
1

Architecture Support for Bitslicing
Pantea Kiaei, Student Member, IEEE, Tom Conroy, and Patrick Schaumont, Senior Member, IEEE

Abstract—The bitsliced programming model has shown to boost the throughput of software programs. However, on a standard
architecture, it exerts a high pressure on register access, causing memory spills and restraining the full potential of bitslicing. In this
work, we present architecture support for bitslicing in a System-on-Chip. Our hardware extensions are of two types; internal to the
processor core, in the form of custom instructions, and external to the processor, in the form of direct memory access module with
support for data transposition. We present a comprehensive performance evaluation of the proposed enhancements in the context of
several RISC-V ISA definitions (RV32I, RV64I, RV32B, RV64B). The proposed 14 new custom instructions use 1.5x fewer registers
compared to the equivalent functionality expressed using RISC-V instructions. The integration of those custom instructions in a 5-stage
pipelined RISC-V RV32I core requires 4.96% overhead. The proposed bitslice transposition unit with DMA provides a further speedup,
changing the quadratic increase in execution time of data transposition to linear. Finally, we demonstrate a comprehensive
performance evaluation using a set of benchmarks of lightweight and masked ciphers.

Index Terms—Bitslicing, instruction set extension, direct memory access, system-on-chip, hardware extension, computer architecture.

F

1 INTRODUCTION

Bitslicing was first introduced as a programming model to
boost the throughput of the software implementation of the
Data Encryption Standard (DES) cryptographic algorithm
[1]. Since then, researchers have explored applications that
can benefit from this model of programming in security [2],
[3], [4], [5] and dynamic word-length computation [6], [7]
among others.

Bitslicing, as a programming model, does not require
any changes to the underlying design of the processor.
However, bitsliced programs bear significant memory spills
due to their extensive amount of live registers [8]. Therefore,
hardware support for bitslicing can lead to a significant
increase in performance of various bitsliced applications.

Today, many digital circuits consist of a System-on-Chip
(SoC). In such systems, hardware support for bitslicing can
be in the form of instruction extension in the processor
implementation or it can be a hardware module accessible
by the processor through a bus. Our goal in this work is
to integrate both of these types of hardware support for
bitslicing into an SoC. Even though our focus is mostly
on security applications, non-security related applications
of bitslicing can equally benefit from part of our proposed
hardware extensions.

As the open-source RISC-V Instruction Set Architecture
(ISA) is gaining more attention both in research as well
as in industry, domain-specific Instruction Set Extensions
(ISEs) are becoming more and more relevant [9], [10], [11].
In our previous work [12], we proposed Skiva, a 32-bit ISE
for the SPARC V8 ISA. Skiva supports protection against

• P. Kiaei and P. Schaumont were with the Department of Electrical and
Computer Engineering, Worcester Polytechnique Institute, Worcester,
MA, 01609.
E-mail: {pkiaei,pschaumont}@wpi.edu

• T. Conroy was with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Polytechnique Institute and State University,
Blacksburg, VA, 24061.
E-mail: tconroy@vt.edu

This research was supported in part by NSF Award 1931639.

a combination of active and passive physical attacks, i.e.,
power Side-Channel Analysis (SCA), fault injection, and
timing SCA. These protections are in the form of masking
[13], redundant computation, and bitslicing.

To account for hardware support for bitslicing at the
instruction-set level, in this work, we port the this work,
we port the ISE in Skiva to RISC-V and call it Skiva-V. Ad-
ditionally, we propose the 64-bit version of Skiva-V which
supports extra security-related modes. Furthermore, as it is
crucial to evaluate the gain achieved by one ISE over the
existing ISA, we evaluate Skiva-V in terms of the newly pro-
posed bit-manipulation ISA for RISC-V (RV32B, RV64B)1.
Our focus in this work is on the performance analysis of
the proposed instructions. For the security analysis of the
custom instructions in Skiva, we refer the reader to our
previous work [12]. Furthermore, we note that several au-
thors have proposed a security analysis for similar bitsliced
masked software [3], [14], [15].

Finally, we propose a Direct Memory Access (DMA)
module, called T-DMA, which is capable of transposing data
as part of a memory block transfer. This capability of T-DMA
in itself shows how an extra-processor support for bitslicing
can be beneficial for any bitsliced implementation. However,
we further tune this module to add support for our security-
related programming needs, namely on the fly masking
and redundancy generation/checking. An extra-processor
extension comes with the advantage of integrability with
commercial processor cores. We describe how we integrate
T-DMA with Skiva-V implementation into a SoC.2

The rest of the paper is as follows: Section 2 gives an
overview of the concepts underlying the proposed system.
Section 3 describes the definition of the custom instruc-
tions in Skiva-V, their ISA-level performance analysis, and
implementation footprint. Section 4 demonstrates how to
generate bitsliced programs for Skiva-V. Section 5 presents

1. https://github.com/riscv/riscv-bitmanip
2. We will open-source the design files and the modified GCC com-

piler before the paper’s publication.

https://github.com/riscv/riscv-bitmanip

2

our proposed DMA module with support for transposing,
masking, and duplicating the data. It further describes
its functionality, design, and synthesized implementation
footprint. Section 6 describes the integration of Skiva-V
processor core and T-DMA into an SoC architecture. Sec-
tion 7 demonstrates benchmarks to emphasize the impact of
hardware support in performance of bitsliced and masked
software. Finally, Section 8 concludes the paper.

2 PRELIMINARIES

In this section, we describe a brief introduction to the
concepts used in our proposed system.

2.1 Bitslicing
Bitslicing, first introduced by Biham [1], is a technique orig-
inally proposed to increase the throughput of a program by
running multiple instances of a code in parallel. In bitslicing,
all the variables are transposed so that each register contains
only one bit of the variable. For example, if a variable is 32
bits wide, in bitsliced program it will reside in 32 different
registers and use one bit of each. Each register of width ω
then will have the capacity to hold one bit of ω different
variables. Consequently, the program needs to be adjusted
to work on one bit of its variables at a time. This implies
that the adjusted (i.e., bitsliced) program can only contain
bit-wise logic operations. Therefore, the bitsliced program
will be capable of ω parallel computations.

A fully-bitsliced program needs to be flattened (no
branches). In a flattened program, the run-time of the pro-
gram is known and data-independent. This property of bit-
slicing benefits the security-sensitive programs as it averts
timing side-channel leakage (i.e., correlation between the
run-time and the internal data of a program). Furthermore,
bitslicing provides a proper base to combine our masking
and redundant computation schemes as described in the
next section.

2.2 Masking
Power-based SCA [16], [17], as a subset of active physical
implementation attacks, has shown vulnerabilities in the
implementation of algorithms which are expected to be
secure at the algorithm level. In power SCA, the correlation
between the power consumption and the internal data is
explored to find information about the processed data. A
widely-adopted countermeasure against this type of attack
is masking which tries to break this correlation.

In masking, each signal or variable is divided into shares
that are independent from the original data. The number
of shares depends on the masking scheme. In the dth-order
masking scheme, each data bit is divided into d + 1 shares.
Knowing any strict subset of these shares will not disclose
any information about the original data, while knowing all
of the shares can reproduce the original data. A simple way
to generate these shares is by applying Boolean masking.
For instance, in Boolean masking for the 1st-order mask-
ing scheme, a random bit r is generated (from a uniform
distribution) per each original bit b. The shares of the bit
b will be computed as the tuple (b ⊕ r, r) where ⊕ is the
exclusive-or operation. Knowledge about one share (either r

or b⊕r) will not give any information about the original data
b, however, by knowing both of these shares the original
data can be disclosed as the exclusive-or result of the two
shares ((b⊕ r)⊕ r = b).

Once each data is broken into independently-distributed
shares, the algorithm should be modified to work on the
shares of the inputs and the intermediate data to generate
the shares of the outputs. The operations in the algorithm
are categorized into linear and non-linear operations. An
operation is linear if a uniform distribution of its inputs
results in a uniform distribution for its outputs. Masking
is then applied to each operation according to its linearity.
In a linear operation, each share of the output can be
implemented as a function of at most one share of each
input. This property, however, does not hold for non-linear
operations and there exists a vast body of research on how
a non-linear operation can be masked [18], [19], [20].

In this work, we break every algorithm into a combi-
nation of operations from the set {XOR, XNOR, AND, NOT}.
Since this set of operations is functionally complete, every
operation in the algorithm can be written as a combination
of these operations. The AND operation is therefore the only
non-linear operation that can appear in the adjusted algo-
rithm. We follow the parallel masked multiplication method
proposed by Barthe et al. [18] for our AND operation and a
normal masked implementation for our linear operations.

2.3 Redundant Computation

Fault injection [21] is another type of implementation at-
tacks. Redundant computation is a technique to detect
whether a fault has been injected in a circuit. In this tech-
nique, every computation is done multiple times and the re-
sults are compared. A mismatch between the results shows
that a fault has happened. For n number of redundant
computations, n− 1 faults can be detected.

In Skiva-V, our goal is to combine countermeasures
against both fault injection and power SCA attacks. As
shown in our previous work [12], when the redundant
copies of the data are in complementary format, the inten-
sity of power side-channel leakage is decreased. Therefore
we support redundancy of two types: direct and comple-
mentary. In direct redundancy, the redundant data is a direct
(uninverted) copy of the original data, whereas, in the com-
plementary redundancy, half of the redundant copies will
be in the inverted format to balance the power consumption
of the direct copies.

3 PROCESSOR SUPPORT

We present an instruction set extension (ISE) for both the 32-
bit and the 64-bit RISC-V ISAs called Skiva-V. The underly-
ing data representations of Skiva-V are based on the mask-
ing order (D) and the spatial redundancy (Rs). In our 32-bit
ISE, we follow the same data representations of our previous
work, Skiva [12], supporting nine different configurations
chosen from the sets D = {1, 2, 4} and Rs = {1, 2, 4}. For
our 64-bit ISE, we extend the 32-bit representations to add
additional masking and redundancy modes. In this new
configuration, Skiva-V supports sixteen different configu-
rations from D = {1, 2, 4, 8} and Rs = {1, 2, 4, 8}. In all

3

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

RS = 1

RS = 2

RS = 4

RS = 1

RS = 2

RS = 4

RS = 1
RS = 2

RS = 4

{
D = 2{
D = 4{

Fig. 1. Bitsliced data representation on 32-bit registers. bji represents jth share of data bi. Shares of the same variable are shown with the same
color.

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b481b491b501b511b521b531b541b551b561b571b581b591b601b611b621b631 b321b331b341b351b361b371b381b391b401b411b421b431b441b451b461b471 b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151
D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b241b242b251b252b261b262b271b272b281b282b291b292b301b302b311b312 b161b162b171b172b181b182b191b192b201b202b211b212b221b222b231b232

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34b121b122b123b124b131b132b133b134b141b142b143b144b151b152b153b154 b81b82b83b84b91b92b93b94b101b102b103b104b111b112b113b114

D = 4

D = 8

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

D = 2

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

RS = 2

RS = 1

RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

RS = 1

RS = 2
RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

{
{

{
{ b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18b61b62b63b64b65b66b67b68b71b72b73b74b75b76b77b78 b41b42b43b44b45b46b47b48b51b52b53b54b55b56b57b58

Fig. 2. Bitsliced data representation on 64-bit registers. bji represents jth share of data bi. Shares of the same variable are shown with the same
color. Parts enclosed in dashed lines show the nine possible configurations in the 32-bit architecture proposed in Skiva [12] also shown separately
in Figure 1.

of these configurations, the D shares of the same variable
reside in the adjacent bits of a register. Next to the shares of
one variable, will sit the shares of the next variable for par-
allel computation. This pattern repeats in the same register
Rs times for redundant computation. Thus in each (D,Rs)
configuration for the N -bit architecture, Skiva-V supports
p = N

D×Rs
parallel computations. Figure 1 and Figure 2

show all the possible configurations in the 32-bit and 64-
bit ISEs respectively. In these figures, the i subscripts in bi
data bits show different variables in parallel computation.
To support both direct and complementary redundancy, the
even-numbered redundant copies can be either inverted or
direct.

In the rest of this section, we describe the instructions
in Skiva-V, their implementation details and footprint, and
how programmers can employ them in their codes.

3.1 Instruction Definitions
Our proposed instruction set extension for RISC-V is di-
vided into three groups: instructions for bitsliced trans-
position, instructions for masked implementation, and in-
structions for redundant computation. In the following sub-
sections, we describe each instruction. Table 1 shows the
assigned opcodes and formats of the instructions in Skiva-V.
The instructions’ encodings in Skiva-V follow the RV32I
base r-type and i-type instruction formats mentioned in

RISC-V ISA manual [22]. Each of the i-type instructions
in Skiva-V has its own immediate encoding that clarifies
the masking order (required for subrot instruction) or the
redundancy scheme (required for redl/h and ftchk). We
describe the immediate assignment of each instruction with
their definition in the rest of this section.

Bitsliced transposition

We propose two instructions, i.e. tr2l rd, rs1, rs2
and tr2h rd, rs1, rs2, which, if applied iteratively in
the butterfly pattern, can transpose the data from normal
representation to its bitsliced format. These instructions take
two source registers and reorder their bits in the destina-
tion register interchangeably. Instruction tr2l reorders the
lower half of the source registers while instruction tr2h
reorders the upper half. To transpose the bitsliced data
back to its normal representation, we proposed the inverse
of the above instructions, i.e. invtr2l rd, rs1, rs2
and invtr2h rd, rs1, rs2. Figure 3 shows how these
instructions work. As an example, Figure 4 shows how four
4-bit registers can be transposed to their bitsliced positions
in two iterations of applying these instructions. In general,
for N N -bit registers, it takes log2(N) iterations of applying
the transposition instructions to completely transpose the
bits.

4

TABLE 1
Opcode assignments in Skiva-V

Instruction Type funct7 (instr 31-25) funct3 (instr 14-12) opcode (instr 6-0)

subrot i-type —- 0x0 0x0b (custom-0)
redl i-type —- 0x1 0x0b (custom-0)
redh i-type —- 0x2 0x0b (custom-0)
ftchk i-type —- 0x3 0x0b (custom-0)
andc32 (only in 64-bit ISA) r-type, logic 0x20 0x4 0x0b (custom-0)
andc16 r-type, logic 0x10 0x4 0x0b (custom-0)
andc8 r-type, logic 0x00 0x4 0x0b (custom-0)
xorc32 (only in 64-bit ISA) r-type, logic 0x21 0x4 0x0b (custom-0)
xorc16 r-type, logic 0x11 0x4 0x0b (custom-0)
xorc8 r-type, logic 0x01 0x4 0x0b (custom-0)
xnorc32 (only in 64-bit ISA) r-type, logic 0x22 0x4 0x0b (custom-0)
xnorc16 r-type, logic 0x12 0x4 0x0b (custom-0)
xnorc8 r-type, logic 0x02 0x4 0x0b (custom-0)
tr2l r-type, transposition 0x00 0x5 0x0b (custom-0)
tr2h r-type, transposition 0x10 0x5 0x0b (custom-0)
invtr2l r-type, transposition 0x01 0x5 0x0b (custom-0)
invtr2h r-type, transposition 0x11 0x5 0x0b (custom-0)

αβγδε

ε

ζηθ

θ

ικλμ

αδ ιμ

ν

ν

ξρφ

φ

tr2l invtr2l tr2h

w⁄2 w⁄2

w w

rs1

rs1

rs2
rs1
rs2

rs2
invtr2h

Fig. 3. (inv)tr2h and (inv)tr2l instructions. W represents the length
of the registers which can be either 32 or 64 bits. All four instructions
take two input registers and store the results in the destination register.

a ab bc

c

d

d

e ef fg

g

h

h

i

i

j

j

l l

m

m

n

n

o op p

k k

a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

k

: tr2h : tr2llegend

Fig. 4. Applying tr2l and tr2h instructions to four 4-bit registers
iteratively in a butterfly pattern to transpose the bits for bitsliced imple-
mentation. To transpose the bits back to their initial positions, we can
apply invtr2l and invtr2h from right to left.

Masked implementation

In our masked data manipulations, we follow the parallel
masked multiplication gadget by Barthe et al. [18]. In this
gadget, the shares of a variable are adjacent in a register
and during the calculations, we need to rotate the adjacent
shares. Rotating parts of a register independently is not part
of the RISC-V ISA, however, in our masking schemes will
be executed quite often. Hence we add this instruction to
Skiva-V. In our 32-bit (resp. 64-bit) representation, Skiva-V
supports masked implementation with 2 and 4 (resp. 2, 4,
and 8) shares. Therefore we need to be able to rotate 2 and
4 (resp. 2, 4, and 8) consecutive bits in a 32-bit (resp. 64-
bit) register. Therefore, we add an instruction (subrot rd,
rs1, imm) which takes a source register and an immediate
value. If the immediate value is 2/4(/8 in 64-bit ISA) respec-
tively 2/4(/8 in 64-bit ISA) consecutive bits will be rotated.
Figure 5 shows how this instruction works.

Note. When using the subrot instruction, one must be

d d d d

. . .

Fig. 5. subrot instruction. This instructions rotates d adjacent bits in
a register where d is decided from the immediate input and follows the
masking scheme (d ∈ {2, 4} for 32-bit Skiva-V, d ∈ {2, 4, 8} for 64-bit
Skiva-V).

TABLE 2
Immediate value assignment for redh and redl instructions. W

represents the word length (32 for the 32-bit and 64 for the 64-bit ISA).
Source bits column signifies which bits in the source register are being

duplicated.

Redundancy (Rs) Source bits redh/redl imm.

2 direct W-1:0 2
2 compl. W-1:0 3
4 direct W/2-1:0 4
4 compl. W/2-1:0 5
4 direct W-1:W/2 6
4 compl. W-1:W/2 7
8 direct (only in 64-bit ISA) 15-0 8
8 compl. (only in 64-bit ISA) 15-0 9
8 direct (only in 64-bit ISA) 31-15 10
8 compl. (only in 64-bit ISA) 31-15 11
8 direct (only in 64-bit ISA) 47-32 12
8 compl. (only in 64-bit ISA) 47-32 13
8 direct (only in 64-bit ISA) 63-48 14
8 compl. (only in 64-bit ISA) 63-48 15

careful not to use the same register for both the input and
the result (i.e. rs1 6= rd) since this will result in overwriting
the shares of the same variable and transiently reducing the
intended order of masking scheme. Fortunately, compilers
support this type of criteria in their code generation process
and we can ensure this property will be held by adding it to
the back-end of the compiler (code generator) as a criteria
specific to the subrot instruction.

Redundant computation
As mentioned in Section 2, Skiva-V supports both direct
and complementary redundant computations. Direct redun-
dancy enables fault detection while complementary redun-
dancy also reduces the intensity of power side-channel leak-
age. To prepare data for redundant representation, we in-
troduce instructions redl rd, rs1, imm and redh rd,
rs1, imm to copy data (both directly and in inverted

5

D C B A

C C C C

imm = 7

D D D D

redl

redh

source

dest {
Fig. 6. Example for redl and redh instructions when the immediate
value is 7. In both 32-bit and the 64-bit ISA, immediate=7 means
duplicating the upper half-word (16 bits and 32 bits respectively for the
32-bit and 64-bit architectures) in the complemented format. redh/redl
copies the upper/lower half of the source’s selected bits in its destination
register.

. . .f(.) f(.) f(.)f(.)

. . . 2Rs-1Rs 1

: inverted copy
: direct copy

legend

Fig. 7. Complementary logic operations on complementary redundant
data.

manner) in the same register. The immediate field in these
instructions decides which part of the input register has to
be copied and whether it should follow direct redundancy
or complementary redundancy. Table 2 shows the immedi-
ate value assignment for each redundancy mode.

To demonstrate in more detail how the bits are dupli-
cated in the destination register, Figure 6 demonstrates the
result of redh and redl instructions when their immediate
value is 7. According to Table 2, this means the bits in the
range [W-1:W/2] (W=32 for 32-bit ISA and W=64 for 64-bit
ISA) should be duplicated in a complementary format.

In cases where our data is in complementary redundancy
format, we need a logic operation f(.) to calculate f(.) on
the direct copies and the inverse (f(.)) on the complemented
copies to result in complemented outputs according to De-
Morgan’s theorem. Figure 7 shows the structure of com-
plementary logic operations. Therefore, Skiva-V has logic
instructions andcn, xorcn, and xnorcn that calculate the
logic operation and its inverse on part of the data in their
source registers. In the 32-bit (resp. 64-bit) instruction set, n
can have the value of 8 and 16 (resp. 8, 16, and 32) to operate
in direct/complementary format on n consecutive bits.

Finally, we propose an instruction in Skiva-V to check
if the redundant copies of the data agree. The ftchk rd,
rs1, imm instruction will check the redundant copies in
the source register based on the immediate value and set
the corresponding bit in the destination register to one if the
copies of data do not agree (i.e. a fault is detected). To have
continuity in the direct and complementary redundancy,
the result of ftchk operation can be in the complementary
format where the comparison result is copied both directly
and inversely in the destination register.

Table 3 shows the immediate value encodings for the
ftchk instruction. For example, if Rs = 4 and direct
redundancy in the 32-bit ISA, i.e., immediate value is either
4 or 12, the comparison flags are calculated and stored in the
destination register (rd) based on the source register (rs) as

TABLE 3
Immediate value assignment for ftchk instruction.

Redundancy (Rs) ftchk immediate

32-bit 32-bit (compl. result) 64-bit 64-bit (compl. result)

2 direct 2 10 2 3
2 compl. 3 11 18 19
4 direct 4 12 4 5
4 compl. 5 13 20 21
8 direct (only in 64-bit ISA) NA NA 8 9
8 compl. (only in 64-bit ISA) NA NA 24 25

follows for the least significant 8 bits:

rd[i] = (rs[i]⊕ rs[i+ 8])||
(rs[i]⊕ rs[i+ 16])||
(rs[i]⊕ rs[i+ 24]);

∀i ∈ [0, 7]

The same calculated results will be duplicated directly
(when immediate value is 4) or in inverse format (when
immediate value is 12) to fill the remaining 16 bits of the
destination register (rd).

3.2 ISA-level Performance Analysis

We evaluate our instruction set extension on RISC-V for its
performance. For each proposed instruction, we write a C
code defining the functionality of the instruction. On an
implementation of Skiva-V, this C code corresponds to only
one instruction. We cross compile the C code with GCC once
for RV32 and RV64 instruction sets and once for the RISC-
V with bit-manipulation extension (RV32B and RV64B). The
GCC with B-extension currently only supports 31 out of 95
proposed instructions in the bit-manipulation draft.

Table 4 and Table 5 show the number of instructions
from RISC-V ISA to implement the Skiva-V instructions.
Based on our calculations, each of the 32-bit/64-bit Skiva-V
operation replaces on average 22.34/29.98 instructions from
the RV32/RV64 ISA and 21.84/29.59 instructions from the
RV32B/RV64B ISA. All the proposed instructions pass the
criteria of replacing a minimum of three instructions.

Although the reported numbers for RV32B and RV64B
are not significantly different from RV32I and RV64I, the
real advantage of the RISC-V’s bit-manipulation exten-
sion can be much bigger but not yet supported by the
GCC code generator. For instance, rev.p rd, rs, 1 in
RV32B/RV64B is functionally equivalent to subrot rd,
rs, 2 in Skiva-V 32/64-bit. However, this was the only
instance we found in the bit-manipulation extension that
was obviously equivalent to the instructions in Skiva-V.

Furthermore, we calculate the number of registers each
instruction-equivalent code snippet uses on RV32I/RV32B
and RV64I/RV64B as a measure of register pressure. We
calculate the register use of each code snippet to that of its
corresponding custom instruction. We make the worst case
scenario assumption on the register usage in Skiva-V cus-
tom instruction that each r-type instruction (namely andcn,
xorcn, xnorcn, (inv)tr2l/h) uses 3 distinct registers and
each i-type instruction (namely subort, redl/h, ftchk)
uses 2 distinct registers. As shown in Table 4 and Table 5,
even under our pessimistic assumption, on average, Skiva-V

6

Control
Unit

Fetch
Unit

Decode
Unit

Exec
Unit

Memory
Unit

WB
Unit

Reg
File

Inst.
Mem

Data
Mem

Mem
Interface

BRISC-V five-stage

Fig. 8. Skiva-V implementation on BRISC-V five-stage processor. The
grey boxes show the modified units for Skiva-V.

custom instructions use 1.47×/1.65× fewer registers com-
pared to RV32I/RV64I and 1.58×/1.75× fewer registers
compared to RV32B/RV64B ISA.

TABLE 4
ISA-level performance evaluation of Skiva-V 32-bit instructions

Skiva-V 32 RV32I RV32B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 115 2× 115 2×
tr2l rd, rs1, rs2 115 2× 115 2×
invtr2h rd, rs1, rs2 115 2× 114 2×
invtr2l rd, rs1, rs2 115 2× 115 2×
subrot rd, rs, 2 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 2 4 1.5× 4 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 3 5 1.5× 4 1.5×
redl rd, rs, 4 7 1.5× 7 1.5×
redh rd, rs, 4 8 1.5× 8 1.5×
redl rd, rs, 5 9 1.5× 9 1.5×
redh rd, rs, 5 11 1.5× 11 1.5×
redl rd, rs, 6 8 1.5× 8 1.5×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 7 11 1.5× 11 1.5×
redh rd, rs, 7 10 2× 10 2×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 6 1× 5 1.5×
ftchk rd, rs, 4 16 1.5× 16 1.5×
ftchk rd, rs, 5 17 2× 16 2.5×
ftchk rd, rs, 10 7 1× 6 1.5×
ftchk rd, rs, 11 8 1.5× 8 1.5×
ftchk rd, rs, 12 17 1.5× 17 1.5×
ftchk rd, rs, 13 19 2× 16 2.5×
andc16 rd, rs1, rs2 7 1× 6 1.67×
xorc16 rd, rs1, rs2 3 1× 3 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 13 1.33× 13 1.33×
xorc8 rd, rs1, rs2 13 1.33× 11 1.33×
xnorc8 rd, rs1, rs2 11 1.33× 9 1.33×

3.3 Implementation

We integrate the 32-bit Skiva-V instructions into an in-
order, five-stage pipeline implementation of the RISC-V
RV32I ISA. For this implementation, we use the open-source
BRISC-V [23] core. This core consists of five pipeline stages,
namely fetch, decode, execute, memory, and write-back. The
simplicity of the Skiva-V ISE architecture, enables the easy
integration of the instructions which only affect the decode
stage, the ALU unit in the execute stage, and the control unit
of the processor. The changes applied to the processor are to
decode the added instructions, execute them in the ALU,
and bypass their outputs to the next immediate instructions
in case of dependency (to reduce the number of inserted

TABLE 5
ISA-level performance evaluation of Skiva-V 64-bit instructions

Skiva-V 64 RV64I RV64B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 244 2.33× 243 2.33×
tr2l rd, rs1, rs2 243 2.33× 244 2.33×
invtr2h rd, rs1, rs2 244 2.33× 243 2.33×
invtr2l rd, rs1, rs2 246 2.67× 247 2.33×
subrot rd, rs, 8 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
subrot rd, rs, 2 9 1.5× 9 1.5×
redh rd, rs, 10 15 1.5× 15 1.5×
redl rd, rs, 10 16 1.5× 16 1.5×
redh rd, rs, 11 17 2× 17 2×
redl rd, rs, 11 19 2× 19 2×
redh rd, rs, 12 16 1.5× 16 1.5×
redl rd, rs, 12 16 1.5× 16 1.5×
redh rd, rs, 13 19 2× 19 2×
redl rd, rs, 13 19 2× 19 2×
redh rd, rs, 14 16 1.5× 16 1.5×
redl rd, rs, 14 16 1.5× 16 1.5×
redh rd, rs, 15 18 2.5× 18 2.5×
redl rd, rs, 15 19 2× 19 2×
redh rd, rs, 2 4 1× 4 1×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 3 5 1× 5 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 4 7 1.5× 7 1.5×
redl rd, rs, 4 8 1.5× 7 2×
redh rd, rs, 5 13 2× 13 2×
redl rd, rs, 5 11 1.5× 10 2×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 6 9 1.5× 8 2×
redh rd, rs, 7 10 2× 10 2×
redl rd, rs, 7 13 2× 13 2×
redh rd, rs, 8 16 1.5× 16 1.5×
redl rd, rs, 8 15 1.5× 15 1.5×
redh rd, rs, 9 19 2× 19 2×
redl rd, rs, 9 17 2× 17 2×
ftchk rd, rs, 18 7 1× 5 1.5×
ftchk rd, rs, 19 8 1.5× 7 2×
ftchk rd, rs, 20 20 2.5× 18 2.5×
ftchk rd, rs, 21 21 2.5× 19 2.5×
ftchk rd, rs, 24 39 2.5× 36 3×
ftchk rd, rs, 25 39 2.5× 36 3×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 7 1× 6 1.5×
ftchk rd, rs, 4 18 2× 18 2×
ftchk rd, rs, 5 19 2× 19 2×
ftchk rd, rs, 8 36 2× 36 2×
ftchk rd, rs, 9 36 2× 36 2×
andc32 rd, rs1, rs2 7 1× 6 1.33×
xorc32 rd, rs1, rs2 4 1× 4 1×
xnorc32 rd, rs1, rs2 4 1× 3 1.33×
andc16 rd, rs1, rs2 9 1.33× 9 1.33×
xorc16 rd, rs1, rs2 4 1× 4 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 9 1.33× 9 1.33×
xorc8 rd, rs1, rs2 4 1× 4 1×
xnorc8 rd, rs1, rs2 4 1× 4 1×

bubbles in the pipeline). Figure 8 shows the modified units
in the five-stage BRISC-V processor core in grey.

Furthermore, to evaluate the area footprint of these
instructions, we synthesize the Skiva-V implementation us-
ing the complementary metal oxide semiconductor (CMOS)
180nm technology. The addition of Skiva-V instructions
comes at the cost of 4.96% area overhead. Table 6 shows
the area footprint in more detail.

4 CODING SUPPORT

One of the challenges for bitsliced programming is its code
generation. In our previous work [8], we presented an auto-
mated technique to generate code for a new programming
model, namely Parallel Synchronous Programming (PSP),

7

TABLE 6
Area overhead of 32-bit Skiva-V integrated into a five-stage pipeline

implementation of the RISC-V’s RV32I ISA synthesized for the CMOS
180nm technology.

RV32I RV32I+Skiva-V Overhead

area (um2) 145,313.46 152,515.91 4.96%

in which the expected run-time of the program is known
at the program development stage. Examples of parallel
synchronous programs have since been shown in software
implementation of light-weight encryption ciphers [24] and
variable-precision multiplication used in neural networks
[7]. In this section, we demonstrate how bitsliced programs
are a subset of the parallel synchronous programs and
therefore the automated code generator for PSP (i.e. PSPCG)
can be used to automate the generation of bitsliced code.

PSP is structurally similar to a finite state machine (FSM).
Parallel synchronous programs consist of a core function with
a status output that shows when the results are ready. This
core function will be called iteratively until the status output
shows the execution is done.
while (! s tat done) {

c o r e f (inputs , &outputs , &stat done) ;
}

We can treat bitslicing as a subset of PSP by unfolding
the loop and adding it into the logic of the core function.
This results in a flattened function containing only logic
operations and therefore is in bitsliced format. Hence we can
use the same automatic PSP code generation methodology
(PSPCG) for bitsliced codes; We start with the hardware
description of the bitsliced function in Verilog. Furthermore,
we describe the logic instructions AND, XOR, XNOR, and NOT
as logic gates in liberty format. We then use the open source
synthesis tool, Yosys [25], to map our Verilog code to a net-
list containing only the gates from the given library. From
the net-list, we generate the bitsliced C code and replace the
gates with their corresponding instructions from the desired
ISA in inline assembly format.

Coding for Skiva-V
To generate bitsliced code for Skiva-V, we follow the PSPCG
method as mentioned previously. In our custom library for
the Yosys synthesis tool, instead of using Skiva-V-specific
instructions, we use general instructions such as AND, OR,
etc.. In our C code, we define each of these general instruc-
tions as a sequence consisting of Skiva-V instructions in the
form of inline assembly. We add the proposed instructions
to the RISC-V GCC assembler in order for the mnemonics
of them to be recognizable by the assembler.

Cost of Transposition with ISE
Even though the transpose instructions ((inv)tr2h and
(inv)tr2l) reduce the overhead of transposing the data
significantly (Table 4 and Table 5), the overhead of transposi-
tion is still notable. For instance, in the 32-bit ISA, to perform
a full transposition over 32 32-bit registers, five rounds
of executing tr2h and tr2l instructions in a butterfly
pattern is required. This adds up to 80 tr2h and 80 tr2l

TABLE 7
Footprint of transposing 32-bit data forward and backward between

normal and bitsliced representations.

tr2h tr2l invtr2h invtr2l sw lw mv total

transpose 80 80 — — 40 72 0 272
reverse transpose — — 80 80 37 69 4 270

instructions which, depending on the implementation and
pipelining, takes around 160 clock cycles to run. If we also
consider the memory load and store operations and moving
data between registers, this process will be even longer.
As shown in Table 7, it takes around 270 instructions to
transpose thirty-two 32-bit registers.

The importance of this cost depends on the application.
If a program is completely bitsliced, the transposition is only
required once at the start and once at the end of the pro-
gram. However, this overhead becomes troublesome when a
program is a combination of bitsliced and non-bitsliced code
and the data has to be transposed back and forth multiple
times. This motivated our proposal for a Direct Memory
Access (DMA) module that handles the transpositions on
the fly. In the next section, we describe the proposed DMA.

5 DIRECT MEMORY ACCESS WITH TRANSPOSE
SUPPORT

In this section, we describe the Transpose DMA (T-DMA)
functionality, design, and the area footprint of the syn-
thesized circuit. T-DMA is capable of performing the
same operations as Skiva-V’s instructions (inv)tr2l,
(inv)tr2h, redl, redh, ftchk on the fly on up to 32
consecutive memory locations at once.

5.1 T-DMA Functionality

The proposed T-DMA module is capable of the following:

• Transposing/Reverse transposing an arbitrary num-
ber of memory locations (up to thirty-two) starting
from a source address and storing the result in given
addresses starting from an arbitrary destination ad-
dress.

• Generating/Removing the masking shares of data in
the source address according to the given Skiva-V
working mode.

• Generating/Removing the redundancy for the data
stored in given source address according to the given
Skiva-V working mode.

• Checking for consistency between the redundant
copies of the data stored in a given memory address.

5.2 T-DMA Design

Figure 9 shows the design of our proposed T-DMA module.
The T-DMA module consists of a controller and a datapath.
The system’s processor will program the T-DMA by writing
to the controller. Programming the DMA includes telling the
controller the D, Rs, direct/complementary redundancy,
source memory address, destination memory address, num-
ber of memory locations, number of valid bits in each

8

Controller

Datapath

Transposer

32

32

register
file

R
em

ov
e

R
ed

un
da

nc
y

R
ed

un
da

nc
y

U
nm

as
k

M
as

k

PRNG

FIFO

redundancy
error

config

R
A

M

R
A

M
pr

oc
es

so
r T-DMA

Fig. 9. Design of the T-DMA module.

location, and whether we need to {mask and duplicate} the
data or {unmask, and check and remove the redundancy}.

The controller, then, sets the signals for the datapath to
perform the transformations. At the core of the T-DMA’s
datapath design, is the transposer with a register file of thirty-
two 32-bit registers (128 bytes) tuned for a 32-bit micro-
architecture. Once the T-DMA starts the memory transfer,
it will load the data residing in a programmable number
of locations starting from a source address into the register
file. While transferring the data from the system’s RAM,
the existing redundancy and masking will be removed for
backward transposition. In case of a forward transposition,
the removal of redundancy and masking are turned off and
the masking shares for each bit of the data are generated
based on the programmed number of shares (D ∈ {1, 2, 4}).
We use the Cellular Automata-based PRNG3 to generate the
randomness required for masking the data.

Once the masking shares are generated, the data is for-
matted according to the programmed redundancy scheme
(Rs ∈ {1, 2, 4} and direct/complementary copy configura-
tion) and stored in the destination memory locations.

To perform the reverse transposition, the transposer first
checks for the correctness of the redundant data. Once
the correctness is ensured, it removes the redundancy and
unmasks the data. Finally, the dis-transposed data will be
saved to the destination addresses.

The output of the datapath is stored in a First In, First
Out (FIFO) memory. This memory stores the address and
data of each output to be sent to the system’s RAM. In our
implementation, the FIFO is 256 bytes with 32 entries of 64
bits wide (to store the concatenated 32-bit address and 32-bit
data). Once the transposition is done, T-DMA starts writing
each entry of the FIFO to the system’s RAM.

Despite only having a 32×32 register file in its trans-
poser, T-DMA is capable of transposing up to < 216 distinct
data each of length < 212 bits by being programmed only
once. This feature is enabled by the stride algorithm.

Following the stride algorithm, the data is divided into
blocks, each containing a maximum of 32 distinct data.
T-DMA transposes one block at a time; It takes 32-bit parts
(starting from the least significant bits) of each data in a
block to load the transposer’s register file. Subsequently,
T-DMA offloads the transposed data to the memory. It then
moves to the next 32 significant bits of the data in the
block. Once all the bits of the data in the current block are

3. https://github.com/secworks/ca prng

TABLE 8
Area break-down of the T-DMA modules synthesized for TSMC CMOS

180nm technology.

Module Absolute area (um2) Percent area

T-DMA 294,398.2676 100%
Contoller 21,969.5614 7.50%
FIFO 159,602.0136 54.20%
Datapath 87,406.2771 29.70%

Mem
InterfaceSkiva-V T-DMA

Mem
Arbiter

Data
Mem

Instr.
Mem

Integrated System

Fig. 10. Integration of Skiva-V and T-DMA.

transposed and stored in the destination addresses, it moves
to the next block.

5.3 Implementation
To evaluate the size of T-DMA, we synthesize the circuit
for TSMC’s 180nm CMOS technology library. Table 8 shows
the area break-down of the modules in our implementation
of T-DMA. The T-DMA implementation shows a total area
of less than 0.3mm2. The biggest contributor to this area is
the FIFO which is responsible for 54% of the total area. The
next biggest contributors are the datapath and the controller
modules taking 30% and 7% of the total area respectively.
The remaining area (8.6%) is dedicated to the PRNG and
the inter-module connections.

6 SYSTEM INTEGRATION

To integrate Skiva-V processor and the T-DMA, we make the
T-DMA implementation programmable from the processor
by making it address-accessible. We further equip the T-
DMA module with a status flag showing when a transaction
is in place between the T-DMA and the data memory.

Every memory access from the memory stage of the
pipeline goes through the memory interface. Figure 10
shows the connection between the modules in the integrated
system. The memory interface detects whether the address
is within the range of T-DMA or data memory.

In case of addressing the T-DMA, memory interface
starts the transmission with the T-DMA which can include
programming the T-DMA (write) or accessing its status bits
(read). When the processor is trying to access the data mem-
ory, the interface module communicates with the memory
arbiter.

Memory arbiter takes care of prioritizing memory ac-
cesses from the processor core and T-DMA. When T-DMA
is programmed to access the data memory, memory arbiter
prioritizes T-DMA’s memory access over the memory access
requests from the processor core. Therefore, the processor
core will insert bubbles into its pipeline while waiting for
the result of its memory access.

https://github.com/secworks/ca_prng

9

Implementation
We synthesize the integrated system (Figure 10) for the
TSMC’s 180nm CMOS technology library and measure the
total area of 518,018.9004um2. Subtracting the synthesized
area of the Skiva-V and T-DMA (reported in the previ-
ous sections) from the integrated system, consisting of the
memory arbiter module and the added logic to the memory
interface module, the integration adds around 0.07mm2 to
the overall area.

7 BENCHMARK

In the following, we run all the experiments on our inte-
grated system. We demonstrate the advantage of hardware
support for data transposition, the effect of richness of logic
instructions performance of bitsliced programs, and the
benefit of instruction-support for performance of masked
implementations.

7.1 Cost of Transposition
In Section 4, we emphasized the high performance toll of
data transposition, even with access to Skiva-V transpose
instructions, in terms of the required number of instruc-
tions. To characterize the overhead of transposition more
thoroughly, we evaluate the cost of transposition in our
implemented system in terms of the required number of
clock cycles.

We write a program in which K (2 ≤ K ≤ 32) adjacent
bits in a 32-bit register need to be transposed to reside in
1 bit of K registers. We run the same program in three
different settings: using only standard RV32I instructions,
using Skiva-V’s transpose instructions, i.e., tr2l and tr2h,
and using the T-DMA. We compare the first two cases in
terms of number of required instructions and all three cases
in terms of number of clock cycles.

Using the instructions in Skiva-V provides between 3×
to 10× decrease in the number of instructions depending
on the value of K . Furthermore, as Figure 11 shows, for
each K , the number of clock cycles required to transpose
K adjacent bits in a 32-bit register is reduced between 3×
to 6× using the Skiva-V instructions. T-DMA and Skiva-V
perform closely in this scenario with T-DMA having a better
performance for K ≥ 19.

These results confirm the benefits of the transpose in-
structions in Skiva-V. However, to demonstrate the benefits
of having the T-DMA, we run another experiment in which
K ∈ {2, 4, 8, 16, 32} bits in K registers need to be trans-
posed. Figure 12 shows that as K increases, the run-time
of this transposition increases linearly (14k + 19, R2 = 1)
using the T-DMA but quadratically using the instructions
in Skiva-V (1.54k2 − 4.3k + 64.9, R2 = 1) and RV32I
(55.1k2 + 125k − 469, R2 = 1).

7.2 Effect of Logic Instruction Richness
In this experiment, we implement the bitsliced version of
several cryptographic ciphers, namely LED 64 [26], Present
[27], Midori [28], and Simon [29], for the RV32I ISA and
compare their performance with that of the bitsliced code
for Cortex-M4 ISA reported in our previous work [8]. Our
goal is to show the effect of the richness of logic operations

Number of bits to transpose (K)

N
um

be
r o

f c
lo

ck
 c

yc
le

s

0

100

200

300

400

500

600

700

800

900

0 4 8 12 16 20 24 28 32

RV32I Skiva-V T-DMA

Fig. 11. Number of clock cycles to transpose K adjacent bits of one
register.

Fig. 12. Number of clock cycles required to transpose K adjacent bits in
K registers.

in the performance of bitsliced programs. Table 9 shows that
bitsliced programs for Cortex-M4 perform 1.6× to 2× faster
than RV32I which is attributed to the richer set of bit-wise
logic operations available on Cortex-M4 (i.e., AND, BIC,
EOR, MOV, MVN, ORN, ORR).

7.3 Masked Implementations of LWC Ciphers
We take the finalists of the NIST’s Light-Weight Cryptogra-
phy (LWC) competition that mention masking as their de-
sign options; ASCON [30] and GIFT-COFB [31]. We generate
the masked implementation of their permutations (shown in
Listing 3 and Listing 4) for D ∈ {1, 2, 4} number of shares
using the discussed code-generation method (Section 4). In
the D=1, D=2, and D=4 settings, we support 32, 16, and
8 parallel executions respectively. We run the generated
programs on Skiva-V system and calculate the number of
cycles.

To supply the required randomness, we assume that the
system has access to a pseudo-random number generator
(PRNG) with a high throughput so that accessing a ran-
dom number is equivalent to reading a register. Listing 1
and Listing 2 show the assembly code for masked 2-input
AND instruction with D=2 and D=4 masked shares which
follow the scheme described by Barthe et al. [18] and use
the subrot instruction available in Skiva-V for rotation of
shares sitting adjacently in the registers. Note that in this
section, we do not perform any redundant computation, i.e.,
Rs = 1. In case of using complementary redundancy, the
corresponding complementary logic instructions (described
in Section 3.1) would replace the and and xor operations in
Listing 1 and Listing 2.

10

TABLE 9
Reciprocal of performance (cycles/byte).

cipher bitsliced (Cortex-M4) [8] bitsliced (RV32I)

LED 64 546.676 889.309
Present 399.61 769.156
Midori 236.9 379.332
Simon 744.48 1549.934

Listing 1. First-order masked implementation of AND operation. Inputs
are at a1,a5, random numbers are at a0,a4, the output is written in
a6.

xor t0 , a1 , a0
subrot s0 , a0 , 2
xor t2 , t0 , s0
xor s0 , s0 , s0
and a7 , a5 , t2
subrot t5 , t2 , 2
and t1 , t5 , a5
xor t5 , t5 , t 5
xor t3 , a4 , a7
xor t4 , t3 , t 1
subrot t6 , a4 , 2
xor a6 , t6 , t 4

Listing 2. Third-order masked implementation of AND operation. Inputs
are at a2,a4, random numbers are at a3,a5, the output is written in
a1.

xor s2 , a3 , a2
subrot s4 , a2 , 4
xor s3 , s2 , s4
xor s4 , s4 , s4
and a0 , s3 , a5
subrot t0 , s3 , 4
and a6 , t0 , a5
subrot s0 , a5 , 4
and a7 , s0 , s3
subrot t2 , t0 , 4
and t1 , t2 , a5
xor t0 , t0 , t 0
xor s0 , s0 , s0
xor t2 , t2 , t 2
xor t3 , a4 , a0
xor t4 , t3 , a6
xor t5 , t4 , a7
subrot s1 , a4 , 4
xor t6 , t5 , s1
xor a1 , t6 , t 1

Table 10 reports the number of cycles per byte calculated
as c

s×p where c is the number of clock cycles, s is the size of
the state of the cipher in bytes (3208 for ASCON and 128

8 for
GIFT-COFB), and p is the number of parallel runs.

Listing 3. ASCON permutation
void ascon perm (i n t * s t a t e , i n t * round const) {

for (i = 0 ; i <12; i ++) {
add constant (s t a t e , round const [i]) ;
s u b s t i t u t i o n (s t a t e) ;
l i n e a r d i f f u s i o n (s t a t e) ;

}
}

Listing 4. GIFT permutation
void gift perm (i n t * s t a t e , i n t * key) {

for (i = 0 ; i <40; i ++) {
s u b c e l l s (s t a t e) ;
perm bits (s t a t e) ;
add roundkey (s t a t e , key) ;
key update (key) ;

}
}

As a comparison, we compare our results with a similar
work, Tornado [32], which reports the same cycles/byte
metric for the masked implementations (with the same fast
assumption on the PRNG) of the same permutations of the
LWC candidates but on Cortex-M4. Table 10 highlights the
advantage of having hardware support for bitslicing. First,
for an unmasked implementation (D=1), Tornado reports
higher performance. Note that we assume the data is al-
ready in bitsliced (and masked if D 6= 1) format hence
the transposition is not included in our measurements.
Therefore, for unmasked implementations, the Skiva-V in-
structions are not used and the comparison is between the
RISC-V RV32I and Cortex-M4 ISAs and the code generation
process. Thus, the higher performance reported by Tornado
can be attributed to the more advanced nature of Cortex-M4
ISA compared to the RISC-V ISA and to the code genera-
tion tool. Second, for a third-order masked implementation
(D=4), we observe that Skiva-V can result in 1.5× and 3.2×
speedup for ASCON and GIFT-COFB respectively. Since
Tornado does not report first-order masking results, we
were not able to compare with Skiva-V for the D=2 setting.

We further analyze this data in terms of added number
of clock cycles per unit increase in the masking order. This
criterion depends on the cipher algorithm and the imple-
mentation of the algorithm. Since our goal is to compare
the implementations, and not the cipher algorithms, we
compare this criterion for ASCON and GIFT separately. For
this purpose, we make a linear regression of the cycles/byte
vs. number of shares (D) as reported in Table 10.

The trend-line of the linear regression for ASCON’s
perfomance is 613D − 476 for Skiva-V and 990D − 889 for
Tornado. This means increasing the order of masking by
one, will cause 613 extra clock cycles for Skiva-V and 990
for Tornado (1.6× increase compared to Skiva-V).

The same experiment for GIFT’s performance shows a
trend-line of 1002D − 587 for Skiva-V and 3574D − 3216
for Tornado. For this cipher, the increase of clock cycles is
more significant than ASCON which can be attributed to the
multiplicative complexity of its algorithm. Furthermore, for
an increase of one in the masking order, Tornado is affected
by a 3.6× higher increase in the required clock cycles than
Skiva-V.

8 CONCLUSION

Bitsliced programming has been gaining attention in var-
ious applications, providing higher throughput to the the
program. Application-specific instruction set extensions are
becoming more relevant since the introduction of RISC-
V open-source ISA. We presented hardware support for
bitsliced programming which can mitigate the known issues
of bitslicing and improve the performance gain of this
model of programming. Our hardware support consists of

11

TABLE 10
Reciprocal of performance (cycles/byte).

The PRNG is assumed to have a high enough throughput to not cause any reading delay.
Tornado results are for ARM Cortex-M4; Skiva-V results are for RISC-V RV32I with extensions.

Cipher D=1 (no masking) D=2 (first-order masking) D=4 (third-order masking)

Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up

ASCON 101 159.677 0.633 - 717.495 - 3070 1988.903 1.544
GIFT 358 441.941 0.810 - 1378.141 - 11080 3435.656 3.225

custom instructions added to the RISC-V processor and a
transposition-equipped DMA module that can be added
to an SoC to handle data transformations necessary for
bitsliced programs on the fly. We further evaluated the area
footprint of our proposed implemented modules and their
performance boost through simulated experiments.

REFERENCES

[1] E. Biham, “A fast new DES implementation in software,” in
International Workshop on Fast Software Encryption. Springer, 1997,
pp. 260–272.

[2] C. Rebeiro, D. Selvakumar, and A. Devi, “Bitslice implementation
of aes,” in International Conference on Cryptology and Network Secu-
rity. Springer, 2006, pp. 203–212.

[3] W. de Groot, K. Papagiannopoulos, A. de La Piedra, E. Schneider,
and L. Batina, “Bitsliced masking and arm: Friends or foes?” in
International Workshop on Lightweight Cryptography for Security and
Privacy. Springer, 2016, pp. 91–109.

[4] J. Daemen, M. Peeters, and G. Van Assche, “Bitslice ciphers and
power analysis attacks,” in International Workshop on Fast Software
Encryption. Springer, 2000, pp. 134–149.

[5] S. Matsuda and S. Moriai, “Lightweight cryptography for the
cloud: exploit the power of bitslice implementation,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2012, pp. 408–425.

[6] S. Xu and D. Gregg, “Bitslice vectors: A software approach to
customizable data precision on processors with simd extensions,”
in 2017 46th International Conference on Parallel Processing (ICPP).
IEEE, 2017, pp. 442–451.

[7] R. Singh, T. Conroy, and P. Schaumont, “Variable precision multi-
plication for software-based neural networks,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–7.

[8] P. Kiaei and P. Schaumont, “Synthesis of parallel synchronous
software,” IEEE Embedded Systems Letters, pp. 1–1, 2020.

[9] A. Zeh, A. Glew, B. Spinney, B. Marshall, D. Page, D. Atkins,
K. Dockser, M.-J. O. Saarinen, N. Menhorn, and R. Newell, “Risc-v
cryptographic extension proposals.”

[10] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini,
“Design and evaluation of smallfloat simd extensions to the risc-v
isa,” in 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, pp. 654–657.

[11] P. Kiaei and P. Schaumont, “Domain-oriented masked instruction
set architecture for risc-v.” IACR Cryptol. ePrint Arch., vol. 2020, p.
465, 2020.

[12] P. Kiaei, D. Mercadier, P.-E. Dagand, K. Heydemann, and P. Schau-
mont, “Custom instruction support for modular defense against
side-channel and fault attacks,” in Constructive Side-Channel Anal-
ysis and Secure Design, G. M. Bertoni and F. Regazzoni, Eds. Cham:
Springer International Publishing, 2021, pp. 221–253.

[13] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Reveal-
ing the secrets of smart cards. Springer Science & Business Media,
2008, vol. 31.

[14] D. Goudarzi, A. Journault, M. Rivain, and F. Standaert, “Secure
multiplication for bitslice higher-order masking: Optimisation
and comparison,” in Constructive Side-Channel Analysis and Secure
Design - 9th International Workshop, COSADE 2018, Singapore, April
23-24, 2018, Proceedings, ser. Lecture Notes in Computer Science,
J. Fan and B. Gierlichs, Eds., vol. 10815. Springer, 2018, pp. 3–22.
[Online]. Available: https://doi.org/10.1007/978-3-319-89641-0 1

[15] S. Dhooghe and S. Nikova, “My gadget just cares for me - how
nina can prove security against combined attacks,” in Topics in
Cryptology – CT-RSA 2020, S. Jarecki, Ed. Cham: Springer Inter-
national Publishing, 2020, pp. 35–55.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999, pp. 388–
397.

[17] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in International workshop on cryptographic
hardware and embedded systems. Springer, 2004, pp. 16–29.

[18] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert,
and P.-Y. Strub, “Parallel implementations of masking schemes
and the bounded moment leakage model,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2017, pp. 535–566.

[19] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun, “Horizontal
side-channel attacks and countermeasures on the ISW masking
scheme,” in International Conference on Cryptographic Hardware and
Embedded Systems. Springer, 2016, pp. 23–39.

[20] S. Belaı̈d, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard,
and D. Vergnaud, “Randomness complexity of private circuits for
multiplication,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2016, pp. 616–
648.

[21] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in International
conference on the theory and applications of cryptographic techniques.
Springer, 1997, pp. 37–51.

[22] K. Asanovic and A. Waterman, “The risc-v instruction set man-
ual,” in Privileged Architecture, Document Version 20190608-Priv-
MSU-Ratified. RISC-V Foundation, 2019, vol. 2.

[23] S. Bandara, A. Ehret, D. Kava, and M. A. Kinsy, “Brisc-v: An
open-source architecture design space exploration toolbox,” arXiv
preprint arXiv:1908.09992, 2019.

[24] P. Kiaei, A. S. Krishnan, and P. Schaumont, “Parallel synchronous
code generation for second round light weight candidates.” Pro-
ceedings of the NIST Lightweight Cryptography Workshop, 2020.

[25] “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/,
accessed: 2021-2-18.

[26] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The led
block cipher,” in International workshop on cryptographic hardware
and embedded systems. Springer, 2011, pp. 326–341.

[27] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in International workshop on cryptographic
hardware and embedded systems. Springer, 2007, pp. 450–466.

[28] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Ak-
ishita, and F. Regazzoni, “Midori: A block cipher for low energy,”
in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2015, pp. 411–436.

[29] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The simon and speck lightweight block ciphers,” in
Proceedings of the 52nd Annual Design Automation Conference, 2015,
pp. 1–6.

[30] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon
v1. 2,” Submission to the CAESAR Competition, 2016.

[31] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“Gift: a small present,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2017, pp. 321–345.

[32] S. Belaı̈d, P.-E. Dagand, D. Mercadier, M. Rivain, and R. Winters-
dorff, “Tornado: Automatic generation of probing-secure masked
bitsliced implementations,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2020, pp. 311–341.

https://doi.org/10.1007/978-3-319-89641-0_1
http://www.clifford.at/yosys/

12

Pantea Kiaei (Student Member, IEEE) Pantea Kiaei is a Ph.D. student in
Electrical and Computer Engineering at Worcester Polytechnic Institute.
She received her MS degree in Computer Engineering from Virginia
Tech in 2019 and prior to that received her BS degree in Electrical
Engineering from Sharif University of Technology, Iran, in 2017. She has
reviewed papers for ACM TECS and ACM JETC journals. Her research
interests include secure hardware design, computer architecture, and
trustworthy secure systems.

Tom Conroy was an MS student in Electrical and Computer Engineer-
ing at Virginia Tech. He received his MS degree in Computer Engineer-
ing in 2021 and his BS in Computer Engineering in 2019, both from
Virginia Tech. He has since joined The Johns Hopkins University Applied
Physics Laboratory as an Electronic Systems Engineer. His research
interests include secure hardware design, efficient cryptographic imple-
mentation on embedded systems, and embedded system security.

Patrick Schaumont (Senior Member, IEEE) is a Professor in Computer
Engineering at WPI. He received the Ph.D. degree in Electrical Engi-
neering from UCLA in 2004 and the MS degree in Computer Science
from Ghent University in 1990. He was a staff researcher at IMEC,
Belgium from 1992 to 2000. He was a faculty member with Virginia Tech
from 2005 to 2019. He joined WPI in 2020. He was a visiting researcher
at the National Institute of Information and Telecommunications Technol-
ogy (NICT), Japan in 2014. He was a visiting researcher at Laboratoire
d’Informatique de Paris 6 in Paris, France in 2018. He is a Radboud Ex-
cellence Initiative Visiting Faculty with Radboud University, Netherlands
from 2020. His research interests are in design and design methods of
secure, efficient and real-time embedded computing systems.

	Introduction
	Preliminaries
	Bitslicing
	Masking
	Redundant Computation

	Processor Support
	Instruction Definitions
	ISA-level Performance Analysis
	Implementation

	Coding Support
	Direct Memory Access with Transpose Support
	T-DMA Functionality
	T-DMA Design
	Implementation

	System Integration
	Benchmark
	Cost of Transposition
	Effect of Logic Instruction Richness
	Masked Implementations of LWC Ciphers

	Conclusion
	References
	Biographies
	Pantea Kiaei
	Tom Conroy
	Patrick Schaumont

