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Abstract. We propose to use blockchains to achieve MPC which does
not require the participating parties to be online simultaneously or in-
teract with each other. Parties who contribute inputs but do not wish
to receive outputs can go offline after submitting a single message. In
addition to our main result, we study combined communication- and
state-complexity in MPC, as it has implications for the communication
complexity of our main construction. Finally, we provide a variation of
our main protocol which additionally provides guaranteed output deliv-
ery.

1 Introduction

Secure Multiparty Computation (MPC) [Yao82,GMW87] enables parties to eval-
uate an arbitrary function in a secure manner, i.e., without revealing anything
besides the outcome of the computation. MPC is increasingly important in the
modern world and allows people to securely accomplish a number of difficult
tasks. Obtaining efficient MPC protocols is thus a relevant problem and it has
indeed been extensively studied [Yao82,GMW87,GMPP16]. One important ques-
tion is the round complexity of MPC schemes. In the semi-honest case, in 1990,
Beaver et al. [BMR90] gave the first constant-round MPC protocol for three or
more parties. A number of works [KOS03,Pas04,Goy11] aiming to analyze and
reduce round complexity followed, both in the semi-honest and fully malicious
models. In 2016, Garg et al. [GMPP16] proved that four rounds are necessary to
achieve secure MPC in the fully malicious case in the plain model. Four round
MPC protocols have been recently proposed [BHP17,BGJ+18,CCG+20], resolv-
ing the questions of round complexity.

Unfortunately, solutions that achieve even the optimal round complexity are
still problematic for many applications since these solutions typically require
synchronous communication from the participants – imagine for example the
U.S. voting process. If the voting is conducted via secure multi-party computa-
tion, all participants are required to be online at the same time. It is unrealistic
to assume that all of the eligible U.S. voters can be persuaded to be online for
an entire Election Day. In this work, we rely on blockchains to achieve MPC
that does not require participants to be online at the same time or interact with
each other.



Such non-interactive solutions advance the state of the art of secure multi-
party computation, opening up a whole new realm of possible applications. For
example, passive data collection for privacy preserving collaborative machine
learning becomes possible. Federated learning is already used to train machine
learning models for the keyboards of mobile devices for the purposes of au-
tocorrect and predictive typing [ Go17]. Unfortunately, using off-the-shelf MPC
protocols to perform such training securely is not straight-forward. Not all smart-
phones are online at the same time and it might even be unknown how many
devices will end up participating. In contrast, off-the-shelf MPC protocols typ-
ically assume that all (honest) participants are indeed online during some time
period, and the number of participants is known. This leads us to the following
question:

Can we construct a secure MPC protocol which does not require the parties to
be online at the same time and guarantees privacy and correctness even if all

but one of the parties are fully malicious? Furthermore, is it possible to design
such a protocol under the constraint that only a single message is required from
the parties supplying the inputs, and the parties can go offline after submitting

this message if they are not interested in learning the output?

Consider such a protocol in the use case outlined above – each smartphone
could independently send a single message to a server, and at the end of the
collection period the server would obtain the model trained on the submitted
inputs, all while preserving the privacy of the gathered inputs.

1.1 Our Results

In our work, we provide a solution for MPC which achieves the property that
each MPC participant who supplies inputs but does not wish to receive the
output is not required to interact with other such participants and can go offline
after sending only a single message. We additionally provide variations of our
protocol that offer further desirable properties.

Before we provide the formal theorem statements, we discuss the protocol
execution model and the notation.

In our work, we assume the existence of append-only bulletin boards that
allow parties to publish data and receive a confirmation that the data was pub-
lished in return. Furthermore, we assume a public key infrastructure (PKI). Fi-
nally, we rely on conditional storage and retrieval systems (CSaRs, see Section 2
for details). Roughly, CSaR systems allow a user to submit a secret along with a
release condition. Later, if a (possibly different) user is able to satisfy this release
condition, the secret is privately sent to this user. Intuitively, during the process,
the secrets cannot be modified and no information is leaked about the secrets. We
require that CSaRs are used as ideal functionalities. We note that due to the fact
that existing CSaR systems [GKM+20,BGG+20] rely on blockchains, and bul-
letin boards can be realized using blockchains as well [GG17,CGJ+17,Kap20],
relying on bulletin boards in our construction effectively does not add extra
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assumptions. In the following, for simplicity, we will state that we design our
protocols in the blockchain model. Finally, we assume IND-CCA secure public
key encryption, and digital signatures.

In our construction, we distinguish between parties who supply inputs (dubbed
MPC contributors) and parties who wish to receive outputs (dubbed evaluators).

We are now ready to introduce our first result:

Theorem 1. (Informal) Any MPC protocol π secure against fully-malicious
adversaries can be transformed into another MPC protocol π′ in the blockchain
model that provides security with abort against fully-malicious adversaries and
does not require participants to be online at the same time. Only a single mes-
sage is required from the MPC contributors (the evaluators might be required to
produce multiple messages). The adversary is allowed to corrupt as many MPC
contributors in π′ as is supported by the protocol π.

In addition to this result, we discuss ways to optimize our construction. To
this end, we explain why the combined communication- and state complexity of
the underlying MPC protocol is of a particular importance in our construction.
Briefly, both the communication- and state complexities of the underlying MPC
translate directly into the number of CSaR storage- and retrieval requests (and
thus communication complexity) in our overall construction. We describe a pro-
tocol in the plain model which relies on multi-key fully homomorphic encryption
(MFHE). Its combined communication- and state complexity is independent of
the function that we are computing. While optimizing communication complex-
ity has received considerable attention in the community in the past few years,
optimizing internal state complexity has been largely overlooked. We believe that
this particular problem might be exciting on its own. In our construction which
optimizes the comnined communication and state complexity, we assume multi-
key fully homomorphic encryption, probabilistically checkable proofs, collision-
resistant hash functions, and IND-CPA secure public key encryption. The result
that we achieve here is the following:

Theorem 2. (Informal) Let f be an N -party function. Protocol 6 is an MPC
protocol computing f in the standard model and secure against fully malicious
adversaries corrupting up to t < N parties. Its communication and state com-
plexity depend only on security parameters, number of parties, and input and
output sizes. In particular, the combined communication- and state complexity
is independent of the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication- and state complexity, we achieve
the following:

Corollary 1. (Informal) There exists an MPC protocol π′ in the blockchain
model which provides security with abort against fully-malicious adversaries and
does not require participants to be online at the same time. Only a single mes-
sage is required from the MPC contributors (the evaluators might be required to
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produce multiple messages). Furthermore, the communication complexity of this
protocol is independent of the function that is being computed using this MPC
protocol.

Finally, we achieve an MPC protocol which requires only a single message
from MPC contributors with the additional property of guaranteed output deliv-
ery, meaning that adversarial parties cannot prevent honest parties from receiv-
ing the output. For this, we in particular rely on the underlying protocol having
guaranteed output delivery as well (and thus requiring the majority of the MPC
contributors to be honest). We rely on the same assumptions (PKI, CSaRs,
append-only bulletin boards etc.) as the ones used in our main construction.
The formal result that we achieve is the following:

Theorem 3. (Informal) Any MPC protocol π that is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security with
guaranteed output delivery against fully-malicious adversaries and does not re-
quire participants to be online at the same time. Only a single message is required
from the MPC contributors (the evaluators might be required to produce multiple
messages). The adversary is allowed to corrupt as many MPC contributors in
π′ as is supported by the protocol π.

1.2 Technical Overview

In this work, we propose an MPC protocol that does not require participants to
be present at the same time. In order to do so, we rely on the following cryp-
tographic building blocks – garbled circuits [Yao82,Yao86,BHR12b], a primitive
which we dub conditional storage and retrieval systems (CSaRs) and bulletin
boards with certain properties. Before we introduce the construction idea, we
elaborate on each of these primitives.

Roughly, a garbling scheme allows one to “encrypt” (garble) a circuit and its
inputs such that when evaluating the garbled circuit only the output is revealed.
In particular, no information about the inputs of other parties or intermediate
values is revealed by the garbled circuit or during its evaluation. In our construc-
tion we use Yao’s garbled circuits [Yao82,Yao86].

In our construction, we rely on bulletin boards which allow parties to pub-
lish strings on an append-only log. It must be hard to modify or erase con-
tents from this log. Additionally, we require that parties receive a confirma-
tion (“proof of publish”) that the string was published and that other par-
ties can verify this proof. Such bulletin boards have been extensively used in
prior works [GG17,CGJ+17,Kap20] and as pointed out by these works can be
realized both from centralized systems such as the Certificate Transparency
project [tra20] and decentralized systems such as proof-of-stake or proof-of-work
blockchains.

Finally, we define a primitive which we call conditional storage and retrieval
systems (CSaRs). Roughly, this primitive allows for the distributed and secure
storage- and retrieval of secrets and realizes the following ideal functionality:
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– Upon receiving a secret along with a release condition and an identifier, if
the identifier was not used before, the secret is stored and all participants
are notified of a valid secret storage request. The release condition is simply
an NP statement.

– Upon receiving an (identifier, witness) from a user, the ideal functionality
checks whether a secret with this identifier exists and if so, whether the given
witness satisfies the release condition of this secret record. If so, the secret
is sent to the user who submitted the release request.

While systems that provide a similar primitive has been proposed in the
past [GKM+20,BGG+20] we provide a clean definition that captures the essence
of this functionality. We instantiate the CSaR with eWEB [GKM+20] 3, which
stands for “Extractable Witness Encryption on a Blockchain”. Roughly, it allows
users to encode a secret along with a release condition and store the secret on a
blockchain. Once a user proves that they are able to satisfy the release condition,
blockchain miners jointly and privately release the secret to this user. Along the
way, no single party is able to learn any information about the secret.

Our construction. By relying on bulletin boards, Yao’s garbled circuits and
CSaRs, we are able to transform any secure MPC protocol π into another secure
MPC protocol π′ that provides security with abort and does not require partici-
pants to be online at the same time. At a high level, our idea is as follows: first,
each contributor (party who supplies inputs in the protocol) P in the MPC pro-
tocol π garbles the next-message function for each round of π. Then, P stores the
garbled circuits as well as the garbled keys with a CSaR using carefully designed
release conditions. Note that each party P is able to do so individually, without
waiting for any information from other parties and can go offline afterwards.
Once all contributors have stored their data with the CSaR, one or more “evalu-
ators” (parties who wish to receive the output) interact with the CSaR and use
the information stored by the MPC contributors in order to retrieve the garbled
circuits and execute the original protocol π. The group of the contributors and
the group of evaluators do not need to be the same – in fact, these groups can
even be disjoint. The evaluators might change from round to round.

Note that while the high-level overview is simple, there are a number of
technical challenges that we must overcome in the actual construction due to
its non-interactive nature. For example, since the security of Yao’s construction
relies on the fact that for each wire only a single key is revealed, we must ensure
that each honest garbled circuit is executed only on a single set of inputs. The
adversary also must not trick a garbled circuit of some honest party A into
thinking that a message broadcast by some party C is message m, and tricking
a garbled circuit of another honest party B into thinking that C in fact broadcast
message m′ 6= m. Furthermore, we must ensure that it is hard to execute the
protocol “out of order”, i.e., an adversary cannot execute some round i prior to
round j where i > j. Such issues do not come up in the setting where parties are

3 Other instantiations are possible, see Section 2 for details.
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online during the protocol execution and able to witness messages broadcast by
other parties.

We solve these issues by utilizing bulletin boards, carefully constructing the
release conditions for the garbled circuits and the wire keys, and modifying the
next-message functions which must be garbled by the contributors.

Note that the next-message functions from round two onward take as inputs
messages produced by the garbled circuits in prior rounds. At the time when
the MPC contributors are constructing their circuits, the inputs of other parties
are not known, and thus it is not possible to predict which wire key (the one
corresponding to 0 or the one corresponding to 1) will be needed during the
protocol execution. At the same time, one cannot simply make both wire keys
public since the security of the garbled circuit crucially relies on the fact that
for each wire only a single wire key can be revealed. We solve this problem by
storing both wire keys with the CSaR, utilizing bulletin boards, and requiring
the evaluators to publish the output of the garbled circuits of each round. Then,
(part of) the CSaR release condition for the wire key corresponding to bit b on
some wire w of some party’s garbled circuit for round i is that the message from
round i − 1 is published and contains bit b at position w. This way we ensure
that while both options for wire w are “obtainable”, only the wire key for bit b
(the one that is needed for the execution) is revealed.

Next, note that in our construction we specifically rely on Yao’s garbled
circuits. Yao’s construction satisfies the so-called “selective” notion of security,
which requires the adversary to choose its inputs before it sees the garbled circuit
(in contrast to the stronger “adaptive” notion of security which would allow the
adversary to choose its inputs after seeing the garbled circuits [BHR12a]). We
ensure that the selective notion of security is sufficient for our construction by
requiring that not only the wire keys, but also the garbled circuits are stored with
the CSaR. The release conditions both for the garbled circuit for some round i
and all its wire keys require a proof that all messages for rounds 1 up to and
including round i− 1 are published by the evaluators. This way, the evaluators
are required to “commit” to the inputs before receiving the selectively secure
garbled circuits, which achieves the same effect as adaptive garbled circuits.

As outlined above, we must ensure that it is hard for the adversary to trick
the garbled circuit produced by some honest party A into accepting inputs from
another honest party B that were not produced by B’s circuits. We accomplish
this by modifying the next-message function of every party A as follows: in
addition to every message m that is produced by some party B, the next-message
function takes as input a signature σ on m as well and verifies that the signature
is correct. If this is not the case for any of the input messages, the next-message
function outputs ⊥. Otherwise, the next-message function proceeds as usual and
in addition to outputting the resulting message it outputs the signature of party
A on this message.

Our end goal is to reduce the security of our construction to the security of
the underlying MPC protocol π. While utilizing bulletin boards and introducing
signatures is a good step forward, we must be careful when designing the CSaR
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release conditions. The adversary could sign multiple messages for each corrupted
contributor in π, publish these messages on the bulletin board and thus receive
multiple keys for some wires. To prevent this, the CSaR release condition must
consider only the very first message published for round i − 1 on the bulletin
board. This way, we ensure that there is only a single instance of the MPC
running (only a single wire key is released for each circuit): even if the adversary
is able to sign multiple messages on behalf of various MPC contributors, only
the very first message published on the bulletin board for a specific round will
be used by the CSaR system to release the wire keys for the next round.

The ideas outlined above are the main ideas in our protocol. We now elabo-
rate on a few additional details:

Note that the next-message function of the protocol typically outputs not
only the message for the next round, but also the state which is used in the next
round. It is assumed that this state is kept private by the party. In our case, the
output of the next-message function will be output by the garbled circuit and
thus made available to the evaluator. To ensure that the state is kept private,
we further modify the next-message function to add an encryption step at the
end: the state is encrypted under the public key of the party who is executing
this next-message function. To ensure that the state can be used by the garbled
circuit of the party in the next round, we add a state decryption step at the
beginning of the next-message function of that round. Similar to the public
output of the next-message function, we compute a signature on the encryption
of the state and verify this signature in the garbled circuit of the next round.

Finally, note that in the construction outlined above, we use some secret
information which does not depend on the particular execution but still must
be kept private (secret keys of the parties used for the decryption of the state,
signing keys used to sign the output of the next-message function etc.). This
information is hard-coded in the garbled circuits. We explain how this can be
done in Section 3.

We provide all protocol details and outline optimizations in Section 3 and give
the formal construction in Protocols 1, 2 and 3. The formal security proof is done
by providing a simulator for the construction and proving that an interaction
with the simulator in the ideal world is indistinguishable from the interaction
with an adversary in the real world.

To summarize, using the construction sketched above we achieve the following
result:

Theorem 4. (Informal) Protocols 1, 2 and 3 transform any MPC protocol
π secure against fully-malicious adversaries into another MPC protocol π′ in
the blockchain model that provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time. Only
a single message is required from the MPC contributors (the evaluators might be
required to produce multiple messages). The adversary is allowed to corrupt as
many MPC contributors in π′ as is supported by the protocol π.

In addition to our main protocol that requires only one message from the
MPC contributors and does not require any additional functionality from the
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CSaR participants apart from the core CSaR functionality itself (storing and
releasing secrets), we provide a number of variations that have further desirable
properties, such as guaranteed output delivery. We now outline these further
contributions.

Improving Efficiency The efficiency of our construction is strongly tied to the
efficiency of the underlying MPC protocol π. Note that in our construction each
input wire key of each garbled circuit is stored with the CSaR, and the inputs of
the garbled circuits are exactly messages exchanged between the parties as well
as the state information passed from previous rounds. Thus, the communication-
and state complexities translate directly into the number of CSaR store- and
release operations that the MPC contributors, as well as later the evaluators,
must make. In order to reduce the number of CSaR invocations, we describe an
MPC protocol which optimizes the combined communication and internal-state
complexity. While communication complexity is typically considered to be one
of the most important properties of an MPC protocol, state complexity receives
relatively little attention. Our main construction shows that there are indeed
use cases where both the communication and the state complexity matter, and
we initiate a study of the combined state- and communication complexity.

Specifically, we introduce an MPC protocol in which the combined communication-
and state complexity is independent of the function we are computing. We
achieve it in two steps: we start with a protocol secure against semi-malicious
adversaries 4 which at the same time has communication- and state complexity
which is independent of the function that is being computed. Then, we extend
it to provide fully malicious security while taking care to retain the attractive
communication- and state complexity properties in the process.

In more detail, we start with the MPC construction by Brakerski et al. [BHP17]
which is based on multi-key fully homomorphic encryption (MFHE) and achieves
semi-malicious security. We chose this construction in particular because its com-
munication and state complexity depends only on the security parameters, the
number of parties, and the input- and output sizes. In particular, note that the
construction’s combined communication- and state complexity is independent of
the function we are computing.

Our next step is to extend this construction so that it provides security
against malicious adversaries. For this, we propose to use the zero-knowledge
protocol proposed by Kilian [Kil92] that relies on probabilistically checkable
proofs (PCPs) and allows a party P to prove the correctness of some statement
x to the prover V using a witness w. Along the way, we need to make minor
adjustments to Kilian’s construction because its state complexity is unfortu-
nately too high for our purposes – in particular, in the original construction,
the entire PCP string is stored by the prover to be used in later rounds. After
making a minor adjustment – recomputing the PCP instead of storing it – to
the construction to address this issue, we use this scheme after each round of

4 Intuitively, semi-malicious adversaries can be viewed as semi-honest adversaries
which are allowed to freely choose their random tapes.
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the construction by Brakerski et al. in order to prove the correct execution of
the protocol by the parties. The resulting construction achieves fully malicious
security, and its communication and state complexities are still independent of
the function that we are computing.

We provide the details of the construction and analyse its security and com-
munication/state complexity properties in Section 5 with the formal protocol
description in Protocol 6. In this protocol, we assume the existence of an MFHE
scheme with circular security and the existence of a collision-resistant hash func-
tions. We are able to achieve the following result which may be of independent
interest:

Lemma 1. Let f be an N -party function. Protocol 6 is an MPC protocol com-
puting f in the plain model and secure against fully malicious adversaries cor-
rupting up to t < N parties. Its communication and state complexity depend only
on security parameters, number of parties, and the input and output sizes. In par-
ticular, the communication and state complexity of Protocol 6 is independent of
the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication- and state complexity, we achieve
the following:

Corollary 2. (Informal) There exists an MPC protocol π′ in the blockchain
model that has adversarial threshold t < N , provides security with abort against
fully-malicious adversaries and does not require participants to be online at the
same time. Only a single message is required from the MPC contributors (the
evaluators might be required to produce multiple messages). Furthermore, the
communication complexity of this protocol is independent of the function that is
being computed using this MPC protocol.

Non-Interactive MPC with Guaranteed Output Delivery (GoD). We need to
modify our construction in order to provide guaranteed output delivery. In or-
der to achieve GoD, we require the protocol π to have the GoD property as well
(thus, the majority of the MPC contributors must be honest). While making
this change (in addition to a few minor adjustments) would be enough to guar-
antee GoD in our construction in the setting with only a single evaluator, it is
certainly not sufficient when there are multiple evaluators, some of them dishon-
est. This is due to the following issue: since we must prevent an adversary from
executing honest garbled circuits on multiple different inputs, we cannot simply
allow each evaluator to execute garbled circuits on the inputs of its choosing.
In particular, the CSaR release conditions must ensure that for each wire only
a single key is revealed. In our first construction this results in the malicious
evaluator being able to prevent an honest evaluator from executing the garbled
circuits as intended by submitting an invalid first message for any round. Thus,
to ensure guaranteed output delivery while maintaining secrecy, we must ensure
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that a malicious evaluator posting a wrong message does not prevent an hon-
est evaluator from posting a correct message and using it for the key reveal. In
particular, we will ensure that only a correct (for a definition of “correctness”
explained below) message can be used for the wire key reveal.

Note that the inputs to the garbled circuits depend on the evaluators’ outputs
from the previous rounds. Checking the “correctness” of the evaluators’ outputs
is not entirely straight-forward since an honest execution of a garbled circuit
which was submitted by a dishonest party might produce outputs which look
incorrect (for example, have invalid signatures). Thus, simply letting the CSaR
system check the signatures on the messages supplied by the evaluators might
result in an honest evaluator being denied the wire keys for the next round.

In our GoD construction we overcome this issue largely using the following
adjustments:

– all initial messages containing garbled circuits and wire keys are required to
be posted before some deadline.

– we use a CSaR with public release (whenever a secret is released, it is released
publicly and the information can be viewed by anyone).

– we ensure that it is possible to distinguish between the case where the eval-
uator is being dishonest, and the case where the evaluator is being honest,
but the contributor in π supplied invalid garbled circuits or keys, or did not
supply some required piece of information.

We achieve the last point by letting the CSaR system check every output of
the evaluator that appears to be of an invalid form (e.g., missing a signature,
having an unexpected length, etc.) and verify that the evaluator’s output can
be explained by the information stored by the contributors in π. In particular,
as part of the CSaR’s release condition, we require a proof of correct execution
for the incorrect-looking garbled circuit outputs. The relation that the CSaR
system is required to check in this case is roughly as follows: “The execution of
the garbled circuit GC on the wire keys {ki}i∈I results in the output provided by
E. Here, the garbled circuit GC is the circuit, and {ki}i∈I are the keys for this
circuit reconstructed using the values published by the CSaR which are present
on the proof of publish supplied by E”. Note that due to the switch to the CSaR
with public release, the wire keys used for the computation are indeed accessible
to the CSaR system after their first release.

Similar to our first construction, we eventually reduce the security of the
new protocol to the security of the original protocol. In addition to our first
construction however, since the CSaR system is now able to verify incorrect-
looking messages submitted by the evaluators, honest evaluators are always able
to advance in the protocol execution. This insight allows us to ensure that honest
evaluators do not need to abort with more than a negligible probability along
the way. Thus, if the underlying protocol π achieves guaranteed output delivery,
the protocol we propose achieves guaranteed output delivery as well.

We give full details of the GoD construction in Section 6. The statement
about our GoD construction is given below.
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Lemma 2. (Informal) Any MPC protocol π which is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security with
guaranteed output delivery against fully-malicious adversaries and does not re-
quire participants to be online at the same time. Only a single message is required
from the MPC contributors (the evaluators might be required to produce multiple
messages). The adversary is allowed to corrupt as many MPC contributors in
π′ as is supported by the protocol π.

1.3 Related Work

Closest to our work is the line of research that studies non-interactive multiparty
computation [HIJ+17,FKN94,HLP11], initiated in 1994 by Feige et al. [FKN94],
in which a number of parties submit a single message to a server (evaluator)
that, upon receiving all of the messages, computes the output of the function.
In their work, Feige et al. allow the messages of the parties to be dependent
on some shared randomness that must be unknown to the evaluator. Unfortu-
nately, this means that if the evaluator is colluding with one or more of the
participants, the scheme becomes insecure. Overcoming this restriction, Halevi
et al. [HLP11] started a line of work on non-interactive collusion-resistant MPC.
Their model of computation required parties to interact sequentially with the
evaluator (in particular, the order in which the clients connect to the evaluator
is known beforehand). Beimel et al. [BGI+14] and Halevi et al. [HIJ+16] sub-
sequently removed the requirement of sequential interaction. Further improving
upon these results, the work of Halevi et al. [HIJ+17] removed the requirement of
a complex correlated randomness setup that was present in a number of previous
works [BGI+14,HIJ+16,GGG+14]. Halevi et al. [HIJ+17] work in a public-key in-
frastructure (PKI) model in combination with a common random string. As the
authors point out, PKI is the minimal possible setup that allows one to achieve
the best-possible security in this setting, where the adversary is allowed to cor-
rupt the evaluator and an arbitrary number of parties and learn nothing more
than the so-called “residual function”, which is the original function restricted
to the inputs of the honest parties. In particular, this means that the adversary
is allowed to learn the outcome of the original function on every possible choice
of adversarial inputs.

Our work differs from the line of work on non-interactive MPC described
above in a number of aspects. In contrast to those works, our construction is not
susceptible to the adversary learning the residual function – roughly because the
adversary must effectively “commit” to its input, and the CSaR system ensures
that the adversary only receives a single set of wire keys per honest garbled
circuit (the set of wire keys that aligns with the adversarial input). Additionally,
in our work the parties do not need to directly communicate with the evaluator.
In fact, in our construction that ensures guaranteed output delivery, any party
can spontaneously decide to become an evaluator and still receive the result –
there is no need to rerun the protocol in this case.
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Related to us are also the works on reusable non-interactive secure compu-
tation (NISC) [AMPR14,BGI+17,BJOV18,CDI+19,CJS14], initiated by Ishai et
al. [IKO+11]. Intuitively, reusable NISC allows a receiver to publish a reusable
encoding of its input x in a way that allows any sender to let the receiver obtain
f(x, y) for any f by sending only a single message to the receiver. In our work,
we focus on a multi-party case, where a party that does not need the output is
not required to wait for other parties to submit their inputs.

Recently, Benhamouda and Lin [BL20] proposed a model called multiparty
reusable Non-Interactive Secure Computation (mrNISC) Market that beauti-
fully extends reusable NIZC to the multiparty setting. In this model, parties
first commit their inputs to a public bulletin board. Later, the parties can com-
pute a function on-the-fly by sending a public message to an evaluator. An
adversary who corrupts a subset of parties learns nothing more about the secret
inputs of honest parties than what it can derive from the output of the computa-
tion. Importantly, the bulletin board commitments are reusable, and the security
guarantee continues to hold even if there are multiple computation sessions. In
their work, Benhamouda and Lin mention that any one-round construction is
susceptible to the residual attacks and thus slightly relax the non-interactive
requirement in order to solve this problem. Indeed, their construction can be
viewed as a 2-round MPC protocol with the possibility to reuse messages of
the first round for multiple computations. Our scheme shows that when using
blockchains it is indeed possible to provide a construction that requires only a
single round of interaction from the parties supplying the input and is nonethe-
less not susceptible to residual attacks. Furthermore, in contrast to the work
of Benhamouda and Lin, our construction does not require any trusted setup 5

even in the fully malicious model.

Concurrent to our work, Almashaqbeh et al. [ABH+21] recently published
a manuscript which focuses on designing non-interactive MPC protocols which
use blockchains to provide short term security without residual leakage. They
focus on the setting where the inputs of all but one of the parties are public. In
this setting, designing one-round MPC can be done easily by having all parties
send their input to the only party which holds the secret input. This party can
then compute the output and distribute it to other parties. The authors are able
to extend the setting to the two-party semi-honest private input setting where
one round protocols for the party not getting the output can be easily designed
as well. While our protocol provides a worst-case security guarantee, they focus
on an incentive-based notion of security. While both constructions bypass the
residual leakage issue, their security guarantees might degrade with time. The
key challenge in their setting is fairness / guaranteed output delivery which they
solve using an incentive-based model of security. Hence their work is essentially
unrelated to ours.

Finally, recently two works ([CGG+21] and [GHK+21]) appeared which are
inspired by blockchains and focus on improving the flexibility of the MPC proto-
cols. Choudhuri et al. [CGG+21] proposed the notion of fluid MPC which allows

5 Other than a PKI.
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parties to dynamically join and leave the computation. Gentry et al. [GHK+21]
proposed the YOSO (“You Only Speak Once”) model which focuses on stateless
parties which can only send a single message. Similar to us, their constructions
allow the MPC participants to leave after the first round if they are not in-
terested in learning the output. However, to execute the MPC protocol both
Choudhuri et al. and Gentry et al. require a number of committees of different
parties which interact with each other, and each committee must provide hon-
est majority. Our protocol preserves privacy of inputs even if there is a single
evaluator who is dishonest.

2 Preliminaries – CSaRs

In our work, we rely on what we call conditional storage and retrieval systems
(CSaRs) that allow for a secure storage- and retrieval of secrets. In more detail,
the user who stores the secret with a CSaR specifies a release condition, and the
secret is released if and only if this condition is satisfied. While such systems
could be realised via a trusted third party, they can also be realised using a set
of parties with the guarantee that some sufficiently large subset of these parties
is honest. A user can then distribute its secret between the set of parties, and the
CSaR’s security guarantee ensures that no subset of parties that is smaller than
a defined threshold can use its secret shares to gain information about the secret.
Recently, multiple independent works appeared that use blockchains to provide
such functionality [GKM+20,BGG+20]. We provide a clean definition of the core
functionality that these works aim to provide (without fixating on blockchains)
and outline why the eWEB system [GKM+20] satisfies this definition. Note
that the system proposed by Benhamouda et al. does not formally explain how
the secrets can be stored to- and retrieved from the blockchain given a specific
release condition. While this requires further research, it should be possible to
take the same approach as is used by the eWEB system. Thus the system by
Benhamouda et al. is also a viable candidate for a CSaR instantiation.

Formally, the ideal CSaR functionality is described in Figure 1. The security
of a CSaR system is then defined as follows:

CSaR Security For any PPT adversary A there exists a PPT simulator S with
access to our security model IdealCSaR (described in Ideal CSaR), such that the
view of A interacting with S is computationally indistinguishable from the view
in the real execution.

3 Our Non-Interactive MPC Construction

We now present our first construction - given an MPC protocol π, we use Yao’s
garbled circuits as well as a CSaR to transform it into an MPC protocol π′ that
does not require parties to be online at the same time. The contributors in π do
not need to interact with each other. First, we briefly outline the assumptions
we make and define the adversarial model.
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Fig. 1. Ideal CSaR: IdealCSaR

1. SecretStore Upon receiving an (identifier, release condition, secret) tuple
τ = (id, F, s) from a client P , IdealCSaR checks whether id was already used. If
not, IdealCSaR stores τ and notifies all participants that a valid storage request
with the identifier id and the release condition F has been received from a
client P . Here, the release condition is an NP statement.

2. SecretRelease Upon receiving an (identifier, witness) tuple (id, w) from some
client C, IdealCSaR checks whether there exists a record with the identifier id.
If so, IdealCSaR checks whether F (w) = true, where F is the release condition
corresponding to the secret with the identifier id. If so, IdealCSaR sends the
corresponding secret s to client C.

Assumptions. We assume a public-key infrastructure and the existence of a
CSaR. To distinguish between concurrent executions of the protocol, we give
each computation a unique identifier id, and we assume that the evaluators know
the public keys of the parties eligible to contribute in the protocol π. We assume
the existence of a bulletin board modeled as an append-only log that provides a
proof of publish which cannot be (efficiently) forged. Such bulletin boards can be
implemented in practice via a blockchain. Finally,we assume IND-CCA secure
public key encryption, and digital signatures.

For the ease of presentation, we assume the following about the MPC protocol
π: (a) it is in a broadcast model, and (b) it has a single output which is made
public to all participants in the last round 6.

Adversary model. We consider a computationally bounded, fully malicious, static
adversary A. Once an adversary corrupts a party it remains corrupted: the ad-
versary is not allowed to adaptively corrupt previously honest parties.

3.1 Construction Overview

Intuitively, there are two main steps in the protocol. In the first step, the par-
ties (dubbed “contributors”) prepare the garbled circuits (and keys) and store
these with the CSaR. In the second step, one or more parties (we dub them
“evaluators”) use the garbled circuits to execute the original protocol π.

6 Note that these are not real limitations: if a protocol has several outputs, some of
which cannot be made public, each party simply broadcasts the encryption of its
output under this party’ public key. Each party then outputs the concatenation of
these ciphertexts. Additionally, later in this section we discuss how protocols with
point-to-point channels can be supported in the broadcast model.
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Step 1. Preparing Garbled Circuits and Keys. Each party Pj that wishes to par-
ticipate (contribute inputs) in π starts by garbling the slightly modified next-
message functions of each round of π. Typically, the next-message function takes
as input some subset of the following: the secret input of the party, local random-
ness of the party for that particular round, the messages received in the previous
rounds, some secret state passed along from the previous round. The output con-
sists of the message that is broadcast as well as the state that is passed to the
next round. We make the following modifications: in each round i, instead of the
state sij that is passed to the next round, the function outputs the encryption cij
of the state as well as a signature sigprij over this encryption. Additionally, the

modified next-message function outputs the public message mi
j that is supposed

to be broadcast by Pj in this round, as well as the signature sigpubij over this
message. The secret key as well as the signature key of Pj are hard-coded in the
circuit (we explain how it can be done later in this section). Prior to executing
the original next-message function, the modified function decrypts the state us-
ing the hard-coded secret key of Pj and verifies the signatures on each public
message as well as the signature on the state passed in from previous round.
Intuitively, these modifications are due to the following reasons:

– The state of the party is passed in an encrypted state because the state
information is assumed to be private in the original MPC construction.

– The parties need to sign their messages (and verify signatures on the mes-
sages passed as inputs) since we must prevent the adversary from tricking
an honest party into acceptance of a message that is supposedly generated
by another honest party, but in reality is mauled by the adversary.

Once the garbled circuits are prepared, Pj stores the garbled circuits with
CSaR. Note that the next-round functions in particular take messages produced
by other parties as inputs. Thus, there is no way for the party to know at the
time the garbled circuits are constructed, whether the key corresponding to bit
0 or the key corresponding to bit 1 will be chosen for some wire w. To allow
an evaluator to execute the garbled circuits anyway, Pj additionally stores both
wire keys for each input wire with CSaR, each with a separate CSaR request.
This needs to be done for every single round, since in any particular round the
inputs will depend on the messages produced by the garbled circuits of other
parties in the previous round.

Intuitively, in order to be able to reduce the security of this protocol to
the security of the original MPC protocol, we need to ensure not only that the
adversary is not able to maul messages of the honest parties and see the parties’
private information, but also that the protocol is executed in order and there
is only a single instance of the protocol running. This is ensured by carefully
constructing conditions that must be met in order to release the garbled circuits
and wire keys. In order to release a garbled circuit for some round i, a party
needs to provide a proof that the execution of the protocol up to and including
round i − 1 is finalized. In order to release a wire key corresponding to bit b
on a wire corresponding to position p of the input to some garbled circuit, a
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party needs to additionally provide a proof that the input bit to position p in
this circuit is indeed bit b. In the following, we first explain how the protocol is
executed, and then explain how exactly the release conditions look like.

Step 2. Executing π. Once all required information is stored, an evaluator E
can execute the original MPC protocol π. It is not required that E is one of
the parties participating in the protocol π and in fact, there can be multiple
evaluators (for simplicity, we refer to all of them as “E”). E executes the garbled
circuits round-by-round. Once E has executed all garbled circuits for a certain
round, E publishes the concatenation of the output of these circuits on a the
bulletin board. Then, E uses the proof of publishing of this message in order to
release the garbled circuits as well as the wire keys of the next round.

First round optimization. Note that the message broadcast by the parties in
the first round of the protocol π does not require any information from the
other participants in the MPC protocol. Thus, instead of storing the garbled
circuits for the first round, we let the parties publish their first message (and the
signature on it) directly. The secret state that needs to be passed to the second
round is hard-coded in the garbled circuit of the second round.

Release conditions. As described above, after the execution of all garbled circuits
of the certain round, the evaluator is tasked with publishing the (concatenation
of the) outputs of these circuit. This published message servers as a commitment
to the evaluator’s execution of this round, and this is what is needed to release
the gabled circuits of the next round. We additionally require that the length of
each published message is the same as expected by the protocol (corresponds to
the number of input wires), and the correct length requirement holds for every
part of this message (i.e., the public message, the signature over it, the state,
and the signature over the state for each contributing party). In order to ensure
that there is only a single evaluation of the original MPC running, only the
very first published message that is of a correct form (i.e., satisfies the length
requirements) can be used as the witness to release garbled circuits and keys
of a certain round. We call such messages authoritative messages. Formally, the
authoritative message of round d > 1 is a published message that satisfies the
following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖ md

n ‖
sigpubd1 ‖· · ·‖sigpubdn ‖cd1 ‖· · ·‖cdn ‖sigprd1 ‖· · ·‖sigprdn). This corresponds to
the concatenated output of the garbled circuits of round d: public messages
followed by signatures over each public message, and encryptions of state
followed by signatures over each ciphertext.

– each md
j , cdj , sigpubdj , sigprdj has correct length.

– This is the first published message that satisfies the requirements above.

Due to our first round optimization the authoritative message of the first
round is slightly different. In particular, there are up to n authoritative messages
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for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sigpub

1
k).

– m1
k and sigpub1k both have correct length.

– This is the first published message that satisfies the requirements above.

In terms of authoritative messages, the release conditions can be now defined
as follows: in order to release the garbled circuits for round i, we require that
all authoritative messages for rounds 1 up to and including round i − 1 are
published. In order to release the wire key for some bit b of an input wire w of
a garbled circuit the authoritative message of the previous round must contain
bit b at the same position w.

Removing point-to-point channels. While in our construction we assume that
the original MPC protocol is in a broadcast model, it is very common for MPC
protocols to assume secure point-to-point channels. We can handle such protocols
as well since an MPC protocol that assumes point-to-point channels can be
easily converted to a protocol in a broadcast model. A generic transformation
is outlined in the eWEB paper (Protocols 1 and 2 in [GKM+20]), it requires
using a protocol to “package” a message that must be sent and another protocol
to “unpack” a message received by a party. Intuitively, these protocols rely on
authenticated communication channels (which can be realized via signatures).
The packaging is done via appending the id of the sender to the message and
IND-CCA encrypting the resulting string. The unpacking is done via decrypting
and verifying that the party id specified in the message corresponds to the id of
the party who sent this message via the authenticated communication channel.

Hardcoding secret inputs. As mentioned above, some of the information used
in the modified next-message function (such as the secrets of the parties, their
secret keys etc.) is hardcoded in the circuit. Say the hardcoded input wire is
w, and its value is (bit) b. Then, the party preparing the garbled circuit that
uses w does so as follows: whenever one of the inputs to a gate is w, the party
removes the wire corresponding to w from the circuit and computes the values
in the ciphertexts using bit b only (instead of computing the output both for
w = 0 and w = 1). We give an example for the computation of the AND-Gate
in Figure 2. For security purposes, it is important that we do not perform any
circuit optimizations based on the value of w.

Notation. In the following, we denote party Pj ’s public- and secret encryption
key pair as (pkj , skj). We denote party Pj ’s signature and verification keys as
sigkj and verkj . By mi

j we denote messages that are generated by the party Pj

in the i -th round.
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Fig. 2. On the left, we show the computation of the AND-gate in Yao’s construction.
Given the garbled keys of x and w, depending on whether they correspond to zero or
one, the doubly-encrypted ciphertext contains K0 or K1. On the right, we show the
computation for the AND-gate if w = 0. In this case, both ciphertexts contain K0.

Further Details. Note that eWEB, the construction that we use as the instan-
tiation of the CSaR, assumes a CRS. This requirement can be removed in our
case by simply allowing each participant in the protocol π to prepare the CRS
on its own. From a security standpoint, this is unproblematic – we only wish to
protect the secrets of honest clients, and if a client is honest, it will generate the
CRS honestly as well 7.

Additionally, we note that in eWEB the party storing the secret is required
to send multiple messages. In order to ensure that in our MPC protocol a single
message from the MPC participant is sufficient and the parties can go offline
after sending this message, we slightly modify the eWEB construction. Roughly,
in eWEB miners are tasked with jointly preparing a random value r s.t. each
miner knows a share of r. The user then publishes the value s + r (where s
denotes the secret to be stored), and the miners compute their shares ob s
by subtracting their shares of r from s + r. Along the way, the commitments
to the sharing of s are made public. We modify it as follows: the user simply
publishes the commitments to the sharing of s and sends shares of s (along with
the witnesses) to the miners who then verify the correctness of the shares and
witnesses.

The full construction is given in Protocols 1 and 2 (preparation of the garbled
circuits and keys), as well as Protocol 3 (execution phase).

Security Analysis Intuitively, correctness of the construction as well as the se-
crecy of the honest parties’ inputs follow from the correctness as well as security
properties of the underlying cryptographic primitives as well as the original pro-
tocol π. We formally show security by providing a simulator that does not have
access to the parties’ secrets. No PPT adversary can distinguish between inter-
action with the simulator and the interaction with the honest parties. We rely
on the security of the cryptographic primitives used in our construction to show
that the adversary is not able to use a garbled circuit from an honest party in
a “wrong” way. In particular, the adversary cannot trick an honestly produced

7 Note that this change reduces the efficiency of the eWEB system – instead of batch-
ing secrets from different clients, only secrets from a single client can be processed
together now.
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Protocol 1 Non-Interactive MPC− CircuitPreparationPhase
1. Pj computes the output (m1

j , s
1
j ) of the first round of π. Pj computes the sig-

nature sigpub1j on the message (id, 1, j,m1
j ) using its signing key sigkj . Pj posts

(id, 1, j,m1
j , sigpub

1
j ) on chain.

2. Pj produces Yao’s garbled circuits {GCij} for each round i based on the circuit Cij
of the next-message function f i of the original MPC protocol π. The circuit Cij for
which Pj does the garbling takes as input messages {mi−1

k }
n
k=1 published by the

parties in the previous round along with the signatures {sigpubi−1
k }

n
k=1 of these

messages, and the encryption ci−1
j of the secret state passed by Pj from the previous

round as well as the signature sigpri−1
j over this ciphertext. All of Pj ’s keys, input

xj and randomness rij are hardcoded in the circuit. The verification- and public
keys of other participants are also hardcoded in the circuit. For the circuit of the
second round, the secret state passed from the first round is also hardcoded in the
circuit. The circuit decrypts the secret state and, if the ciphertext was correctly
authenticated, executes the next message function of the current round:
(a) If i = 2, proceed to step 2.(c).
(b) Verify the signature on the encryption of the state ci−1

j using verkj . If this
check fails, stop the execution and output ⊥.

(c) Verify the signature on each public message mi−1
z from party Pz. If any veri-

fication check fails, stop the execution and output ⊥.
(d) Compute si−1

j = Decskj (ci−1
j ).

(e) Obtain (mi
j , s

i
j) by executing f i(xj , r

i
j ,m

i, si−1
j ), where mi = mi−1

1 ‖· · ·‖mi−1
n .

(f) Compute the signature sigpubij on the public message (id, i, j,mi
j) using the

signing key sigkj .
(g) Compute the encryption of the state cij = Encpkj (sij).

(h) Compute the signature sigprij on the tuple (id, i, j, cij) including the encryption
of state using the signing key sigkj .

(i) Output (mi
j , sigpub

i
j , c

i
j , sigpr

i
j).

3. Pj securely stores garbled tables for all of the rounds using a CSaR. The witness
needed to release the garbled circuit of round i is a valid proof of publishing of all
authoritative messages from round 1 and up to and including round i− 1.

Protocol 2 Non-Interactive MPC−KeyStoragePhase
1. Securely store input wire keys for the circuit of the second round using CSaR.

For each party Pk whose first round message is needed for the computation, the
witness required to decrypt the wire key corresponding to the i-th bit of the input
being 0 (resp. 1) is a valid proof of publishing of the following:
(a) All of the authoritative messages of the first round are published.
(b) i-th bit of the authoritative message of round 1 of Party Pk is 0 (resp. 1).

2. Securely store input wire keys for the circuit of the d-th (d ≥ 3) round using CSaR.
The witness needed to decrypt the wire key corresponding to the i-th bit of the
input being 0 (resp. 1) is a valid proof of publishing of the following:
(a) All of the authoritative messages of the first d− 1 rounds are published.
(b) i-th bit of the authoritative message of round d− 1 is 0 (resp. 1).
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Protocol 3 Non-Interactive MPC− ExecutionPhase
1. The evaluator E uses messages (id, 1, z,m1

z, sigpub
1
z) posted on the bulletin board

by each party Pz as the proof of publishing to get the garbled circuits (and keys)
for the second round stored in CSaR by each participant in π. Then, E computes
the outputs (m2

j , sigpub
2
j , c

2
j , sigpr

2
j ) of the second round by executing the garbled

circuits.
2. If an authoritative message of the second round was not published on the bulletin

board yet, set m = (m2
1 ‖ · · · ‖m2

n ‖sigpub21 ‖ · · · ‖sigpub2n ‖c21 ‖ · · · ‖c2n ‖sigpr21 ‖ · · · ‖
sigpr2n), publish (id, 2,m) and use the proof of publish as the witness to decrypt the
wire keys of the next round. If an authoritative message (id, 2,m) was published
on the bulletin board, use it as witness to compute the outputs of the next round
if m = m2

1 ‖ · · · ‖m2
n ‖ sigpub21 ‖ · · · ‖ sigpub2n ‖ c21 ‖ · · · ‖ c2n ‖ sigpr21 ‖ · · · ‖ sigpr2n.

Otherwise, stop the execution and output ⊥.
3. In each following round d ≥ 3, E executes each garbled circuit published by party

Pz for round d − 1. Then, E concatenates the outputs and checks if there is a
message on the bulletin board for this round. If there is no such message, E posts
the computed output (id, d,md−1

1 ‖ · · · ‖md−1
n ‖ sigpubd−1

1 ‖ · · · ‖ sigpubd−1
n ‖ cd−1

1 ‖
· · · ‖ cd−1

n ‖ sigprd−1
1 ‖ · · · ‖ sigprd−1

n ) and uses the proof of publishing as witness to
decrypt input keys of the next round. Otherwise, if it is the same message as the
one computed by E, E uses the proof of publishing of this message as a witness to
decrypt the input keys of the next round. If it is not the same message as the one
computed by E, E aborts the execution.

4. E outputs the concatenation of the outputs of the garbled circuits of the last round
as the result.

garbled circuit into accepting wrong inputs from other honest parties i.e., in-
puts that were not produced using the garbled circuits or published (for the
first message) by those parties directly, or claim that a required message from
some honest party is missing. Additionally, there is no way for the adversary
to execute honest garbled circuits for the same round on inconsistent inputs (or
execute a single honest garbled circuit multiple times on a different inputs) since
only the authoritative message published for a single round is considered valid.
We then rely on the security of the original protocol π.

4 Optimizations

Our next goal is to minimize the number of CSaR invocations in our construction.
For this, we will focus on our main construction (Protocols 1, 2 and 3), but
the optimizations are applicable to our guaranteed output delivery construction
(which will be introduced later) as well.

Let n denote the number of parties participating in the original MPC protocol
π, nrounds denote the number of rounds in π, niwires,j denote the number of input
wires of a garbled circuit of the next-message function for round i of party Pj .
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Then, the number of CSaR secret store operations is upper bounded by:

Nstore = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

2 ∗ niwires,j

The term n ∗ (nrounds − 1) is due to the fact that each party needs to
store a garbled circuit for each round, except for the very first one. The term∑nrounds

i=2

∑n
i=1 2 ∗ niwires,j is added because each party also needs to store two

wire keys for each input wire of each garbled circuit it publishes.

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

niwires,j

This is because the evaluator needs all of the garbled circuits, as well as
a single wire key for each input wire of each garbled circuit, to perform the
computation.

Note that the dominant factor in both of the equations is
∑nrounds

i=2

∑n
j=1 n

i
wires,j .

This term is precisely the combined communication- and (encrypted) state com-
plexity of the original MPC protocol π, minus the messages of the first round
and plus the signatures on the public messages and the state. Thus, in order to
minimize the number of eWEB invocations, we must first and foremost optimize
the combined communication- and state complexity of the original MPC scheme.
We discuss a possible way to do this in the next section.

5 Optimizing Communication and State Complexity in
MPC

Our goal in this section is to design an MPC protocol in the plain model such
that its combined communication- and state complexity is independent of the
function that it is computing. While a number of works have focused on optimiz-
ing communication complexity, we are not aware of any construction optimizing
both the communication- and state complexity.

We achieve it in two steps, starting with a protocol secure against semi-
malicious adversaries. Semi-malicious security, introduced by Asharov et al [AJLA+12],
intuitively means that the adversary must follow the protocol, but can choose
its random coins in an arbitrary way. The adversary is assumed to have a special
witness-tape and is required to write a pair of input and randomness (x, r) that
explains its behavior. We specifically start with a semi-malicious MPC protocol
that has attractive communication- and state complexity (i.e., independent of the
function being computed). Then, we extend it so that the resulting construction
is secure against not only semi-malicious, but also fully malicious adversaries.
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5.1 Step. 1: MPC with semi-malicious security

Our starting point is the solution proposed in the work of Brakerski et al. [BHP17]
based on multi-key fully homomorphic encryption (MFHE) that achieves semi-
malicious security 8. The construction is for deterministic functionalities where
all the parties receive the same output, however it can be easily extended using
standard techniques to randomized functionalities with individual outputs for
different parties [AJLA+12]. For technical details behind the construction and
the security proof we refer to Brakerski et al., and Mukherjee and Wichs.

We note that while Brakerski et al. do not explicitly explain how to handle
circuits of arbitrary depth, the bootstrapping approach outlined by Mukherjee
and Wichs [MW16] can be used here. Informally, the bootstrapping is done as
follows: each party encrypts their secret key bit-by-bit using their public key
and broadcasts the resulting ciphertext. These ciphertexts are used to evaluate
the decryption circuit, thus reducing the noise. To do so, the parameters of the
MFHE scheme must be set in a way that allows it to handle the evaluation of the
decryption circuit. We assume circular security that ensures that it is secure to
encrypt a secret key under its corresponding public key and refer to Mukherjee
and Wichs [MW16] for details.

To summarize, the construction in Protocol 4 is an MPC protocol secure
against semi-malicious adversaries and can handle functions of arbitrary depth 9.

The communication complexity in Protocol 4 depends only on the security
parameters, the number of parties, and input- and output sizes [BHP17]. Note
that for a party Pi the state that is passed between the rounds in Protocol 4
consists of the following data:

– paramsk (passed from round one to round two and round three)

– params, (pkk, skk), {ck,j}j∈[lin], {c̃k,j}j∈[lkey ] (passed from round two to round
three)

– {evk,j}j∈lout (passed from round three to round four)

Note that this data depends only on security parameters, number of parties, and
input- and output sizes. Thus, the communication- and state complexity of the
semi-malicious protocol does not depend on the circuit we are computing.

8 Their scheme is secure when exactly all but one parties are corrupted. To transform
it into a scheme that is secure against any number of corruptions, Brakerski et
al. suggest to extend it by a protocol proposed by Mukherjee and Wichs (Section
6.2 in [MW16]) that relies on an so-called extended function. For simplicity, we
skip this technical detail in our protocol. We note, however, that the additional
communication and state complexity incurred due to the transformation depend
only on the security parameter, as well as the parties’ input- and output sizes.

9 Again, this construction is secure against exactly N − 1 corruptions (where N is the
total number of parties). When used with the extended function transformation by
Mukherjee and Wichs (which we skip here for readability purposes), the construction
becomes secure against arbitrary many corruptions.
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Protocol 4 Optimizing MPC

1. Let Pk be the party executing this protocol.
2. Run paramsk ← MFHE.DistSetup(1κ, 1N , k). Broadcast paramsk.
3. Set params = (params1, . . . , paramsN ), and do the following:

– Generate a key-pair (pkk, skk)← MFHE.Keygen(params, k)
– Let lin denote the length of the party’s input. Let xk[j] denote the j-th bit of
Pk’s input xk. Let lkey denote the length of the party’s secret key.

– Encrypt the input bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk, xk[j])j∈[lin]

– Encrypt the secret key bit-by-bit:

{c̃k,j ← MFHE.Encrypt(pkk, skk[j])j∈[lkey ]

– Broadcast the public key and the ciphertexts (pkk, {ck,j}j∈[lin], {c̃k,j}j∈[lkey ])
4. On receiving values {pki, ci,j}i∈[N ]\{k},j∈[lin] execute the following steps:

– Let fj be the boolean function for j-th bit of the output of f . Let lout denote
the length of the output of f .

– Run the evaluation algorithm to generate the evaluated ciphertext bit-by-bit:

{cj ← MFHE.Eval(params, fj , (c1,1, . . . , cN,lin))}j∈[lout],

while performing a bootstrapping (using the previously broadcasted encryp-
tions of the secret keys) whenever needed.

– Compute the partial decryption for all j ∈ [lout] :

evk,j ← MFHE.PartDec(skk, cj)

– Broadcasts the values {evk,j}j∈lout

5. On receiving all the values {evi,j}i∈[N ],j∈[lout] run the final decryption to obtain
the j-th output bit: {yj ← MFHE.FinDec(ev1,j , . . . , evN,j , cj)}j∈[lout]. Output y =
y1 . . . ylout .

5.2 Step. 2: MPC with fully malicious security

In order to protect from fully malicious adversaries, we extend the construc-
tion above with the zero-knowledge protocol proposed by Kilian [Kil92]. In the
following, we first elaborate on Kilian’s protocol and some changes we need to
make to it in order to keep the combined communication- and state complexity
low. Then, we elaborate on how Kilian’s protocol is used in the overall MPC
construction.

Kilian’s zero-knowledge protocol Kilian’s construction [Kil92] relies on
probabilistically checkable proofs (PCPs) and allows a party P to prove the
correctness of some statement x using a witness w to the prover V . We specif-
ically chose Kilian’s construction because of its attractive communication- and
state complexities. Note that we make a minor change to Kilian’s construction
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(Protocol 5) – instead of storing the PCP string that was computed in round
two to use it in round four (as is done in the Kilian’s original scheme), P re-
computes the string (using the same randomness) in round four. Clearly, this
changes nothing in terms of correctness and security. However, it allows us to
drastically cut the state complexity of Kilian’s original construction since the
storage of the PCP becomes unnecessary.

Protocol 5 Optimizing MPC - Kilian’s construction

1. Verifier V chooses a collision-resistant hash function h and sends its description to
the prover P .

2. Prover P uses the PCP prover P ′ to construct a PCP string ψ ← P (x,w). Denote
by rp the randomness used by the prover in the generation of ψ. P computes the
root of the Merkle tree (using the hash function h) on ψ, and sends the commitment
to the Merkle tree root to the verifier V .

3. V chooses a randomness rv and sends it to P .
4. P recomputes the PCP string ψ ← P (x,w) using the randomness rp and sends

PCP answers to the set of queries generated according to the PCP verifier V ′

(executed on randomness rv) to V .
5. V checks the validity of the answers, and accepts if all answers are valid and

consistent with the previously received Merkle tree root. Otherwise, V outputs ⊥.

Full construction The MPC construction secure against fully malicious adver-
saries is effectively the same as the semi-malicious one, except that additionally
Kilian’s construction is executed by each party Pk after each of the first three
rounds of Protocol 4. In more detail:

We assume that there exists some ordering of parties participating in Proto-
col 4. Following the approach outlined by Gilad et al. [AJLA+12], in each round
d of Protocol 4 we use Kilian’s construction as follows:

For each pair of parties (Pi, Pj), Pi acts as a prover to the verifier Pj in order
to prove the statement

NextMessaged(xi, r
d
i , {mk}dk=1, c

d−1
i ) = md

i .

Here, NextMessage is the function executed by Pi in this round according to
Protocol 4, xi is the secret input of Pi, r

d
i is the randomness used by Pi in round

d, {mk}dk=1 are (concatenations of) the messages broadcast by all parties par-
ticipating in Protocol 4 in rounds 1 to d, and md

i is the message broadcast by Pi

in round d. If a check fails, Pj broadcasts ⊥ and aborts. These proofs are done
sequentially (starting a new one only after the previous is fully finished), follow-
ing the ordering of the (pairs of) parties. If at least one party has broadcasted
⊥, all parties abort.
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Protocol 6 Optimizing MPC - handling fully malicious adversaries

1. Let Pz denote the party executing this protocol.
2. Let NextMessaged(·) denote the next message function of Protocol 4.
3. For each round d = 1, . . . , 3

(a) Let md = md−1
1 , . . . ,md−1

n .
(b) Compute NextMessaged(xz, rz, {mk}dk=1, c

d−1
z ) = (md

z , c
d
z).

(c) Broadcast md
z .

(d) For each ordered pair of parties (Pi, Pj):
i. If Pi = Pz, Pz acts as a Prover in Protocol 5 and uses the witness

(xz, rz, c
d−1
z ) to prove that the following holds:

NextMessaged(xz, rz, {m
k}dk=1, c

d−1
z ) = md

z .

ii. If Pj = Pz, Pz acts as a Verifier in Protocol 5 to verify that there exist
(xi, ri, c

d−1
i ) such that the following holds:

NextMessaged(xi, ri, {m
k}dk=1, c

d−1
i ) = md

i .

If this verification check fails, broadcast ⊥ and abort.
(e) If any party party broadcast ⊥, abort.

4. Output NextMessage4(xz, rz, {mk}4k=1, c
3
z) = md

z .

5.3 Properties of the resulting MPC construction

We now discuss the properties of the scheme constructed above. Specifically, we
show the following:

Theorem 5. Let f be an N -party function. Protocol 6 is an MPC protocol com-
puting f in the plain model which is secure against fully malicious adversaries
corrupting up to t < N parties. Its communication and state complexity depend
only on security parameters, number of parties, and input and output sized. In
particular, the complexity is independent of the function f .

Correctness Correctness of the overall construction follows directly from the
completeness of Kilian’s scheme [Kil92] as well as the correctness of the protocol
of Brakerski et al. [BHP17].

Security We outline why this construction is secure. Intuitively, in order to prove
security we construct the simulator S as follows: S uses the zero-knowledge sim-
ulator Szk of Kilian’s protocol to simulate proofs on behalf of the honest parties.
S honestly checks the proofs submitted by the adversary, aborting whenever a
proof is invalid. Note that for the correctly chosen PCP, Kilian’s construction is
extractable, and thus there exists an extractor Ext. S uses Ext to retrieve the
witness (x, r) used by the adversary in each valid proof. Finally, S uses the sim-
ulator Ssm of the semi-malicious scheme (writing witnesses (x, r) extracted by
Ext on the adversary’s witness tape) to simulate the execution of the underlying
semi-malicious construction.
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Communication- and State Complexity Analysis As we mentioned above, the
communication complexity of Protocol 4 depends only on security parameters,
number of parties, and input- and output sizes. In particular, the communication-
and state complexity of the semi-malicious protocol does not depend on the
circuit we are computing.

The communication complexity of Kilian’s protocol depends on the security
parameter as well as the length of the statement. In our case, the statement
consists of the messages sent by the parties participating in the semi-malicious
MPC protocol in the previous round as well as the message output by the party
in the current round. Since the communication complexity of the semi-malicious
MPC protocol is independent of the function being computed, the communica-
tion complexity of the overall construction is also independent of the function
being computed. As for the state complexity, recall that we made a minor change
to Kilian’s original protocol – instead of storing the PCP, the prover simply re-
computes (using the same randomness) it whenever it is needed. Due to this
simple modification the PCP string does not contribute to the state complexity.
The only other things contributing to the state complexity is the hash function
h and the randomness rv, both independent of the function being computed by
the MPC 10.

Thus, we have shown that the communication- and state complexity of our
MPC construction that is secure against fully malicious adversaries with arbi-
trary number of corruptions is independent of the function the MPC protocol is
tasked with computing.

Integrating communication- and state optimized MPC As we showed in Sec-
tion 4, the number of CSaR secret store operations in our main construction
(Protocols 1, 2 and 3) is upper bounded by:

Nstore = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

2 ∗ niwires,j

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

niwires,j

As we pointed out in Section 4, the term
∑nrounds

i=2

∑n
j=1 n

i
wires,j is precisely

the combined communication- and (encrypted) state complexity of the underly-
ing MPC protocol π, minus the messages of the first round and plus signatures
on the public messages and the state. Thus, when using Protocol 6 as the under-
lying protocol π in our main non-interactive MPC construction (Protocols 1, 2

10 Additionally, they can be chosen by V independently of any messages from P , and
thus they can be hardcoded in the garbled circuits and do not add to the state
complexity of the non-interactive construction.
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and 3), we obtain a construction which number of CSaR store and release oper-
ations depends only on the number of rounds in π, security parameters, number
of parties, and input- and output sizes. All of these parameters are independent
of the function that π is tasked with computing.

Apart from the CSaR store- and release requests the only other data that is
contributing to the communication complexity of the overall construction is the
data that is being posted on the bulletin board:

– messages (as well as signatures) on these of the first round – MPC contrib-
utors are tasked with posting these on the bulletin board.

– outputs of the garbled circuits – evaluators are tasked with posting these on
the bulletin board.

The outputs of the garbled circuits consist of the messages exchanged by the
parties in π, the signatures on these messages, the encrypted state information,
and the signatures on the encrypted state. Thus, the size of this data depends
only on the combined communication- and (encrypted) state complexity of the
underlying MPC protocol π. When using Protocol 6 as the underlying protocol
π, the size of this data is independent of the function which is being computed.

Thus, we get the following result:

Corollary 3. There exists an MPC protocol π′ in the blockchain model that has
adversarial threshold t < N , provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time. Only
a single message is required from the MPC contributors (the evaluators might be
required to produce multiple messages). Furthermore, the communication com-
plexity of this protocol is independent of the function that is being computed using
this MPC protocol.

6 Guaranteed Output Delivery

In this section, we provide an extension of our main construction that ensures
guaranteed output delivery, meaning that the corrupted parties cannot prevent
honest parties from receiving their output.

In order to provide guaranteed output delivery, the first step is to build upon
an MPC protocol π that also has this property. However, note that this change
by itself is not sufficient – a malicious evaluator could still disrupt the execution
of our original construction by simply providing an authoritative message that
contains an invalid signature and thus forcing honest garbled circuits to abort.
It is clear that we cannot simply accept such invalid signatures. Thus, further
modifications are required. In general, compared to our main protocol we make
the following changes:

– The original MPC protocol must have the guaranteed output delivery prop-
erty.

– We introduce a deadline by which all initial messages must be posted. In the
following, we denote this deadline by τ .
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– Signatures on the messages are verified not by the garbled circuits, but rather
by the CSaR parties as part of the CSaR request. The signature is computed
on the whole message, rather than separately for the public- and state parts
of the next-message function’s output.

– We use CSaR with public release, which is similar to CSaR, but instead of
privately releasing secret shares to the user, the parties release the shares
publicly (e.g., by posting them on the bulletin board).

– Whenever a message posted by the evaluator is of an invalid length or missing
a valid signature, the miners use the garbled circuits and wire keys of the
current round (that were previously published on the bullet board) to check
whether the message posted by the evaluator is indeed the output of the
garbled circuit in question. Only if this is the case (i.e., the evaluator acted
honestly) is the evaluator allowed to receive the next wire keys. The evaluator
uses a proof of publishing of the garbled circuits and the wire keys released by
the CSaR parties to prove the correctness of the computation. The relation
that the miners then check is roughly as follows: “The execution of the
garbled circuit GC on the wire keys {ki}i∈I results in the output provided
by E. Here, the garbled circuit GC is the circuit, and {ki}i∈I are the keys for
this circuit reconstructed using the published values of the CSaR participants
present on the proof of publish supplied by E”.

– If a message from the first round was not published, or a garbled circuit or
wire key from some party was not stored with CSaR, the evaluator needs to
prove that with respect to the genesis block, by deadline τ indeed no such
message was stored. We call such proof a “proof of missing message”.

– In the cases described in the last two points, the miners release default wire
keys (encoding “⊥”) for each garbled circuit that is supposed to use the
missing message.

In order to allow for an easy verification of the evaluator’s claims of invalid
garbled circuits, we use CSaR with public release (CSaR-PR), which is the same
as CSaR, except that the witness is supplied by the client that wishes to receive
the secrets publicly, and the secrets (garbled circuits and wire keys in our case)
are released publicly as well (as long as the release condition is satisfied). Such
CSaR-PR can be instantiated with the PublicWitness construction presented
in the eWEB work. For simplicity, in the following we assume that the public
release of the computation result is permitted. If the application requires that
only the evaluator obtains the function result, it can be easily supported by
changing the output of the function that is being computed to the encryption of
this output under the evaluator’s public key.

The definition of the authoritative message for this construction is a bit differ-
ent to account for the fact that the signatures are checked by the CSaR parties.
Formally, the authoritative message of round d > 1 is a published message that
satisfies the following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖md

n ‖ cd1 ‖
· · · ‖ cdn ‖ sigd1 ‖ · · · ‖ sigdn).
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– each md
j has correct length, and each sigdj is a valid signature of Pk on the

tuple (id, d, j,md
j , c

d
j ), with the following exceptions allowed:

1. if a required message from some party Pj is missing, the evaluator must
prove that Pj failed to post some of the messages needed for the com-
putation and the deadline τ has passed (“proof of missing message”).
In this case, wire keys for the default value ⊥ are released by the CSaR
participants as wire keys corresponding to that message.

2. if the signature of some party Pj is invalid, or md
j (or cdj ) has invalid

length, the evaluator must prove that the output of the garbled circuit
posted by Pj in the previous round is indeed what the evaluator claims
this output to be. In this case, wire keys for the default value ⊥ are
released as wire keys corresponding to that messages.

– This is the first published message that satisfies the requirements above.

Same in our main construction, there are up to n authoritative messages
for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sig

1
k).

– sig1k is a Pk’s correct signature over m1
k.

– m1
k has correct length.

– This is the first published message that satisfies the requirements above.

Just as in our main construction, we show security by providing a simulator
that does not have access to the honest parties’ secrets and showing that no
PPT adversary is able to distinguish the interaction with the simulator from the
interaction with the honest parties 11.
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