
Hierarchical Integrated Signature and Encryption
(or: Key Separation vs. Key Reuse: Enjoy the Best of Both Worlds)

Yu Chen ∗ Qiang Tang † Yuyu Wang ‡

Abstract

In this work, we introduce the notion of hierarchical integrated signature and encryption (HISE),
wherein a single public key is used for both signature and encryption, and one can derive a secret
key used only for decryption from the signing key, which enables secure delegation of decryption
capability. HISE enjoys the benefit of key reuse, and admits individual key escrow. We present two
generic constructions of HISE. One is from (constrained) identity-based encryption. The other is from
uniform one-way function, public-key encryption, and general-purpose public-coin zero-knowledge
proof of knowledge. To further attain global key escrow, we take a little detour to revisit global
escrow PKE, an object both of independent interest and with many applications. We formalize the
syntax and security model of global escrow PKE, and provide two generic constructions. The first
embodies a generic approach to compile any PKE into one with global escrow property. The second
establishes a connection between three-party non-interactive key exchange and global escrow PKE.
Combining the results developed above, we obtain HISE schemes that support both individual and
global key escrow.

We instantiate our generic constructions of (global escrow) HISE and implement all the resulting
concrete schemes for 128-bit security. Our schemes have performance that is comparable to the best
Cartesian product combined public-key scheme, and exhibit advantages in terms of richer function-
ality and public key reuse. As a byproduct, we obtain a new global escrow PKE scheme that is
12− 30× faster than the best prior work, which might be of independent interest.

∗School of Cyber Science and Technology, Shandong University. Email: yuchen.prc@gmail.com
†University of Sydney. Email: qtang84@gmail.com
‡University of Electronic Science and Technology of China. Email: wangyuyu@uestc.edu.cn

Contents
1 Introduction 2

1.1 Our Contributions . 3
1.2 Related Works . 6

2 Preliminaries 7
2.1 One-Way Function . 7
2.2 Constrained Identity-Based Encryption . 7

3 Definition of HISE 8

4 HISE from (Constrained) Identity-Based Encryption 10
4.1 HISE from Constrained IBE . 10
4.2 HISE from IBE . 12

5 HISE from PKE and ZKPoK 13

6 Global Escrow PKE 19
6.1 Global Escrow PKE from PKE and NIZK . 20
6.2 Global Escrow PKE from Three-party NIKE and SKE . 21

7 Instantiations 24
7.1 Two Instantiations of HISE . 24
7.2 Two Instantiations of Global Escrow HISE . 26
7.3 Instantiation of Global Escrow HISE (via GE conversion) 26
7.4 Instantiation of Global Escrow HISE (via HI conversion) 27

8 Comparison and Evaluation 27
8.1 Comparison of Security and Functionality Properties . 27
8.2 Efficiency Evaluation of (Global Escrow) HISE . 28
8.3 Comparison of Global Escrow PKE . 29

9 Conclusion 29

A Review of Standard Cryptographic Primitives 33
A.1 Bilinear Maps . 33
A.2 Symmetric Key Encryption . 33
A.3 Public Key Encryption . 34
A.4 Digital Signature . 34
A.5 Identity-Based Encryption . 35
A.6 Binary Tree Encryption . 36
A.7 Zero-Knowledge Protocols . 36
A.8 Non-Interactive Key Exchange . 38

B Miscellaneous 39
B.1 Global Escrow PKE Scheme . 39
B.2 Constrained IBE for Prefix Predicates from BTE . 40
B.3 More Eligible PKE Candidates for the Second HISE Construction 40

1

1 Introduction
Public-key encryption (PKE) and digital signature are widely used in combination in many real-world
applications, where the former is used to protect data confidentiality, and the latter is used to provide
authenticity. For example, in secure communication applications such as PGP [PGP], supposing that
Alice wants to send an email to Bob in a secure and authenticated manner, she first encrypts the
email under Bob’s public-key, and then signs the ciphertext using her signing key. In privacy-preserving
cryptocurrencies such as Zether [BAZB20], to generate a confidential transaction, a sender account
encrypts the transfer amount under the public keys of both the sender account and receiver account, and
then signs the transaction using his secret spending key.

When using PKE and signature schemes simultaneously, we require joint security, i.e., their respective
security properties are retained in the presence of additional oracles (if there is any, e.g., signing oracle
and decryption oracle). The reason is that although PKE and signature schemes might have been proven
to be secure individually, they may undermine each other if their respective keys are related. Typically,
there are two principals for combining PKE and signature.

Key separation vs. key reuse. The key separation principal is an engineering folklore that dictates
using different keypairs for different cryptographic operations, which is best illustrated by the “Cartesian
product” combined public-key (CPK) scheme: each user independently generates a keypair (ek, dk) for
PKE and a keypair (vk, sk) for digital signature, concatenates the two keypairs into one, and then uses
appropriate component of the compound key for each operation. Key separation allows one to flexibly
choose and combine the off-the-shelf PKE and signature schemes, and the joint security follows readily
from the independence of the two keypairs. However, it has an obvious shortcoming that the key size
and the complexity of key management are doubled.1

In contrast, the key reuse principal is using identical keypair, e.g., for both PKE and signatures,
and we refer to such cryptosystem as integrated signature and encryption (ISE). To avoid triviality, the
keypair should be non-splittable, namely, it cannot be broken into two pieces for different operations
respectively.

As advocated by Paterson et al. [PSST11], adopting key reuse principal is beneficial, since it can
reduce key storage requirements, reduce the number of certificates needed (which in turn reduces the
certificate cost2), and reduce the footprint of cryptographic code and development effort. These sav-
ings could be vital in constrained environments such as embedded systems and low-end smart card
applications. For instance, the globally-deployed EMV standard for authenticating credit and debit
card transactions uses the same keypair for both encryption and signature precisely for these reasons
(see [EMV11, Sec. 7]). Other real world instances embracing key reuse include identity management so-
lution provider Ping Identity [Pin] and RFC 4055. We highlight that the key reuse principal also helps to
simplify the design of high-level protocols. Notably, most known privacy-preserving cryptocurrencies in
the account model [NVV18, BAZB20, CMTA20] either explicitly or implicitly use ISE as a core building
block, which enables a clean security notion and simple constructions.

Nevertheless, key reuse is not without its issues. In an ISE scheme, the reuse of a single keypair
may hinder the individual security of the PKE or the signature scheme, (consider the textbook RSA
cryptosystem as a simple example and see [DLP+12] for a more sophisticated example at the protocol
level). Therefore, joint security of ISE is not immediate and a rigorous proof is always needed.

Also, Haber and Pinkas [HP01] pointed out that secret keys may require different levels of protection,
which becomes out of reach when sticking to key reuse principal. A more puzzling issue, as we elaborate
next, is that rigid adherence to key reuse principal introduces hurdles on applications that require key
escrow.

Delegation of decryption capability. In privacy-preserving applications enabled by PKE, a user
may want to delegate his decryption capability to an agent for key recovery or usability purpose, while

1One may attempt to include the encryption key ek and verification key vk into one certificate in order to keep the
certificate cost unchanged. Unfortunately this theoretically possible solution is not standard-compliant. X.509v3 as per
RFC 5280 [X50] only allows a single subjectPublicKeyInfo field. If one wants to add more than one public key into this
field, new syntax or parsing rule are needed, which would require major changes to implementations and relevant libraries.
In contrast, key reuse is readily supported by X.509v3 via the keyUsage field.

2Certificate costs include but not limit to registration, issuing, storage, transmission, verification, and building/recurring
fees.

2

an authority (law-enforcement agencies as well as other organizations) may want to acquire decryption
capability of users for compliance purpose. This is where key escrow comes into play. In general, there
are two types of key escrow mechanisms.

The individual key escrow means that the user simply shares his decryption key with the escrow
agent. Such delegation of decryption capability is of “one-to-one” flavor, and under the control of each
individual user. The global key escrow means that the escrow agent has a single “master” key to decrypt
any ciphertext of any user. Such delegation of decryption capability is of “all-to-one” flavor. We note
that individual key escrow implies a naive solution to global key escrow by having the agent maintain a
big database of all individual decryption keys. However, this naive solution comes with two deficiencies:
(i) the complexity of key management grows linearly with the number of keys, which severely limits
scalability, and thus being inadequate for large-scale applications; (ii) collecting a large number of valid
decryption keys could be difficult to conduct in practice.

Conflict between key reuse and key escrow. In the context of combined usage of PKE and
signature, the original joint security is insufficient to enable individual key escrow, and strong joint
security is needed. This is because now the adversary is directly given the decryption key, instead of
just a decryption oracle (as we still want to ensure integrity even if escrow agent is corrupted). Clearly,
the ISE schemes adhering to key reuse strategy fail to meet strong joint security as the same secret
key is used for both decryption and signing, and consequently individual key escrow is insecure since
a corrupted escrow agent is able sign on behalf of the user, a basic violation of the concept of digital
signing [Ros] (and cannot be applied to many settings such as anonymous cryptocurrency).

From the above discussion, we are facing a dilemma between key reuse that brings performance benefit
and key separation that supports key escrow mechanism. We are thus motivated to ask the following
intriguing questions:

Can we enable individual key escrow mechanism while retaining the merits of key reuse? And, can we
further support global key escrow mechanism?

1.1 Our Contributions
We answer the above questions affirmatively and have the following results.

Hierarchical integrated signature and encryption. In an ISE scheme, a single keypair is used
for both encryption and signature, thus the exposure of decryption key will completely compromise
the security of signature. A closer look indicates that if there is a hierarchy between the signing key
and decryption key, then stronger joint security becomes possible. We put forth a new notion called
hierarchical integrated signature and encryption (HISE). In an HISE scheme, a single public key is
used for both encryption and signature verification; the signing key plays the role of “master” secret key,
namely, one can derive a decryption key from the signing key but not vice versa. This two-level hierarchy
key derivation structure hits a sweet balance between key separation and key reuse, and thus allows us
to enjoy the best of both worlds. It not only admits individual key escrow mechanism and classified
protection of signing key and decryption key, but also retains the benefit of key reuse strategy.3

We specify a strong joint security model for HISE schemes by capturing multifaceted attacks in the
joint sense. For confidentiality, we stipulate that the PKE component satisfies indistinguishability against
chosen-ciphertext attacks (IND-CCA) even the adversary is provided with unrestricted access to a signing
oracle. For authenticity, we stipulate that the signature component satisfies existentially unforgeability
against chosen-message attacks (EUF-CMA) even the adversary is directly given the associated decryption
key. We then present two generic constructions of HISE schemes.

HISE from (constrained) IBE. Our first construction is inspired by the elegant ISE construction due to
Paterson et al. [PSST11]. In their construction, they apply the Naor transform [BF03] and the tag-based
version of the Canetti-Halevi-Katz (CHK) transform [BCHK07] to an identity-based encryption (IBE)
scheme simultaneously, yielding a signature component and a PKE component in one shot. The two
components share the same keypair, i.e., the master keypair of the underlying IBE. Note that signatures

3As briefly elaborated before, the advantage of key reuse strategy mostly resides in the fact that one public key is used
for both encryption and verification.

3

in the signature component derived from the Naor transform are private keys for messages (playing the
role of identities), while these private keys can decrypt ciphertexts in the PKE component derived from
the CHK transform. To attain joint security, they use a bit prefix in the identity space to provide a
domain separation between the identities used for encoding messages and the identities used as tags.
However, ISE schemes from IBE do not directly lend themselves to HISE schemes, as the master secret
key of IBE plays the roles of both the signing key and decryption key.

We resolve this problem by introducing a new notion called constrained IBE (see Section 2.2 for
definition and construction) as our starting point. In a constrained IBE one can derive constrained keys
skf for f ∈ F from the master secret key, where F is a predicate family defined over identity space, e.g., a
family of prefix predicates. A constrained key skf enables the decryption of ciphertexts encrypted under
id if and only if f(id) = 1. We are now ready to sketch our HISE construction from any constrained
IBE that supports prefix predicates, which is in turn implied by binary tree encryption (BTE) [CHK03].
Suppose the identity space I of the underlying constrained IBE is {0, 1}ℓ+1, we use bit prefix to partition
I to two disjoint sets, say, I0 starting with bit 0 and I1 starting with bit 1. The key generation algorithm
first generates a master keypair (mpk,msk) of the constrained IBE, sets mpk as the public key and msk
as the secret key, and derives a constrained key skf1 from msk, where f1(id) = 1 iff id ∈ I1. Thanks to
the properties of constrained IBE, skf1 can decrypt all ciphertexts encrypted under identities in I1, and
thus could serve as the decryption key. We then build the signature component from the constrained
IBE via the Naor transform by encoding messages into I1, and build the encryption component from the
constrained IBE and one-time signature via the CHK transform by using identities from I1 as tags. The
security of constrained IBE implies that the signature component remains secure even in the presence of
the decryption key. In this way, we obtain HISE with strong joint security in the standard model.

We remark that if one does not insist on joint security in the standard model, then it is not necessary
to resort to the CHK transform to achieve CCA security. As a result, a much simpler construction of
HISE can be built from any IBE. The construction is similar to the one from constrained IBE, except that
I1 shrinks to a single identity fixed in the public parameters, and the encryption component is obtained
by applying the IBE-to-PKE degradation and the Fujisaki-Okamoto transformation [FO99] sequentially.

HISE from PKE and ZKPoK. Our second construction is from PKE and zero-knowledge proof of knowl-
edge (ZKPoK). At the heart of it is a novel hierarchical key derivation mechanism. Roughly speaking,
the key generation algorithm consists of two steps: (1) choosing a random bit string as the signing
key, and then map it to random coins via a uniform one-way function (OWF) F (a OWF that outputs
uniform bits when input uniform bits); (2) feeding the resulting random coins to the key generation
algorithm of PKE, yielding a keypair. The public key serves as both the encryption key and verification
key. The encryption component is exactly the underlying PKE. In this way, the decryption key can
be easily derived from the signing key, but not vice versa. The merit of the above hierarchical key
derivation mechanism is that it endows great flexibility of the underlying PKE schemes, and thus is of
particular interest for application scenarios where it is desirable to upgrade the PKE in use to HISE in
a seamless way. However, it also gives rise to a technical challenge: how to design a signature scheme
with an unstructured bit string as the signing key, which should remain secure even in the presence of
partial leakage, say, the decryption key. We show that if the function G from random coins to public
key induced by the key generation algorithm is target-collision resistant, then the composed function
G◦F from signing key to public key is one-way even with respect to arbitrary leakage of the intermediate
random coins, let alone the decryption key. Therefore, we can overcome the aforementioned difficulty
by leveraging public-coin ZKPoK. A signature is a non-interactive zero-knowledge proof of the signing
key, incorporating a message to be signed. This construction essentially embodies a generic approach of
converting any PKE to HISE with the help of ZKPoK (we refer to it as the HI conversion hereafter).

We note that the high-level idea of using OWF and ZKPoK to build signatures had appeared in
previous works [CDG+17, KKW18], but our usage of this technique is qualitatively different. Prior
works focus on building a standalone signature scheme: the public key is simply an image y = F(x) of
a OWF F and secret key x. In our construction, we aim to add signature functionality to existing PKE
schemes, yielding HISE schemes with strong joint security. To do so, the public key is set as the output of
secret key via a function composed of a OWF and the PKE’s key generation algorithm. Careful analysis
of the minimal requirements on the OWF and key generation algorithm, as well as the HISE construction
we propose, are new to this work.

Supporting global key escrow. We then turn to the problem of equipping HISE with global key

4

escrow mechanism. To make our techniques more general, we first take a little detour to revisit the topic
in the setting of PKE.

Global escrow PKE. In global escrow PKE there is an escrow agent holding a global escrow decryption
key that can decrypt ciphertexts encrypted under any public key. The state of the art of global escrow
PKE is less satisfactory, which is long overdue for formal definition and efficient construction. So far,
the only known practical scheme based on standard assumption is the escrow ElGamal PKE proposed
by Boneh and Franklin [BF03] from bilinear maps.

At first glance, it seems that global escrow PKE can be trivially built from broadcast encryption by
having the receiver set include the real intended receiver and the escrow agent. However, the idea does
not work since the sender in broadcast encryption is always assumed to be honest, while in the context
of global escrow PKE the sender could be malicious (e.g. generate ciphertexts dishonestly) especially if
he has the incentive to evade the oversight of escrow agent. To capture such misbehaving, we introduce
the “consistency” notion to enforce the decryption results of any ill-formed ciphertexts yielded by the
receiver’s decryption key and the global escrow decryption key to be identical. We then propose two
generic constructions of global escrow PKE.

Our first construction is based on PKE and non-interactive zero-knowledge proof (NIZK) (see Sec-
tion 6.1 for details). The escrow agent generates a keypair (pkγ , skγ), then publishes pkγ as public
parameters, and uses skγ as the global escrow decryption key. To generate a ciphertext for the receiver
holding public key pkβ , the sender encrypts the plaintext under pkβ and pkγ respectively, and then
appends a NIZK proof for the validity of encryption. To decrypt a ciphertext, the receiver (resp. escrow
agent) first checks if the proof is valid, and then decrypts with secret key skβ (resp. skγ) if so or returns
⊥ otherwise. The main purpose of using NIZK is to guarantee the consistency of decryption results
yielded by the receiver’s decryption key and global escrow decryption key, while a bonus is that the
resulting global escrow PKE automatically satisfies CCA security. This construction can be interpreted
as a novel usage of the celebrated Naor-Yung paradigm [NY90], which indicates that any PKE can be
upgraded to support global escrow with the help of NIZK (we refer to it as the GE conversion hereafter).

Our second construction is based on three-party non-interactive key exchange (NIKE) (see Section 6.2
for details). Same as our first construction, the escrow agent generates a keypair (pkγ , skγ), publishes
pkγ as part of public parameters, and uses skγ as the global escrow decryption key. To generate a
ciphertext for the receiver holding public key pkβ , the sender generates a random keypair (pkα, skα), and
then runs the three-party NIKE in his head to compute a shared key among (pkα, pkβ , pkγ). The final
ciphertext consists of pkα and a symmetric encryption of plaintext under the shared key. To decrypt,
the receiver (resp. escrow agent) uses secret key skβ (resp. skγ) to compute the shared key among
(pkα, pkβ , pkγ), and then decrypts the symmetric part. This construction suggests a generic approach
of converting three-party NIKE to global escrow PKE, uncovering a connection between two seemingly
unrelated notions. More interestingly, we show that the construction still works by relying on a relaxed
version of three-party NIKE, leading to the most efficient global escrow PKE to date (outperforms prior
scheme [BF03] in speed by a factor 12− 30×), which might be of independent interest.

Global escrow HISE. Now, we are ready to construct HISE that supports global key escrow mechanism
that we dub “global escrow HISE”. In a global escrow HISE, the escrow agent is capable of decrypting
any ciphertext under any public key with a succinct global escrow decryption key, while the security of
the signature component retains even in the presence of the associated individual decryption key and the
global escrow decryption key. Combining the results developed above, we obtain two paths of building
global escrow HISE from different starting points. One is to apply the Naor-Yung like transform (GE
conversion) to any HISE, and the other is to add hierarchy key derivation structure (HI conversion) to
any global escrow PKE meeting the mild requirement described above. Figure 1 depicts the technology
roadmap for the constructions of global escrow HISE.

Applications of (global escrow) HISE. Besides the merit of compact public key sizes, (global escrow)
HISE also helps to reduce the key management complexity and simplify the design and analysis of
high-level protocols. In general, they are suitable for scenarios that simultaneously require privacy,
authenticity and key escrow. Below, we give several illustrative usages.

Usage of HISE. In privacy-preserving cryptocurrencies such as Zether [BAZB20], a user may need to

5

global escrow HISE

HISE

(constrained) IBE PKE+ZKPoK

HI conversion

GE conversion

global escrow PKE

PKE+NIZK three-party NIKE

GE conversion

HI conversion

Figure 1: Technology roadmap of global escrow HISE. The rectangles denote our newly introduced
cryptographic schemes.

share his decryption key with an authority for audit purpose or delegating costly decryption operations4

to a service. Currently, Zether is equipped with ISE and thus does not support individual key escrow.
In another case, a PGP user may be required to handover his decryption key to an authority on demand
for compliance purpose.5 For the time being, PGP adopts key separation and thus naturally supports
individual key escrow, but each user has to maintain at least two public key certificates. In either case,
the user wants to guarantee that his signing capability remains exclusive. By deploying HISE, not only
the systems can benefit from key reuse, but also the user can safely escrow his decryption key to a third
party without worrying the security of signature being breached (e.g. in the cryptocurrency setting, even
the auditing authority with decryption key cannot spend user’s coin).

Usage of global escrow HISE. Enterprise applications such as Slack get increasing adoption for large-
scale collaborative working, and thus has raised the demand for secure internal communication which
may contain proprietary information. The employer may have the right to get access to all private
communications as in traditional work emails [vox], or might be obliged to possess “super” decryption
capability for various reasons such as archival purpose, litigation-related eDiscovery, or detection of
malware. On the other side, the employees need to be assured that even a malicious administrator of the
“super” key cannot slander them by forging signatures for fabricated communications. Global escrow
HISE is perfectly suitable for these cases. By playing the role of escrow agent, the authority is able to
conduct large-scale supervision efficiently with the global escrow decryption key, but unable to violate
users’ exclusive signing capability.

Instantiation, implementation and evaluation. We instantiate our generic constructions of (global
escrow) HISE and implement all the resulting concrete schemes for 128-bit security. We choose the
Cartesian product CPK built from the best available encryption and signature schemes as benchmark.
Our (global escrow) HISE schemes have performance that is comparable to the Cartesian product CPK
scheme, while exhibiting advantages in terms of richer functionality for escrow and compact key sizes.
Moreover, we report the most efficient global escrow PKE known to date (12 − 30× faster than prior
scheme), which is interesting in its own right. Our implementation is released on Github: https:
//github.com/yuchen1024/HISE. We summarize experimental results in Section 8.

1.2 Related Works
Combined usage of PKE and signature. Key separation is a conventional wisdom originated from
real-world practice. Haber and Pinkas [HP01] investigate this security engineering folklore and initiate
a formal study of key reuse. They introduce the notion of combined public key (CPK) scheme, which is
a combination of a signature and encryption scheme: the existing algorithms of sign, verify, encrypt and

4A bunch of recent privacy-preserving cryptocurrencies [NVV18, BAZB20, CMTA20] employ lifted ElGamal like PKE
schemes, and thus decryption operations require computing the discrete logarithm, which is time consuming.

5The government of the United Kingdom requires any PGP user to give the police both his private key and his passphrase
on demand. Failure to comply is a criminal offense, punishable by a jail term of two years.

6

https://github.com/yuchen1024/HISE
https://github.com/yuchen1024/HISE

decrypt are preserved, while the two key generation algorithms are modified into a single algorithm. This
algorithm outputs two keypairs for signing and encryption operations respectively, with the keypairs no
longer necessarily being independent. They also formalize the joint security of CPK scheme, i.e., the
encryption component is IND-CCA secure even in the presence of an additional signing oracle, while
the signature component is EUF-CMA secure even in the presence of an additional decryption oracle.
Finally, they show that various well-known concrete schemes are jointly secure when their keys are
partially shared. As an extreme case of CPK scheme, ISE scheme uses a single non-splittable keypair for
both signature and encryption. Degabriele et al. [DLP+12] find a theoretical attack for the RSA-based
ISE scheme in EMV standard version 4.1. Coron et al. [CJNP02] and Komano and Ohta [KO03] build
ISE from trapdoor permutations in the random oracle model. Paterson et al. [PSST11] give an elegant
construction of ISE from identity-based encryption.

In contrast to ISE, HISE is equipped with a two-level hierarchy key structure, i.e., the signing key
plays the role of master secret key, and one can derive a decryption key from the signing key. The joint
security of HISE stipulates that the signature component is EUF-CMA secure even in the presence of a
decryption key, which is strictly stronger than that of ISE.
Key escrow. We now briefly survey existing works on key escrow in the context of public-key encryption.
As aforementioned, there are two types of key escrow: individual key escrow and global key escrow. While
individual key escrow is straightforwards, global key escrow appears to be harder to attain. The earlier
solutions to global key escrow are not satisfactory. They either rely on tamper-resistant devices, or
require the escrow agent to get involved in interactive computations at an undesirable level. Paillier and
Yung [PY99] propose a solution called self-escrowed public-key infrastructure, which requires that the
relation between secret key and public key is trapdoorness. Such stringent requirement greatly limits the
choice of possible candidates, and so far the only known realization of SE-PKI is based on a non-standard
assumption. Until 2003, Boneh and Franklin [BF03] give the first practical scheme called escrow ElGamal
based on standard assumption. Nevertheless, formal definition and generic constructions of global escrow
PKE are still missing.

To our knowledge, the only work in the literature that considers key reuse and key escrow together is
due to Verheul [Ver01]. Verheul considers the problem of supporting non-repudiation and individual key
escrow in the single public key setting, and proposes a candidate scheme from the XTR subgroup. The
author gives an indication of security, but is not aware of more rigorous security proof.6 Therefore, this
problem remains open. In this work, we resolve this open problem by proposing a new cryptographic
primitive called HISE and giving efficient and provably secure constructions.

2 Preliminaries
We use the standard definitions of bilinear maps, SKE, PKE, signature, IBE, zero-knowledge proof
systems, as well as non-interactive key exchange protocols. For convenience and to fix notation, we recall
these definitions in Appendix A. The definition of one-way functions has appeared previously, while the
definition and construction of constrained IBE schemes are new. Since they are central to our work, we
include their formal definitions as below.

2.1 One-Way Function
A function F : X → Y is one-way if it is efficiently computable and hard-to-invert on average. Let H be
a family of leakage functions defined over domain X. F is leakage-resilient one-way [DHLW10] w.r.t. H
if the one-wayness remains in the presence of leakage h(x), where x is the preimage and h could be any
function from H. If F(x) is uniform over Y when x

R←− X, we say that F is uniform.

2.2 Constrained Identity-Based Encryption
We introduce a new notion called constrained IBE. In a nutshell, a constrained IBE is an IBE in which
master secret key allows efficient delegation with respect to a family of predicates over identity space.

6Our perspective is that a security reduction from Verheul’s scheme to standard hardness problem is unlikely to be
forthcoming, since it is difficult to emulate the decryption key for the adversary against the signature component.

7

Formally, a constrained IBE consists of the following PPT algorithms:

• Setup(1λ): on input a security parameter λ, outputs public parameters pp. Let F be a family of
predicates over identity space I.

• KeyGen(pp): on input public parameters pp, outputs a master public key mpk and a master secret
key msk.

• Extract(msk, id): on input a master secret key msk and an identity id ∈ I, outputs a user secret
key skid.

• Constrain(msk, f): on input a master secret key msk and a predicate f ∈ F , outputs a constrained
secret key skf .

• Derive(skf , id): on input a constrained secret key skf and an identity id ∈ I, outputs a user secret
key skid if f(id) = 1 or ⊥ otherwise.

• Enc(mpk, id,m): on input mpk, an identity id ∈ I, and a message m, outputs a ciphertext c.

• Dec(skid, c): on input a user secret key skid and a ciphertext c, outputs a message m or a special
reject symbol ⊥ denoting failure.

Correctness. For any (mpk,msk) ← KeyGen(pp), any identity id ∈ I, any skid ← Extract(msk, id),
any message m, and any c ← Enc(mpk, id,m), it holds that Dec(skid, c) = m. Besides, for any f ∈ F
such that f(id) = 1, the outputs of Extract(msk, id) and Derive(skf , id) have the same distribution.
Security. Roughly speaking, a secure constrained IBE should ensure the secrecy of plaintexts encrypted
by id as long as id has not been queried for user secret key or related constrained secret key. We formally
define IND-CPA security for constrained IBE as below. Let A be an adversary against the IND-CPA
security of constrained IBE and define its advantage in the following experiment:

Pr

b = b′ :

pp← Setup(1λ);
(mpk,msk)← KeyGen(pp);
(id∗,m0,m1)← AOext,Oconstrain(pp,mpk);

b
R←− {0, 1}, c∗ ← Enc(mpk, id∗,mb);

b′ ← AOext,Oconstrain(c∗);

− 1

2
.

Oext denotes the key extraction oracle, which on input id returns skid ← Extract(msk, id). Oconstrain

denotes the key constrain oracle, which on input f returns skf ← Constrain(msk, f). A is not allowed
to query Oext with id∗ or query Oconstrain with f such that f(id∗) = 1. A constrained IBE is IND-CPA
secure if no PPT adversary A has non-negligible advantage in the above security experiment. Two weaker
security notions can be defined similarly. One is OW-CPA security, in which the adversary is required
to recover the plaintext from a random ciphertext. The other is selective-identity IND-CPA security, in
which the adversary is asked to specify the target identity id∗ before seeing mpk.

We present a generic construction of constrained IBE for prefix predicates from BTE. See Ap-
pendix B.2 for the details.

3 Definition of HISE
An HISE scheme consists of the following PPT algorithms.

• Setup(1λ): on input a security parameter λ, outputs public parameters pp. We assume that pp
includes the description of plaintext space M and message space M̃ .

• KeyGen(pp): on input pp, outputs a secret key sk and a public key pk. Here, sk serves as a master
secret key, which can be used to derive decryption key.

• Derive(sk): on input a secret key sk, outputs a decryption key dk.

• Enc(pk,m): on input a public key pk and a plaintext m ∈M , outputs a ciphertext c.

8

• Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext m or a special
reject symbol ⊥ denoting failure.

• Sign(sk, m̃): on input a secret key sk and a message m̃ ∈ M̃ , outputs a signature σ.

• Vrfy(pk, m̃, σ): on input a public key pk, a message m̃, and a signature σ, outputs a bit b, with
b = 1 meaning valid and b = 0 meaning invalid.

Correctness. For the PKE component, we require that for any m ∈ M , it holds that Pr[Dec(dk, c) =
m] ≥ 1−negl(λ), where the probability is taken over the choice of pp← Setup(1λ), (pk, sk)← KeyGen(pp),
dk ← Derive(sk), and c ← Enc(pk,m). For the signature component, we require that for any m̃ ∈ M̃ ,
it holds that Pr[Vrfy(pk, m̃, σ) = 1] ≥ 1 − negl(λ), where the probability is taken over the choice of
pp← Setup(1λ), (pk, sk)← KeyGen(pp), σ ← Sign(sk, m̃), and the random coins used by Vrfy.

The joint security of HISE stipulates that the PKE component is IND-CCA secure even in the
presence of a signing oracle, while the signature component is EUF-CMA secure in the presence of the
decryption key. The formal security notion is defined as below.

Definition 3.1 (Joint Security for HISE). HISE is jointly secure if its encryption and signature compo-
nents satisfy the following security notions. Hereafter, let Osign be the signing oracle that on input m̃ ∈ M̃
returns σ ← Sign(sk, m̃), and Odec be the decryption oracle that on input c returns m← Dec(dk, c).

IND-CCA security in the presence of a signing oracle. Let A be an adversary against the PKE
component and define its advantage as:

Pr

b = b′ :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
(m0,m1)← AOdec,Osign(pp, pk);

b
R←− {0, 1}, c∗ ← Enc(pk,mb);

b′ ← AOdec,Osign(c∗);

− 1

2
.

A has unrestricted access to Osign, but is not allowed to query Odec with c∗ in Phase 2. The PKE
component is IND-CCA secure in the joint sense if no PPT adversary A has non-negligible advantage in
the above security experiment.
EUF-CMA security in the presence of a decryption key. Let A be an adversary against the
signature component and define its advantage as:

Pr

 Vrfy(pk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
dk ← Derive(sk);
(m∗, σ∗)← AOsign(pp, pk, dk);

 .
The set Q records queries to Osign. The signature component is EUF-CMA secure in the joint sense if
no PPT adversary A has non-negligible advantage in the above security experiment.

Remark 3.1. The security notion of HISE is strictly stronger than that of ISE in the sense that the
signature component remains secure even when the adversary learns the entire decryption key rather
than only has access to Odec. This strengthening is crucial for applications that require secure delegation
of decryption capability. We then discuss possible weakening of joint security. It is well-known that
homomorphism denies CCA security. Thus, when homomorphic property is more desirable, we can
instead only require the PKE component to be CPA-secure. We refer to the corresponding security as
weak joint security.

Towards a modular design, the PKE component can be defined as key encapsulation mechanism. We
omit the formal definition here for straightforwardness.

Global escrow extension. If an HISE scheme further satisfies global escrow property, we refer to
it as global escrow HISE. In global escrow HISE, the setup algorithm additionally outputs a escrow
decryption key edk, and there is an alternative decryption algorithm enabled by edk, whose decryption

9

results of any ciphertext are identical to those obtained by applying normal decryption algorithm with
the decryption key of intended receiver. The joint security stipulates that the encryption component
remains secure in the presence of a signing oracle, and the signature component is secure even in the
presence of the decryption key and escrow decryption key. We omit the formal definition here for its
straightforwardness.

4 HISE from (Constrained) Identity-Based Encryption
In this section, we present two generic constructions of HISE.

4.1 HISE from Constrained IBE
Given a constrained IBE for prefix predicates (cf. definition in Section 2.2) and a strong one-time
signature (OTS), we create an HISE scheme as below.

• Setup(1λ): runs ppcibe ← CIBE.Setup(1λ), ppots ← OTS.Setup(1λ), outputs pp = (ppcibe, ppots).
We assume the identity space of constrained IBE is {0, 1}ℓ+1, and the verification space of OTS is
{0, 1}ℓ.

• KeyGen(pp): on input pp = (ppcibe, ppots), runs CIBE.KeyGen(ppcibe) to generate (mpk,msk),
outputs public key pk = mpk and secret key sk = msk.

• Derive(sk): parses sk as msk, runs skfv ← CIBE.Constrain(msk, fv) where v = 1 and fv(id) = 1
iff id[1] = 1, outputs dk = skfv .

• Enc(pk,m): parses pk = mpk. The encryption algorithm runs (ovk, osk) ← OTS.KeyGen(ppots).
sets id = 1||ovk, computes ccibe ← CIBE.Enc(mpk, id,m), σ ← OTS.Sign(osk, ccibe), then outputs
c = (ovk, ccibe, σ).

• Dec(dk, c): parses dk = skfv and c = (ovk, ccibe, σ). The decryption algorithm first checks
if OTS.Vrfy(ovk, ccibe, σ) = 1, if not outputs ⊥, else sets id = 1||ovk and computes skid ←
CIBE.Derive(skfv , id), outputs m← CIBE.Dec(skid, ccibe).

• Sign(sk, m̃): parses sk as msk, computes skid ← CIBE.Extract(msk, id) where id = 0||m̃, outputs
σ = skid.

• Vrfy(pk, σ, m̃): parses pk as mpk, σ as skid for id = 0||m̃, picks a random plaintext m ∈ M , com-
putes ccibe ← CIBE.Enc(mpk, id,m), outputs “1” if CIBE.Dec(skid, ccibe) = m and “0” otherwise.

Correctness follows from that of constrained IBE and OTS. For security, we have the following
theorem.

Theorem 4.1. If the constrained IBE scheme is IND-CPA secure and the OTS scheme is strong EUF-
CMA secure, then the above HISE construction is jointly secure.

We prove this theorem via the following two lemmas.

Lemma 4.2. If the constrained IBE scheme is OW-CPA secure, then the signature component is EUF-
CMA secure even in the presence of decryption key.

Proof. Let A be an adversary against the EUF-CMA security of the signature component, we show
how to build an adversary B breaking the assumed OW-CPA security of CIBE. Given (ppcibe,mpk), B
simulates A’s challenger as below.

• Setup: B sets pk = mpk, generates ppots ← OTS.Setup(1λ), sets pp = (ppcibe, ppots), queries its
constrained oracle for prefix predicate fv (where v = 1) and obtains constrained secret key skfv ,
sets dk = skfv , and sends (pp, pk, dk) to A.

• Signing query: Upon receiving a signing query 〈m̃〉, B queries its extraction oracle for identity
id = 0||m̃, and obtains skid ← CIBE.Extract(msk, id), then B sends σ = skid to A.

10

• Forgery: A outputs (m̃∗, σ∗) as forgery. At this point, B submits id∗ = 0||m̃∗ as the target identity,
and receives back c∗cibe ← CIBE.Enc(mpk, id∗,m) for a random plaintext m R←− M . Finally, B
parses σ∗ as skid∗ , and outputs m′ ← CIBE.Dec(skid∗ , c∗). B wins if m′ = m.

Clearly, B’s simulation is perfect. If A breaks the assumed EUF-CMA security with some probability,
then according to the definition of verification algorithm, B succeeds in breaking the OW-CPA security
of CIBE with the same probability. This proves Lemma 4.2.

Lemma 4.3. If the OTS scheme is strongly EUF-CMA secure and the constrained IBE scheme is
selective-identity IND-CPA secure, then the encryption component is IND-CCA secure in the presence
of a signing oracle.

Proof. The proof follows closely to that of Theorem in [BCHK07]. We proceed via a sequence of games.
Let Si be the event that A wins in Game i.

Game 0. This is the standard security experiment for the encryption component. CH interacts with A
as below.

• Setup: CH runs ppcibe ← CIBE.Setup(1λ), ppots ← OTS.Setup(1λ), sets pp = (ppcibe, ppots), gen-
erates (mpk,msk) ← CIBE.KeyGen(ppcibe), sets pk = mpk and sk = msk, then sends (pp, pk) to
A.

• Signing query: Upon receiving a signing query 〈m̃〉, CH computes and returns σ ← HISE.Sign(sk, m̃).

• Decryption query: Upon receiving a decryption query 〈c〉, CH first parses c = (ovk, cbte, σ), if
OTS.Vrfy(ovk, ccibe, σ) = 1 returns ⊥, else derives skid ← CIBE.Extract(msk, id) for id = 1||ovk,
outputs m← CIBE.Dec(skid, ccibe).

• Challenge:A submits two messages (m0,m1). CH picks a random bit b R←− {0, 1}, then generates the
challenge ciphertext as follows: generates a fresh OTS keypair (ovk∗, osk∗)← OTS.KeyGen(ppots),
then sets id∗ = 1||ovk∗, computes c∗cibe ← CIBE.Enc(mpk, id∗,mb), σ∗ ← OTS.Sign(osk∗, c∗cibe),
then sends c∗ = (ovk∗, c∗cibe, σ

∗) to A. After seeing the challenge ciphertext c∗, A can still query
the signing oracle and decryption oracle, except that the decryption query for c∗ is not allowed.

• Guess: Finally, A outputs a bit b′ and wins b = b′. According to the definition, we have:

AdvA = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except CH generates the OTS keypair (ovk∗, osk∗) ← OTS.KeyGen(ppots)
associated to the challenge ciphertext in the setup stage. This modification is only conceptual, thus we
have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH directly aborts when answering decryption queries if one of
the following two events happens:

1. E1: Amakes a decryption query for c = (ovk∗, ccibe, σ) in Phase 1 such that OTS.Vrfy(ovk∗, ccibe, σ) =
1.

2. E2: Amakes a decryption query for c = (ovk∗, c∗cibe, σ) in Phase 2 such that OTS.Vrfy(ovk∗, c∗cibe, σ) =
1 and σ 6= σ∗.

Let E = E1∨E2. Conditioned on E never happens, Game 1 and Game 2 are identical. By the difference
lemma, we have:

|Pr[S2]− Pr[S1]| ≤ Pr[E]

Evidently, a decryption query triggering E translates to a successful forgery against OTS. By the assumed
strong EUF-CMA security of OTS, we conclude that Pr[E] = negl(λ) for any PPT adversary.

Claim 4.4. If the constrained IBE scheme is selective-identity IND-CPA secure, then no PPT adversary
has non-negligible advantage in Game 2.

11

Proof. Let B be an adversary against the selective-identity IND-CPA security of the constrained IBE
scheme. Given ppcibe, B simulates A’s challenger in Game 2 as below:

Setup: B generates ppots ← OTS.Setup(1λ), (ovk∗, osk∗) ← OTS.KeyGen(ppots), then commits id∗ =
1||ovk∗ to its own challenger as the target identity and receives back mpk. B sends pp = (ppcibe, ppots)
and pk = mpk to A.
Signing query: Upon receiving a signing query 〈m̃〉, B queries its extraction oracle for identity id = 0||m̃
to obtain skid, then sends it to A as a signature for m̃. Since we always have id 6= id∗ due to different
prefix, B simulates the signing oracle perfectly.
Decryption query: Upon receiving a decryption query 〈c〉 where c = (ovk, ccibe, σ), if E1 happens, B
aborts, else B proceeds as below: if OTS.Vrfy(ovk, ccibe, σ) = 0 then returns ⊥, else queries its decryption
oracle with 〈1||ovk, ccibe〉, and forwards the reply to A.
Challenge: A submits two messages (m0,m1). At this point, B sends (m0,m1) to its own challenger and
receives back c∗cibe, which is an encryption of mb under the target identity id∗ = 1||ovk∗. B computes
σ∗ ← OTS.Sign(osk∗, c∗cibe), sends c∗ = (ovk∗, c∗cibe, σ

∗) to A as the challenge ciphertext.
Guess: After receiving c∗, A may continue to query the signing and decryption oracles under the restric-
tion that it must not query the decryption oracle with c∗. If E2 happens, B aborts. Else, B responds in
the same way as it did in Phase 1. Finally, A submits a guess b′ which B outputs as its guess.

Clearly, B’s simulation is perfect. If c∗cibe is a constrained IBE ciphertext of mb, then c∗ is also an
HISE ciphertext of mb. Thus, B succeeds in breaking the selective-identity IND-CPA security with the
same advantage as A wins in Game 2. This proves Claim 4.4, namely, |Pr[S2]− 1/2| = negl(λ).

Putting all of the above together, Lemma 4.3 follows immediately.

4.2 HISE from IBE
The above generic construction from constrained IBE enjoys joint security in the standard model. So
far, we only know how to build constrained IBE for prefix predicates from BTE [CHK03]. However, in
existing constructions of BTE the size of secret key and ciphertext and encryption/decryption efficiency
are all linear in ℓ, which are inefficient. We leave more efficient constructions of BTE and constrained
IBE as an interesting open problem.

In applications where the encryption component only has to be IND-CPA secure, or one is willing to
accept IND-CCA security in the random oracle model, we have a simpler and more efficient construction
of HISE from any IBE. Let the identity space of IBE be {0, 1}ℓ+1, we build an HISE scheme with message
space {0, 1}ℓ as follows.

• Setup(1λ): on input a security parameter λ, runs ppibe ← IBE.Setup(1λ), outputs pp = (ppibe, id
∗),

where id∗ = 1ℓ+1.

• KeyGen(pp): parses pp = (ppibe, id
∗), runs (mpk,msk) ← IBE.KeyGen(ppibe), outputs public key

pk = mpk and secret key sk = msk.

• Derive(sk): parses sk as msk, outputs dk ← IBE.Extract(msk, id∗).

• Enc(pk,m): parses pk = mpk, outputs c← IBE.Enc(mpk, id∗,m).

• Dec(dk, c): parses dk = skid∗ , outputs m← IBE.Dec(skid∗ , c).

• Sign(sk, m̃): parses sk = msk, computes skid ← IBE.Extract(msk, id) where id = 0||m̃, outputs
σ = skid.

• Vrfy(pk, σ, m̃): parses pk as mpk, σ as skid for id = 0||m̃, picks a random plaintext m ∈ M ,
computes c← IBE.Enc(mpk, id,m), outputs “1” if IBE.Dec(skid, c) = m and “0” otherwise.

Correctness follows from that of IBE. For the security, we have the following theorem.

Theorem 4.5. If the IBE scheme is IND-CPA secure, then the above HISE construction is jointly secure
in the sense that the signature component is EUF-CMA secure and the PKE component is IND-CPA
secure.

12

We prove this theorem via the following two lemmas.

Lemma 4.6. If the IBE scheme is OW-CPA secure, then the signature component is EUF-CMA secure
even in the presence of decryption key.

Proof. Let A be an adversary against the EUF-CMA security of the signature component, we show how
to build an adversary B breaking the assumed OW-CPA security of IBE. Given (ppibe,mpk), B simulates
A’s challenger as below.

Setup: B sets pp = (ppibe, id
∗ = 1ℓ+1), pk = mpk, queries its extraction oracle for id∗ to obtain skid∗ ←

IBE.Extract(msk, id∗), sets dk = skid∗ , and sends (pp, pk, dk) to A.
Signing query: Upon receiving a signing query 〈m̃〉, B queries its extraction oracle for identity id = 0||m̃,
and obtains skid ← IBE.Extract(msk, id), then B sends σ = skid to A.
Forgery: A outputs (m̃∗, σ∗) as forgery. At this point, B outputs id∗ = 0||m̃∗ as the target identity, and
receives back c∗ ← IBE.Enc(mpk, id∗,m) for some randomly chosen plaintext m ∈M . Finally, B parses
σ∗ as skid∗ , and outputs m′ ← IBE.Dec(skid∗ , c∗). B wins if m′ = m.

Clearly, B’s simulation is perfect. If A breaks the assumed EUF-CMA security with some probability,
then according to the definition of verification algorithm, B succeeds in breaking the OW-CPA security
of IBE with the same probability. This proves Lemma 4.6.

Lemma 4.7. If the IBE scheme is selective-identity IND-CPA secure, then the encryption component
is IND-CPA secure in the presence of a signing oracle.

Proof. Let A be an adversary against the IND-CPA security of the encryption component, we show how
to build an adversary B breaking the assumed selective-identity IND-CPA security of IBE. Given ppibe,
B simulates A’s challenger as below.

Setup: B sets id∗ = 1ℓ+1, submits id∗ to its own challenger as the target identity and receives back mpk.
B sets pp = (ppibe, id

∗) and pk = mpk, then sends (pp, pk) to A.
Extraction query: Upon receiving a extraction query 〈id〉, B queries its extraction oracle for id and
forwards the result to A.
Signing query: Upon receiving a signing query 〈m̃〉, B queries it extraction oracle for id = 0||m̃ and
forwards the result to A.
Challenge: A submits (m0,m1) to B. B forwards (m0,m1) to its own challenger and receives back
c∗ ← IBE.Enc(mpk, id∗,mb) for a random bit b, then sends c∗ to A as the challenge. Finally, A outputs
a guess b′ for b and wins if b′ = b.

Clearly, B’s simulation is perfect. If A breaks the assumed IND-CPA security with some probability,
then B breaks the selective-identity IND-CPA security of IBE with the same probability. This proves
Lemma 4.7.

The PKE component of above HISE construction is IND-CPA secure. We can enhance it to IND-CCA
security by applying the Fujisaki-Okamoto transformation [FO99] with random oracle heuristic.

5 HISE from PKE and ZKPoK
In this section, we present a generic construction of HISE from a PKE scheme and a 3-round public-coin
ZKPoK protocol. At the heart of our construction is a novel mechanism what we called hierarchical
key derivation. The high-level idea is to pick a random bit string as secret key sk, then derive an
encryption/decryption keypair (ek, dk) of PKE in a deterministic manner. The encryption key ek is
used for both encrypting plaintexts and verifying signatures, and hence will be denoted by pk. The
decryption key is only used for decrypting. The secret key sk is used for signing messages and deriving
the decryption key dk. The key derivation should be one-way, namely, one can derive the decryption
key from the signing key, but not vice versa. Thus, the signing key acts as master secret key. Let the
randomness space R of PKE’s key generation algorithm be {0, 1}ℓ, we describe the generic construction
as below.

13

• Setup(1λ): runs pppke ← PKE.Setup(1λ), ppzkpok ← ZKPoK.Setup(1λ), picks a uniform OWF
F : {0, 1}n → {0, 1}ℓ, outputs pp = (pppke, ppzkpok,F).

• KeyGen(pp): parses pp = (pppke, ppzkpok,F), picks sk
R←− {0, 1}n, computes r ← F(sk), runs

(ek, dk) ← PKE.KeyGen(pppke; r), outputs public key pk = ek and secret key sk. Let PK be
the public key space.

• Derive(sk): this algorithm is exactly a part of KeyGen, i.e., on input sk, computes r ← F(sk), runs
(ek, dk)← PKE.KeyGen(pppke; r), outputs the resulting decryption key dk.

• Enc(pk,m) and Dec(dk, c) are same as those of the underlying PKE.

• Sign(sk, m̃): Let G be the algorithm that outputs the first outcome of PKE.KeyGen, say pk. G and
F induce an NP relation Rkey over PK × {0, 1}n defined as below.

Rkey = {(pk, sk) | pk = G(F(sk))} (1)

We are thus able to build a signature scheme with sk as the signing key and pk as the verification
key from a three-round public-coin ZKPoK for Rkey.

1. Run the prover algorithm P (sk) with randomness α to sample a random element a from the
initial message space A. We assume that |A| is exponential in λ.

2. Hash a with the message m̃ to be signed into the challenge, i.e., e ← H(a, m̃). Here, H is a
cryptographic hash function, which is modeled as a random oracle.

3. Run the prover algorithm P (sk, α, e) to generate a response z.

Finally, outputs the signature σ = (a, z) for m̃.

sk r pk dk
F G

PKE.KeyGen

Rkey

Figure 2: The hierarchical key structure

• Vrfy(pk, m̃, σ): on input a public key pk, a message m̃ and a signature σ = (a, z), first recovers the
challenge e← H(a, m̃), then runs the verifier’s verification algorithm V (a, e, z) to decide if (a, e, z)
is an accepting transcript w.r.t. Rkey.

In the above construction, the signature generation follows the same routine of crushing the ZKPoK
into a non-interactive one via Fiat-Shamir heuristic. Thus, we can simplify the syntax of the construc-
tion by describing the signing procedure as NIZKPoK.Prove(pk, sk, m̃) and the verifying procedure as
NIZKPoK.Verify(pk, m̃, σ), where pk serves as the instance, sk serves as the witness, m̃ is treated as
auxiliary input, and σ serves as the proof.

The correctness of the above construction follows from those of the underlying PKE and ZKPoK. For
the security, we have the following theorem.

Theorem 5.1. The above HISE construction is jointly secure assuming the security of its building blocks
and modeling H as a random oracle.

We prove this theorem by proving its encryption component and signature component are secure in
the joint sense. In all the security proofs hereafter, the challenger CH emulates the random oracle queries
by maintaining an initially empty list T , which is used to track random oracle queries. The adversary
may interleave its hash and signing queries arbitrarily. We make a few simplifying assumptions without
any loss of generality. First, we assume that the adversary makes any given hash query only once. When
a signature (a, z) on a message m̃ is given to A, we also include the value e := H(a, m̃). We may therefore
assume that the adversary never queries H(a, m̃) after receiving such a signature.

Lemma 5.2. The encryption component is IND-CCA secure in the joint sense if the underlying PKE
is IND-CCA secure, F is uniform, ZKPoK is honest-verifier zero-knowledge and H is a random oracle.

14

Proof. The main difficulty of reducing the IND-CCA security of the encryption component to the under-
lying PKE lies in that the reduction algorithm has to answer signing queries without sk. We solve this
problem by having the reduction algorithm simulate the singing oracle by utilizing the zero-knowledge
property of ZKPoK and the programmability of H. We prove this lemma via a sequence of games. Let
Si be the event that A wins in Game i.

Game 0. This is the standard joint IND-CCA experiment for PKE. Let A be an adversary against the
encryption component. CH interacts with an adversary A as below.

Setup: CH runs pp ← Setup(1λ) to generate public parameters, that is, runs pppke ← PKE.Setup(1λ),
ppzkpok ← ZKPoK.Setup(1λ), picks a uniform OWF F : {0, 1}n → {0, 1}ℓ, sets pp = (pppke, ppzkpok,F),
then picks sk R←− {0, 1}n, computes r ← F(sk), (ek, dk) ← PKE.KeyGen(r), sets pk = ek, and sends
(pp, pk) to A.
Random oracle query: A can adaptively make random oracle queries. Upon receiving a random oracle
query 〈a, m̃〉, CH picks a random e

R←− Ω, then records (a, m̃, e) into T .
Signing query: A can adaptively make signing queries. Upon receiving a signing query 〈m̃〉, CH responds
with σ ← Sign(sk, m̃).
Decryption query: A can adaptively make decryption queries. Upon receiving a decryption query 〈c〉,
CH responds with m← Dec(dk, c).
Challenge: A submits (m0,m1) to CH. CH picks a random bit b R←− {0, 1}, sends c∗ ← Enc(pk,mb) to A
as the challenge. A can still make signing and decryption queries after receiving the challenge ciphertext
c∗, but the decryption query for c∗ is forbidden.
Guess: A outputs a bit b′ and wins if its guess b′ = b.

According to the definition, we have:

AdvA = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH now emulates signing oracle by programming the random
oracle H and utilizing the zero-knowledge property of ZKPoK, rather than using sk.
Signing query: Upon receiving a signing query on m̃, CH invokes S to obtain a transcript (a, e, z). If
(a, m̃) has been previously queried for hash value, CH aborts; otherwise, CH sets e := H(a, m̃), records
(a, m̃, e) to the T list, and responds with σ = (a, z).

We argue that |Pr[S1]− Pr[S0]| ≤ negl(λ), which is proved by the claim below.

Claim 5.3. For any PPT adversary A, its advantage in Game 0 and Game 1 are negligibly close
assuming the statistical honest verifier zero-knowledge property of ZKPoK.

Proof. Conditioned on CH does not abort, the claim holds obviously. This is because that for any PPT
adversary A, its views in Game 0 and Game 1 are indistinguishable. This follows from the HVZK
property and a standard hybrid argument on Qs signing queries. We then bound the probability that
CH aborts. By the HVZK property, the distribution of a (the first element of S’s output) distributes
uniformly over A. Thus, the probability that CH aborts when answering the i-th signing query is at most
Qh/|A|. Applying the union bound, we conclude that the probability that CH aborts when handling
Qs signing queries is upper bounded by QsQh/|A|, which is negligible in λ. By the difference lemma,
Claim 5.3 immediately follows.

Remark 5.1. In the above claim, the standard HVZK could be relaxed to computational sense as long
as the distribution of first message of S, say a, is still close to uniform. This suffices to guarantee that
CH emulates the signing oracle successfully with overwhelming probability.

Game 2. Same as Game 1 except the following modifications:

• Setup: CH runs Setup(1λ) to generate pp = (pppke, ppzkpok,F), picks sk R←− {0, 1}n, samples r R←−
{0, 1}ℓ, (ek, dk)← PKE.KeyGen(r), sets ek = pk, and then sends (pp, pk) to A.

15

Since sk is uniformly chosen from {0, 1}n, by the uniformity of F the two distributions r R←− {0, 1}ℓ
and r ← F(sk) are statistically close. In both Game 1 and Game 2, A’s view is only determined by r.
Thereby, |Pr[S2]− Pr[S1]| = negl(λ).

We then argue that Pr[S2] = negl(λ), which is proved by the claim below.

Claim 5.4. If the PKE scheme is IND-CCA secure, then no PPT adversary has non-negligible advantage
in Game 2.

Proof. Suppose there is an adversary A that has some non-negligible advantage in Game 2, we build an
algorithm B that breaks the IND-CCA security of PKE with the same advantage. Given (pppke, ek) of
PKE, B emulates A’s challenger in Game 2 as follows:

Setup: B runs ZKPoK.Setup(1λ) to generate ppzkpok, picks a uniform one-way function F from {0, 1}n to
{0, 1}ℓ, sets pp = (pppke, ppzkpok,F), pk = ek, then sends (pp, pk) to A.
Random oracle query: B simulates the random oracle the same way as CH does in Game 2.
Signing query: B simulates the signing oracle the same way as CH does in Game 2.
Decryption query: Upon receiving decryption query for ciphertext c, B queries its decryption oracle and
forwards the response back to A.
Challenge: A submits (m0,m1). B submits (m0,m1) to its own challenger and receives back the challenge
ciphertext c∗, then sends c∗ to A. After seeing c∗, A can continue to query the signing and decryption
oracles except that decryption query for c∗ is not allowed.
Guess: Eventually, A outputs its guess b′. B forwards b′ to its own challenger.

Clearly, B’s simulation is perfect. If c∗ is a PKE ciphertext of mb, then c∗ is also an HISE ciphertext
of mb. Thus, B succeeds in breaking the IND-CCA security with the same advantage as A wins in Game
2. This proves the Claim 5.4.

Putting all of the above together, Lemma 5.2 immediately follows.

Lemma 5.5. The signature component is EUF-CMA secure in the joint sense if F is one-way, G is
target-collision resistant, and ZKPoK satisfies the PoK and HVZK property.

We prove this lemma by establishing the following results.

Proposition 5.6. If F is one-way, G is target-collision resistant, then G ◦ F from {0, 1}n → PK is
leakage-resilient one-way w.r.t. H = {h ◦ F}, where h could be any efficiently computable functions with
domain R.

sk r pk

h(r) leakage on sk

F
one-way

G

target-collision resistant
h

leakage query

Figure 3: The leakage-resilient one-way function G ◦ F w.r.t. H = {h ◦ F}

Proof. We proceed via a sequence of games. Let Si be the event that A wins in Game i.

Game 0. This is the standard leakage-resilient one-wayness security experiment for G ◦ F. CH interacts
with A as below:

Setup and challenge: CH picks sk R←− {0, 1}n, computes r ← F(sk), pk ← G(r), sends (G ◦ F, pk) to A as
the challenge.

16

Leakage query: A may adaptively make leakage queries on sk. The leakage functions could be arbitrary
functions of the form h ◦ F, with the only constraint that h is efficiently computable. In other words, A
can obtain any efficiently computable leakage about the internal state r. Upon receiving a query 〈h ◦F〉,
CH responds with h(r).
Attack: A outputs sk′ and wins if G ◦ F(sk′) = pk.

According to the definition of Game 0, we have:

AdvA(λ) = Pr[S0]

Game 1. Same as Game 0 except that the solution sk′ such that G ◦ F(sk′) = pk but F(sk′) 6= r is not
considered to be successful. Let E be the event that A outputs such a solution. Clearly, conditioned on
E does not happen, A’s view in Game 0 and Game 1 are identical. By the difference lemma, we have:

|Pr[S1]− Pr[S0]| ≤ Pr[E]

Claim 5.7. Assuming the target-collision resistance of G, Pr[E] is negligible in λ.

Proof. Suppose B is an adversary against the target-collision resistance of G. Given G and r
R←− R, B

simulates A’s challenger in Game 1. B computes pk ← G(r), sends (F ◦ G, pk) to A. B responds all
leakage queries correctly with r. Finally, A outputs sk′ and B sends r′ ← F(sk′) to its own challenger.
Since the distributions r R←− R and r ← F(sk) for sk R←− {0, 1}n are identical, B’s simulation is prefect.
If E happens with some non-negligible probability, B breaks the assumed target-collision resistance of G
with the same probability since r′ 6= r ∧ G(r′) = G(r). The claim immediately follows.

Claim 5.8. Pr[S1] is negligible in λ assuming the one-wayness of F.

Proof. LetA be a PPT adversary that has non-negligible advantage in Game 1, we build a PPT algorithm
B breaking the assumed one-wayness of F as below. Given r where r ← F(sk) for a randomly chosen sk,
B simulates A’s challenger in Game 1, with the aim to find a preimage of r under F.

Setup and challenge: B computes pk ← G(r), sends (F ◦ G, pk) to A.
Leakage query: Upon receiving a leakage query 〈h ◦ F〉, B responds with h(r).
Attack: A outputs a preimage sk′, B forwards it to its own challenger.

According to the definition of Game 1. If A wins, we must have G(F(sk′)) = pk and F(sk′) = r. Thus
B breaks the one-wayness of F with the same advantage as A wins in Game 1. This proves Claim 5.8.

Putting all of the above together, we have AdvA(λ) = Pr[S0] = negl(λ). This proves Proposition 5.6.

Corollary 5.9. The relation Rkey induced by G ◦ F is one-way even given leakage dk.

Proof. Let K be the function that on input r ∈ R outputs the second component of KeyGen(r), say
dk. Clearly, K ◦ F is an admissible leakage function on sk, resulting leakage dk. This corollary thus
immediately follows from Proposition 5.6.

Proof. We are now ready to prove Lemma 5.5. The security proof is in spirit similar to that of signature
scheme from identification protocol [Kat10, Theorem 8.1]. The difference here is that we treat the Sigma
protocol as a ZKPoK for a leakage-resilient one-way relation, rather than a canonical identification
protocol. This change brings us some conceptual advantages in that it avoids the need for explicit
rewinding in the security reduction, thus simplifying the proof. We proceed via a sequence of games.
Let Si be the event that A wins in Game i.
Game 0. This is the standard security experiment for the signature component of HISE. We make the
following simplified assumptions without any loss of generality. We require that if A outputs the forgery
σ∗ = (a∗, z∗) on a message m̃∗, then A must have previously asked the hash query H(a∗, m̃∗). Let Qh

(resp. Qs) be a polynomial upper bound on the number of hash queries (resp. signing queries) made by
A.

17

Setup: CH runs Setup(1λ) to generate public parameters, that is, runs pppke ← PKE.Setup(1λ), ppzkpok ←
ZKPoK.Setup(1λ), picks a uniform one-way function F : {0, 1}n → {0, 1}ℓ, sets pp = (pppke, ppzkpok,F);
then picks sk R←− {0, 1}n, computes r ← F(sk), (ek, dk) ← PKE.KeyGen(pppke; r), sets pk = ek, then
sends (pp, pk, dk) to A.
Random oracle query: A can adaptively make random oracle queries. Upon receiving a random query
〈a, m̃〉, CH picks a random e

R←− Ω, then records (a, m̃, e) into T .
Signing query: A can adaptively make signing queries. Upon receiving a signing query 〈m̃〉, CH responds
with σ ← Sign(sk, m̃).
Forgery: A finally outputs (m̃∗, σ∗). Let Q = {mi}i∈Qs be the set of all queried messages. A wins if
m∗ /∈ Q and Vrfy(vk,m∗, σ∗) = 1.

Game 1. Same as Game 0 except that CH guesses a random index j R←− {1, . . . , Qh}. This represents a
guess to the index of the special hash query that will be explicitly made by A, which corresponds to the
forgery.7 CH will abort if the guess is wrong, i.e., 〈aj ,mj〉 6= 〈a∗,m∗〉. The random guess for j is totally
hidden from A, thus the probability that CH does not abort is exactly 1/Qh. We therefore have:

Pr[S1] = Pr[S0]/Qh

Game 2. Same as Game 1 except that CH handles the signing queries by invoking zero-knowledge
simulator S for Π.

Signing query: Upon receiving a signing query 〈m̃〉, CH invokes S to obtain a transcript (a, e, z). If
〈a, m̃〉 has been previously queried for hash value, CH aborts. Otherwise, CH sets e := H(a, m̃), records
(a, m̃, e) to the list T , and responds with σ = (a, z).

By the same claim we make in Claim 5.3, we conclude that |Pr[S2] − Pr[S1]| ≤ negl(λ). It remains to
calculate Pr[S2]. We have the following claim.

Claim 5.10. For any PPT adversary A, its advantage in Game 2 is negligible assuming the proof of
knowledge of ZKPoK and one-wayness of Rkey w.r.t. decryption key as leakage of signing key.

Proof. We prove this claim by showing that an adversary A having non-negligible advantage in Game 2
implies an adversary EB also having non-negligible advantage against one-wayness of Rkey w.r.t. decryp-
tion key as the leakage. Given public parameters of Rkey (which includes pppke and the description of F)
and a randomly sampled instance pk, E invokes B as a subroutine to emulate A’s challenger in Game 2,
with the aim to find a preimage sk of pk such that (pk, sk) ∈ Rkey. Figure 4 depicts the high-level idea
that underlies the formal security proof.

Setup: B runs ZKPoK.Setup(1λ) to generate ppzkpok, sets pp = (pppke, ppzkpok,F). B also makes a leakage
query of the form K ◦ F (as described in Corollary 5.9) to its own challenger and receives back dk. B
sends (pp, pk, dk) to A.
Random oracle query: B handles the random oracle queries in the same way as CH does in Game 2
except that when handling the j-th random oracle query 〈aj , m̃j〉, B invokes a verifier V by playing the
role of prover in ZKPoK. According to the definition of Game 2, we have 〈aj , m̃j〉 = 〈a∗, m̃∗〉. B sends
a∗ to V as the 1st-move message, and receives V ’s response e∗. B then sets e∗ := H(a∗, m̃∗), and records
(a∗, m̃∗, e∗) to the list T .
Signing query: B handles the signing queries in the same way as CH does in Game 2.
Forgery: When A outputs a forgery (σ∗ = (a∗, z∗), m̃∗), B sends z∗ to V as the 3rd-move message.

Clearly, B’s simulation is perfect. If A succeeds with advantage ε(λ), B convinces V to accept the
proof with the same probability ε(λ). According to the proof of knowledge property, E can thus extract
a witness sk′ such that (pk, sk′) ∈ Rkey via accessing B in a black-box manner with probability at least
ε(λ)− µ(λ). If ε(λ) is non-negligible in λ, the probability that EB outputs sk′ such that (pk, sk′) ∈ Rkey
is also non-negligible. This contradicts to the assumed leakage-resilient one-wayness of Rkey, and thus
proves Claim 5.10.

7The reduction holds if A always make explicit random oracle queries. To guarantee this, we can only hope for standard
unforgeability, not strong unforgeability.

18

A(pk) B(pk) V (pk)

E sk′
rewind B

signing query 〈m̃〉

(a, e, z)← S(pk)
a, z, e := H(a, m̃)

explicit hash query 〈a∗, m̃∗〉 a∗

e∗e∗ := H(a∗, m̃∗)

σ∗ = (a∗, z∗), m̃∗
z∗

(pk, sk) ∈ Rkey

Figure 4: High-level idea of reduction

Putting all of the above together, Lemma 5.5 immediately follows.

Remark 5.2. We note that the starting 3-round public-coin ZKPoK can be relaxed in two ways: (1)
the proof of knowledge property can be relaxed to argument of knowledge property; (2) 3-round can
be generalized to (2k + 1)-round for any integer k ≥ 1; in the generalized setting, we can use the BCS
transform [BCS16] in the place of the Fiat-Shamir transform. The above relaxations greatly enrich the
choices of the underlying zero-knowledge proof systems.
Remark 5.3. The above construction actually tells us that one can upgrade any PKE scheme that has
been deployed (satisfying mild requirement) to an HISE scheme. However, users have to run the key
generation algorithm of HISE from scratch to generate a new public key and the corresponding signing
key and decryption key. It would be more desirable if the upgrade does not ask users to switch to using a
new public key, since changing public key would be far more cumbersome (involves using new certificate
and updating public-key related stuffs). A solution to this problem is using uniform trapdoor one-way
function (TDF) to replace uniform one-way function. Along the ordinary PKE key generation step,
each user also picks a uniform TDF, then records the trapdoor as well as the randomness used for key
generation. At some point in the future, the user can upgrade to HISE by computing a preimage of the
randomness as the signing key, keeping the public key unchanged. In this way, the upgrade is almost
costless and perfect smooth.

6 Global Escrow PKE
As discussed in the introduction, HISE naturally supports individual key escrow mechanism, but may
not satisfy global key escrow property. To investigate how to further support global escrow mechanism
for HISE in a general manner, next we make a little detour to revisit the topic of global escrow PKE,
with focus on formal definition and generic construction. The obtained results can be used in a mixed
way with the results in Section 4 and Section 5, yielding global escrow HISE.

Global escrow PKE is an extension of PKE. In global escrow PKE, there is a single global escrow
decryption key that enables the decryption of ciphertexts encrypted under any public key. Such scheme
enables government intelligence and law enforcement agencies to reveal encrypted information without
the knowledge or consent of users. Formally, a global escrow PKE consists of five polynomial time
algorithms (Setup,KeyGen,Enc,Dec,Dec′). The KeyGen, Enc, and Dec algorithms are the same as those
of ordinary PKE. The Setup algorithm outputs an additional escrow decryption key, while Dec′ can
decrypt ciphertexts under any public key using this escrow decryption key.

• Setup(1λ): on input the security parameter λ, outputs global public parameters pp and a global
escrow decryption key edk. This algorithm is run by a trusted party.

• Dec′(edk, c): on input an escrow decryption key edk and a ciphertext c, outputs a plaintext m or
a special reject symbol ⊥ denoting failure.

19

In most applications of global escrow PKE, the escrow agent needs to know the public key of the
intended receiver. Therefore, we assume that the public key of the intended receiver is always provided
in the clear from ciphertext.

Correctness. For all m ∈ M , we have Pr[Dec(sk, c) = m = Dec′(edk, c)] ≥ 1 − negl(λ), where the
probability is taken over the choice of (pp, edk)← Setup(1λ), (pk, sk)← KeyGen(pp), and c← Enc(pk,m).

Consistency. The definition of correctness stipulates that the decryption results of the receiver and
the escrow agent are identical when the ciphertexts are honestly generated. In applications of escrow
PKE, the sender may generate the ciphertexts dishonestly to evade supervision. Therefore, in addition
to correctness, we also need to consider the notion of consistency for global escrow PKE. The intuition
is that the decryption results of the receiver and the escrow agent are still identical when the ciphertexts
are dishonestly generated. Fix pp, we define a collection of NP languages indexed public key, namely,
Lpk = {c | ∃m, r s.t. c = Enc(pk,m; r)}, which represents the set of all valid ciphertexts encrypted under
pk. We are now ready to formally define consistency. For an adversary A against consistency, we define
its advantage function as:

AdvA(λ) = Pr

 c /∈ Lpk∧
Dec(sk, c) 6= Dec′(edk, c)

:
(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
c← A(pp, pk);

 .
A global escrow PKE is computationally (resp. statistically) consistent if no PPT (resp. unbounded)
adversary has non-negligible advantage in the above experiment.

Security. Let A be an adversary against global escrow PKE and define its advantage in the following
experiment.

AdvA(λ) = Pr

b = b′ :

(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
(m0,m1)← AOdec(pp, pk);

b
R←− {0, 1}, c∗ ← Enc(pk,mb);

b′ ← AOdec(pp, pk, c∗);

− 1

2
.

Here, Odec is the decryption oracle. A can make polynomial number of decryption queries with the
restriction that A is not allowed to query Odec with c∗ in Phase 2. A global escrow PKE scheme is
IND-CCA secure if no PPT adversary has non-negligible advantage in the above experiment. We can
define IND-CCA1 security (resp. IND-CPA security) similarly by only giving A access to Odec in Phase
1 (resp. denying access to Odec).

6.1 Global Escrow PKE from PKE and NIZK
At first glance, it seems that global escrow PKE is trivially implied by broadcast encryption by having
the receiver set include the public keys of the intended receiver and the escrow agent. However, the
consistency of this construction is not guaranteed since broadcast encryption always assume that the
sender generates ciphertexts honestly.

Next, we show how to make any PKE scheme satisfy global escrow property by leveraging NIZK. The
idea is that the escrow agent generates a keypair (pkγ , skγ) himself when building up the system , and
then includes his public key pkγ in the public parameters and uses the secret key skγ as escrow decryption
key. To send an encrypted message to receiver with public key pk, the sender encrypts the same plaintext
m twice under pk and pkγ independently, then appends a NIZK proof for the consistency of encryption.
To decrypt the ciphertext, both the receiver and the escrow agent first check the correctness of NIZK
proof, then decrypts the corresponding part using their secret keys. Our construction coincides with
the celebrated Naor-Yung double encryption paradigm for chosen-ciphertext security. In the Naor-Yung
paradigm, the two public keys belong to the receiver, and the NIZK proof is used to achieve CCA
security. In our case, one public key belongs to the receiver, the other key belongs to the escrow agent,
and the NIZK proof is used to the ensure that the escrow agent has the same decryption capability as the
receiver. Our construction is somewhat dual to previous solutions [YY98, YY99, PY99]. Rather than
providing a proof of key recoverability to CA when registering public key, our construction provides a
proof of correct encryption each time when generating ciphertexts. The advantage of our construction

20

is that it removes the need of recoverability certificate entirely, and efficient zero-knowledge proof is
relatively easy to design for most PKE schemes. Moreover, if we aim for CCA security, then the added
zero-knowledge proofs do not constitute extra overhead.

For completeness, we present our construction as below.

• Setup(1λ): runs pppke ← PKE.Setup(1λ), ppnizk ← NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk),
computes (pkγ , skγ)← PKE.KeyGen(pppke), outputs pp = (pppke, ppnizk, crs, pkγ) and edk = skγ .

• KeyGen(pp): parses pp = (pppke, ppnizk, crs, epk), then outputs (pk, dk)← PKE.KeyGen(pppke).

• Enc(pk,m): picks two random coins r1 and r2 independently, computes c1 ← PKE.Enc(pk,m; r1)
and c2 ← PKE.Enc(pkγ ,m; r2), then generates π ← NIZK.Prove(crs, (pk, c1, c2), (r1, r2,m)), out-
puts c = (pk, c1, c2, π). Here, π is a proof for (c1, c2) being encryptions of the same plaintext under
pk and pkγ , i.e., (pk, c1, c2) ∈ Lpk, where Lpk is defined as below:

Lpk = {(pk, c1, c2) | ∃m, r1, r2 s.t.
c1 = PKE.Enc(pk,m; r1) ∧ c2 = PKE.Enc(pkγ ,m; r2)}

• Dec(sk, c): on input a decryption key sk and a ciphertext c = (pk, c1, c2, π), first check if c is a valid
encryption under pk by running NIZK.Verify(crs, (pk, c1, c2), π); if the check fails then returns ⊥,
else returns m← PKE.Dec(dk, c1).

• Dec′(edk, c): on input a global escrow decryption key edk = skγ and a ciphertext c = (pk, c1, c2, π),
first checks if c is a valid encryption under pkγ by running NIZK.Verify(crs, (pkγ , c1, c2), π); if the
check fails then returns ⊥, else returns m← PKE.Dec(skγ , c2).

The correctness follows from that of PKE and NIZK, and the consistency holds based on the adaptive
soundness of the underlying NIZK. For the security, we have the following theorem.

Theorem 6.1. The above construction of global escrow PKE is CCA1-secure (resp. CCA-secure) if
the underlying PKE is CPA-secure and the NIZK is adaptively secure (resp. simulation sound adaptive
secure).

Proof. The security proofs are very similar to those for Naor-Yung construction [NY90] and Sahai con-
struction [Sah99]. We omit the details here.

Remark 6.1. The above generic construction encrypts the plaintext twice independently under the public
keys of the intended receiver and the escrow agent. When the underlying PKE satisfies a mild prop-
erty called “randomness fusion”, we can safely reuse the random coins and apply twisted Naor-Yung
transform [BMV16], leading to improvements in terms of both efficiency and bandwidth.

6.2 Global Escrow PKE from Three-party NIKE and SKE
In this section, we present another generic construction of global escrow PKE from three-party NIKE
and SKE. This construction follows the KEM-DEM paradigm. We start by defining the notion of global
escrow KEM by adapting KEM to the escrow setting. A global escrow KEM consists of five polynomial
time algorithms (Setup,KeyGen,Encaps,Decaps,Decaps′). The KeyGen, Encaps, and Decaps algorithms
are same as those of an ordinary KEM. The Setup algorithm outputs an additional escrow decryption
key, while Decaps′ decapsulates ciphertexts using this escrow decryption key.

• Setup(1λ): on input a security parameter λ, outputs global public parameters pp and a global
escrow decryption key edk. This algorithm is run by a trusted party. We assume that pp includes
the description of session key space K.

• Decaps′(edk, c): on input a global escrow decryption key edk and a ciphertext c, outputs a session
key k or a special reject symbol ⊥ denoting failure.

Correctness. We require that Pr[Decaps(sk, c) = k = Decaps′(edk, c)] ≥ 1− negl(λ), where the proba-
bility is taken over the choice of (pp, edk)← Setup(1λ), (pk, sk)← KeyGen(pp), and (c, k)← Encaps(pk).

21

Consistency. Analogous to the setting of global escrow PKE, we also need to consider the notion of
consistency for global escrow KEM. Fix pp, we define a collection of NP languages indexed by pk. Let
Lkem
pk = {c | ∃r s.t. (c, k) = Encaps(pk; r)}, which represents all valid ciphertexts encapsulated under pk.

We are now ready to define consistency. For an adversary A against consistency, we define its advantage
function as:

AdvA(λ) = Pr

 c /∈ Lkem
pk ∧

Decap(sk, c) 6= Decap′(edk, c)
:

(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
c← A(pp, pk);

 .
We say that a global escrow KEM is computationally (resp. statistically) consistent if no PPT (resp.
unbounded) adversary has non-negligible advantage in the above experiment.

Security. Let A be an adversary against global escrow KEM and define its advantage in the following
experiment.

AdvA(λ) = Pr

b = b′ :

(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
(c∗, k∗0)← Encaps(pk), k∗1 ← K;

b
R←− {0, 1};

b′ ← AOdecaps(pp, pk, c∗, k∗b);

− 1

2
.

Here, Odecaps denotes the decapsulation oracle. A can make polynomial number of such queries with
the restriction that c 6= c∗, and the challenger responds with k ← Decaps(sk, c). A global escrow KEM
is IND-CCA secure if no PPT adversary has non-negligible advantage in the above experiment. A
global escrow KEM is IND-CPA secure if no PPT adversary has non-negligible advantage in the same
experiment but denying access to Odecaps.

6.2.1 Global Escrow PKE from Global Escrow KEM and SKE

We build global escrow PKE from global escrow KEM and SKE as below.

• Setup(1λ): runs (ppkem, edk)← KEM.Setup(1λ), ppske ← SKE.Setup(1λ), outputs pp = (ppkem, ppske)
and edk.

• KeyGen(pp): parses public parameters pp = (ppkem, ppske), outputs (pk, sk)← KEM.KeyGen(ppkem).

• Enc(pk,m): computes (ckem, k)← KEM.Encaps(pk), cske ← SKE.Enc(k,m), outputs c = (ckem, cske).

• Dec(sk, c): parses c = (ckem, cske), computes k ← KEM.Decaps(sk, cske); if k = ⊥ outputs ⊥, else
outputs m← SKE.Dec(k, cske).

• Dec′(edk, c): parses c = (ckem, cske), computes k ← KEM.Decaps′(edk, cske); if k = ⊥ outputs ⊥,
else outputs m← SKE.Dec(k, cske).

The correctness follows from that of global escrow KEM and SKE. We analyze the consistency require-
ment as below. The above construction follows the KEM-DEM approach. Fix the public parameters pp,
we define a collection of NP languages indexed by pk. Let Lpk = {(ckem, cske) | ∃m, r1, r2 s.t. (ckem, k) =
KEM.Encaps(pk; r1) ∧ cske = SKE.Enc(k,m; r2)}, which represents all valid ciphertexts encrypted under
pk. It is easy to see that for any ciphertext no matter whether ckem ∈ Lkem

pk or not, the consistency of
global escrow KEM guarantees that the decapsulation results are identical, and so are the final decryption
results.

Theorem 6.2. The above construction is IND-CPA secure (resp. IND-CCA secure) if the underlying
global escrow KEM is IND-CPA secure (resp. IND-CCA secure) and the SKE is IND-CPA secure (resp.
IND-CCA secure).

Proof. The security proof is similar to that of PKE from the KEM-DEM methodology. We omit the
details here.

22

6.2.2 Global Escrow KEM from Three-Party NIKE

We present a generic construction of global escrow KEM from three-party NIKE (see definition in Ap-
pendix A.8). The high-level idea is that the escrow agent generates a keypair (pkγ , skγ), then publishes
pkγ as part of the public parameters and keeps skγ to itself. To send a ciphertext to the receiver with
public key pk = pkβ , the sender generates a random keypair (pkα, skα), then runs the three-party NIKE
in his head to derive a shared key for {pkα, pkβ , pkγ}, and finishes encapsulation by setting pkα as the
ciphertext and the shared key as the session key. According to the functionality and security of NIKE,
both the escrow agent and the receiver can derive the same session key, which is pseudorandom in any
PPT adversary’s view. The construction is as below.

• Setup(1λ): on input a security parameter λ, runs ppnike ← NIKE.Setup(1λ) and (pkγ , skγ) ←
NIKE.KeyGen(ppnike), outputs public parameters pp = (ppnike, pkγ) and sets the global escrow
decryption key edk = skγ .

• KeyGen(pp): parses pp = (ppnike, pkγ), runs NIKE.KeyGen(ppnike) to generate a keypair (pk, sk).

• Encaps(pk): parses pk = pkβ , the sender runs NIKE.KeyGen(ppnike) to generate a random keypair
(pkα, skα), sets S = {pkα, pkβ , pkγ}, computes kS ← ShareKey(skα, S), outputs ciphertext c =
(pkα, pkβ) and session key k = kS . The language for valid encapsulation is: LKEM

pk = {(pkα, pk) |
pkα ∈ PK}.

• Decaps(sk, c): on input a secret key sk = skβ and a ciphertext c = (pkα, pkβ), first sets S =
{pkα, pkβ , pkγ}, then computes kS ← ShareKey(skβ , S) and outputs session key k = kS .

• Decaps′(edk, c): on input edk = skγ and a ciphertext c = (pkα, pkβ), sets S = {pkα, pkβ , pkγ},
then computes kS ← ShareKey(skγ , S) and outputs session key k = kS .

The correctness and consistency of global escrow KEM follow from those of the underlying three-party
NIKE. For security, we have the following theorem.

Theorem 6.3. If the three-party NIKE is CKS-light secure in the HKR setting (resp. in the DKR
setting), then the resulting global escrow KEM is IND-CPA secure (resp. IND-CCA secure).

Proof. We give the proof for the case of IND-CCA security, which carries over to the case of IND-CPA
security. If there is an adversary A that breaks the IND-CCA security of the escrow KEM, we build an
adversary B that breaks the CKS-light security of the three-party NIKE in the DKR setting with the
same advantage. B interacts with A by simulating its challenger in the IND-CCA experiment.

Setup: Given ppnike, B queries OregH three times and receives back (pkα, pkβ , pkγ) and k∗, where k∗ is
either kS where S = (pkα, pkβ , pkγ) or a random key. B sets pp = (ppnike, pkγ), pk = pkβ , then sends
(pp, pk) to A.
Challenge: B sets c∗ = (pkα, pkβ), and sends (c∗, k∗) to A.
Decapsulation query: A may adaptively make decapsulation queries. Upon receiving a decapsulation
query c 6= c∗, if c /∈ Lpkβ

, B directly rejects according to the definition of Decaps. Otherwise, B first
makes a corrupt user registration query with the first element of c, say pk, then makes a corrupt reveal
query with (pk, pkβ , pkγ). Note that the restriction c 6= c∗ ensures that (pk, pkβ , pkγ) 6= S, thus the
corrupt reveal queries made by B are always permissible. After receiving the response k from its own
challenger, B forwards it to A.
Guess: Finally, A outputs its guess b′ for b and B forwards it to its own challenger.

Clearly, B’s emulation is perfect. If k∗ = kS , then k∗ is the session key encapsulated by ciphertext
pkα under pkβ . If k∗ is a random key, then k∗ is also a random session key. Therefore, B succeeds with
the same advantage as A. This proves the theorem.

23

6.2.3 Relaxation of Three-Party NIKE

We note that the above construction of global escrow KEM does not require the full power of three-party
NIKE. In fact, a relaxed version suffices for our purpose, a.k.a., there are three types of public keys
in the system (say Type-A, Type-B and Type-C), and the shared key can be agreed upon if the three
participants hold different types of public keys. When building global escrow KEM, we can set user’s
public key as Type-A, the temporary public key as Type-B (serves as the ciphertext), and the escrow
agent’s public key as Type-C (serves as part of the public parameters). This relaxation increases the
space of the underlying protocols that can be used, and hence can potentially lead to more efficient
construction of global escrow PKE. Next, we show how to build an efficient global escrow KEM from a
relaxed version of Joux’s protocol [Jou04] to exemplify the power of this conceptual insight.

As noticed by [GPS08, AGH15], there is a huge gap in pairing-based cryptography: schemes are usu-
ally presented in the academic literature via symmetric pairing because it is simpler and the complexity
assumptions can be weaker, while schemes are preferable to be implemented via asymmetric pairing (no-
tably Type-III pairing) since it is the most efficient choice in terms of bandwidth and computation time.
Such gap also occurs in our case. As we discussed in Section A.8, the original Joux’s protocol is based
on symmetric pairing and cannot be easily adapted to the setting of asymmetric pairing. Consequently,
it does not lend itself to an efficient global escrow KEM. We fill this gap by observing that the relaxed
version of Joux’s protocol described above can be realized using asymmetric pairing under the co-DBDH
assumption. Towards minimizing the public key size of the resulting global escrow KEM, we adapt the
original Joux’s protocol by designating Type-A public key of the form gb1 ∈ G1, Type-B public key of
the form gc2 ∈ G2, and Type-C public key of the form (ga1 , g

a
2) ∈ G1 × G2. This yields a global escrow

KEM (and hence a global escrow PKE) from Type-III pairing based on the co-DBDH assumption. See
Section 8 for comparison with the only known prior work called escrow ElGamal PKE [BF03].

7 Instantiations
In this section, we present instantiations of our two generic HISE constructions (described in Section 4.2
and 5) and two generic global escrow HISE constructions (yielded by mixing the general approaches
for building HISE and global escrow PKE). We limit ourselves to discrete-log/pairing-based realizations
since factoring-based and lattice-based realizations suffer from large key size.

7.1 Two Instantiations of HISE
7.1.1 HISE from IBE

We instantiate our first generic HISE construction (presented in Section 4.2) by choosing Boneh-Franklin
IBE with asymmetric pairing (recall in Appendix A.5.1) as the underlying IBE scheme, yielding HISE
scheme 1 as below.

• Setup(1λ): runs (G1,G2,GT , p, e) ← BLGroupGen(1λ), picks g1
R←− G1, sets id∗ = 1ℓ+1, outputs

pp = id∗. We assume that pp also includes the descriptions of bilinear groups and a hash function
H : {0, 1}ℓ+1 → G2.

• KeyGen(pp): on input pp = id∗, picks sk R←− Zp, computes pk = gsk1 ∈ G1.

• Derive(sk): on input sk, outputs dk = H(id∗)sk ∈ G2.

• Enc(pk,m): on input pk and m ∈ GT , picks r
R←− Zp, computes c1 ← gr1 ∈ G1 and c2 ←

e(pk,H(id∗))r ·m, outputs c = (c1, c2).

• Dec(dk, c): on input dk and c, outputs m = c2/e(c1, dk).

• Sign(sk, m̃): on input sk and m̃ ∈ {0, 1}ℓ, outputs σ = H(0||m̃)sk ∈ G2.

• Vrfy(pk, m̃, σ): picks r R←− Zp, outputs “1” if e(pk,H(0||m̃))r = e(gr1, σ) and “0” otherwise.

24

Remark 7.1. HISE scheme 1 is obtained by faithfully applying the generic transform to the Boneh-
Franklin IBE. We note that in this case the Vrfy algorithm could be simplified by directly checking if
e(pk,H(0||m̃)) = e(g1, σ), the resulting the signature component is exactly the Boneh-Lynn-Shacham
signature [BLS01] from the asymmetric pairing.

We realize HISE scheme 1 atop pairing-friendly curve bls12-381 with 128-bit security level [SKSW20]8,
in which |G1| = 48 bytes, |G2| = 96 bytes, |Zp| = 32 bytes, and |GT | = 191 bytes (by exploiting com-
pression techniques [RS08]).

7.1.2 HISE from PKE and ZKPoK

We instantiate our second generic construction of HISE (presented in Section 5) from the following
building blocks, yielding HISE scheme 2.

Public-key encryption. We choose the ElGamal PKE as the starting PKE scheme. The randomness
space R for KeyGen is Zp. The KeyGen algorithm on input r R←− Zp outputs sk = r and pk = gr.
Thus, G : Zp → G is defined as r 7→ gr. Clearly, G is injective, and thus it is unconditionally target-
collision resistant. We assume that there is a one-to-one mapping from {0, 1}ℓ to Zp for some integer ℓ.
Concretely, we choose the elliptic curve secp256k1 with 128-bit security. We demonstrate the generality
of our second HISE construction by providing two more eligible PKE candidates (see Appendix B.3 for
the details).
Uniform one-way function. After fixing R = {0, 1}ℓ, we choose a one-way function H from {0, 1}n
to {0, 1}ℓ. A popular choice is using hash function like SHA-256, in which the number of AND gates of
a single call is about 25000. Motivated by applications in FHE schemes, MPC protocols and SNARKs,
recently there is a trend to design lightweight symmetric encryption primitives with a low number
of multiplications or a low multiplicative depth. In our instantiation, we choose the POSEIDON-128
hash [GKR+21], whose number of rank-1 constraint satisfiability (R1CS) constraints is roughly 300.
General purpose ZKPoK. Due to the involvement of F, Rkey defined by G ◦ F is unlikely to be an
algebraic relation. As a consequence, it is difficult to prove Rkey using simple Sigma protocols. Our
solution is to resort efficient general purpose public-coin ZKPoK protocols. A flurry of recent work
on zk-SNARKs with transparent setup offers plenty of candidates, including the backbone protocols
that underlie almost all the known zk-SNARKs in the random oracle model. such as ZKBoo and
its variants [GMO16, CDG+17, KKW18], Ligero and its improved version [AHIV17, RBZ20], Bullet-
proof [BBB+18], zk-STARK [BBHR18], Aurora [BCR+19], Spartan [Set20] and its extensions [SL20].
In our instantiation, we choose Spartan [Set20]. We convert the proved relation Rkey into R1CS format
using xJsnark [KPS18]; the number of R1CS constraints of is roughly 680, 000 ≈ 220.

With the above building blocks, HISE scheme 2 is as below.

• Setup(1λ): on input a security parameter λ, runs (G, g, p) ← GroupGen(1λ), picks a uniform one-
way function F : {0, 1}n → {0, 1}ℓ, runs ppnizkpok ← NIZKPoK.Setup(1λ), and outputs pp =

(F, ppnizkpok). The plaintext space is M = G. The message space is M̃ = {0, 1}∗.

• KeyGen(pp): on input pp = (F, ppnizkpok), picks sk R←− {0, 1}n, computes pk = gF(sk) ∈ G.

• Derive(sk): on input sk, outputs dk ← F(sk) ∈ Zp.

• Enc(pk,m): on input pk and m ∈ G, picks r R←− Zp, computes X ← gr ∈ G, Y ← pkr ·m, outputs
C = (X,Y).

• Dec(dk, c): on input dk and C = (X,Y), outputs m← Y/Xdk.

• Sign(sk, m̃): computes σ ← NIZKPoK.Prove(pk, sk, m̃).

• Vrfy(pk, m̃, σ): on input pk, m̃ and σ, outputs b← NIZKPoK.Verify(pk, σ, m̃).
8Recent security evaluations show that the security level of bls12-381 is close to but less than 128-bit. As curves of

128-bit security level are currently the most widely used, BLS12-381 and BN462 are recommended in the memo [SKSW20]
in order to have a more efficient and a more prudent option respectively.

25

7.2 Two Instantiations of Global Escrow HISE
As depicted in Figure 1 in the introduction part, there are two paths to build global escrow HISE. We
present one instantiation per path as below.

7.2.1 Global Escrow HISE via the GE Conversion

Our first construction is along the path enabled by the GE conversion. Starting from the HISE scheme
presented in Section 7.1.1, we compile it into a global escrow one by applying the twisted Naor-Yung
transform [BMV16], yielding global escrow HISE scheme 1.

7.3 Instantiation of Global Escrow HISE (via GE conversion)
We describe global escrow HISE scheme 1 as follows. Its KeyGen, Derive, Sign and Vrfy algorithms are
the same as those of the starting HISE. We describe its Setup, Enc, Dec and Dec′ algorithms as below.

• Setup(1λ): on input a security parameter λ, runs (G1,G2,GT , p, g1, g2, e)← BLGroupGen(1λ), sets
id∗ = 1ℓ+1, samples s R←− Zp, computes epk ← gs1 ∈ G1, edk ← H(id∗)s ∈ G2, picks cryptographic
hash functions H : {0, 1}ℓ+1 → G2, H̃ : G3

1 × G3
T → Zp, outputs global escrow decryption key

edk and public parameters pp that include epk and the descriptions of bilinear groups and hash
functions.

• Enc(pk,m): on input pk and m ∈ GT , picks r R←− Zp, computes a “double encryption” of m
under pk and epk, i.e., X = gr1 ∈ G1, Y1 = hr1 · m ∈ GT and Y2 = hr2 · m ∈ GT , where h1 =
e(pk,H(id∗)), h2 = e(epk,H(id∗)), then generates a (simulation-sound) NIZK proof π for the
fact that (X,Y1, Y2) is ciphertext encrypting the same plaintext with shared randomness; this is
equivalent to showing logg1 X = logh2/h1

Y2/Y1. Such proof can be generated by applying the
Fiat-Shamir transform [FS86, FKMV12] to the Sigma protocol (described in Figure 5), with the
challenge defined as e := H̃(x||A1||A2) through the application of the random oracle H̃, yielding a
simulation-sound NIZK proof π = (A1, A2, z) in the random oracle model. In this way, the final
ciphertext c = (X,Y1, Y2, π) consists of 6 group elements.

• Dec(dk, c): on input dk and c = (X,Y1, Y2), first runs NIZK.Verify(x, π) to perform the consistency
check; if the proof is invalid then outputs ⊥. Otherwise, outputs IBE.Dec(dk, (X,Y1)).

• Dec′(edk, c): on input edk and c = (X,Y1, Y2), first runs NIZK.Verify(x, π) to perform the consis-
tency check; if the proof is invalid then outputs ⊥. Otherwise, outputs IBE.Dec(edk, (X,Y2)).

x = (g1, X, h2/h1, Y2/Y1) ∈ G2
1 ×G2

T

P (r) V

a
R←− Zp

A1 ← ga1 , A2 ← (h2/h1)
a

A1, A2

e
R←− Zp

e

z = a+ er
z check if

gz1 = A1X
e

(h2/h1)
z = A2(Y2/Y1)

e

Figure 5: Sigma protocol for discrete logarithm equality in two isomorphic groups

We realize global escrow HISE scheme 1 atop pairing-friendly curve bls12-381.

26

7.3.1 Global Escrow HISE via the HI Conversion

Our second construction is along the path enabled by the HI conversion. Starting from the global escrow
PKE based a relaxed version of Joux’s three-party NIKE (sketched in Section 6.2.3), we add the signing
functionality via the HI conversion, yielding global escrow HISE scheme 2.

7.4 Instantiation of Global Escrow HISE (via HI conversion)
We describe global escrow HISE scheme 2 as below.

• Setup(1λ): on input a security parameter λ, runs (G1,G2,GT , g1, g2, p, e) ← BLGroupGen(1λ),
picks edk R←− Zp, computes pk1γ ← gedk1 ∈ G1, pk2γ ← gedk2 ∈ G2, picks a uniform one-way function
F : {0, 1}n → {0, 1}ℓ, runs ppnizkpok ← NIZKPoK.Setup(1λ), outputs pp = (F, ppnizkpok, epk =

(pk1γ , pk
2
γ)) and edk. The plaintext space is M = G. The message space is M̃ = {0, 1}∗.

• KeyGen(pp): on input pp = (F, ppnizkpok, epk), picks sk R←− {0, 1}n, computes pk ← g
F(sk)
1 ∈ G1.

• Derive(sk): on input sk, outputs dk ← F(sk) ∈ Zp.

• Enc(pk,m): on input pk = pkβ and m ∈ GT , picks dkα
R←− Zp, computes X ← gdkα

2 ∈ G2,
k ← e(pkβ , pk

2
γ)

dkα , Y ← k ·m ∈ GT , outputs c = (X,Y).

• Dec(dk, c): on input dk = dkβ and c = (X,Y), outputs m← Y/e(pk1γ , X)dkβ .

• Dec′(edk, c): on input edk = dkγ and c = (X,Y), outputs m← Y/e(pkβ , X)dkγ .

• Sign(sk, m̃): computes σ ← NIZKPoK.Prove(pk, sk, m̃), where pk is the instance, sk is the witness,
m̃ is treated as the auxiliary input. The number of constraints of proved relation is roughly 220.

• Vrfy(pk, m̃, σ): outputs b← NIZKPoK.Verify(pk, σ, m̃).

We realize global escrow HISE scheme 2 atop pairing-friendly curve bls12-381 and use the same
uniform one-way function and NIZKPoK as specified in Section 7.1.2.

The joint security of the above two schemes follows from the fact that the signing key is independent
of the global escrow decryption key.

8 Comparison and Evaluation
This section compares (global escrow) HISE with CPK and ISE in terms of security and functionality
properties, then evaluates our instantiations of (global escrow) HISE and global escrow PKE.

8.1 Comparison of Security and Functionality Properties
Paterson et al. [PSST11] introduce a “Cartesian product” construction of CPK (henceforth CP-CPK
for short). The construction uses arbitrary encryption and signature schemes as components, runs the
key generation algorithms independently, then concatenates the keypairs of the encryption scheme and
signature scheme, and uses the appropriate component of the compound keypair for each operation.
CP-CPK best formalizes the principle of key separation, and hence also naturally supports individual
key escrow. We choose it as a baseline to judge (global escrow) HISE schemes that use the principle of
key reuse.

Table 1 offers a comparision of (global escrow) HISE against previous CP-CPK and ISE in terms of
security and functionality properties as well as certificate cost. The results show that HISE supports
individual key escrow in the context of key reuse, while global escrow HISE further supports global key
escrow. Besides, we highlight that CP-CPK doubles the certificate cost, which should be minimized in
practice.

27

Table 1: Comparison between CP-CPK, ISE, and our (global escrow) HISE

Scheme strong
joint security

individual
escrow

global
escrow

key
reuse

certificate
cost

CP-CPK [PSST11] 3 3 7 7 ×2
ISE [PSST11] 7 7 7 3 ×1

HISE 3 3 7 3 ×1
global escrow HISE 3 3 3 3 ×1

For certificate cost, ×1 (resp. ×2) means the cost associated with one (resp. two) certificate(s). As aforementioned, certificate
costs include but not limit to registration, issuing, storage, transmission, verification, and building/recurring fees. Take SSL
certificate as an example, one certificate is roughly 1KB, takes roughly 200∼300ms to transmit in WAN setting with 50Mbps
network bandwidth and 8ms to verify. The monetary cost for an SSL certificate varies depending on features and business
needs. While the cost of an SSL certificate for common usage is $10∼$2000/year, the banks and large financial institutions
could spend up to $500,000/year on an SSL certificate with high-level security guranttee.

Table 2: Efficiency comparison of CPK and our proposed (global escrow) HISE schemes

Scheme efficiency (ms) [# exp, #pairing] sizes (bytes) [# G, # Zp]
KGen Sign Vrfy Enc Dec Der Dec′ |pk| |sk| |c| |σ|

CP-CPK 0.015 0.064 0.120 0.118 0.056 ⊘ ⊘ 66 64 66 65
[2, 0] [1, 0] [2, 0] [2, 0] [1, 0] ⊘ ⊘ 2G 2Zp 2G [G,Zp]
0.057 0.148 0.733 0.569 0.364 0.148 ⊘ 48 32 239 96HISE scheme 1 [1, 0] [1, 0] [0, 2] [2, 1] [0, 1] [1, 0] ⊘ G1 Zp [G1,GT] G2

0.058 3.5s 250 0.115 0.056 0.0004 ⊘ 33 32 66 40KHISE scheme 2 [1, 0] N/A N/A [2, 0] [1, 0] N/A ⊘ G Zp 2G N/A
global escrow 0.057 0.148 0.733 1.462 1.505 0.148 1.505 48 32 701 96

HISE scheme 1 [1, 0] [1, 0] [0, 2] [5, 2] [4, 1] [1, 0] [4, 1] G1 Zp [2G1, 3GT ,Zp] G2

global escrow 0.057 3.5s 250 0.629 0.531 0.0004 0.532 48 32 287 40K
HISE scheme 2 [1, 0] N/A N/A [2, 1] [1, 1] N/A [1, 1] G1 Zp [G2,GT] N/A

Performance of Cartesian product CPK and (global escrow) HISE schemes with 128-bit security level. (G1,G2,GT) refers to
asymmetric pairing groups. G refers to ordinary elliptic group. We report times for setup, key generation, signing, verification,
key derivation, encryption, and (escrow) decryption, as well as the sizes of public key pk, secret key sk, ciphertext c and
signature σ, and ignore the size of public parameters and group operations in the interests of space. The symbol ⊘ indicates
that there is no corresponding algorithm. The symbol N/A indicates that the efficiency (or bandwidth) is hard to measure
by algebra operations (or elements). At the time of this writing, the frontend tool9 for Spartan [Set20] is not available, and
hence we estimate the costs of signing/verification operations and signature size of (global escrow) HISE scheme 2 using the
cost model provided by the authors, and mark the figures with gray color.

8.2 Efficiency Evaluation of (Global Escrow) HISE
Baseline. We build a concrete CP-CPK scheme atop elliptic curve secp256k1 with 128-bit security
(where |G| = 33 bytes, |Zp| = 32 bytes) as a baseline. More precisely, we choose ElGamal PKE as the
encryption component and Schnorr signature as the signature component, because they are among the
most efficient elliptic-curve based cryptosystems with short public keys.
Methodology. We implement the CP-CPK scheme and our (global escrow) HISE instantiations in C++
based on the mcl library [Shi]. Parameters of all schemes are set to achieve 128-bit security level. All
experiments are carried on a MacBook Pro with Intel i7-9750H CPU (2.6GHz) and 16GB of RAM. We
view the key size and the associated certificate cost as the primary metric of interest. The experimental
results are presented in Table 2. As shown in this table, our (global escrow) HISE schemes have more
compact key size than the CP-CPK in both asymptotic and concrete sense. Among the five schemes,
global escrow HISE scheme 1 achieves joint security, while the rest schemes achieve weak joint security
(the encryption component is CPA-secure).

The ciphertext size of HISE scheme 1 and global escrow HISE scheme 1 and 2 are slightly large.
Nevertheless, this is not a big issue since in real-world applications long plaintexts are typically encrypted
using hybrid encryption, thereby the overhead of the PKE ciphertext can be greatly amortized. The
signature components of (global escrow) HISE scheme 2 are less efficient due to the involvement of
general-purpose ZKPoK for large-size circuit describing the composite relation Rkey. We hence regard
(global escrow) HISE scheme 2 more of theoretical interest for the time being. We leave how to improve
the efficiency as an interesting problem. A possible solution is to adapt the techniques of creating efficient
NIZK for composite statement [AGM18] to the public-coin setting.

9The frontend of a ZK proof system provides means to express statements in high-level language and compile them into
low-level representation (e.g., rank 1 constraint system), then invokes a suitable ZK backend.

28

Table 3: Comparison of escrow ElGamal PKE [BF03] and our global escrow PKE

Scheme efficiency (ms) [# exp, #pairing] sizes (bytes) [# G, # Zp]
Setup KGen Enc Dec Dec′ |pp| |edk| |pk| |sk| |c|

Boneh-Franklin 2.879 2.014 8.723 6.654 6.745 386 32 193 32 385
escrow ElGamal PKE [2, 0] [1, 0] [2, 1] [1, 1] [1, 1] 2G Zp G Zp [G,GT]

our proposed 0.243 0.058 0.680 0.579 0.586 288 32 48 32 287
global escrow PKE [4, 0] [1, 0] [2, 1] [1, 1] [1, 1] [2G1, 2G2] Zp G1 Zp [G2,GT]

Performance of global escrow PKE schemes with 128-bit security level. (G1,G2,GT) refers to asymmetric pairing groups.
(G,GT) refers to symmetric pairing groups. We report times for setup, key generation, encryption, and (escrow) decryption,
as well as the sizes of public parameters pp, global escrow decryption key edk, public key pk, secret key sk, and ciphertext c.

8.3 Comparison of Global Escrow PKE
As a byproduct, we obtain a global escrow PKE, which serves as the starting point of our global escrow
HISE 2. Our scheme (see details in Appendix B.1) can be viewed as an adaption of Boneh-Franklin
escrow ElGamal PKE [BF03, Section 7] to the setting of asymmetric pairing, and hence enjoys much
better efficiency. While this may appear straightforward in hindsight, we stress again that the adaptation
is non-trivial, which is leaded by our observation that global escrow PKE can be derived from a relaxed
version of three-party NIKE (see discussions in Section 6.2.3).

We build escrow ElGamal PKE on supersingular curve ss-1536 [SKSW20] (where |G| = 193 bytes,
|GT | = 192 bytes, |Zp| = 32 bytes)10 based on the relic library [AGM+]. We implement our global
escrow PKE atop pairing-friendly curve bls12-381. To attain the same security level, our scheme could
operate in elliptic groups defined on much smaller base field than the case of escrow ElGamal PKE. The
comparison results in Table 3 show that our scheme outperforms escrow ElGamal PKE in all parameters,
in particularly, being several orders of magnitude faster in terms of speed.

9 Conclusion
Key reuse and key escrow are two broad issues arising from practical applications of cryptography.
In this work, we investigated the interdiscipline of these two contradictory objects, an important but
much-overlooked problem in prior work, aiming to enjoying the best of both worlds. We introduced a
new notion called HISE featuring a novel two-level key derivation structure, which hits a sweet balance
between key separation and key reuse. HISE not only admits individual key escrow, but also retains the
benefit of key reuse. We then gave a black-box construction from (constrained) IBE, as well as a non-
black-box construction from uniform OWF, PKE, and ZKPoK. To further attain global key escrow, we
initiated a systematic study of global escrow PKE, which is long overdue for formal definition and efficient
construction. We provided rigorous security notion and two generic constructions. The first uncovers
a new application of the Naor-Yung paradigm. The second establishes an interesting connection to the
three-party NIKE, and leads to the most efficient global escrow PKE to date. By mixing the results
developed above, we suggested two paths for building global escrow HISE. The concrete (global escrow)
HISE schemes instantiated from our generic constructions have competitive performance to the best
CP-CPK scheme, and exhibit advantages in terms of richer functionality and public key reuse.

On the theoretical side our work resolves the problems left open in prior works [Ver01, PSST11], of
reconciling the conflict between key reuse and key escrow. On the practical side our work serves as a
developer guide for integrated usage of signature and encryption.

Finally, we remark that it is possible to consider a dual version of HISE, in which the hierarchy
between signing key and decryption key are reversed. Such dual HISE could be useful in scenarios where
decryption capability is a first priority. We leave the construction and application of dual HISE as an
interesting problem.

Acknowledgments. We would like to thank the anonymous reviewers for their valuable comments on
this paper. We thank Ren Zhang and Weiran Liu for helpful discussions. We thank Zhi Hu, Changan
Zhao and Shiping Cai for help on implementation of pairing-based cryptography. We thank Xiangling
Zhang for help on the test of certificate cost.

10So far, ss-1536 is the only reported pairing-friendly curve with 128-bit security that supports Weil pairing.

29

Yu Chen is supported by National Natural Science Foundation of China (Grant No. 61772522,
No. 61932019), Shandong Provincial Key Research and Development Program (Major Scientific and
Technological Innovation Project under Grant No. 2019JZZY010133), and Shandong Key Research and
Development Program (Grant No. 2020ZLYS09). Yuyu Wang is supported by the National Natural
Science Foundation for Young Scientists of China (Grant No. 62002049), and the Fundamental Research
Funds for the Central Universities (Grant No. ZYGX2020J017).

References
[AGH15] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. Automating fast and secure transla-

tions from type-i to type-iii pairing schemes. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pages 1370–1381. ACM, 2015.

[AGM+] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an Efficient
Library for Cryptography. https://github.com/relic-toolkit/relic.

[AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-knowledge proofs for
composite statements. In Advances in Cryptology - CRYPTO 2018, volume 10993 of Lecture Notes in
Computer Science, pages 643–673. Springer, 2018.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pages 2087–2104, 2017.

[AMPR19] Navid Alamati, Hart Montgomery, Sikhar Patranabis, and Arnab Roy. Minicrypt primitives with
algebraic structure and applications. In Advances in Cryptology - EUROCRYPT 2019, volume 11477
of Lecture Notes in Computer Science, pages 55–82. Springer, 2019.

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a
smart contract world. In Financial Cryptography and Data Security - FC 2020, volume 12059, pages
423–443. Springer, 2020.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, pages 315–334, 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. 2018. http://eprint.iacr.org/2018/046.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Advances in Cryptology -
EUROCRYPT 2016, pages 327–357, 2016.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM Journal on Computation, 36(5):1301–1328, 2007.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in Cryptology - EUROCRYPT
2019, pages 103–128, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, volume 9986 of Lecture Notes in Computer
Science, pages 31–60. Springer, 2016.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM Journal
on Computation, 32:586–615, 2003.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances in
Cryptology - ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532, 2001.

[BMV16] Silvio Biagioni, Daniel Masny, and Daniele Venturi. Naor-yung paradigm with shared randomness and
applications. In Security and Cryptography for Networks - 10th International Conference, SCN 2016,
volume 9841 of Lecture Notes in Computer Science, pages 62–80. Springer, 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. 2002. http:
//eprint.iacr.org/2002/080.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Advances
in Cryptology - ASIACRYPT 2013, volume 8270 of LNCS, pages 280–300. Springer, 2013.

30

https://github.com/relic-toolkit/relic
http://eprint.iacr.org/2018/046
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014, pages 480–499, 2014.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pages 1825–1842, 2017.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
Advances in Cryptology - EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer, 2003.

[CJNP02] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. Universal padding schemes
for RSA. In Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 226–241. Springer, 2002.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applications. In
Advances in Cryptology - EUROCRYPT 2008, volume 4965 of LNCS, pages 127–145. Springer, 2008.

[CMTA20] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. PGC: Pretty Good Confidential Transaction
System with Auditability. In The 25th European Symposium on Research in Computer Security,
ESORICS 2020, 2020.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology - EUROCRYPT 2002, pages 45–64, 2002.

[Dam] Ivan Damgård. On sigma protocols. http://www.cs.au.dk/~ivan/Sigma.pdf.
[DH76] Whitefield Diffie and Martin E. Hellman. New directions in cryptograpgy. IEEE Transactions on

Infomation Theory, 22(6):644–654, 1976.
[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography against

continuous memory attacks. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, pages 511–520, 2010.

[DLP+12] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart, and Mario Strefler. On
the joint security of encryption and signature in EMV. In Orr Dunkelman, editor, Topics in Cryptology
- CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science, pages 116–135. Springer, 2012.

[EMV11] EMV Co. EMV Book 2 - Security and Key Management -Version 4.3, 2011. https:
//www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_
20120607061923900.pdf.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key
exchange. In 16th International Conference on Practice and Theory in Public-Key Cryptography - PKC
2013, volume 7778 of LNCS, pages 254–271. Springer, 2013.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-
malleability of the fiat-shamir transform. In Progress in Cryptology - INDOCRYPT 2012, pages 60–79,
2012.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology - CRYPTO 1999, volume 1666 of LNCS, pages 537–554, 1999.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Advances in Cryptology - CRYPTO 1986, pages 186–194, 1986.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. In USENIX Security 21, 2021.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for boolean
circuits. In 25th USENIX Security Symposium, USENIX Security 2016, pages 1069–1083, 2016.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discret.
Appl. Math., 156(16):3113–3121, 2008.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
STOC 2008, pages 197–206. ACM, 2008.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Advances in Cryptology -
ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer, 2002.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Advances in Cryp-
tology - EUROCRYPT 2002, volume 2322 of LNCS, pages 466–481. Springer, 2002.

[HP01] Stuart Haber and Benny Pinkas. Securely combining public-key cryptosystems. In Proceedings of the
8th ACM Conference on Computer and Communications Security, CCS 2001, pages 215–224. ACM,
2001.

31

http://www.cs.au.dk/~ivan/Sigma.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf

[Jou04] Antoine Joux. A one round protocol for tripartite diffie-hellman. J. Cryptology, 17(4):263–276, 2004.
[Kat10] Jonathan Katz. Digital Signatures. Springer US, 2010.
[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with

applications to post-quantum signatures. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pages 525–537. ACM, 2018.

[KO03] Yuichi Komano and Kazuo Ohta. Efficient universal padding techniques for multiplicative trapdoor
one-way permutation. In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 366–382. Springer, 2003.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for efficient
verifiable computation. In 2018 IEEE Symposium on Security and Privacy, SP 2018, pages 944–961.
IEEE Computer Society, 2018.

[NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for distributed
ledgers. In 15th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2018,
pages 65–80, 2018.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In Proceedings of the 22th Annual ACM Symposium on Theory of Computing, STOC 1990, pages 427–
437. ACM, 1990.

[PGP] PGP. https://www.openpgp.org.
[Pin] Ping identity. http://www.pingidentity.com.
[PSST11] Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thomson. On the joint security

of encryption and signature, revisited. In Advances in Cryptology - ASIACRYPT 2011, pages 161–178,
2011.

[PY99] Pascal Paillier and Moti Yung. Self-escrowed public-key infrastructures. In Information Security and
Cryptology - ICISC 1999, volume 1787 of Lecture Notes in Computer Science, pages 257–268. Springer,
1999.

[RBZ20] Carmit Hazay Muthuramakrishnan Venkitasubramaniam Tiancheng Xie Rishabh Bhadauria, Zhiy-
ong Fang and Yupeng Zhang. Ligero++: A new optimized sublinear iop. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, 2020.

[Ros] David E. Ross. Pgp: Backdoors and key escrow. https://www.rossde.com/PGP/pgp_backdoor.html.
[RS08] Karl Rubin and Alice Silverberg. Compression in finite fields and torus-based cryptography. SIAM J.

Comput., 37(5):1401–1428, 2008.
[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In

FOCS 1999, pages 543–553. ACM, 1999.
[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In Advances

in Cryptology - CRYPTO 2020, volume 12172 of Lecture Notes in Computer Science, pages 704–737.
Springer, 2020.

[Shi] Mitsunari Shigeo. A portable and fast pairing-based cryptography library. https://github.com/
herumi/mcl.

[SKSW20] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S. Wahby. Pairing-Friendly Curves.
Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-09, Internet Engineering Task Force, 2020. https:
//datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zksnarks. Cryptology ePrint
Archive, Report 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[Ver01] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosystems.
In Advances in Cryptology - EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 195–210. Springer, 2001.

[vox] https://www.vox.com/recode/2020/1/24/21079275/slack-private-messages-privacy-law-enforcement-lawsuit.
[X50] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

https://tools.ietf.org/html/rfc5280.
[YY98] Adam L. Young and Moti Yung. Auto-recoverable auto-certifiable cryptosystems. In Advances in

Cryptology - EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 17–31.
Springer, 1998.

[YY99] Adam L. Young and Moti Yung. Auto-recoverable cryptosystems with faster initialization and the
escrow hierarchy. In Public Key Cryptography, Second International Workshop on Practice and Theory
in Public Key Cryptography, PKC 1999, volume 1560 of Lecture Notes in Computer Science, pages
306–314. Springer, 1999.

32

https://www.openpgp.org
http://www.pingidentity.com
https://www.rossde.com/PGP/pgp_backdoor.html
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://eprint.iacr.org/2020/1275
https://www.vox.com/recode/2020/1/24/21079275/slack-private-messages-privacy-law-enforcement-lawsuit
https://tools.ietf.org/html/rfc5280

A Review of Standard Cryptographic Primitives
We provide the standard definitions of bilinear maps, PKE schemes, digital signature schemes, IBE
schemes, BTE schemes, zero-knowledge proof systems, as well as non-interactive key exchange protocols.

A.1 Bilinear Maps
Let BLGroupGen be a PPT algorithm that on input 1λ return a description (G1,G2,GT , p, g1, g2, e) of
asymmetric pairing groups where G1, G2, GT are cyclic groups of the same prime order p = Θ(2λ), g1
and g2 are generators of G1 and G2 respectively, and e : G1×G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define gT := e(g1, g2), which is a generator in GT . Following the standard
terminology, we refer to e as pairing. Pairings fall into three basic types:

• Type-I: G1 = G2;

• Type-II: G1 6= G2 but there is an efficiently computable isomorphism ψ : G2 → G1;

• Type-III: G1 6= G2 and there is no efficiently computable isomorphism between G1 and G2.

As summarized in [AGH15], Type-I called “symmetric” is typically how schemes are described and proven
secure in the literature, since it is simpler and the complexity assumptions can be weaker; Type-II and
Type-III called “asymmetric”, in which Type-III is typically the most efficient choice for implementation.
Next, we recall the decisional bilinear Diffie-Hellman (DBDH) assumption in bilinear groups equipped
with asymmetric pairing.

Definition A.1 (DBDH Assumption). The DBDH assumption holds if for any PPT adversary, we have:

|Pr[A(ga1 , gb1, gc2, e(g1, g2)abc) = 1]− Pr[A(ga1 , gb1, gc2, e(g1, g2)z) = 1]| ≤ negl(λ)

where the probability is over the randomness of BLGroupGen(1λ), A’s random tape, and the random
choices of a, b, c, z R←− Zp.

By augmenting the above tuples with an additional element ga2 , we obtain a slight stronger assumption
known as the co-DBDH assumption, which stipulates that the distributions of (ga1 , gb1, ga2 , gc2, e(g1, g2)abc)
and (ga1 , g

b
1, g

a
2 , g

c
2, e(g1, g2)

z) are computationally indistinguishable.

A.2 Symmetric Key Encryption
An SKE scheme consists of four polynomial-time algorithms as follows.

• Setup(1λ): on input a security parameter λ, outputs public parameters pp. We assume pp also
includes the descriptions of plaintext space M , key space K, and ciphertext space C.

• KeyGen(pp): on input pp, outputs a symmetric key k.

• Enc(k,m): on input k and a plaintext m, outputs a ciphertext c.

• Dec(k, c): on input k and a ciphertext c, outputs a plaintext m or a special reject symbol ⊥ denoting
failure.

Correctness. For any λ ∈ N and any m ∈M , it holds that Pr[Dec(k, c) = m] ≥ 1− negl(λ), where the
probability is taken over the choice pp← Setup(1λ), k ← KeyGen(pp), and c← Enc(k,m).

IND-CCA security. Let A be an adversary against SKE and define its advantage as:

Pr

b = b′ :

pp← Setup(1λ);
k ← KeyGen(pp);
(m0,m1)← AOdec(pp);

b
R←− {0, 1}, c∗ ← Enc(k,mb);

b′ ← AOdec(c∗);

− 1

2
.

An SKE scheme is IND-CCA secure if no stateful PPT adversary A has non-negligible advantage in the
above security experiment. The IND-CPA security can be defined similarly by denying access to Odec.

33

A.3 Public Key Encryption
A PKE scheme consists of four polynomial-time algorithms as follows.

• Setup(1λ): on input a security parameter λ, outputs public parameters pp. We assume pp also
includes the descriptions of plaintext space M , ciphertext space C, and randomness space R.

• KeyGen(pp): on input pp, outputs a (public) encryption key ek and a (private) decryption key dk.

• Enc(ek,m): on input an encryption key ek and a plaintext m, outputs a ciphertext c. When
emphasizing the randomness r used for encryption, we write this as c← Enc(ek,m; r).

• Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext m or a special
reject symbol ⊥ denoting failure. This algorithm is typically deterministic.

Correctness. For any λ ∈ N and any m ∈ M , it holds that Pr[Dec(dk, c) = m] ≥ 1 − negl(λ), where
the probability is taken over the choice pp← Setup(1λ), (ek, dk)← KeyGen(pp), and c← Enc(ek,m).

IND-CCA security. Let A be an adversary against PKE and define its advantage as:

Pr

b = b′ :

pp← Setup(1λ);
(ek, dk)← KeyGen(pp);
(m0,m1)← AOdec(pp, ek);

b
R←− {0, 1}, c∗ ← Enc(ek,mb);

b′ ← AOdec(c∗);

− 1

2
.

A PKE scheme is IND-CCA secure if no stateful PPT adversary A has non-negligible advantage in the
above security experiment. The IND-CPA security can be defined similarly by denying the decryption
oracle.

A.4 Digital Signature
A signature scheme consists of four polynomial-time algorithms as follows.

• Setup(1λ): on input the security parameter λ, outputs public parameters pp. We assume pp also
includes the descriptions of message space M and signature space Σ.

• KeyGen(pp): on input pp, outputs a (public) verification key vk and a (private) signing key sk.

• Sign(sk,m): on input a signing key sk and a message m, outputs a signature σ.

• Vrfy(vk,m, σ): on input a verification key vk, a message m, and a signature σ, outputs a bit b,
with b = 1 meaning valid and b = 1 meaning invalid.

Correctness. For any λ ∈ N and any m ∈M , it holds that Pr[Very(pk,m, σ)] = 1− negl(λ), where the
probability is taken over the choice pp← Setup(1λ), (vk, sk)← KeyGen(pp), and σ ← Sign(sk,m).

EUF-CMA security. Let A be an adversary against signature component and define its advantage as:

Pr

 Vrfy(vk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(1λ);
(vk, sk)← KeyGen(pp);
(m∗, σ∗)← AOsign(pp, vk);

 .
The set Q records queries to Osign. A signature is EUF-CMA secure if no PPT adversary A has non-
negligible advantage in the above security experiment. The strong EUF-CMA security can be defined
similarly by asking A to output a fresh valid message-signature tuple.

34

A.5 Identity-Based Encryption
Formally, an IBE scheme [BF03] consists of the following PPT algorithms:

• Setup(1λ): on input a security parameter λ, outputs public parameters pp. We assume that pp
includes the descriptions of identity space I, plaintext space M and ciphertext space C.

• KeyGen(pp): on input public parameters pp, outputs a master public key mpk and a master secret
key msk.

• Extract(msk, id): on input msk and an identity id ∈ I, outputs a secret key skid for id.

• Enc(mpk, id,m): on input mpk, an identity id ∈ I, and a plaintext m ∈ M , outputs a ciphertext
c ∈ C.

• Dec(skid, c): on input a secret key skid for identity id and a ciphertext c ∈ C, outputs a plaintext
m ∈M or a distinguished reject symbol ⊥ indicating that c is invalid.

Correctness. For any pp ← Setup(1λ), any (mpk,msk) ← KeyGen(pp), any identity id ∈ I and secret
key skid ← Extract(msk, id), and any plaintext m ∈M , we have m = Dec(skid,Enc(mpk, id,m)).
Security. Let A be an adversary against the IND-CPA security of IBE and define its advantage in the
following experiment:

AdvA(λ) = Pr

b = b′ :

pp← Setup(1λ);
(mpk,msk)← KeyGen(pp);
(id∗,m0,m1)← AOext(pp,mpk);

b
R←− {0, 1}, c∗ ← Enc(mpk, id∗,mb);

b′ ← AOext(c∗);

− 1

2
.

Oext denotes the key extraction oracle, which on input id returns skid ← Extract(msk, id). A can query
Oext with any identity but id∗. An IBE is IND-CPA secure if no PPT adversary A has non-negligible
advantage in the above security experiment. Two weaker security notions can be defined similarly. One is
OW-CPA security, in which the adversary is required to recover the message from a random ciphertext.
The other one is selective-identity IND-CPA security, in which the adversary is asked to specify the
target identity id∗ in advance, before mpk is published.

A.5.1 Boneh-Franklin IBE Scheme

We recall the Boneh-Franklin IBE scheme with asymmetric pairings [BF03] as below.

• Setup(1λ): on input a security parameter λ, runs (G1,G2,GT , g1, g2, p, e)← BLGroupGen(1λ), picks
a cryptographic hash function H : {0, 1}ℓ → G2. The public parameters pp includes the descriptions
of bilinear groups and H. The identity space is I = {0, 1}ℓ. The plaintext space is M = GT . The
ciphertext space is C = G1 ×GT .

• KeyGen(pp): on input pp, picks msk R←− Zp, computes mpk ← gmsk
1 ∈ G1.

• Extract(msk, id): on input msk and an identity id ∈ {0, 1}ℓ, outputs skid ← H(id)msk ∈ G2.

• Enc(mpk, id,m): on input mpk, an identity id ∈ {0, 1}ℓ and a plaintext m ∈ GT , picks r R←− Zp,
computes c1 ← gr1, k ← e(mpk,H(id))r, c2 = k ·m, outputs c = (c1, c2).

• Dec(skid, c): on input skid and c = (c1, c2), computes k ← e(c1, skid), outputs m← c2 · k−1.

Boneh-Franklin IBE is IND-CPA secure based on the DBDH assumption by modeling H as a random
oracle.

35

A.6 Binary Tree Encryption
Canetti et al. [CHK03] defined a relaxed variant of hierarchical identity-based encryption (HIBE) [GS02,
HL02] called binary tree encryption (BTE). The only difference between HIBE and BTE is that in the
former the hierarchy tree can have arbitrary degree, and a child of node id at level j is labeled (id, idj+1)
for an arbitrary idj+1, whereas in the latter the hierarchy tree is a complete binary one, and the children
of a node id at level j are labeled id||0 and id||1. We describe the formal definition of BTE as below.
Our definition is slightly different but actually equivalent to the original one in [CHK03]. Formally, a
BTE scheme consists of the following PPT algorithms.

• Setup(1λ, 1ℓ): on input a security parameter λ and a value ℓ representing the depth of the tree,
outputs public parameters pp. The identity space I is {0, 1}≤ℓ, which represents the set of all
binary strings whose length is less or equal than ℓ.

• KeyGen(pp): on input public parameters pp, outputs a master public key mpk and a master secret
key msk. Alternatively, msk can be written as skϵ, meaning the secret key for the root node.

• Delegate(skid, b): on input a secret key skid for node id ∈ {0, 1}<ℓ and a bit b ∈ {0, 1}, outputs
a secret key skid||b. This algorithm is used to delegate secret keys along the hierarchy. Note that
msk is essentially the secret key at depth 0, an efficient secret key extraction algorithm Extract is
thus off-the-shelf, which can be defined by calling this algorithm iteratively.

• Enc(mpk, id,m): on input mpk, a node id ∈ {0, 1}≤ℓ, and a plaintext m, outputs a ciphertext c.

• Dec(skid, c): on input a secret key skid for node id ∈ {0, 1}≤ℓ, its secret key skid, and a ciphertext
c, outputs a plaintext m or a distinguished reject symbol ⊥ indicating c is invalid.

Correctness. For any pp ← Setup(1λ, 1ℓ), any (mpk,msk) ← KeyGen(pp), any identity id ∈ {0, 1}≤ℓ,
any secret key skid ← Extract(msk, id), and any plaintext m, we have m = Dec(skid,Enc(mpk, id,m)).
Security. Roughly speaking, a secure BTE should ensure the secrecy of ciphertexts encrypted by id even
if the secret keys of other identities (as long as they are not ancestors of id) are exposed. We formally
define IND-CPA security for BTE as below. Let A be an adversary against the IND-CPA security of
BTE and define its advantage in the following experiment:

AdvA(λ) = Pr

b = b′ :

pp← Setup(1λ, 1ℓ);
(mpk,msk)← KeyGen(pp);
(id∗,m0,m1)← AOext(pp,mpk);

b
R←− {0, 1}, c∗ ← Enc(mpk, id∗,mb);

b′ ← AOext(c∗);

− 1

2
.

Oext denotes key extraction oracle, which on input identity id returns skid ← Extract(msk, id). A can
query Oext at any point but id∗ and its ancestors. A BTE is IND-CPA secure if no PPT adversary
A has non-negligible advantage in the above security experiment. Two weaker security notions can be
defined similarly. One is OW-CPA security, in which the adversary is required to recover the message
from a random ciphertext. The other one is selective-identity IND-CPA security, in which the adversary
is asked to commit the challenge identity id∗ even before seeing mpk.

A.7 Zero-Knowledge Protocols
We begin with the definition of interactive proof systems.

Definition A.2 (Interactive Proof System). An interactive proof system is a two-party protocol in
which a prover can convince a verifier in an interactive manner that some statement is true without
revealing any knowledge about why it holds. A round consists of a message sent from one party to the
other. Towards uttermost generality, we define an additional setup algorithm Setup, which is executed
once and for all by a possibly trusted party. Formally, an interactive proof system consists of three PPT
algorithms (Setup, P, V) as below.

36

• Setup(1λ): on input the security parameter λ, outputs public parameters pp. Let Rpp ⊆ X ×W be
an NP relation indexed by pp. We say w ∈W is a witness for a statement x iff (x,w) ∈ Rpp. Rpp

naturally defines a family of public-parameters-dependent NP languages:
Lpp = {x | ∃w ∈W s.t. (x,w) ∈ Rpp}

We will drop the subscript pp occasionally when the context is clear.

• P and V are a pair of interactive algorithms, which both take pp as implicit input and the statement
x as common input. We use the notation tr ← 〈P (x), V (y)〉 to denote the transcript of an execution
between P and V , where P has input x and V has input y. We write 〈P (x), V (y)〉 = b depending
on whether V accepts, b = 1, or rejects, b = 0. When the context is clear, we will also slightly
abuse the notation of 〈P (x), V (y)〉 to denote V ’s view (ViewV) in the interaction, which consists
of V ’s input tape, random tape and incoming messages sent by P . If all messages sent from V are
chosen uniformly at random and independent of P ’s message, we say the interactive proof system
is public-coin.

An interactive proof system is called zero-knowledge proof of knowledge (ZKPoK) if it satisfies the
following three properties:
Completeness. For any (x,w) ∈ Rpp where pp← Setup(1λ), it holds that:

Pr[〈P (x,w), V (x)〉 = 1] = 1

Proof of knowledge. This property is an enhancement of soundness. Formally, for pp ← Setup(1λ)
and any prover P ∗, there exists an expected PPT extractor E , such that for all x, if Pr[〈P ∗(x), V (x)〉 =
1] ≥ ε(λ), then Pr[(x,w) ∈ Rpp : EP∗

(x) = w] ≥ ε(λ) − µ(λ), where µ(λ) is a negligible function in λ.
If the existence of E relies on additional computational assumptions, proof of knowledge is weakened to
argument of knowledge.
Statistical zero-knowledge. For any malicious PPT V ∗, there exists an expected PPT simulator S
such that for pp← Setup(1λ) and any (x,w) ∈ Rpp, we have:

〈P (x,w), V ∗(x)〉 ≈s S(x)

Statistical zero-knowledge can be strengthened to perfect (resp. weakened to computational) zero-
knowledge by requiring that the real views and simulated views are identically (resp. computationally)
indistinguishable.
Definition A.3 (Sigma Protocol (Σ-protocol) [Dam]). An interactive proof system is called a Sigma
protocol if it follows the following communication pattern (3-round public-coin):

1. (Commit) P sends a first message a to V ;

2. (Challenge) V sends a random challenge e to P ;

3. (Response) P replies with a second message z.
and satisfies standard completeness and the variants of soundness and zero-knowledge as below:
n-Special soundness. There exists a PPT extractor that can compute the witness for any x giving
n accepting transcripts {(a, ei, zi)}i∈[n] with the same initial message and distinct challenge ei. By the
general forking lemma [BCC+16, BBB+18], n-special soundness implies proof of knowledge.
Honest-verifier zero-knowledge (HVZK). There exists a PPT simulator S such that for any (x,w) ∈
Rpp, we have:

〈P (x,w), V (x)〉 ≡ S(x)
The Fiat-Shamir transform can crush any public-coin interactive proof system into a non-interactive

one. Generally, we have the following theorem.
Theorem A.1 (Fiat-Shamir Transform [BR93, FKMV12]). Let (Setup, P, V) be a (2k+1)-move public-
coin HVZK proof of knowledge, x be the statement, ai be the prover P ’s ith round message and ei be
verifier V ’s ith round challenge, and H be a hash function with range equal to V ’s challenge space. By
setting ei = H(a1, . . . , ai) in (Setup, P, V), we obtain (Setup, PH, V H), which is a NIZKPoK assuming H
is a random oracle.11

11To get a unifying syntax of NIZK, one can also interpret the description of H as common reference string.

37

A.8 Non-Interactive Key Exchange
In a NIKE scheme, ℓ parties each post a single message to a public bulletin board. All parties then
read the board and any n-size subset users can agree on a shared key that is secret from any outside
eavesdropper. The classic Diffie-Hellman key-exchange [DH76] solves the two-party case n = 2 based on
the DDH assumption. Joux [Jou04] gives the first three-party NIKE protocol using bilinear maps. For
the general case where n could be any positive integer, Boneh and Silverberg [BS02] create a scheme from
multilinear maps. Boneh and Zhandry [BZ14] show a construction from using indistinguishability obfus-
cation. Very recently, Alamati et al. [AMPR19] put forward a black-box construction from composable
input homomorphic weak PRF.

Cash et al. [CKS08] propose a security model for NIKE scheme in the public key setting, known as
the CKS model. The CKS model allows an adversary to obtain honestly generated public keys, but also
can register dishonestly generated public keys (for which the adversary need not know the corresponding
secret keys). This dishonest key registration (DKR) setting captures realistic PKI where the Certificate
Authority (CA) does not demand a proof of knowledge or possession of the secret key when issuing a
certificate on a public key. Freire et al. [FHKP13] provide different security models derived from the
CKS model and explore the relationships between them. They also consider the security models in the
honest key registration (HKR) setting where dishonest key registration queries are disallowed.

We formally define the notion of multiparty NIKE by extending the syntax and the CKS-light security
model of two-party NIKE [FHKP13] to the general multiparty case. The essential difference from the
standard definition is that we eliminate all identities from the algorithms and allow different users to
hold the same public key. A NIKE scheme consists of three polynomial-time algorithms as below.

• Setup(1λ, n, ℓ): on input a security parameter λ and two integers ℓ and n, outputs global public
parameters pp. Here, n is the number of users that can derive a shared key, and ℓ is an upper
bound on the number of users in the system. When there is no prior-fixed bound for ℓ, we can
omit it from the inputs.

• KeyGen(pp): on input public parameters pp, outputs a keypair (pk, sk). User keeps sk as his secret,
and publishes pk to the other users.

• ShareKey(ski, S): on input ski, a set S of n public keys (here the public keys are not required to
be distinct), users holding pki ∈ S derives the shared key kS from his secret key and the set S.

Correctness. We require that user holding pk ∈ S derives the same shared key, i.e., for any set S of n
public keys and any pki ∈ S, we have:

ShareKey(ski, S) = kS

where ski is the secret key of pki.
Consistency. Note that the correctness requirement only defines the behavior of the ShareKey algorithm
when all elements in S come from the public key space. Here, we introduce consistency to require that
if there is only one element in S (say pki) does not belong to the public key space, the outputs of
ShareKey(skj , S) are still the same for all j 6= i. Clearly, this notion is meaningful for n ≥ 3. We remark
that this is a very mild property. All the known n-party NIKE constructions [Jou04, BZ14, AMPR19]
satisfy this property.
Security. Let A be an adversary against NIKE and define its advantage in the following experiment.

AdvA(λ) = Pr

b = b′ :

pp← Setup(1λ, ℓ, n);
S ← AOregH,OregC,Oreveal(pp);

k∗0 ← kS , k
∗
1

R←− K;

b
R←− {0, 1};

b′ ← AOregC,Oreveal(k∗b);

− 1

2
.

Here, OregH is the honest user registration oracle, capturing that an adversary can observe public keys of
honest users. A makes n such queries. Upon receiving an honest user registration query, the challenger
runs KeyGen to generate a keypair (pk, sk), records the tuple (pk, sk) into an initially empty list Lhonest
and returns pk to A. S represents the set of public keys that A had made for honest user registration

38

queries, which A would like to be challenged on. OregC denotes corrupt user registration oracle, capturing
that in real-world the Certificate Authority may not demand a proof of knowledge of the secret key or
check if the public key had been registered when issuing a certificate. A can make polynomial number of
such queries, each time with a distinct public key pk. We stress that A is even allowed to make corrupt
user registration query with honest public keys. The challenger records the tuple (pk,⊥) into an initially
empty list Lcorrupt. Oreveal denotes the corrupt reveal oracle, capturing that the adversary may learn the
shared keys of some particular sets of public keys. A can make polynomial number of such queries, each
time with a set of n public keys as long as at least one of the public keys was registered as corrupt and
the other as honest. The challenger runs ShareKey with a secret key corresponding to one honest public
key and returns the result to A. To prevent trivial win, the only constraint is that A is not allowed to
query Oreveal with S.

A NIKE scheme is secure in the CKS-light model under the DKR setting if no stateful PPT adversary
has non-negligible advantage in the above experiment. A NIKE scheme is secure in the CKS-light model
under the HKR setting if no stateful PPT adversary has non-negligible advantage in the same experiment
but denying access to the OregC and Oreveal oracles.

A.8.1 Joux’s Three-Party NIKE

We recall Joux’s three-party NIKE from bilinear maps [Jou04] as below. The original protocol inherently
relies on symmetric pairing.

• Setup(1λ, 3): runs (G,GT , p, g, e) ← BLGroupGen(1λ), picks a function H from GT to the session
key space K, outputs public parameters pp that includes the descriptions of bilinear groups and H.

• KeyGen(pp): picks sk R←− Zq, computes pk ← gsk, outputs (pk, sk).

• ShareKey(sk, S): on input sk, a set of public keys S = {pkα, pkβ , pkγ}, if sk is the secret key of
one public key in S, say, skγ for pkγ , then outputs kS ← H(e(pkα, pkβ)

skγ), else outputs ⊥.

Joux’s three-party NIKE [Jou04] is secure in the CKS-light model under the HKR setting based
on the decisional BDH assumption by setting H as identity function and K = GT , or based on the
computational BDH assumption by setting H as a cryptographic hash function modeled as a random
oracle.
Remark A.1. We note that Joux’s three-party NIKE inherently relies on symmetric pairing. To adapt
Joux’s protocol with asymmetric pairing, there are two ready approaches: (i) set the public key as
element in G1 × G2, and derive the shared key by selecting appropriate part of the public key; (ii) set
the public key as element in G2, and derive the shared key by mapping one of the public keys to G1.
The shortcoming of the first approach is larger key size, while the shortcoming of the second approach
is that one has to stick to Type-II pairing, whose efficient realizations are rare. Moreover, in either case
we have to resort case-tailored ad-hoc assumptions to make the security reduction go through.

B Miscellaneous
B.1 Global Escrow PKE Scheme
For completeness, we describe our newly proposed global escrow PKE from asymmetric pairing, which
is implied by a relaxed version of Joux’s protocol, as sketched in Section 6.2.3.

• Setup(1λ): runs (G1,G2,GT , p, g1, g2, e) ← BLGroupGen(1λ), picks edk R←− Zp, computes pk1γ ←
gedk1 ∈ G1, pk2γ ← gedk2 ∈ G2, outputs public parameters pp = (pk1γ , pk

2
γ) and edk. The plaintext

space is M = G.

• KeyGen(pp): on input pp, picks sk R←− Zp, computes pk ← gsk1 ∈ G1.

• Enc(pk,m): on input pk = pkβ and m ∈ GT , picks skα
R←− Zp, computes X ← gskα

2 ∈ G2,
k ← e(pkβ , pk

2
γ)

skα , Y ← k ·m ∈ GT , outputs c = (X,Y).

• Dec(sk, c): on input sk = skβ and c = (X,Y), outputs m← Y/e(pk1γ , X)skβ .

39

• Dec′(edk, c): on input edk = skγ and c = (X,Y), outputs m← Y/e(pkβ , X)skγ .

The correctness is obvious. The IND-CPA security is based on the co-DBDH assumption.

B.2 Constrained IBE for Prefix Predicates from BTE
Observe that for any subtree T in a BTE [CHK03], the secret key of its root node serves as a succinct
representation of all the secret keys of the nodes on T . This property is reminiscent of the GGM PRF,
which implies constrained PRF for prefix predicates [BW13]. We are thus inspired to build constrained
IBE for prefix predicates from BTE. The construction is as below.

• Setup(1λ): runs pp← BTE.Setup(1λ, 1n) to generate public parameters. Let F = {fv}v∈{0,1}ℓ,ℓ≤n

be a family of predicates over identity space I = {0, 1}n, where fv(id) = 1 iff v is a prefix of id.

• KeyGen(pp): outputs (mpk,msk)← BTE.KeyGen(pp).

• Extract(msk, id): outputs skid ← BTE.Extract(msk, id).

• Constrain(msk, fv): runs BTE.Delegate iteratively to derive skfv .

• Derive(skfv , id): if v is a prefix of id, then runs BTE.Delegate iteratively to derive skid, else outputs
⊥.

• Enc(mpk, id,m): outputs c← BTE.Enc(mpk, id,m).

• Dec(skid, c): outputs m← BTE.Dec(skid, c).

The correctness and security of the above construction follow straightforwardly from those of the
underlying BTE.

B.3 More Eligible PKE Candidates for the Second HISE Construction
We provide two more candidates of PKE schemes to demonstrate the generality of our second generic
HISE construction. One candidate is the Cramer-Shoup PKE from hash proof system [CS02]. The
randomness space R of KeyGen is Zp × Zp. The KeyGen algorithm on input randomness r = (r1, r2) ∈
Zp × Zp, outputs sk = (r1, r2) and pk = gr11 g

r2
2 ∈ G. Here, G : Zp × Zp → G is defined as (r1, r2) 7→

gr11 g
r2
2 , which is collision-resistant based on the discrete logarithm assumption defined over (g1, g2),

which is implied by the security of the Cramer-Shoup’s PKE. Another candidate is the dual Regev’s
PKE proposed by Gentry, Peikert, and Vaikuntanathan [GPV08]. The KeyGen algorithm on input
randomness r ∈ {0, 1}ℓ, outputs secret key x = r and public key u = Ax. Here, G : {0, 1}ℓ → Zn

q is
defined as r 7→ Ar, which is collision-resistant based on SIS assumption defined by A.

40

	Introduction
	Our Contributions
	Related Works

	Preliminaries
	One-Way Function
	Constrained Identity-Based Encryption

	Definition of HISE
	HISE from (Constrained) Identity-Based Encryption
	HISE from Constrained IBE
	HISE from IBE

	HISE from PKE and ZKPoK
	Global Escrow PKE
	Global Escrow PKE from PKE and NIZK
	Global Escrow PKE from Three-party NIKE and SKE

	Instantiations
	Two Instantiations of HISE
	Two Instantiations of Global Escrow HISE
	Instantiation of Global Escrow HISE (via GE conversion)
	Instantiation of Global Escrow HISE (via HI conversion)

	Comparison and Evaluation
	Comparison of Security and Functionality Properties
	Efficiency Evaluation of (Global Escrow) HISE
	Comparison of Global Escrow PKE

	Conclusion
	Review of Standard Cryptographic Primitives
	Bilinear Maps
	Symmetric Key Encryption
	Public Key Encryption
	Digital Signature
	Identity-Based Encryption
	Binary Tree Encryption
	Zero-Knowledge Protocols
	Non-Interactive Key Exchange

	Miscellaneous
	Global Escrow PKE Scheme
	Constrained IBE for Prefix Predicates from BTE
	More Eligible PKE Candidates for the Second HISE Construction

