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Abstract

Existing oblivious storage systems provide strong security
by hiding access patterns, but do not scale to sustain high
throughput as they rely on a central point of coordination.
To overcome this scalability bottleneck, we present Snoopy,
an object store that is both oblivious and scalable such that
adding more machines increases system throughput. Snoopy
contributes techniques tailored to the high-throughput regime
to securely distribute and efficiently parallelize every system
component without prohibitive coordination costs. These
techniques enable Snoopy to scale similarly to a plaintext
storage system. Snoopy achieves 13.7× higher throughput
thanObladi, a state-of-the-art oblivious storage system. Specif-
ically, Obladi reaches a throughput of 6.7K requests/s for two
million 160-byte objects and cannot scale beyond a proxy
and server machine. For the same data size, Snoopy uses 18
machines to scale to 92K requests/s with average latency
under 500ms.

1 Introduction

Organizations increasingly outsource sensitive data to the
cloud for better convenience, cost-efficiency and availabil-
ity [31, 53, 89]. Encryption cannot fully protect this data:
how the user accesses data (the “access pattern”) can leak
sensitive information to the cloud [13, 28, 37, 48, 50, 52].
For example, the frequency with which a doctor accesses a
medication database might reveal a patient’s diagnosis.
Oblivious object stores allow clients to outsource data to
a storage server without revealing access patterns to the
storage server. A rich line of work has shown how to build
efficient oblivious RAMs (ORAMs), which can be used to
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construct oblivious object stores [8, 14, 26, 33, 72, 82, 85, 91–
93, 101]. In order to be practical for applications, oblivi-
ous storage must provide many of the same properties as
plaintext storage. Prior work has shown how to reduce la-
tency [65, 82, 93], scale to large data sizes via data paral-
lelism [59], and improve request throughput [26, 85, 101].
Despite this progress, leveraging task parallelism to scale
for high-throughput workloads remains an open problem:
existing oblivious storage systems do not scale.
Identifying the scalability bottleneck. Scalability bottle-
necks are system components that must perform compu-
tation for every request and cannot be parallelized. These
bottlenecks limit the overall system throughput; once their
maximum throughput has been reached, adding resources to
the system no longer improves performance. To scale, plain-
text object stores traditionally shard objects across servers,
and clients can route their queries to the appropriate server.
Unfortunately, this approach is insecure for oblivious object
stores because it reveals the mapping of objects to parti-
tions [13, 37, 48, 50, 52]. For example, if clients query dif-
ferent shards, the attacker learns that the requests were for
different objects.
To understand why scaling oblivious storage is hard, we ex-

amine two properties oblivious storage systems traditionally
satisfy. First, systems typically maintain a dynamic mapping
(hidden from the untrusted server) between the logical layout
and physical layout of the outsourced data. Clients must look
up their logical key using the freshest mapping and remap
it to a new location after every access, creating a central
point of coordination. Second, for efficient access, oblivious
systems typically store data in a hierarchical or tree-like
structure, creating a bottleneck at the root [82, 92, 93].
Thus high-throughput oblivious storage systems are all

built on hierarchical [92] or tree-like [82, 93] structures and
either require a centralized coordination point (e.g., a query
log [14, 101] or trusted proxy [8, 26, 85, 91]) or inter-client
communication [10]. We ask: How can we build an oblivious
object store that handles high throughput by scaling in the
same way as a plaintext object store?

Removing the scalability bottleneck. In this work, we
propose Snoopy (scalable nodes for oblivious object repos-
itory), a high-throughput oblivious storage system that scales

1

https://doi.org/10.1145/3477132.3483562
https://doi.org/10.1145/3477132.3483562


similarly to a plaintext storage system. While our system is
secure for any workload, we design it for high-throughput
workloads. Specifically, we develop techniques for grouping
requests into equal-sized batches for each partition regard-
less of the underlying request distribution and with mini-
mal cover traffic. These techniques enable us to efficiently
partition and securely distribute every system component
without prohibitive coordination costs.
Like prior work, Snoopy leverages hardware enclaves for
both performance and security [3, 65, 86]. Hardware en-
claves makes it possible to (1) deploy the entire system in a
public cloud; (2) reduce network overheads, as private and
public state can be located on the same machine; and (3)
support multiple clients without creating a central point
of attack. This is in contrast with the traditional trusted
proxy model (Figure 1), which can be both a deployment
headache and a scalability concern. Hardware enclaves do
not entirely solve the problem of hiding access patterns for
oblivious storage: enclave side channels allow attackers to
exploit data-dependent memory accesses to extract enclave
secrets [12, 41, 55, 57, 67, 88, 98, 102]. To defend against these
attacks, we must ensure that all algorithms running inside
the enclave are oblivious, meaning that memory accesses are
data-independent. Existing work targets latency-sensitive
deployments [3, 65, 86] and is prohibitively expensive for
the concurrent, high-throughput deployment we target. We
instead leverage our oblivious partitioning scheme to design
new algorithms tailored to our setting.
We experimentally show that Snoopy scales to achieve high
throughput. The state-of-the-art oblivious storage system
Obladi [26] reaches a throughput of 6,716 reqs/sec with av-
erage latency under 80ms for two million 160-byte objects
and cannot scale beyond a proxy machine (32 cores) and
server machine (16 cores). In contrast, Snoopy uses 18 4-core
machines to scale to a throughput of 92K reqs/sec with av-
erage latency under 500ms for the same data size, achieving
a 13.7× improvement over Obladi. We report numbers with
18 machines due to cloud quota limits, not because Snoopy
stops scaling. We formally prove the security of the entire
Snoopy system, independent of the request load.

1.1 Summary of techniques
Snoopy is comprised of two types of entities: load balancers
and subORAMs (Figure 1). Load balancers assemble batches
of requests, and subORAMs, which store data partitions, pro-
cess the requests. In order to securely achieve horizontal scal-
ing, we must consider how to design both the load balancer
and subORAM to (1) leverage efficient oblivious algorithms
to defend against memory-based side-channel attacks, and
(2) be easy to partition without incurring coordination costs.
Challenge #1: Building an oblivious load balancer. To
protect the contents of the requests, our load balancer design
must guarantee that (1) the batch structure leaks no informa-
tion about the requests, and (2) the process of constructing
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Figure 1. Different oblivious storage system architectures: (a)
ORAM in a hardware enclave is bottlenecked by the single ma-
chine, (b) ORAM with a trusted proxy is bottlenecked by the proxy
machine, and (c) Snoopy can continue scaling as more subORAMs
and load balancers are added to the system.

these batches is oblivious and efficient. Furthermore, we need
to design our oblivious algorithm such that we can add load
balancers without incurring additional coordination costs.
Approach. We build an efficient, oblivious algorithm that
groups requests into batches without revealing the mapping
between requests and subORAMs.We size batches using only
public information, ensuring that the load balancer never
drops requests and the batch size does not leak information.
Our load balancer design enables us to run load balancers
independently and in parallel, allowing Snoopy to scale past
the capacity of a single load balancer (§4).
Challenge #2: Designing a high-throughput subORAM.
To ensure that Snoopy can achieve high throughput, we
need a subORAM design that efficiently processes large
batches of requests and defends against enclave side-channel
attacks. Existing ORAMs that make use of hardware en-
claves [3, 65, 86] only process requests sequentially and are
a poor fit for the high-throughput scenario we target.
Approach. Rather than building batching support into an
existing ORAM scheme, we design a new ORAM that only
supports batched accesses. We observe that in the case where
data is partitioned over many subORAMs, a single scan amor-
tized over a large batch of requests is concretely cheaper than
servicing the batch using ORAMs with polylogarithmic ac-
cess costs [3, 65, 86], particularly in the hardware enclave
setting. We leverage a specialized data structure to process
batches efficiently and obliviously in a single linear scan (§5).
Challenge #3: Choosing the optimal configuration. The
design of Snoopy makes it possible to scale the system by
adding both load balancers and subORAMs. An application
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developer needs to know how to configure the system to
meet certain performance targets while minimizing cost.
Approach. To solve this problem, we design a planner that,
given a minimum throughput, maximum average latency,
and data size, outputs a configuration minimizing cost (§6).
Limitations. Snoopy is designed specifically to overcome
ORAM’s scalability bottleneck to support high-throughput
workloads, as solutions already exist for low-throughput,
low-latencyworkloads [82, 93]. In the low-throughput regime,
although Snoopy is still secure, its latency will likely be
higher than that of non-batching systems like ConcurO-
RAM [14], TaoStore [85], or PrivateFS [101]. For large data
sizes and low request volume, a system like Shroud [59] will
leverage resources more efficiently. Snoopy can use a differ-
ent, latency-optimized subORAM with a shorter epoch time
if latency is a priority. We leave for future work the problem
of adaptively switching between solutions that are optimal
under different workloads.

2 Security and correctness guarantees

We consider a cloud attacker that can:

• control the entire cloud software stack outside the enclave
(including the operating system),
• view (encrypted) network traffic arriving at and within the
cloud (including traffic sent by clients andmessage timing),
• view or modify (encrypted) memory outside the enclaves
in the cloud, and
• observe access patterns between the enclaves and external
memory in the cloud.

We design Snoopy on top of an abstract enclave model where
the attacker controls the software stack outside the enclave
and can observe memory access patterns but cannot learn
the contents of the data inside the processor. Snoopy can be
used with any enclave implementation [9, 25, 56]; we chose
to implement Snoopy on Intel SGX as it is publicly available
on Microsoft Azure. Enclaves do not hide memory access pat-
terns, enabling a large class of side-channel attacks, including
but not limited to cache attacks [12, 41, 67, 88], branch pre-
diction [57], paging-based attacks [98, 102], and memory
bus snooping [55]. By using oblivious algorithms, Snoopy
defends against this class of attacks. Snoopy does not defend
against enclave integrity attacks such as rollback [73] and
transient execution attacks [19, 78, 87, 96, 97, 99, 100], which
we discuss in greater detail below.
We defend against memory access patterns to both data and

code by building oblivious algorithms on top of an oblivious
“compare-and-set” operator. While our source code defends
against access patterns to code, we do not ensure that the
final binary does, as other factors like compiler optimiza-
tions and cache replacement policies may leak information
(existing solutions may be employed here [38, 58]).

Timing attacks. A cloud attacker has access to three types
of timing information: (1) when client requests arrive, (2)
when inter-cloud processing messages are sent/received, and
(3) when client responses are sent. Snoopy allows the at-
tacker to learn (1). In theory, these arrival times can leak
data, and so we could hide when clients send requests and
how many they send by requiring clients to send a constant
number of requests at predefined time intervals [4]; we do
not take this approach because of the substantial overhead
and because, for some applications, clients may not always
be online. Snoopy ensures that (2) and (3) do not leak request
contents; the time to execute a batch depends entirely on
public information, as defined in §2.1.
Data integrity and protection against rollback attacks.
Snoopy guarantees the integrity of the stored objects in a
straightforward way: for memory within the enclave, we use
Intel SGX’s built-in integrity tree, and for memory outside
the enclave, we store a digest of each block inside the enclave.
We assume that the attacker cannot roll back the state of
the system [73]. We discuss how Snoopy can integrate with
existing rollback-attack solutions in §9.
Attacks out of scope. Webuild on an abstract enclavemodel
where the attacker’s power is limited to viewing or modify-
ing external memory and observing memory access patterns
(we formalize this as an ideal functionality in §B). Any at-
tack that breaks the abstract enclave model is out of scope
and should be addressed with techniques complementary
to Snoopy. For example, we do not defend against leakage
due to power consumption [20, 68, 94] or denial-of-service
attacks due to memory corruptions [39, 49]. We addition-
ally consider transient execution attacks [19, 78, 87, 96, 97,
99, 100] to be out of scope; in many cases, these have been
patched by the enclave vendor or the cloud provider. These
attacks break Snoopy’s assumptions (and hence guarantees)
as they allow the attacker to, in many cases, extract enclave
secrets. We note that, Snoopy’s design is not tied to Intel
SGX, and also applies to academic enclaves like MI6 [9],
Keystone [56], or Sanctum [25], which avoid many of the
drawbacks of Intel SGX.
We also do not defend against denial-of-service attacks; the
attacker may refuse queries or even delete the clients’ data.
Clients. For simplicity, in the rest of the paper, we describe
the case where all clients are honest. We make this simplifica-
tion to focus on protecting client requests from the server, a
technical challenge that motivates our techniques. However,
in practice, we might not want to trust every client with
read and write access to every object in the system. Adding
access-control lookups to our system is fairly straightfor-
ward and requires an oblivious lookup in an access-control
matrix to check a client’s privileges for a given object. We
can perform this check obliviously via a recursive lookup
in Snoopy (we describe how this works in §D). Supporting
access control in Snoopy ensures that compromised clients
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cannot read or write data that they do not have access to.
Furthermore, if compromised clients collude with the cloud,
the cloud does not learn anything beyond the public informa-
tion that it already learns (specified in §2.1) and the results
of read requests revealed by compromised clients.
Linearizability. Because we handle multiple simultaneous
requests, we must provide some ordering guarantee. Snoopy
provides linearizability [43]: if one operation happens after
another in real time, then the second will always see the
effects of the first (see §4.3 for how we achieve this). We
include a linearizability proof in §C.

2.1 Formalizing security

We formalize our system and prove its security in Appen-
dix B. We build our security definition on an enclave ideal
functionality (representing the abstract enclavemodel), which
provides an interface to load a program onto a network of en-
claves and then execute that program on an input. Execution
produces the program output, as well as a trace containing
the network communication and memory access patterns
generated as a result of execution (what the adversary has
access to in the abstract enclave model).
The Snoopy protocol allows the attacker to learn public
information such as the number of requests sent by each
client, request timing, data size (number of objects and object
size), and system configuration (number of load balancers
and subORAMs); this public information is standard in obliv-
ious storage. Snoopy protects private information, including
the data content and, for each request, the identity of the
requested object, the request type, and any read or write con-
tent. To prove security, we show how to simulate all accesses
based solely on public information (as is standard for ORAM
security [33]). Our construction is secure if an adversary
cannot distinguish whether it is interacting with enclaves
running the real Snoopy protocol (the “real” experiment) or
an ideal functionality that interacts with enclaves running
a simulator program that only has access to public infor-
mation (the “ideal” experiment) from the trace generated
by execution. We now informally define these experiments,
delegating the formal details to Figure 18 in the appendix.
Real and ideal experiments (informal). In the real exper-
iment, we load the protocol Π (either our Snoopy protocol or
our subORAM protocol, depending on what we are proving
security of) onto a network of enclaves and execute the ini-
tialization procedure (the adversary can view the resulting
trace). Then, the adversary can run the batch access protocol
specified by Π on any set of queries and view the trace. The
adversary repeats this process a polynomial number of times
before outputting a bit.
The ideal experiment proceeds in the same way as the real

experiment, except that, instead of interacting with enclaves
running Π, the adversary interacts with an ideal function-
ality that in turn interacts with the enclaves running the

simulator program. The adversary can view the traces gener-
ated by the simulator enclaves. The goal of the adversary is
to distinguish between these experiments. We describe both
experiments more formally in Figure 18.
Using these experiments, we present our security definition:
Definition 1. The oblivious storage scheme Π is secure if
for any non-uniform probabilistic polynomial-time (PPT)
adversary Adv, there exists a PPT Sim such that���Pr[RealOStoreΠ,Adv (_)=1

]
−Pr

[
IdealOStoreSim,Adv (_)=1

] ���≤negl(_)
where _ is the security parameter, the real and ideal experi-
ments are defined informally above and formally in Figure 18
(see appendix), and the randomness is taken over the random
bits used by the algorithms of Π, Sim, and Adv.
We prove security in a modular way, which enables future

systems to make standalone use of our subORAM design. We
note that our subORAM scheme is secure only if the batch re-
ceived contains unique requests (this property is guaranteed
by our load balancer). We describe these requirements for-
mally and prove security in Definition 2 in the appendix. We
prove the security of Snoopy using any subORAM scheme
that is secure under this modified definition.
Theorem 1. Given a two-tiered oblivious hash table [16],
an oblivious compare-and-set operator, and an oblivious com-
paction algorithm, the subORAM scheme described in §5 and
formally defined in Figure 19 (see appendix) is secure according
to Definition 2.
Theorem 2. Given a keyed cryptographic hash function, an
oblivious compare-and-set operator, an oblivious sorting algo-
rithm, an oblivious compaction algorithm, and an oblivious
storage scheme (secure according to Definition 2), Snoopy, as
described in §4 and formally defined in Figure 21 (see appendix),
is secure according to Definition 1.
All of the tools we use in the above theorems can be built
from standard cryptographic assumptions. We prove both
theorems in §B.

3 System overview
To motivate the design of our system, we begin by describing
several solutions that do not work for our purposes.
Attempt #1: Scalable but not secure. Sharding is a straight-
forward way to achieve horizontal scaling. Each server main-
tains a separate ORAM for its data shard, and the client
queries the appropriate server. This simple solution is inse-
cure: repeated accesses to the same shard leaks query infor-
mation. For example, if two clients query different servers,
the attacker learns that they requested different objects.
Attempt #2: Secure but not scalable. To fix the above
problem, we could remap an object to a different partition af-
ter it is accessed, similar to how single-server ORAMs remap
objects after accesses [82, 93]. A central proxy running on a
lightweight, trusted machine keeps a mapping of objects to
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Figure 2. Secure distribution of requests in Snoopy. ➊The load
balancer receives requests from clients. ➋At the end of the epoch,
the load balancer generates a batch of requests for each subORAM,
padding with dummy requests as necessary.

servers. The client sends its request to the proxy, which then
accesses the server currently storing that object and remaps
that object to a new server [8, 91]. While this solution is
secure, this single proxy is a scalability bottleneck. Every
request must use the most up-to-date mapping for security;
otherwise, requests might fail and re-trying them will leak
when the requested object was last accessed. Therefore, all
requests must be serialized at the proxy, and so the proxy’s
throughput limits the system’s throughput.
Our approach. We achieve the scalability of the first ap-
proach and the security of the second approach. To efficiently
scale, we exploit characteristics of the high-throughput regime
to develop new techniques that allow us to provide security
without remapping objects across partitions. These tech-
niques enable us to send equal-sized batches to each parti-
tion while both (1) hiding the mapping between requests and
partitions (for security), and (2) ensuring that requests are dis-
tributed somewhat equally across partitions (for scalability).

3.1 System architecture

Snoopy’s system architecture (Figure 2) consists of clients
(running on private machines) and, in the public cloud, load
balancers and subORAMs (running on hardware enclaves).
All communication is encrypted using an authenticated en-
cryption scheme with a nonce to prevent replay attacks. We
establish all communication channels using remote attesta-
tion so that clients are confident that they are interacting
with legitimate enclaves running Snoopy [5].
The role of the load balancer is to partition requests received

during the last epoch into equally sized batches while provid-
ing security and efficiency (§4). In order to horizontally scale
the load balancer, each load balancer must be able to operate
independently and without coordination. The role of the
subORAM is to manage a data partition, storing the current
version of the data and executing batches of requests from
the load balancers (§5). Snoopy can be deployed using any
oblivious storage scheme for hardware enclaves [3, 65, 86] as

a subORAM. However, our subORAM design is uniquely tai-
lored to our target workload and end-to-end system design.

3.2 Real-world applications

Snoopy is valuable for applications that need a high-throughput
object store for confidential data, including outsourced file
storage [3], cloud electronic health records, and Signal’s pri-
vate contact discovery [60]. Privacy-preserving cryptocur-
rency light clients can also benefit from Snoopy. These allow
lightweight clients to query full nodes for relevant transac-
tions [62]. Maintaining many ORAM replicas is not enough
to support high-throughput blockchains because each replica
needs to keep up with the system state. As blockchains con-
tinue to increase in the throughput [84, 90], oblivious storage
systems like Obladi [26] with a scalability bottleneck simply
cannot keep up.
Snoopy can also enable private queries to a transparency

log; for example, Alice could look up Bob’s public key in a key
transparency log [2, 63] without the server learning that she
wants to talk to Bob. A key transparency log should support
up to a billion users, making high throughput critical [35].

4 Oblivious load balancer
In this section, we detail the design of the load balancer, fo-
cusing on how batching can be used to hide the mapping
between requests and subORAMs at low cost (§4.1), design-
ing oblivious algorithms to efficiently generate batches while
protecting the contents of the requests (§4.2), and scaling
the load balancer across machines (§4.3).

4.1 Setting the batch size

To provide security, we need to ensure that constructing
batches leaks no information about the requests. Specifically,
we must guarantee that (1) the size of batches leaks no in-
formation, and (2) the process of constructing batches is
similarly oblivious. We focus on (1) now and discuss (2) in
§4.2. For security, we need to ensure that the batch size 𝐵
depends only on public information visible to the attacker:
namely, the number of requests 𝑅 and number of subORAMs
𝑆 , but not the contents of these requests. Therefore, we define
𝐵 as a function 𝐵= 𝑓 (𝑅,𝑆) that outputs an efficient yet secure
batch size for 𝑅 requests and 𝑆 subORAMs. Each subORAM
will receive 𝐵 requests. Because 𝑅 is not fixed across epochs
(requests can be bursty), 𝐵 can also vary across epochs.
In choosing how to define this function 𝑓 , we need to (1)
ensure that requests are not dropped, and (2) minimize the
overhead of dummy requests. Ensuring that requests are
not dropped is critical for security: if a request is dropped,
the client will retry the request, and an attacker who sees a
client participate in two consecutive epochs may infer that
a request was dropped, leaking information about request
contents. Minimizing the overhead of dummy requests is
important for scalability. A simple way to satisfy security
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would be to set 𝑓 (𝑅,𝑆) =𝑅; this ensures that even if all the
requests are for the same object, no request was potentially
dropped. However, this approach is not scalable because ev-
ery subORAM would need to process a request for every
client request. We refine this approach in two steps.
Deduplication to address skew. When assembling a batch
of requests, the load balancer can ensure that all requests in a
batch are for distinct objects by aggregating reads and writes
for the same object (for writes, we use a “last write wins” pol-
icy) [26]. Deduplication allows us to combat workload skew.
If the load balancer receives many requests for object A and
a single request for object B, the load balancer only needs
to send one request for object A and one request for object
B. Deduplication simplifies the problem statement; we now
need to distribute a batch of at most 𝑅 unique requests across
subORAMs. This reframing allows us to achieve security
with high probability for 𝑓 (𝑅,𝑆)<𝑅 if we distribute objects
randomly across subORAMs, as we now do not have to worry
about the case where all requests are for the same object.
Choosing a batch size. Given 𝑅 requests and 𝑆 subORAMs,
we need to find the batch size 𝐵 such that the probability that
any subORAM receives more than 𝐵 requests is negligible
in our security parameter _. Like many systems that shard
data, we use a hash function to distribute objects across
subORAMs, allowing us to recast the problem of choosing 𝐵
as a balls-into-bins problem [76]: we have 𝑅 balls (requests)
that we randomly toss into 𝑆 bins (subORAMs), and we must
find a bin size 𝐵 (batch size) such that the probability that a
bin overflows is negligible. We add balls (dummy requests) to
each of the 𝑆 bins such that each bin contains exactly 𝐵 balls.
Using the balls-into-bins model, we can start to understand
how we expect 𝑅 and 𝑆 to affect 𝐵. As we add more balls to
the system (𝑅 ↑), it becomes more likely for the balls to be
distributed evenly over every bin, and the ratio of dummy
balls to original balls decreases. Conversely, as we add more
bins to the system (𝑆 ↑), we need to proportionally add more
dummy balls. We validate this intuition in Figure 3 and Fig-
ure 4. Figure 3 shows that as the total number of requests
𝑅 increases, the percent overhead due to dummy requests

decreases. Thus larger batch sizes are preferable, as they
minimize the overhead introduced by dummy requests. Fig-
ure 4 illustrates how adding more subORAMs increases the
total request capacity of Snoopy, but at a slower rate than
a plaintext system. Adding subORAMs helps Snoopy scale
by breaking data into partitions, but adding subORAMs is
not free, as it increases the dummy overhead.
We prove that the following 𝑓 for setting batch size 𝐵 guar-
antees negligible overflow probability in §A:
Theorem 3. For any set of 𝑅 requests that are distinct and
randomly distributed, number of subORAMs 𝑆 , and security
parameter _, let ` = 𝑅/𝑆 , 𝛾 = −log(1/(𝑆 · 2_)), and𝑊0 (·) be
branch 0 of the Lambert𝑊 function [23]. Then for the follow-
ing function 𝑓 (𝑅,𝑆) that outputs a batch size, the probability
that a request is dropped is negligible in _:

𝑓 (𝑅,𝑆)=min(𝑅, ` ·exp[𝑊0
(
𝑒−1 (𝛾/`−1))+1]) .

Proof intuition. For a single subORAM 𝑠 , let𝑋1,...,𝑋𝑅 ∈ {0,1}
be independent random variables where 𝑋𝑖 represents re-
quest 𝑖 mapping to 𝑠 . Then, Pr[𝑋𝑖 = 1] = 1/𝑆 . Next, let the
random variable 𝑋 =

∑𝑅
𝑖=1𝑋𝑖 represent the total number of

requests that hashed to 𝑠 . We use a Chernoff bound to upper-
bound the probability that there are more than 𝑘 requests
to a single subORAM, Pr[𝑋 ≥ 𝑘]. In order to upper-bound
the probability of overflow for all subORAMs, we use the
union bound and solve for the smallest 𝑘 that results in an
upper bound on the probability of overflow negligible in _.
In order to solve for 𝑘 , we coerce the inequality into a form
that can be solved with the Lambert𝑊 function, which is
the inverse relation of 𝑓 (𝑤) =𝑤𝑒𝑤 , i.e.,𝑊 (𝑤𝑒𝑤) =𝑤 [23].
When 𝑓 (𝑅,𝑆) = 𝑅, the overflow probability is zero, and so
we can safely upper-bound 𝑓 (𝑅,𝑆) by 𝑅. We target the high-
throughput case where 𝑅 is large, in which case our bound
is less than 𝑅.

We now explain how Theorem 3 applies to Snoopy. For
security, it is important that an attacker cannot (except with
negligible probability) choose a set of requests that causes a
batch to overflow. Thus Snoopy needs to ensure that requests
chosen by the attacker are transformed to a set of requests
that are distinct and randomly distributed across subORAMs.
Snoopy ensures that requests are distinct through dedupli-
cation and that requests are randomly distributed by using
a keyed hash function where the attacker does not know
the key. Because the keyed hash function remains the same
across epochs, Snoopy must prevent the attacker from learn-
ing which request is assigned to which subORAM during
execution (otherwise, the attacker could use this informa-
tion to construct requests that will overflow a batch). Snoopy
does this by ensuring that each subORAM receives the same
number of requests and by obliviously assigning requests to
the correct subORAM batch (§4.2.2). Theorem 3 allows us to
choose a batch size that is less than 𝑅 in the high-throughput
setting (for scalability) while ensuring that the probability
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that an attacker can construct a batch that causes overflow is
cryptographically negligible. Thus Snoopy achieves security
for all workloads, including skewed ones.
The bound we derive is valuable in applications beyond
Snoopy where there are a large number of balls and it is
important that the overflow probability is very small for dif-
ferent numbers of balls and bins. Our bound is particularly
useful in the case where the overflow probability must be
negligible in the security parameter as opposed to an appli-
cation parameter (e.g. the number of bins) [7, 66, 76, 77].

4.2 Oblivious batch coordination

As with other components of the system, the load balancer
runs inside a hardware enclave, and so we must ensure that
its memory accesses remain independent of request content.
The load balancer runs two algorithms that must be obliv-
ious: generating batches of requests (§4.2.2), and matching
subORAM responses to client requests (§4.2.3).
Practically, designing oblivious algorithms requires ensur-
ing that the memory addresses accessed do not depend on
the data; often this means that the access pattern is fixed
and depends only on public information (alternatively, access
patterns might be randomized). The data contents remain en-
crypted and inaccessible to the attacker, and only the pattern
in which memory is accessed is visible. We build our algo-
rithms on top of an oblivious “compare-and-set” operator
that allows us to copy a value if a condition is true without
leaking if the copy happened or not.

4.2.1 Background: oblivious building blocks. We first
provide the necessary background for two oblivious building
blocks from existing work that we will use in our algorithms.
Oblivious sorting. An oblivious sort orders an array of 𝑛
objects without leaking information about the relative or-
dering of objects. We use bitonic sort, which runs in time
𝑂 (𝑛 log2𝑛) and is highly parallelizable [6]. Bitonic sort ac-
cesses the objects and performs compare-and-swaps in a
fixed, predefined order. Since its access pattern is indepen-
dent of the final order of the objects, bitonic sort is oblivious.
Oblivious compaction. Given an array of 𝑛 objects, each
of which is tagged with a bit 𝑏 ∈ {0,1}, oblivious compaction
removes all objects with bit𝑏=0without leaking information
about which objects were kept or removed (except for the
the total number of objects kept). We use Goodrich’s algo-
rithm, which runs in time 𝑂 (𝑛log𝑛) and is order-preserving,
meaning that the relative order of objects is preserved after
compaction [34]. Goodrich’s algorithm accesses array loca-
tions in a fixed order using a log𝑛-deep routing network that
shifts each element a fixed number of steps in every layer.

4.2.2 Generating batches of requests. Generating fixed-
size batches obliviously requires care. It is not enough to
simply pad batches with a variable number of dummy re-
quests, as this can leak the number of real requests in each
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Figure 5. Generating batches of requests at the load balancer.

batch. Instead, we must pad each batch with the right num-
ber of dummy requests without revealing the exact number of
dummy requests added to each batch. To solve this problem,
we obliviously generate batches in three steps, which we
show in Figure 5: ➊we first assign client requests to sub-
ORAMs according to their requested object; ➋we add the
maximum number of dummy requests to each subORAM;
➌we construct batches with those extra dummies; and ➍we
filter out unnecessary dummies.

First (➊), we scan through the list of client requests. For
each client request, we compute the subORAM ID by hash-
ing the object ID, and we store it with the client request.
Second (➋), we append the maximum number of dummy
requests for each subORAM, 𝐵= 𝑓 (𝑅,𝑆) to the end of the list.
These dummy requests all have a tag bit 𝑏=1. Third (➌), we
group real and dummy requests into batches by subORAM.
We do this by obliviously sorting the lists of requests, set-
ting the comparison function to order first by subORAM (to
group requests into subORAM batches), then by tag bit 𝑏
(to push the dummies to the end of the batches), and then
by object ID (to place duplicates next to each other). Finally
(➍), to choose which requests to keep and which to remove,
we iterate through the sorted request list again. We keep a
counter 𝑥 of the number of distinct requests seen so far for
the current subORAM. We securely update the counter by
performing an oblivious compare-and-set for each request,
ensuring that access patterns don’t reveal when the counter
is updated. If 𝑥 < 𝐵 and the request is not a duplicate (i.e.
it is not preceded by a request for the same object), we set
bit 𝑏=1 (otherwise 𝑏=0). To filter out unnecessary dummy
requests and duplicates, we obliviously compact by bit 𝑏,
leaving us with a 𝐵-sized batch for each subORAM.

The algorithm is oblivious because it only relies on lin-
ear scans and appends (both are data-independent) and our
oblivious building blocks. The runtime is dominated by the
cost of oblivious sorting and compaction.
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Figure 6.Mapping subORAM responses to client requests at the
load balancer.

4.2.3 Mapping responses to client requests. Once we
receive the batches of responses from the subORAMs, we
need to send replies to clients. This requiresmapping the data
from subORAM responses to the original requests, making
sure that we propagate data correctly to duplicate responses
and that we ignore responses to dummy requests. We ac-
complish this obliviously in four steps, which we show in
Figure 6: ➊we merge together the client requests and the
subORAM responses and then sort the list; ➋we sort the
merged list to group requests with responses; ➌we propa-
gate data from the responses to the original requests; and
➍we filter out the now unnecessary subORAM responses.
The load balancer takes as input two lists: a list of subORAM

responses and a list of client requests. First (➊), we merge the
two lists, tagging the subORAM responses with a bit𝑏=0 and
the client requests with 𝑏=1. Second (➋), we sort this com-
bined list by object ID and then, to break ties, by the tag bit 𝑏.
Breaking ties by the tag bit 𝑏 arranges the data so that we can
easily propagate data from subORAM responses to requests.
Third (➌), we iterate through the list, propagating data in
objects with the tag bit 𝑏=0 (the subORAM responses) to the
following object(s) with the tag bit 𝑏=1 (the client requests).
As we iterate through the list, we keep track of the last object
we have seen with𝑏=1, prev (i.e. the last subORAM response
we’ve scanned over). Then, for the current object curr, we
copy the contents of prev into the curr if 𝑏=0 for curr (it’s a
request). Any requests following a response must be for the
same object because every request has a corresponding re-
sponse and we sort by object ID. Note that dummy responses
will not have a corresponding client request. Finally (➍), we
need to filter down the list to include only the client requests.
We do this using oblivious compaction, removing objects
with the tag bit 𝑏 =0 (the subORAM responses). Note that,
in order to respond to a request, we need to map a client
request to the original network connection; we can do this
by keeping a pointer to the connection with the request data.
This procedure is oblivious because it relies only on obliv-
ious building objects as well as concatenating two lists and

a linear scan, both of which are data-independent. As in the
algorithm for generating batches, the runtime is dominated
by the cost of oblivious sorting and oblivious compaction.

4.3 Scaling the load balancer

Our load balancer design scales horizontally; it is both cor-
rect and secure to add load balancers without introducing
additional coordination costs. Clients randomly choose one
load balancer to contact, and then each load balancer batches
requests independently. This is a significant departure from
prior work where a centralized proxy receives all client
requests and must maintain dynamic state relevant to all
requests [8, 26, 85, 91]. SubORAMs execute load balancer
batches in a fixed order, and within a single load balancer, we
aggregate reads and writes using a “last-write-wins” policy.
Adding load balancers eliminates a potential bottleneck,

but is not entirely free. Because (1) load balancers do not co-
ordinate to deduplicate requests and (2) subORAMs assume
that a batch contains distinct requests, subORAMs cannot
combine batches from different load balancers. Our subO-
RAM must scan over all stored objects to process a single
batch (§5). As a result, if there are 𝐿 load balancers, each
subORAM must perform 𝐿 scans over the data every epoch.

5 Throughput-optimized subORAM

Many ORAMs target asymptotic complexity, often at the
expense of concrete cost. In contrast, recent work has ex-
plored how to leverage linear scans to build systems that
can achieve better performance for expected workloads than
their asymptotically more efficient counterparts [27, 29]. We
take a similar approach to design a high-throughput subO-
RAM optimized for hardware enclaves. We exploit the fact
that, due to Snoopy’s design, each subORAM stores a rela-
tively small data partition and receives a batch of distinct
requests. In this setting, using a single linear scan over the
data partition to process a batch is concretely efficient in
terms of amortized per-request cost.
We draw inspiration from Signal’s private contact discov-
ery protocol [60]. There, the client sends its contacts to an
enclave, and the enclave must determine which contacts are
Signal users without leaking the client’s contacts. Their solu-
tion employs an oblivious hash table. The core idea is that the
enclave performs some expensive computation to construct
a hash table such that the construction access patterns don’t
leak the mapping of contacts to buckets. Once this hash ta-
ble is constructed, the enclave can directly access the hash
bucket for a contact without the memory access pattern re-
vealingwhich contact was looked up. Note that obliviousness
only holds if (1) the enclave performs a lookup for each con-
tact at most once, and (2) the enclave scans the entire bucket
(to avoid revealing the location of the contact accessed in-
side the bucket). With this tool, private contact discovery is
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straightforward: the enclave constructs an oblivious hash ta-
ble for the client’s contacts and then scans over every Signal
user, looking up each Signal user in the contact hash table.
Signal’s setting is similar to ours: instead of a set of contacts,

we have a batch of distinct requests, and instead of needing
to find matches with the Signal users, we need to find the
stored objects corresponding to requests. However, Signal’s
approach has some serious shortcomings when applied to
our setting. First, their hash table construction takes 𝑂 (𝑛2)
time for𝑛 contacts. While this complexity is acceptable when
𝑛 is the size of a user’s contacts list (relatively small), it is pro-
hibitively expensive for batches with thousands of requests.
Second, they do not size their buckets to prevent overflow.
Overflows can leak information about bucket contents, and
attempting to recover causes further leakage [16, 54].
Choosing an oblivious hash table. We need to identify an
oblivious hash table that is efficient and secure in our setting.
A natural first attempt to solve the overflow problem is to
use the number of requests that hash to each bucket to set
the bucket size dynamically. This simple solution is insecure:
the attacker can infer the probability that an object was re-
quested based on the size of the bucket that object hashes to.
Instead, we need to set the bucket size so that the overflow

probability is cryptographically negligible. This provides the
security property we want, and is exactly the problem that
we solved in the load balancer, where we separated requests
into “bins” such that the probability that any “bin” overflows
is negligible. Using our load balancer approach also reduces
construction cost from 𝑂 (𝑛2) to 𝑂 (𝑛polylog𝑛). However,
while this solutionworkswell at the load balancer, it becomes
expensive when applied to the subORAM. Recall that to
perform an oblivious lookup, we must scan the entire bucket
that might contain a request, and so we want buckets to be
as small as possible. Unfortunately, decreasing the bucket
size results in substantial dummy overhead. This overhead
was the reason for making our batches as large as possible
at the load balancer (Figure 3). In our subORAM, we want to
keep the dummy overhead low and have a small bucket size.
To achieve both these properties, we identify oblivious two-

tier hash tables as a particularlywell-suited to our setting [16].
Chan et al. show how to size buckets such that overflow re-
quests are placed into a second hash table, allowing us to
have both low dummy overhead and a small bucket size: for
batches of 4,096 requests, buckets in a two-tier hash table are
∼10× smaller than their single-tier counterparts. Construc-
tion now requires two oblivious sorts, one for each tier, but is
still much faster than Signal’s approach, both asymptotically
and concretely for our expected batch sizes. We refer the
reader to Chan et al. for the details of oblivious construction,
oblivious lookups, and the security analysis [16].
Processing a batch of requests. We now describe how to
leverage an oblivious two-tier hash table to obliviously pro-
cess a batch of requests (Figure 7). First (➊), when the batch
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Figure 7. Processing a batch of requests at a subORAM.

of requests arrives, we construct the oblivious two-tier hash
table as described above. To avoid leaking the relationship
between requests across batches, for every batch we sample
a new key (unknown to the attacker) for the keyed hash
function assigning objects to buckets. Second (➋), we iterate
through the stored objects. For each object obj, we perform
an oblivious hash table lookup. A lookup requires hashing
obj.id in order to find the corresponding bucket in both hash
tables and then scanning the entire bucket; this scan is neces-
sary to hide the specific object being looked up. For every re-
quest req scanned, we perform an oblivious compare-and-set
to update either the req in the hash table or the obj in subO-
RAM storage depending on (1) whether req.idmatches obj.id,
and (2) whether req is a read or write. By conditioning the
oblivious compare-and-set on the request type and perform-
ing it twice (once on the contents of req and once on the con-
tents of obj), we hide whether the request is a read or a write.
Finally, we scan through every hash table bucket, marking
real requests with tag bit 𝑏 = 1 and dummies with 𝑏 = 0.
We then use oblivious compaction to filter out the dummies,
leaving us with real entries to send back to the load balancer.

6 Planner
Our Snoopy planner takes as input a data size 𝐷 , minimum
throughput 𝑋Sys, maximum latency 𝐿Sys, and outputs a con-
figuration (number of load balancers and subORAMs) that
minimizes system cost. As the search space is large, we rely
on heuristics and make simplifying assumptions to approx-
imate the optimal configuration. We derive three equations
capturing the relationship between our core system param-
eters: the epoch length 𝑇 , number of objects 𝑁 , number of
subORAMs 𝑆 , and number of load balancers 𝐵.
To estimate throughput for some epoch time𝑇 , we observe
that, on average, we must be able to process all requests
received during the epoch in time ≤𝑇 (otherwise, the set of
outstanding requests continues growing). We can pipeline
the subORAM and load balancer processing such that the
upper bound on the requests we can process per epoch is
determined by either the load balancer or subORAM pro-
cessing time, depending on which is slower. Adding load
balancers decreases the work done at each load balancer,
but each subORAM must process a batch of requests from
every load balancer. Let 𝐿LB (𝑅,𝑆) be the time it takes a load
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balancer to process 𝑅 requests in a system with 𝑆 subORAMs,
and let 𝐿𝑆 (𝑅,𝑆,𝑁 ) be the time it takes a subORAM to process
a batch of 𝑅 requests with 𝑁 stored objects. We then derive:

𝑇 ≥max[𝐿LB (𝑋Sys ·𝑇 /𝐵,𝑆), 𝐵 ·𝐿𝑆 (𝑓 (𝑋Sys ·𝑇 /𝐵,𝑆),𝑁 )] (1)

Requests will arrive at different times and have to wait un-
til the end of the current epoch to be serviced, and so on
average, if the timing of requests is uniformly distributed,
requests will wait on average 𝑇 /2 time to be serviced. The
time to process a batch is upper-bounded by 𝑇 at both the
subORAM and the load balancer, and so:

𝐿Sys ≤ 5𝑇 /2 (2)

Let 𝐶𝐿𝐵 be the cost of a load balancer and 𝐶𝑆 be the cost of
a subORAM. We then compute the system cost 𝐶Sys:

𝐶Sys (𝐵,𝑆)=𝐵 ·𝐶𝐿𝐵+𝑆 ·𝐶𝑆 (3)

Our planner uses these equations and experimental data
to approximate the cheapest configuration meeting perfor-
mance requirements. While our planner is useful for select-
ing a configuration, it does not provide strong performance
guarantees, as ourmodel makes simplifying assumptions and
ignores subtleties that could affect performance (e.g. our sim-
ple model assumes that requests are uniformly distributed).
Our planner is meant to be a starting point for finding a con-
figuration. Our design could be extended to provide different
functionality; for example, given a throughput, data size, and
cost, output a configuration minimizing latency.

7 Implementation

We implemented Snoopy in ∼7,000 lines of C++ using the
OpenEnclave framework v0.13 [70] and Intel SGX v2.13.
We use gRPC v1.35 for communication and OpenSSL for
cryptographic operations. Our bitonic sort [6] and oblivious
compaction [34] implementations set the size of oblivious
memory to the register size. We use Intel’s AVX-512 SIMD
instructions for oblivious compare-and-swaps and compare-
and-sets. Our implementation is open-source [1].

Reducing enclave paging overhead. The size of the pro-
tected enclave memory (EPC) is limited and enclave memory
pages that do not fit must be paged in when accessed, which
imposes high overheads [71]. The data at a subORAM often
does not fit inside the EPC, so to reduce the latency to page in
from untrusted memory, we rely on a shared buffer between
the enclave and the host. A host loader thread fills the buffer
with the next objects that the linear scan will read. This
eliminates the need to exit and re-enter the enclave to fetch
data, dramatically reducing linear scan time. The enclave
encrypts objects (for confidentiality) and stores digests of
the contents inside the enclave (for integrity). This approach
has been explored in prior enclave systems [74, 75].
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Table 8. Comparison of baselines based on security guarantees
(oblivious), setup (no trusted proxy), and performance properties
(high throughput and throughput scales).

8 Evaluation
To quantify how Snoopy overcomes the scalability bottleneck
in oblivious storage, we ask:
1. How does Snoopy’s throughput scale with more compute,

and how does it compare to existing systems? (§8.2)
2. How does adding compute resources help Snoopy reduce

latency and scale to larger data sizes? (§8.3)
3. How do Snoopy’s individual components perform? (§8.4)
4. Given performance and monetary constraints, what is the

optimal way to allocate resources in Snoopy? (§8.5)
Experiment Setup. We run Snoopy on Microsoft Azure,
which provides support for Intel SGX hardware enclaves
in the DCsv2 series. For the load balancers and subORAMs,
we use DC4s_v2 instances with 4-core Intel Xeon E-2288G
processors with Intel SGX support and 16GB of memory.
For clients, we use D16d_v4 instances with 16-core Intel
Xeon Platinum 8272CL processors and 64GB of memory. We
choose these instances for their comparatively high network
bandwidth. We evaluate our baselines Redis [81] on D4d_v4
instances, Obladi [26] on D32d_v4 for the proxy and D16d_v4
for the storage server, and Oblix on the same DC4s_v2 in-
stances as our subORAMs. For benchmarking, we use a uni-
form request distribution. This choice is only relevant for our
Redis baseline; the oblivious security guarantees of Snoopy
and other oblivious storage systems ensure that the request
distribution does not impact their performance. Unless oth-
erwise specified, we set the object size to 160 bytes (same as
Oblix [65]).

8.1 Baselines

We compare Snoopy to three state-of-the-art baselines: Ob-
ladi [26] is a batched, high-throughput oblivious storage
system, Oblix [65] efficiently leverages enclaves for oblivi-
ous storage, and Redis [81] is a widely used plaintext key-
value store. Each baseline provides a different set of security
guarantees and performance properties (Table 8).
Obladi. Obladi [26] uses batching and parallelizes RingO-
RAM [82] to achieve high throughput. While Obladi also
uses batching to improve throughput, its security model
is different, as it uses a single trusted proxy rather than a
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hardware enclave. The trusted proxy model has two primary
drawbacks: (1) the trusted proxy cannot be deployed in the
untrusted cloud (desirable for convenience and scalability),
and (2) the proxy is a central point of attack in the system
(an attacker that compromises the proxy learns the queries
of every user in the system). Practically, using a trusted
proxy rather than a hardware enclave means the proxy does
not have to use oblivious algorithms. Designing an oblivi-
ous algorithm for Obladi’s proxy is not straightforward and
would likely introduce significant overhead. Further, Obladi’s
trusted proxy is a compute bottleneck that cannot be hori-
zontally scaled securely without new techniques, and so we
only measure Obladi with two machines (proxy and storage
server). We configure Obladi with a batch size of 500.
Oblix. Oblix [65] uses hardware enclaves and provides se-
curity guarantees comparable to ours. However, Oblix op-
timizes for latency rather than throughput; requests are se-
quential, and, unlike Obladi, Oblix does not employ batching
or parallelism. Like Obladi, Oblix cannot securely scale across
machines. We measure performance using Oblix’s DORAM
implementation and simulate the overhead of recursively
storing the position map (as in §VI.A of [65]).
Redis. To measure the overhead of security (obliviousness),
we compare Snoopy to an insecure baseline Redis [81], a pop-
ular unencrypted key-value store. In Redis, the server can
directly see access patterns and data contents.We benchmark
a Redis cluster using its own memtier benchmark tool [64],
enabling client pipelining to trade latency for throughput.We
expect it to achieve a much higher throughput than Snoopy.

8.2 Throughput scaling

Figure 9a shows that adding more machines to Snoopy im-
proves throughput. We measure throughput where the aver-
age latency is less than 300ms, 500ms, and 1s. We start with
4 machines (3 subORAMs and 1 load balancer) and scale to
18 machines (13 subORAMs and 5 load balancers for 1s la-
tency; 15 subORAMs and 3 load balancers for 500ms/300ms
latency). For 2M objects, Snoopy uses 18 machines to pro-
cess 68K reqs/sec with 300ms latency, 92K reqs/sec with
500ms latency, and 130K reqs/sec with 1s latency. Each ad-
ditional machine improves throughput by 8.6K reqs/sec on
average for 1s latency. Relaxing the latency requirement
improves throughput because we can group requests into
larger batches, reducing the overhead of dummy requests.
We generate Figure 9a bymeasuring throughput with differ-

ent system configurations and plotting the highest through-
put configuration for each number of machines. We start
with 4 machines rather than 2 because we need to partition
the 2M objects to meet our 300ms latency requirement due to
the subORAM linear scan (recall Equation (2) would require
a subORAM to process a batch in ≤ 120ms). Both the load
balancer and subORAM are memory-bound, as the EPC size
is limited and enclave paging costs are high (§7).

Snoopy achieves higher throughput thanOblix (1,153 reqs/sec)
and Obladi (6,716 reqs/sec) as we increase the number of ma-
chines. For 300ms, Snoopy outperforms Oblix with ≥5 ma-
chines and Obladi with ≥6 machines, and for 500ms and 1s,
Snoopy outperforms Oblix and Obladi for all configurations.
Oblix and Obladi beat Snoopy with a small number of ma-
chines for low latency requirements because our subORAM
performs a linear scan over subORAM data whereas Oblix
and Obladi only incur polylogarithmic access costs, allowing
them to handle larger data sizes on a single machine. Snoopy
can scale to larger data sizes by adding more machines (§8.3).
Comparison to Redis. To show the overhead of oblivious-
ness, we also measure the throughput of Redis for 2M 160-
byte objects with an increasing cluster size. For 15 machines,
Redis achieves a throughput of 4.2M reqs/sec, 39.1× higher
than Snoopy when configured with 1s latency. Because we
pipeline Redis aggressively in order to maximize throughput,
the mean Redis latency is <800ms.
Application: key transparency. Figure 9b shows through-
put for parameter settings that support key transparency
(KT) [2, 63] for 5 million users. Due to the security guaran-
tees of oblivious storage, an application’s performance does
not depend on its workload (i.e. request distribution), but
only on the parameter settings. In KT, to look up Bob’s key,
Alice must retrieve (1) Bob’s key, (2) the signed root of the
transparency log, and (3) a proof that Bob’s key is included
in the transparency log (relative to the signed root) [63]. This
inclusion proof is simply a Merkle proof. Thus, for 𝑛 users,
Alice must make log2𝑛+1 ORAM accesses (Alice can request
the signed root directly). Figure 9b shows that by adding
machines, Snoopy scales to support high throughput for KT.
At 18 machines (15 subORAMs and 3 load balancers), Snoopy
can process 1.1K reqs/sec with 300ms latency, 3.2K reqs/sec
with 500ms latency, and 6.1K reqs/sec with 1s latency. Note
that the throughput in Figure 9b is much lower than Figure 9a
because each KT operation requires 24 ORAM accesses.
Oblix as a subORAM. In Figure 10, we run Oblix [65] as a
subORAM instead of Snoopy’s throughput-optimized sub-
ORAM (§5). Snoopy’s load balancer design enables us to se-
curely scale Oblix beyond a single machine, achieving 15.6×
higher throughput with Snoopy-Oblix for 17 machines with
a max latency of 500ms (18K reqs/sec) than vanilla, single-
machine Oblix (1.1K reqs/sec). The spike in throughput be-
tween 8 and 9 machines is due to sharding the data such
that two instead of three layers of recursive lookups are re-
quired for every ORAM access. Snoopy-Oblix’s performance
also illustrates the value of our subORAM design; using
our throughput-optimized subORAM (Figure 9a) improves
throughput by 4.85× with 17 machines and 500ms latency.

8.3 Scaling for latency and data size

While Snoopy is designed specifically for throughput scaling
(§8.2), adding machines to Snoopy can have other benefits if
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Figure 9. Snoopy achieves higher throughput with more machines. Boxed points denote
when a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely
scale past 1 and 2 machines, respectively.
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Figure 10. Throughput of Snoopy using
Oblix [65] as a subORAM (2M objects,
160B block size). We measure throughput with
different maximum average latencies.
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Figure 11. (a) Adding more subORAMs allows for increasing the
data size while keeping the average response time under 160ms
(RTT from US to Europe). (b) Adding more subORAMs reduces
latency. Snoopy is running 1 load balancer and storing 2M objects.

the load remains constant. We show how scaling can be used
to both reduce latency and tolerate larger data sizes under
constant load in Figure 11. Figure 11a illustrates how adding
more subORAMs enables us to increase the number of ob-
jects Snoopy can store while keeping average response time
under 160ms (the round-trip time from the US to Europe).
The number of subORAMs required scales linearly with the
data size because of the linear scan every epoch. Adding a
subORAM allows us to store on average 191K more objects,
and with 15 subORAMs, we can store 2.8M objects.

Figure 11b shows how adding subORAMs reduces latency
when data size and load are fixed: for 2M objects, the mean
latency is 847ms with 1 subORAM and 112ms with 15 subO-
RAMs. Adding subORAMs parallelizes the linear scan across
more machines, but has diminishing returns on latency be-
cause the dummy request overhead also increases when we
add subORAMs (Figure 3). As expected, Oblix achieves a sub-
stantially lower latency (1.1ms) because it uses a tree-based
ORAM and processes requests sequentially. Obladi achieves
a latency of 79ms with batch size 500.
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Figure 12. Breakdown of time to process one batch for different
data sizes (one load balancer and one subORAM).

8.4 Microbenchmarks
Breakdown of batch processing time. Figure 12 illustrates
how time is spent processing a batch of requests as batch
size increases. As batch size increases, the load balancer time
also increases, as the load balancer must obliviously generate
batches. The subORAM time is largely dependent on the data
size, as the processing time is dominated by the linear scan
over the data. The subORAM batch processing time jumps
between 215 and 220 objects due to the cost of enclave paging.
Sorting parallelism. In Figure 13a, we show how paralleliz-
ing bitonic sort across threads reduces latency, especially for
larger data sizes. For smaller data sizes, the coordination over-
head actually makes it cheaper to use a single thread, and so
we adaptively switch between a single-threaded and multi-
threaded sort depending on data size. Parallelizing bitonic
sort improves load balancer and subORAM performance.
SubORAM Parallelism. Similarly, in Figure 13b, we show
how additional cores can be used to reduce subORAM batch
processing time. We rely on a host thread to buffer in the
encrypted data in the linear scan over the all objects in the
subORAM (§7), and we can use the remaining cores to par-
allelize both the hash table construction and linear scan.

8.5 Planner
In Figure 14, we use our planner to find the optimal resource
allocation for different performance requirements. Figure 14a
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Figure 13. (a) Parallelizing bitonic sort across multiple threads.
(b) Parallelizing batch processing at the subORAM across multiple
enclave threads (batch size 4K requests).
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Figure 14. Optimal system configuration as throughput require-
ments increase for different data sizes (max latency 1s). Larger dot
sizes represent higher throughput requirements. We show a subset
of configurations from our planner in order to illustrate the overall
trend of how adding machines best improves throughput.

shows the optimal number of subORAMs and load balancers
to handle an increasing request load for different data sizes
with 1s average latency. To support higher throughput lev-
els, deployments with larger data sizes benefit from a higher
ratio of subORAMs to load balancers, as partitioning across
subORAMs parallelizes the linear scan over stored objects.
In Figure 14b, we show how increasing throughput require-
ments affects system cost for different data sizes. Increasing
data increases system cost: for ∼$4K/month, we can support
51.6K reqs/sec for 1M objects and 122.9K reqs/sec for 10K
objects. To compute these configurations, the planner takes
as input microbenchmarks for different batch sizes and data
sizes. Because we cannot benchmark every possible batch
and data size, we use the microbenchmarks for the closest pa-
rameter settings. Our planner’s estimates could be sharpened
further by running microbenchmarks at a finer granularity.

9 Discussion

Fault tolerance and rollback protection. Data loss in Snoopy
can arise through node crashes and malicious rollback at-
tacks. Many modern enclaves are susceptible to rollback at-
tacks where, after shutdown, the attacker replaces the latest

sealed data with an older version without the enclave detect-
ing this change [73]. Prior work has explored how to defend
against such attacks [11, 61]. Fault tolerance and rollback
prevention are not the focus of this paper, and so we only
briefly describe how Snoopy could be extended to defend
against data loss. All techniques are standard. Load balancers
are stateless; we thus exclusively consider subORAMs. We
propose to use a quorum replication scheme to replicate
data to 𝑓 +𝑟 +1 nodes where 𝑓 is the maximum number of
nodes that can fail by crashing and 𝑟 the maximum number
of nodes that can be maliciously rolled back. Systems like
ROTE [61] or SGX’s monotonic counter provide a trusted
counter abstraction that can be used to detect which of the
received replies corresponds to the most recent epoch. The
performance overhead of rollback protection would depend
on the trusted counter mechanism employed, but Snoopy
only invokes the trusted counter once per epoch.
Next-generation SGX enclaves. While current SGX enclaves
can only support a maximum EPC size of 256MB, upcoming
third-generation SGX enclaves can support EPC sizes up
to 1TB [46]. This new enclave would not affect Snoopy’s
core design, but could improve performance by reducing the
time for the per-epoch linear scan in the subORAM. With
improved subORAM performance, Snoopy might need fewer
subORAMs for the same amount of data, affecting the con-
figurations produced by the planner (§8.5).
Private InformationRetrieval (PIR). Snoopy’s techniques
can also be applied to the problem of private information
retrieval (PIR) [21, 22]. A PIR protocol allows a client to re-
trieve an object from a storage server without the server
learning the object retrieved. One fundamental limitation of
PIR is that, if the object store is stored in its original form,
the server must scan the entire object store for each request.
Snoopy’s techniques can help overcome this limitation. We

can replace the subORAMs with PIR servers, each of which
stores a shard of the data. Our load balancer design then
makes it possible to obliviously route requests to the PIR
server holding the correct shard of the data. “Batch” PIR
schemes that allow a client to fetch many objects at roughly
the server-side cost of fetching a single object are well-suited
tor our setting, as the load balancer is already aggregating
batches of requests [42, 47]. Existing systems develop rele-
vant batching [4, 40] and preprocessing [51] techniques.

10 Related work
We summarize relevant existing work, focusing on (1) obliv-
ious algorithms designed for hardware enclaves, (2) ORAM
parallelism, (3) distributing an ORAM across machines, and
(4) balls-into-bins bounds for maximum load.
ORAMswith secure hardware. Existing research on obliv-
ious computation using hardware enclave primarily targets
latency. Oblix [65], ZeroTrace [86], Obliviate [3], Pyramid
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ORAM [24], and POSUP [45] do not support concurrency.
Snoopy, in contrast, optimizes for throughput and leverages
batching for security and scalability. ObliDB [30] supports
SQL queries by integrating PathORAM with hardware en-
claves, but uses an oblivious memory pool unavailable in In-
tel SGX. GhostRider [58] and Tiny ORAM [32] use FPGA pro-
totypes designed specifically for ORAM. While no general-
purpose, enclave-based ORAM supports request parallelism,
MOSE [44] and Shroud [59] leverage data parallelism to
improve the latency of a single request on large datasets.
MOSE runs CircuitORAM [17] inside a hardware enclave
and distributes the work for a single request across multiple
cores. Shroud instead parallelizes Binary Tree ORAM across
many secure co-processors by accessing different layers of
the ORAM tree in parallel. Shroud uses data parallelism to
optimize for latency and data size; throughput scaling is still
limited because requests are processed sequentially.
Supporting ORAM parallelism. A rich line of work ex-
plores executingmultiple client requests in parallel at a single
ORAM server. Each requires some centralized component(s)
that eventually bottlenecks scalability. PrivateFS [101] and
ConcurORAM [14] coordinate concurrent requests to shared
data using an encrypted query log on top of a hierarchical
ORAM or a tree-based ORAM, respectively. This query log
quickly becomes a serialization bottleneck. TaoStore [85]
and Obladi [26] similarly rely on a trusted proxy to coordi-
nate accesses to PathORAM and RingORAM, respectively.
Taostore processes requests immediately, maintaining a local
subtree to securely handle requests with overlapping paths.
Obladi instead processes requests in batches, amortizing the
cost of reading/writing blocks over multiple requests. Batch-
ing also removes any potential timing side-channels; while
TaoStore has to time client responses carefully, Obladi can
respond to all client requests at once, just as in Snoopy.
PRO-ORAM [95], a read-only ORAM running inside an

enclave, parallelizes the shuffling of batches of
√
𝑁 requests

across cores, offering competitive performance for readwork-
loads. Snoopy, in contrast, supports both reads and writes.
A separate, more theoretical line of work considers the

problem of Oblivious Parallel RAMs (OPRAMs), designed to
capture parallelism in modern CPUs. Initiated by Boyle et
al. [10], OPRAMs have been explored in subsequent work
[15–18] and expanded to other models of parallelism [79].
Scaling out ORAMs. Several ORAMs support distributing
compute and/or storage across multiple servers. Oblivis-
tore [91] distributes partitions of SSS-ORAM [92] across
machines and leverages a load balancer to coordinate ac-
cesses to these partitions. This load balancer, however, does
not scale and becomes a central point of serialization. CU-
RIOUS [8] is similar, but uses a simpler design that supports
different subORAMs (e.g. PathORAM). CURIOUS distributes
storage but not compute; a single proxy maintains the map-
ping of blocks between subORAMs and runs the subORAM

clients, which bottlenecks scalability. In contrast, Snoopy
distributes both compute and storage and can scale in the
number of subORAMs and load-balancers. Moreover, Snoopy
remains secure when an attacker can see client response tim-
ing, unlike Oblivistore or CURIOUS [85].
Pancake [36] leverages a trusted proxy to transform a set of

plaintext accesses to a uniformly distributed set of encrypted
accesses that can be forwarded directly to an encrypted,
non-oblivious storage server. While this approach achieves
high throughput, the proxy remains a bottleneck as it must
maintain dynamic state about the request distribution.
Balls-into-bins analysis. Prior work derives bounds for
the maximum number of balls in a bin that hold with varying
definitions of high probability, but are poorly suited to our
setting because they are either inefficient to evaluate or do
not have a cryptographically negligible overflow probability
under realistic system parameters [7, 66, 76, 77]. Berenbrink
et al. [7] assume a sufficiently large number of bins to derive
an overflow probability 𝑛−𝑐 for 𝑛 bins and some constant 𝑐
(Onodera and Shibuya [69] apply this bound in the ORAM
setting). Raab and Steger [77] use the first and second mo-
ment method to derive a bound where overflow probabil-
ity depends on bucket load. Ramakrishna’s [80] bound can
be numerically evaluated but is limited by the accuracy of
floating-point arithmetic, and we were unable to compute
bounds with a negligible overflow probability for _ ≥ 44.
Reviriego et al. [83] provide an alternate formulation that
can be evaluated by a symbolic computation tool, but we
were unable to efficiently evaluate it with SymPy.

11 Conclusion

Snoopy is a high-throughput oblivious storage system that
scales like a plaintext storage system. Through techniques
that enable every system component to be distributed and
parallelized while maintaining security, Snoopy overcomes
the scalability bottleneck present in prior work. With 18
machines, Snoopy can scale to a throughput of 92K reqs/sec
with average latency under 500ms for 2M 160-byte objects,
achieving a 13.7× improvement over Obladi [26].
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A Parameter analysis
Theorem 3. For any set of 𝑅 requests that are distinct and randomly distributed, number of subORAMs 𝑆 , and security parameter
_, let `=𝑅/𝑆 , 𝛾 =−log(1/(𝑆 ·2_)), and𝑊0 (·) be branch 0 of the Lambert𝑊 function [23]. Then for the following function 𝑓 (𝑅,𝑆)
that outputs a batch size, the probability that a request is dropped is negligible in _:

𝑓 (𝑅,𝑆)=min(𝑅, ` ·exp[𝑊0
(
𝑒−1 (𝛾/`−1))+1]) .

Proof. Let 𝑋1,𝑋2,...,𝑋𝑅 be independent 0/1 random variables that represent request 𝑖 hashing to a specific subORAM where
Pr[𝑋𝑖 =1]=1/𝑆 . Then,𝑋 =

∑𝑅
𝑖=1𝑋𝑖 is a random variable representing the total amount of requests hashing to a specific subORAM.

We can apply the Chernoff bound here. Let `=E[𝑋 ], which is
∑𝑅

𝑖=11/𝑆 =𝑅/𝑆 . Then,

Pr[𝑋 ≥ (1+𝛿)`] ≤
(

𝑒𝛿

(𝛿+1)𝛿+1
)`

The variable 𝑋 represents the total number of requests mapping to subORAM 𝑆 , but we want to upper bound the number
of requests received at any subORAM. We can define a bad event overflow that occurs when the number of requests received
at any subORAM exceeds our upper bound. We can compute the probability of this bad event by taking a union bound over
all 𝑆 subORAMs:

Pr[overflow] ≤
𝑆∑
𝑗=1

Pr[𝑋 ≥ (1+𝛿)`]=𝑆 ·Pr[𝑋 ≥ (1+𝛿)`]

In order to ensure that we do not drop a request except with negligible probability, we want Pr[overflow] ≤ 1/2_ , which
means we need to find some 𝛿 such that:

Pr[𝑋 ≥ (1+𝛿)`] ≤
(

𝑒𝛿

(𝛿+1)𝛿+1
)`
≤ 1
𝑆 ·2_

From this point, we can solve for 𝛿 to find the upper bound:

−log
((

𝑒𝛿

(𝛿+1)𝛿+1
)` )
≥−log

(
1

𝑆 ·2_
)
=𝛾

−` (log(𝑒𝛿 )−(𝛿+1)log(𝛿+1)) ≥𝛾
−𝛿+(𝛿+1)log(𝛿+1) ≥ 𝛾

`

(−𝛿−1)+(𝛿+1)log(𝛿+1) ≥ 𝛾
`
−1

(𝛿+1) (log(𝛿+1)−1) ≥ 𝛾
`
−1

𝑒 log(𝛿+1) (log(𝛿+1)−1) ≥ 𝛾
`
−1

𝑒 log(𝛿+1)−1 (log(𝛿+1)−1) ≥𝑒−1
(
𝛾

`
−1

)
log(𝛿+1)−1≥𝑊0

(
𝑒−1

(
𝛾

`
−1

))
𝛿 ≥𝑒𝑊0

(
𝑒−1

(
𝛾

`
−1

))
+1−1

where𝑊0 (·) is branch 0 of the Lambert𝑊 function [23].
For small 𝑅, the above bound is greater than 𝑅. For 𝑓 (𝑅,𝑆) = 𝑅, the overflow probability is zero, and so we can safely
upper-bound 𝑓 by 𝑅.

□
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B Security analysis
We adopt the standard security definition for ORAM [92, 93]. Intuitively, this security definition requires that the server learns
nothing about the access pattern. In the enclave setting, this means that the enclave’s memory access pattern shouldn’t reveal
any information about the requests or data. Because Snoopy uses multiple enclaves, the communication pattern between
enclaves also shouldn’t reveal any information. We refer to the information that the adversary learns (the memory access
patterns and communication patterns) as the “trace”. At a high level, we must prove security by showing that the adversary
cannot distinguish between a real experiment, where enclaves are running the Snoopy protocol on real requests and data,
and an ideal experiment, where enclaves are running a simulator program that only takes as input public information. We
define these experiments in detail below.

B.1 Enclave definition

We model a directed acyclic graph (DAG) of enclaves as the ideal functionality FEnc with the following interface:
• EP←Load(P): The load function takes a program P and produces an enclave DAG EP loaded with P (the program specifies
the individual programs running on each enclave and the paths of communication). This is implemented using a remote
attestation procedure in Intel SGX.
• (out, 𝛾)←Execute(EP,in): The execute function takes an enclave DAG loaded with P, feeds in to the enclave DAG and
produces the resulting output out as well as a trace of memory accesses and communication patterns between enclaves 𝛾 .
Execute supports programs that communicate across enclaves and access individual enclave memories and simply outputs
the trace of executing such programs.

We treat the enclave DAG as a black box that realizes the above ideal functionalities. We assume that the server cannot roll
back the enclaves during execution and that Execute provides privacy and integrity for the enclave’s internal memory and
communication between enclaves.
Our ideal functionality interface is loosely based on the interface in ZeroTrace [86]. However, ZeroTrace only considers a

single enclave whereas we consider a DAG of enclaves (similar to Opaque [103]). Also, ZeroTrace outputs proofs of correctness,
whereas we use an ideal functionality where the enclave always loads and executes correctly.

B.2 Our model

We only model the case where there is a single client controlled by the adversary. We informally discuss how to extend our
security guarantees to the multi-user setting in Appendix B.7.
Our ideal enclave DAG functionality hides the details of how enclaves securely communicate; using authenticated encryption
and nonces to avoid replaying messages are standard techniques and discussed in other works [103]. We assume that the
system configuration (the number of load balancers and subORAMs) is fixed. Also, our ideal functionality protects the contents
of memory, and so we do not model the optimization (§7) where we place encrypted data in external memory in order to
reduce enclave paging overhead. Finally, we do not allow the attacker to perform rollbacks attacks and we do not model fault
tolerance (we do not model the system using the fault tolerance and rollback protection techniques discussed in §9).

B.3 Oblivious storage definitions

An oblivious storage scheme consists of two protocols (OStoreInitialize,OStoreBatchAccess), where
OStoreInitialize initializes the memory, andOStoreBatchAccess performs a batch of accesses. We describe the
syntax for both protocols below, which we will load and execute on an enclave DAG:

• OStoreInitialize(1_, O), takes as input a security parameter _ and an object store O and runs initialization.
• V←OStoreBatchAccess(R), a protocol where the client’s input is a batch R of requests of the form (op, 𝑖, 𝑣𝑖 )
where op is the type of operation (read or write), 𝑖 is an index, 𝑣𝑖 is the value to be written (for op= read, 𝑣𝑖 =⊥). The
output consists of the updated secret state 𝜎 and the requested values V (i.e., 𝑣1,...,𝑣` ) assigned to the 𝑖1,...,𝑖` values of
O if op=read (for op=write, the returned value is the value before the write).

Security. The security of an oblivious storage scheme is defined using two experiments (real, ideal). In the real experiment
(Figure 15), the adversary interacts with an enclave DAG loaded with the real protocol, and in the ideal experiment (Figure 16),
the adversary interacts with an ideal functionality. The ideal functionality has the same interface as the real scheme but, rather
than running the real protocol on the enclave DAG, it instead invokes a simulator (executing on the enclave DAG). Crucially, the
simulator does not get access to the set of requests and only knows the public information, which includes the number of requests,
structure of enclave DAG, and any other protocol-specific public parameters (e.g. number of load balancers and subORAMs). The
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Adv FEnc (Π)
Input

Output, 𝛾

Figure 15. Real experiment for protocol Π running inside the enclave ideal functionality FEnc where 𝛾 is the trace.

Adv Fideal FEnc (Sim)
Input

Output, 𝛾

Public input

𝛾

Figure 16. Ideal experiment where adversary interacts with the ideal functionality (computes the output for the given input) and the ideal
functionality sends the public information to a simulator program running inside the enclave ideal functionality (FEnc) to generate the trace
𝛾 .

𝑏𝑖𝑡←RealOStoreΠ,Adv (_):
1: (𝑠, O)←Adv(1_)
2: EP←FEnc.Load(Π)
3: 𝛾0←FEnc.Execute(EP, (OStoreInitialize, 1_,O)).
4: for 𝑘 =1 to 𝑞 do ⊲ q: polynomial #queries
5: (R𝑘 , 𝑠)←Adv1 (𝛾0,...,𝛾𝑘−1, V1,...,V𝑘−1, 𝑠).
6: (V𝑘 , 𝛾𝑘 )← FEnc.Execute(EP, (OStoreBatchAccess, R𝑘 )).
7: end for
8: return 𝑏𝑖𝑡←Adv(𝛾0,...,𝛾𝑘 , V1,...,V𝑘 , 𝑠).

𝑏𝑖𝑡← IdealOStoreSim,Adv (_):
1: (𝑠, O)←Adv(1_).
2: EP←FEnc.Load(Sim)
3: 𝛾0← IdealOStoreInitialize(EP, 1_, O).
4: for 𝑘 =1 to 𝑞 do ⊲ q: polynomial #queries
5: (R𝑘 , 𝑠)←Adv1 (𝛾0,...,𝛾𝑘−1, V1,...,V𝑘−1, 𝑠).
6: (V𝑘 ,𝛾𝑘 )← IdealOStoreBatchAccess(EP, R𝑘 ).
7: end for
8: return 𝑏𝑖𝑡←Adv(𝛾0,...,𝛾𝑘 , V1,...,V𝑘 , 𝑠).

1 Security Definition 2 (weaker oblivious storage definition): Adv is not allowed to submit duplicate requests in batch 𝑅𝑘 .
Figure 17. Real and ideal experiments for an oblivious storage scheme.

adversary can executeOStoreInitialize and a polynomial number ofOStoreBatchAccess for any set of requests,
during which it observes the memory access patterns and communication patterns in the enclave DAG (represented by the
trace produced by the Execute routine). The goal of the adversary is to distinguish between the real and ideal experiments.
An oblivious storage scheme is secure if no efficient polynomial-time adversary can distinguish between these two experi-

ments with more than negligible probability. Our security definition has a different setup than that of traditional ORAM [92, 93]
(we use a network of enclaves rather than the traditional client-server model), but our definition embodies the same security
guarantees (namely, that the trace generated from an access is simulatable from public information).
We prove the security of Snoopy modularly: we first prove that our subORAM construction is secure, and then we prove

that our Snoopy construction is secure when built on top of a secure subORAM. To do this, we need a slightly different notion
of subORAMs. In particular, our SubORAM construction cannot be proven secure with Definition 1, since its security relies
on the assumption that a batch of oblivious accesses contains distinct requests. In order to prove the security of our SubORAM
we introduce a second, weaker security definition below.
Definition 2. (Weaker oblivious storage def.) The oblivious storage scheme Π is secure if for any non-uniform probabilistic
polynomial-time (PPT) adversary Adv who does not submit duplicated requests inside a batch there exists a PPT Sim such that���Pr[RealOStoreΠ,Adv (_)=1

]
−Pr

[
IdealOStoreSim,Adv (_)=1

] ���≤negl(_)
20



𝛾← IdealOStoreInitialize(EP, 1_, O):
1: Initialize a key-value store 𝑆 with contents from O.
2: Run 𝛾←FEnc .Execute(EP,(SimOStoreInitialize, 1_, |O|))
3: return 𝛾 .
(V, 𝛾)← IdealOStoreBatchAccess(EP, R):
1: Run the batch of requests R on the key-value store 𝑆 to produced requested values V.
2: Run 𝛾←FEnc .Execute(EP, (SimOStoreBatchAccess, |R|))
3: return (V, 𝛾).

Figure 18. Ideal functionalities.

where _ is the security parameter, the above experiments are defined in Figure 18 (see note 1), and the randomness is taken
over the random bits used by the algorithms of Π, Sim, and Adv.

B.4 Oblivious building blocks

We use the following oblivious building blocks:

• OCmpSwap(𝑏, 𝑥, 𝑦): If 𝑏=1, swap 𝑥 and 𝑦.
• OCmpSet(𝑏, 𝑥, 𝑦): If 𝑏=1, set 𝑥←𝑦.
• 𝐿′←OSort(𝐿, 𝑓 ): Obliviously sorts the list 𝐿 by some ordering function 𝑓 , outputs sorted list 𝐿′.
• 𝐿′←OCompact(𝐿, 𝐵): Obliviously compacts the list 𝐿, outputting element 𝐿𝑖 only if 𝐵𝑖 =1. The order of the original list
𝐿 is preserved.

Our algorithms require only a simple “oblivious swap” primitive to build oblivious compare-and-set, oblivious sort, and
oblivious compact. In our implementation, we instantiate oblivious sort using bitonic sort [6] and oblivious compaction using
Goodrich’s algorithm [34]. We set the client’s memory to be constant size in both.OCmpSwap andOCmpSet are standard obliv-
ious building blocks, as described in Oblix [65]. Thus, we can assume the existence of simulators SimOCmpSwap, SimOCmpSet,
SimOSort, and SimOCompact. While simulator algorithms usually run in their own “address space”, becausewe need to produce
memory traces that are indistinguishable from those produced by the original algorithm, we need to pass in the address of some
objects, even if the algorithms do not need to know the values of these objects. We define the following simulator algorithms:

• SimOCmpSwap(addr⟨𝑥⟩, addr⟨𝑦⟩)): Simulates swapping 𝑥 and 𝑦 given a hidden input bit.
• SimOCmpSet(addr⟨𝑥⟩), addr⟨𝑦⟩)): Simulates setting 𝑥 to 𝑦 given a hidden input bit.
• SimOSort(addr⟨𝐿⟩, 𝑛, 𝑓 ): Simulates sorting list 𝐿 of length 𝑛 by ordering function 𝑓 .
• SimOCompact(addr⟨𝐿⟩, 𝑛, addr⟨𝐵⟩, 𝑚): Simulates compacting list 𝐿 of length 𝑛 using bits in list 𝐵 where the number of
bits in 𝐵 set to 1 is𝑚.

We additionally use OHashTable [16], which is a two-tiered oblivious hash table that consists of the polynomial-time
algorithms (Construct, GetBuckets):

• 𝑇←OHashTable.Construct(𝐷): Given some data 𝐷 , output a two-tiered oblivious hash table 𝑇 .
• (𝐵1, 𝐵2)←OHashTable.GetBuckets(𝑇, idx): Given an oblivious hash table 𝑇 and some index idx, output pointers to the
two buckets corresponding to idx. Note that these buckets may be both read from and written to.

As these algorithms are oblivious [16], we can assume the existence of a simulator SimOHashTablewith algorithms (Construct,
GetBuckets):

• 𝑇←SimOHashTable.Construct(addr⟨𝐷⟩, 𝑛): Given the address of data 𝐷 of size 𝑛, simulate constructing an oblivious
hash table.
• (𝐵1, 𝐵2)←SimOHashTable.GetBuckets(𝑇, addr⟨idx⟩): Given a hash table 𝑇 , simulate outputting pointers to two buckets
corresponding to the private input idx.

Finally, we assume we have access to a keyed cryptographic hash function 𝐻 .
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B.5 SubORAM
We define an oblivious storage scheme SubORAM in Figure 19 that provides the interface defined in Appendix B.3 (we leave
some empty lines in the protocol figure and corresponding simulator figure so that corresponding operations have the same
line number).
Theorem 1. Given a two-tiered oblivious hash table [16], an oblivious compare-and-set operator, and an oblivious compaction
algorithm, the subORAM scheme described in §5 and formally defined in Figure 19 (see appendix) is secure according to Definition 2.

Proof. We construct our simulator in Figure 20 (we leave some empty lines so that corresponding operations in Figure 19 have the
same line number).We need to argue that the traces the adversary receives as a result of executing the Initialize andBatchAccess
routines do not allow the adversary to distinguish between the real and ideal experiments. Communication patterns aren’t a
concern, as SubORAM only uses a DAGwith a single enclave. Thus we only need to show that memory access patterns are indis-
tinguishable. To simplify the proof and our description of the simulator, we assume that functions with different signatures are
indistinguishable; the memory accesses of simulator functions that take fewer parameters (because they only take public input)
can easily be made indistinguishable from those of the actual functions by passing in dummy arguments. We show howmemory
accesses are indistinguishable, first for Initialize and then for BatchAccess (line numbers correspond to Figure 19 and Figure 20).
Initialization.
• (Line 1) The subORAM algorithm takes as input an array of size 𝑛, whereas the simulator algorithm generates a random
array of the same size with the same size objects. The resulting arrays are indistinguishable.
• (Line 2) These steps are the same and only involve storing the arrays that we already established are indistinguishable.

Batch access.
• (Lines 1-4) The original algorithm doesn’t perform any processing while the simulator algorithm generates an array of
the same size and same object size as the array passed as input to the original algorithm. Even though the objects are
randomly chosen in the simulator algorithm, because the sizes of the same, both have the same memory usage.
• (Line 5) From the security of the two-tier oblivious hash table, the hash table construction algorithm and the corresponding
simulator algorithm produce indistinguishable memory access patterns.
• (Lines 6, 8, 9) Both use the same looping structure that depends only on public data (i.e. the number of objects and the
bucket size).
• (Line 7) By the security of the oblivious hash table, the get buckets algorithm and the corresponding simulator algorithm
produce indistinguishable memory access patterns.
• (Lines 10, 11) By the security of the oblivious compare-and-swap, the original algorithm and the simulator algorithm
produce indistinguishable memory access patterns.
• (Line 15) Both algorithms perform linear scans over an array with a public size and add an extra bit to each array entry.
• (Line 16) These lines are identical and make a new array where the size is public (same size and object size as an existing
array).
• (Line 17) By the security of oblivious compaction, the original compaction algorithm and the simulator algorithm produce
indistinguishable memory access patterns.

The only task that remains is to show that the responses returned in the real and ideal experiments are indistinguishable.
The correctness of the results follows from Theorem 5, where we prove that our subORAM responds to read requests to an
object by returning the last write to that object. □

B.6 Snoopy
We now define Snoopy as a protocol for 𝐿 load balancers and 𝑆 subORAMs S1,...,S𝑆 in Figure 21, as well as a load balancer
scheme in Figure 23 and Figure 25 (we leave some empty lines in the protocol figures and corresponding simulator figures
so that corresponding operations have the same line number).
Theorem 2. Given a keyed cryptographic hash function, an oblivious compare-and-set operator, an oblivious sorting algorithm,
an oblivious compaction algorithm, and an oblivious storage scheme (secure according to Definition 2), Snoopy, as described in
§4 and formally defined in Figure 21 (see appendix), is secure according to Definition 1.

Proof. Our Snoopy construction is presented in Figure 21, with the corresponding simulator in Figure 22. We again need to
show that the traces that the adversary receives as a result of executing Initialize and BatchAccess do not allow the adversary
to distinguish between the real and ideal experiments.
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SubORAM.Initialize(1_,O)
1: Parse O as (𝑜1,...,𝑜𝑛) where 𝑜𝑖 = (idx, content).
2: Store O.

V←SubORAM.BatchAccess(R)
1: Parse R as (𝑟1,...,𝑟𝑁 ), where 𝑟𝑖 = (type, idx, content).
2: if R contains duplicates then
3: return ⊥.
4: end if
5: Set 𝑇←OHashTable.Construct(R).
6: for 𝑖 =1,...,𝑛 do
7: Set Bkt1,Bkt2←OHashTable.GetBuckets(𝑇, O[𝑖] .idx).
8: for 𝑗 =1,2 do
9: for 𝑙 =1,...,|Bkt𝑗 | do
10: OCmpSet((Bkt𝑗 [𝑙] .idx ?

=O[𝑖] .idx), O[𝑖] .content, Bkt𝑗 [𝑙] .content).
11: OCmpSet((Bkt𝑗 [𝑙] .idx ?

=O[𝑖] .idx)∧(Bkt𝑗 [𝑙] .type ?
=write), Bkt𝑗 [𝑙] .content, O[𝑖] .content).

12: end for
13: end for
14: end for
15: Scan through 𝑇 , marking each entry 𝑖 with bit 𝑏𝑖 =0 if it is a dummy, setting 𝑏𝑖 =1 otherwise.
16: Set B←(𝑏1,...,𝑏 |𝑇 |).
17: Run V←OCompact(𝑇, B).
18: return V.

Figure 19. Our subORAM construction.

SimSubORAM.Initialize(1_,|O|)
1: Let (𝑛,̂ )= |O| (̂ is the object size). Create an array O=𝑜1,...,𝑜𝑛 of random entries of size ^ , where 𝑜𝑖 = (idx, content).
2: Store O.

SimSubORAM.BatchAccess(𝑁 )
1: Let 𝑁 be a public parameter, which denotes the number of requests that the input batch contains.
2: Choose 𝑁 random distinct identifiers idx1,...,idx𝑁 where for all 𝑖 ∈ [𝑁 ], idx𝑖 is an idx value in O.
3: Create R of the form (𝑟1,...,𝑟𝑁 ), where 𝑟𝑖 = (read, idx𝑖 , ⊥).
4:
5: Run 𝑇←SimOHashTable.Construct(addr⟨R⟩,𝑁 ).
6: for 𝑖 =1,...,𝑛 do
7: Set Bkt1,Bkt2←SimOHashTable.GetBuckets(𝑇,addr⟨O[𝑖] .idx⟩).
8: for 𝑗 =1,2 do
9: for 𝑙 =1,...,|Bkt𝑗 | do
10: SimOCmpSet(addr⟨O[𝑖] .content⟩, addr⟨Bkt𝑗 [𝑙] .content⟩).
11: SimOCmpSet(addr⟨Bkt𝑗 [𝑙] .content⟩, addr⟨O[𝑖] .content⟩).
12: end for
13: end for
14: end for
15: Scan through 𝑇 , marking each entry with bit 𝑏𝑖 =0.
16: Set B←(𝑏1,...,𝑏 |𝑇 |).
17: Run V←SimOCompact(addr⟨𝑇 ⟩, |𝑇 |, addr⟨B⟩, 𝑁 ).
18:

Figure 20. Simulator algorithms SimSubORAM = (Initialize, BatchAccess).
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The communication patterns in the real and ideal experiments are indistinguishable. Both experiments perform setup at
the first load balancer and then copy state to the remaining load balancer (communication pattern is deterministic). For
BatchAccess, in both experiments, we choose a random load balancer, which then communicates with every subORAM (the
amount of data sent to each subORAM depends only on public information). Thus there is no difference in the distribution
of communication patterns between the real and ideal experiments.
We now discuss memory access patterns. As in the proof for Theorem 2, to simplify the proof and our description of the

simulator, we assume that functions with different signatures are indistinguishable; the memory accesses of simulator functions
that take fewer parameters (because they only take public input) can easily be made indistinguishable from those of the actual
functions by passing in dummy arguments. As is clear from Figure 21 and Figure 22, the Initialize and BatchAccess algorithms
are identical except that (1) the simulator algorithm generates random objects and random requests rather than taking them
as input, and (2) the simulator algorithm calls the SimLoadBalancer algorithms. Thus the only task that remains is to show
that the memory access patterns generated by the LoadBalancer and SimLoadBalancer algorithms are indistinguishable.
We start with Initialize and then examine BatchAccess (line numbers correspond to Figure 23, Figure 24, Figure 25, Figure 26).
Initialization.

• (Lines 1-2) The load balancer algorithm takes an array O whereas the simulator algorithm generates a random array of
the same size (same number of objects and same object size). Thus the memory used by these arrays is indistinguishable.
• (Lines 3-8) These lines are identical. We sample a key and then perform a linear scan over an array where the size of the
array and object size is public, attaching a tag to each element.
• (Line 9) By the security of our oblivious sort, the sorting algorithms over different arrays with the same length, same
object size, and same ordering function produce indistinguishable memory access patterns because of the existence of
the simulator function that only takes in array length, object size, and the ordering function.
• (Lines 10-17) These lines are identical. We iterate over the array where the array size is public. We write the algorithm as
branching based on a comparison to private data in order to improve readability, but this would in practice be implemented
using OCmpSet in the original algorithm and SimOCmpSet in the simulator algorithm, which produce indistinguishable
access patterns.
• (Lines 19-21) By the security of the underlying subORAM scheme, the initialize procedure for the subORAM and the
corresponding simulator algorithm produce indistinguishable memory access patterns.
• (Lines 22-23) These lines are identical and only store a cryptographic key.

Batch access.

• (Lines 1-2) Establishing parameters and hash functions.
• (Lines 3-4) The load balancer receives a list of requests whereas the simulator algorithm generates a random array of
the same size (same number of requests and same format). Thus the memory used by these arrays is indistinguishable.
• (Lines 5-11) These lines are identical and only compute a function based on public information and perform a linear scan
over an array (same size and format in both). Thus the memory access patterns are indistinguishable.
• (Line 12) By the security of the oblivious sorting algorithm, the oblivious sort and the corresponding simulator algorithm
produce indistinguishable memory access patterns.
• (Line 13) These lines are identical and require accessing 𝛼 objects in a fixed location where 𝛼 is computed using public
information.
• (Line 14) By the security of the oblivious compaction algorithm, the oblivious compaction and the corresponding simulator
algorithm produce indistinguishable memory access patterns.
• (Lines 15-17) By the security of the underlying subORAM scheme, the batch access algorithm and the corresponding
simulator algorithm produce indistinguishable memory access patterns.
• (Line 18) These lines are identical and create an array where the number of objects is based on public information and
the object size is a public parameter.
• (Line 19) These lines set the same function.
• (Line 20) By the security of the underlying sorting algorithm, the oblivious sort and the corresponding simulator algorithm
produce indistinguishable memory access patterns.
• (Line 21-24) The structure of the loop is the same in both algorithms and depends only on public information (𝑁 +𝛼𝑆),
and the compare-swap primitive guarantees that the algorithm and the simulator algorithm produce indistinguishable
memory access patterns.
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Snoopy.Initialize𝐿,𝑆 (1_, O)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: 𝑘←LoadBalancer.Initialize𝑆 (1_, O).
4: Send 𝑘 to the remaining 𝐿−1 load balancers.

V←Snoopy.BatchAccess𝐿,𝑆 (R)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Wait to receive |R| requests.
4: Pick at random a load balancer 𝑖 .
5: Run V𝑖←LoadBalancer𝑖 .BatchAccess𝑆 (R).
6: return V𝑖 .

Figure 21. Our Snoopy construction.

SimSnoopy.Initialize𝐿,𝑆 (1_, |O|)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: 𝑘←SimLoadBalancer.Initialize𝑆 (1_, |O|).
4: Send 𝑘 to the remaining 𝐿−1 load balancers.

SimSnoopy.BatchAccess𝐿,𝑆 (𝑁 )
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Let 𝑁 be the number of requests.
4: Pick at random a load balancer 𝑖 .
5: Run SimLoadBalancer𝑖 .BatchAccess𝑆 (𝑁 ).
6:

Figure 22. Simulator algorithms SimSnoopy = (Initialize, BatchAccess).

• (Line 25) Creates a list where the list size is based on public information (𝑁 +𝛼𝑆) and the object size is public.
• (Line 26) By the security of the underlying compaction algorithm, the oblivious compaction and the corresponding
simulator algorithm produce indistinguishable memory access patterns.

While the memory access patterns generated are indistinguishable in all cases, the adversary could potentially be able to
distinguish between the real and ideal experiments if the adversary could cause the responses between the real and ideal
experiments to differ. The only way that the adversary could do this is if the number of requests assigned to a subORAM
exceeds 𝑓 (𝑁,𝑆) for 𝑁 total requests and 𝑆 subORAMs. The load balancer algorithm guarantees that requests in a batch
are distinct (we use oblivious compaction to remove duplicates) and randomly distributed (we use a keyed hash function).
Furthermore, the attacker cannot learn information about how requests are routed to subORAMs because the access patterns
do not leak the assignment of requests to subORAMs (as proven above). Thus we can apply Theorem 3, and so the probability
that a batch overflows is negligible in _. Finally, Theorem 4 guarantees that reads always see the result of the last write, and so,
the probability that the adversary can distinguish between the real experiment and the ideal experiment is negligible in _. □

B.7 Discussion of multiple clients

Our proof only considers a single client, and so we briefly (and informally) discuss how to extend our guarantees to multiple
clients. In the case where multiple clients are controlled by a single adversary, we simply need to modify the adversary to
choose requests for each client, and then the clients forward the requests to the oblivious storage system. The oblivious storage
protocol and the ideal functionality then needs to route the correct response to the correct client (rather than sorting by object
ID on line 19 in Figure 25, the load balancer can sort by the client ID, object ID, bit 𝑏 tuple).
We now consider the case where there is an honest client submitting read requests and all other clients are controlled by the

adversary. Note that write requests cannot be private in the case where the adversary can make read requests, as the adversary
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𝑘←LoadBalancer.Initialize𝑆 (1_, O)
1: Parse O as 𝑜1,...,𝑜𝑛 .
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Let 𝐻 be a keyed cryptographic hash function that outputs an element in [𝑆].
4: Sample a secret key 𝑘←R {0,1}_ .
5: for 𝑖 =1,...,𝑛 do
6: Attach to 𝑜𝑖 the tag 𝑡 =𝐻𝑘 (𝑜𝑖 .idx).
7: end for
8: Let 𝑓order be the ordering function that orders by tag 𝑡 .
9: O←OSort(O, 𝑓order).
10: Let 𝑥←0.
11: Let prev←⊥.
12: for 𝑖 =1,...,|O| do
13: if O[𝑖] .𝑡 ≠prev then
14: Let 𝑦𝑥←𝑖 .
15: Let 𝑥←𝑥+1.
16: Let prev←O[𝑖] .𝑡 .
17: end if
18: end for
19: for 𝑖 =1,...,𝑆 do
20: Run SubORAM.Initialize(1_, O[𝑦𝑖−1 :𝑦𝑖 ]).
21: end for
22: Store 𝑘 .
23: return 𝑘 .

Figure 23. Our load balancer initialization construction. Lines 13-16 would in practice be implemented using OCmpSet, but we write it
using an if statement that depends on private data to improve readability.

can always read all objects to tell what objects was written to by the honest client. We simply want to hide the contents of
the read requests made by the honest client (we do not hide the timing or the number). In our proof, we show that the trace
generated by operating on the batch of requests submitted by the adversary is indistinguishable from the trace generated
by operating on a random batch of requests, and so the execution trace will not reveal information about the honest client’s
accesses. Using the modification described above, we also ensure that the correct responses are routed to the correct client,
and so the adversary cannot learn information about the honest client’s read requests from the returned responses.

C Linearizability
Snoopy implements a linearizable key-value store. We define the following terms:
• An operation 𝑜 has both a start time 𝑜𝑠𝑡𝑎𝑟𝑡 (the time at which the operation was received by a load balancer), and an end
time 𝑜𝑒𝑛𝑑 (the time at which the operation was committed by the load balancer).
• Operation 𝑜 ′ follows operation 𝑜 in real-time (𝑜−→

𝑟𝑡
𝑜 ′) if 𝑜𝑒𝑛𝑑 <𝑜 ′𝑠𝑡𝑎𝑟𝑡 .

• 𝑜 ′ and 𝑜 are said to be concurrent if neither 𝑜 nor 𝑜 ′ follow each other.
• Operations can be either reads (𝑟𝑒𝑎𝑑 (𝑥), which reads key 𝑥 ), or writes (𝑤𝑟𝑖𝑡𝑒 (𝑥,𝑣), which writes value 𝑣 to key 𝑥 ).
Linearizability requires that for any set of operations, there exists a total ordered sequence of these operations (a linearization

– we write 𝑜−→𝑜 ′ if o’ follows o in the linearization) such that:
• The linearization respects the real-time order of operations in the set: If 𝑜−→

𝑟𝑡
𝑜 ′ then 𝑜−→𝑜 ′ (C1).

• The linearization respects the sequential semantics of the underlying data-structure. Snoopy follows the semantics of
a hashmap: given two operations 𝑜 and 𝑜 ′ on the same key, where 𝑜 is a write𝑤𝑟𝑖𝑡𝑒 (𝑥,𝑣), and 𝑜 ′ is a read 𝑟𝑒𝑎𝑑 (𝑥), then, if
there does not exist an 𝑜 ′′ such that 𝑜 ′′=𝑤𝑟𝑖𝑡𝑒 (𝑥,𝑣 ′) and 𝑜−→

𝑟𝑡
𝑜 ′′−→

𝑟𝑡
𝑜 ′, then 𝑟𝑒𝑎𝑑 (𝑥)=𝑣 . In other words, the data structure

always returns the value of the latest write to that key (C2).
As in our security proofs, we prove linearizability separately for our subORAM scheme and for Snoopy instantiated with
any subORAM.
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𝑘←SimLoadBalancer.Initialize(1_, |O|)
1: Let (𝑛,̂ )= |O|. ⊲ ^ is the size of the object
2: Create an array O (1,𝑜1),(2,𝑜2),...,(𝑛,𝑜𝑛) of the form (idx, content), where 𝑜𝑖 is a random entry of size ^.
3: Let 𝐻 be a keyed cryptographic hash function that outputs an element in [𝑆].
4: Sample a secret key 𝑘←R {0,1}_ .
5: for 𝑖 =1,...,𝑛 do
6: Attach to 𝑜𝑖 the tag 𝑡 =𝐻𝑘 (𝑜𝑖 .idx).
7: end for
8: Let 𝑓order be the ordering function that orders by tag 𝑡 .
9: OSort(O, 𝑓order).
10: Let 𝑥←0.
11: Let prev←⊥.
12: for 𝑖 =1,...,|O| do
13: if M[𝑖] .𝑡 ≠prev then
14: Let 𝑦𝑥←𝑖 .
15: Let 𝑥←𝑥+1.
16: Let prev←O[𝑖] .𝑡 .
17: end if
18: end for
19: for 𝑖 =1,...,𝑆 do
20: Run SimSubORAM𝑖 .Initialize(1_, |O[𝑦𝑖−1 :𝑦𝑖 ] |).
21: end for
22: Store 𝑘 .
23: return 𝑘 .

Figure 24. Load balancer simulator for SimLoadBalancer.Initialize. Lines 13-16 would in practice be implemented using OCmpSet, but we
write it using an if statement that depends on private data to improve readability.

Theorem 4. Snoopy is linearizable when the subORAM is instantiated with a oblivious storage scheme that is secure according
to Definition 2.

Proof. We prove that there exists a linearization that follows the hashmap’s sequential specification: each operation is totally
ordered according to the (batch commit time epoch, load balancer id lb, operation type optype, batch insertion index ind)
tuple (sorting first by batch commit time, next by load balancer id, next giving priority to reads over writes, and finally by
arrival order) . Let 𝑜1−→𝑜2−→ ...−→ ..𝑜𝑛 be the resulting linearization. We prove the aforementioned statement in two steps: (1)
the statement holds true for 𝑜𝑛−→𝑜𝑛+1, and (2) the statement holds true transitively. Note that we assume load balancers and
subORAMs can take a single action per timestep.
1. 𝑜𝑛−→𝑜𝑛+1 We prove this by contradiction. Assume that 𝑜−→𝑜 ′ violates either condition C1 or condition C2.
• (C1) Assume that condition C1 is violated: 𝑜𝑒𝑛𝑑 ≥ 𝑜 ′𝑠𝑡𝑎𝑟𝑡 . Now, consider 𝑜 −→ 𝑜 ′: it follows by assumption that
(𝑏𝑎𝑡𝑐ℎ𝑜 ,𝑙𝑏𝑜 ) ≤ (𝑏𝑎𝑡𝑐ℎ𝑜′,𝑙𝑏𝑜′). If 𝑙𝑏𝑜 == 𝑙𝑏𝑜′ , o and o’ are either in the same epoch or 𝑜 ′ is in the epoch that follows 𝑜
at the same load balancer. In both cases, 𝑜 ′ cannot have a start time greater or equal than 𝑜’s start time: each load
balancer processes each epoch sequentially and waits for all batches to commit. We have a contradiction. Consider
next the case in which 𝑏𝑎𝑡𝑐ℎ𝑜 ==𝑏𝑎𝑡𝑐ℎ𝑜′ and 𝑙𝑏𝑜 ≤ 𝑙𝑏𝑜′ . We have 𝑜𝑠𝑡𝑎𝑟𝑡 <𝑏𝑎𝑡𝑐ℎ𝑜 <𝑜𝑒𝑛𝑑 and 𝑜 ′𝑠𝑡𝑎𝑟𝑡 <𝑏𝑎𝑡𝑐ℎ𝑜′ <𝑜 ′𝑒𝑛𝑑 . As
𝑏𝑎𝑡𝑐ℎ𝑜 ==𝑏𝑎𝑡𝑐ℎ𝑜′ , we have 𝑜 ′𝑠𝑡𝑎𝑟𝑡 <𝑒𝑝𝑜𝑐ℎ𝑜 <𝑜𝑒𝑛𝑑 . We once again have a contradiction.
• (C2) Assume that condition C2 is violated: 𝑜 =𝑤𝑟𝑖𝑡𝑒 (𝑥,𝑣) and 𝑜 ′=𝑟𝑒𝑎𝑑 (𝑥), but 𝑜 ′ returns 𝑣 ≠𝑣 ′ and there does not
exist an 𝑜 ′ such that 𝑜 −→

𝑟𝑡
𝑜 ′′−→

𝑟𝑡
𝑜 ′. We consider two cases: (1) 𝑜 and 𝑜 ′ are in different batches, and (2) 𝑜 and 𝑜 ′ are

in the same batch. First, consider the case in which 𝑜 and 𝑜 ′ are in different batches and 𝑏𝑎𝑡𝑐ℎ𝑜 <𝑏𝑎𝑡𝑐ℎ𝑜′ (if 𝑜 and 𝑜 ′
write to the same key 𝑥 and are in different batches, then 𝑏𝑎𝑡𝑐ℎ𝑜 ≠𝑏𝑎𝑡𝑐ℎ𝑜′ as subORAMs processes batches of requests
sequentially). It follows that 𝑜 ′ executed after 𝑜 . There are two cases: (1) 𝑜 is the write in the batch with the highest
index, and (2) there exists a write 𝑜 ′′ with a higher index. In the latter case, we have a contradiction: our linearization
order orders writes by index, as such there exists an intermediate write 𝑜 ′′ in the linearization order 𝑜 −→ 𝑜 ′′ −→ 𝑜 ′.
Instead, consider 𝑜 to be the write with the highest index. This write gets persisted to the subORAM as part of the
batch. By the correctness of the underlying oblivious storage scheme, a read from oblivious storage (instantiated
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V←LoadBalancer.BatchAccess𝑆 (R)
1: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
2: Let H𝑘 (·) be a cryptographic hash function keyed by stored key 𝑘 that outputs an element in [𝑆].
3: Parse R as (𝑟1,...,𝑟𝑁 ), where 𝑟𝑖 = (type, idx, content).
4:
5: Compute 𝛼← 𝑓 (𝑁,𝑆) and initialize the empty list L of size 𝑁 +𝛼𝑆 .
6: for 𝑖 =1,...,𝑁 do
7: L[𝑖]= (𝑟𝑖 .type, 𝑟𝑖 .idx, 𝑟𝑖 .content, H𝑘 (𝑟𝑖 .idx)).
8: end for
9: L′← Create a copy of L.
10: Append to L′ 𝛼 dummy requests for each SubORAM of the form (read, idx, ⊥, 𝑠), where idx is H𝑘 (idx)=𝑠 .
11: Let 𝑓order be the ordering function that orders by SubORAM and then by type (where ⊥ is last and treated as read).
12: Run L′←OSort(L, 𝑓order).
13: Tag the first 𝛼 distinct requests per SubORAM with 𝑏=1 and the remaining requests with 𝑏=0.
14: Set B←(𝑏1,...,𝑏𝑁+𝛼𝑆 ) and run L′←OCompact(L′, B).
15: for 𝑖 =1,...,𝑆 do
16: Run V𝑖←SubORAM𝑖 .BatchAccess(L′[(𝑖−1)𝛼+1 : 𝑖𝛼]).
17: end for
18: Set X←(V1,...,V𝑆 ,L) tagging all responses with 𝑏=0 and requests with 𝑏=1.
19: Let 𝑓order be the ordering function that orders by idx and then by 𝑏 (i.e., giving priority to responses over requests).
20: Set X′←OSort(X, 𝑓order).
21: Set prev←⊥.
22: for 𝑖 =1,...,|𝑋 ′ | do
23: OCmpSet(𝑏𝑖 ?

=0, prev, X′[𝑖] .content) and OCmpSet(𝑏𝑖 ?
=1, X′[𝑖] .content, prev).

24: end for
25: Set B←(𝑏1,...,𝑏𝑁+𝛼𝑆 ).
26: Run V←OCompact(X′, B).
27: return V.

Figure 25. Our load balancer construction.

in our system as a subORAM, see Theorem 5) returns the latest write to that key. As such, if 𝑜 ′ reads 𝑥 in a batch
that follows 𝑜’s write to 𝑥 with no intermediate writes to that key, 𝑜 ′ will return the value written by 𝑜 . We have a
contradiction once again. (2) If 𝑜 and 𝑜 ′ are instead in the same batch, then 𝑏𝑎𝑡𝑐ℎ𝑜 ==𝑏𝑎𝑡𝑐ℎ

′
𝑜 . By our linearization

order specification, reads are always ordered before writes in a batch, so 𝑜 ′−→𝑜 . We have a contradiction.
2. Transitivity. The proof holds trivially for chains of arbitrary length 𝑜1−→ ..−→𝑜𝑛 due the transitive nature of inequalities

and the pairwise nature of operation correctness on a hashmap.
□

Theorem 5. Our subORAM (Figure 19) always returns the value of the latest write to an object, provided that it is instantiated
from a two-tiered oblivious hash table [16], an oblivious compare-and-set operator, and an oblivious compaction algorithm.

Proof. We prove this by contradiction. Assume that the last write to object 𝑜 was value 𝑣 and a subsequent read of object 𝑜
in epoch 𝑖 returns value 𝑣 ′ where 𝑣 ≠𝑣 ′. Because reads are ordered before writes in the same epoch, a write cannot take place
between the end of the end of epoch 𝑖−1 and a read in epoch 𝑖 . Then, by the correctness of the oblivious hash table (which we
use to retrieve the correct request for an object when scanning through all objects), the oblivious compare-and-set primitive
(which copies the object value correctly to the request’s response data if the request is a read), and oblivious compaction
(which ensures that entries in the hash table corresponding to real requests are returned) it must be the case that the value
for object 𝑜 in the subORAM at the end of epoch 𝑖−1 is 𝑣 ′. By the correctness of our oblivious hash table (which we use to
retrieve the correct request for an object when scanning through all objects) and oblivious compare-and-set primitive (which
copies the request value correctly to the object value if the request is a write) and because write requests in the same batch
are distinct (our load balancer deduplicates requests in the same epoch), the last write to object 𝑜 before epoch 𝑖 must have
been value 𝑣 ′. Thus we have reached a contradiction (𝑣 ≠𝑣 ′), completing the proof. □
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SimLoadBalancer.BatchAccess(𝑁 )
1: Let 𝑁 be a public parameter, which denotes the number of requests that the queried batch contains. Let 𝑆 be a public

parameter, which denotes the number of used SubORAMs.
2: Let H𝑘 (·) be a cryptographic hash function keyed by stored key 𝑘 that outputs an element in [𝑆].
3: Choose 𝑁 random identifiers idx1,...,idx𝑁 where for all 𝑖 ∈ [𝑁 ], idx𝑖 is an idx value in O.
4: Create R of the form (𝑟1, ..., 𝑟𝑁 ), where 𝑟𝑖 = (read, idx𝑖 , ⊥).
5: Compute 𝛼← 𝑓 (𝑁,𝑆,_) and initialize the empty list L of size 𝑁 +𝛼𝑆 .
6: for 𝑖 =1,...,𝑁 do
7: L[𝑖]= (𝑟𝑖 .type, 𝑟𝑖 .idx, 𝑟𝑖 .content, H𝑘 (𝑟𝑖 .idx)).
8: end for
9: L′← Create a copy of L.
10: Append to L′ 𝛼 dummy requests for each SubORAM of the form (read, idx, ⊥, 𝑠), where idx is H𝑘 (idx)=𝑠 .
11: Let 𝑓order be the ordering function that orders by SubORAM and then by type (where ⊥ is last and treated as read).
12: Run SimOSort(addr⟨L′⟩, |L′ |, 𝑓order).
13: Tag the first 𝛼 requests per SubORAM with 𝑏=1 and the remaining requests with 𝑏=0.
14: Set B←(𝑏1,...,𝑏𝑁+𝛼𝑆 ) and run SimOCompact(addr⟨L′,⟩,𝑁 +𝛼𝑆, addr⟨B⟩, 𝛼𝑆).
15: for 𝑖 =1,...,𝑆 do
16: Run V𝑖←SimSubORAM𝑖 .BatchAccess(𝛼).
17: end for
18: Let X be an array of 𝑁 +𝛼𝑆 objects the same size as the objects in L with a tag bit.
19: Let 𝑓order be the ordering function that orders by idx and then by 𝑏 (i.e., giving priority to responses over requests).
20: Run SimOSort(addr⟨X⟩, |X|, 𝑓order).
21: Set prev←⊥.
22: for 𝑖 =1,...,|X′ | do
23: SimOCmpSet(addr⟨prev⟩, addr⟨X′[𝑖] .content⟩) and SimOCmpSet(addr⟨X′[𝑖] .content⟩, addr⟨prev⟩).
24: end for
25: Set B←(𝑏1,...,𝑏𝑁+𝛼𝑆 ).
26: Run SimOCompact(addr⟨X′⟩, |X′ |, addr⟨B⟩, 𝑁 ).
27:

Figure 26. Load balancer simulator for SimLoadBalancer.BatchAccess.

D Access control
Throughout the paper, we assume that all clients are trusted to make any requests for any objects. However, practical
applications may require access control. We now (informally) describe how to implement access control for Snoopy. A plaintext
system can store an access control matrix and, upon receiving a request, look up the user ID and object ID in the matrix to
check if that user has the privileges to make that request. In an oblivious system, the challenge is that the load balancer cannot
query the access control matrix directly, as the location in the access control matrix reveals the object ID requested by the
client. We instead need to access the access control matrix obliviously.
We can do this using Snoopy recursively. In addition to the objects themselves, the subORAMs now need to store the access

control matrix, where each object has the tuple (user ID, object ID, type) as the key (where type is either “read” or “write”) and
1 or 0 as the value depending on whether or not the user has permission for that operation. The load balancer then needs to
obliviously retrieve the access-control rule pertaining to the requests it received from the clients and apply the access-control
rule when generating responses for the clients. Notably, if a client does not have permission to perform a read, Snoopy should
return a null value instead of the object value, and if the client does not have permission to perform a write, it should not
copy the value from the request to the object. In order to ensure that a user is querying with the correct user ID, users should
authenticate to the load balancer using a standard authentication mechanism (e.g. password or digital signature).
Now, upon receiving a request, the load balancer generates a read request to the access control matrix for the tuple (user

ID, object ID, type) corresponding to the original request. The load balancer generates batches of access-control read requests
that it shards across the subORAMs. This is equivalent to running Snoopy recursively where the load balancer acts as both
a client and load balancer for the batch of access-control read requests. When the load balancer receives the results of the
access-control read requests, it then matches the access-control responses to the original requests by performing an oblivious
sort by (user ID, object ID, type) on both the access-control responses and the original list of requests. The load balancer scans
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through the lists in tandem (examine both lists at index 0, then at index 1, etc.), copying the bit 𝑏 returned in the access-control
response to the original request. The load balancer then sends the original requests (including this new bit 𝑏) to the subORAMs
as in the original design of Snoopy.
When executing the requests, the subORAMs additionally check the value of 𝑏 in the oblivious compare-and-set operation

(lines 10 and 11 in Figure 19) to ensure that the operation is permitted before performing it. Note that it is critical that we hide
which operations are permitted and which are not during execution; otherwise, an attacker can submit requests that aren’t
permitted and, by observing execution, see where in the sorted list of requests the failed request was (which leaks information
about the permitted requests). Executing requests with access control now requires two epochs of execution (one to query
the access control matrix and one to process the client’s actual request) to return the response to the user.
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