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Abstract

In the shuffle model for differential privacy, users locally randomize
their data and then submit the results to a trusted “shuffler” who mixes
the responses before sending them to a server for analysis. This is a
promising model for real-world applications of differential privacy, as a
series of recent results have shown that, in some cases, the shuffle model
offers a strictly better privacy/utility tradeoff than what is possible in a
purely local model. The recent “privacy blanket” notion provides a simple
method for analyzing differentially private protocols in the shuffle model.

A downside of the shuffle model is its reliance on a trusted shuffling
mechanism, and it is natural to try to replace this with a distributed shuf-
fling protocol run by the users themselves. Unfortunately, with only one
exception, existing fully secure shuffling protocols require Ω(n2) commu-
nication.

In this work, we put forth a notion of differential obliviousness for shuf-
fling protocols, and prove that this notion provides the necessary guaran-
tees for the privacy blanket, without requiring a trusted shuffler. We also
show a differentially oblivious shuffling protocol based on onion routing
that can tolerate any constant fraction of corrupted users and requires
only O(n logn) communication.

1 Introduction

Differential privacy [15] has become a leading approach for privacy-preserving
data analysis. Traditional mechanisms for differential privacy operate in the
curator model, where a trusted server holds all the sensitive data and releases
noisy statistics about that data. To reduce the necessary trust assumptions,
researchers subsequently proposed the local model of differential privacy. Here,
each user applies a local randomizer R to its sensitive data xi to obtain a noisy
result yi, and then forwards yi to a server who analyzes the noisy data it obtains.
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Local mechanisms for differential privacy are currently used by companies such
as Google and Apple to collect statistics about their users.

A drawback of local mechanisms is that, in some cases, they provably require
more noise (and hence offer reduced utility) for a fixed level of privacy. For
example, computing a differentially private mean of n users’ inputs can be done
with only O(1) noise in the centralized curator model [15] but requires O(

√
n)

noise in the local model [4, 10].
A recent line of work has explored an intermediate model that provides a

tradeoff between these extremes. In the shuffle model [7, 13, 30, 3], users locally
add noise to their data as in the local model, but also have access to a trusted
mechanism S (a “shuffler”) for anonymizing their data before it is forwarded to
the server. That is, whereas in the local model the server obtains the ordered
vector of noisy inputs (y1, . . . , yn), in the shuffle model the server is given only
the multiset {yi} := S(y1, . . . , yn) which hides information about which element
was contributed by any particular user. ({yi} can be encrypted with the server’s
public key before being sent to the shuffler so that the shuffler does not learn the
value submitted by any user.) In some cases, the shuffle model is known to offer
a strictly better privacy/utility tradeoff than what is possible in the local model.
The recent “privacy blanket” notion [3] is an elegant—and, for some problems,
optimal—differentially private protocol that works in the shuffle model and can
be applied to a variety of problems.

Although the shuffle model relies on a weaker trust assumption than the cu-
rator model, it may still be undesirable to rely on a trusted entity to perform the
shuffling, and, in particular, not to collude with the curator. It is thus natural to
consider replacing the shuffler by a distributed protocol, executed by the users
themselves. Clearly, we can use generic secure computation to replace S while
preserving the differential privacy guarantees of any mechanism designed for
the shuffle model. Unfortunately, most existing fully secure shuffling protocols
suffer from Ω(n2) communication (see discussion of related work below).

Our contributions. We put forth a new notion of security for shuffling proto-
cols, which we call differential obliviousness, that is motivated by, but formally
distinct from, differential privacy. Roughly, for any honest pair of users and
any pair of values y, y′ in the output multiset, a differentially oblivious shuffling
protocol hides (in the same sense as for differential privacy) whether the first
user contributed y and the second user contributed y′, or vice versa. We then
prove that any differentially oblivious shuffling protocol, when combined with
an ε-local differentially private mechanism, provides differential privacy without
the trusted shuffler.

With this result in place, we then turn to constructing a differentially obliv-
ious shuffling protocol with low communication. We prove that onion routing –
in which each user chooses a random path of length r among the users, ending
at the server, with nested encryption used to hide the route – is differentially
oblivious, and in fact achieves privacy that improves exponentially in r. Setting
r = O(1) to match parameters typically used for differential privacy, we obtain
a shuffling protocol with O(n log n) communication. This yields a construction
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that is concretely efficient, and asymptotically better than almost all prior (fully
oblivious) shuffling protocols.

1.1 Related Work

Oblivious shuffling. There is a long line of work studying different types of
protocols for oblivious shuffling. We survey some of what is known, restricting
attention to protocols secure against t = Θ(n) (semi-honest) corruptions.

Fully secure oblivious shuffling can be done via secure computation of a
permutation network, using a random permutation [20, 26]. This requires Ω(n2)
communication just for the initial sharing of the inputs. Then, the parties can
obliviously sample a permutation [26], or, they execute the circuit t + 1 times
with t+1 users each choosing a random permutation [20, 23]; the latter approach
is more efficient for small n, but results in an Ω(n)-round protocol.

A recent line of work [8, 14, 25] constructs secure-computation protocols that
avoid the Ω(n2) communication complexity of input sharing by using “quorums”
of size O(log n) to carry out the computation. Much of this work is aimed at
asymptotic performance only, and the concrete efficiency is unclear. Recent work
by Movahedi et al. [25] is an exception; they look specifically at applying these
ideas to shuffling. As in our work, their shuffling protocol is not fully secure,
though the relaxation they consider is quite different from ours: they prove that
full security holds with probability O(1− 1/n3), and make no claims about the
remaining probability. The total communication complexity of their protocol
is O(n polylog n) and to the best of our knowledge theirs is one of only two
prior shuffling protocols with sub-quadratic communication complexity. (We
discuss the other at the end of this Section.) Our own protocol out-performs
theirs, both asymptotically and concretely. We provide a concrete comparison
between our shuffling protocol and theirs in Section 4.4.

Recently, Bell et al. [5] proposed a very different approach for shuffling via
secure aggregation of Bloom filters. Their construction requires Ω(n2) commu-
nication, but appears to have better concrete efficiency as compared to prior
work. We provide a concrete comparison between our results and theirs in
Section 4.4.

In a mix network [11], users encrypt their values and the resulting cipher-
texts are then sequentially mixed by t + 1 users (who also re-randomize the
encryption). This results in a protocol with Ω(n2) communication complexity
and Ω(n) rounds.1 A dining cryptographers network (DC-net) [12] allows one
party to anonymously broadcast a message to the remaining n−1 parties; it can
be run in parallel n times to allow the n users to shuffle their inputs. Although
DC-nets can be implemented in constant rounds (in the semi-honest setting),
the communication complexity for running n parallel DC-nets is Ω(n2).

Differentially private computation. The idea of relaxing security for

1One could elect a random committee of smaller size to perform the mixing, which reduces
the total communication cost, but does not improve the bottleneck complexity: each committee
member still must communicate O(n) values.
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distributed protocols in the context of differential privacy has appeared in a
number of prior works [4, 19, 23, 9, 18, 24]. Beimel et al. [4] first proposed the
idea, and studied how the relaxation impacts efficiency for the problem of secure
summation. He et al. [19] and Groce et al. [18] construct differentially private
set-intersection protocols that are more efficient than fully secure protocols for
the same task. Mazloom and Gordon [23], and Mazloom et al. [24] leverage
differential privacy to make graph-parallel computations more efficient. Chan
et al. [9] consider a version of differential obliviousness (defined differently from
ours) in the client/server model, studying sorting, merging, and range-query
data structures under that relaxation.

Anonymous communication. Some techniques for anonymous communi-
cation (e.g., mix-nets and DC-nets) are already discussed above. The onion
routing protocol [17, 27, 1] that we study in this paper is used as part of the
Tor anonymous communication network, though Tor uses paths with only three
intermediate nodes. Although Tor has received a lot of attention in the security
community, most of that work focuses on active attacks and/or attacks that are
specific to Tor. While some theoretical analyses of the anonymity provided by
onion routing exist [22, 16, 2, 1], mostly they give results that are incomparable
to the differential obliviousness we require. (We discuss one exception in detail,
below.) The Stadium, Vuvuzela, and Karaoke systems [28, 29, 21] all provide
one-to-one anonymous messaging where anonymity is formalized by requiring
differential privacy of the observed network traffic. While this could in prin-
cipal be used for shuffling (by sending n anonymous messages to the server),
the cost would be O(n2). Bellet et al. [6] study “gossip” protocols that pro-
vide a differential privacy guarantee. The setting of their work is quite different
from ours: in particular, they assume the adversary does not know the current
round, and they focus on one-to-many communication rather than many-to-one
communication as we do here.

The most similar work to our own is that of Ando et al. [1]. The authors
consider a very similar security relaxation for shuffling, and use it for construct-
ing an anonymous messaging system. Compared to our own analysis of onion
routing as a differentially oblivious (DO) shuffle protocol, there are several dif-
ferences. Ando et al. consider a stronger adversary that can observe all network
connections, whereas we relax this assumption and only allow the observation
of the channels that neighbor the corrupted parties. Additionally, they consider
both a semi-honest adversary and an active adversary, while we only consider
semi-honest behavior. However, even when assuming a semi-honest adversary,
the ability to observe the network imposes considerable cost. While they claim
the same asymptotic complexity as we do in our own analysis, concretely, their
construction is quite impractical. For this reason, they make only asymptotic
claims, while we provide concrete analysis, demonstrating that our construction
is quite practical, performing better than any prior work that we are aware
of. That said, We stress that our first theorem, which demonstrates that any
differentially oblivious shuffling protocol can be combined with any ε-local dif-
ferentially private mechanism to achieve overall differential privacy (Theorem
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3.9), we can use the more secure, less efficient, shuffle constructions of Ando et
al. in place of our own.

2 Definitions

Differential privacy. We use the standard notion of (approximate) differential
privacy. Two vectors of inputs x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n) are called

neighboring if they differ at a single index; i.e., if there exists an index i such
that xi 6= x′i but xj = x′j for j 6= i. Let f denote a randomized process mapping
a vector of inputs (x1, . . . , xn) ∈ Dn, each in some domain D, to an output lying
in some range R. We say that f satisfies (ε, δ)-approximate differential privacy
if for all neighboring vectors x,x′ ∈ Dn and subsets R′ ⊆ R we have

Pr[f(x) ∈ R′] ≤ eε · Pr[f(x′) ∈ R′] + δ.

If f satisfies (ε, 0)-approximate differential privacy then we simply say that f is
ε-differentially private. For compactness, we abbreviate these as (ε, δ)-DP/ε-DP.

Local differential privacy. Traditionally, differential privacy assumes the
model that users’ inputs are stored by a trusted curator in a centralized location.
In the local differential privacy setting, it is assumed that each user need to
submit their input to an untrusted curator. In particular, consider a user U
with a local input x in domain D. To ensure privacy, user U locally applies a
randomized function R to his input to obtain an output y in some range R, and
then sends y to the curator. We say that R is (ε, δ)-local differentially private,
or simply (ε, δ)-LDP if for all inputs x, x′ ∈ D and subsets R′ ⊆ R we have:

Pr[R(x) ∈ R′] ≤ eε · Pr[R(x′) ∈ R′] + δ.

Similarly, if R is (ε, 0)-LDP then we simply say that R is ε-LDP.

The shuffle model and the randomized response mechanism. The shuf-
fle model [7, 13, 30, 3] considers n users U1, . . . , Un, each with a local input xi,
who have access to a trusted “shuffler” S. Each user Ui locally applies a ran-
domized function R to their input to obtain yi = R(xi), and then sends yi to S.
After receiving a message from every user, S outputs the multiset of elements
(which can also be viewed as a histogram) h = {yi}. If we overload notation
and let S also denote the process of mapping a list of elements to the multiset
containing those elements, then R defines the randomized process

S ◦ (R× · · · × R)(x1, . . . , xn)
def
= S (R(x1), . . . ,R(xn)) .

The randomized response mechanism [3] specifies a particular local random-
ized mechanism Rγ,D for the shuffle model. Let γ ∈ [0, 1] be a parameter, and
let D denote the domain in which the users’ inputs lie. Then

Rγ,D(x) =

{
x with probability 1− γ

y ← D with probability γ
;
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i.e., a user replaces its input with a uniform value in D with probability γ, and
with the remaining probability leaves its input unchanged. Balle et al. [3] show:

Theorem 2.1. Fix values n, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−1)·ε2 , 27·|D|

(n−1)·ε

}
,

then S ◦ (Rγ,D × · · · × Rγ,D) is (ε, δ)-DP.

Differentially private protocols. More generally, we may consider interac-
tive protocols executed by a server and n users, each of whom initially holds an
input xi. The server has no input, and is the only party to generate an output.
We say that a protocol Π implements a (randomized) function f if the honest
execution of Π when the users hold inputs x1, . . . , xn, respectively, results in the
server generating output distributed according to f(x1, . . . , xn).

In this setting, the server’s view may contain more than just its output.
It is also natural to consider that some of the users executing the protocol
may themselves be corrupted and colluding with the server. (In this work, we
consider semi-honest corruptions only. That is, we assume corrupted parties—
including the server—follow the protocol as directed, but may then try to learn
additional information based on their collective view of the protocol execution.)
Given a set of parties A (that we assume by default always includes the server),
we let viewΠ,A(x1, . . . , xn) be the random variable denoting the joint view of
the parties in A in an execution of protocol Π when the users initially hold
inputs x1, . . . , xn. Let H denote the set of users not in A; let xA denote the
inputs of users in A; and let xH denote the inputs of users outside of A. Then:

Definition 2.2. Protocol Π is (ε, δ)-DP for t corrupted users if for any set A
containing the server and up to t users and any xA, the function mapping xH
to viewΠ,A(xA,xH) is (ε, δ)-DP, i.e., for any neighboring xH ,x

′
H and any set

V of possible (joint) views of the parties in A, we have

Pr[viewΠ,A(xA,xH) ∈ V ] ≤ eε · Pr[viewΠ,A(xA,x
′
H) ∈ V ] + δ.

One can also consider protocols operating in a hybrid world. The shuffle
model is a special case of this, where the parties have access to an ideal function-
ality S implementing the shuffler. Concretely, the protocol (Rγ,D × · · · × Rγ,D)

S

corresponding to the randomized response mechanism is the one in which each
user locally computes yi ← Rγ,D(xi) and then sends yi to S, which sends the
result {yi} := S(y1, . . . , yn) to the server. The fact that some of the users them-
selves might be corrupted, however, now needs to be taken into account. The
following is an easy corollary of Theorem 2.1:

Corollary 2.3. Fix n, t, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−t−1)·ε2 , 27·|D|

(n−t−1)·ε

}
,

then (Rγ,D × · · · × Rγ,D)
S

is (ε, δ)-DP for t corrupted users in the S-hybrid
model.

Shuffle protocols. A protocol Σ is a shuffle protocol if it implements S, i.e., if
the output generated by the server when running Σ is the multiset containing
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the users’ inputs. We are interested in shuffle protocols that ensure differen-
tial privacy when used to implement the shuffle model. Note, however, that we
cannot use differential privacy to analyze a shuffle protocol itself: no shuffle pro-
tocol is differentially private, since two neighboring inputs y,y′ lead to disjoint
sets of outputs. Instead, we introduce a related, but distinct, definition that
we call differential obliviousness. (This is conceptually related to, but formally
distinct from, the notion of differential obliviousness studied in the client/server
setting [9].) We say that two vectors of inputs y,y′ are transpositions of each
other if there exist i, j such that y′i = yj , y

′
j = yi, and y′k = yk for k 6∈ {i, j}, i.e.,

if y′ is the same as y but with the elements at positions i, j swapped. Then:

Definition 2.4. Shuffle protocol Σ is (ε, δ)-differentially oblivious for t corrupted
users if for any set A containing the server and up to t users, any yA, any
yH ,y

′
H that are transpositions of each other, and any set V of possible (joint)

views of the parties in A, we have

Pr[viewΣ,A(yA,yH) ∈ V ] ≤ eε · Pr[viewΣ,A(yA,y
′
H) ∈ V ] + δ.

3 Distributing the Privacy Blanket

We first show that any differentially oblivious shuffle protocol preserves differ-
ential privacy when used with the randomized response mechanism. Formally:

Theorem 3.1. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious

for t corrupted users. If (Rγ,D × · · · × Rγ,D)
S

is (ε′, δ′)-differentially private

for t corrupted users, then (Rγ,D × · · · × Rγ,D)
Σ

is (ε+ ε′, δ + δ′)-differentially
private for t corrupted users.

Overview of the proof. Throughout this section, we let Π denote Rγ,D ×
· · · × Rγ,D; our goal is to prove differential privacy of ΠΣ. We give a formal
proof starting in the next subsection; here, we provide an overview. We collec-
tively call the adversarial parties (the t corrupted users plus the server) “the
adversary.” Fix some neighboring inputs x = (xA,xH) and x′ = (xA,x

′
H), and

some set V of the adversary’s views. (Each view in V includes the views of the
server and t corrupted users in an execution of ΠΣ.) We formally define these in
the next section, but, conceptually, we separate each view v ∈ V into three com-
ponents: v1 that reflects the adversary’s view of the unmodified inputs provided
to Σ (which is the same as the adversary’s view of the unmodified inputs sent to
the shuffler analyzed with privacy blanket method); the final multiset h output
by the server (which is the same as the final multiset that would be output by
the shuffler conditioned on v1); and the view v2 that results from the execution
of Σ itself. For some first component v1 and output multiset h, let Y (v1, h)
denote the set of honest inputs yH to Σ that are consistent with v1, h, and x,
and let Y ′(v1, h) denote the set of yH consistent with v1, h, and x′. For exam-
ple, suppose the output multiset seen by the server is h = {1, 1, 1, 1, 2, 2, 2}, and
that two corrupted users provided inputs v1 = {1, 2} (after applying R). Let
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inputs x and x′ differ only in the last honest user’s value, where the last entry
in xH is 1, and the the last entry in x′H is 2. Then, as depicted in Figure 1, the
set Y consists of all ordered vectors that a) contain a 1 in the final position, and
b) are consistent with multiset {1, 1, 1, 2, 2}, which results from removing the
adversary’s inputs. 2 Similarly, the set Y ′ contains the ordered vectors with a
2 in the final position, and consistent with the same multiset.

We wish to prove that for any set of adversial views V ,

Pr[(v1, h, v2) ∈ V | x] ≤ eε+ε
′
Pr[(v1, h, v2) ∈ V | x′] + δ + δ′.

By separating the leakage due to the server’s output multiset from the leakage
that results from the shuffle protocol, we can leverage the existing guarantee
analyzed using privacy blanket method, where a truly oblivious shuffle is used.
Formally, we do that by letting V ′ denote the set that results from restricting
the elements of V to the first two entries. Using the above definitions, we have:

Pr[(v1, h, v2) ∈ V | x] =
∑

(v1,h,v2)∈V

Pr[(v1, h, v2) | x]

=
∑

(v1,h)∈V ′
Pr[v1 | x] · Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1] ·

Pr
yH←Y (v1,h)

[viewΣ,A(yA,yH) ∈ V2(v1, h)].

The second probability in the product above ensures that the randomized
input vector is consistent both with the multiset h received by the adversary,
and with its knowledge of the ordered, un-randomized inputs. Subject to those
constraints, note that each honest input vector yH ∈ Y (v1, h) has equal prob-
ability weight, as it is only the randomized honest inputs that determine the
unconstrained values; each honest party that randomizes their input is equally
likely to choose any input value. This is captured in the final probability, above.

The original analysis with privacy blanket method allows us to claim:∑
(v1,h)∈V ′

Pr[v1 | x] · Pr
[
R⊗mγ,D(x) ∈ Y (v1, h) | v1

]
≤ eε

′ ∑
(v1,h)∈V ′

Pr[v1 | x′] · Pr
[
R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1

]
+ δ′.

Therefore, the main technical argument that remains to be made is that:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.

2When we analyze this formally, we will also include the adversary knowledge of which
honest parties do not randomized their inputs. We then further restrict Y and Y ′ to contain
only vectors consistent with the adversary’s inputs, and unrandomized honest inputs. We
omit this here for simplicity, and treat all honest inputs as though they were randomized.
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The proof of this claim (Lemma 3.7) follows from a combinatorial analysis of
the two sets, Y and Y ′. As depicted in Figure 1, we say that two elements from
Y and Y ′ are neighboring if they differ by a single transposition. The security
of a differentially oblivious shuffle guarantees that neighboring vectors give rise
to (roughly) the same view, during shuffling. If we can establish a bijection
between these two sets of vectors, mapping each element of Y to its neighbor
in Y ′, our main theorem follows immediately. Unfortunately, as can be seen in
the example of Figure 1, Y and Y ′ do not necessarily have the same size, and
so there is no guarantee of such a bijection.

Nevertheless, we can immediately see some structure in that example: each
vector in Y has 2 neighbors in Y ′, and each vector in Y ′ has 3 neighbors in Y .
We extend the sets Y and Y ′ to multisets [Y ] and [Y ′], by duplicating entries in
such a way that |[Y ]| = |[Y ′]|. The resulting multisets preserve the probability
weights of each vector: sampling a uniform yH ∈ Y is the same as sampling a
uniform yH ∈ [Y ] (and similarly for Y ′ and [Y ′]). Furthermore, these multisets
allow us to establish a bijection φ : [Y ]→ [Y ′] such that for any yH ∈ [Y ], yH
and φ(yH) are transpositions of each other. This allows us to use the fact that
Σ is (ε, δ)-differentially oblivious for t corrupted users to prove the final claim
made above.

Figure 1: Transposition relations between vectors in Y and Y ′

Figure 2: A bijection between [Y ] and [Y ′], derived from Y and Y ′.

3.1 Notation and Preliminaries

We now formalize the preceding intuition. We assume t users are corrupted and
let m = n− t be the number of uncorrupted users. Fix some neighboring inputs
x = (xA,xH) and x′ = (xA,x

′
H), and for i ∈ [m] let xH,i be the input of the

ith honest user. Without loss of generality, we assume xH and x′H differ on the
input of the mth user, and further assume that xH,m = 1 and x′H,m = 2.
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The adversary’s view. We now make explicit the components of the adver-
sary’s view in an execution of ΠΣ on input x. The first component of the view,
which we generally denote by v1, includes yA = (Rγ,D × · · · × Rγ,D)(xA), i.e.,
the adversary’s inputs to Σ. Following Balle et al. [3], we also include in v1 the
honest users’ inputs (xH,1, . . . xH,m−1) except mth user’s input, and the vector
b = (b1, . . . , bm) indicating which of the honest users’ inputs are replaced by a
random value, i.e., if bi = 0 then yH,i = xH,i and if bi = 1 then yH,i ← D. The
second component of the adversary’s view is the multiset h = S(yA,yH) output
by Σ, in which (yA,yH) denotes the vector of inputs that the parties provide
to Σ; notice that part of yH can be deduced from v1. The third component
v2 of the adversary’s view consists of the entire view of the adversary in the
execution of Σ on inputs y = (yA,yH). (Although v2 determines h, we find it
useful to treat h separately.)

For the rest of the proof, fix some set of views V = {(v1, h, v2)}. We assume
without loss of generality that each view in V has non-zero probability when
the honest inputs are xH . Note that views for which bm = 1 are equiprobable
regardless of whether the honest inputs are xH or x′H ; therefore, we also assume
without loss of generality that all views in V have bm = 0.

3.2 Step 1: Using Differential Privacy of Rγ,D

For some fixed v1, h, let Y (v1, h) denote the set of honest inputs yH that
are consistent with v1, h, and x. That is, Y (v1, h) contains all yH ∈ Dm

such that (1) for all i with bi = 0, we have yH,i = xH,i (so, in particular,
yH,m = xH,m = 1), and (2) S(yA,yH) = h (where yA is fixed by v1). Similarly,
we let Y ′(v1, h) denote the set of yH consistent with v1, h, and x′. We now
show:

Lemma 3.2. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set V ′ =
{(v1, h)} and any pair of neighboring inputs x,x′, we have:∑

(v1,h)∈V ′
Pr[v1 | x] · Pr

[
R⊗mγ,D(x) ∈ Y (v1, h) | v1

]
≤ eε

′
·
∑

(v1,h)∈V ′
Pr[v1 | x′] · Pr

[
R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1

]
+ δ′.

Proof. Differential privacy of ΠS implies3 that∑
(v1,h)∈V ′

Pr[v1, h | x] ≤ eε
′ ∑

(v1,h)∈V ′
Pr[v1, h | x′] + δ′. (1)

Moreover, we have

3Technically, this does not follow from differential privacy of ΠS ; it follows, however, from
the stronger result proven by Balle et al. [3].
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Pr[v1, h | x] = Pr[v1 | x] · Pr[h | v1,x]

= Pr[v1 | x] · Pr
[
R⊗mγ,D(x) ∈ Y (v1, h) | v1

]
, (2)

and similarly

Pr[v1, h | x′] = Pr[v1 | x′] · Pr
[
R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1

]
.

Substituting (2) and (3) into (1) yields the lemma.

We use a slightly stronger formulation of the above lemma, while also intro-
ducing some additional notation. For any v1, h, define

∆(v1, h)
def
= max

{
Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1]− eε

′
· Pr[R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1], 0

}
.

We then have:

Lemma 3.3. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set V ′ =
{(v1, h)} and any pair of neighboring inputs x,x′, we have:∑

(v1,h)∈V ′
Pr[v1 | x] ·∆(v1, h) ≤ δ′.

Proof. Define

∆+(v1, h)
def
= Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1]− eε

′
· Pr[R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1],

and let V + ⊆ V ′ be the elements (v1, h) ∈ V ′ for which ∆+(v1, h) > 0.
Using the observation that Pr[v1 | x] = Pr[v1 | x′], Lemma 3.2 implies that∑

(v1,h)∈V +

Pr[v1 | x] ·∆+(v1, h) ≤ δ′.

But then∑
(v1,h)∈V ′

Pr[v1 | x] ·∆(v1, h)

=
∑

(v1,h)∈V +

Pr[v1 | x] ·∆(v1, h) +
∑

(v1,h)∈V ′\V +

Pr[v1 | x] ·∆(v1, h)

=
∑

(v1,h)∈V +

Pr[v1 | x] ·∆+(v1, h) ≤ δ′.

11



3.3 Step 2: Using Differential Obliviousness of Σ

In this section, we fix some v1, h for which Y (v1, h) and Y ′(v1, h) are both non-
empty. To reduce clutter, we write Y for Y (v1, h) and Y ′ for Y ′(v1, h). Recall
that for all yH ∈ Y we have yH,m = 1, and for all y′H ∈ Y ′ we have y′H,m = 2.

Let h̄ denote the multiset that remains after removing from h the multiset
given by the elements of yA and the multiset {xH,i | bi = 0, i 6= m} (both of
which are determined by v1). Let c1 be the number of 1’s in h̄, and let c2 be
the number of 2’s in h̄. Note that c1, c2 6= 0 by our assumption that Y and Y ′

are not empty.

Lemma 3.4. |Y ||Y ′| = c1
c2
.

Proof. Let C be the number of ways of distributing all the elements of h̄ that
are not equal to 1 or 2 among the honest users who have changed their inputs.
A vector yH is consistent with v1, h, and x only if a 1 is associated with the last
user, and the remaining c1 + c2− 1 elements of h̄ that are 1 or 2 are distributed
among the c1 + c2 − 1 users who remain from those who have changed their
inputs. Thus,

|Y | = C ·
(
c1 + c2 − 1

c1 − 1

)
.

Similarly,

|Y ′| = C ·
(
c1 + c2 − 1

c2 − 1

)
.

Hence,

|Y |
|Y ′|

=

(
c1+c2−1
c1−1

)(
c1+c2−1
c2−1

) =

(c1+c2−1)!
(c1−1)!c2!

(c1+c2−1)!
c1!(c2−1)!

=
c1!(c2 − 1)!

(c1 − 1)!c2!
=
c1
c2
.

Lemma 3.5. For every yH ∈ Y , there are c2 vectors in Y ′ that result from
transposing the final entry of yH with some other entry of yH . Similarly, for
every y′H ∈ Y ′, there are c1 vectors in Y that result from transposing the final
entry of y′H with some other entry of y′H .

Proof. We prove the first statement; the second follows symmetrically. Fix a
vector yH ∈ Y . The final entry of yH must be 1, and there are c2 other entries
of yH that are equal to 2 and that correspond to users who have changed their
inputs. Transposing the final entry of yH with the entries at any of those
locations gives a vector in Y ′.

Mapping between Y and Y ′. Ideally, we would like to construct a bijection
between Y and Y ′ such that a vector in Y is mapped to a vector in Y ′ iff they
are transpositions of each other. Then for each pair of such vectors yH and y′H ,
we could argue that viewΣ,A(yA,yH) and viewΣ,A(yA,y

′
H) must be “close”

by differential obliviousness of Σ. Unfortunately, as shown in Lemma 3.4, the
cardinalities of Y and Y ′ might be different, so such a bijection might not exist.

12



To resolve this issue, we “duplicate” vectors in Y and Y ′ so that the resulting
multisets [Y ] and [Y ′] have the same cardinality. Concretely, we let [Y ] be a
multiset consisting of c2 copies of each element yH ∈ Y . Similarly, we let [Y ′] be
a multiset consisting of c1 copies of each element y′H ∈ Y ′. Note that sampling
uniformly from [Y ] (resp., [Y ′]) is equivalent to sampling uniformly from Y
(resp., Y ′). Moreover, by Lemma 3.4, we have [Y ] and [Y ′] have the same size.

Lemma 3.6. There is a bijection φ : [Y ]→ [Y ′] such that for every yH ∈ [Y ],
the vector φ(yH) ∈ [Y ′] is a transposition of yH .

Proof. Consider the bipartite graph G with vertex sets [Y ] and [Y ′], where there
is an edge between yH ∈ [Y ] and y′H ∈ [Y ]′ iff y′H results from transposing the
final entry of yH with some other entry of yH . Using Lemma 3.5 and the fact
that every vector in Y ′ is included c1 times in [Y ′], we see that each yH ∈ [Y ]
has exactly c1 ·c2 edges. Reasoning analogously, each y′H ∈ [Y ′] has c1 ·c2 edges.
Hall’s marriage theorem implies that G has a complete matching, which is also
a perfect matching since [Y ] and [Y ′] have the same size. Any such matching
constitutes a bijection φ as claimed by the lemma.

We may now prove the main result of this section.

Lemma 3.7. If Σ is (ε, δ)-differentially oblivious for t corrupted users, then for
any set V2 of views of an execution of Σ, we have:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.

Proof. Let φ : [Y ]→ [Y ′] be a bijection as guaranteed by Lemma 3.6. Differen-
tial obliviousness of Σ implies that for any yH ∈ [Y ]:

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
≤ eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ.

Recall [Y ] and [Y ′] have the same size, we have

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2]

= Pr
yH←[Y ]

[
viewΣ,A(yA,yH) ∈ V2

]
=

∑
yH∈[Y ]

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
|[Y ]|

≤
∑

yH∈[Y ]

eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ

|[Y ]|

=
∑

y′H∈[Y ′]

eε · Pr[viewΣ,A(yA,y
′
H) ∈ V2] + δ

|[Y ′]|

= eε · Pr
y′H←[Y ′]

[viewΣ,A(yA,y
′
H) ∈ V2] + δ

= eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.
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3.4 Putting it all Together

We now prove Theorem 3.1. Let V ′ = {(v1, h) | ∃v2 : (v1, h, v2) ∈ V }. For any
(v1, h) ∈ V ′, let V2(v1, h) = {v2 | (v1, h, v2) ∈ V }. We have

Pr[(v1, h, v2) ∈ V | x]

=
∑

(v1,h,v2)∈V

Pr[(v1, h, v2) | x]

=
∑

(v1,h)∈V ′
Pr[v1 | x] · Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1]

· Pr
yH←Y (v1,h)

[viewΣ,A(yA,yH) ∈ V2(v1, h)].

For brevity, we write Y , Y ′, and V2, in place of Y (v1, h), Y ′(v1, h), and V2(v1, h),
respectively; we also write view(yH) as shorthand for viewΣ,A(yA,yH). Using
Lemma 3.7, we have that for all v1, h:

Pr
yH←Y

[view(yH) ∈ V2]

≤ min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ,

where we treat Pry′H←Y ′ [view(y′H) ∈ V2] as 1 in case Y ′ is empty. (Recall that
Y 6= ∅ by assumption on V .) It follows that

Pr[(v1, h, v2) ∈ V | x]

≤
∑

(v1,h)∈V ′
Pr[v1 | x] · Pr[R⊗mγ,D(x) ∈ Y | v1]

·
(

min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ

)
≤

∑
(v1,h)∈V ′

Pr[v1 | x] · Pr[R⊗mγ,D(x) ∈ Y | v1]

·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ.

Recalling that

∆(v1, h)
def
= max

{
Pr[R⊗mγ,D(x) ∈ Y | v1]− eε

′
· Pr[R⊗mγ,D(x′) ∈ Y ′ | v1], 0

}
,

we thus have

Pr[(v1, h, v2) ∈ V | x]

≤

( ∑
(v1,h)∈V ′

Pr[v1 | x] ·
(
eε
′
· Pr[R⊗mγ,D(x′) ∈ Y ′ | v1] + ∆(v1, h)

)

·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2(v1, h)], 1

} )
+ δ.
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Using the fact that (a+ b) ·min{c, d} ≤ ac+ bd, we obtain

Pr[(v1, h, v2) ∈ V | x]

≤
∑

(v1,h)∈V ′
Pr[v1 | x] ·

(
eε
′+ε · Pr[R⊗mγ,D(x′) ∈ Y ′ | v1]

· Pr
y′H←Y ′

[view(y′H) ∈ V2] + ∆(v1, h)

)
+ δ.

Finally, applying Lemma 3.3 gives

Pr[(v1, h, v2) ∈ V | x]

≤ eε+ε
′
·
∑

(v1,h)∈V ′
Pr[v1 | x] · Pr[R⊗mγ,D(x′) ∈ Y ′ | v1]

· Pr
y′H←Y ′

[view(y′H) ∈ V2] + δ′ + δ

= eε+ε
′
·

∑
(v1,h,v2)∈V

Pr[(v1, h, v2) | x′] + δ + δ′

= eε+ε
′
· Pr[(v1, h, v2) ∈ V | x′] + δ + δ′

(using the fact that Pr[v1 | x] = Pr[v1 | x′]), as required.

3.5 Generalizing to Arbitrary ε0-Local Differentially Pri-
vate Mechanisms

We also make a broader claim of the usefulness of the differentially oblivious
shuffle protocol with arbitrary ε0-local differential private (LDP) mechanism.
Balle et al. [3] show4:

Theorem 3.8 ( [3]). Let R be an ε0-LDP local randomizer and S◦
n︷ ︸︸ ︷

(R× · · · × R)
be the corresponding shuffled mechanism. Then S ◦ (R× · · · ×R) is (ε′, δ′)-DP
with ε′ = O((1 ∧ ε0)eε0

√
log(1/δ′)/n) if ε0 ≤ log(n/ log(1/δ′))/2.

Recall that a ∧ b = min{a, b}. Similar to our claim earlier with the ran-
domized response mechanism, we argue by replacing S with Σ, and assuming t
corrupted users, the following theorem holds:

Theorem 3.9. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious for

t corrupted users, and R be an ε0-LDP local randomizer, then (R× · · · × R)
Σ

is (ε′+ ε, δ′+ δ)-DP with ε′ = O((1∧ ε0)eε0
√

log(1/δ′)/(n− t)) if ε0 ≤ log((n−
t)/ log(1/δ′))/2.

We defer the proof to Appendix A.

4For cleaner presentation, we put the smoothed, looser bound in their paper here, although
our theorem in this section, as well as its proof in the appendix, are also compatible with their
more complicated, tighter bound.
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4 A Differentially Oblivious Shuffle Protocol

In this section, we present a construction of a differentially oblivious shuffle
protocol. We present the protocol in Section 4.1 and analyze its obliviousness
in Section 4.2. We compare its concrete performance to relevant prior work in
Section 4.4.

4.1 The Shuffling Protocol

Inputs: Each user i has input yi.

The protocol proceeds as follows:

Round 1: Each user chooses r − 1 users i1, . . . , ir−1 ← {U1, . . . , Un} uni-
formly and independently, and then forms the onion encryption Cr as
described in the text. It sends Cr to user i1.

Rounds ` = 2, . . . , r − 1: For each ciphertext Cr−`+2 received in the pre-
vious round, compute (i`, Cr−`+1) := Decski`−1

(Cr−`+2) and forward

Cr−`+1 to user i`.

Round r: For each ciphertext C2 received in the previous round, compute
(S,C1) := Decskir−1

(C2) and forward C1 to the server S.

Output: S initializes h := ∅. Then, for each ciphertext C received in the
previous round, compute y := DecskS (C) and add y to h.

Figure 3: A differentially oblivious shuffling protocol, based on parameter r.

Recall that in our setting we have n users holding inputs y1, . . . , yn, respec-
tively, who would like a server (that we treat as distinct from the n users) to
learn the multiset h = {yi}. We assume the parties have public/private keys
(pk1, sk1), . . . , (pkn, skn), respectively, and that the server has keys (pkS , skS).
Our protocol, which is based on onion routing [17, 27], works as follows. Let r
be a parameter that we fix later. Each user U chooses r−1 users i1, . . . , ir−1 ←
{U1, . . . , Un} uniformly and independently (it may be that U chooses itself),
and then forms a nested (“onion”) encryption of the form

Cr = Encpki1 (i2,Encpki2 (i3, · · ·
· · · (ir−1,Encpkir−1

(S,EncpkS (y))) · · · )),

such that at each “layer” the identity of the next receiver is encrypted along
with an onion encryption whose outer layer can be removed by that receiver. In
the first round, U sends Cr to the first receiver i1, who decrypts to remove the
outer layer and thus obtains i2 and an onion encryption Cr−1 that it forwards
to i2 in the next round. This process continues for r − 1 rounds, until in the
rth round all parties send the ciphertext EncpkS (y) they have obtained to the
server. (We assume a synchronous communication network.) The protocol is
presented in Figure 3 for convenience.
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The protocol requires r rounds of communication, and the total number of
ciphertexts transmitted is exactly rn. Since ciphertexts have length O(r log n),
the total communication complexity is O(r2n log n).

4.2 Analysis of Obliviousness with ε = 0

We assume a semi-honest adversary who corrupts up to t users as well as the
server S. The attacker has access to the state of any corrupted user, and can also
determine which user sent any message that it received. However, we assume
the attacker cannot eavesdrop on the communication between honest users, so
in particular it cannot tell whether some honest user i sent a message to some
other honest user j in some round. We treat encryption as ideal in our analysis
of obliviousness in order to simplify our treatment.

Assume without loss of generality that U1 and U2 are honest and hold dif-
ferent inputs, and fix input vectors y and y′ that are transpositions of each
other in which the inputs of U1 and U2 are swapped. Let i1` denote the `th
intermediate user chosen by user 1 for 1 ≤ ` ≤ r − 1, and set i10 = 1; define
i20, . . . , i

2
r−1 similarly. (We let round 0 refer to the beginning of the algorithm

when U1 and U2 each hold their own input.) To analyze obliviousness, we make
the following observation: if there is any round j (with 0 ≤ j ≤ r− 1) such that
U1 and U2 both choose an honest intermediate user in rounds j and j + 1 (i.e.,
for which users i1j , i

1
j+1, i

2
j , and i2j+1 are all honest)—call this event Good—then

the distributions on the attacker’s views are identical regardless of whether the
input vector is y or y′. The reason for this is that it is equally likely that the
onion encryption of user 1 was routed from i1j to i1j+1 and that of user 2 went

from i2j to i2j+1, or that the communication was “flipped” so that the onion

encryption of user 1 was routed from i1j to i2j+1 and that of user 2 went from

i2j to i1j+1. In other words, if Good occurs in an execution of the protocol, then
perfect obliviousness is achieved. If we let xt,r denote the probability of event
Good in an execution of the protocol with parameter r when t users may be
corrupted, we have:

Theorem 4.1. The protocol of Figure 3 is (0, 1 − xt,r)-differentially oblivious
for t corrupted users.

Proof. We assume a stronger adversary that can identify the original senders
for any message, except for those messages belonging to U1 and U2. Hence, it
suffices to focus on U1’s and U2’s choice of intermediate users. As shown in the
discussion above, our protocol achieves full privacy if event Good occurs and
no privacy if it does not occur (with 1 − xt,r probability). This concludes our
proof.

Our problem is now reduced to lower bounding xt,r. Let pt = (1 − t/n)2

denote the probability that U1 and U2 both choose an honest intermediate user
in some fixed round r− 1 ≥ j ≥ 1 when t users are corrupted; note that U1 and
U2 both choose an honest intermediate user (namely, themselves) in round 0
with probability 1. We have the following immediate bound:
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Theorem 4.2. For r > 1, we have xt,r ≥ 1 −
(

1−
(
n−t
n

)4)br/2c
. Thus, the

protocol of Figure 3 is

(
0,
(

1−
(
n−t
n

)4)br/2c)
-differentially oblivious for t cor-

rupted users.

Proof. Assume r is even for simplicity. (An analogous argument works when r
is odd.) Consider the rounds in r/2 disjoint pairs (0, 1), (2, 3), . . . , (r− 2, r− 1).
The probability that Good occurs in any particular pair of rounds is at least p2

t ,
so the probability that Good never occurs in any pair of rounds is at most
(1− p2

t )
r/2, i.e., Pr[Good] ≥ 1− (1− p2

t )
r/2. Plugging in pt = (1− t/n)2 yields

the result.

We can derive a tighter bound using a more careful analysis. First observe
that we have the following recurrence relation:

xt,1 = 0, xt,2 = pt

xt,r = p2
t + (1− pt) · xt,r−1 + pt · (1− pt) · xt,r−2

Although we are not aware of a simple, closed-form solution for this recurrence,
we can derive a bound on xt,r for any desired t, r. For example, we have:

Theorem 4.3. For r > 1, xn/3,r ≥ 1 − 0.85r. Thus, for r > 1 the protocol of
Figure 3 is (0, 0.85r)-differentially oblivious for n/3 corrupted users.

The proof is straightforward and we defer it to Appendix B.
We can similarly show

Theorem 4.4. For r ≥ 1, xn/2,r ≥ 1− 0.95r. Thus, the protocol of Figure 3 is
(0, 0.95r)-differentially oblivious for n/2 corrupted users.

We use the recurrence relation to calculate the exact probability when we
estimate concrete costs below.

4.3 Analysis of Obliviousness with Non-zero ε

In this subsection, we extend our result in Section 4.2 to the case that ε > 0.
In particular, we conduct a more complicated analysis to give a smaller value
of δ, in exchange for non-zero ε. (On the other hand, Section 4.2 gives a tighter
δ term when ε = 0.) To simplify our analysis, we consider a slightly stronger
adversary with the following assumption:

Assumption 4.5. If the adversary observes a message received by an honest
user in round ` and observes another message sent by the same honest user in
the round ` + 1, the adversary can always tell whether these two messages are
owned by the same user or not.

Let p = (n − t)/n and q = t/n be the probabilities that some intermediate
receiver i1` or i2` (` = 1, . . . , r − 1) is honest / corrupted, respectively. We
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say a message is owned by a user if the user is the original sender that onion
encrypts this message. Throughout our analysis, we exclude all messages owned
by corrupted users and focus only on the messages owned by honest users.
Without loss of generality, assume that the honest users are U1, . . . , Un−t, and
we assume the adversary knows all messages except for those of U1 and U2.
Finally, for any honest user j ∈ [n − t], we let RPj = [ij1, . . . , i

j
r−1] be the

vector of all intermediate users chosen by user j; alternatively, we can view RPj
as a “routing path” where the nodes are intermediate users. We refer to the
collection of all honest parties’ routing paths as the routing graph.

We say a message is “observed” by the adversary if at least one of its sender
and receiver is corrupted, and “hidden” from the adversary otherwise. Also
define the window of a user as follows:

Definition 4.6. Given RPj, we define Uj’s Window as the interval [`
(j)
s , `

(j)
t ],

where `
(j)
s (resp. `

(j)
t ) is the first (resp. last) round such that Ui’s message

at that round is hidden. If all Ui’s messages are observed, i.e., there does not
exist a round where the sender and receiver of its message are both honest, set

`
(j)
s = `

(j)
t =⊥.

Figure 4 shows a routing graph with 5 rounds, as well as U1’s Window.
The adversary can only observe a partial view of the routing graph. In

particular, the adversary’s view is the set of all observed messages. Per our
Assumption 4.5, the adversary can always “connect” two observed messages
sent in consecutive rounds, if they are both owned by the same user. As a
result, the adversary can organize the set of all observed messages into a set of
“chains”, formed by connecting every sequence of consecutive observed messages
owned by the same user. We categorise the chains into the following two types:

1. Cured chains: If the first message in the chain is sent in round 1, then the
adversary knows that every message in the chain belongs to the sender of
that message. Similarly, if the last message in the chain is sent in round r
(i.e., arrives at the server), and it does not belong to either U1 or U2, the
adversary can recover its ownership by mapping the final distinct value to
its original sender.

2. Dangling chains: We refer to all non-cured chains as dangling chains. In
particular, this includes all chains that do not include a message sent in
the first or last round. Additionally, this also covers the case where U1 or
U2’s chain spans the last round (provided they don’t also span the first
round).

In Figure 5, we show the cured and dangling chains corresponding to the
routing graph in Figure 4.
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Figure 4: A routing graph, with corrupted users represented by gray nodes and
hidden messages drawn using dash arrows.

Figure 5: The adversarial view with two types of chains corresponding to the
routing graph in Figure 4. Note that we list each dangling chain separately,
although both DC2 and DC3 belong to U2.

Following our earlier definitions, let input vectors y and y′ be transpositions
of each other in which the inputs of users 1 and 2 are swapped. Consider U1

and U2’s Windows and define the following events:

Good : (`(1)
s = `(2)

s ) ∨ (`
(1)
t = `(2)

s ) ∨ (`(1)
s = `

(2)
t )

Bad⊥ : (`(1)
s =⊥) ∨ (`(2)

s =⊥)

Bad1 : `(1)
s ≤ `

(1)
t < `(2)

s

OK1 : `(1)
s < `(2)

s < `
(1)
t

Bad2 : `(2)
s ≤ `

(2)
t < `(1)

s

OK2 : `(2)
s < `(1)

s < `
(2)
t

(We may abuse notations and use the events to denote the corresponding sets
of adversary’s views.)

Clearly,

Pr[Good] + Pr[Bad⊥] + Pr[Bad1] + Pr[OK1] + Pr[Bad2] + Pr[OK2] = 1,

And
Pr[Bad1] = Pr[Bad2], Pr[OK1] = Pr[OK2].
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If Bad⊥ happens, the adversary can connect the complete chain spanning
all rounds for either U1 or U2, allowing him to learn both parties’ messages. A
similar argument can be made for Bad1. In this case, as U1’s Window ends before
the start of U2’s Window, U1’s chain spanning the last round (i.e., containing
the message sent in the last round) must also span a round prior to the start
of U2’s Window. Hence, the adversary knows that this chain belongs to U1,
since otherwise U2 would own two messages in each of the overlapping rounds,
because U2’s chain, prior to its window, is observed by the adversary. Taken
together, Bad⊥, Bad1, and Bad2 cover all possibilities that U1 and U2’s Windows
are not overlapping.

Theorem 4.7. Let δ, δOK1 be such that δ = Pr[Bad⊥] + 2 Pr[Bad1] + 2δOK1 . The
protocol in Figure 3 is (ε, δ)-differentially oblivious if for every set of adversarial
views S1 ⊆ OK1:

Pr[viewΣ(y) ∈ S1] ≤ eε · Pr[viewΣ(y′) ∈ S1] + δOK1 (3)

Proof. Due to symmetry, Inequality (3) holds for any S2 ⊆ OK2 as well. For
any S3 ⊆ Bad⊥ ∪ Bad1 ∪ Bad2, the difference between Pr[viewΣ(y) ∈ S3] and
Pr[viewΣ(y′) ∈ S3] is trivially bounded by Pr[Bad⊥] + Pr[Bad1] + Pr[Bad2] =
Pr[Bad⊥] + 2 · Pr[Bad1]. For the remaining views in Good, it is not hard to see
that they has perfect privacy, i.e., the probability of generating any subset of
views in Good is the same. Finally, as any set of views S ∈ Range(viewΣ) can
always be represented as S1 ∪S2 ∪S3 for some S1, S2, S3 as above, adding their
corresponding inequalities yields that

Pr[viewΣ(y) ∈ S] ≤ eε · Pr[viewΣ(y′) ∈ S] + δ.

We now evaluate the three summands in the expression of δ.

The probability of Bad⊥. We model each user’s choice of intermediate re-
ceivers as r i.i.d. Bernoulli trials, each with success probability p = 1− t/n, and
index them from 0 to r− 1. We rely on the recurrence relation from Section 4.2
to calculate the exact probability of event Bad⊥. In particular, for fixed t and
r, let xi (i = 0, . . . , r− 1) be the probability that there exist consecutive honest
users within the first i rounds, conditioned on a success in the 0th trial. (This
captures that the starting user is always honest.) Then

x0 = 0, x1 = p

xi = p2 + (1− p) · xi−1 + p · (1− p) · xi−2

By definition of Bad⊥, we have

Lemma 4.8.
Pr[Bad⊥] = 1− x2

r−1.
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The probability of Bad1. In addition to the notations above, for fixed t and
r, let x′i (i = 0, . . . , r− 1) be the probability that there exist consecutive honest
nodes within the first i round (no longer conditioning on a success in the 0th
trial). Then

x′0 = 0, x′1 = p2

x′i = p2 + (1− p) · x′i−1 + p · (1− p) · x′i−2

Also, let yi (i = 0, . . . , r − 1) be the probability that the first consecutive
successes appear at round i and i+1, conditioned on a success at round 0. Then

y0 = 0, y1 = p, y2 = 0

yi = p2 · (1− p) · (1− xi−3)

Lemma 4.9.

Pr[Bad1] =

r−2∑
i=1

yi · yi+1 · (1− xr−i−1) +

r−2∑
i=1

r−1∑
j=i+2

yi · yj · (1− x′r−j)

Proof. Recall that Bad1 defines the event that `
(1)
s ≤ `

(1)
t < `

(2)
s . We first

consider the case that U1 and U2’s Windows start at consecutive rounds, i.e.,

`
(1)
s + 1 = `

(2)
s . Then `

(1)
t = `

(1)
s . We have that

Pr[`
(1)
s = i] = yi, Pr[`

(2)
s = i] = yi+1,

Pr[`
(1)
t = i | `(1)

s = i] = 1− xr−i−1

The first two equations are easy to see. The third probability is the probability
that there are no consecutive honest users for U1 in rounds i + 1, . . . , r − 1,
conditioned on the sender and receiver at round i are both honest, i.e., the
sender at round i+ 1 is honest. This is equal to the probability that there exist
no consecutive honest nodes within the first r− i− 1 round, conditioned on the
initial user is honest; this probability is 1− xr−i−1.

By the three equations above, we get

Pr[Bad1 | `(1)
s + 1 = `(2)

s ]

=

r−2∑
i=1

Pr[`(1)
s = i] · Pr[`(2)

s = i+ 1] · Pr[`
(1)
t = i | `(1)

s = i]

=

r−2∑
i=1

yi · yi+1 · (1− xr−i−1)

For the case that U1 and U2’s Windows start at non-consecutive rounds, we
have that

Pr[`
(1)
t < j | `(1)

s = i] = Pr[`
(1)
t = j] = 1− x′r−j
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Hence,

Pr[Bad1 | `(1)
s + 1 < `(2)

s ]

=

r−2∑
i=1

r−1∑
j=i+2

Pr[`(1)
s = i] · Pr[`(2)

s = j] · Pr[`
(1)
t < j | `(1)

s = i]

=

r−2∑
i=1

yi · yj · (1− x′r−j)

Combining the equalities for the two cases above yields the theorem.

Determining ε and δOK1 . We now provide the exact expressions of ε and δOK1

in order for Inequality (3) in Theorem 4.7 to hold.

Theorem 4.10. For any set of adversarial views S ⊆ OK1,

Pr[viewΣ(y) ∈ S] ≤ eε · Pr[viewΣ(y′) ∈ S] + δOK1 (4)

for ε ≥ −2 ln p = −2 ln(1 − t/n) and δOK1 = 0.5 · (e−2·(n−t−2)·[(1−c)·p4]2 +

e−2[c·(n−t−2)·p4+1]·(p2−1/eε)2

) (where c is any constant in (0, 1)).
In particular, δOK1 is negligible in n if t is a constant fraction of n and

eε − p−2 = Θ(1).

To simplify our analysis, we assume an even stronger adversary by provid-
ing him with the following “enriched view”: aside from the observed messages
themselves, the adversary additionally acquires the ownership information for
all messages sent by parties other than U1 and U2, as long as its owner does not

have hidden messages at either round `
(1)
s or `

(1)
t . Let view∗Σ be the modified

function that outputs this enriched view, and OK∗1 be the set of enriched views
corresponding to the original views in OK1. Due to post-processing, it suffices
to analyze the privacy guarantee of view∗Σ instead. Hence, we only need to
prove the following:

Theorem 4.11. For any set of adversarial views S ⊆ OK∗1,

Pr[view∗Σ(y) ∈ S] ≤ eε · Pr[view∗Σ(y′) ∈ S] + δOK1

for ε and δOK1 as in Theorem 4.10.

Fix a particular view v ∈ OK∗1. Let nv be the number of users in U3, . . . , Un−t
such that their messages at rounds `

(1)
s and `

(1)
t are both hidden, i.e., the owners

of their messages are not included in the adversary’s enriched view. Additionally,
consider these nv users along with U1, and let kv be the number of users among

them such that their messages at round `
(2)
s are hidden. We first prove the

following lemma:
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Lemma 4.12. Assuming kv > 0,

Pr[view∗Σ(y) = v]

Pr[view∗Σ(y′) = v]
≤ nv + 1

kv

Proof. Given the view v, let A (resp. A′) be the set of all valid assignments of
all (unenriched) dangling chains such that U1 and U2’s final messages contain
values corresponding to y (resp. y′); that is, there is at most one observed
message for any single user at any round after the assignment. Intuitively, each
valid assignment corresponds to an “explanation” of who chose the honest and
corrupted receivers and who owns the observed messages.

Due to symmetry, conditioned on input y, any a ∈ A is (collectively) selected
by all honest users with the same probability; denote this probability as p(v)
(which only depends on v).

Pr[view∗Σ(y) = v] =
∑
a∈A

Pr[a | y] = |A| · p(v)

Similarly,

Pr[view∗Σ(y′) = v] =
∑
a∈A′

Pr[a | y′] = |A′| · p(v)

Next consider a subset Â ⊆ A of assignments such that U1’s message at

round `
(2)
s is hidden. For each such assignment, swapping U1’s and U2’s chains

after `
(2)
s yields an assignment in A′. It is straightforward to see that for all

assignments in A, the corresponding assignments generated this way are distinct,
so |Â| ≤ |A′|.

Finally, we show that |A||Â| = nv+1
kv

. We split an assignment a into two parts,

a1 and a2. a1 contains all (unenriched) dangling chains that either end before

round `
(1)
s or start after round `

(1)
t , maintaining consistency with input y. Fixing

any a1, we consider the second part a2, consisting of all remaining (unenriched)
dangling chains. By the definition of kv, for each a2, there are exactly kv users

among the nv+1 users with hidden messages at round `
(2)
s . Notice that without

a2, there is no assigned chain overlapping with U1’s Window for any of these
nv + 1 users. Thus, due to symmetry, we know that any of these nv + 1 users

(including U1) has a hidden message at round `
(2)
s in exactly kv/(nv+1) fraction

of all possible a2. Since this holds for all a1, we have |Â| = kv/(nv + 1) · |A|.
Combining all results above, we get

Pr[view∗Σ(y) = v]

Pr[view∗Σ(y′) = v]
=
|A|
|A′|
≤ |A|
|Â|

=
nv + 1

kv
.

We now turn to the proof of Theorem 4.11.
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Proof. Let V ∼ view∗Σ(y) denote the random variable for the output of the
enriched view on input y. Using the privacy loss random variable, it suffices to
show that for any ε ≥ −2 ln p,

Pr
V∼view∗Σ(y):V∈OK∗1

[
Pr[view∗Σ(y) = V]

Pr[view∗Σ(y′) = V]
> eε

]
≤ δOK1

(for V such that Pr[view∗Σ(y′) = V] = 0, we define Pr[view∗Σ(y) = V]/Pr[view∗Σ(y′) =
V] =∞ > eε).

Let N denote the random variable nv(V), and K(N) denote the random vari-
able kv(V). Then N ∼ Bin(n−t−2, p4) and K(N) ∼ Bin(N+1, p2). 5 According
to Lemma 4.12, we only need to prove

Pr[OK∗1] · Pr

[
N + 1

K(N)
> eε

]
≤ δOK1

Since Pr[OK∗1] + Pr[OK∗2] < 1 and by symmetry, Pr[OK∗1] = Pr OK∗2], we have
Pr[OK∗1] < 0.5. Hence, it suffices to show

Pr

[
N + 1

K(N)
> eε

]
≤ e−2·(n−t−2)·[(1−c)·p4]2 + e−2[c·(n−t−2)·p4+1]·(p2−1/eε)2

Note that E[N] = (n− t− 2) · p4, so by Hoeffding’s inequality,

Pr[N < c · E[N]] ≤ e−2·(n−t−2)·[(1−c)·p4]2 (5)

for any constant 0 < c < 1.

Next we upper bound Pr
[
N+1
K(N) > eε

]
in the case that N ≥ c · E[N]. Fix

any u ≥ c · E[N] as the value of N. Recall that K(u) ∼ Bin(u + 1, p2), so by
Hoeffding’s inequality again, we have

Pr

[
u+ 1

K(u)
> eε

]
= Pr

[
K(u) <

u+ 1

eε

]
≤ Pr

[
K(u) ≤ u+ 1

eε

]
≤ e−2·(u+1)·(p2−1/eε)2

.

The last expression is a monotonically decreasing function of u, so setting
u = c · E[N] yields

Pr

[
N + 1

K(N)
> eε

∣∣∣∣N ≥ c · E[N]

]
≤ e−2[c·(n−t−2)·p4+1]·(p2−1/eε)2

. (6)

Combining Inequalities (5) and (6) yields what we want to prove.

5In fact, the success probability for the first binomial distribution is p3 when `1s = 0,
separately bounding the ratio in this case can resulted in smaller δ term. Hence, we neglect
it, trading a slight loss in tightness for a simpler analysis.
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4.4 Concrete Performance Estimates

To analyze the performance of our protocol and compare it with prior work,
we assume encryption is done using the KEM-DEM paradigm with the KEM
portion having a length of 256 bits. We allocate 20 bits for user identities
(assuming n ≤ 220), and assume users’ inputs are 128 bits long. The innermost
ciphertext thus requires 256 + 128 = 384 bits, and in each of the other layers
we add 256 bits for the next key encapsulation plus 20 bits for the user ID. An
r-layer onion ciphertext thus requires 384 + 276(r − 1) bits.

We fix t = n/3 and set r = 171 so that our protocol is (0, 2−41)-differentially
oblivious. This allows us to compare our shuffling protocol to the protocols of
Movahedi et al. [25] and Bell et al. [5]. (We use (0, 2−41)-differential oblivious-
ness so that when we apply Theorem 3.1 to an (ε, 2−41)-differentially private pro-
tocol using trusted shuffler, the composed protocol satisfies (ε, 2−40)-differential
privacy overall.) In our protocol, each party sends (on average) about 497KB
and the round complexity is r = 171. Importantly, as the number of parties
increases, the only added cost is in the length of the user ID. With a 20-bit user
ID, as assumed above, we can support one million parties. In comparison, Mova-
hedi et al. report communication of 128MB per party and require 500 rounds of
communication for 33,000 parties, and approximately .5-1GB over 1,000 rounds
for one million parties. For 10,000 parties, Bell et al. estimate communication of
910KB per party, and about 12 rounds of communication; their per-party cost
grows linearly in the number of parties, and will perform far less favorably as
the number of parties approaches one million.

Additionally, we note that δ is often set to be 10−4 ≥ δ ≥ 10−6 in the
differential privacy literature. Using that range of values, we require r ≈ 55–83,
and our communication cost, per party, is reduced to 53–119KB respectively.
The protocol of Bell et al. [5] does not improve with a larger value of the privacy
parameter, as they require δ to be small to ensure correctness.

Our protocol reduces the communication cost further if we allow non-zero ε
for our shuffle protocol. In particular, for all n > 22000, t = n/3 and setting
c = 5/6, our protocol is (1, 2−41), (1, 10−6), (1, 10−4)-differentially oblivious
with r = 82, 42, 30 respectively. If we assume n < 220 (So that the user ID
can be represented in 20 bits), these correspond to about 116KB, 31KB, 16KB
communication cost per party.
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A Proof of Theorem 3.9

We start by introducing the generalized privacy blanket method for analyzing
arbitrary ε0-local differentially private mechanism in the original paper [3].

Privacy blanket decomposition. Let R : D → R be a local randomizer,
where R denotes a continuous space. For input x ∈ D, let µx denote the
distribution of R(x); we also abuse the notation a bit and use µx(·) to denote
its probability density function. For the collection of all output distributions
{µx}x∈D, we define their total variation similarity as:

γR =

∫ ∞
−∞

inf
x
{µx(y)}dy;

let ωR be the blanket distribution with its probability density function ωR(y) =
infx µx(y)/γR for y ∈ R. In the rest of this section, we simply write them as γ
and ω. Finally, define νx = (µx−γω)/(1−γ) as an input-dependent distribution.
For every randomizer R and its collection of output distributions {µx}x∈D, we
can decompose each output distribution µx into an input-dependent part and
an input-independent part:

µx = (1− γ)νx + γω

One can understand it as any party with some input x samples from an input-
independent distribution ω with probability γ, and from an input-dependent
distribution νx with probability 1− γ. We first claim the following lemma:

Lemma A.1. If R is ε0-local differentially private for some ε0 ≥ 0, then the
blanket distribution ω and all output distributions in {µx}x∈D share full support
of domain R.

Proof. We first show that for any x, x′ ∈ D, µx and µx′ must have the same
support. Otherwise without loss of generality, assume µx(y) 6= 0 and µx′(y) = 0;
then we have µx(y) > eε0µx′(y) for any ε0 ≥ 0, thus R cannot be ε0-LDP. From
the definition of ω, it follows that ω must share this same support with all
distributions in {µx}x∈D.

Similar to the proof of Theorem 3.8, we assume a stronger adversary that
can identify the contribution of any user among the first m− 1 users that does
not sample from the blanket distribution. This is also the assumption made in
Section 3; however, notice that for the generalized LDP mechanism, as opposed
to the randomized response mechanism, a party not sampling from blanket
distribution ω could still enjoy some randomness by sampling from its input-
dependent distribution νx. Thus, we need to explicitly provide these “partially”
randomized values to the adversary and reflect this in our notation. Concretely,
we modify the adversary’s view v1 defined earlier by including an additional
vector ŷH = (ŷ1, . . . , ŷm−1), where

ŷi =

{
yH,i if bi = 0

⊥ otherwise
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The high-level intuition and structure of the proof of Theorem 3.9 are similar
to those of Theorem 3.1. However, we need to re-introduce a generalized way
to form a bijection.

We start by fixing v1, h for which Y (v1, h) and Y ′(v1, h) are both non-empty.
For simplicity, we write Y for Y (v1, h) and Y ′ for Y ′(v1, h). Also recall that h̄
denotes the resulting multiset after removing from h the multiset given by the
elements of yA and the multiset {ŷi | bi = 0} (both of which are determined
by v1). To align our assumption with the assumption made in [3], we also loosen
the earlier restriction that the mth honest party always submits its true input.
Instead, this party, which either holds input xH,m or x′H,m in the two neighboring
cases, samples from µxH,m or µx′H,m , respectively. Thus, both yH,m and y′H,m
can correspond to any element in h̄ based on Lemma A.1. And it immediately
follows that Y = Y ′ and both sets include all possible permutations of elements
in h̄. We keep the redundant notations Y and Y ′ throughout our proof (and
later do the same for [Y ] and [Y ′]), as it allows us to draw analogy to our
previous analysis given in Section 3.

Similar to the proof in Section 3.3, we apply a vector duplicating approach
to generate [Y ] and [Y ′] while claiming a specific bijection φ between [Y ] and
[Y ′]. Roughly speaking, for ever pair of mapped vectors yH and φ(yH), their
probability densities have the same fraction with their respective sets [Y ] and
[Y ′]’s probability densities. (This fraction may vary for different pairs of mapped
vectors in this bijection.)

For simplicity, we start by assuming there are no duplicate values in h̄,
and later show how to address the case with duplicate values. Concretely, let
h̄ = {ai}li=1 where all ai are distinct. We abuse the notation ω and let ω(h̄)

denote the probability density
∏l
j=1 ω(aj).

We partition Y into subsets Y1, . . . , Yl with Yi = {yH ∈ Y | yH,m = ai}.
Notice that for all i, |Yi| = (l − 1)!. Furthermore, all vectors within each set Yi
have the same probability density. In particular, for every vector yH ∈ Yi, its
probability density (conditioned on v1) is given as:

f(yH | v1) =
µxH,m(ai)

ω(ai)
· ω(h̄)

Hence,

f(Yi | v1) =
∑

yH∈Yi

f(yH | v1) = (l − 1)! ·
µxH,m(ai)

ω(ai)
· ω(h̄)

Likewise, we can partition Y ′ into subsets Y ′1 , . . . , Y
′
l in the same way (recall

that they are identical sets). Similarly, for every vector y′H ∈ Y ′, its probability
density conditioned on v1 is:

f ′(y′H | v1) =
µx′H,m(ai)

ω(ai)
· ω(h̄)
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Hence,

f ′(Y ′i | v1) =
∑

y′H∈Y ′i

f ′(yH | v1) = (l − 1)! ·
µx′H,m(ai)

ω(ai)
· ω(h̄)

Relationship between vectors in Y and Y ′. We start by examining the
transposition relationship between vectors in Y1, . . . , Yl and vectors in Y ′1 , . . . , Y

′
l .

For all Yi, every vector yH ∈ Yi has an identical vector in Y ′i , and for all j 6= i,
yH has exactly one vector with transposition distance 1 in each of the Y ′j . Col-
lectively, we refer to these l vectors as yH ’s “connected” vector and denote them
as a set C(yH). Likewise, we denote y′H ’s “connected” vector as C(y′H).

Similar to what we did in Section 3, we “duplicate” vectors in Y and Y ′ to
form multisets [Y ] and [Y ′]. Concretely, we let [Y ] be a multiset consisting of l
copies of each element yH ∈ Y and [Y ′] be a multiset consisting of l copies of each
element y′H ∈ Y ′. Given some yH ∈ Yi and its connected vector y′H ∈ Y ′j , we

map yH ’s jth duplicate y
(j)
H to y′H ’s ith duplicate y

′(i)
H and we use φ(y

(j)
H ) = y

′(i)
H

to denote such mappings.

Lemma A.2. The mapping φ : [Y ] → [Y ′] is a bijection such that for every
yH ∈ [Y ], the vector φ(yH) ∈ [Y ′] is either a transposition of yH , or identical
to yH .

Proof. The second part of statement is trivial as we only map a vector yH ’s
duplicate to the duplicates of vectors in C(yH) and vice versa. For the first
part, notice that |[Y ]| = |[Y ′]|, as |Y | = |Y ′| and both [Y ] and [Y ′] contain l
duplicates for each vector. According to our description of φ, each yH ∈ [Y ] is
mapped to exactly one vector y′H ∈ [Y ′]. Due to symmetry, each y′H ∈ [Y ′] is
mapped exactly once. Hence, φ is a bijection between [Y ] and [Y ′].

Assigning probability density for duplicates. For every yH ∈ Y , rather

than evenly distributing the probability density to each of its duplicates y
(1)
H , . . . ,y

(l)
H

(as done in the proof of Theorem 3.1), we assign the probability density propor-
tionally to the probability density of its connected vectors C(yH). Concretely,
we have:

f(y
(i)
H | v1)

=
µx′H,m

(ai)/ω(ai)∑l
j=1 µx′H,m

(aj)/ω(aj)
· f(yH | v1)

=
µx′H,m

(ai)/ω(ai)∑l
j=1 µx′H,m

(aj)/ω(aj)
·

µxH,m(ai)/ω(ai)

(l − 1!) ·
∑l
j=1 µxH,m(aj)/ω(aj)

· f(Y | v1)

Similarly, for every y′H ∈ Y ′, we assign the probability density to its duplicates
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y′
(1)
H , . . . ,y′

(l)
H :

f ′(y′
(i)
H | v1)

=
µxH,m(ai)/ω(ai)∑l
j=1 µxH,m(aj)/ω(aj)

· f ′(y′H | v1)

=
µxH,m(ai)/ω(ai)∑l
j=1 µxH,m(aj)/ω(aj)

·
µx′H,m

(ai)/ω(ai)

(l − 1!) ·
∑l
j=1 µx′H,m

(aj)/ω(aj)
· f ′(Y | v1)

Lemma A.3. For every pair of yH ∈ [Y ] and φ(yH) ∈ [Y ′],

f(yH | v1)

f([Y ] | v1)
=
f ′(φ(yH) | v1)

f([Y ′] | v1)

We omit the proof as it is straightforward from the probability density de-
fined above and Lemma A.2.

We are now ready to prove the following lemma, which is a generalized
version of Lemma 3.7:

Lemma A.4. If Σ is (ε, δ)-differentially oblivious for t corrupted users, then
for any set of views V2 from an execution of Σ, we have:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ,

where the notation yH ← Y denotes sampling a vector yH from set Y ac-
cording to the distribution described above (similar for y′H ← Y ′).

Proof. Let φ : [Y ] → [Y ′] be the bijection defined in Lemma A.2. Recall that
Y is shorthand for Y (v1, h). Differential obliviousness of Σ implies that for any
yH ∈ [Y ]:

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
≤ eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ.

We have:

Pr
yH←Y

[
viewΣ,A(yA,yH) ∈ V2

]
= Pr

yH←[Y ]

[
viewΣ,A(yA,yH) ∈ V2

]
=

∑
yH∈[Y ]

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
· f(yH | v1)

f([Y ] | v1)

≤
∑

yH∈[Y ]

(eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ) · f(yH | v1)

f([Y ] | v1)

=
∑

y′H∈[Y ′]

(eε · Pr[viewΣ,A(yA,y
′
H) ∈ V2] + δ) · f(y′H | v1)

f([Y ′] | v1)

= eε · Pr
y′H←[Y ′]

[viewΣ,A(yA,y
′
H) ∈ V2] + δ

= eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.
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Handling duplicates. In the case that h̄ = {ai}li=1 contains only d < l
distinct values, we essentially treat each element of h̄ as distinct and adjust the
probability density properly. Concretely, let the respective number of these d
values be c1, . . . , cd. For all yH ∈ Y , we create

∏d
i=1 ci! duplicates and assign

each duplicate with an evenly divided probability density f(yH | v1)/
∏d
i=1 ci!.

We do the same for all y′H ∈ Y ′. As each duplicate is treated as a distinct
vector, we can just proceed as what we did earlier with no duplicate values.

Finally, we handle the remaining changes of notations and relevant lemma
due to our use of probability density. We first define the continuous counterpart
of Pr[v1 | x] and Pr[v1 | x]: let g(v1) and g′(v1) denote the corresponding
probability density at point v1, notice that g = g′. We also adjust the notation
∆(v1, h). In particular, for any v1, h, let

∆(v1, h)
def
= max

{
f(Y (v1, h) | v1)− eε

′
· f ′(Y ′(v1, h) | v1), 0

}
.

Using the above notations, we give the following continuous counterpart of
Lemma 3.3. We skip the proof as it is analogous:

Lemma A.5. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set V ′ =
{(v1, h)} and any pair of neighboring inputs x,x′, we have:∫

(v1,h)∈V ′
g(v1) ·∆(v1, h) ≤ δ′.

Proof of Theorem 3.9. It suffices to prove that for arbitrary v1, h and set of
Σ’s view V2 consistent with v1, h, the following inequality holds:

g(v1) · f(Y | v1) · Pr
yH←Y

[view(yH) ∈ V2]

≤eε+ε
′
· g′(v1) · f ′(Y ′ | v1) Pr

y′H←Y ′
[view(y′H) ∈ V2]

+ g(v1) ·∆(v1, h) + g(v1) · f(Y | v1) · δ

where view(yH) is shorthand for viewΣ,A(yA,yH). Notice that for the last
two terms on the RHS of the inequality, for any set V ′ = {(v1, h)}:∫

(v1,h)∈V ′
g(v1) ·∆(v1, h) +

∫
(v1,h)∈V ′

g(v1) · f(Y | v1) · δ ≤ δ′ + δ.

This is due to Lemma A.5 and g(v1) ·f(Y (v1, h) | v1) integrated over all possible
views is 1. Moreover, the ratio bound between the integral of the first terms on
both sides preserves:∫

(v1,h)∈V ′
g(v1) · f(Y | v1) · Pr

yH←Y
[view(yH) ∈ V2]

/

∫
(v1,h)∈V ′

g′(v1) · f ′(Y ′ | v1) Pr
y′H←Y ′

[view(y′H) ∈ V2]

≤ eε+ε
′
.
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Hence, it suffices to focusing on a single pair of v1, h here.
By Lemma A.4, we have that for all v1, h:

Pr
yH←Y

[view(yH) ∈ V2] ≤ min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ,

It follows that

g(v1) · f(Y | v1) · Pr
yH←Y

[view(yH) ∈ V2]

≤ g(v1) · f(Y | v1) ·
(

min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ

)
≤ g(v1) · f(Y | v1) ·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ g(v1) · f(Y | v1) · δ

≤ g(v1) ·
(
eε
′
· f ′(Y ′ | v1) + ∆(v1, h)

)
·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+g(v1) · f(Y | v1) · δ

≤ g(v1) ·
(
eε+ε

′
· f ′(Y ′ | v1) · Pr

y′H←Y ′
[view(y′H) ∈ V2] + ∆(v1, h)

)
+g(v1) · f(Y | v1) · δ

= eε+ε
′
g′(v1) · f ′(Y ′ | v1) · Pr

y′H←Y ′
[view(y′H) ∈ V2] + g(v1)∆(v1, h)

+g(v1) · f(Y | v1) · δ.

This concludes our proof.

B Proof of Theorem 4.3

Proof. We write xr for xn/3,r and p = 4/9 for pn/3, and set q = 1 − p = 5/9.
We prove by induction that xr ≥ 1− 0.85r for r > 1. One can verify explicitly
that it holds for r = 2, 3. Assume now that it holds for 2, . . . , r − 1; we prove
that it holds for r. Using the recurrence above, we have

xr = p2 + q · xr−1 + pq · xr−2

≥ p2 + q · (1− 0.85r−1) + pq · (1− 0.85r−2).

Then it suffices to show that p2+q·(1−0.85r−1)+pq·(1−0.85r−2) ≥ 1−0.85r.
This is because

p2 + q · (1− 0.85r−1) + pq · (1− 0.85r−2)− 1 + 0.85r

= p2 + q + pq − 1− q · 0.85r−1 − pq · 0.85r−2 + 0.85r

= 0.85r − q · 0.85r−1 − pq · 0.85r−2

= 0.85r−2 · (0.852 − q · 0.85− pq) > 0.003 > 0,

where the second equality holds because p2+q+pq−1 = (p+1)(p+q−1) = 0.
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