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Abstract. Most submitted lattice-based key encapsulation mechanisms
(KEMs) on the second or third round list of the NIST standardization
follow a similar structure: First a CPA secure scheme is constructed,
which is then converted to a CCA secure one. The research of the key
reuse attacks against the CPA secure ones is important in two folds:
First, it is an important part of the cryptographic assessment of the on-
going NIST standardization. Secondly, it helps the design of CCA-secure
authenticated key exchange directly from LWE, without FO transform.
There have been a number of key mismatch attacks on these CPA secure
versions when the public key is reused. However, a unified method to
evaluate their resilience under key mismatch attacks is still missing. Since
the key index of the efficiency of these attacks is the number of queries
(matches and mismatches) needed to successfully mount such an attack,
in this paper, we propose and develop a systematic approach to find
the lower bounds on the minimum average number of queries needed
for such attacks. Our basic idea is to transform the problem of finding
the lower bound of queries into finding an optimal binary recovery tree
(BRT), where the computations of the lower bounds become essentially
the computations of certain Shannon entropy. The approach means that
one cannot find a better attack with fewer queries than this lower bound.
The introduction of the optimal BRT approach enables us to understand
why, for some schemes, there is a big gap between the theoretical bounds
and practical attacks, in terms of the number of queries needed. This
further leads us to improve the existing attacks. Especially, we can reduce
the needed queries against Frodo640 by 71.99% , LAC256 by 82.81%, and
Newhope1024 by 97.44%.

1 Introduction

The Diffie-Hellman (DH) key exchange [21] and its Elliptic Curve counterpart
have played a fundamental role in many standards, such as Transport Layer Se-
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curity (TLS) and IP security (IPSec), securing communications over the Internet.
However, these public key primitives based on number theoretic problems would
be broken if quantum computers become practical. Due to the rapid progresses
in quantum technology [29], the transition from the currently used public key
cryptographic blocks to their post-quantum counterparts has become urgent.

Since February 2016, NIST has begun the call for post-quantum crypto-
graphic algorithms from all over the world [39]. The goal of post-quantum cryp-
tography standardization is to establish cryptographic systems that are secure
against both quantum and classical computers, integrating with existing com-
munication protocols and networks [17]. There are 17 public key encryption
(PKE) or key encapsulation mechanism (KEM) candidates in the second round
[2], among which 9 are based on lattice [1]. On the third-round list, there are
still 3 lattice-based KEMs out of the 4 finalists [40].

Most of these candidates follow a similar structure: First a chosen-plaintext
attack (CPA) secure construction is proposed, and then it is converted into a
chosen-ciphertext attack (CCA) secure one using some transformations such as
the Fujisaki-Okamoto transformation [26]. We have to point out that there is no
security guarantee on the CPA secure ones when the public key is reused. How-
ever, it is an important part of the cryptographic assessment of these candidates
to understand their key-reuse resilience in even misuse situations. Therefore, the
line of research focusing on the key reuse attacks against the CPA secure ones
has been actively studied.

There are two kinds of key reuse attacks. One is the signal leakage attack,
which employs the additional signal information in the shared key reconciliation
between two parties. The other key reuse attack is called the key mismatch
attack, which launches the attack by simply knowing whether the shared two
keys match or not. In 2015, Kirkwood et al. from the US National Security
Agency (NSA) announced that there may exist key reuse attacks against lattice-
based post-quantum key exchange protocols, without giving any details [34].
Later, Fluhrer showed in [25] that if the public key of the Ring Learning with
Errors (RLWE) based key exchange is reused, then this protocol could be broken.
In [22], Ding, Alsayigh and Saraswathy first launched signal leakage attacks to
the key exchange protocol in [24] by using the leaked information about the
secret key from the signal messages. Then, Liu, Zheng and Zou proposed a
signal leakage attack [36] against the reconciliation-based NewHope-Usenix key
exchange protocol [6].

The idea of key mismatch attack was first proposed by Ding, Fluhrer and
Saraswathy [23] against the one-pass case of the protocol in [24]. In a key mis-
match attack, a participant’s public key is reused and its private key is recovered
by comparing whether the shared keys between two participants match or not.
In [10], Bauer et al. proposed a key mismatch attack against NewHope KEM
[3], which is further analyzed and improved by Qin, Cheng, and Ding [43]. In
[41], Okada, Wang, and Takagi improved the method in [43] to further reduce
the number of queries. The work of [44] gave a similar key mismatch attack on
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Kyber. In [27] a key mismatch attack was proposed against LAC, requiring up
to 8 queries for each coefficient.

Although there have been a number of key reuse attacks on the lattice-
based key exchange schemes, a fundamental problem is still open: Can we find a
unified method to evaluate the key reuse resilience of NIST candidates against
key mismatch attacks? Since the key index of the efficiency of these attacks is
the number of queries (matches and mismatches) needed to successfully mount
such attacks, a unified method to find bounds with fewest queries for all the
candidates is appealing. In Eurocrypt 2019, Băetu et al. tried to answer this
problem, but most of their result is related to the first-round candidates [9]. In
a recent work of Huguenin-Dumittan and Vaudenay [33], they proposed similar
key mismatch attacks on only some of the lattice-based second-round candidates,
Kyber-512, LAC-128, LightSaber, Round5 (HILA5 [11]) and Frodo640. But no
unified theoretical bound is given in their work. Therefore, a big picture about
the evaluation of key reuse resilience of these candidates is still missing.

Contributions. In this paper, we propose and develop a systematic ap-
proach to find the lower bounds on the minimum average number of queries
needed for mounting key mismatch attacks. The main contributions of this pa-
per include:

– We propose a unified method to find lower bounds for all the lattice-based
NIST candidates. Our basic idea is to convert the problem into finding an
optimal binary recovery tree (BRT). By using the technique of Huffman
coding, we successfully build the optimal BRT and get the bound. Further
analysis shows that the calculation of these bounds becomes essentially the
computation of certain Shannon entropy, which means that one cannot find
a better attack with fewer queries.

– According to our proposed bound, in terms of number of needed queries,
there is still a huge gap between the bound and practical attacks against some
candidates such as Newhope, Round5, and Saber [41,33,43]. The introduction
of the optimal BRT approach enables us to understand causes of these gaps,
guiding us to select proper parameters to improve the practical attacks.
Compared to the existing results in [33] and [41], we have improved attacks
against Frodo640 and LAC256 with 71.99% and 82.81% reduced number of
queries, and 97.44% reduced queries against Newhope1024.

– From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and the corresponding occurrence probabilities,
as well as the employment of Encode/Decode functions are the three most
important factors in evaluating their key reuse resilience. More specifically,
larger ranges of the coefficients increase the needed number of queries. On
the other side, encoding/decoding several coefficients at one time reduce the
number of queries needed.
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2 Preliminaries

2.1 Lattice-based key encapsulation mechanisms

In [19], Cramer and Shoup introduced the notion of KEM. Generally, a KEM con-
sists of three algorithms: a probabilistic polynomial-time (PPT) key generation
algorithm KEM.Gen, a PPT encryption algorithm KEM.Enc, and a determin-
istic polynomial-time decryption algorithm KEM.Dec.

The main difficulty in constructing a lattice-based DH-like key exchange pro-
tocol is how to effectively reconcile errors to negotiate a consistent shared key.
In [24], Ding, Xie, and Lin first proposed a “robust extractor” to reconcile the
errors, in which one of the participants needs to send an additional signal mes-
sage to the other party, so that the two participants can agree on a shared key.
Ding, Xie, and Lin’s schemes base their security on the Learning with Errors
(LWE) problem and Ring LWE problem. The latter can be seen as the polyno-
mial version of the former. In [42] Peikert proposed a KEM using a similar error
correction mechanism, and then in [15] the reformulated key exchange proposed
by Bos et al. has been integrated into TLS. More and more lattice-based KEMs
have been proposed since then. For example, in NIST’s second-round list, there
are Frodo [4], NewHope [5,3], LAC [37], Kyber [14,7], Threebears [30], Round5
[8], Saber [20] NTRU [16] and NTRU Prime[13]. Just recently, NIST [40] has
announced the third-round finalists, among which the lattice-based KEMS in-
clude Kyber, NTRU and Saber. NIST also announced two alternate lattice-based
candidates: Frodo and NTRU Prime .

We can roughly divide the existing lattice-based KEMs into two categories.
The first category is in line with the work of Regev [45], Lyubashevsky-Peikert-
Regev [38], and lattice-based key exchange scheme proposed by Ding, Xie and
Lin [24]. The other is NTRU [31] and NTRUprime [12].

In Table 1 we present the meta structure of the CPA-secure KEMs in the first
category of the NIST second-round candidates. Although there is no CPA-secure
version in the Kyber KEM and the authors have warned the harm of key reuse,
but in practice there may still be some users who ignore the warnings and try to
create one. So it is reasonable to assume that Kyber has a CPA-secure version
to evaluate its key reuse resilience.

Let R be a ring. For example, in NewHope R = Zq[x]/(xn + 1), where Zq
denotes the ring of integers modulo a prime q. Throughout the paper matrices
and vectors are in bold. In the key generation algorithm KEM.Gen(), Alice
first generates a ∈ R using a predefined seed. The coefficients of secret sA and
error eA are randomly selected from R following a distribution χ. Generally,
χ is chosen to be the discrete Gaussian distribution or the central binomial
distribution. Different KEMs have different sampling parameters, so the range
of coefficients of private key and errors could also be different, which significantly
affects the number of queries needed in launching the key reuse attack.

The output PA is calculated using a ◦ sA + eA. Here the notation ◦ denotes
an operation that is determined by the hardness assumption of these candidates.
For example, in Frodo ◦ means matrix multiplication while in NewHope it is the
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Table 1: The structure of CPA-secure KEM

Alice Bob

1. .KEM.Gen()

1.1 Gen a
$←− R

1.2 sA, eA
$←− χ 2. m

$←− {0, 1}λ

1.3 PA ←− a ◦ sA + eA 3. KEM. Enc(PA,m)

1.4 Output: (PA, sA)
PA−−−→ 3.1 Gen a

$←− R
3.2 sB , eB , e

′
B

$←− χ
3.3 PB ←− sB ◦ a + eB

5. KEM.Dec(PB , c̄, sA) 3.4 k←Encode(m)

5.1 c′ ← Decompress(c̄) 3.5 c←− sB ◦ PA + e′B + k

5.2 k′ = c′ − PB ◦ sA
(PB ,c̄)←−−−− 3.6 c̄←− Compress(c)

5.3 m←− Decode(k′) 3.7 Output: (PB , c̄)

5.4 Output: m′ 4. KB ← H(m||(PB , c̄))

6.KA ← H(m′||(PB , c̄))

polynomial multiplication. The input of the encryption algorithm KEM.Enc is
a random binary string m and the public key PA, and the output is (PB , c̄),
where PB is Bob’s public key and c̄ is the ciphertext. The decryption algorithm
KEM.Dec takes (PB , c̄) and the secret key sA as input, and outputs m′.

Another important factor in affecting the needed number of queries is whether
the Encode/Decode and Compress/Decompress functions are employed or not.
Some KEMs do not encode the message as Step 3.4 in Table 1 but just let k = m,
such as Kyber, whereas some other KEMs do to decrease the decryption failure,
such as Newhope512 and LAC use D-2 lattice code, and Newhope1024 uses D-4
lattice code. Below we list the Encode algorithm that encodes m of length λ into
k with length N , and Decode algorithm that recovers one bit of m according to
the v-bit coefficient in k, when D-v lattice code is used where v is 2 or 4.

The Compress/Decompress function can also be viewed as a coefficient-wise
modulus switching. That is, it can change the coefficient from module q to mod-
ule p. Newhope, Kyber, Frodo, Saber and Round5 use this method. For the
Compress function, each coefficient of c can be converted to the new module
p from the existing module q by multiplying p and then performing rounding
division by q:

Compress(c[i]) = dc[i] · p/qc (mod p).

The Decompress function operates in an opposite way:

Decompress(c̄[i]) = dc̄[i] · q/pc.
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Algorithm 1 The Encode and Decode functions

� Encode(m, v)
Input: m← {0, 1}λ, v
Output: k
1: for i = 0 to λ− 1 do
2: for j = 0 to v − 1 do
3: k[i · v +j] = m[i] · q−1

2

4: end for
5: end for
6: Return k

� Decode(k, v)
Input: k← {0, q−1

2
}vλ, v

Output: m′

7: for i = 0 to λ− 1 do
8: s=0

9: s+ =
v−1∑
j=0

|K[i · v + j]− q−1
2
|

10: if s < v·q
4

then
11: m′[i] = 1
12: else
13: m′[i] = 0
14: end if
15: end for
16: Return m′

2.2 Key mismatch attacks

In a key mismatch attack, Alice’s public key PA is reused. The adversary A
impersonate as Bob to recover the secret key of Alice with the help of an Oracle
that can decide if the two shared keys match or not.

More precisely, to show how the attack works, we build an Oracle O that
simulates Alice’s KEM.Dec part. As shown in Algorithm 2, the Oracle O’s input
P includes the parameters PB , c̄ chosen by the adversary and the shared key
KB . The output of O is 1 or 0. To be specific, with the received PB , c̄, O calls
the function Dec(P ) and gets the shared key KA as the return. If the shared
keys KA and KB match, O outputs 1, otherwise the output is 0.

Algorithm 2 The Oracle and key mismatch attack

� Oracle O(P )
Input: P := (PB , c̄, KB)
Output: 0 or 1

KA ← KEM.Dec(PB , c̄)
2: if KA = KB then

Return 1
4: else

Return 0
6: end if

� key mismatch attack
Input: Alice’s pk PA and Oracle O
Output: 0 or 1

s′A ← AO(PA)
8: if s′A = sA then

Return 1
10: else

Return 0
12: end if
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3 Optimal bound of Key mismatch attacks

For the key mismatch attacks on lattice-based KEMs, the adversary A’s goal
is to recover each coefficient of Alice’s secret key sA by accessing the Oracle O
multiple times.

For simplicity, we assume the adversary recovers Alice’s secret key sA one
coefficient block by one coefficient block. A coefficient block can be either one
coefficient of sA or a subset of all the coefficients of sA. Usually, for KEMs that
do not employ Encode/Decode functions, such as Kyber, a coefficient block is
set to be only one coefficient. For KEMs that employ Encode/Decode functions,
such as NewHope, a coefficient block contains v coefficients of sA where v is
defined as in Algorithm 1, since one coefficient relates to v coefficients of sA (see
Section 4.2 for more details).

Note that the number of the queries to the Oracle is obviously a key index
to evaluate the efficiency of the attack. In fact, even in practice, the bottleneck
of the efficiency of the attacks is also to determine if the two shared key match
or not. Therefore, it is important to indicate the optimal lower bound of the
number of queries to mount a mismatch attack successfully.

3.1 Lower bound by optimal binary recovering tree

In this subsection, we describe how to find the bounds of key mismatch attacks,
which can be regarded as a problem of finding a binary tree with minimum
weighted depth.

Recall that the adversary recovers Alice’s secret key sA one coefficient block
by one coefficient block. Let S = {S0,S1, · · · ,Sn−1} be the set of all the pos-
sible values for one coefficient block. For example, in Kyber, the coefficients
of sA are drawn from {−2,−1, 0, 1, 2}. Since there are no Encode/Decode
functions, we let S = {−2,−1, 0, 1, 2}. In LAC, the coefficients of sA are
selected from {−1, 0, 1}. Since D-2 is used, a coefficient block contains 2
coefficients of sA. Therefore, we let S be {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1),
(1, 1), (−1,−1), (1,−1), (−1, 1)}.

For every Si, denote by Pi the probability that Si happens when sA is
generated from the distribution χ. Without loss of generality, we assume that
P0 ≥ P1 ≥ · · · ≥ Pn−1. Then, it holds that

∑n−1
i=0 Pi = 1.

In a key mismatch attack, by repeatedly accessing the Oracle with properly
selected parameters, the adversary gets a sequence of returned values from the
Oracle. We use s̄ to represent the sequence. For example, by accessing O five
times, the adversary A gets five returned values, which may be s̄ = 00001. The
length of s̄ is represented by ls̄, which also denotes the number of times the
adversary accesses the Oracle.

The adversary aims to decide each coefficient block of the secret key, which
can be any element in S. Let Qi represent the number of queries needed to
recover each Si, which must be the length for some s̄, then the average number
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of queries required to recover one Si is:

E(S) =

n−1∑
i=0

PiQi. (1)

Our goal is to minimize E(S) by running over the set of all possible Qi’s. Note
that each Qi corresponds to a bit string s̄i returned by the Oracle and it is
sufficient for us to determine Si from s̄i in the attack. Hence, the constraint for
Qi’s is at least every Qi is equipped with a (w.l.o.g. only one) bit string s̄i and
s̄i can not be a prefix of s̄j for i 6= j.

We next compute the optimal value E(S) under this constraint and then the
bound E(#Queries) can be calculated by multiplying minE(S) by the number
of unknowns in the secret key, which is obviously a lower bound for the key
mismatch attack.

Binary recovering tree. Define the BRT T associated with S = {S0,S1, · · · ,
Sn−1} as below: it is a binary tree with n leaf nodes and every Si occupies a leaf
node.

For every node that has child nodes, denote by 1 its left child node and by
0 its right child node. Then for every i, the path from the root node to the leaf
node Si implies a bit string s̄i consisting of the nodes on the path, which yields
to a value Qi that is the length of s̄i, also known as the depth depthT (Si) of leaf
node Si. This means that a BRT will yield a feasible solution {Qi} for computing
E(S). On the other hand, it is obvious that we can construct a binary recovering
tree linking any feasible Qi with the corresponding s̄i.

Hence, we can transform the problem of finding the optimal value of E(S) to
the problem of finding a binary recovering tree associated with S to minimize

E(S) =

n−1∑
i=0

Pi · depthT (Si). (2)

We call the tree with the minimum weighted depth, i.e. minE(S), the optimal
BRT. Therefore, it is enough to construct an optimal BRT to find the lower
bound for recovering the secret key with fewest number of queries.

A well known method to find the optimal binary recovery tree is the Huff-
man coding [32,35]. The basic idea of Huffman coding is to combine two symbols
with the lowest probabilities in each step. Specifically, we first find the two Si’s
with the lowest probabilities, for example, Pn−1 and Pn−2. Then the problem has
transformed into solving the problem with n−1 weights {P0, P1, . . . , Pn−3, Pn−2+
Pn−1}. By repeating this process, we can finally solve the problem and find the
optimal BRT to get minE(S) in time O(n log n), as well as the E(#Queries).

Therefore, our proposed method for calculating the bound can be summa-
rized as follows: First, list S0,S1, . . . ,Sn−1 and their corresponding probabilities
{P0, P1, . . . , Pn−1} in the descending order. Then, construct the optimal BRT
using Huffman coding. The constructed optimal BRT leads us to the minE(S)
and the E(#Queries).
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In [9], it has been proved that H(S) ≤ min E(S). From our perspective, this
can be easily obtained from the optimality of Huffman codes. Further, we can
have the following result.

Theorem 1. In our key mismatch attack model, the proposed method finds
bounds for minimum average number of queries in launching the key mismatch
attacks. To be precise, given S = {S0,S1, · · · ,Sn−1} and its corresponding proba-
bilities {P0, P1, · · · , Pn−1} in each lattice-based KEM, the above calculated result
is the bound for the minimum average number of queries. Moreover, set H(S)
the Shannon entropy for S, then we have

H(S) ≤ min E(S) ≤ H(S) + 1 (3)

Proof. Our first result comes from the facts in Section 5.8 of [18]. That is, it is
impossible to find any other code with a lower expected length than the code
constructed by Huffman coding. Furthermore, from Theorem 5.4.1 [18], we have
H(S) ≤ min E(S) ≤ H(S) + 1.

3.2 Lower bounds for key mismatch attacks on NIST candidates

Lower bounds for Kyber In this subsection, we take Kyber as an example
to show how to find the optimal BRT to get the bound. Kyber uses centered
binomial distribution Bη with η = 2 and has no Encode/Decode functions, which
means S = {−2,−1, 0, 1, 2}. We set S0 = 0, S1 = 1, S2 = −1, S3 = 2 and
S4 = −2.

Fig. 1: Finding the optimal BRT for Kyber by using Huffman coding

As shown in Fig. 1, we first list the occurrence probabilities of Si in the
descending order. Since S3 and S4 occur with the smallest probabilities, we create
a subtree that contains them as leaf nodes. By repeatedly doing so, finally we
can get an optimal BRT as also shown in Fig. 1. The corresponding s̄ represents
how to encode each Si, while ls̄ is the code length.

The resulted minE(S) = 2.125, which is the minimum number of queries
needed for recovering each coefficient. Here the Shannon entropy H(S) can be
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calculated as

H(S) =

4∑
i=0

Pilog
1

Pi
= 2.03. (4)

We can see that this is in accordance with our proposed Theorem 1. Similarly,
we can get the bounds for Kyber512, Kyber768, and Kyber1024, which are 1088,
1632, and 2176, respectively.

Lower bounds for Newhope. One of the main differences between Kyber and
Newhope is that Kyber does not use Encode/Decode functions, while Newhope
uses both Encode/Decode and Compress/Decompress functions. In Newhope,
the secret key is sampled from centered binomial distribution Bη with parameter
η = 8, so the coefficients of the secret key are integers in [−8, 8].

Recall that Newhope512 uses D-2 Encode/Decode functions, while in Newhope-
1024 D-4 Encode/Decode functions are used. Therefore, in Newhope512, Si =
(si,1,si,2) where si,1, si,2 ∈ [−8, 8]. In total there are 289 possibilities about each
Si. To simplify the calculation, we only keep those Si with occurrence prob-
ability greater than or equal to 0.000001. So here we let n = 241. Then, we
can also build the optimal BRT for Newhope512 using Huffman coding, and
the minE(S) = 6.124. Since we can recover two coefficients in sA at one time,
the resulted E(#Queries)=1568. For Newhope1024, we also keep those Si with
occurrence probability greater than 0.000001, which results in n = 16, 481. Sim-
ilarly, we have E(#Queries)= 3103 for Newhope1024.

Lower bounds for NIST Candidates In Table 2, we present the lower bounds
for key mismatch attacks against the following second or third round NIST can-
didates: Newhope, Kyber, LAC, Frodo, Saber, and Round5. For every candidate,
we report the ranges of sA & e and the number of unknowns, and whether the En-
code/Decode and Compress/Decompress functions are employed (X) or not (/).
We also report the minimum average number of queries in our proposed bounds
and in known practical attacks (Italic). For other NIST candidate KEMs, we
report their results in Table 13 in the Appendix.

From Table 2, we can see that for some KEMs, there is a huge gap in terms
of number of queries between the theoretical bound and practical attacks. For
example, so far the best key mismatch attack against NewHope is given in [41],
in which the number of queries for Newhope1024 is 233, 803, while our bound is
just 3103. Since we have built an optimal BRT for each KEM, in the following
we can use it to help design the practical attacks.

4 The improved practical key mismatch attacks on NIST
candidates

4.1 The improved practical attacks on Kyber

Kyber. Kyber is on the third-round list of NIST competition, and is regarded
as one of the most promising one for the final standard. In Kyber all the se-
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Table 2: Key mismatch attacks against lattice-based NIST KEMs. For each
scheme, we give the ranges of coefficients and the number of unknowns, as well
as whether the Encode/Decode and Compress/Decompress are employed or not.
We also report the minimum average number of queries in our proposed bounds,
as well as other existing results (Italic). Here “-” means no result is given.

Schemes
sA & e Encode Comp

Unknowns
E(#Queries)

Ranges Decode Decomp Bounds/Existing
Newhope512

[-8,8] X X
512 1568/-

Newhope1024 1024 3103/233,803 [41]
Kyber512

[-2,2] / X
512 1088/1401 [44]

Kyber768 768 1632/1855 [44]
Kyber1024 1024 2176/2475 [44]
LightSaber [-5,5]

/ X
512 1412/2048 [33]

Saber [-4,4] 768 1986/-
FireSaber [-3,3] 1024 2432/-
Frodo640 [-12,12]

/ X
5120 18,227/65536 [33]

Frodo976 [-10,10] 7808 25,796/-
Frodo1344 [-6,6] 10,752 27,973/-
LAC128

[-1,1] X /
512 553/1024 [28]

LAC192 1024 1106/2048 [28]
LAC256 1024 1398/8192 [28]
Round5 R5ND 1

[-1,1] / X
618 722/-

Round5 R5ND 3 786 1170/-
Round5 R5ND 5 1018 1446/-
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cret keys and error vectors are sampled from a centered binomial distribution
Bη. Here η = 2 and Bη is generated using

∑η
i=1(ai − bi), where ai and bi are

randomly sampled from {0, 1}. The CPA-secure KEM of Kyber also consists
of three parts: the key generation algorithm Kyber.KEM.Gen(), the encryption
algorithm Kyber.KEM.Enc() and the decryption algorithm Kyber.KEM.Dec().

In Kyber.KEM.Gen(), Alice first generates a matrix a ∈ Rk×kq . Here Rq
represents the ring Zq[x]/(xN+1), where N = 256 and q = 3329. The coefficients
of a are polynomials in Rq. Another parameter k is set to be 2, 3 or 4, which is in
accordance with the three different security levels. That is, Kyber-512, Kyber-
768, and Kyber-1024, respectively. Then, she samples sA and eA from Bη to
calculate PA = a ◦ sA + eA. The output is the key pair (sA,PA).

The inputs to the encryption algorithm Kyber.KEM.Enc() are the public key
PA and a random binary string m. In this part, Bob generates the same matrix
a and samples sB , eB ∈ Rkq and e′B ∈ Rq from Bη. Next, he calculates PB = aT ◦
sB+eB , vB = PT

A◦sB+e′B+Decompressq(m, 2), c1 = Compressq(PB , 2
dPB )

and c2 = Compressq(vB , 2
dvB ). In the end, he calculates the shared key as

KB ← H(m||(PB , (c1, c2))), where H represents the hash function. The resulted
outputs of Kyber.KEM.Enc() are PB and (c1, c2). The parameters dPB

and dvB

vary in different security levels of Kyber. Specifically, dPB
is set as 10, 10 and

11, corresponding to Kyber-512, Kyber-768 and Kyber-1024, respectively. While
the corresponding values of dvB

are 3, 4, and 5.

For the decryption algorithm Kyber.KEM.Dec(), the inputs are PB , (c1, c2)
and Alice’s secret key sA. Then Alice calculates uA = Decompressq(c1, 2

dPB ),

vA = Decompressq(c2, 2
dvB ) and m′ = Compressq(vA − sTA ◦ uA, 2). After

that she calculates the shared key as KA ← H(m′||(PB , (c1, c2))). In this part,
the output is m′.

Improved practical attacks on Kyber We take Kyber1024 as an example
to show how to launch the practical key mismatch attack. First, we build an
Oracle that simulates Alice’s Kyber.KEM.Dec(), the same as that in Algorithm
2. The inputs of the Oracle O are PB , (c1, c2) and KB .

In a key mismatch attack, Alice’s public key PA is reused, and the goal of the
adversary A is to recover Alice’s secret key sA. Therefore, A needs to choose the
appropriate parameters PB and (c1, c2) to access O, so that he can determine sA
based on O’s return. Without loss of generality, assume that A wants to recover
sA[0].

First of all, A selects a 256-bit m as (1,0, · · · , 0). Then he sets PB = 0,
except PB [0] =

⌈
q
32

⌋
. After calculating c1 = Compressq(PB , 2

dPB ), A sets
c2 = 0, except that c2[0] = h.
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With the PB , (c1, c2), and KB received from the adversary, the Oracle cal-
culates

m′[0] = Compressq((vA − sTAuA)[0], 1)

= Compressq(vA[0]− (sTAuA)[0], 1)

=

⌈
2

q

(
vA[0]− (sTAuA)[0]

)⌋
mod 2.

(5)

Since vA[0] =
⌈
q
32h
⌋

and (sTAuA)[0] = sTA[0]uA[0] = sTA[0]
⌈
q
32

⌋
, it holds that

m′[0] =

⌈
2

q

(⌈ q
32
h
⌋
− sTA[0]

⌈ q
32

⌋)⌋
mod 2. (6)

Therefore, by letting h = 8, we have the following result: If sTA[0] ∈ [−2,−1],
m′[0] = 1, the Oracle outputs 1. Otherwise, if sTA[0] ∈ [0, 2], m′[0] = 0, the Oracle
outputs 0. In this way, we can distinguish which subinterval sTA[0] belongs to by
only one query. Similar to the above process, A needs to select the appropriate
h according to Table 3.

Table 3: The choice of h and the States

State 1 State 2 State 3 State 4

Kyber512

h 2 3 4 1

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber768

h 4 5 6 3

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber1024

h 8 9 10 7

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Table 4: Si and its
corresponding s̄, ls̄

i 0 1 2 3 4
Si 0 1 -1 2 -2
s̄ 01 001 10 000 11
ls̄ 2 3 2 3 2

From the optimal BRT in Section 3.2, to approach the bound we need to
determine Si with high occurrence probability with as few number of queries as
possible. Table 3 shows how to choose h and how the States change according
to the output of Oracle in Kyber512, Kyber768 and Kyber1024, respectively.
The key mismatch attack always starts from State 1, and then the choice of h
in the next State depends on the current Oracle output. In each State, when
the Adversary gets a returned value from the Oracle, he can narrow the range
of sA[0] until the exact value of sA[0] is determined.

Next, we show how the adversary A selects h until he can determine sA[0] in
Kyber1024.

1. The key mismatch attack starts from State 1, and A sets h = 8 first. Then
{S0,S1,S2,S3,S4} can be divided into two parts based on the returned value
of the first Oracle:
– If O → 0: sA[0] belongs to {S0,S1,S3}, and goes to State 2.
– If O → 1: sA[0] belongs to {S2,S4}, and State 4 will be executed.

2. If A comes to State 2, he goes on setting h = 9:
– If O → 0: sA[0] belongs to {S1,S3}, then goes to State 3.
– If O → 1: A can determine sA[0] = S0 = 0.
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3. In State 3, A sets h = 10:
– If O → 0: A determines sA[0] = S3 = 2.
– If O → 1: A determines sA[0] = S1 = 1.

4. When A is in State 4, he sets h = 7:
– If O → 0: A finds that sA[0] = S2 = −1.
– If O → 1: A finds that sA[0] = S4 = −2.

Based on the above process, we can construct s̄, ls̄ for {S0,S1,S2,S3,S4},
as shown in Table 4. For example, if sA[0] = S1 = 1, we come to State 1 first,
and the Oracle outputs 0. Then we go to State 2 and the Oracle outputs 0. Now
we are in State 3 and the output is 1. Therefore we can get s̄ = 001. We can
see that in this way we decide Si with larger occurrence probability in as fewer
queries as possible. We can also observe that the way we find s̄ is similar to the
Huffman coding [32].

Similarly, to recover sA[i] when i 6= 0, A only needs to set PB = 0 except
PB [n− i] = −

⌈
q
32

⌋
at first.

For completeness, Table 3 shows how to choose h and how the States change
according to the output of Oracle in Kyber512, Kyber768 and Kyber1024, re-
spectively.

Now we can calculate the average number of queries needed to recover each
coefficient in sA as 3

8 × 2 + 1
4 × (2 + 3) + 1

16 × (2 + 3) = 2.31. Therefore, the
corresponding numbers of average queries needed in Kyber1024, Kyber769 and
Kyber512 are 2365.44, 1774.08 and 1182.72, respectively. Compared with the
bound in Table 2, there is only a gap less than 9%.

In [44], the authors proposed three different methods to perform key mis-
match attacks on Kyber. For their best method, the queries are 2475, 1855 and
1401. Therefore, the improved practical key mismatch attack on Kyber we pro-
posed is better than that in [44].

4.2 The improved practical attacks on Newhope

Newhope. There are also three parts in Newhope’s CPA-secure KEM: Newhope.KEM.Gen(),
Newhope.KEM.Enc() and Newhope.KEM.Dec().

In Newhope.KEM.Gen(), Alice generates a polynomial a in Rq. Here Rq
is the residue ring Zq[x]/(xN + 1) with N = 512 in Newhope512 and 1024 in
Newhope1024. The parameter q is always set as 12289. Then, Alice samples sA
and eA to calculate PA = a ◦ sA + eA. The output is the keypair (sA,PA).

In Newhope.KEM.Enc(), the inputs are Alice’s public key PA and a random
binary string m. Bob first generates the same a in Rq, and then selects sB , eB ,
e′B to calculate PB = a ◦ sB + eB . Next, he continues to calculate vb = H1(m),
k = Encode(vb), c = PA ◦ sB + e′B + k and c̄ = Compress(c). In the end,
he calculates the shared key KB ← H2(vb||(PB , c̄)), here H1 and H2 are hash
functions. The output is (PB , c̄).

In Newhope.KEM.Dec(), the inputs are Alice’s secret key sA and (PB , c̄). Al-
ice directly calculates c′ = Decompress(c̄), K′ = c′−PB ◦ sA, vA = Decode(K′)
and the shared key KA ← H2(vA||(PB , c̄)). In this part the output is vA.
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Improved practical attack on Newhope In a key mismatch attack on
Newhope, we build an Oracle O to simulate the process of Newhope.KEM.Dec().
The inputs ofO are (PB , c̄) andKB . The Oracle honestly executes Newhope.KEM.Dec()
to get KA. Then, he compares KA and KB . If they are equal, it returns 1, oth-
erwise it returns 0.

So far as we know, the best practical key mismatch attack Newhope1024
given in [41] needs 233,803 queries, while the bound we give is 3103. There is a
huge gap between the theory and practice. In the following, we further improve
the parameter choices of [43] by the techniques of BRT, and finally reduce the
needed queries dramatically.

In a key mismatch attack, we assume that Alice’s public key PA is always
reused, and the secret key sA of Alice is the Adversary A’s target. Therefore, in
order to achieve this target, A needs to select appropriate parameters.

Recall that Newhope1024 uses D-4 technology, so A can recover the value of
four sA at a time. We assume that A wants to recover sA[i], sA[i + 256], sA[i +
512], sA[i+ 768].

At first, A sets vb as {1, 0, · · · , 0}, rather than randomly selecting m and
computing vb ← H1(m).

Table 5: The choice of t and the States

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10

t1 2047 3071 2457 4095 6143 12286 12289 1535 1755 1365

O → 0 State 8 State 3 s1 = 6 s1 = 4 s1 = 3 s1 = 2 s1 = 1 State 10 s1 = 8 State 11

O → 1 State 2 State 4 s1 = 5 State 5 State 6 State 7 s1 = 0 State 9 s1 = 7 s1 = 9

State 11 State 12 State 13 State 14 State 15 State 16 State 17 State 18 State 19 State 20

t1 1228 1117 1024 945 877 819 768 722 682 646

O → 0 State 12 State 13 State 14 State 15 State 16 State 17 State 18 State 19 State 20 s1 = 20

O → 1 s1 = 10 s1 = 11 s1 = 12 s1 = 13 s1 = 14 s1 = 15 s1 = 16 s1 = 17 s1 = 18 s1 = 19

Step 1: In this step, A wants to get s1 = |sA[i]| + |sA[i + 256]| + |sA[i +
512]|+ sA[i+ 768]|.

A selects sB ,eB , e′B to be 0 except letting eB [512] = t1. With the calculated
PB = a ◦ sB + eB = eB , A goes on computing k, c and c̄. To launch the attack,
A needs to select appropriate t1. We show the selections of t1 and the States in
Table 5. It can be seen that A keeps on selecting different t1 and goes to next
State according to the output of the Oracle. This process is repeated until he
can determine s1 based on the current t1.
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Next, we explain how to choose t1 by using the idea of optimal BRT in details.
When the Oracle receives (PB , c̄, SkB ) from A, it calculates

k′ =c′ −PB · sA = c′ − (a · sB + eB) · sA = c′ − eB · sA
=[6145− (−sA[i+ 512] · t1)] · xi + [6145− (−sA[i+ 768] · t1)] · xi+256

+ [6145− sA[i] · t1] · xi+512 + [6145− sA[i+ 256] · t1] · xi+768.

(7)

First, according to the Decode function in Algorithm 1, we have

s =|6145− (−sA[i+ 512] · t1)− 6144|+ |6145− (−sA[i+ 768] · t1)− 6144|
+ |6145− sA[i] · t1 − 6144|+ |6145− sA[i+ 256] · t1 − 6144|

=|1 + sA[i+ 512] · t1|+ |1 + sA[i+ 768] · t1|+ |1− sA[i] · t1|
+ |1− sA[i+ 256] · t1|

=(|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|) · t1 +D.
(8)

Here D is an integer which satisfies that D = 0, ± 2, ± 4. In [43], the authors
let t1 change from 0 to q, at the beginning s < q and the Oracle outputs 1. As t1
becomes larger, when s ≥ q, the Oracle outputs 0 and the adversary records the

current t1. The recorded t1 is then used to calculate s1 =
⌊
q
t1

⌉
. But in this way,

thousands of queries are needed to determine s1. Therefore, we use our BRT
method to solve this problem and greatly reduce the number of queries.

Since s1 = |sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|, s1 ∈ [0, 32].
To simplify the problem we only consider s1 ∈ [0, 20], omitting those s1 with a
occurrence probability less than 0.000001. We observe that doing so has little

impact on the E(#Queries). To find s1 =
⌊
q
t1

⌉
, we divide the interval [0, 20]

into two subintervals [0, s1] and [s1 + 1, 20]. If we can set t1 in the interval(⌊
q

s1+ 1
2

⌋
,
⌈

q
s1− 1

2

⌉]
, then all the elements in [0, s1] correspond to s > q and the

Oracle outputs 0. At the same time, the elements in [s1 + 1, 20] correspond to
s ≤ q and the Oracle outputs 0. Thus we can distinguish [0, s1] and [s1 + 1, 20]
based on the outputs of the Oracle.

Table 6: Si and its corresponding ls̄ & l′s̄ on Newhope
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Si 6 5 7 4 8 9 3 10 2 11 12 1 13 14 0 15 16 17 18 19 20

ls̄ 3 3 3 3 3 3 4 4 5 5 5 6 7 8 9 10 11 12 13 14 15

l′s̄ 3 3 3 3 3 3 4 4 5 5 6 6 7 8 6 9 10 11 12 13 14

Specifically, by letting Si (i = 0, 1, . . . , n − 1) represent all the possible
value of s1 and n = 21, we first sort the occurrence probabilities of s1 in the
descending order. Since s1 = 6 occurs with the highest probability, we judge
whether s1 belongs to [0, 6] or [7, 20]. Here the corresponding interval of t1 is
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q

6+ 1
2

⌋
,
⌈

q
6− 1

2

⌉]
= (1890, 2235]. Therefore we select t1 = 2047 ∈ (1890, 2235]

in State 1. Similar to the method in Section 3.2, we can find an optimal BRT
for s1. We list all the results in Table 6 but omitting the s̄. We also show the
length ls̄ for each Si in the table, and the theoretical E(S) is 3.3773. In addition,
we can get the length l′s̄ that recovers s1 in the practical attack, as shown in
in Table 6. The E(S) corresponding to the practical attack is 3.3854, which is
almost the same as the theoretical E(S).

Step 2: In this step, A checks how many 0s exist in SA[i + 256 ∗ j] (j =
0, 1, 2, 3), and then he tries to obtain the possible absolute values of them.

Step 2.1 We first introduce how A selects the parameters and calculates s21,
s22 and s23, these three results will be used in Step 2.2 and Step 2.3.

Similar to Step 1, A selects sB , eB and e′B to be 0, except for two special
positions: eB [j1] = t21 and eB [j2] = t2, where j1, j2 ∈ {0, 256, 512, 768} and
j1 6= j2. And then, he calculates PB , k, c and c̄ the same way as that in Step
1.

If he sets eB [0] = t21 and eB [256] = t2, the result of s in Equation (8)
becomes

s =|1− (sA[i] · t21 − sA[i+ 768] · t2)|
+ |1− (sA[i+ 256] · t21 + sA[i] · t2)|
+ |1− (sA[i+ 512] · t21 + sA[i+ 256] · t2)|
+ |1− (sA[i+ 768] · t21 + sA[i+ 512] · t2)|.

(9)

Here, if sA[i] > 0, sA[i + 256] > 0, sA[i + 512] > 0, sA[i + 768] > 0, and t21 is
much great than t2. Then,

s =(sA[i] · t21 − sA[i+ 768] · t2 − 1) + (sA[i+ 256] · t21 + sA[i] · t2 − 1)

+ (sA[i+ 512] · t21 + sA[i+ 256] · t2 − 1)

+ (sA[i+ 768] · t21 + sA[i+ 512] · t2 − 1)

=(sA[i] + sA[i+ 256] + sA[i+ 512] + sA[i+ 768])(t21 + t2)

− 2 · t2 · sA[i+ 768]− 4

=s1 · (t21 + t2)− 2 · t2 · sA[i+ 768]− 4.

(10)

By selecting appropriate t21 and t2, A can get

sA[i+ 768] =
s1 · (t21 + t2)− 4− q

2 · t2
. (11)

For other cases, i.e. at least one of sA[i + 256 ∗ j] = 0 or sA[i + 256 ∗ j] < 0
(j = 0, 1, 2, 3), we can analyze them in the same way.

In Equations (9) and (10), there exists a constant −4. We find that the con-
stant can only be selected from {±4,±2, 0}. In order to eliminate these constants,
we set t2 to be 100.

Different positions of j1 and j2 in eB correspond to different results. But,
if the positions of j1 and j2 in eB are fixed, only the sign of sA[i + 256 ∗ j]
(j = 0, 1, 2, 3) is different, then we can get similar result in Equation (11). There
are a total of 12 cases, among which in Step 2, we only need three of them.
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(1) A sets eB [0] = t21 and eB [512] = t2 = 100. By selecting proper t21,
together with the Oracle’s output, he can have

s21 =

⌊
s1 ∗ (t21 + 100)− q

200

⌉
.

(2) A sets eB [0] = t22 and eB [768] = t2 = 100, which results in

s22 =

⌊
s1 ∗ (t22 + 100)− q

200

⌉
.

(3) Similarly, A sets eB [256] = t23 and eB [0] = t2 = 100, which gives

s23 =

⌊
s1 ∗ (t23 + 100)− q

200

⌉
.

Here, s21 is always the sum of two different terms in sA[i + 256 ∗ j] (j =
0, 1, 2, 3), while s22 and s23 are the sum of one or three different terms.

Step 2.2:A checks whether there is a 0 in the SA[i+256∗j] (j = 0, 256, 512, 768)
based on s21, s22 and s23.

– If s1 = 0, then SA[i+ 256 ∗ j] = 0 (j = 0, 1, 2, 3).
– If s1 6= 0, then
• If s21 6= 0,
∗ If s22 + s23 = s1, then there is no 0 in the four SA[i+ 256 ∗ j] .
∗ When s22 + s23 6= s1, if s22 = s23 = 0, there are two 0s in the tuple,

else there is one 0 in the tuple.
• If s21 = 0,
∗ If s22 = s23 = 0, there are three 0s in the tuple, else there are two

0s in the tuple.

Step 2.3: A determines the four possible absolute values of SA[i + 256 ∗ j]
(j = 0, 1, 2, 3).

– If there are three 0s in the tuple, we can directly know the non-zero value.
– If there are two 0s in the tuple, from the above analysis there are two cases,

and we assume that the two non-zero values are x1 and x2.
• When s1 6= 0, s21 6= 0 and s22 = s23 = 0, we observer that s21 = |x1|+ 0

or s21 = |x2| + 0. So, one of the non-zero value is equal to s21, and the
other non-zero value can be calculated as s1 − s21.

• When s1 6= 0, s21 = 0 and either s22 6= 0 or s23 6= 0, from our observa-
tion the possible values of (s22, s23) could be (x1, 0), (0, x1), (x2, 0) and
(0, x2). If s22 = 0, then x1 = s23. Subtracting s23 from s1 we get x2.

– If there is one 0 in the tuple, we assume that the three non-zero values are
x1, x2 and x3. According to our observation, we list the possible values of
s21, s22 and s23 in Table 7.

• If s23 = 0, then x1 = s21, x2 = s22 − s21 and x3 = s1 − x1 − x2.
• If s23 6= 0, then x1 = s22, x2 = s23 and x3 = s1 − x1 − x2.
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Table 7: The possible values of s21, s22 and s23

s21 x3 + 0 x3 + 0 x2 + 0 x1 + 0
s22 x2 + x3 + 0 x2 x1 + x2 + 0 x2

s23 0 x1 0 x3

Table 8: The possible values of s21, s22, s23 and s24

s21 x3 + x4 x2 + x3 x1 + x4 x1 + x2

s22 x2 + x3 + x4 x1 + x2 + x3 x1 + x3 + x4 x1 + x2 + x4

s23 x1 x4 x2 x3

s24 x4 x3 x1 x2

s21 x2 + x3 x3 + x4 x1 + x2 x1 + x4

s22 x4 x1 x3 x2

s23 x1 + x2 + x3 x2 + x3 + x4 x1 + x2 + x4 x1 + x3 + x4

s24 x1 + x2 + x4 x1 + x2 + x3 x1 + x3 + x4 x2 + x3 + x4

– If there is no 0 in the tuple, we assume that the four non-zero values are x1,
x2, x3 and x4. In this case, we need to select eB [0] = t24 and eB [256] = 100,

and get s24 =
⌊
s1∗(t24+100)−q

200

⌉
. According to our observation, we list the

possible values of s21, s22, s23 and s24 in Table 8.

• If s22 > s24, then x1 = s23, x2 = s24, x3 = s21 − s24 and x4 = s1 − x1 −
x2 − x3.

• If s22 ≤ s24, then x1 = s22, x2 = s23 − s21, x3 = s24 − x1 − x2 and
x4 = s1 − x1 − x2 − x3.

At the end of Step 2, A knows the four possible absolute values of the tuple.
Step 3. In this step, A wants to determine the exact value and the sign of

each SA[i+256∗j] (j = 0, 1, 2, 3). For example, A tries to recover SA[i]. First, he

selects PB =
⌊
q
8

⌋
x−i and c̄ =

∑3
j=0((lj+4) (mod 8))x256j (lj = −4,−3, · · · , 3).

Then the Oracle calculates vA = Decode(K′) = Decode(Decompress(c̄ −
PBSA)). According to the Decode function in Algorithm 1, we have

s =

3∑
j=0

∣∣∣Decompress(c̄−PBSA)[i+ 256j]−
⌊q

2

⌋∣∣∣ . (12)

If s < q then vA[i] = 1, and the Oracle outputs 1, otherwise it outputs 0.
We let

f(SA[i]) =
∣∣∣⌊(l0 + 4) ∗ q

8

⌉
−
⌊ q

16

⌋
∗ SA[i]−

⌊q
2

⌋∣∣∣+ v, (13)

where

v =

3∑
j=1

∣∣∣⌊(lj + 4) ∗ q
8

⌉
−
⌊ q

16

⌋
∗ SA[i+ 256j]−

⌊q
2

⌋∣∣∣ . (14)
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Then we set l0 = −4, now Equation (13) becomes

f(SA[i]) =
∣∣∣− ⌊ q

16

⌋
∗ SA[i]−

⌊q
2

⌋∣∣∣+ v. (15)

In the following, we select the proper v to help decide SA[i], here we also use
our aforementioned BRT method. We let f ′(SA[i]) = −

⌊
q
16 ∗ SA[i]−

⌊
q
2

⌋∣∣ and
when SA[i] changes from -8 to 8 the results of f ′(i) are shown in Table 9. Here,
we also list q− f ′(SA[i]) in this table, so that we can select v more conveniently.
Specifically, if we want to know SA[i] belongs to [-8,-1] or [0,8], we can select
v ∈ [q−f ′(−1), q−f ′(0)) =

[⌊
9q
16

⌋
+ 2,

⌊
5q
8

⌋
+ 1
)
. In this way, if SA[i] ∈ [−8,−1],

f < q and the Oracle outputs 1, otherwise f > q and the Oracle outputs 0.

Table 9: The value of f ′ and q − f ′ when SA[i] ∈ [−8, 8]

SA[i] -8 -7 -6 -5 -4 -3 -2 -1 0

f ′ 1
⌊
q
16

⌋
-1

⌊
q
8

⌋
-1

⌊
3q
16

⌋
-1

⌊
q
4

⌋
-1

⌊
5q
16

⌋
-1

⌊
3q
8

⌋
-1

⌊
7q
16

⌋
-1

⌊
q
2

⌋
q − f ′ q-1

⌊
15q
16

⌋
+ 2

⌊
7q
8

⌋
+ 2

⌊
13q
16

⌋
+ 2

⌊
3q
4

⌋
+ 2

⌊
11q
16

⌋
+ 2

⌊
5q
8

⌋
+ 2

⌊
9q
16

⌋
+ 2

⌊
q
2

⌋
+ 1

SA[i] 1 2 3 4 5 6 7 8

f ′
⌊

9q
16

⌋ ⌊
5q
8

⌋ ⌊
11q
16

⌋ ⌊
3q
4

⌋ ⌊
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For example, if we want to decide whether SA[i] is 0 or ±3, first we must
find lj(j = 1, 2, 3) such that v =

⌊
q
2

⌋
in Equation (14). Since
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(16)

the Oracle outputs 1 when f(SA[i]) < q, we know that SA[i] = 0 or −3. If
f(SA[i]) > q, the Oracle outputs 0, and we know that SA[i] = 3. Second, we
must find lj(j = 1, 2, 3) such that v =

⌊
11q
16

⌋
in Equation (14). Now

f(−3) =

⌊
5q

16

⌋
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⌊
11q
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< q,

f(0) =
⌊q

2

⌋
+

⌊
11q

16

⌋
> q.

(17)

In this turn, if Oracle outputs 1, we can determine SA[i] = −3. Otherwise,
SA[i] = 0.
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If A wants to determine SA[i + 256], he selects PB =
⌊
q
8

⌋
x−i and c̄ =∑3

j=0((lj + 4)mod 8)x256j(lj = −4,−3, · · · , 3). Then he sets l1 = −4, and ac-
cording Table 9 to calculate an appropriate v in Equation (14) as

v =

3∑
j=0&j 6=1

∣∣∣⌊(lj + 4) ∗ q
8

⌉
−
⌊ q

16

⌋
∗ SA[i+ 256j]−

⌊q
2

⌋∣∣∣ . (18)

He can determine SA[i+256] based on Oracle’s output. Next, he recovers SA[i+
512] and SA[i+ 768] in the same way.

Finally, the adversary repeats Steps 1-3, until he can determine all the
coefficients in sA.

Further analysis and more details In this subsection, we analyze the results
of our improved practical key mismatch attack on Newhope1024. First, we show
how to use the BRT method to optimize the attack.

With an optimal BRT, we know the ideal way to recover the secret key with
the smallest E(#Queries), that is, to find appropriate parameters to make the
Oracle output 0 or 1, so that Si belongs to the ideal subtree. The application of
our BRT method on Kyber is relatively simple. For Newhope we have to recover
4 coefficients at the same time, but we can still apply the BRT method to our
attack.

In Step 1, we need to select a proper t1 to obtain the accurate s1. First, we
calculate the occurrence probability of each s1, and then sort these probabilities
in the descending order. For example, s1 = 6 occurs with the highest probability.
In the optimal BRT, s1 = 4, 5, 6, 7, 8, 9 corresponds to the minimum number of
queries 3. By setting the appropriate parameter t1, we divide [0,20] into two
subintervals based on the first output of the Oracle. From our calculations, the
E(#Queries) obtained by dividing [0,20] into [0,6] and [7,20] is smaller than
other divisions. The following operations are performed in a similar way.

In Step 2, we also need an appropriate t2i to calculate s2i corresponding to
s1. The process is similar to Section 3.2, and we let n = s1. We must empha-
size that, different s1 results in different optimal BRT, and the corresponding
E(#Queries) is also different.

Table 10: choices of t1 and the States

State 1 State 2 State 3 State 4 State 5 State 6

t1 2100 2135 2065 2035 2000 1965

O → 0 State 3 s2 = 5 State 4 State 5 State 6 s2 = 0

O → 1 State 2 s2 = 6 s2 = 4 s2 = 3 s2 = 2 s2 = 1

Table 11: Si and its correspond-
ing s̄, ls̄ when s1 = 6

i 0 1 2 3 4 5 6
Si 4 5 3 6 2 1 0
s̄ 01 10 001 11 0001 00001 00000
ls̄ 2 2 3 2 4 5 5

For example, if s1 = 6, then Si is restricted to be selected from {0, 1, 2, 3, 4, 5, 6}.
Here n = 7, and the resulted number of queries is 2.110. Table 10 depicts how
to choose t1 and which State to go upon the output of the Oracle. In Table 11,
we show the Si and its corresponding s̄ and ls̄. Similar to the method in Section
3.2, we can successfully get s2i using messages in this Table.
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For each s1 ∈ [0, 20], we use the similar method in Section 3.2 to get the
corresponding s̄, ls̄ and the needed number of queries. Similar to the case s1 = 6,
each s1 ∈ [0, 20] is related to two tables. To simplify the calculation of s2i, we only
keep those with an occurrence probability greater than 0.000001. The remaining
s2i is between 0 and 17. Here we consider the worst case, and n is always set as 18.
The corresponding number of needed queries is 3.197. Through our experiments,
the probability that all elements in the tuple are not 0 is 0.417. Therefore, the
average number of queries in this step can be calculated as (0.417 ∗ 4 + 0.583 ∗
3) ∗ 3.197 = 10.923.

In Step 3, we mainly want to determine the exact value of each sA[i+256∗j]
(j = 0, 1, 2). The challenge is that the possible absolute values may not be contin-
uous, but we can still use the BRT method to solve this problem. For example, if
there is no 0 in the tuple, sA[i] may be one of {−x4,−x3,−x2,−x1, x1, x2, x3, x4}.
Here |x4| < |x3| < |x2| < |x1|, and Pr(±x4) < Pr(±x3) < Pr(±x2) < Pr(±x1).
We first consider weather sA[i] = ±x1 or not. And we only need to find a v
between [q− f ′(−x1), q− f ′(x1)) according to Table 9. If the Oracle’s output is
0, we know it belongs to {x1, x2, x3, x4}. By repeating the above operations, we
can finally determine sA[i] with the smallest number of queries.

We still consider the worst case in this step. When there is no 0 in the tuple,
if we want to determine x1, x2, x3 and x4, according to our BRT method, xi
needs 5− i queries, for each i = 1, 2, 3, 4. Similarly, in this step 9 queries are
required.

In a word, for each coefficient the needed number of queries is 23.308. Recall
that we recover a quadruplet at one time, and there are 1024 unknown coefficients
in a secret key SA. Therefore, in total we need 5966.848 queries to completely
recover SA.

The key mismatch attack on Newhope1024 are also given in [43] and [41].
The parameters selection in [43] and [41] are similar, and they can only recover
one coefficient in the secret key sA at a time, while we are able to recover four
coefficients together. This is one of the reasons why our proposed key mismatch
attack performs much better. In addition, in [43] to recover an exact coefficient,
the authors have to run 50 favorable cases, which costs more than 800 queries.
The work of [41] has proposed an improved method to reduce the needed queries.
However, more than 200 queries are still needed. In our proposed key mismatch
attack, by applying the BRT method to each step, we only need 3-4 queries on
average to obtain the desired results. This is another reason why we need much
fewer queries.

Similarly, we can also improve the key mismatch attack on Frodo, Round5,
Saber and Threebears. The details are given in Appendix B, where we show how
the adversary chooses the parameters in each scheme, and how to determine sA
according to the returns of the Oracle.
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5 Comparisons

In Table 12, we compare the minimum average number of queries in our improved
practical attacks (Bold) with other existing attacks (Italic). We can see that our
improved attacks on Kyber is slightly better than that in [44], since for Kyber the
gap between the theory and practice is limited. For Frodo640 and LightSaber,
significant improvements have been made, compared to the results in [33]. It
is worth noting that we greatly reduce the needed number of queries in key
mismatch attacks against Newhope1024, from the reported 233, 803 queries in
[41] to 5967.

Table 12: Comparisons of our improved key mismatch (Bold) attacks and the
existing attacks (Italic), where “-” means no result is given.

Schemes
E(#Queries)

Existing attacks This work Lower bounds
Newhope512 - 1707 1568
Newhope1024 233,803 [41] 5967 3103
Kyber512 1401 [44] 1184 1088
Kyber768 1855 [44] 1776 1632
Kyber1024 2475 [44] 2369 2176
LightSaber 2048 [33] 1460 1412
Saber - 2091 1986
FireSaber - 2624 2432
Frodo640 65536 [33] 18,360 18,227
Frodo976 - 26,079 25,796
Frodo1344 - 29,374 27,973
LAC128 1024 [28] 640 553
LAC192 2048 [28] 1280 1106
LAC256 8192 [28] 1408 1398
Round5 R5ND 1 - 1184 722
Round5 R5ND 3 - 1380 1170
Round5 R5ND 5 - 1822 1446

It can be seen that our improved attacks approach the bound in most cases.
There is still a relatively big gap for Newhope1024 although we recover four
coefficients in the secret key sA at a time, and the BRT method is applied to
each step. The reason is that in practice we need to decide the coefficients in
order, but these coefficients in the optimal BRT jumps from one to another.

From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and their corresponding probabilities, as well as
the employment of Encode/Decode functions are the most important factors in
evaluating their key mismatch resilience. More specifically, the larger the range
of the coefficients, the more queries are needed. For example, neither Kyber nor
Saber use the Encode/Decode functions, and their number of unknowns are the
same, the only difference is the range of their coefficients in secret keys. The
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range of coefficients in Saber is larger than that of Kyber, which leads to more
queries in recovering Saber’s secret key.

The occurrence probabilities corresponding to the coefficients are another
factor. For example, for LAC192 and LAC256, the only difference between them
is the occurrence probabilities corresponding to the coefficients. More specifically,
in LAC192 the occurrence probability of 0 is greater than that of 0 in LAC256,
and the probability of other coefficients is less than that in LAC256. This results
in larger number of queries needed to recover the secret keys of LAC256 than that
in LAC192. Whether or not the Encode/Decode functions is used also affects
the number of queries needed. Newhope512 and Newhope1024 use D-2 and D-4
functions, respectively, which allows them to recover two and four coefficients at
the same time. This also greatly reduces the number of queries needed to recover
the coefficients. However, we need to emphasize that these factors only increase
complexities of launching the key mismatch attack, but cannot stop the attack.

6 Conclusion

In this paper, we have developed a unified method to calculate the minimum
number of required requires in launching key mismatch attacks against lattice-
based NIST candidate KEMs. The bound is calculated through constructing
an optimal BRT, which is further used to guide us in improving the practical
attacks. By using BRT method in each step, our improved attack can signifi-
cantly reduce the needed number of queries. Especially, we can reduce the needed
queries against Newhope1024 by 97.44%. An interesting problem is whether our
proposed method applies to the similar attacks against other post-quantum cryp-
tosystem such as HQC, which also advance to the third round.
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Schwabe, P., Stebila, D.: Newhope: Algorithm specification and supporting doc-
umentation - version 1.03 (2019), https://newhopecrypto.org/data/NewHope_

2019_07_10.pdf.
4. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko,

V., Peikert, C., Raghunathan, A., Stebila, D.: Frodokem learning with errors key
encapsulation: Algorithm specification and supporting documentation. In: Submis-
sion to the NIST post-quantum project (2019) (2019), https://frodokem.org/

files/FrodoKEM-specification-20190702.pdf.

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf


A Systematic Approach of Key Mismatch Attacks 25
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B Improved practical key mismatch attacks

In this section, according to the proposed bounds, we discuss how to launch the
practical key mismatch attacks on Saber, Frodo, LAC and Round5.

B.1 Improved key mismatch attacks on Saber

There are three versions of Saber, the LightSaber, Saber, and FireSaber. Here
we take the attack on FireSaber as an example. The attacks on LightSaber and
Saber are similar. The adversary chooses PB = h and cm = k, and the selection
of each hi/ki (i = 1, . . . , 10 in LightSaber; i = 1, . . . , 8 in Saber;i = 1, . . . , 6 in
FireSaber) is shown in Table 14.

Table 14: Selection of hi/ki in the practical key mismatch attacks on Saber

i 1 2 3 4 5 6 7 8 9 10

LightSaber 2/60 1/69 1/35 1/23 0/50 0/40 2/30 2/20 2/15 2/12

Saber 4/28 3/37 3/36 3/18 3/12 4/27 4/13 4/9

FireSaber 17/7 16/2 16/4 8/125 4/95 2/76

The following procedure shows how to use hi/ki in Table 14 to recover sA[0].

1. We set h = h1 and k = k1 first, then Si (i = 0, . . . , 6) can be divided into
two parts based on the returned value of the first Oracle:
– If O → 0: sA[0] belongs to {S1,S3,S5}, and turn to step 4.
– If O → 1: sA[0] belongs to {S0,S2,S4,S6}, then step 2 and step 3 will

be executed.
2. If the Oracle returns 1 when we set h = h1 and k = k1, then we set h = h2

and k = k2 :
– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6}, and go to step 3.

3. Next, we select different parameters h = h3, k = k3 and h = h4, k = k4 (the
specific values of hi/ki are shown in Table 14) and repeat operations in step
2 until we can know which of {S2,S4,S6} is equal to sA[0].

4. Similarly, we select different parameters h = h5, k = k5 and h = h6, k = k6

in Table 14 and repeat operations in steps 2 and 3 until we can know which
of {S1,S3,S5} is sA[0].

B.2 Improved key mismatch attacks on Frodo

There are three versions of Frodo, the Frodo640, Frodo976, and Frodo1344. Here
we take the attack on Frodo1344 as an example. The attacks on Frodo640 and
Frodo976 are similar. In Frodo1344, Si ∈ [−6, 6], the selection of hi (i ∈ [0, 12])
is shown in Table 15.

Next, we introduce how to use hi in Table 15 to recover sA[0].
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Table 15: Selection of hi in practical key mismatch attacks on Frodo
i 1 2 3 4 5 6

hi 212 212 − 2 212 − 1 212 − 3 212 − 4 212 − 5

i 7 8 9 10 11 12

hi 212 − 6 212 − 7 212 − 8 212 − 9 212 − 10 212 − 11

1. We set h = h1 first, then Si(i ∈ [0, 12]) can be divided into two parts based
on the returns value of the first Oracle:
– If O → 0: sA[0] belongs to {S0,S2,S4,S6,S8,S10,S12}, and then step 2

and step 3 will be executed.
– If O → 1: {S1,S3,S5,S7,S9, S11}

2. If the Oracle returns 0 when we set h = h1, then we set h = h2:
– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6,S8,S10,S12}, then we will proceed

step 3.
3. Next, we select different parameter h = h2, · · · , h7 (the specific values of hi

are shown in Table 15. Repeat operations in step 2 until we can know which
of {S2,S4,S6,S8,S10,S12} is sA[0].

4. Similarly, we select different parameter h = h8, · · · , h12 in Table 15 and re-
peat operations in steps 2 and 3 until we can know which of {S1,S3,S5,S7,S9,
S11} is sA[0].

B.3 Improved key mismatch attacks on LAC

Although there are three versions of LAC with different security levels, the pa-
rameters in the proposed key mismatch attacks are the same. In the attack, the
adversary needs to modify three parameters: eB [0], e′B [vb− 1] and e′B [2vb− 1].
Here vb = lv = 400, and lv is a parameter set in LAC. And next we will show
how to recover sA[0].

1. We set eB [0] = 124, e′B [vb − 1] = 1 and e′B [2vb − 1] = 1 first, then
{S0,S1,S2,S3,S4,S5,S6,S7,S8} can be divided into two parts based on
the returned value of the first Oracle:
– If O → 0: sA[0] belongs to {S3,S4,S5,S6,S7,S8}, next step 2, step 3

and step 5 will be executed.
– If O → 1: sA[0] belongs to {S0,S1,S2}, then go to step 4 and step 5.

2. If the Oracle returns 0 in step 1, then we set eB [0] = 124, e′B [vb − 1] = 0
and e′B [2vb− 1] = 0:
– If O → 0: sA[0] belongs to {S5,S6,S7,S8}, next step 3 will be proceeded.
– If O → 1: sA[0] belongs to {S3,S4}, and next turn to step 5.

3. If the Oracle returns 0 in step 2, then we set eB [0] = 63, e′B [vb − 1] = 63
and e′B [2vb− 1] = 63:
– If O → 0: sA[0] belongs to {S7,S8}, next go to step 5.
– If O → 1: sA[0] belongs to {S5,S6}, next go to step 5.
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4. If the Oracle returns 1 in step 1, then we set eB [0] = 125, e′B [vb − 1] = 0
and e′B [2vb− 1] = 0:
– If O → 0: sA[0] belongs to {S1,S2}, then turn to step 5.
– If O → 1: We can determine sA[0] = S0.

5. Similarly we only need to distinguish the two coefficients in {S7,S8}, {S5,S6},
{S3,S4}, and {S1,S2}. As long as the appropriate parameters are selected,
only one query is needed.

According to the above process, we can calculate the E(#Queries) in LAC128
and LAC256, respectively.

B.4 Improved key mismatch attacks on Round5

Round5 does not use D-2 Encode/Decode functions. Although there are three
different versions of Round5 R5ND with different security levels, their attack
process is the same, except that the parameters PB = h (h = h1 or h2) chosen
by the adversary are different. Specifically, the adversary selects h1/h2 as 44/-44,
120/-120 and 144/113, and the process of recovering sA[0] is shown as follows.

1. We set h = h1 first, then {S0,S1,S2} can be divided into two parts based
on the returned value of the first Oracle:
– If O → 0: We can determine sA[0] = S2.
– If O → 1: sA[0] belongs to {S0,S1}.

2. When h = h1, if the Oracle returns 0 then we go on setting h = h2:
– If O → 0: sA[0] = S0.
– If O → 1: sA[0] = S1.

All the above results are summarized in Table 12.
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