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Abstract. A tweakable enciphering scheme (TES) is a length preserving (tweakable) en-10

cryption scheme that provides (tweakable) strong pseudorandom permutation security on11

arbitrarily long messages. TES is traditionally built using block ciphers and the security12

of the mode depends on the strong pseudorandom permutation security of the underlying13

block cipher. In this paper, we construct TESs using public random permutations. Pub-14

lic random permutations are being considered as a replacement of block cipher in several15

cryptographic schemes including AEs, MACs, etc. However, to our knowledge, a systematic16

study of constructing TES using public random permutations is missing. In this paper, we17

give a generic construction of a TES which uses a public random permutation, a length18

expanding public permutation based PRF and a hash function which is both almost xor19

universal and almost regular. Further, we propose a concrete length expanding public per-20

mutation based PRF construction. We also propose a single keyed TES using a public21

random permutation and an AXU and almost regular hash function.22

1 Introduction23

Permutation Based Cryptography. A cryptographic permutation is a key-less pub-24

lic permutation that is designed to behave as a random permutation. In recent years25

cryptographic permutations have started to evolve as a useful primitive in parallel to the26

block ciphers. The primary feature of a cryptographic permutation is that it does not27

use any key and hence separate processing of the key and the data input is not required28

as in a block cipher. This makes cryptographic permutations a more efficient primitive29

compared to block ciphers in certain scenarios. The use of cryptographic permutation30

gained popularity during the SHA-3 competition [1], as several submitted candidates in31

the competition were based on this type of primitive. Furthermore, the selection of the32

permutation-based Keccak sponge function as the SHA-3 standard has generated ample33

confidence within the community for using this primitive [49]. In 2007, Bertoni et al. de-34

fined the cryptographic permutation based sponge function [7], which was initially aimed35

for hashing. Soon after, several efficient modes for encryption, authentication and au-36

thenticated encryption were developed [45, 5, 6]. Today, permutation based sponge-based37
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constructions have become a successful and a full-fledged alternative to the block cipher-38

based modes. In fact, in the first round of the ongoing NIST lightweight competition [47],39

24 out of 57 submitted constructions are based on cryptographic permutations, and out40

of 24, 16 permutation based proposals have qualified for round 2. These statistics, beyond41

any doubt, clearly depict the wide adoption of permutation based schemes [3, 4, 9, 15, 26,42

32] in parallel to the block cipher based designs. Apart from the modes, several cryp-43

tographic permutations have also been designed which are claimed to be efficient than44

standard block ciphers [8, 13, 4].45

46

Besides the permutation based designs of encryption/authentication schemes, a long line47

of research has been carried out in the study of designing block cipher and tweakable48

block cipher out of public random permutations. Even Mansour (EM) [36] and Iter-49

ated Even Mansour (IEM) ciphers are notable approaches in this direction. EM cipher50

is defined as EM(x)
∆
= π(x ⊕ k1) ⊕ k2, where π is a public random permutation and51

k1, k2 are two independent keys. Iterating EM cipher for r ≥ 2 times with r indepen-52

dent permutations and r+1 independent round keys defines the r-round IEM cipher, i.e.53

EMr(x)
∆
= kr+1 ⊕ πr(kr ⊕ πr−1(. . . (π2(k2 ⊕ π1(k1 ⊕ x)) . . .)). A long line of research has54

studied the security of r-round IEM [14, 25, 31, 27]. Recently, Chen et al. have designed55

two public permutation based PRFs [24] which have been proven to be secure beyond the56

birthday bound.57

58

Tweakable Enciphering Schemes. A Tweakable Enciphering Scheme or in short TES59

is a deterministic length preserving encryption scheme which provides security against60

adaptive chosen plaintext and ciphertext attacks, i.e., no efficient adversary should be61

able to distinguish ciphertexts from random strings and should not be able to tamper a ci-62

phertext so that it gets decrypted to something meaningful. The security requirement of a63

TES is very similar to that of a deterministic authenticated encryption (DAE) scheme [2].64

However, DAE schemes are not length preserving; the ciphertext resulting from the DAE65

is always expanded by the expansion factor defined by a specific DAE scheme. It is thus66

the length preserving property that makes TES a separate cryptographic primitive from67

DAE. The length preserving feature of TES makes it a suitable candidate for low level68

disk encryption [20, 16]. One can see a tweakable enciphering scheme as a tweakable block69

cipher [43] with arbitrary block lengths and are thus sometimes called wide block modes.70

71

Over the years, there have been several proposals of TES constructions and most of them72

are build on top of block ciphers. Constructions like CMC [38], EME [39], EME* [37],73

FMix [11], AEZ [40] are build only using block ciphers whereas XCB [44, 17], HCTR [51],74

HCH [20] uses both block ciphers and universal hash functions. There are few construc-75

tions of TES using stream ciphers [18, 50].76
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Most block cipher based schemes have been proven to be secure assuming the block77

cipher to be a strong pseudorandom permutation, as these constructions require the78

decryption functionality of the block cipher for deciphering the ciphertext. However, there79

are some constructions such as FMix [11], AEZ [40] and FAST [16], which do not require80

the decryption functionality of the block cipher and hence their security can be proved81

under the assumption that the underlying block cipher is a pseudorandom function. Such82

schemes are called inverse free TESs. Moreover, the security of all these constructions83

caps at birthday bound 1. Dutta and Nandi [34] proposed a tweakable block cipher based84

TES and proved its security beyond the birthday bound 2 assuming the underlying block85

cipher to be a tweakable strong pseudorandom permutation.86

87

Our Contributions. Although several modes for authentication, hash function, and au-88

thenticated encryption, have been developed using public permutations till date, to our89

knowledge, the only work which describes a TES built using a public random permuta-90

tion is [5]. The construction in [5] uses four round Luby Rackoff construction using two91

pseudorandom functions and the pseudorandom functions are constructed using public92

permutations. Concrete security bounds and formal security proofs for the TES scheme93

are not provided in [5] and to the best of our knowledge, there is no provably secure94

public permutation based TES scheme. We initiate a study of such a construction in this95

paper. Our concrete contributions are the following.96

1. First, we propose a generic construction of a public permutation based TES, called97

ppTES. Our proposal closely resembles the HCTR construction. ppTES is designed98

using a public permutation π, a length expanding public permutation based pseudo-99

random function3 Fπ
′
k , where π and π′ are two independent public random permu-100

tations over the same space. Additionally, ppTES uses a keyed hash function Hkh ,101

which is required to be both almost xor universal (AXU) and almost regular (AR)102

(we further call such functions as AXUAR functions). We prove that if Fπ
′
k is a se-103

cure length expanding public permutation based PRF and the hash function is a104

secure AXUAR function, then ppTES is secure against adaptive chosen plaintext and105

ciphertext adversaries.106

2. As our second contribution, we construct a length expanding public permutation107

based PRF which we call ppCTR. ppCTR essentially is a counter mode of encryption108

1 A cryptographic construction is said to be birthday bound secure if its security retains as long as the
number of queries is upto 2n/2, where n is the block size of the underlying primitive. In literaure, there
are plenty of constructions which are birthday bound secure [19, 21, 16, 22].

2 A cryptographic construction is said to be beyond birthday bound secure if its security retains even
if the number of queries exceeds 2n/2, where n is the block size of the underlying primitive. Examples
of beyond birthday bound secure construction includes [28, 46, 29, 30, 35, 33].

3 Informally, a length expanding PRF takes an input x and the number of blocks b and outputs b many
blocks, where block refers to an element of {0, 1}n, for some fixed n.
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where the block ciphers are replaced by the single round Even Mansour [36] construc-109

tion. We show that ppCTR offers a tight n/2 bit security. We use ppCTR and the110

PolyHash [52] function in ppTES construction to realize a concrete TES which we call111

ppHCTR. ppHCTR requires two keys and two independent public permutations.112

3. Finally, we propose ppHCTR+, a public permutation based TES which uses a single113

key and a single public permutation. Along with the permutation, ppHCTR+ also114

requires an AXUAR hash function and the only key required in ppHCTR+ is the115

hash key of the AXUAR hash function. We prove that ppHCTR+ is a birthday bound116

secure public permutation based TES.117

We would like to mention that any block-cipher based TES can be converted to a public118

permutation based scheme by replacing the block ciphers with a single round EM con-119

struction. But such direct replacement of block cipher by the EM scheme will require120

multiple keys, for example a direct replacement of the block cipher with the single round121

EM construction in HCTR mode results in a three keyed (along with the hash key)122

construction with two independent permutations. Whereas our proposed construction123

ppHCTR+ requires only the hash key and a single random permutation. Additionally,124

ppHCTR+ saves a few XOR counts compared to the direct replacement of the block ci-125

pher with single round EM construction. Also, ppHCTR+ provides comparable security126

to the existing block cipher based TES schemes.127

2 Preliminaries128

Basic Notations. For a finite set X , X←$X denotes that X is sampled uniformly at129

random from X . For a sequence of r random variables (X1, . . . , Xr), X1, . . . , Xr←$X130

denotes that Xi’s are independently and uniformly sampled from X . For q ∈ N, we write131

[q] to refer to the set {1, . . . , q}. For n ∈ N, {0, 1}n denotes the set of all binary strings of132

length n and {0, 1}≥n denotes the set of all binary strings of length at least n. Therefore,133

{0, 1}≥0 is the set of all binary strings of arbitrary length (including the empty string134

ε) and denoted by {0, 1}∗. An element of {0, 1}n is called a block. For x ∈ {0, 1}∗, |x|135

denotes the length of x in bits. For s ∈ N, first(s, x) denotes the first s bits of a binary136

string x whose length is at least s. For x, y ∈ {0, 1}∗, x‖y denotes the concatenation of137

x followed by y. For x, y ∈ {0, 1}n, we write x ⊕ y to denote their bitwise xor. For any138

x ∈ {0, 1}∗, parsen(x) parses x as x1‖x2‖ . . . ‖x` where each xi, for i ∈ [`− 1], is a block139

and 0 ≤ |x`| ≤ n. For a sequence of elements x1, x2, . . . , xs ∈ {0, 1}∗, we write xia to140

denote the a-th block of the i-th element xi. 〈j〉 denotes the n-bit binary representation141

of a non negative integer j < 2n. For integers 1 ≤ b ≤ a, we write P(a, b) to denote142

a(a− 1) . . . (a− b+ 1), where P(a, 0) = 1 by convention.143

The set of all functions from X to Y is denoted by Func(X ,Y). When Y = {0, 1}n,144

then we denote Func(X , {0, 1}n) simply as FuncX (n) and sometimes we write Func(n) by145
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omitting X when the domain of the function is understood from the context. We denote146

the set of all n bit permutations by Perm(n).147

2.1 Security Definitions148

In this paper, we adapt the definitions of PRF and TES in the random permutation149

model.150

PRF Based on Public Random Permutation. Let F : K × X → Y be a keyed
function from X to Y constructed using d many n-bit permutations π

∆
= (π1, . . . , πd),

where K is called the key space, X is called the input space and Y is called the output
space. We consider the Pseudo Random Function (PRF) security of F under public per-
mutation model where we assume that π1, . . . , πd←$Perm(n) and the distinguisher D is
given access to either (FπK ;π±1 , . . . , π

±
d ) for a random key K←$K or (RF;π±1 , . . . , π

±
d ) for

RF←$Func(X ,Y). The superscript ± for the πi’s denotes that the distinguisher can query
πi in both the forward and reverse directions. Query of the distinguisher to πi is called
the primitive query and query to FπK or RF is called the construction query. We define
the PRF advantage of F in public permutation model with respect to the distinguisher
D that makes q construction queries and total qp primitive queries as

AdvPRF
F (D)

∆
= | Pr[DFπK ;π±1 ,...,π

±
d → 1]− Pr[DRF;π±1 ,...,π

±
d → 1] |,

where K←$K, π1, . . . , πd←$Perm(n) and RF←$Func(X ,Y). F is said to be a (q, qp, t)-151

secure PRF if AdvPRF
F (q, qp, t)

∆
= maxD AdvPRF

F (D) ≤ ε, where the maximum is taken152

over all distinguishers D that makes q construction queries, total qp primitive queries and153

runs for time at most t.154

TES Based on Public Random Permutation. Let K, T andM be three non-empty155

finite sets. A tweakable enciphering scheme (TES) T is defined by a pair of efficient156

algorithms T = (Enc,Dec), where Enc : K × T ×M → M and Dec : K × T ×M →157

M. Let Enc and Dec be constructed by d many n-bit permutations π
∆
= (π1, . . . , πd),158

then we call them by Encπ and Decπ. For all k ∈ K and all T ∈ T , Encπk (T, ·) is a159

length preserving permutation over M, i.e., |Encπk (T,M)| = |M | for all M ∈ M. For160

the correctness, one requires that for all k ∈ K, for all T ∈ T , and for all M ∈ M,161

Decπk (T,Encπk (T,M)) = M . A tweakable permutation with tweak space T and domain162

M is a mapping Π̃ : T ×M → M such that for all tweak T ∈ T , M 7→ Π̃(T,M) is a163

permutation ofM. We often write Π̃T (M) for Π̃(T,M). TP(T ,M) denotes the set of all164

such tweakable permutations.165

We consider the tweakable Strong Pseudo Random Permutation (tSPRP) security of
T in public permutation model where we assume that π1, . . . , πd←$Perm(n) and the
distinguisher D is given access to either the oracles (T.EncπK ;T.DecπK ; π±1 , . . . , π

±
d ) for a



6 Debrup Chakraborty, Avijit Dutta, and Samir Kundu

random key K←$K or the oracles (Π̃; Π̃−1;π±1 , . . . , π
±
d ) for Π̃←$TP(T ,M). We call such

a distinguisher as Chosen Ciphertext Attack (CCA) distinguisher. We define the tSPRP
advantage of T in public permutation model with respect to the CCA distinguisher D
that makes qe encryption queries to the first oracle, qd decryption queries to the second
oracle and altogether qp primitive queries as

AdvtSPRP
T (D)

∆
= | Pr[DT.EncπK ;T.DecπK ;π±1 ,...,π

±
d → 1]− Pr[DΠ̃;Π̃−1;π±1 ,...,π

±
d → 1] |,

whereK←$K, π1, . . . , πd←$Perm(n) and Π̃←$TP(T ,M). T is said to be a (qe, qd, qp, `, σ, t)-
secure tSPRP if

AdvtSPRP
T (qe, qd, qp, `, σ, t)

∆
= max

D
AdvtSPRP

T (D) ≤ ε,

where the maximum is taken over all CCA distinguishers D that run at most time t and166

make qe encryption, qd decryption and altogether qp primitive queries with a maximum167

of ` data blocks present in a single encryption or decryption queried message and total168

σ many data blocks queried throughout all the encryption and decryption queries.169

In all of the above definitions of security advantage, we omit the time parameter t for170

information-theoretic distinguisher 4. In the rest of the paper, we assume information-171

theoretic non-trivial distinguishers, i.e., they do not ask duplicate queries or queries172

to which they already can compute the answers by themselves from the earlier query-173

response. Since, we assume the distinguishers are computationally unbounded, without174

loss of generality, we limit the distinguishers to be deterministic.175

Almost (XOR) Universal and Almost Regular Hash Function. Let Kh,X be176

two non-empty finite sets and H be an n-bit keyed function H : Kh × X → {0, 1}n.177

Then, H is said to be an ε-Almost Xor Universal (AXU) hash function if for any distinct178

X,X ′ ∈ X and for any δ ∈ {0, 1}n,179

Pr[Kh←$Kh : HKh(X)⊕ HKh(X
′) = δ] ≤ ε. (1)

Moreover, H is said to be an ε-Almost Regular (AR) hash function if for any X ∈ X and180

for any δ ∈ {0, 1}n,181

Pr[Kh←$Kh : HKh(X) = δ] ≤ ε. (2)

A keyed hash function is said to be an (εaxu, εreg)-AXUAR hash function if it is εaxu-AXU182

and εreg-AR hash function.183

PolyHash Function. PolyHash [52] is one of the popular examples of algebraic hash184

function, defined as follows: for a fixed key kh ∈ {0, 1}n and for a message M ∈ {0, 1}∗,185

we first apply a padding rule 0∗ i.e., pad the minimum number of zeros to the end of M ,186

4 An information-theoretic distinguisher is the one who is computationally unbounded but can make a
limited number of queries to its available oracles.
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so that the total number of bits in the padded message becomes a multiple of n. Let the187

padded message be M∗ = M1‖M2‖ . . . ‖Ml where l = d|M |/ne and for each i, |Mi| = n.188

Then,189

Polykh(M) =M1 · khl+1 ⊕M2 · khl ⊕ . . .⊕Ml · k2
h ⊕ 〈|M |〉 · kh, (3)

where l is the number of blocks of M∗ and the multiplications in Eqn. (3) are in the190

field GF(2n). If M = ε, the empty string, we define Polykh(ε) = k2
h ⊕ kh. Note that191

the use of the non-injective padding rule (i.e., appending 0∗ at the end of the message)192

does not make the hash function insecure as the definition includes the message length193

information which is the safeguard against the xor universal attack. The following result194

says that the PolyHash defined in Eqn. (3) with an n-bit key, is an (`/2n, `/2n)-AXUAR195

hash function, where ` is the maximum number of message blocks. Proof of the lemma196

is straightforward and hence omitted.197

Lemma 1. PolyHash as defined in Eqn. (3) is (`/2n, `/2n)-AXUAR hash function.198

2.2 An Useful Result199

Let T be a public permutation based tweakable enciphering scheme over the message200

space M and the tweak space T . Let us assume that T is based on d many permuta-201

tions π1, . . . , πd. Let $0 and $1 are two functions sampled uniformly and independently202

from Func(M,M) and π1, . . . , πd are d many n-bit random permutations sampled uni-203

formly and independently from Perm(n). Then, the following result says that a uniform204

length-preserving random permutation is very close to a uniform length-preserving ran-205

dom function. More formally,206

Theorem 1. Let T be a public permutation based TES over a message spaceM⊆ {0, 1}∗207

which is based on d many n-bit independent random permutations π1, . . . , πd. Let $0208

and $1 are two functions sampled uniformly and independently from Func(M,M) and209

π1, . . . , πd are d many n-bit random permutations sampled independently to $0 and $1.210

Then, for any information theoretic non-trivial CCA distinguisher D, making altogether211

q encryption and decryption queries and total qp primitive queries, we have,212

AdvtSPRP
T (D) ≤ |Pr[DT.EncπK ;T.DecπK ;π±1 ,...,π

±
d → 1]− Pr[D$0;$1;π±1 ,...,π

±
d → 1]|︸ ︷︷ ︸

Adv±rnd
T (D)

+
q(q − 1)

2m+1
, where m = min{` :M∩ {0, 1}` 6= φ}.

(4)

The above result has been already been used in the standard model in several places213

including in [12, 42]. The proof of Theorem 1 is very similar to the proof given in [42] and214

hence we omit it here.215
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2.3 H-Coefficient Technqiue216

In this section, we briefly discuss the H-Coefficient Technique, which was introduced by217

Patarin [48] and regained attention since the work of Chen and Steinberger [23] to analyze218

the security of iterated Even-Mansour [36] cipher. Since then, it has been successfully used219

as a tool to upper bound the statistical distance between the responses of two interactive220

systems and is typically used to prove the pseudo randomness of several constructions221

against information theoretic distinguishers. We consider a information theoretic deter-222

ministic distinguisher D with access to either the real oracle, i.e., the construction of our223

interest, or the ideal oracle which is usually considered to be a uniform random func-224

tion or permutation. The collection of all the queries made by D to the oracle and the225

responses received by D from the oracle, is called the attack transcript of D, denoted as226

τ . Sometimes, we allow the oracle to release more internal information to D only after it227

completes all its queries, but before it outputs the decision bit. In this case, the transcript228

of D includes the additional information about the oracle and clearly the maximum dis-229

tinguishing advantage of D in this setting can not be less than that of without additional230

information. The transcript τ is a random variable and the randomness of the distribution231

of τ comes only from the randomness of the oracle with which D interacts.232

Let Tre and Tid denote the random variable that takes the transcript τ resulting from the233

interaction between D and the real world or between D and the ideal world respectively.234

The probability of realizing a transcript τ in the real (resp. ideal) world is called the real235

(resp. ideal) interpolation probability. A transcript τ is said to be attainable with respect236

to D if its ideal interpolation probability is non-zero (i.e., Pr[Tid = τ ] > 0). We denote237

the set of all attainable transcripts by V. Following these notations, we state the main238

theorem of H-Coefficient Technique [48, 23] as follows:239

Theorem 2 (H-Coefficient Technique). Let D be a fixed deterministic distinguisher
that has access to either the real oracle Ore or the ideal oracle Oid. Let V = Vg ∪ Vb,
Vg ∩ Vb = ∅, be some partition of the set of all attainable transcripts of D. Suppose there
exists εratio ≥ 0 such that for any τ ∈ Vg,

Pr[Tre = τ ]

Pr[Tid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Tid ∈ Vb] ≤ εbad. Then,240

AdvOid
Ore

(D)
∆
= |Pr[DOre → 1]− Pr[DOid → 1]| ≤ εratio + εbad. (5)

3 HCTR Construction241

HCTR is one of the popular tweakable enciphering modes, proposed by Wang et al. [51],242

that turns an n-bit strong pseudorandom permutation into a variable length tweakable243
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HCTR.Enck,kh(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Polykh(MR‖T );
4. V ← Ek(U); Z ← U ⊕ V ;
5. for i = 1 to l
6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl ;

8. CR ← first(|MR|,S)⊕MR;
9. CL ← V ⊕ Polykh(CR‖T );

10. return (CL‖CR);

HCTR.Deck,kh(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← CL ⊕ Polykh(CR‖T );
4. U ← E−1

k (V ); Z ← U ⊕ V ;
5. for i = 1 to l
6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl;

8. MR ← first(|CR|,S)⊕CR;
9. ML ← U ⊕ Polykh(MR‖T );
10. return (ML‖MR);

Fig. 3.1. HCTR construction based on an n-bit block cipher Ek and an n-bit Polyhash function. Left
part of the algorithm is the encryption function and right part is the decryption function.

strong pseudorandom permutation. The encryption and decryption algorithm of HCTR244

is shown in Fig. 3.1 and its pictorial representation is shown in Fig. 3.2.245

We explain the encryption algorithm of HCTR using an example. The decryption246

algorithm can be understood in a similar way. Suppose the input messageM = (M1‖M2)247

and for the sake of simplicity, we assume that |M1| = |M2| = n, i.e., M consists of two248

full blocks. Therefore, in step (2) of the algorithm, the variable ML is assigned to M1249

and MR is assigned toM2. In step (3) of the algorithm, we evaluate the poly hash Polykh250

on (M2‖T ) which results to M2 · k3
h ⊕ T · k2

h ⊕ 〈|M2| + |T |〉 · kh which is xored with251

the n-bit value M1 to produce U . In step (4), we take the xor of U and its encryption252

V = Ek(U) to produce Z. In step (6), we compute the key stream S = S1‖S2 where each253

|S1| = |S2| = n. Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input along254

with tweak T to the poly hash function Polykh . Evaluation of the poly hash on input255

CR‖T results to CR · k3
h ⊕ T · k2

h ⊕ 〈|CR|+ |T |〉 · kh. Then the result is xored with V to256

produce CL, which is returned along with CR as the encryption of M =M1‖M2.257

Wang et al. [51] have shown that HCTR is a secure TES against all adaptive chosen plain-258

text and chosen ciphertext adversaries that make roughly 2n/3 encryption and decryption259

queries. Later Chakraborty and Nandi [19] improved its security bound to O(σ2/2n),260

where σ is the total number of message blocks among all q queries. Recently, Dutta and261

Nandi [34] proposed a tweakable block cipher based HCTR, called tweakable HCTR, and262

showed its security beyond the birthday bound.263

Remark 1. In [51], authors defined the output of the PolyHash to be the hash key kh for264

ε. But that definition of the PolyHash function leads to an attack on the construction265
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EK ⊕
Z

P
ol

y K
h

⊕

M1

U

V

M2M3 Ml

CtrEK

P
ol

y K
h

⊕

T

C1 C2C3 Cl

Fig. 3.2. HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml and the corresponding cipher-
text C1‖C2‖ . . . ‖Cl. PolyKh

is the polynomial hash function with hash key Kh. CtrEK is the block cipher
based counter mode of encryption.

as reported in [41]. This attack does not work if the message space contains messages of266

length at least n + 1. We redefine the output of the PolyHash for an empty input string267

to be k2
h ⊕ kh, which eliminates the message length restriction.268

Motivated by HCTR, we first replace the block cipher based counter mode part of HCTR269

with a public permutation based length expanding PRF, and the block cipher EK (see270

Fig. 3.2) with a public permutation π. We show that such combination yields a secure271

public permutation based TES, which we call ppTES as described in section 4. In section272

6, we construct a public permutation based length expanding PRF, which we call ppCTR.273

Using ppCTR along with the the PolyHash function, we instantiate ppTES to realize a274

public permutation based TES, which we call ppHCTR. However, ppHCTR requires two275

independent public permutations, a key for the ppCTR and another independent hash276

key for the PolyHash function. Next, we go one step further to reduce the number of277

keys and permutations used in ppHCTR and come up with a single keyed (for the Poly-278

Hash function) and single permutation based TES construction, ppHCTR+. We describe279

ppHCTR+ in section 7.280

4 ppTES : A Generic Public Permutation Based TES281

ppTES is based on three cryptographic components: (i) an n-bit public random permuta-282

tion π1, (ii) an AXUAR hash function Hkh which maps {0, 1}∗ to {0, 1}n, and (iii) a public283

permutation based length expanding PRF Fπ2
k , where π2 is a n-bit independent public284
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random permutation independent of π1. The message space of ppTES is {0, 1}≥n and the285

tweak space is {0, 1}tw. The working principle of ppTES is exactly same as HCTR where286

the block cipher is replaced by a public permutation π1 and the counter mode encryption287

is replaced by a public permutation based length expanding PRF Fπ2
k . The algorithmic288

description of encryption and decryption function of ppTES is shown in Fig. 4.1. The289

description in Fig. 4.1 mentions Fπ2
k , which is a length expanding PRF. We describe this290

primitive next.291

ppTES.Encπ1,π2
k,kh

(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Hkh(MR‖T );
4. V ← π1(U); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2

k (Z, l);
6. CR ← first(|MR|,S)⊕MR;
7. CL ← V ⊕ Hkh(CR‖T );
8. return (CL‖CR);

ppTES.Decπ1,π2
k,kh

(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← CL ⊕ Hkh(CR‖T );
4. U ← π−1

1 (V ); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2

k (Z, l);
6. MR ← first(|CR|,S)⊕CR;
7. ML ← U ⊕ Hkh(MR‖T );
8. return (ML‖MR);

Fig. 4.1. ppTES based on an n-bit public random permutations π1, an AXUAR hash function Hkh
and a public permutation based length expanding PRF Fπ2

k . M ∈ {0, 1}≥n is the input message and
T ∈ {0, 1}tw is the tweak. Left part of the algorithm is the encryption function and right part is the
decryption function.

As in case of HCTR to explain the encryption algorithm we use a two block message292

M = (M1‖M2), where |M1| = |M2| = n. On input M , in step (2) of the algorithm, the293

variable ML is assigned to M1 and MR is assigned to M2. In step (3) of the algorithm,294

we evaluate the hash value Hkh on (M2‖T ) which is xored with the n-bit value M1 to295

produce U . In step (4), we take the xor of U and its permuted value V = π1(U) to296

produce Z. In step (5), we compute the key stream S = S1 using length expanding PRF297

Fπ2
k where |S1| = n. Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input298

along with tweak T to the hash function Hkh . Then the resulting hash value is xored with299

V to produce CL, which is returned along with CR as the encryption of M =M1‖M2.300

4.1 Length Expanding Pseudorandom Function301

For an arbitrary large positive integer L, Let F ⊆ Func({0, 1}n×N,∪0<i≤L{0, 1}ni), such302

that F ∈ F if and only if the following two conditions are satisfied:303
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1. For every x ∈ {0, 1}n and every b ∈ [L], |F (x, b)| = nb.304

2. For every x ∈ {0, 1}n and every b, b′ ∈ [L], b ≥ b′, first(nb′, F (x, b)) = F (x, b′).305

We call a uniform random element of F a length expanding random function.306

In Fig. 4.2 we give an algorithmic description of a length expanding random function307

ρ. The algorithm depicts ρ as a lazy sampler which gives as output ρ(x, b) upon receiving308

a query (x, b). For any input (x, b), it first checks whether x is a fresh element or not.309

If it is fresh, then it samples b many blocks uniformly at random from {0, 1}nb. If it is310

not fresh, then it first checks whether the number of requested blocks b′ in the earlier311

query for input x is less than the number of requested blocks in the current query for the312

same input. In that case, it first fetches b′ many blocks which are already stored at T[x],313

and then samples the remaining blocks, i.e., b − b′ blocks independently and uniformly314

at random from {0, 1}n(b−b′) which is appended with the first b′ many fetched blocks and315

finally updates the entry T[x] with the output of the current query. The final case is if316

the number of requested blocks in the current query for input x is less than the number317

of requested blocks in the earlier query with the same input. Then it fetches the first b318

many blocks out of b′ many blocks which are already stored at T[x] and returns it.319

Informally, length expanding pseudorandom function is a function which is indistin-320

guishable from a length expanding random function by any efficient distinguisher. For321

the sake of our construction, we require a public permutation based length expanding322

PRF which we formally define next.323

Definition 1. Public Permutation Based Length Expanding PRF . Let L be an
arbitrary large positive integer and let F : K × {0, 1}n × [L]→ ∪1≤i≤L{0, 1}ni be a keyed
function based on d many n-bit permutations π

∆
= (π1, . . . , πd) such that for any input

(x, b) ∈ {0, 1}n × [L], Fπk (x, b) returns (y1, . . . , yb) where each yi ∈ {0, 1}n. We consider
the length expanding PRF security of F under public permutation model where we assume
that π1, . . . , πd←$ Perm(n) and the distinguisher D is given access to either of the world
(FπK , π

±
1 , . . . , π

±
d ) for a random key K←$K or (ρ, π±1 , . . . , π

±
d ), where ρ works as shown in

Fig 4.2. We define the LENPRF advantage of F in public permutation model with respect
to the distinguisher D that makes q construction queries and total qp primitive queries as

AdvLENPRF
F (D)

∆
= | Pr[DFπK ,π±1 ,...,π

±
d → 1]− Pr[Dρ,π±1 ,...,π

±
d → 1] |,

where K←$K, π1, . . . , πd←$Perm(n). F is said to be a (q, qp, σ, t)-secure LENPRF if324

AdvLENPRF
F (q, qp, σ, t)

∆
= maxD AdvLENPRF

F (D) ≤ ε, where the maximum is taken over325

all distinguishers D that makes q construction queries with total σ = (b1+. . .+bq) blocks,326

where bi is the number of blocks requested at i-th construction query. It also makes total327

qp primitive queries and runs for time at most t. As before, for information theoretic328

distinguisher, we omit the time parameter t and in the rest of the paper, we assume the329

distinguisher is information theoretic.330
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Algorithm for ρ

1. initialize:
2. for all x ∈ {0, 1}n

3. T[x]← ⊥;L[x]← ⊥;
4. end for;
5. on input (x, b) 6= (x′, b′);
6. if x = x′

7. if b > b′, then

8. Y
∆
= (yb′+1, yb′+2, . . . , yb)←$ {0, 1}n(b−b′);

9. T[x]← T[x]‖Y ; L[x]← b; return T[x];
10. else return T[x′]1,...,b;
11. end if;
12. else
13. Y

∆
= (y1, . . . , yb)←$ {0, 1}nb;

14. T[x]← Y ; L[x]← b;
15. return T[x];
16. end if;

Fig. 4.2. Algorithm corresponding to a length expanding random function. T[x]1,...,b denotes the first b
many blocks stored at the x-th entry of table T.

Remark 2. The length expanding PRF is a weaker notion than the notion of variable331

output length PRF [10]. For a length expanding PRF, if two queries have the same input332

with different number of requesting blocks, then one output is a prefix of other. In case333

of variable output length PRF, outputs for two queries are completely random even if334

they have the same input with different number of requesting blocks.335

4.2 Security of ppTES336

In this section, we show that if π1, π2←$Perm(n) are two independently sampled n-bit337

public random permutations, K←$ {0, 1}n be a uniformly sampled n-bit key, H is an338

(εaxu, εreg)-AXUAR n-bit keyed hash function and Fπ2
K is a secure public permutation339

based length expanding PRF, then ppTES is a public permutation based secure TES340

against all (qe, qd, qp1 + qp2 , `, σ) information theoretic adaptive CCA distinguishers that341

make qe many encryption, qd many decryption queries with total σ many blocks queried342

among all q ∆
= qe + qd queries and ` is the maximum number of message blocks present343

in a single encryption or decryption query. Moreover, it also makes qp1 primitive queries344

to π1 and qp2 primitive queries to π2. Formally, the following result bounds the tSPRP345

advantage of ppTES in public permutation model.346



14 Debrup Chakraborty, Avijit Dutta, and Samir Kundu

Theorem 3. Let Kh be a finite and non-empty set, π1, π2←$ Perm(n) be two indepen-347

dently sampled n-bit public random permutations and K←$ {0, 1}n be an n-bit random348

key. Let H : Kh × {0, 1}∗ → {0, 1}n be an (εaxu, εreg)-AXUAR n-bit keyed hash function.349

Let Fπ2
K be a secure LENPRF. Then, for any (qe, qd, qp1 + qp2 , `, σ) information theoretic350

adaptive CCA distinguisher D against the tSPRP security of ppTES[π1, π2,K,H] in the351

public permutation model, there exists a LENPRF adversary B against the length expand-352

ing PRF security of Fπ2
K in the public permutation model, where σ is the total number of353

message blocks queried, such that354

AdvtSPRP
ppTES (D) ≤AdvLENPRF

F (B) + q2εaxu + 2qqp1εreg +
q2

2n+1
+
q(q − 1)

2n+1
.

The proof of this result is given in section 5.355

5 Proof of Theorem 3356

As a matter of convenience, we refer to the construction ppTES[π1, π2,K,H] as simply357

ppTES when the underlying primitives are assumed to be understood.358

5.1 Initial Set Up359

By Theorem 1, we have360

AdvtSPRP
ppTES (D) ≤ Adv±rnd

ppTES(D) +
q(q − 1)

2n+1
, (6)

where recall that n is the minimum message length allowed for ppTES. Therefore, we361

bound the±rnd advantage of ppTES. Let D be any information theoretic non-trivial adap-362

tive deterministic CCA distinguisher with access to the oracles in either of the following363

two worlds: in the real world it interacts withOre = (ppTES.Encπ1,π2

K,Kh
, ppTES.Decπ1,π2

K,Kh
, π±1 , π

±
2 )364

for an n-bit random key K, a random hash key Kh and two independent n-bit random365

permutations π1 and π2 or in the ideal world it interacts with Oid = ($0, $1, π
±
1 , π

±
2 ),366

where $0 and $1 are two independent random functions that output uniform random367

strings for every distinct input. Now, our goal is to upper bound the maximum advan-368

tage in distinguishing the real world from the ideal one.369

For doing this, as the first step of the proof, we replace Fπ1,π2

K with the function ρ as
described in Fig. 4.2. We call the resulting construction as ppTES∗. This replacement
comes at the cost of the length expanding PRF security of Fπ

′
K in the random permutation

model, where the PRF adversary B simulates D as follows: it first samples a hash key
Kh←$Kh and an n-bit random permutation π←$Perm(n). Then, for any input (M,T ),
it computes

Z ← π1(HKh(MR‖T )⊕ML)⊕ HKh(MR‖T )⊕ML.
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Then it calls its own oracle with (Z, d |M |n e) as input and receives the nd |M |n e bit output S.370

Then it masks the first |MR| bits of S with MR and produces the ciphertext blocks CR371

which is hashed along with T and the hash output is masked with π1(HKh((MR‖T )⊕ML)372

to generate the first ciphertext block CL. For any primitive query x made by D to π1, B373

accordingly returns the value π1(x). Similarly, it returns the response for backard query374

to π1. For any primitive query x made by D to π2, B forwards the query to its own oracle375

and returns the received response. Similarly, it returns the response for backward query376

to π2. Finally B outputs the same bit as returned by D. Therefore, we have377

Adv±rnd
ppTES(D) ≤ AdvLENPRF

F (B) +Adv±rnd
ppTES∗(D)︸ ︷︷ ︸
δ∗

. (7)

5.2 Attack Transcript378

Our main goal is to bound δ∗, i.e., we need to distinguish the two worlds: the real379

world Ore = (ppTES∗.Encπ1,π2

K,Kh
, ppTES∗.Decπ1,π2

K,Kh
, π±1 , π

±
2 ) from the ideal world Oid =380

($0, $1, π
±
1 , π

±
2 ), where K is an n-bit random key, Kh is a random hash key and π1, π2381

are two independent n-bit random permutations. Since, we consider the maximum distin-382

guishing advantage, let us assume that D be the information theoretic non-trivial adaptive383

CCA distinguisher for which the distinguishing advantage is maximum. Let D makes qe384

(resp. qd) encryption (resp. decryption) queries and qp1 primitive queries to π1 and qp2385

primitive queries to π2. Since, our proof is in random permutation model, D can query386

the primitive in forward and reverse direction. After the interaction is over, the real world387

returns the hash key Kh and the ideal world samples a dummy hash key Kh←$Kh and388

returns it to D. Finally, D outputs a single bit. Let τ ∆
= {(T 1,M1, C1), (T 2,M2, C2),389

. . . , (T q,M q, Cq)} be the list of construction queries and responses (i.e., including en-390

cryption and decryption queries), τp1

∆
= {(x1, y1), (x2, y2), . . . , (xqp1 , yqp1 )} and τp2

∆
=391

{(u1, v1), (u2, v2), . . . , (uqp2 , vqp2 )} be the two list of primitive queries and responses to392

π1 and π2 respectively made by D. The triplet τ ′ = (τ, τp1 , τp2 ,Kh) constitutes the query393

transcript of the attack.394

5.3 Definition and Probabilty of Bad Transcripts395

In this section, we define bad transcripts and bound their probability in the ideal world.396

From transcript τ ′, we derive the following notation: for i ∈ q, Ui =M i
1⊕Hkh(M i

2‖ . . . ‖M i
li
‖T i),397

Vi = Ci1⊕Hkh(C
i
2‖ . . . ‖Cili‖T

i) and Zi = Ui⊕Vi. Having set up the notation, we identify398

an event to be bad if for any two construction queries there is a collision in the Zi values399

or there is a non-trivial input or output collision of the permutation π1.400

Definition 2 (Bad Transcript for ppTES∗). An attainable transcript τ ′ = (τ, τp, τ
′
p,Kh)401

is called bad for ppTES∗ if any of the following conditions hold:402
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- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.403

- B.2 : ∃ i 6= j ∈ [q] such that V i = V j.404

- B.3 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.405

- B.4 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.406

- B.5 : ∃ i, j ∈ [q] such that Zi = Zj.407

Lemma 2. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppTES∗. Then we have,

Pr[Tid ∈ Vb] ≤ εbad = q2εaxu + 2qqpεreg +
q2

2n+1
.

Proof. By the union bound,408

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i] + Pr[B.5 | B.1 ∧ B.2 ∧ B.3 ∧ B.4]. (8)

In the following, we bound the probability of all the bad events individually. The lemma409

will follow by adding the individual bounds.410

Bounding B.1. For two fixed values of i and j, we compute the probability of the event411

U i = U j . Note that U i = U j implies the hash equation: HKh(M
i
R‖T i)⊕HKh(M

j
R‖T j) =412

M i
1⊕M

j
1 . By fixing the value of all other random variables in the hash equation, the prob-413

ability of this event is bounded by the AXU advantage of the hash function. Therefore,414

by summing over all possible choices of i and j, we have415

Pr[B.1] ≤
(
q

2

)
εaxu. (9)

Bounding B.2. This event is similar to that of B.1 where we consider the output collision416

of π. Note that, V i = V j implies the hash equation: HKh(C
i
R‖T i) ⊕ HKh(C

j
R‖T j) =417

Ci1 ⊕ C
j
1 . Similar to B.1, we bound the event using the AXU advantage of the the hash418

function and thus we have419

Pr[B.2] ≤
(
q

2

)
εaxu. (10)

Bounding B.3. For two fixed values of i and j, we compute the probability of the event420

U i = xj . Note that U i = xj implies the hash equation: HKh(M
i
R‖T i) = M i

1 ⊕ xj . By421

fixing the value of all other random variables in the hash equation, the probability of this422

event is bounded by the AR advantage of the hash function. Therefore, by summing over423

all possible choices of i and j, we have424

Pr[B.3] ≤ qqp1εreg. (11)
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Bounding B.4. For two fixed values of i and j, we compute the probability of the event425

V i = yj . Note that V i = yj implies the hash equation: HKh(C
i
R‖T i) = Ci1 ⊕ yj . Similar426

to B.3, we bound the event using the AR advantage of the hash function and thus we427

have428

Pr[B.4] ≤ qqp1εreg. (12)

Bounding B.5 | B.1 ∧ B.2 ∧ B.3 ∧ B.4. To bound this event, we first fix the value of429

i and j. Note that Zi = Zj implies U i ⊕ V i = U j ⊕ V j . Now, due to the condition, we430

have U i 6= U j and V i 6= V j . Therefore, we obtain the following hash equation:431

HKh(M
i
R‖T i)⊕ HKh(C

i
R‖T i)⊕ HKh(M

j
R‖T

j)⊕ HKh(C
j
R‖T

j) =W, (13)

where W = M i
1 ⊕M

j
1 ⊕ Ci1 ⊕ C

j
1 . W.l.o.g we assume that i < j. If the j-th query is an432

encryption query, then Cj1 is uniformly distributed in the ideal world and if the j-th query433

is a decryption query, then M j
1 is uniformly distributed in the ideal world. Combining434

the above two arguments and by varying over all possible choices of indices, we have435

Pr[B.5] ≤
(
q
2

)
2n
. (14)

The proof follows from Eqn. (8)-Eqn. (12) and Eqn. (14). ut

5.4 Analysis of Good Transcript436

In this section, we show that for a good transcript τ ′ = (τ, τp1 , τp2 , kh), realizing τ ′ is437

almost as likely in the real world as in the ideal world.438

Lemma 3. Let τ ′ = (τ, τp1 , τp2 , kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Since, in the ideal world, the encryption and the decryption oracle behaves per-439

fectly random, we have440

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp1)
· 1

P(2n, qp2)
· 1

2nσ
, (15)

where σ is the total number of blocks queried among all q construction queries that441

includes encryption and decryption queries.442

Real Interpolation Probability. Since, τ ′ is a good transcript, all the inputs and443

outputs of π1 are fresh. Moreover, all Zi values are distinct. Therefore, the outputs of ρ444

are all uniformly random. Since, there are total qp1 + q many invocations of π1, we have445

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp1 + q)
· 1

P(2n, qp2)
· 1

(2n)σ−q
. (16)
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By doing a simple algebraic calculation, it is easy to see that the ratio of Eqn. (16) to
Eqn. (15) is at least 1 and hence proves the result. ut
By combining Lemma 2, Lemma 3, Theorem 2, Eqn. (6) and Eqn. (7), the result follows.

ut

6 ppCTR: Public Permutation Based Length Expanding PRF446

In this section, we propose ppCTR, a public permutation based length expanding PRF.
Our proposed construction is a public permutation variant of the block cipher based
standard counter mode encryption where the block cipher is replaced by a single round
EM [36] cipher. The working principle of ppCTR is as follows: it takes an n-bit public
random permutation π and an n-bit random key k. Then for any n-bit input value z and
an integer b, it outputs b many blocks where the j-th block Sj is defined as follows:

Sj
∆
= π(z ⊕ γjk)⊕ γjk, j ∈ [b],

where γ is the root of a primitive polynomial of GF(2n). In the following section, we

π π π

z

⊕γk ⊕γ2k ⊕γ3k

⊕γk

S1

⊕γ2k

S2

⊕γ3k

S3

Fig. 6.1. ppCTR construction with an n-bit input z and an integer b = 3 and corresponding output
S1‖S2‖S3. π is the public random permutation, k is the key and γ is the root of a primitive polynomial
of GF(2n).

447

state and prove that ppCTR is a public permutation based secure LENPRF against all448

adversaries that makes roughly 2n/2 construction and primitive queries. It is needless to449

say that the above bound is tight as EM cipher is known to have a tight birthday bound450

security [36].451

6.1 Security Analysis of ppCTR452

In this section, we show that ppCTR is a public permutation based length expanding453

PRF.454
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Theorem 4. Let π←$ Perm(n) be an n-bit public random permutation and letK←$ {0, 1}n455

be an n-bit random key. Then, for any (q, qp, σ) adversary D against the LENPRF security456

of ppCTR[π,K], we have457

AdvLENPRF
ppCTR (D) ≤ σ2

2n
+

2σqp
2n

,

where σ is the total number of blocks queried across all q queries.458

Proof. Let Dmax be the distinguisher with maximum distinguishing advantage in dis-
tinguishing the following two worlds: (a) in the real world it interacts with Ore =
(ppCTR[π,K], π±) for a random n-bit key K and a random n-bit permutation π and
(b) in the ideal world it has access to Oid = (ρ, π±), where ρ works in the similar way
as shown in Fig. 4.2. It makes q construction queries and qp primitive queries. After
the interaction is over, the real world returns K to Dmax and the ideal world randomly
samples a dummy key K←$ {0, 1}n and returns to Dmax. Finally, Dmax outputs a bit.
Let τ ∆

= {(z1, b1,S
1), (z2, b2,S

2), . . . , (zq, bq,S
q)} be the list of construction queries and

responses, where Si = (Si1, . . . , S
i
bi
) and τp

∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the

list of primitive queries and responses to π made by Dmax. Let σ = (b1 + . . . + bq) de-
notes the total number of blocks queried across all q queries. The triplet τ ′ = (τ, τp,K)
constitutes the query transcript of the attack. We define a relation ∼ over τ such that
(zi, bi,Si) ∼ (zj , bj ,Sj) if and only if zi = zj . Thus, ∼ induces a partition on τ and let us
assume we have r many such partitions. Each partition contains ci many elements and
therefore, c1 + . . . + cr = q. Note that, there exists a total ordering among bi values in
each component. This allows us to sort the elements of each component in the ascending
order of their b values. After rearrangement, we have the following:

{(z1, b
1
1,S

1
1), . . . , (z1, b

1
c1 ,S

1
c1)}

{(z2, b
2
1,S

2
1), . . . , (z2, b

2
c1 ,S

2
c2)}

...
...

...
...

{(zr, br1,Sr1), . . . , (zr, brc1 ,S
r
c1)}

Note that, for each i ∈ [r], bici ≥ b
i
ci−1 ≥ . . . ≥ bi1 and Sij is a prefix of Sij+1 for all j ∈ [ci].459

6.2 Definition and Probability of Bad Transcripts460

In this section, we define bad transcripts and bound their probability in the ideal world.461

Informally, we define an event to be bad if it introduces any non-trivial input or output462

collision of the permutation π.463

Definition 3. (Bad Transcript for ppCTR ) : An attainable transcript τ ′ = (τ, τp,K)464

is called a bad transcript for ppCTR if any of the following conditions hold:465
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- B.1 : ∃ i 6= j ∈ [r], α ∈ [`ci ] and β ∈ [`cj ] such that zi ⊕ γαK = zj ⊕ γβK.466

- B.2 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci ] such that zi ⊕ γαK = xj.467

- B.3 : ∃ i 6= j ∈ [r], α ∈ [`ci ] and β ∈ [`cj ] such that Siα ⊕ γαK = Sjβ ⊕ γ
βK.468

- B.4 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci ] such that Siα ⊕ γαK = yj.469

Lemma 4. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppCTR. Then we have,

Pr[Tid ∈ Vb] ≤ εbad =
σ2

2n
+

2σqp
2n

.

Proof. By the union bound,470

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i]. (17)

In the following, we bound the probability of all the bad events individually. The lemma471

will follow by adding the individual bounds.472

Bounding B.1. To bound this event, we first fix a value of the indices i 6= j ∈ [r] and473

α ∈ [`ci ], β ∈ [`cj ]. For such a fixed choice of indices, we bound the probability of the474

event zi ⊕ γαK = zj ⊕ γβK. Now, if α = β, then the probability of the event is zero as475

zi 6= zj . Therefore, we assume that α 6= β. For this choice of indices, we write the event476

as477

K = (γα ⊕ γβ)−1(zi ⊕ zj). (18)

The probability of Eqn. (18) is 2−n, due to the randomness of the key K. Therefore, by478

varying over all possible choices of i, j, α and β, we have479

Pr[B.1] ≤ σ2

2n+1
. (19)

Bounding B.2. For a fixed choice of i ∈ [r], j ∈ [qp] and α ∈ [`ci ], the probability of the480

event K = γ−α(zi ⊕ xj) is bounded by 2−n due to the randomness of K. Therefore, by481

varying over all possible choices of i, j and α, we have482

Pr[B.2] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (20)

Bounding B.3. Bounding this event is similar to that of B.1. To bound this event, we483

first fix the value of the indices i 6= j ∈ [r] and α ∈ [`ci ], β ∈ [`cj ]. For such a fixed choice484

of indices, we bound the probability of the event Siα ⊕ γαK = Sjβ ⊕ γ
βK. Now we have485

the following two cases:486
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- Case A. Let us consider that α = β. As i 6= j, without loss of generality, we assume
that i < j. Therefore, the event boils down to Siα = Sjα, which is bounded by 2−n due
to the randomness of Sjα. Therefore, by varying over all possible choices of i, j and α,
we have

Pr[B.3] ≤ σ2

2n+1

- Case B. if α 6= β, then the event can be equivalently written as487

K = (γα ⊕ γβ)−1(Siα ⊕ Siβ). (21)

Since, α 6= β, we have γα ⊕ γβ 6= 0 and therefore, the probability of Eqn. (21) is 2−n

due to the randomness of the key K. Therefore, by varying over all possible choices
of i, j, α and β, we have

Pr[B.3] ≤ σ2

2n+1
.

By taking the maximum of the above two, we have488

Pr[B.3] ≤ σ2

2n+1
. (22)

Bounding B.4. Bounding this event is exactly identical to that of B.2, where we use the489

randomness of K to bound the event. Therefore, we have490

Pr[B.4] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (23)

The proof follows from Eqn. (17) and Eqn. (19)-Eqn. (23). ut

6.3 Analysis of Good Transcript491

In this section, we show that for a good transcript τ ′ = (τ, τp, k), realizing τ ′ is almost as492

likely in the real world as in the ideal world.493

Lemma 5. Let τ ′ = (τ, τp, k) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Consider a good transcript τ ′ = (τ, τp, k). In the ideal world, ρ randomly sam-494

ples nbci bit output for i-th class and the key k is sampled uniformly from {0, 1}n and495

independent to all other sampled random variables. Thus, we have496

Pr[Tid = τ ′] =
1

2n
· 1

P(2n, qp)
·
r∏
i=1

1

2nqbci
. (24)
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For computing the real interpolation probability, as τ ′ is good, all the inputs and outputs497

of π are distinct. The total number of π invocations including the primitive queries is498

(bc1 + . . .+ bcr + qp). Therefore,499

Pr[Tre = τ ′] =
1

2n
· 1

P(2n, bc1 + . . .+ bcr + qp)
. (25)

It is trivial to see that the ratio of Eqn. (25) to Eqn. (24) is at least 1. Hence the result of
Lemma 5 follows. Finally, by combining Lemma 4, Lemma 5 and Theorem 2, the result
of Theorem 4 follows. ut

6.4 ppHCTR : An Instantiation of ppTES with ppCTR and PolyHash500

We instantiate the public permutation based length expanding PRF Fπ2
k of ppTES[π1, π2, k,501

H] with ppCTR[π2, k] and its underlying AXUAR hash function Hkh with the PolyHash502

function Polykh , as described in Eqn. (3), to realize a practical candidate of a public503

permutation based TES, referred to as ppHCTR[π1, π2, k,Polykh ]. We assume that the504

tweak is µ blocks long, i.e., tw = nµ and thus, for any i ∈ [q], the maximum degree of505

Polykh(M
i
2‖ . . . ‖M i

li
‖T i) is l̂i + µ, where l̂i = d

|Mi
R|
n e. Since, l̂i ≤ ` for all i ∈ [q], where506

` denotes the maximum number of message blocks among all q queries, therefore the507

AXU and the AR advantage of the PolyHash function is (`+ µ)/2n. Note that, ppHCTR508

requires two independent n-bit random permutations π1 and π2, an n-bit random key K509

and an independent n-bit random hash key Kh for the PolyHash function. Security result510

of ppHCTR follows trivially from Theorem 3 and Theorem 4 which can be summarized511

as follows:512

Theorem 5. Let π1, π2←$ Perm(n) be two independent n-bit public random permutations513

and let K←$ {0, 1}n be an n-bit random key. Let Kh←$ {0, 1}n be an n-bit random hash514

key of PolyHash function as described in Eqn. (3). Then, for any (qe, qd, qp1 +qp2 , `, σ) in-515

formation theoretic non-trivial adaptive CCA distinguisher D against the tSPRP security516

of ppHCTR[π1, π2,K,PolyKh ], we have517

AdvtSPRP
ppHCTR(D) ≤ σ2

2n
+

2σqp2

2n
+
q2`

2n
+

2qqp1`

2n
+
µq2

2n
+

2µqqp
2n

+
q2

2n+1
+
q(q − 1)

2n+1
,

where q = qe + qd, ` is the maximum number of message blocks and µ is the number of518

tweak blocks.519

7 ppHCTR+ : A Single-Keyed Variant of ppHCTR520

In the last section, we have seen that ppHCTR, a public permutation based TES, requires521

two independent n-bit public random permutations and two independent n-bit keys. In522
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this section, we propose a single permutation and single keyed variant of ppHCTR, referred523

to as ppHCTR+. The construction is based on an n-bit public random permutation π524

and an n-bit random hash key of the PolyHash function as described in Eqn. (3). We525

consider that the tweak size is µ blocks long. The encryption and decryption algorithm526

of ppHCTR+ is shown in Fig. 7.1.

ppHCTR+.Encπkh(T,M)

1. (M1‖ . . . ‖Ml)← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Polykh(MR‖T );
4. V ← π(U); Z ← U ⊕ V ;
5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;
7. Sj ← π(Zj)⊕ Zj ;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. CR ←MR ⊕ first(|MR|,S);
10. CL ← V ⊕ Polykh(CR‖T );
11. return (CL‖CR);

ppHCTR+.Decπkh(T,C)

1. (C1‖ . . . ‖Cl)← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← C1 ⊕ Polykh(CR‖T );
4. U ← π−1(V ); Z ← U ⊕ V ;
5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;
7. Sj ← π(Zj)⊕ Zj ;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. MR ← CR ⊕ first(|CR|,S);
10. ML ← V ⊕ Polykh(MR‖T );
11. return (ML‖MR);

Fig. 7.1. ppHCTR+ based on an n-bit public random permutation π and an n-bit random hash key kh.
Left part is the encryption algorithm and right part is its decryption algorithm.

527

To see the dataflow of the encryption algorithm we consider an input message M =528

(M1‖M2), where |M1| = |M2| = n, i.e., M consists of two full blocks. Therefore, in step529

(2) of the algorithm, the variable ML is assigned to M1 and MR is assigned to M2. In530

step (3) of the algorithm, we evaluate the poly hash Polykh on (M2‖T ) which results to531

M2 · k3
h ⊕ T · k2

h ⊕ 〈|M2| + |T |〉 · kh which is xored with the n-bit value M1 to produce532

U . In step (4), we take the xor of U and V = π(U) to produce Z. In step (6) and (7),533

we compute the key stream S = S1 where each |S1| = n by S1 = π(Z ⊕ 1) ⊕ (Z ⊕ 1).534

Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input along with tweak T535

to the poly hash function Polykh . Evaluation of the poly hash on input CR‖T results to536

CR ·k3
h⊕T ·k2

h⊕〈|CR|+ |T |〉 ·kh. Then the result is xored with V to produce CL, which537

is returned along with CR as the encryption of M =M1‖M2. The decryption works in a538

similar way.539

7.1 Security Result of ppHCTR+540

The security result of ppHCTR+ is as follows:541
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Theorem 6. Let π←$ Perm(n) be an n-bit public random permutation and letKh←$ {0, 1}n542

be an n-bit random hash key of PolyHash function as described in Eqn. (3). Then, for any543

(qe, qd, qp, `, σ) information theoretic non-trivial adaptive CCA distinguisher D against the544

tSPRP security of ppHCTR+[π,PolyKh ], we have545

AdvtSPRP
ppHCTR+(D) ≤ 9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
+
q(q − 1)

2n+1
,

where σ is the total number of message blocks for all q ∆
= qe + qd queries and µ is the546

number of tweak blocks.547

8 Proof of Theorem 6548

In section 6.4, we propose ppHCTR, which uses two independent random permutations549

and two independent random keys, which allowed us to use the generic security result of550

ppTES in order to derive the security result of ppHCTR. However, for the single keyed551

variant of it, we cannot use the generic result of ppTES due to the input / output552

dependency and that demands an independent security proof for ppHCTR+.553

For the sake of simplicity, we refer ppHCTR+[π,PolyKh ] as ppHCTR+ when the underlying554

primitives are assumed to be understood. By Theorem 1, we have555

AdvtSPRP
ppHCTR+(D) ≤ Adv±rnd

ppHCTR+(D) +
q(q − 1)

2n+1
, (26)

where recall that n is the minimum message length allowed for ppHCTR+. Therefore, we556

bound the ±rnd advantage of ppHCTR+. Let D be any information theoretic non-trivial557

adaptive deterministic CCA distinguisher with access to the oracles in either of the follow-558

ing two worlds: in the real world it interacts withOre = (ppHCTR+.EncπKh , ppHCTR+.DecπKh ,559

π±) for an n-bit random hash key Kh and a random n-bit permutation π or in the ideal560

world it interacts with Oid = ($0, $1, π
±), where $0 and $1 are two independent random561

functions such that for any input, it responds with uniform values. Now, our goal is to562

upper bound the maximum advantage in distinguishing the real world from the ideal one.563

564

Let D be the maximum distinguishing advantage achieving distinguisher that makes qe565

(resp. qd) encryption (resp. decryption) queries and qp primitive queries. After the in-566

teraction is over, the underlying hash key is revealed to D and finally, D outputs a bit.567

Let τ ∆
= {(T 1,M1, C1), (T 2,M2, C2), . . . , (T q,M q, Cq)} be the list of construction queries568

and responses and τp
∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the list of primitive queries569

and responses where each T i is exactly µ blocks long. The triplet τ ′ = (τ, τp,Kh) consti-570

tutes the query transcript of the attack. Now, we characterize the set of bad transcripts571

and good transcripts.572
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8.1 Definition and Probability of Bad Transcripts573

In this section, we define bad transcripts and bound their probabilities in the ideal world.574

The defining criterion of the bad event is any non-trivial collision in the input or output575

of the permutation. As defined in Fig. 7.1, Mi
R denotes M i

2‖ . . . ‖M i
li
and Ci

R denotes576

Ci2‖ . . . ‖Cili . Moreover, for a transcript τ ′, we denote U i = PolyKh(M
i
R‖T i) ⊕M i

1, V
i =577

PolyKh(C
i
R‖T i)⊕ Ci1 and Ziα = U i ⊕ V i ⊕ 〈α〉.578

Definition 4. (Bad Transcript for ppHCTR+ ) : An attainable transcript τ ′ = (τ, τp,Kh)579

is called a bad transcript for ppHCTR+ if any of the following conditions hold:580

- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.581

- B.2 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that, U i = Zjα.582

- B.3 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that Ziα = Zjβ,583

where (i, α) 6= (j, β).584

- B.4 : ∃ i 6= j ∈ [q] such that V i = V j.585

- B.5 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that V i = Zjα ⊕M j
α+1 ⊕ C

j
α+1.586

- B.6 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that Ziα ⊕587

M i
α+1 ⊕ Ciα+1 = Zjβ ⊕M

j
β+1 ⊕ C

j
β+1.588

- B.7 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.589

- B.8 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Ziα = xj.590

- B.9 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.591

- B.10 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Ziα ⊕M i
α+1 ⊕ Ciα+1 = yj.592

Lemma 6. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppHCTR+. Then, by assuming q ≤ σ, we have

Pr[Tid ∈ Vb] ≤ εbad =
9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
.

Proof. By the union bound,593

Pr[Tid ∈ Vb] ≤
10∑
i=1

Pr[B.i]. (27)

In the following, we bound the probability of all the bad events individually. The lemma594

will follow by adding the individual bounds.595

Notation. We consider that the tweak is µ blocks long, i.e., tw = nµ. Therefore, for596

any i ∈ [q], the maximum degree of Polykh(M
i
R‖T i) is l̂i + µ, where l̂i

∆
= d |M

i
R|
n e. Let ˆ̀

i,j597

denotes max{l̂i, l̂j}+ µ and σ̂ = qµ+ (l̂1 + . . .+ l̂q) denotes the total number of message598
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blocks of Mi
R (including the tweak blocks) across all q queries. Therefore, σ = (σ̂−qµ+q)599

which implies that σ − q = l̂1 + . . .+ l̂q. Since, ˆ̀i,j ≤ l̂i + l̂j + µ, we have600 ∑
1≤i<j≤q

ˆ̀
i,j ≤

(
q

2

)
µ+

∑
1≤i<j≤q

(l̂i + l̂j) ≤ (q − 1)σ̂ ≤ qσ + µq2. (28)

Bounding B.1. Bounding this event is equivalent to bounding

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j) =M i
1 ⊕M

j
1 .

If Mi
R‖T i = Mj

R‖T j then the probability of this event is zero, otherwise it is bounded by601

the AXU advantage of the PolyHash and hence from Eqn. (28) and by assuming q ≤ σ,602

we have603

Pr[B.1] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (29)

Bounding B.2. To bound the probability of B.2, we first fix the value of i, j and α.604

Note that Zjα = Zj ⊕ 〈α〉. Therefore, U i = Zjα implies U i ⊕ U j ⊕ V j = 〈α〉. Now, this605

essentially implies the following hash equation:606

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j)⊕ PolyKh(C
j
R‖T

j) =M i
1 ⊕M

j
1 ⊕ C

j
1 ⊕ 〈α〉. (30)

Based on the values of i and j, we have the following two subcases:607

- Case A: If i 6= j, then we first assume that i < j. Then, if the j-th query is an
encryption query, then Cj1 is random and therefore by conditioning on the hash key
and using the randomness of Cj1 , probability of Eqn. (30) can be bounded by 2−n

as Cj1 is uniformly distributed in the ideal world. Similarly, if the j-th query is a
decryption query, then M j

1 is random and therefore by conditioning on the hash key
and using the randomness of M j

1 , probability of Eqn. (30) can be bounded by 2−n as
M j

1 is uniformly distributed in the ideal world. Therefore, by varying over possible
choices of i and (j, α), we have

Pr[B.2] ≤ qσ

2n
.

On the other hand if i > j, then by conditioning all other random variables, we
bound the probability of the event using the AXU advantage of the PolyHash function.
Therefore, we have

Pr[B.2] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
.

By considering the maximum of the above two, we have608

Pr[B.2] ≤ qσ + µq2

2n
. (31)
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- Case B: If i = j, then, Eqn. (30) boils down to the following hash equation:609

PolyKh(C
i
R‖T i) = Ci1 ⊕ 〈α〉. (32)

Note that for a fixed choice of i and α, Eqn. (32) can be bounded by the AR advantage610

of the PolyHash function. Therefore,611

Pr[B.2] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
σ2 + q2

2n
+
µσ

2n
. (33)

By considering both the cases and by assuming q ≤ σ, we have612

Pr[B.2] ≤ σ2 + q2 + µσ

2n
+
qσ + µq2

2n
≤ 3σ2(µ+ 1)

2n
. (34)

Bounding B.3. To bound the probability of B.3, we first fix the value of i, j, α and β
such that (i, α) 6= (j, β). Note that Ziα = Zjβ implies the following hash equation:

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j)⊕ PolyKh(C
i
R‖T i)⊕ PolyKh(C

j
R‖T

j) =W,

where W = M i
1 ⊕M

j
1 ⊕ Ci1 ⊕ C

j
1 ⊕ 〈α〉 ⊕ 〈β〉. Note that for i = j, the probability of613

this event is zero. For i 6= j, without loss of generality we assume that i < j, if the614

j-th query is an encryption query, then Cj1 is uniformly distributed in the ideal world615

which is used to bound the probability of the event by conditioning the hash key and616

all other random variables. Similarly, if the j-th query is a decryption query, then M j
1617

is uniformly distributed in the ideal world which is used to bound the probability of the618

event by conditioning the hash key and all other random variables. Combining the above619

two arguments with the assumption q ≤ σ and by varying over all possible choices of620

indices, we have621

Pr[B.3] =

(
σ−q

2

)
2n

≤ σ2 + q2

2n+1
≤ σ2

2n
. (35)

Bounding B.4. Bounding this event is equivalent to bounding

PolyKh(C
i
R‖T i)⊕ PolyKh(C

j
R‖T

j) = Ci1 ⊕ C
j
1 .

If Ci
R‖T i = Cj

R‖T j then the probability of this event is zero, otherwise it is bounded622

by the AXU advantage of the PolyHash and hence from Eqn. (28) and by the assumpion623

q ≤ σ, we have624

Pr[B.4] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (36)

Bounding B.5. We first fix the values of i, j and α and compute the probability of625

V i = M j
α+1 ⊕ C

j
α+1 ⊕ Z

j
α. This event boils down to computing the probability of the626

following event: PolyKh(C
i
R‖T i)⊕ PolyKh(M

j
R‖T j)⊕ PolyKh(C

j
R‖T j) =W ,627

where W = Ci1 ⊕M
j
α+1 ⊕C

j
α+1 ⊕M

j
1 ⊕C

j
1 ⊕ 〈α〉. Now, we have two subcases as follows:628
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- Case A: if i = j, then we have PolyKh(M
i
R‖T i) = Ci1 ⊕M i

α+1 ⊕ Ciα+1 ⊕M i
1 ⊕ Ci1 ⊕629

〈α〉, which can be bounded using the AR advantage of the PolyHash function after630

conditioning all other random variables. Therefore, by assuming q ≤ σ, we have631

Pr[B.5] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
2σ2

2n
+
µσ

2n
. (37)

- Case B: Now we consider the case when i 6= j and without loss of generality we632

assume that i < j. Then by fixing the hash key Kh, the probability of the above633

event is the probability over the random draw of Cj1 (if j-th query is an encryption634

query) or M j
1 (if j-th query is a decryption query), which is at most 2−n. Therefore,635

varying over all the possible choice of i, j and α and q ≤ σ, we have636

Pr[B.5] ≤ qσ

2n
≤ σ2

2n
. (38)

Taking the maximum of Eqn. (37) and (38), we have637

Pr[B.5] ≤ 2σ2

2n
+
µσ

2n
. (39)

Bounding B.6. To bound this event we first fix i, j and α, β and then we compute the638

probability of M i
α+1 ⊕ Ciα+1 ⊕ Ziα = M j

β+1 ⊕ C
j
β+1 ⊕ Z

j
β . Now, we have the following639

subcases based on the values of i and j.640

- Case A: If i = j, then the above event boils down to the following event M i
α+1 ⊕641

Ciα+1 ⊕M i
β+1 ⊕Ciβ+1 = 〈α〉 ⊕ 〈β〉. Since α 6= β, without loss of generality we assume642

that α < β. Therefore, using the randomness of Ciβ (if i-th query is encryption) or643

using the randomness of M i
β (if i-th query is decryption), the probability of the event644

is bounded by 2−n. By summing over all possible values of i, α and β, we have645

Pr[B.6] ≤
q∑
i=1

(
l̂i
2

)
2n
≤ 1

2n+1
(

q∑
i=1

l̂i)
2 =

(σ − q)2

2n+1
≤ σ2 + q2

2n+1
. (40)

- Case B: If i 6= j, then we bound the probability of the event similar to that of B.3,646

that is 1/2n and therefore, by summing over all possible values of i, j, α and β, we647

have648

Pr[B.6] ≤ σ2 + q2

2n+1
. (41)

By taking the maximum of Eqn. (40) and (41) and by assuming q ≤ σ, we have649

Pr[B.6] ≤ σ2 + q2

2n+1
≤ σ2

2n
. (42)
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Bounding B.7. Bounding this event is equivalent to bounding PolyKh(M
i
R‖T i) =M i

1⊕650

xj . This event is bounded by the AR advantage of the PolyHash and hence from Eqn. (28)651

and by assuming q ≤ σ, we have652

Pr[B.7] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (43)

Bounding B.8. To bound the probability of B.8, we first fix the value of i, j and α. Note
that Ziα = xj implies the following hash equation: PolyKh(M

i
R‖T i)⊕ PolyKh(C

i
R‖T i) =

M i
1 ⊕ Ci1 ⊕ 〈α〉 ⊕ xj . If the construction query comes after the primitive query then we

can bound the probability of the event using the randomness of Ci1 (if the construction
query is an encryption query) or using the randomness of M i

1 (if the construction query
is a decryption query). Therefore, by conditioning the hash key and all other random
variables, the bound will be 2−n. Therefore, we have

Pr[B.8] =
(σ − q)qp

2n
≤ σqp

2n
.

On the other hand, if the primitive query comes after the construction query, then we
condition every other random variables and bound the probability of this event by using
the AR advantage of the PolyHash function. Therefore, we have

Pr[B.8] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qp(σ + qµ)

2n
.

Therefore, by taking the maximum of the above two and by assuming q ≤ σ, we have653

Pr[B.8] ≤ qpσ(µ+ 1)

2n
. (44)

Bounding B.9. Bounding this event is equivalent to bounding PolyKh(C
i
R‖T i) = Ci1⊕yj .654

This event is bounded by the AR advantage of the PolyHash and hence from Eqn. (28)655

and by assuming q ≤ σ, we have656

Pr[B.9] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (45)

Bounding B.10. To bound the probability of B.10, we first fix the value of i, j and657

α. Note that M i
α+1 ⊕ Ciα+1 ⊕ Ziα = yj implies the hash equation: PolyKh(M

i
R‖T i) ⊕658

PolyKh(C
i
R‖T i) = W , where W = M i

α+1 ⊕ Ciα+1 ⊕M i
1 ⊕ Ci1 ⊕ 〈α〉 ⊕ yj . Similar to B.8,659

we bound the event as660

Pr[B.10] ≤ qpσ(µ+ 1)

2n
. (46)

The proof follows from Eqn. (27), Eqn. (29)-Eqn. (46) and q ≤ σ. ut
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8.2 Analysis of Good Transcript661

In this section, we show that for a good transcript τ ′ = (τ, τp, kh), realizing τ ′ is almost662

as likely in the real world as in the ideal world.663

Lemma 7. Let τ ′ = (τ, τp, kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Since, in the ideal world, the encryption and the decryption oracle behaves per-664

fectly random, we have665

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp)

1

2nσ
, (47)

where σ is the total number of message blocks queried among all q queries.666

Real Interpolation Probability. Since τ ′ is a good transcript, all the inputs and667

outputs of π are fresh as we have eliminated all the internal input and output collisions668

of π, including the primitive queries while defining the bad events. Since there are total669

σ+ qp invocation of π, including the primitive queries, therefore, the required probability670

is,671

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp)

1

P(2n − qp, σ)
. (48)

By doing a simple algebraic calculation, it is easy to show that the ratio of Eqn. (48) to
Eqn. (47) is at least 1. This proves Lemma 7. ut
By combining Lemma 6, Lemma 7, Theorem 2 and Eqn. (26), the result of Theorem 6
follows. ut

Discussion. We would like to note here that a simple birthday bound attack reveals672

the hash key of the Polyhash function for ppHCTR and ppHCTR+. This would allow an673

adversary to generate the ciphertext for any plaintext. The same attack also works for674

HCTR construction. A simple remedy of this problem is to introduce additional permu-675

tation calls after the hash evaluation in upper and bottom layers. This would resolve676

the problem of revealing the hash difference to any adversary, which in turn makes the677

recovery of the hash key difficult. A formal security analysis of this modified construction678

is beyond the scope of this paper.679

9 Conclusion680

Permutation based cryptography is a promising new addition in the cryptographic liter-681

ature. There has been a continued effort in building cryptographic schemes using public682



Designing Tweakable Enciphering Schemes Using Public Permutations 31

permutations as the base primitive. Permutation based designs are generally lightweight.683

The overwhelming number of candidates using permutation based designs in the ongoing684

NIST competition of lightweight ciphers bears a proof of the fact that permutation based685

designs are preferred for computationally constrained scenarios.686

There are permutation based designs available for various cryptographic schemes like687

authenticated encryption, authenticated encryption with associated data, message au-688

thentication codes, collision resistant hash etc., but to our knowledge there are no existing689

permutation based construction of tweakable enciphering schemes. Tweakable encipher-690

ing schemes are a class of encryption schemes which are length preserving and have thus691

found its use in low level disk encryption or encryption of any storage media which is692

organized as sectors. All the exisiting tweakable enciphering schemes are either build on693

top of block-ciphers, pesudorandom functions, or tweakable block ciphers [20, 38, 39, 51,694

11, 34, 16]. In this paper, we study the security of tweakable enciphering schemes built695

on a low level primitive like public random permutation. We initiate the study with a696

generic construction of a public permutation based TES, called ppTES. Then we con-697

struct ppCTR, a public permutation based length expanding PRF and finally, we propose698

a single keyed and single permutation based TES which we call ppHCTR+. To the best699

of our knowledge, this is the first provably secure public permutation based TES.700

Our constructions, both ppTES and ppHCTR+ requires both the forward and inverse701

calls of the permutation. Most existing public random permutations are more efficient702

in their forward calls compared to the inverse calls, thus a inverse free construction703

like [16, 11] is worth studying. Another direction of future research would be to construct704

a permutation based TES which is beyond birthday bound secure.705
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