulated by S in the ideal world) are statistically indistinguishable. The
induction is on the message number according to the order of message delivery by Z in the real world (which S follows). At the start,
the (partial) view of Z is clearly the same in both worlds (as Z and other parties receive the same public parameters) at the onset of the
execution. We prove the claim in two steps. First, we consider input distribution of the call graph, with messages corresponding to steps
1-4 for some given party, and step 5, before the last honest party sends its step-5-message. In the second part we analyze the last message
delivered in step 5. Let us first assume Z hands all inputs to honest parties at the onset of the protocol (we later explain how to get rid of
this assumption).

In step 1, as in the previous case, {𝑆𝑖𝑙 }P𝑖 ∈P\(𝐼∪P0)
P𝑙 ∈𝐼

sent from honest parties are random i.i.d strings (sampled by S in ideal world), and

have the same (uniform) distribution in both ideal and real worlds. In step 2, {𝑀 ′𝑖/⊥}P𝑖 ∈P\(𝐼∪P0) , {�̂�𝑖/∅}P𝑖 ∈P\(𝐼∪P0) : these are identically
distributed to the values received by the corrupted sender in the real world protocol, by definition of F𝐴𝑝𝑝𝑅𝑂𝑇 , and the fact that at any
step of interaction of the F𝐴𝑝𝑝𝑅𝑂𝑇 instances, the view of each emulated P𝑖 is distributed identically to the real world. In both cases (by
inspection) when one of the parties is corrupted, the output of F𝐴𝑝𝑝𝑅𝑂𝑇 does not depend on the input of the honest party, and is properly
emulated by S above. As the input to the F𝐴𝑝𝑝𝑅𝑂𝑇 ’s are distributed identically (resulting from the sameZ), so are the outputs. To see this,
note that when a round-2 (step 5) message from one or more honest party was not yet sent when another honest party P𝑙 ′ sends its step-5
message and other honest parties P𝑙 have not contributed their step-5 shares ⊕𝑗∉𝐼∪{P0 }∪{P𝑙 }𝑆

𝑗𝑙 yet, they send an additive share of the
final sum (the distribution of which we analyze below). In particular, if an honest P𝑙 has not received its step-3 output share, it in particular
hasn’t sent its step-5 message yet, and every other party is not the last, and the value the latter would sent is a random independent sting
(share). Calls to the 𝑔𝑅𝑂 also don’t break indistinguishability, because they actually refer to the same 𝑔𝑅𝑂 in both worlds.

Let us now compare the effect of step 5, assuming all executions of F𝐴𝑝𝑝𝑅𝑂𝑇 with honest parties have completed. Assume first they
have completed without any ⊥’s in the real world. In this case, (after canceling the shares 𝑆𝑖𝑙 contributed by the malicious parties P𝑖 ,
which are known to Z), ⊕𝑖𝐺𝐵𝐹 𝑖

∗ sent in the real world by honest parties, along with 0-shares
⊕

𝑖∉𝐼 𝑆
𝑖𝑙 for 𝑙 ∈ 𝐼 are random additive

shares of a randomized GBF,𝐺 , containing the intersection of honest parties’ input with �̃�𝐼 , 𝐻 = �̃�𝐼
⋂ (⋂

P𝑖 ∈P\𝐼∪{P0 } 𝑋𝑖
)
, encoded via the

29

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

corresponding
⊕

𝑖

(
𝑀𝑖 ⊕ �̂�𝑖

)
, at entries in {ℎ∗ (𝑞) |𝑞 ∈ 𝐻 } with overwhelming probability. Such a GBF, 𝐺 , has fixed sums at the locations

corresponding to elements of𝐻 (determined by𝑀 , �̂�), and is random otherwise.18 The overwhelming probability is due to two observations.
(1) 𝐺 [𝑗] is random for every 𝑗 not in ∪𝑥𝑖 (ℎ∗ (𝑥𝑖)) for some 𝑋𝑖 where P𝑖 is honest, as Z does not know the corresponding �̂�𝑖 [𝑗] used by
it (randomly complemented by P𝑖 upon rerandomizing this 0-entry in step 5). (2) If (1) does not happen, for 𝑗 outside of a set ℎ∗ (𝑥) we
queried in 3(a) as 1’s by P0 for some element 𝑥 ,𝐺 [𝑗] is distributed uniformly at random, due to the fact that𝑀𝑖 [𝑗] is not learned byZ. (3)
Words 𝑥 used by P0 in step 3a (from all parties) on which the RO was not queried (resulting in no indices from the first or second kind). As
no ⊥ occurred in any F𝐴𝑝𝑝𝑅𝑂𝑇 call, the probability of this is ≤ 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 .

Now let us now consider the case when at least one of the F𝐴𝑝𝑝𝑅𝑂𝑇 ’s resulted in ⊥ in the real world. In this case S sends ⊥ to FMPSI,
and thus receives ⊥. The simulation of step 5’s messages is perfect in this case, since at least one of the shares is not delivered by at least
one honest parties for each GBF entry, resulting in random i.i.d entries.

Finally, let us address a situation whereZ does not give input to (at least) one of the parties until a certain point in the protocol. In this
case, by analysis similar to the above, all Z sees in the real execution of our protocol until the last party receives its input and advances
through the protocol to complete step 5, are random values (crucially, as the values provided by F𝐴𝑝𝑝𝑅𝑂𝑇 are freshly random in each
execution, and only the locations of the values selected can be influenced by receiver’s input). S emulates this distribution perfectly. In
particular, all of this happens during the first phase of our call graph construction. Random independent values are again obtained in step
5 due to part of the shares contributed by the stalled party missing.

□

18In other words, this is a solution to a certain linear equation system over the field F2𝜎 , since the coefficients of the system are in F2 .
30

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

PSImple: Practical Multiparty Maliciously-Secure PSI

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

G PROVING THE SECURITY OF Π𝑃𝑆𝐼𝑀𝑃𝐿𝐸 FOR THE OFFLINE-ONLINE SETTING
In this section, we prove the security of Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 in the offline-online setting. The proof follows from the combination of theorems G.3
and G.4 (see Section G.2), with respect to lemmas G.1, G.2 (see Section G.1). The consistency proof for Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 is given in Section F.1.

We prove Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 implements FMPSI with statistical UC security [5] in global RandomOracle model [7]. We will need the F 𝜎,𝑁OT defined
in fig. 7 and the FgRO, which is a variant of the standard random oracle, in Figure 9.

Note that in the resulting protocol, the “offline” part appearing in the protocol in Figure 3 indeed line up at the beginning of our pro-
tocol, and all computation performed there does not depend on the inputs. Therefor, following instantiation of F 𝜎,𝑁OT , we may move the
corresponding parts to an offline phase, as in Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 .

We also note that as Π𝐴𝑝𝑝𝑅𝑂𝑇 does not use the gRO, the lemmas G.1, G.2 and G.3 do not mention gRO at all, although we imply the
underlying F 𝜎,𝑁OT being𝑈𝐶 −𝑔𝑅𝑂 secure. In Section 5, we discuss implementations of the idealized functionality F 𝜎,𝑁OT that are 𝑔𝑅𝑂-secure,
which is essential for making our concrete implementation Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 𝑔𝑅𝑂-secure (and in fact, even UC-secure at all, as Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 uses the
same implementation of the the random oracle for all instances of Π𝐴𝑝𝑝𝑅𝑂𝑇 , which in our implementation indeed make calls to the gRO).

Most of the definitions such as𝑈𝐶−𝑔𝑅𝑂-security, statistical/computational indistinguishability, Ideal- vs Real-world model etc. are given
in Appendix F.

G.1 Approximate 𝐾-out-of-𝑁 ROT
Parties in our PSImple protocol use Π𝐴𝑝𝑝𝑅𝑂𝑇 – approximate 𝐾-out-of-𝑁 random OT protocol to obtain garbled Bloom filters for the Bloom
filter of length 𝑁 = 𝑁BF consisting of 𝐾 1’s. We divide this protocol in two phases: offline Π

𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝐴𝑝𝑝𝑅𝑂𝑇 in F 𝜎,𝑁OT -hybrid model in Figure 13,

which is performed before parties receive their inputs, and online Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 in Figure 14. The functionality of Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 is somewhat
truncated in sense that we do not make parties use their Bloom filters inside Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , but we consider the calculation of the permutation
as the part of external, Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 protocol. This is done for the sake of simplicity of the proof in offline-online model, since otherwise the
inputs to F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 should go from the outputs of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , which requires the integrity (i.e. using𝑀𝐴𝐶s from both parties). Thus, we give

to PSImple the burden of the intermediate processing the outputs from Π
𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝐴𝑝𝑝𝑅𝑂𝑇 to form the inputs for Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 .

To make the security proof clearer, we explicitly define the default values for the cut-and-choose challenge, and the ⊥- and ”continue”-
replies, which are omitted in the main text. The oblivious transfer functionality we use in our security setting is F 𝜎,𝑁OT (Fig. 7) with 𝑁 = 𝑁OT
parallel instances of 1-out-of-2 OT.

Protocol Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 in F 𝜎,𝑁OT -hybrid model
Parties: Sender, Receiver.
Parameters: 𝜎 – length of the OT strings (computational security parameter); 𝜆 – statistical security parameter;
𝑁OT > 𝑁 is the number of OTs to generate;
𝑁 1
OT, 𝑁𝑐𝑐 , 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 are parameters of cut-and-choose described in Section 4.

Inputs: no inputs. Offline phase Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

(1) [1-out-of-2 OTs]The sender and the receiver call F𝜎,𝑁OT
OT performing 𝑁OT OTs in parallel. The receiver chooses requests 𝑐1, ..., 𝑐𝑁OT

with 𝑁 1
OTs ones among them, and 𝑁OT − 𝑁 1

OT zeroes (randomly permuted). The senders chooses uniformly at random 𝑀0 =
{𝑚10, ...,𝑚𝑁OT0 }, 𝑀1 = {𝑚11, ...,𝑚𝑁OT1 } (𝑚 𝑗0, 𝑚 𝑗1 are of length 𝜎). In the 𝑗 th OT, the receiver uses choice bit 𝑐 𝑗 and learns
𝑚 𝑗∗ =𝑚 𝑗𝑐 𝑗 .

(2) [cut-and-choose challenge] The sender chooses set𝐶 ⊆ [𝑁OT] of size 𝑁𝑐𝑐 uniformly random and sends𝐶 to the receiver.
(3) [cut-and-choose response] The receiver checks if |𝐶 | = 𝑁𝑐𝑐 ; if |𝐶 | > 𝑁𝑐𝑐 , then truncates it, if |𝐶 | < 𝑁𝑐𝑐 , then adds indices by

default (for example, 1, 2, ...). Receiver computes and sends to the sender the set 𝑅 = { 𝑗 ∈ 𝐶 |𝑐 𝑗 = 0}. To prove that he used choice bit
0 in the OTs indexed by 𝑅, it also sends 𝑟 ∗ =

⊕
𝑗∈𝑅𝑚 𝑗∗. The sender replies with ⊥ if |𝐶 | − |𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 or if 𝑟 ∗ ≠

⊕
𝑗∈𝑅𝑚 𝑗0,

and with ”continue” otherwise.
Outputs:𝑀1 to the sender;𝑀∗ = {𝑚 𝑗𝑐 𝑗 |𝑐 𝑗 = 1, 𝑗 ∈ [𝑁OT] \𝐶 } to the receiver.

Figure 13: Protocol Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 in F 𝜎,𝑁OT -hybrid model

Lemma G.1. The protocol Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 realizes the functionality F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with statistical UC-security with abort in the presence against static

(unbounded) malicious adversaries in the F 𝜎,𝑁OT -hybrid model.19

PRoof. In the following analysis, we do not need to explicitly deal with delaying or deleting messages byZ. This is because in the real
protocol, if a message is delayed, then the other party simply waits. Since, this is a two-party protocol, in the ideal-world, the simulator S
19In fact, this protocol is even secure in the more standard statistical UC-model, where the adversary may be unbounded, and simulator is polynomial in adversaries’ runtime.

31

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

Protocol Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

Parties: Sender, Receiver.
Parameters: 𝑁OT is the number of OTs required; 𝑁 = 𝑁BF is the length of Bloom filter.
Inputs: An injective function (permutation) 𝜋 : ([𝑁OT] \𝐶) → [𝑁] from the receiver; no input from the sender.
[sending permutation] The receiver sends 𝜋 to the sender.
If 𝜋 is formed incorrectly (not from the domain [𝑁OT] \𝐶 or not to [𝑁]), then use a default value (𝑁 consecutive values from [𝑁OT] \𝐶).
Outputs: the sender has output 𝜋 .

Figure 14: Protocol Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

can simply emulate this behavior, i.e., wait for the delayed message. Also, we may assume wlog. that the input of the uncorrupted party are
provided by Z before any messages are sent in the protocol. This is so because it is a 2PC protocol, and the first message received by the
corrupted party comes from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , which requires participation of both parties (but the honest one is waiting).

Security in face of a corrupted receiver. The simulator S, once activated byZ, emulates the protocol towardsZ.20
In the 1st step of the protocol, when emulating F 𝜎,𝑁OT and obtaining the input 𝑐1, 𝑐2, ..., 𝑐𝑁OT fromZ,S randomly chooses a set𝐶 ⊆ [𝑁OT],

where |𝐶 | = 𝑁𝑐𝑐 , computes
𝐼 = {𝑖 ∈ [𝑁OT] \𝐶 |𝑐𝑖 = 1}.

Then, S computes 𝐾 ′ = |𝐼 |, 𝑝𝐹𝑎𝑙𝑠𝑒 as the false-positive probability of the Bloom filter of length 𝑁 with 𝑘 hash-functions and 𝐾 ′ ones.
If 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 , then passes 𝐼 as an input of the receiver to F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 and receives𝑀∗ = {𝑚1,𝑚2, ...,𝑚𝐾 ′}.Then,S computes the receiver’s

output {𝑚 𝑗∗ | 𝑗 = 1, 2, ..., 𝑁OT} of F 𝜎,𝑁OT as follows:

𝑚 𝑗∗ =

{
fresh random, if 𝑗 ∈ 𝐶 or 𝑐 𝑗 = 0;
next item from𝑀∗, else,

(15)

gives 𝐶 toZ as the message of 2nd step of the protocol, gets from it 𝑅 and 𝑟∗ as messages of 3rd step, sends Continue and halts.
If 𝑝𝐹𝑎𝑙𝑠𝑒 ≥ 2−𝜎 , it passes to Z {𝑚 𝑗∗} 𝑗 ∈𝑁OT of uniformly random 𝜎-bit strings as the output of F 𝜎,𝑁OT of the 2nd step of the protocol,

sends to it 𝐶 as the cut-and-choose request and, upon getting the answer, passesZ ⊥ as sender’s reply, appends {𝑚 𝑗∗} 𝑗 ∈𝑁OT , and halts.

Proof of security in face of a corrupted receiver. Consider an environment running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 as input.
Let 𝑥 denote the input vector to all parties given at the outset byZ to all parties. In step 1,Z asksS to send F 𝜎,𝑁OT the set𝑄 of the requests to
F 𝜎,𝑁OT , where𝑄 ′ ⊆ 𝑄 is the set of 1-requests, and the rest are 0-requests. It receives a sequence {𝑚 𝑗∗} 𝑗 ∈[𝑁OT] of random strings in response.
By definition of S, the distributions𝑚 𝑗∗ in the real and ideal worlds are identical (as the inputs 𝑥 were fixed byZ to be the same). In more
detail, 𝑄 ′ is identical in both worlds. As to 𝑚 𝑗∗, S picks 𝐶 uniformly at random. The emulated 𝑚 𝑗∗’s at locations 𝑗 ∈ 𝑄 ′ ∩ ([𝑁OT] \ 𝐶)
are taken from the functionality’s output to receiver if it does not equal ⊥, and random independent values picked by S otherwise. In both
cases, the other values S sends emulating replies of F 𝜎,𝑁OT are random values independent of all others.

Now, in the real world, the sender chooses 𝐶 , and either
|𝐶 \ 𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 (16)

holds or not for 𝑅 induced by𝐶 and𝑄 ′ (for the honest receiver). Since the simulator and sender pick𝐶 according to the same distribution in
both worlds, that does not depend of receiver’s view so far, the probability that (16) is satisfied is identical in both worlds. ThenZ responds
with the same 𝑅 (identical in both worlds). Consider the case when the inequality (16) holds:
• In the real world, the receiver either reported the correct 𝑅 in which case sender certainly aborts, or reported a larger 𝑅 so that the

equation |𝐶 \ 𝑅 | > 𝑁𝑚𝑎𝑥𝑜𝑛𝑒𝑠 no longer holds. In the latter case, there is at least one value 𝑗 ∈ 𝑅, for which𝑚 𝑗0 is not known to the
receiver. Thus guessing 𝑟∗ expected by the sender occurs with probability at most 2−𝜎 over the sender’s randomness. Overall, the
sender aborts in step 3 with probability at least 1− 2−𝜎 (over the choice of 𝑟). S also appends ⊥ to the simulated view as the sender’s
message.
• In the ideal world, the simulator sets 𝐼 as the set of indices of 1-OT requests in [𝑁OT] \ 𝐶 on behalf of the receiver in step 1 (of

the adversary’s interaction with the functionality). With our choice of parameters, according Claim C.2, the evaluation of 𝑝𝐹𝑎𝑙𝑠𝑒
computed for the Bloom filter of length 𝑁 with 𝐾 ′ = |𝐼 | 1’s in it, is larger than 2−𝜎 except with negligible (in 𝜆) probability, since (16)
holds. Therefore, the ideal functionality sends ⊥ to both parties and aborts by the end of step 1.

To summarize, the joint view of the adversary and the sender’s output is this case is at statistical distance at most 2−𝜎 + 𝑛𝑒𝑔(𝜆).

𝐼𝑑𝑒𝑎𝑙F,Z,S
𝑠≈ 𝑅𝑒𝑎𝑙Π,Z

𝑠≈ (𝐷,⊥) . (17)
Here 𝐷 is the distribution over the receiver’s view up until step 2 in the real world, as described above.
20As mentioned above, A is fixed to just relays messages from Z to the parties and back. Intuitively, S attempts to do the same.

32

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

PSImple: Practical Multiparty Maliciously-Secure PSI

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

Now, consider the case when (16) is not satisfied in the real world. IfZ sends 𝑅∗ (which differs from 𝑅 induced by its F 𝜎,𝑁OT ’s inputs) so
that (16) is satisfied for 𝐶, 𝑅∗, or 𝑟∗ ≠

⊕
𝑗 ∈𝑅𝑚 𝑗0 the sender outputs ⊥ and halts immediately. By construction of S, it sends the uniformly

random set in 1st step, and ⊥ in 3rd. S again appends ⊥ as sender’s message to the simulated view. Thus, if (17) holds with 0-error (in
particular, over the entire support of 𝑅𝑒𝑎𝑙Π,𝑍 , the sender’s output is ⊥).

Overall, we get a statistical distance of at most 𝑛𝑒𝑔(𝜆) + 2−𝜎 between 𝐼𝑑𝑒𝑎𝑙F,𝑍,𝑆 and 𝑅𝑒𝑎𝑙Π,𝑍 .

Security in face of a corrupted sender. As in the previous case, following the delivery of inputs to all the parties by Z (written by it to
their input tapes), the simulator S, once activated byZ, operates as follows.

In the first step of the protocol, S plays F 𝜎,𝑁OT towardsZ, obtaining inputs of the sender as𝑀0 = {𝑚 𝑗0} 𝑗 ∈[𝑁𝑂𝑇] ,𝑀1 = {𝑚 𝑗1} 𝑗 ∈[𝑁𝑂𝑇] .
In 2nd step of the protocol, S waits for the message 𝐶 from Z. If |𝐶 | > 𝑁𝑐𝑐 , then truncates it, and if |𝐶 | < 𝑁𝑐𝑐 , then adds indices by

default (1, 2, ...). It computes the set𝑀∗ = {𝑚𝑖 ∈ 𝑀1 |𝑖 ∉ 𝐶} and gives it to the ideal functionality.
Then it samples choice bits 𝑐1, ..., 𝑐𝑁OT as the honest receiver would do according the protocol, computes (𝑅, 𝑟∗) from𝑀0,𝐶 and 𝑐1, ..., 𝑐𝑁OT

honestly and gives (𝑅, 𝑟∗) to the sender as the message of 3rd step of the protocol. Then S gets back either ⊥ or Continue, sends 𝑀1 over
the indexes [𝑁OT] \𝐶 to the ideal functionality, and halts.

Proof of security in face of a corrupted sender. Consider an environment Z running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 . Let 𝑥
denote the input vector to all parties given at the outset by Z to all parties, as in the previous case. The environment Z (via S) sends to
F 𝜎,𝑁OT two based on 𝑥 sets 𝑀0 = {𝑚 𝑗0} 𝑗 ∈[𝑁OT] and 𝑀1 = {𝑚 𝑗1} 𝑗 ∈[𝑁OT] , whose distributions are identical in both real and ideal worlds by
the construction of the simulator.

Then Z sends the set 𝐶 ⊂ [𝑁OT] such that |𝐶 | = 𝑁𝑐𝑐 based on 𝑥 and receives (𝑅,𝑟∗) in response. 𝑅 is distributed identical in the real
and ideal world by S construction. As for 𝑟∗, it deterministically depends on 𝑀0 and 𝑅 and therefore is also identical in the real and ideal
worlds.

The environment Z responses with either ⊥ or Continue, which it chooses basing on his view (𝑥,𝑀0, 𝑀1, 𝑅, 𝑟
∗), which is, in its turn,

depend only on 𝑥 . If it sends ⊥, then it receives nothing in response, the execution stops in both real and ideal worlds, and the adversary
has ⊥ as an output.

We conclude, that the joint view of the adversary and the receiver’s output is statistically indistinguishable, with 0-error. □

As in our protocols - both the approximate 𝐾-out-of-𝑁 OT and 𝑃𝑆𝐼𝑚𝑙𝑒 , we separate them in two phases (online and offline), is is
secure to consider separate functionalities for both phases. In case of Π𝐴𝑝𝑝𝑅𝑂𝑇 , we do not consider the functionality of the entire protocol
in F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model, as it requires either rewinding or construction of the reactive functionality as in fig. 8 (because F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 is

the random functionality). It is possible to prove either UC-security of the reactive Π𝐴𝑝𝑝𝑅𝑂𝑇 , or the security of Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 and Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

separately, when F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 is a simple functionality of the secure channel for transmitting the permutation from the receiver to the sender.

F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

Parties: a sender, a receiver.
Parameters:
𝜎 – computational security parameter; 𝑁 – number of items to create;
𝑁OT − 𝑁𝑐𝑐 > 𝑁 – number of items to create in the offline phase.
Inputs:
From the receiver: 𝐼 = {𝑖 𝑗 } 𝑗∈[𝐾 ′] , 𝐾 ′ ≥ 𝐾 ; from the sender: no input.
Outputs:
Upon receiving 𝐼 from the receiver, samples the uniformly random𝑀 = {𝑚1,𝑚2, ...,𝑚𝑁OT−𝑁𝑐𝑐 }, where𝑚𝑖 s are 𝜎-bit strings, and computes
𝑀∗ = {𝑚𝑖1 ,𝑚𝑖2 , ...,𝑚𝑖𝐾′ }. Gives𝑀 to the sender, gives𝑀∗ to the receiver.

If the adversary corrupts the sender.
Upon receiving 𝐼 from the receiver, waits for 𝑀′′ = {𝑚′′1 ,𝑚′′2 , ...,𝑚′′𝑁OT−𝑁𝑐𝑐 } from the corrupt sender, where𝑚′′𝑖 s are 𝜎-bit strings. Then it
gives𝑀∗ = {𝑚𝑖1 ,𝑚𝑖2 , ...,𝑚𝑖𝐾′ } to the receiver.

Figure 15: F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 – Ideal offline approximate 𝐾-out-of-𝑁 Random OT functionality

As the only message in an online-phase of Π𝐴𝑝𝑝𝑅𝑂𝑇 is sent, then the following lemma is obviously holds.

Lemma G.2. The protocol Π𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 UC-secure realizes the functionality F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 in the presence against static (unbounded) malicious
adversaries.

33

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇

Parties: a sender, a receiver.
Parameters: 𝑁 – the length of the permutation.
Inputs: from the receiver: the 𝑁 -length permutation 𝜋 ; from the sender: no input.
Outputs: gives 𝜋 to the sender.

Figure 16: F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 – Ideal online approximate 𝐾-out-of-𝑁 Random OT functionality

G.2 PSI protocol in the hybrid model
In this section, we prove the security of 𝑃𝑆𝐼𝑚𝑝𝑙𝑒 in offline-online setting. Therefore we describe those phases separately as two protocols.
The offline phase Π

𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝑃𝑆𝐼𝑚𝑝𝑙𝑒

id shown in fig. 17. Furthermore, we need to add a padding after F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , since this functionality does not
provide a padding for the receiver’s garbled Bloom filter. Note that this padding does not affect security, since the strings in the padding are
replaced in the following rerandomization step. Our PSImple protocol is divided in offline and online phases, which requires the separate

Offline phase of Malicious-secure Multiparty PSI protocol Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝑃𝑆𝐼𝑚𝑝𝑙𝑒

in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model
Parameters:
𝑛 - the maximal size of the input set of the party; 𝜎 - computational security parameter; 𝜆 - statistical security parameter;
𝑁BF - size of the Bloom filter; D – a domain of input items;
Inputs: no inputs.

Offline Phase Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝑃𝑆𝐼𝑚𝑝𝑙𝑒

:
(1) [(R0) symmetric approximate ROT-offline] Parties call in parallel:

(a) P0 as a receiver calls F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with each P𝑖 , 𝑖 ∈ [𝑡] inputting the set of indices 𝐽𝑖 as 𝐾 distinct random values from [𝑁OT −𝑁𝑐𝑐]
(𝐾 is a hypergeometrically distributed value from 𝐻𝐺 (𝑁OT, 𝑁OT − 𝑁𝑐𝑐 , 𝑁 1

OT)). As a result, it receives 𝑡 sets of string 𝑀𝑖 ′∗ [𝑗] for
each 𝑗 ∈ 𝐽𝑖 , P𝑖 learns𝑀𝑖 ′. P0 sets𝑀𝑖 ′∗ [𝑗] = 0 for 𝑗 ∈ [𝑁OT − 𝑁𝑐𝑐] \ 𝐽𝑖 .

(b) Each P𝑖 , 𝑖 ∈ [𝑡], as a receiver calls F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with P0 inputting the set of indices 𝐽𝑖 as𝐾 distinct random values from [𝑁OT −𝑁𝑐𝑐]
(𝐾 is a hypergeometrically distributed value from 𝐻𝐺 (𝑁OT, 𝑁OT − 𝑁𝑐𝑐 , 𝑁 1

OT)). As a result, P𝑖 learns �̂�𝑖 ′∗ [𝑗] for each 𝑗 ∈ 𝐽𝑖 , and
P0 receives �̂�𝑖 . P𝑖 sets �̂�𝑖 ′∗ [𝑗] = 0 for 𝑗 ∈ [𝑁OT − 𝑁𝑐𝑐] \ 𝐽𝑖 .

(2) [(R0) random shares] Each P𝑖 , 𝑖 ∈ [𝑡], sends 𝑆𝑖𝑙 = (𝑠𝑖𝑙1 , ..., 𝑠𝑖𝑙𝑁BF
) to any P𝑙 , 𝑙 ∈ [𝑡] \ {𝑖 }, where 𝑠𝑖𝑙𝑟

𝑅←− {0, 1}𝜎 , 𝑟 ∈ [𝑁BF].

Outputs: P0 gets𝑀𝑖 ′∗ and �̂�𝑖 ′ (𝑖 ∈ [𝑡]); P𝑖 gets𝑀𝑖 ′, �̂�𝑖 ∗′ and 𝑆𝑖 𝑗 for each 𝑗 ∈ [𝑡], 𝑗 ≠ 𝑖 .

Figure 17: The offline phase of PSImple protocol in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model
functionalities for these phases. Although the offline-phase of 𝑃𝑆𝐼𝑚𝑝𝑙𝑒 just uses the number F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s and the point-to point secure

channels to transmit secret shares 𝑆𝑖 𝑗 s from P𝑖 and P𝑗 , and thus implies a rather simple functionality, we formally describe this F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple
functionality in fig. 18.

TheoRemG.3. The protocolΠ𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝑃𝑆𝐼𝑚𝑝𝑙𝑒

securely realizes the functionality F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple with statistical UC-security with abort in presence of static

malicious adversary corrupting up to 𝑡 parties in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model, if the protocol parameters are chosen as described in subsection 4.

PRoof. The soundness of the statement of this theorem follows from lemma G.1 and is quite obvious: all that the simulator should do
is to take inputs from the corrupt parties, give them directly to the ideal functionality and send the functionality’s output directly to the
environment on the order of taking the inputs of corrupt parties asynchronously. As the upper bound for the number of indexes on the
inputs of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 and F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple are the same, it holds that the probability of having ⊥ as an output of the party is the same in both worlds
(thanks to our parameters choice, the statistical distance is at most 2−𝜆), and the statistical UC-security is achieved. □

RemaRK 4. We stress, that the ideal functionality F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple allows the adversary the reactive behaviour, namely choosing the inputs based
on partial outputs of the same functionality. For instance, the adversary may choose it’s secret shares after it receives outputs for OT’s, or to use
outputs from one OT to compute inputs to another. Later, in the proof of security of PSImple protocol, we’ll show that this doesn’t affect security.

Figure 19 describes the PSImple protocol in gRO, F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model. Note that as the hash functions are modeled by the
global random oracle, the coin-tossing step for hash-seed agreement (Step 1 in Figure 3) is omitted in Figure 19.

For clarity, in Figure 19 we explicitly describe all the⊥-replies that parties can send (as we consider security with abort and asynchronous
execution).

34

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

PSImple: Practical Multiparty Maliciously-Secure PSI

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple

Parties: P0, P1,…, P𝑡 .
Parameters: 𝐾 – the maximal number of 1’s in Bloom filter of size 𝑁BF with 𝑘 hash-function such that 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 .
Inputs: from P0: 𝐽𝑖 – the set of indexes from [𝑁OT −𝑁𝑐𝑐] (𝑖 ∈ [𝑡]); from P𝑖 : 𝐽𝑖 – the set of indexes from [𝑁OT −𝑁𝑐𝑐], 𝑆𝑖 𝑗 – the 𝑁BF ×𝜎-bit
value, (𝑖, 𝑗 ∈ [𝑡], 𝑗 ≠ 𝑖).
Outputs:
The functionality first takes all the inputs from all the honest parties and gives 𝑆 𝑗𝑖 (𝑗 ∈ [𝑡], 𝑗 ≠ 𝑖) from any honest P𝑗 to any P𝑖 .
If P0 is honest, the functionality samples �̂�𝑖 ′ uniformly at random, and if P𝑖 is honest, it samples𝑀𝑖 ′ uniformly at random.
Then functionality waits for inputs from corrupt parties. As well as it receives (asynchronously):

• 𝑆𝑖 𝑗 from corrupt P𝑖 : it passes it to P𝑗 ;
• 𝐽𝑖 from corrupt P0: if | 𝐽𝑖 | ≤ 𝐾 it computes 𝑀𝑖∗′ as the subset of 𝑀𝑖 ′ on indexes from 𝐽𝑖 and gives it to P0; else it gives ⊥ to both P0

and P𝑖 ;
• 𝐽𝑖 from corrupt P𝑖 : if | 𝐽𝑖 | ≤ 𝐾 it computes �̂�𝑖∗′ as the subset of �̂�𝑖 ′ on indexes from 𝐽𝑖 and gives it to P𝑖 ; else it gives ⊥ to both P0

and P𝑖 ;
• 𝑀𝑖 ′ from corrupt P𝑖 : it computes𝑀𝑖∗′ as the subset of𝑀𝑖 ′ on indexes from 𝐽𝑖 and gives it to honest P0;
• �̂�𝑖 ′ from corrupt P0: it computes �̂�𝑖∗′ as the subset of �̂�𝑖 ′ on indexes from 𝐽𝑖 and gives it to honest P𝑖 .

Figure 18: F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple – Ideal offline PSImple functionality

Online phase of Malicious-secure Multiparty PSI protocol Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model
Parameters:
𝑛 - the maximal size of the input set of the party; 𝜎 - computational security parameter; 𝜆 - statistical security parameter;
𝑁BF - size of the Bloom filter; D – a domain of input items;
Inputs: P𝑖 inputs 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛𝑖 }, 𝑛𝑖 ≤ 𝑛 – the set of items from D (𝑖 ∈ {0, ..., 𝑡 }).

Offline Phase Π𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒
𝑃𝑆𝐼𝑚𝑝𝑙𝑒

:

Parties call F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple - the offline PSImple functionality.
Online Phase Π𝑂𝑛𝑙𝑖𝑛𝑒𝑃𝑆𝐼𝑚𝑝𝑙𝑒 :

(1) [(R1) compute Bloom filters] P𝑖 (𝑖 ∈ [𝑡] ∪ {0}) makes queries to FgRO and computes Bloom filter BF𝑖 of its items from 𝑋𝑖 . If
𝑛𝑖 < 𝑛, then P𝑖 computes the Bloom filter of the joint set 𝑋𝑖 with (𝑛 − 𝑛𝑖) random dummy items.

(2) [(R1) symmetric approximate ROTs-online] Parties perform in parallel:
(a) Using BF0’s 1’s indices set, P0 computes the random permutation 𝜋𝑖0 : [𝑁OT − 𝑁𝑐𝑐] → [𝑁BF] of 𝑀𝑖 ′∗ and calls F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 as the

receiver with each of the other parties P𝑖 (𝑖 ∈ [𝑡]). Each P𝑖 (𝑖 ≠ 0) computes𝑀𝑖 = 𝜋𝑖0 (𝑀𝑖 ′) and P0 computes𝑀𝑖∗ = 𝜋𝑖0 (𝑀𝑖∗′) .
(b) Using BF𝑖 1’s indices set, each P𝑖 (𝑖 ∈ [𝑡]) computes the random permutation 𝜋𝑖 : [𝑁OT − 𝑁𝑐𝑐] → [𝑁BF] of �̂�𝑖 ′∗ and calls
F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 as the receiver with P0. Each P𝑖 (𝑖 ≠ 0) computes �̂�𝑖∗ = 𝜋𝑖 (�̂�𝑖 ′∗) and P0 computes �̂�𝑖 = 𝜋𝑖 (�̂�𝑖 ′) .

(3) [(R2) compute and re-randomize GBFs] If P0 did not receive ⊥ from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , it computes GBF0 =⊕
𝑖∈[𝑡]

(
𝑀𝑖∗ ⊕ �̂�𝑖

)
. If P𝑖 did not receive ⊥ from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , it computes GBF𝑖 = 𝑀𝑖 ⊕ �̂�𝑖∗ , codewords 𝑦𝑖 𝑗 =⊕

𝑟∈ℎ∗ (𝑥𝑖 𝑗) GBF
𝑖 [𝑟] (𝑗 ∈ [𝑛𝑖]) and re-randomizes GBF𝑖 from 𝑋𝑖 and codewords 𝑦𝑖 𝑗 (𝑗 ∈ [𝑛𝑖]) according to algorithm BuildGBF

from B.1.
(4) [(R2) cumulative GBFs of P𝑖s] If P𝑖 (𝑖 ∈ [𝑡]) did not receive ⊥ from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , it computes and sends to P0 the

cumulative garbled Bloom filter:
GBF𝑖∗ = GBF𝑖

⊕
𝑙∈[𝑡]\{𝑖}

[
𝑆𝑙𝑖 ⊕ 𝑆𝑖𝑙

]
.

Else it sends ⊥.
(5) [(R2) cumulative GBF of P0] If P0 did not receive ⊥s before, it computes GBF∗ =

⊕
𝑖∈[𝑡] GBF

𝑖∗⊕GBF0.
(6) [(R2) output] If P0 did not receive ⊥s before, it outputs 𝑥0𝑗 as a member of the intersection, if⊕

𝑟∈ℎ∗ (𝑥0𝑗)
GBF∗ [𝑟] = 0, 𝑗 ∈ [𝑛0] .

Else it outputs ⊥.

Figure 19: The online phase of PSImple protocol in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 -hybrid model

35

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

InTheoremG.4 and consequently inTheorem 3.1 we require a non-uniform polynomial-time adversary in sense of polynomially-bounded
requests to the Random Oracle. This follows from the next: the union bound of the probability of having at least one false-positive result
over |𝑄 | requests is |𝑄 |𝑝𝐹𝑎𝑙𝑠𝑒 < |𝑄 |2−𝜎 . To keep it negligible, |𝑄 | = 𝑝𝑜𝑙𝑦 (𝜎). In the case of polynomially-bounded (in 𝜎) domain D, this
requirement is fulfilled automatically, otherwise (for example, it the typical case of an exponential-size domain)we require a computationally
bounded (in 𝜎) adversary in Theorem 3.1.

TheoRem G.4. The protocol Π𝑃𝑆𝐼𝑚𝑝𝑙𝑒 securely realizes the functionality FMPSI with statistical UC-security with abort in presence of static

malicious adversary corrupting up to 𝑡 parties in the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , FgRO-hybrid model, which makes a polynomially bounded number
of queries to FgRO, where the Bloom filter hash functions are modelled as non-programmable global random oracle, and the other protocol
parameters are chosen as described in subsection 4.

PRoof. In our protocol and functionality, we take 𝑛′ such that for the Bloom filter containing 𝑛′ or less elements, 𝑝𝐹𝑎𝑙𝑠𝑒 ≤ 2−𝜎 , and for
the Bloom filter with 𝑛′ + 1 and more elements, 𝑝𝐹𝑎𝑙𝑠𝑒 > 2−𝜎 . It means, that the corrupt party in F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple receives ⊥ if and only if its input
set of indexes 𝐽𝑖 or 𝐽𝑖 (and hence it’s effective Bloom filter) contains more than 𝑛′ items.

Consider the case when evaluating party P0 is honest, and some subset of other parties 𝐼 ⊆ {P1, ...,P𝑡 } are corrupt.

Simulator description. The simulator S, once activated by Z, emulates F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple towards Z. We stress, that all the corrupt parties are
emulated asynchronously, according to the message scheduling decided byZ - one message at a time. We only describe the simulation by
order of steps in the protocol for convenience. S sends toZ uniformly random shares 𝑆𝑖𝑙 , as honest P𝑖 ’s would do according the protocol,
to any corrupt party P𝑙 ∈ 𝐼 .

Then, S continues playing F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple functionality towardsZ for any corrupt party. Once inputs of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple have been sent byZ:

• Once P𝑖 sends𝑀𝑖 ′, the simulator answers to P𝑖 nothing;
• Once P𝑖 sends 𝐽𝑖 , the simulator checks the size of it and answers with either uniformly random set �̂�𝑖

∗
′ (S samples uniformly at

random the 𝑁OT − 𝑁𝑐𝑐 -element set �̂�𝑖 ′ and chooses from there items with indexes from 𝐽𝑖) or ⊥.

Finally, S learns 𝑆𝑙𝑖s fromZ, emulating F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple .
In step 1, S make queries (𝑞,PID, SID) to the global Random Oracle (to compute Bloom filter’s hash-indices) on behalf of corrupt parties

P𝑖 ∈ 𝐼 as requested byZ and writes them to sets𝑄𝑖 = {𝑞𝑖 𝑗 | 𝑗 ∈ [𝑛𝑖]}. Here index 𝑖 corresponds to PID of corrupt P𝑖 , 𝑛𝑖 ≥ 𝑛 is polynomially
bounded, as Z is. Denote 𝑄 = ∪𝑖 |P𝑖 ∈𝐼𝑄𝑖 – the joint query set of corrupt parties. The environment might continue making such a queries
up to the end of the protocol, and S adds them in 𝑄 up to the end of Step 4 (when the effective intersection of corrupt parties inputs is
extracted).

In step 2, S plays F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 functionality, obtaining the permutations 𝜋𝑖 from corrupt parties and sending them uniformly random
permutations 𝜋𝑖0 : [𝑁OT − 𝑁𝑐𝑐] → [𝑁BF]. Then the simulator computes:

𝑀𝑖
∗ = 𝜋

𝑖
0 (𝑀

𝑖
∗
′), 𝑀𝑖 = 𝜋𝑖0 (𝑀

𝑖 ′), �̂�𝑖
∗ = 𝜋𝑖 (�̂�𝑖

∗
′), �̂�𝑖 = 𝜋𝑖 (�̂�𝑖 ′) .

At the 4th step, S observes GBF𝑖∗s or ⊥s sent byZ on behalf of corrupt P𝑖 ∈ 𝐼 . Besides, it asks FgRO for all the illegitimate queries made
with the current’s execution SID and append those queries to the set 𝑄 (which remains polynomially bounded as A is).

• If there were no ⊥’s as an outputs of the simulated F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or as the messages of the 6th step, S computes the sum GBF∗𝐼 =⊕
𝑖∈𝐼 GBF

𝑖∗. Now S can subtract all the secret shares sent and received to corrupt parties on behalf of honest and vice versa:

GBF𝐼 = GBF∗𝐼
⊕
P𝑖 ∈𝐼

⊕
P𝑙 ∈P\(𝐼∪P0)

(
𝑆𝑖𝑙 ⊕ 𝑆𝑙𝑖

)
.

GBF𝐼 is the effective value of
⊕

P𝑖 ∈𝐼 GBF
𝑖 . Now the simulator extracts the effective input of corrupt parties as

�̃�𝐼 =

𝑞 ∈ 𝑄
����� ⊕
𝑟 ∈ℎ∗ (𝑞)

GBF𝐼 [𝑟] =
⊕
P𝑖 ∈𝐼

𝑟 ∈ℎ∗ (𝑞)

(
𝑀𝑖 [𝑟] ⊕ �̂�𝑖

∗ [𝑟]
) ,

sends it to the ideal functionality, and receives either �̃� or ⊥ as the output of FMPSI.
• Else, the simulator sends the effective input of the adversary ⊥ to the ideal functionality and receives ⊥ as its output.

36

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

PSImple: Practical Multiparty Maliciously-Secure PSI

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

Simulator Analysis. Consider an environment Z running on some fixed public parameters 1𝜎 , 1𝜆 , 𝑡 , 𝑛, 𝑘 , 𝑁BF. We assume first that all
parties receive inputs from Z (written by it to their input tapes), at the onset of the execution. We will later show how to get rid of this
assumption. Denote by X = {𝑋𝑖 }P𝑖 ∈P\𝐼 – inputs of honest parties. We prove indistinguishability by induction on the message graph ofZ -
sent messages to the various parties, and to F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple throughout the execution, starting with the inputs provided, and messages received
from honest parties (emulated by S in the ideal world) are statistically indistinguishable.The induction is on the message number according
to the order of message delivery by Z in the real world (which S follows). As P0 is honest, we have to also prove the indistinguishability
of the joint view of Z with the output of the honest P0 in the simulation and in the real-world execution of the protocol (conditioned in
Z’s view, for an overwhelming fraction of the views, as we shall show).

At the start, the (partial) view ofZ is clearly the same in both worlds (asZ and other parties receive the same public parameters) at the
onset of the execution. Clearly, for F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple any value sent and received byZ, or sent on behalf of an honest party to F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple (a random
share of 0) are identically distributed.
{𝑀𝑖 ′/∅}P𝑖 ∈𝐼 , {�̂�𝑖

∗
′/⊥}P𝑖 ∈𝐼 , {𝑆 𝑗𝑖 }P𝑖 ∈𝐼 ,P𝑗∉𝐼 , 𝑗≠0: these messages to Z are identically distributed to the values received by the corrupted

sender/receiver in the real world protocol, by definition of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , and the fact that at any step of interaction of the F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , the view
of each emulated P𝑖 is distributed identically to the real world. Note that in particular, these values do not depend on X.

Only one transaction in the protocol from the honest party to the corrupt ones are permutations 𝜋𝑖0 which S sends to Z on behalf of
honest P0. Those permutations are identically distributed both in real and ideal world. In the simulation they do not depend on the inputs.

Let us compare the output distribution of P0. In the ideal world, 𝐻 = �̃�𝐼
⋂ (⋂

P𝑖 ∈P\𝐼 𝑋𝑖
)
is the output of P0, or ⊥ if the simulator sent

⊥ to the ideal functionality.
In case S did not send ⊥ to the ideal functionality,𝐻 is a subset of the real-world output of P0, as the honest parties act honestly, and the

contribution of the malicious parties does not ‘spoil’ the equality verified, for each of the items in 𝑋0 that P0 checks the condition in step 8
for (GBF re-randomization in step 5 by honest parties does not take place in the ideal world, but does not affect their codewords 𝑦𝑖 𝑗 ’s, and
thus does not affect the condition in step 6). Now, malicious parties may have chosen 1-items in F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple execution, at locations outside of

the query set 𝑄 . However, then they either query too many 1’s in F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple execution, in which case, in the ideal world as well, S notices
it, and sends ⊥ on behalf of P𝑖 ∈ 𝐼 as input to the ideal functionality (and thus we are in a different case than assumed). Otherwise, each
corrupted receiver, requests sufficiently few 1’s adding any element in the intersection of the honest parties sets 𝐻1 =

⋂
P𝑖 ∈P\𝐼 𝑋𝑖 with the

probability at most 𝑝𝐹𝑎𝑙𝑠𝑒 (for instance, by using the received 𝑀𝑖 ⊕ �̂�∗𝑖 at all 1-positions in GBF𝑖 , without re-randomizing) for each given
party. Since elements not known to all of them are complemented by P0 by a random string, the probability of adding an element is upper
bounded by the probability of a fixed corrupted party P𝑖 adding it, and the result follow. By union bound, adding an element in 𝐻1 by P𝑖
occurs with probability ≤ 𝑛 · 𝑝𝐹𝑎𝑙𝑠𝑒 . Assuming no extra elements not covered by𝑄 were added by all malicious parties, for each 𝑥 ∈ 𝑋0 \𝐻 ,
let 𝑗 denote some index for which some P𝑙 ∈ 𝐼 did not learn �̂�𝑖 [𝑗]. The probability of P0 adding 𝑥0𝑠 to the output due to passing verification
in the step 6 is at most 2−𝜎 , which is the probability of P𝑖 guessing �̂�𝑖 [𝑗] by the adversary.

In the simulation, the ideal functionality receives ⊥ if and only if either it is initialized by the adversary (which has the same probability
for any adversarial input) or if the corrupt party’s input is larger than 𝑛′ (which is equivalent because of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple).

Summarizing the above, with statistical distance between real and ideal worlds is at most 𝑛𝑒𝑔(𝜎).
Finally, consider a situation when the inputs are not provided byZ at the onset of the protocol, but rather at some intermediate point. We

are still able to preserve our indistinguishability invariant, since allZ sees before deciding to provide an input to some honest P𝑖 are random
independent values received from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple . Correlating honest parties’ inputs with these values does not break the indistinguishability
invariant for our protocol and S above in any way.

Now consider the case of corrupt P0, and some number of other parties (including zero) 𝐼 ⊂ {P1, ...,P𝑡 } are corrupt. Note that at least one
party is honest.

Simulator description. As before, the simulator interacts withZ through the dummy adversary. It simulates the replies of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple and
F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 and of the honest parties towardsZ, by order of its requests. Recall thatZ is responsible for giving corrupted parties their input,
and these do not go through S.

In the preprocessing step, emulating F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , S sends to corrupt parties P𝑙 ∈ 𝐼 uniformly random values 𝑆𝑖𝑙 , as honest P𝑖s would do.

Then, S continues emulate F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple functionality towardsZ for corrupt P0. Once inputs of P0 to F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple have been sent byZ:

• Once P0 sends 𝐽𝑖 , the simulator checks the size of it and answers with either uniformly random set 𝑀𝑖
∗
′ (S samples uniformly at

random the (𝑁OT − 𝑁𝑐𝑐)-element set𝑀𝑖 ′ and chooses from there items with indexes from 𝐽𝑖) or ⊥.
• Once P0 sends �̂�𝑖 ′, the simulator answers to P0 nothing.

37

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

Finally, S gets 𝑆𝑙𝑖s to be delivered by corrupted parties P𝑙 from Z. We stress, that S delivers messages asynchronously, by the order Z
sends messages to parties of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple , and the above presentation is written (reporting messages from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple is done once an honest
party requests to deliver a given message).

In step 1, S make queries (𝑞,PID, SID) to the global Random Oracle (to compute Bloom filter’s hash-indices) on behalf of corrupt parties
P𝑖 ∈ 𝐼 ∪ P0 as requested by Z and writes them to sets 𝑄𝑖 = {𝑞𝑖 𝑗 | 𝑗 ∈ [𝑛𝑖]}. Here index 𝑖 corresponds to PID of corrupt P𝑖 , 𝑛𝑖 ≥ 𝑛 is
polynomially bounded, asZ is. Denote𝑄 = ∪𝑖 |P𝑖 ∈𝐼∪P0

𝑄𝑖 – the joint query set of corrupt parties. The environment might continue making
such a queries up to the end of the protocol, and S adds them in𝑄 up to the end of Step 5 (when the effective intersection of corrupt parties
inputs is extracted).

In step 2, the simulator emulates F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 towards corrupt P0, sends to it the uniformly random permutations 𝜋𝑖 : [𝑁OT−𝑁𝑐𝑐] → [𝑁BF]
on behalf of each honest P𝑖 and receives from P0 permutations 𝜋𝑖0. The simulator uses 𝐽𝑖 and 𝜋𝑖0 to construct the effective Bloom filter of
P0 B̃F0𝑖 in the interaction with each honest P𝑖 . Then the simulator computes:

𝑀𝑖 = 𝜋𝑖0 (𝑀
𝑖 ′), �̂�𝑖 = 𝜋𝑖 (�̂�𝑖 ′) .

If and once all F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 executions are completed, S asks FgRO for all the illegitimate queries with the session ID of current execution
and append them to 𝑄 . Then it extracts an effective input of the adversary as �̃�𝐼 =

{
𝑞 ∈ 𝑄 |∀𝑠 ∈ ℎ∗ (𝑞),∀𝑗 ∉ 𝐼 , B̃F0𝑗 [𝑠] = 1

}
– queries which

are presented in all the extracted Bloom filters of P0.
After all F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 executions are emulated, when the effective malicious input �̃�𝐼 is extracted, S sends either it or ⊥ to the ideal

functionality FMPSI as the input of each of the corrupted parties, and receives either �̃� or ⊥ as the output. In the above, ⊥ is sent if and only
if at least one of the emulated F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s ended with ⊥, the simulator gives ⊥, which is the effective input of the adversary,
to FMPSI and receives ⊥ from there.

To simulate a step-4 message by an honest party P𝑖 ∉ 𝐼 replied toZ, right after all the F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s of P𝑖 are completed, even if there are
another running F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s for other parties:

• If P𝑖 received ⊥ from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 , S sends ⊥ toZ as the message for P0.
• If P𝑖 ’s F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed successfully, and P𝑖 is not the last honest party whose F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s done,S sends a uniformly random
GBF𝑖∗ toZ as the message for P0.
• If all the F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed, but there were at least one ⊥, and P𝑖 is the last honest party whose F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s done (without
⊥), S sends a uniformly random GBF𝑖∗ toZ as the message for P0.
• If F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple and all the F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s are completed successfully, and P𝑖 is the last honest party whose F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s done, thenS performs

the following:
– computes Bloom filters BF𝑗 for the set �̃� for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);
– computes GBF𝑗 = 𝑀 𝑗

⊕
�̂� 𝑗 for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);

– computes codewords 𝑦 𝑗𝑠 from GBF𝑗 as in the protocol, but only for items 𝑥 𝑗𝑠 ∈ �̃� for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0);
– computes re-randomized GBF𝑗 for items 𝑥 𝑗𝑠 ∈ �̃� and their codewords 𝑦 𝑗𝑠 as in B.1; note, that positions at indices 𝑟 such that
BF𝑗 [𝑟] = 0 are entirely and uniformly random.

– computes GBF𝑗∗𝑡𝑒𝑚𝑝 honestly as in 6th step of the protocol for all 𝑗 such that P𝑗 ∉ (𝐼 ∪ P0), and
GBF𝑖∗ =

⊕
P𝑗∉(𝐼∪P0) GBF

𝑗∗
𝑡𝑒𝑚𝑝

⊕
𝑗≠𝑖,P𝑗∉(𝐼∪P0) GBF

𝑗∗ (here GBF𝑗∗ are messages sent by S on behalf of other honest parties in 4th
step).

– S sends GBF𝑖∗ toZ as the message for P0.

Simulator Analysis. Fix a certainZ, running on the public parameters 1𝜎 , 1𝜆 , 𝑘 , 𝑁 .
S proceeds as follows. We prove indistinguishability by induction on the message graph ofZ - sent messages to the various parties, and

to functionalities F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple and F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 throughout the execution, starting with the inputs provided, and messages received from honest
parties (emulated by S in the ideal world) are statistically indistinguishable. The induction is on the message number according to the order
of message delivery byZ in the real world (which S follows).

At the start, the (partial) view ofZ is clearly the same in both worlds (asZ and other parties receive the same public parameters) at the
onset of the execution. We prove the claim in two steps. First, we consider input distribution of the call graph, with messages corresponding
to steps up to 3 for some given party, and step 4, before the last honest party sends its step-4-message. In the second part we analyze the
last message delivered in step 6. Let us first assumeZ hands all inputs to honest parties at the onset of the protocol (we later explain how
to get rid of this assumption).

38

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

PSImple: Practical Multiparty Maliciously-Secure PSI

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

In F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple call, as in the previous case, all the inputs and outputs are distributed identically in both worlds and do not depend on honest

parties inputs by definition of F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple and by the construction of S. In particular, {𝑆𝑖𝑙 }P𝑖 ∈P\(𝐼∪P0)
P𝑙 ∈𝐼

are random i.i.d strings, messages

{𝑀𝑖
∗
′/⊥}P𝑖 ∈P\(𝐼∪P0) are also uniformly random, and {�̂�𝑖 ′/∅}P𝑖 ∈P\(𝐼∪P0) are defined by the adversary based on the previous transcript

of outputs from F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple .
Calls to the FgRO also don’t break indistinguishability, because they actually refer to the same global Random Oracle in both worlds.
The permutations received by the adversary from F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 are also distributed identically in both worlds due to the randomness. The

order in which the simulator send answers to P0 or to P𝑖 ∈ 𝐼 is the same as the order in which honest parties answer in the real-world
execution.

Note that when a step-4 message from one or more honest party was not yet sent when another honest party P𝑙 ′ sends its step-4 message
and other honest parties P𝑙 have not contributed their step-4 shares ⊕𝑗∉𝐼∪{P0 }∪{P𝑙 }𝑆

𝑗𝑙 yet, they send an additive share of the final sum
(the distribution of which we analyze below). In particular, if an honest P𝑙 has not received its step-2 output share, it in particular hasn’t
sent its step-4 message yet, and every other party is not the last, and the value the latter would sent is a random independent sting (share).

Let us now compare the effect of step 4, assuming F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple and all executions of F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 with honest parties have completed. Assume
first they have completed without any ⊥’s in the real world. In this case, (after canceling the shares 𝑆𝑖𝑙 contributed by the malicious parties
P𝑖 , which are known to Z), ⊕𝑖𝐺𝐵𝐹 𝑖

∗ sent in the real world by honest parties, along with 0-shares
⊕

𝑖∉𝐼 𝑆
𝑖𝑙 for 𝑙 ∈ 𝐼 are random additive

shares of a randomized GBF,𝐺 , containing the intersection of honest parties’ input with �̃�𝐼 , 𝐻 = �̃�𝐼
⋂ (⋂

P𝑖 ∈P\𝐼∪{P0 } 𝑋𝑖
)
, encoded via the

corresponding
⊕

𝑖

(
𝑀𝑖 ⊕ �̂�𝑖

)
, at entries in {ℎ∗ (𝑞) |𝑞 ∈ 𝐻 } with overwhelming probability. Such a GBF, 𝐺 , has fixed sums at the locations

corresponding to elements of𝐻 (determined by𝑀 , �̂�), and is random otherwise.21 The overwhelming probability is due to two observations.
(1) 𝐺 [𝑗] is random for every 𝑗 not in ∪𝑥𝑖 (ℎ∗ (𝑥𝑖)) for some 𝑋𝑖 where P𝑖 is honest, as Z does not know the corresponding �̂�𝑖 [𝑗] used by
it (randomly complemented by P𝑖 upon rerandomizing this 0-entry in step 4). (2) If (1) does not happen, for 𝑗 outside of a set ℎ∗ (𝑥) we
queried in 2(a) as 1’s by P0 for some element 𝑥 ,𝐺 [𝑗] is distributed uniformly at random, due to the fact that𝑀𝑖 [𝑗] is not learned byZ. (3)
Words 𝑥 used by P0 in step 2(a) (from all parties) on which the FgRO was not queried (resulting in no indices from the first or second kind).
As no ⊥ occurred in F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or any F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 call, the probability of this is ≤ 𝑝𝐹𝑎𝑙𝑠𝑒 < 2−𝜎 .

Now let us now consider the case when F𝑂𝑓 𝑓 𝑙𝑖𝑛𝑒PSImple or at least one of the F𝑂𝑛𝑙𝑖𝑛𝑒𝐴𝑝𝑝𝑅𝑂𝑇 ’s resulted in ⊥ in the real world. In this case S sends
⊥ to FMPSI, and thus receives ⊥. The simulation of step 4’s messages is perfect in this case, since at least one of the shares is not delivered
by at least one honest parties for each GBF entry, resulting in random i.i.d entries.

Finally, let us address a situation whereZ does not give input to (at least) one of the parties until a certain point in the protocol. In this
case, by analysis similar to the above, all Z sees in the real execution of our protocol until the last party receives its input and advances
through the protocol to complete step 4, are random values (crucially, as the values provided by F𝐴𝑝𝑝𝑅𝑂𝑇 are freshly random in each
execution, and only the locations of the values selected can be influenced by receiver’s input). S emulates this distribution perfectly. In
particular, all of this happens during the first phase of our call graph construction. Random independent values are again obtained in step
4 due to part of the shares contributed by the stalled party missing. □

21In other words, this is a solution to a certain linear equation system over the field F2𝜎 , since the coefficients of the system are in F2 .
39

	Abstract
	1 Introduction
	1.1 Review of Prior Works Based on GBFs
	1.2 Contributions
	1.3 Additional Related Work

	2 Background and Definitions
	3 The PSImple Protocol
	3.1 PSImple, Two-Party Case
	3.2 PSImple, Multiparty Case
	3.3 Security and Correctness
	3.4 Asymptotic Complexity

	4 Protocol Parameters
	5 Implementation, Code Optimizations, and Experimental Results
	Acknowledgments
	References
	A Basic Functionalities
	B Algorithms for the Garbled Bloom Filter
	B.1 Re-randomization Algorithm for a Garbled Bloom Filter
	B.2 Algorithm for Computation of the Hash-Indices Set h*(x)
	B.3 Algorithm for Computation of the Codeword from the Garbled Bloom Filter

	C Parameters of AppROT
	D False-Positive Probability of a Bloom Filter
	E Complexity Analysis
	F Proving Theorem 3.1
	F.1 Consistency of PSImple
	F.2 Security Model and Notation
	F.3 Approximate K-out-of-N ROT
	F.4 PSI protocol in the hybrid model

	G Proving the Security of PSImple for the Offline-Online Setting
	G.1 Approximate K-out-of-N ROT
	G.2 PSI protocol in the hybrid model

