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Abstract. Number-theoretic algorithms often need to calculate one or
both of two related quantities: modular inversion and Jacobi symbol.
These two functions seem unrelated at first glance, but in fact the algo-
rithms for calculating them are closely related: they can both be calcu-
lated either by variants of Euclid’s GCD algorithm, or when the modulus
is prime, by exponentiation. As a result, an implementation of one algo-
rithm can often be adapted to compute the other instead, or they can
even be calculated together in a batch.
The Bernstein-Yang right-to-left modular inversion algorithm is notable
for taking constant, asymptotically subquadratic time. Right-to-left al-
gorithms are tricky to adapt for the Jacobi symbol, because they do not
consider the signs of the values being operated on. But the Jacobi symbol
is defined only on positive integers, and the rules for computing it need
corrections if negative integers are introduced.
In this short paper, we show how to overcome this difficulty and produce
a right-to-left Jacobi symbol algorithm based on Bernstein-Yang.

Keywords: Jacobi symbol, modular inversion, Bernstein-Yang algorithm, ex-
tended Euclidean algorithm

1 Introduction

The modular inversion function x´1 mod y is frequently used in public-key

cryptography, as is the Jacobi symbol calculation
´

x
y

¯

. The two functions are

used especially often in elliptic curve cryptography: inversion is used to divide
through by a projective coordinate Z at the end of the computation, or for
ECDSA scalar calculations; and the Jacobi symbol is used to determine whether
an x-coordinate corresponds to a point on the curve or on its quadratic twist.
They can even be called simultaneously on the same value, in order to produce
a final output from an x-only scalar multiplication, and simultaneously to check
whether it is on the curve [Ham20].

Inversion and the Jacobi symbol can both be computed with exponentiation
when the modulus is prime. They can also be computed using variants of Euclid’s
GCD algorithm. Previous work shows how to do this using left-to-right variants
of Euclid’s algorithm [M1̈9]. This gives Jacobi symbol algorithms which run in
subquadratic time in log y.



The Bernstein-Yang algorithm [BY19] calculates modular inversion using a
right-to-left variant of Euclid’s GCD algorithm. It can be used to invert integers
or polynomials; here we are interested in the integer case. Bernstein-Yang is sim-
ple, asymptotically subquadratic, and very fast in practice. It is also straight-
forward to implement in constant time, i.e. taking an amount of time which
depends on the sizes of the inputs but not their values. These properties make
Bernstein-Yang an excellent choice for implementations of inversion. However,
since it is a right-to-left algorithm, it does not prevent its intermediates from
becoming negative. This raises an obstacle to using it for the Jacobi symbol,
which is defined only for positive moduli.

Here we show how to overcome that obstacle. This gives a simple sub-
quadratic Jacobi symbol algorithm. Our technique might also generalize to other
right-to-left Euclidean algorithms.

2 Legendre, Jacobi and Kronecker symbols

The Legendre, Jacobi and Kronecker symbols “of x on y” are all commonly

written
´

x
y

¯

. These symbols all take the same value where they are defined, but

apply to increasingly general sets of integers px, yq. We are interested in the Ja-

cobi symbol, but we will briefly describe all three, disambiguated as
´

x
y

¯

L
,
´

x
y

¯

J

and
´

x
y

¯

K
respectively.

The Legendre symbol
´

x
y

¯

L
, where x is an integer and y is an odd prime

number, is defined as 0 if y divides x; or 1 if x is a quadratic residue mod y
(meaning that x ” z2 mod y for some integer z); or ´1 if x is a quadratic
nonresidue mod y.

The Jacobi symbol
´

x
y

¯

J
extends the Legendre symbol to odd positive inte-

gers y. If y “
ś

i p
ei
i with pi prime, then

ˆ

x

y

˙

J

:“
ź

i

ˆ

x

pi

˙ei

L

.

The Kronecker symbol further extends this to nonzero integers y by defining

ˆ

x

´1

˙

K

:“

"

1 if x ě 0
´1 if x ă 0

and
´x

2

¯

K
:“

$

&

%

0 if x is even
1 if x P t˘1u mod 8

´1 if x P t˘3u mod 8
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and most other values multiplicatively. In the rest of this work, we will use
´

x
y

¯

to refer to the Jacobi symbol. It obeys the relations:

ˆ

x` ky

y

˙

“

ˆ

x

y

˙

(1)

ˆ

xx1

y

˙

“

ˆ

x

y

˙

¨

ˆ

x1

y

˙

(2)

ˆ

´1

y

˙

“

"

´1 if y ” 3 mod 4
1 otherwise

(3)

ˆ

2

y

˙

“

"

´1 if y P t3, 5u mod 8
1 otherwise

(4)

´y

x

¯

“

ˆ

x

y

˙

¨

"

´1 if x ” y ” 3 mod 4
1 otherwise

(5)

ˆ

1

y

˙

“

´x

1

¯

“ 1 and

ˆ

0

y

˙

“ 0 for y ‰ 1 (6)

We will need to extend the Jacobi symbol to negative odd y. We could use
the Kronecker symbol, but it inconveniently doesn’t obey (1) or even (2) in all

cases. So instead we will use the Jacobi symbol
´

x
|y|

¯

; this behaves similarly to

the Kronecker symbol, but is more convenient for our algorithm. Let

sx,y :“

"

´1 if x ă 0 and y ă 0
1 otherwise.

Then
´

x
|y|

¯

obeys the same relations as
´

x
y

¯

, except that:

ˆ

´1

|y|

˙

“ s´1,y ¨

"

´1 if y ” 3 mod 4
1 otherwise

(31)

ˆ

y

|x|

˙

“

ˆ

x

|y|

˙

¨ sx,y ¨

"

´1 if x ” y ” 3 mod 4
1 otherwise

(51)

By negating x first, we can turn (51) into a “90˝ rotation rule”:

ˆ

x

|y|

˙

“

ˆ

´y

|x|

˙

¨ sx,´y ¨

"

´1 if x ” ´y ” 3 mod 4
1 otherwise

(52)

This will be our main quadratic reciprocity rule, because Bernstein-Yang rotates
px, yq to p´y, xq instead of swapping them.

3 Euclidean algorithms

The most common algorithms for computing inversion and Jacobi symbols are

closely related. When y is prime, then x´1 ” xy´2 mod y, and
´

x
y

¯

“ xpy´1q{2
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mod y. However, these approaches take cubic time to compute with the Oplog2 yq
schoolbook multiplication algorithm, and more than quadratic time with faster
multiplication algorithms. Furthermore, they do not work for composite y.

A faster and more general approach is to use an extension of Euclid’s greatest
common divisor (gcd) algorithm, which reduces

gcdpx, yq “ gcdpy, xq “ gcdpy mod x, xq.

The Euclidean algorithm can be extended to compute modular inversion by

tracking a matrix

ˆ

a b
c d

˙

such that

ˆ

x1

y1

˙

“

ˆ

a b
c d

˙

¨

ˆ

x
y

˙

.

The matrix can be computed by writing y mod x “ y ´ kx for some k, so that
the new state is a linear combination of px, yq. The algorithm ends in the state
px1, y1q “ p0, gcdpx, yqq. If y1 “ 1 then we have 1 “ y1 “ cx` dy, so that c “ x´1

mod y. If y1 ‰ 1 then x´1 mod y is not defined. Because only c is needed but
not b or d, only the first column of this matrix needs to be calculated.

The binary Euclidean algorithm [Ste67] avoids the complexity of modular
reductions. It assumes that the given y is odd, which is often the case in cryp-
tography; if y is not odd, the algorithm first divides out powers of 2 from y
and/or x until y is odd. From that point on, the binary Euclidean algorithm
maintains that y is odd, by applying the relations:

gcdpx, yq “

$

&

%

gcdpx{2, yq if x is even
gcdppy ´ xq{2, xq if x is odd and x ă y
gcdppx´ yq{2, yq if x is odd and x ě y

For the binary Euclidean algorithm and its variants, the entries in the tracking

matrix

ˆ

a b
c d

˙

aren’t integers: after i steps they are of the form e{2i where e

is an integer. This isn’t a problem for inversion if y is odd, because division
by 2i mod y is simply Montgomery reduction, which is a simple and efficient
operation.

Because y1 is positive and odd throughout the binary Euclidean algorithm,

the value
´

x1

y1

¯

is always defined. The algorithm can be extended by using the

relations (2)-(6) to track a sign s such that
´

x
y

¯

“ s ¨
´

x1

y1

¯

. In the ending state,

if y1 “ 1 then
´

x1

y1

¯

“ 1, so s “
´

x
y

¯

; otherwise
´

x
y

¯

“ 0.

3.1 Bernstein-Yang

The Bernstein-Yang algorithm [BY19] and its variants replace the numerical

comparisons x
?
ă y in the binary GCD algorithm by an estimator δ « log2px{yq.
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The value δ starts at 0, and the input y is assumed to be odd. The algorithm
uses the update step:

pδ1, x1, y1q “

$

&

%

p1´ δ, px´ yq{2, xq if δ ą 0 and x is odd
p1` δ, px` yq{2, yq if δ ď 0 and x is odd
p1` δ, x{2, yq if x is even

Variants of Bernstein-Yang have the same flow, but slightly different handling of
the δ terms [HAS21,WMt]. These algorithms can be shown to reach p0, gcdpx, yqq
in at most Opmaxplog x, log yqq steps, with concrete constants. By running the al-
gorithm for that maximum number of steps, Bernstein-Yang becomes a “constant-
time” algorithm. That is, its runtime depends on bounds of the bit-lengths of
the inputs (e.g. x ă y “ 2255 ´ 19), but not on the actual values of px, yq.

A major advantage of this approach is that a sequence of k steps of the
algorithm depend only on δ and on the least-significant k bits of x and y. This
means that Bernstein-Yang can be performed in batches. For some batch size

k, one can determine an update matrix

ˆ

a1 b1

c1 d1

˙

based on the least-significant k

bits of px, yq and the current value of δ, and then one can apply this to to the

state1
ˆ

a b x
c d y

˙

. This can be done recursively:

ˆ

a1 b1

c1 d1

˙

can be calculated using

sub-batches of size k1 ă k to compute a step matrix

ˆ

a2 b2

c2 d2

˙

, etc. This recursion

gives Bernstein-Yang an asymptotically sub-quadratic runtime, if sub-quadratic
multiplication (e.g. Karatsuba or FFT multiplication) is used.

4 Tracking the Jacobi symbol in Bernstein-Yang

In this section, we describe the sign of a number as either “negative” or “non-
negative”, so that there are only two possibilities. This definition accords with a
two’s complement representation, so it’s easy to determine in software or hard-
ware.

We would like to track the Jacobi symbol through Bernstein-Yang, again by

tracking a variable s P t˘1u such that
´

x
|y|

¯

“ s ¨
´

x1

|y1|

¯

. We can try to do this

by applying rules (1) through (6), but we run into a problem on the recursive
steps. First, rules (4) and (52) need px, yq mod 4 or mod 8 instead of merely mod
2. This is easy to solve: to perform k steps including the Jacobi symbol, we will
need k ` 2 bits of x and y, instead of only k bits.

More importantly, because the recursive steps use only the least-significant
bits of x and y, they cannot determine the sign s´x,y for rule (52). This rule is
used in the update step

pδ1, x1, y1q “ p1´ δ, px´ yq{2, xq

1 Note that when computing inversion, only pa, c, x, yq are needed in the outermost
state; and when computing GCD and/or Jacobi symbol, only px, yq are needed.
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In this case, the term sx,´y is ´1 precisely when y1 “ x ă 0 ă y, i.e. when y
becomes negative. This update step is the only way that y can change sign (or
indeed, change at all).

We can track the product of sx,´y terms by observing that the update ma-
trices rotate the state in a net counterclockwise manner, and y only changes by
being rotated counterclockwise in this way. To define this formally, we will say

that a matrix M :“

ˆ

a b
c d

˙

is a ratchet matrix if M has positive determinant

and c and d are both nonnegative.
We then have the following theorem:

Theorem 1. Let a sequence of matrices Ti :“

ˆ

ai bi
ci di

˙

be defined by

T0 :“

ˆ

1 0
0 1

˙

and Ti :“Mi ¨ Ti´1 for i ą 0,

where the Mi are ratchet matrices. Let vi :“

ˆ

xi
yi

˙

:“ Ti ¨

ˆ

x
y

˙

, where either

y ‰ 0 or x ą 0. Let tj and uj be the number of times that yi and ci change signs,
respectively, in this sequence for i ď j.

Then 0 ď ti ´ ui ď 1. Thus ti ´ ui is equal to its parity, meaning that

ti ´ ui “

"

1 if pyi ă 0 ď y0 or y0 ă 0 ď yiq xor ci ă 0
0 otherwise.

Proof. We will first rewrite the sequence to simplify it. If a ratchet matrix Mi “
ˆ

a b
c d

˙

has c “ 0, then it certainly has d ą 0 and a ą 0 because d ě 0 and the

determinant ad ą 0. Otherwise, it has c ą 0, and can be factored as
ˆ

a b
c d

˙

“

ˆ

1 a
0 c

˙

¨

ˆ

0 ´1
1 0

˙

¨

ˆ

1 d{c
0 ad{c´ b

˙

where ad{c´ b “ |M |{c ą 0. All three of these matrices are ratchet, and the first
and last of them do not change the signs of ci or yi. So by expanding matrices
in this way we may assume that all the Mi are either a skewing matrix of the

form

ˆ

a b
0 d

˙

with pa, bq ą 0, or are the 90˝ rotation

ˆ

0 ´1
1 0

˙

.

Next, let zi :“ pTiq00. Because each |Mi| ą 0, certainly |Ti| ą 0, so that
ˇ

ˇ

ˇ

ˇ

x0 1
y0 0

ˇ

ˇ

ˇ

ˇ

“ ´y0 and

ˇ

ˇ

ˇ

ˇ

Ti

ˆ

x0 1
y0 0

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

xi ai
yi ci

ˇ

ˇ

ˇ

ˇ

“ xici ´ yiai

have the same sign.
The proof concludes by induction on i, using case analysis. The base case

i “ 0 is trivial, and the induction step for skewing matrices is trivial because
neither yi nor ci can change sign, so we only need to analyze the rotation case
where pyi`1, ci`1q “ pxi, aiq, and either yi or ci changes sign.
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We first analyze the case that y0 “ 0. By assumption we then have x0 ą 0,
so px, yq is a positive multiple of pa, cq and the theorem is trivially true.

Next suppose that y0 ą 0, so that yjaj´xici ą 0 always. We have two cases:

– If yi and ci have the same sign, then by the induction hypothesis ti “ ui; to
satisfy the induction step we must show that if ci changes sign, then yi does
as well. If ci changes sign, then yi and ai have opposite signs so yiai ď 0.
Therefore xici ă 0, so xi and ci also have opposite signs, so yi changes sign.

– If yi and ci have opposite signs, then by induction hypothesis ti “ ui`1. We
must show that if yi changes sign, then ci does as well. If yi changes sign,
then xi and ci have the same sign so xici ě 0. Thus yiai ą 0, so they have
the same sign and ci changes sign.

The case y0 ă 0 proceeds analogously. This completes the proof.

In the case of Bernstein-Yang, the update matrices
ˆ

1{2 1{2
0 1

˙

,

ˆ

1{2 0
0 1

˙

,

ˆ

1{2 ´1{2
1 1

˙

are all ratchet matrices, and y is always odd so it’s never zero. Thus they satisfy
the assumptions of the theorem.

We wish to count the total number of times s that yi became negative during
an execution of Bernstein-Yang, mod 2. It suffices to count t, the total number
of times it changed signs, mod 4. At all times, the parity of t is even if yi is
nonnegative, and odd if it is negative; furthermore s “ rt{2s. Here changing t
by 2 flips the Jacobi symbol. So we don’t need a separate variable to track the
Jacobi symbol during updates: that variable can be applied directly to t.

During each batch of k steps, y changes signs tk times, and c changes signs uk
times. We can directly count uk, but not tk. Since we know that tk´uk P t0, 1u,
we can update t by adding uk to it, and then at the end of the batch, by adding
1 if the sign of y doesn’t match the parity of t. In principle, the upper bit of uk
and t can be merged, because they will only be added (xor’ed) together.

Note that Bernstein-Yang can be applied recursively for sub-quadratic run-
time. Our approach can also be applied recursively to calculate uk mod 4, with
ci and uk taking the places of yi and tk, respectively.

To use the theorem recursively, we must check that the working variables for
pa, cq satisfy the hypotheses on px, yq, meaning that either c ‰ 0 or c “ 0 ă a. At
the beginning, pa, cq “ p1, 0q, and we note by induction that a is always strictly
odder than c. Changes that maintain c “ 0 divide a by 2, so it remains positive,
maintaining c “ 0 ă a. Once the state leaves c “ 0, it can never return, and so
will always satisfy c ‰ 0. This is because the first two matrices don’t modify c,
and the last one changes it to a` c. We can’t have a` c “ 0 because a is always
odder than c.

5 Reference implementation

A reference Python implementation of our technique is given in Figure 1. It uses
k “ 32 and is not recursive.
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6 Conclusion

We demonstrated how to modify the Bernstein-Yang inversion algorithm so that
it also computes Jacobi symbols. The modification has minimal cost, and in par-
ticular does not change the subquadratic asymptotic performance of Bernstein-
Yang.

7 Intellectual property disclosure

Some of these techniques may be covered by US and/or international patents.
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from math import log , ceil

def batch_matrix(x,y,delta ,batch):

""" Compute matrix using (batch +2) bits of (x,y)"""

(ai ,bi ,ci ,di ,u) = (1,0,0,1,0)

for i in range(batch):

yi = y

if delta >= 0 and x&1:

(delta ,x,y) = (-delta , (x-y)>>1, x)

(ai ,bi ,ci ,di) = (ai -ci , bi -di , 2*ai , 2*bi)

elif x&1:

(delta ,x,y) = (1+delta , (x+y)>>1, y)

(ai ,bi ,ci ,di) = (ai+ci , bi+di , 2*ci , 2*di)

else:

(delta ,x,y) = (1+delta , x>>1, y)

(ai ,bi ,ci ,di) = (ai , bi , 2*ci , 2*di)

u += ((yi & y)^(y>>1)) & 2 # quadratic reciprocity

u += (u&1) ^ int(ci < 0) # count sign changes

u %= 4

return (u,delta ,(ai,bi,ci,di))

def jacobi(x,y,batch =32):

""" Return jacobi symbol(x on y)"""

assert (y>0) and (y&1) # y-input must be positive and odd

x,delta ,t = x%y,0,0

# Compute number of iterations per:

# https :// eprint.iacr.org /2021/549. pdf page 14

# https :// github.com/sipa/safegcd -bounds

nbits = int(ceil(log(y ,2)))

niters = (45907* nbits +26313)//19929

mask = (1<<(batch +2))-1 # low bits

for i in range(0,niters ,batch):

u,delta ,(ai,bi,ci,di) = \

batch_matrix(x & mask , y & mask , delta , batch)

(x,y) = ((ai*x + bi*y)>>batch , (ci*x + di*y)>>batch)

t = (t+u) % 4

t = ( t + ((t&1) ^ int(y<0)) ) % 4

t = (t+(t&1)) % 4 # snap to [0,2]

if y in [-1,1]: jacobi = 1-t

else: jacobi = 0 # gcd != 1

return jacobi

Fig. 1. Python reference
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