
Tight Computational Indistinguishability Bound of
Product Distributions

Nathan Geier
Tel Aviv University

nathangeier@mail.tau.ac.il

Abstract

Assume that X0, X1 (respectively Y0, Y1) are dX (respectively dY ) indistinguishable
for circuits of a given size. It is well known that the product distributions X0Y0, X1Y1
are dX + dY indistinguishable for slightly smaller circuits. However, in probability
theory where unbounded adversaries are considered through statistical distance, it is
folklore knowledge that in fact X0Y0 and X1Y1 are dX +dY −dX ·dY indistinguishable,
and also that this bound is tight.

We formulate and prove the computational analog of this tight bound. Our proof
is entirely different from the proof in the statistical case, which is non-constructive.
As a corollary, we show that if X and Y are d indistinguishable, then k independent
copies of X and k independent copies of Y are almost 1 − (1 − d)k indistinguishable
for smaller circuits, as against d · k using the looser bound. Our bounds are useful in
settings where only weak (i.e. non-negligible) indistinguishability is guaranteed. We
demonstrate this in the context of cryptography, showing that our bounds yield simple
analysis for amplification of weak oblivious transfer protocols.



1 Introduction

Computational indistinguishability is a basic concept in computational complexity and cryp-
tography. One of the most basic bounds in this context, which is easy to see using a simple
hybrid argument, is that for distributions X0, X1 of distance dX , and Y0, Y1 of distance dY ,
with dXY denoting the distance between X0Y0, X1Y1, we have that

dXY ≤ dX + dY ,

which holds both statistically and in the computational setting holds for slightly smaller
circuits. However, in probability theory where statistical distance, or equivalently, indis-
tinguishability against unbounded attackers is considered, it is folklore knowledge [Kon12,
Lemma 2.2] that a better, tight bound holds:

dXY ≤ dX + dY − dX · dY .
It is tight in the sense that for every choice of dX , dY , there exist distributions X0, X1 with
distance dX and distributions Y0, Y1 with distance dY , such that dXY = dX + dY − dX · dY .
The proof of this bound uses coupling [Hol12], and is thus inherently non-constructive. We
provide a proof of the tight bound in the computational setting, both uniform and non-
uniform, with an additive loss of ε which can be made as small as we want, by paying in
increasing the running time or circuit size with relation to 1/ε. To be more specific, for the
non-uniform case, we (roughly) show that

Theorem 1.1 (Informal). Let X0, X1 be dX indistinguishable for size sX circuits. (Re-
spectively Y0, Y1, dY , sY .) Then, for every k ∈ N, we have that (X0, Y0) and (X1, Y1) are
(dX + dY − dX · dY + εk) indistinguishable for size sk circuits, where

εk ≤ (dY )k, sk ≈ min {sY , sX/k} .
Corollary 1.1 (Informal). Let D,Q be distributions that are d indistinguishable for size
s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are (1− (1− d)m + ε)
indistinguishable for size sm,ε circuits, where

sm,ε ≈ s(1− d)m/ log(1/ε).

And we also show similar results in the uniform setting. First we prove the isolated
non-uniform analog, which we later show how to generalize to the uniform computation
model. Then we show how to arrive at the corollary, that if the computational distance
between X and Y is at most d, then the computational distance between the k-product of
X and the k-product of Y is upper bounded by almost 1 − (1 − d)k for smaller circuits, as
against d · k resulted by the looser well known bound, which in particular may be larger
than 1. The proof of the corollary essentially follows by (carefully) applying the bound
of the isolated case again and again. It should be noted that the difference between the
bounds is especially interesting when k is not very small compared to 1/d. For example, if
d = 0.5, k = 3, the tight bound is 0.875 while the looser bound of 1.5 ≥ 1 is trivial. Finally,
we show how these bounds may be used for amplification of weak oblivious transfer protocols
[DKS99, Wul07], in the computational setting, providing an alternative simple analysis to
the fact that the information theoretic amplification process also works computationally.
Some of the techniques and statement formulations presented in this paper were inspired by
Levin’s proof of the XOR Lemma [Lev87], and its presentation in [GNW95].

1



2 Definitions

For a distribution D, denote by D⊗k the distribution of k independent copies of D. For
distributions X0, X1 over Ω, a distinguisher is a boolean A : Ω → {0, 1}, and we let
adv+

A(X0, X1) := E [A(X1)− A(X0)]. (The expectation is also over A if it is not deter-
ministic.) We say that distributions X0, X1 are d indistinguishable for size s circuits if for
any such circuit C, we have that adv+

C(X0, X1) ≤ d. For distributions X, Y we will denote
by (X, Y ) the product distribution, given by two independent samples from X and Y . We
denote by B(p) the Bernoulli distribution with parameter p, and more generally by B`(p)
the distribution that is equal to 1` with probability p and otherwise 0`. For a string s, we
denote by s[i] the i’th bit of s. We will denote by [m] the set {1, . . . ,m}. We denote by X1/2

the distribution given by b ← {0, 1} , x ← Xb. An ensemble of distributions X = {Xn} is
efficiently samplable if there exists a uniform PPT sampler that given 1n outputs a sample
from Xn.

2.1 Notation

When the same distribution is used multiple times in a single expression, e.g. (f(D), g(D))
for D, it should be interpreted that a single value d ← D is sampled and given to both f
and g, rather than two independent samples.

3 The Non-Uniform Bounds and Tightness

Let us start with the non-uniform version as it is more simple and clean. The uniform version
will be a generalization of the ideas presented below. Roughly speaking, we show that given
a distinguisher C for (X0, Y0), (X1, Y1), if C(x, ·) is not a good enough distinguisher between
Y0, Y1 for all values of x, then we can build an amplifier for X0, X1 distinguishers. We then
use this amplifier to turn the trivial distinguisher that always outputs 1 into a good enough
distinguisher.

Theorem 3.1. Let X0, X1 be distributions over `X bits that are dX indistinguishable for size
sX circuits. (Respectively Y0, Y1, `Y , dY , sY .) Then, for every k ∈ N, we have that (X0, Y0)
and (X1, Y1) are (dX + dY − dX · dY + εk) indistinguishable for size sk circuits, where

εk :=
(dY )k · dX (1− dY )

1− (dY )k
≤ (dY )k, sk := min

{
sY − `X ,

sX − 1

k
− 5`Y − 1

}
.

Remark 3.1. We note that our starting point, k = 1, matches the simple hybrid argument
bound of dX + dY since ε1 = dX · dY , and as k grows larger our bound gets closer and closer
to the tight bound of dX + dY − dX · dY , while the circuits bound grows smaller. Also note
that the bound is asymmetric with respect to the circuit size bounds. This asymmetry is
important for preserving a similar circuit size when applying the isolated case over and over
again. See a similar argument in [GNW95, Section 3].

Proof. Assume toward contradiction that for some circuit C of size sk, we have that

adv+
C ((X0, Y0) , (X1, Y1)) > (dX + dY − dX · dY + εk) .

2



For every fixed x, it must be that C(x, ·) is able to distinguish between Y0 and Y1 by at most
dY , otherwise we get a contradiction as the size of this circuit is sk + `X ≤ sY . Then, for
every candidate distinguisher A between X0 and X1, we have that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0]

adv+
C

(
(X0, Y0) ,

(
X0, YA(X0)

))
≤ dY · Pr [A(X0) = 1]

where x, y ← X1, YA(X1) is resulted by x← X1, b← A(x), y ← Yb. This holds because

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1)− C(X1, YA(X1))

]
=

= E [C(X1, Y1)− C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0] +

+ E [C(X1, Y1)− C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1] =

= Ex←X1|A(X1)=0 [C(x, Y1)− C(x, Y0)] · Pr [A(X1) = 0] =

= Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]
· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0]

and using a symmetric argument for the second inequality. Using that (in general)∑
i∈[n]

adv+
C(Di, Di+1) = adv+

C(D1, Dn+1)

we conclude that

adv+
C ((X0, Y0) , (X1, Y1)) = adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))
+

+ adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)
and thus

adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+

C ((X0, Y0) , (X1, Y1))−
− adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)
− adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))
>

> (dX + dY − dX · dY + εk)− (dY · Pr [A(X1) = 0])− (dY · Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (1− Pr [A(X1) = 0]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (E [A(X1)]− E [A(X0)]) =

= (dX − dX · dY + εk) + dY · adv+
A (X0, X1) .

In other words, we can build a new distinguisher A′ for X0, X1 by applying A to our input
x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+
A′ (X0, X1) > (dX − dX · dY + εk) + dY · adv+

A (X0, X1) .

If we start from A0 being the trivial distinguisher that always outputs 1 and keep repeating

3



this process for k steps, we get that

adv+
Ak

(X0, X1) > (dX − dX · dY + εk) + dY · adv+
Ak−1

(X0, X1) >

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY )2 · adv+
Ak−2

(X0, X1) >

> · · · > (dX − dX · dY + εk)
k−1∑
i=0

(dY )i + (dY )k · adv+
A0

(X0, X1) =

= (dX − dX · dY + εk)
k−1∑
i=0

(dY )i =
(dX − dX · dY + εk)

(
1− (dY )k

)
1− dY

=

=

(
dX (1− dY ) + (dY )k·dX(1−dY )

1−(dY )k

) (
1− (dY )k

)
1− dY

=

(
dX +

(dY )k · dX
1− (dY )k

)(
1− (dY )k

)
=

= dX
(
1− (dY )k

)
+ (dY )k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage better than
dX . Next, for the circuit size, in order to implement Ak we start by applying Ak−1, sample
y0 ← Y0, y1 ← Y1, use a multiplexer to choose y ← yb where b is the output gate of Ak−1,
and finally use the circuit C. Instead of sampling y0, y1, we can simply use non-uniformity
to hard-code the best samples, at the cost of 2`Y gates. Implementing the multiplexer can
be done using 3`Y + 1 gates, with one gate computing ¬b and for every i ∈ [`Y ] another
3 gates to compute y[i] = (y0[i] ∧ ¬b) ∨ (y1[i] ∧ b). Overall, we conclude that size(Ak) =
size(Ak−1) + 5`Y + 1 + sk and therefore

size(Ak) = size(A0) + k · (5`Y + 1 + sk) ≤ 1 + k ·
(

5`Y + 1 +

(
sX − 1

k
− 5`Y − 1

))
= sX

which is a contradiction to our assumption that dX is an upper bound on the advantage of
size sX circuits distinguishing X0 from X1.

3.1 The N-Fold Case

Corollary 3.1. Let D,Q be distributions over ` bits that are d indistinguishable for size
s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are (1− (1− d)m + ε)
indistinguishable for size sm,ε circuits, where

sm,ε =
s− 1

km,ε

− 5m`− 1, km,ε =

⌈
log(dε)

log(1− (1− d)m + ε)

⌉
≤
⌈

log(1/dε)

(1− d)m − ε

⌉
.

Proof. If ε ≥ (1−d)m the statement is trivially true. Otherwise, we start from D,Q and use
Theorem 3.1 to repeatedly add copies of D,Q for m−1 times, using km,ε set at the statement,
where each time the added copy of D,Q is treated as X0, X1 and D⊗i, Q⊗i are treated as
Y0, Y1. Let di denote the bound on the advantage of i copies, then we have that d1 = d and
di ≤ di−1 + d − di−1 · d + (di−1)

km,ε . We can see by induction that di ≤ 1 − (1 − d)i + ε for

4



i ∈ [m] as

di ≤ di−1 + d− di−1 · d + (di−1)
km,ε = (1− d)di−1 + d + (di−1)

km,ε ≤

≤ (1− d)
(
1− (1− d)i−1 + ε

)
+ d +

(
1− (1− d)i−1 + ε

)km,ε
=

= 1− d− (1− d)i + (1− d)ε + d +
(
1− (1− d)i−1 + ε

)km,ε
=

= 1− (1− d)i + (1− d)ε +
(
1− (1− d)i−1 + ε

)km,ε ≤
≤ 1− (1− d)i + (1− d)ε + (1− (1− d)m + ε)km,ε ≤ 1− (1− d)i + ε

where in the last inequality we used the choice of km,ε. For the circuit size, we can easily see
by induction on i that si,ε ≥ (s− 1)/km,ε − 5i`− 1, as we have that s1,ε = s and

si,ε ≥ min

{
s(i−1),ε − `,

s− 1

km,ε

− 5(i− 1)`− 1

}
≥

≥ min

{
s− 1

km,ε

− 5(i− 1)`− 1− `,
s− 1

km,ε

− 5(i− 1)`− 1

}
≥ s− 1

km,ε

− 5i`− 1.

3.2 Tightness

This is somewhat folklore knowledge, that we explicitly state for the sake of completeness.
We show that for every choice of dX , dY , sX , sY , `X , `Y there exist two pairs of distributions
X0, X1 and Y0, Y1, such that X0, X1 are over `X bits and cannot be distinguished with
advantage better than dX by size sX circuits (resp. for Y0, Y1 with `Y , dY , sY ), yet (X0, Y0)
and (X1, X1) can be distinguished with advantage dX +dY −dX ·dY using a size 1 circuit. For
the n-fold case, we show that for every choice of d, s, ` there exist distributions X, Y over `
bits with distance at most d against s-sized circuits, such that X⊗k, Y ⊗k can be distinguished
with advantage 1 − (1 − d)k using a circuit of size 2k − 1. We will use statistical distance
in these examples, noting that the statistical distance between distributions is equal to the
maximal advantage of unbounded adversaries distinguishing between them, and that the
statistical distance from a constant variable is equal to the probability to differ from it.

For the isolated case, we let X0 ≡ 0`X , X1 := B`X (dX), Y0 ≡ 0`Y , Y1 := B`Y (dY ). We
have that size sX circuits can distinguish between X0, X1 with advantage at most dX (resp.
for Y0, Y1 with sY , dY ) as this is the statistical distance between them. Also, it is easy to
verify that the simple size 1 circuit which given (x, y) computes x[1] ∨ y[1] distinguishes
between (X0, Y0) and (X1, Y1) with advantage 1− (1− dX)(1− dY ) = dX + dY − dX · dY .

For the n-fold case, let X ≡ 0`, Y := B`(d), then size s circuits can distinguish X
from Y with advantage at most d. Yet the circuit of size 2k − 1 which given (z1, . . . , zk)
computes ∨izi[1] (using a full binary tree of OR gates) distinguishes between X⊗k and Y ⊗k

with advantage 1− (1− d)k.

4 The Uniform Variant

We used non-uniformity two times in the proof of Theorem 3.1. The second time, which is
easier to deal with, is in the circuit size analysis where we hard-coded the best samples of

5



y0, y1 to each iteration of Ai. Instead, in the uniform version, we will use uniform samplers
of Y0, Y1. The first use of non-uniformity was when we assumed that C(x, ·) is at most a
dY -distinguisher between Y0 and Y1, for every fixed x. More specifically, we used this to get
that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] .

For the uniform case, we will relax this condition to x not being easy to hard-code, in the
following sense:

Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
≤ εk

where X1/2 is given by b ← {0, 1} , x ← Xb. If this condition doesn’t hold then we can
efficiently compute a good x, except for negligible probability, assuming that efficient uniform
samplers for X0, X1, Y0, Y1 exist. Otherwise, we will see that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] + 3εk

and so almost the same argument from the non-uniform case works, except that now we lose
another small additive term. Let us state and prove this more formally:

Lemma 4.1. Let X0 = {X0,n}, X1 = {X1,n}, Y0 = {Y0,n}, Y1 = {Y1,n} be ensembles of effi-
ciently samplable distributions, and dX(n), dY (n) be efficiently computable functions between
0 and 1. Then, for every k ∈ N and time t(n) Turing machine M distinguishing (X0, Y0)
from (X1, Y1) infinitely often with advantage at least (dX + dY − dX · dY + 7εk) for

εk :=
(dY )k · dX (1− dY )

1− (dY )k
≤ (dY )k,

we have that either M efficiently yields a distinguisher for Y0, Y1 through a hard-coding of x,
in the sense that for infinitely many n’s

Pr
x←X1/2

[
adv+

M(1n,x,·) (Y0, Y1) > dY + εk

]
> εk,

or there exists a time t ·poly(nk) infinitely often distinguisher between X0, X1 with advantage
at least dX .

Proof. For the sake of notational ease, we will drop the asymptotic notation and replace
M(1n) with C. Assume that for all but finitely many n’s,

Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
≤ εk.

Then, for every candidate distinguisher A between X0 and X1, for all but finitely many n’s,
we have that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] + 3εk

adv+
C

(
(X0, Y0) ,

(
X0, YA(X0)

))
≤ dY · Pr [A(X0) = 1] + 3εk

6



where x, y ← X1, YA(X1) is resulted by x← X1, b← A(x), y ← Yb. To see this, we first note
that

εk ≥ Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
≥

≥ 1

2
Pr [A(X1) = 0] Pr

x←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
which implies that

Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]
≤ dY + εk +

2εk
Pr [A(X1) = 0]

≤ dY +
3εk

Pr [A(X1) = 0]
.

Plugging it into the last inequality in the following, we get

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1)− C(X1, YA(X1))

]
=

= E [C(X1, Y1)− C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0] +

+ E [C(X1, Y1)− C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1] =

= Ex←X1|A(X1)=0 [C(x, Y1)− C(x, Y0)] · Pr [A(X1) = 0] =

= Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]
· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0] + 3εk

and use a symmetric argument for the second upper bound. Using that (in general)∑
i∈[n]

adv+
C(Di, Di+1) = adv+

C(D1, Dn+1)

we conclude that

adv+
C ((X0, Y0) , (X1, Y1)) = adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))
+

+ adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)
and thus

adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+

C ((X0, Y0) , (X1, Y1))−
− adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)
− adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))
>

> (dX + dY − dX · dY + 7εk)− (dY · Pr [A(X1) = 0] + 3εk)− (dY · Pr [A(X0) = 1] + 3εk) =

= (dX − dX · dY + εk) + dY (1− Pr [A(X1) = 0]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (E [A(X1)]− E [A(X0)]) =

= (dX − dX · dY + εk) + dY · adv+
A (X0, X1) .

In other words, we can build a new distinguisher A′ for X0, X1 by applying A to our input
x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+
A′ (X0, X1) > (dX − dX · dY + εk) + dY · adv+

A (X0, X1) .

7



If we start from A0 being the trivial distinguisher that always outputs 1 and keep repeating
this process for k steps, we get that

adv+
Ak

(X0, X1) > (dX − dX · dY + εk) + dY · adv+
Ak−1

(X0, X1) >

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY )2 · adv+
Ak−2

(X0, X1) >

> · · · > (dX − dX · dY + εk)
k−1∑
i=0

(dY )i + (dY )k · adv+
A0

(X0, X1) =

= (dX − dX · dY + εk)
k−1∑
i=0

(dY )i =
(dX − dX · dY + εk)

(
1− (dY )k

)
1− dY

=

=

(
dX (1− dY ) + (dY )k·dX(1−dY )

1−(dY )k

) (
1− (dY )k

)
1− dY

=

(
dX +

(dY )k · dX
1− (dY )k

)(
1− (dY )k

)
=

= dX
(
1− (dY )k

)
+ (dY )k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage better than
dX . In order to implement Ak we need to run C, sample Y0, Y1 and use a multiplexer, for k
times, so we conclude that time(Ak) = t · poly(n, k).

Remark 4.1. In particular, we can use this lemma to show that if X0, X1 are dX ind. and
Y0, Y1 are dY ind. then (X0, Y0) and (X1, Y1) are dX + dY − dX · dY + 7εk ind. for Turing
machines with running time of

t = min{tX/poly(n, k), tY /poly(n, 1/εk)},

which may be good enough for a constant number of uses, but does not work well beyond
that, as every use costs us a division of the time bound by a polynomial. This is why we
cannot prove the n-fold case immediately by repeatedly applying Lemma 4.1. The key idea
is that we do not need to keep resampling and testing over and over again, but instead,
once we find a good enough x in the i’th coordinate, we fix it for the rest of the process, or
if the hard-coding of the i’th coordinate does not succeed, the above lemma states we can
distinguish there.

Theorem 4.1. Let X = {Xn}, Y = {Yn} be ensembles of efficiently samplable distributions
that are d(n) indistinguishable for time t(n) Turing machines. Then, for every m = m(n),
we have that X⊗m and Y ⊗m are (1− (1− d)m + 7mε) indistinguishable for time tm,ε Turing
machines, where

tm,ε = t/poly(n,m, km,ε, 1/ε), km,ε =

⌈
log(ε)

log(1− (1− d)m + 7mε)

⌉
≤
⌈

log(1/ε)

(1− d)m − 7mε

⌉
.

Proof. For i = 0, 1, . . . ,m−1, we try to hard-code the m− i’th coordinate using poly(n, 1/ε)
samples, and getting a distinguisher for X⊗m−i, Y ⊗m−i with advantage of at least 1 − (1 −
d)m−i + 7(m − i)ε except for negligible probability (the probability that the estimate was
good but not truthful to the expectation) until for some i we fail to find a good value to
hard-code (if we reached i = m−1 and succeeded then we are done). Once we fail, we apply

8



the isolated case of Lemma 4.1, which essentially states that if the hard-coding of X, Y into
such circuit failed, then one can build a distinguisher for them, and we are done.

Let us be more explicit about how we sample and hard-code the m − i’th coordinate:
We are given (except for negligible probability) good samples for the coordinates in m− i+
1, . . . ,m and hard-code them into A, getting a 1− (1− d)m−i + 7(m− i)ε distinguisher for
X⊗m−i, Y ⊗m−i, which we view as the product of X⊗m−i−1, Y ⊗m−i−1 with X, Y . We first note
that our choice of k guarantees that εk ≤ ε for all 1− (1− d)m−i + 7(m− i)ε. We start by
trying to work under the “hard-coding” assumption that

Pr
z←X/Y

[
adv+

A(z,·)
(
X⊗m−i−1, Y ⊗m−i−1

)
> 1− (1− d)m−i−1 + 7(m− i− 1)ε + ε

]
> ε

and generate a distinguisher for X⊗m−i−1, Y ⊗m−i−1 as follows: Keep sampling z ← X/Y and
estimating adv+

A(z,·) (X⊗m−i−1, Y ⊗m−i−1) using r samples from X⊗m−i−1/Y ⊗m−i−1, until we

succeed in finding z with an estimate of at least 1 − (1 − d)m−i−1 + 7(m − i − 1)ε + 0.5ε,
then fix this good z in this coordinate and move forward, or stop after q tries if no such z
has been found. Using Hoeffding’s inequality, for every z, the probability that the estimate’s
error is greater than ε/2 is at most 2e−r·(ε/2)

2/2. If all estimates were ε/2 accurate and
a good z has been drawn, the process succeeds in finding a z with advantage of at least
1− (1−d)m−i−1 +7(m− i−1)ε and we can move on, so our probability to fail at that, under
the above assumption, is at most

q · 2e−r·ε2/32 + (1− ε)q ≤ 2elog(q/2)−r·ε
2/32 + e−q·ε ≤ neg(n)

by choosing, say,

q = n/ε = poly(n, 1/ε), r = 64n/ε3 > (log(q/2) + n) · 32/ε2 = poly(n, 1/ε).

Hence paying with a time complexity of tm,ε · poly(n, 1/ε) for every coordinate.
If we could not find a good z, we use Lemma 4.1: If we can distinguish X⊗m−i, Y ⊗m−i

with advantage

(1− d)
(
1− (1− d)m−i−1 + 7(m− i− 1)ε

)
+ d + 7ε =

= 1− (1− d)m−i + (1− d)7(m− i− 1)ε + 7ε ≤
≤ 1− (1− d)m−i + 7(m− i)ε ≤ adv+

A

(
X⊗m−i, Y ⊗m−i

)
and the assumption about finding a good z to hard-code for X⊗m−i−1, Y ⊗m−i−1 does not
hold, then we can build a d-distinguisher for X, Y in time tm,ε · poly(n, k). The probability
that at some point in the process we failed to hard-code a good z at the m− i’th coordinate
even though the assumption held is m(n) · neg(n) = neg(n).

We remark this proof is easily generalized to the case where not all pairs in the product
are identical, that is, for

⊗
Xi and

⊗
Yi, with a distance bound of (1−

∏
i(1− di) + 7mε).

9



5 Applications

As an application, we consider the amplification of weak oblivious transfer protocols. We
briefly explain how our bounds, paired with Yao’s XOR lemma, yield a natural generalization
in the computational setting of the amplification process presented in [DKS99, Subsection
4.3]. We stress that it is already known that the same amplification process also works
computationally [Wul07], yet we find the following approach more straightforward. For the
sake of simplicity, we consider the amplification of error-less (p, q)-weak semi-honest 1-2 OT:
The receiver with bit c is trying to learn bc, where b0, b1 is the database of the sender. We
say the protocol is (p, q) weak if the view of the sender when c = 0 is p-indistinguishable
from its view when c = 1 (equivalently, c is at most p-correlated to the view of the sender),
and the view of the receiver when bc = 0 is q-indistinguishable from its view when bc = 1.
We have an operation called S-Reduce that amplifies indistinguishability against the sender
but worsens indistinguishability against the receiver, and an operation called R-Reduce that
amplifies indistinguishability against the receiver but worsens indistinguishability against
the sender. Our goal is to use them repeatedly one after the other in order to amplify both
parameters. It is already shown in [DKS99, Lemma 4] exactly how this is done, so our focus
will be on showing that almost the same analysis of the S-Reduce and R-Reduce operations
also holds computationally. Let us start with the security of the receiver: In S-Reduce where
c =

⊕
i ci we can use Yao’s XOR Lemma to show that p is reduced to pk+ε, and in R-Reduce

where ci = c we use our bound to show that p is increased to at most 1− (1− p)k + ε. For
the sender, roughly speaking: In S-Reduce, we have a product of k execution pairs that are
q-indistinguishable each (whether ”the other bit” is 0 or 1), and we can use our bound to
get that they are 1 − (1 − q)k + ε indistinguishable. In R-Reduce, ”the other bit” is equal
to the XOR of k bits that are at most q-correlated to the execution, independently, so we
use the XOR lemma to conclude that ”the other bit” is at most qk + ε correlated to the
execution. We conclude that essentially, the same analysis from the information theoretic
setting works, up to an additive ε for each use. Let p(n) be a bound on the total number of
calls to the original protocol in the information-theoretic transformation, then all advantages
throughout the process are 1/p(n)-bounded away from 1, otherwise we wouldn’t be able to
reduce them to negligible. If we choose ε′ = ε/p(n) then for every advantage d through the
process we have d + ε′ ≤ ε + (1 − ε)d, so we can imagine, for a simple analysis, as if every
call to either S-Reduce or R-Reduce incurs a chance of ε at failing and revealing everything,
and otherwise works exactly like the information-theoretic world. Since the number of calls
is polynomial, the total probability of failing is at most poly(n) · ε and we can make it as
(polynomially) small as we want. There is one issue however - the running time. In the
information-theoretic process we make log(n) calls to S-Reduce and R-Reduce, and each
such call, when using Yao’s XOR Lemma or the bounds in this paper, decreases the bound
on the running time by a division in a polynomial. Therefore, we need the assumption that
our weak OT is secure against nO(logn) adversaries. We believe this stronger requirement may
be removed by a more careful analysis (perhaps we again waste too much time on resampling
and testing unnecessary values, see Remark 4.1), but without a proof.

10



References

[DKS99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing
oblivious transfer and bit commitment on weakened security assumptions. In
Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in
Computer Science, pages 56–73. Springer, 1999.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. Electron.
Colloquium Comput. Complex., 2(50), 1995.

[Hol12] F. Hollander. Probability theory : The coupling method. 2012.

[Kon12] Aryeh Kontorovich. Obtaining measure concentration from markov contraction.
Markov Processes and Related Fields, 18(4):613–638, 2012.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Comb.,
7(4):357–363, 1987.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, Ad-
vances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,
May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes in Computer Science,
pages 555–572. Springer, 2007.

11


