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Abstract
In many cryptocurrencies, the problem of key management has become one of the most fundamental

security challenges. Typically, keys are kept in designated schemes called wallets, whose main purpose
is to store these keys securely. One such system is the BIP32 wallet (Bitcoin Improvement Proposal
32), which since its introduction in 2012 has been adopted by countless Bitcoin users and is one of
the most frequently used wallet system today. Surprisingly, very little is known about the concrete
security properties offered by this system. In this work, we propose the first formal analysis of the
BIP32 system in its entirety and without any modification. Building on the recent work of Das
et al. (CCS ‘19), we put forth a formal model for hierarchical deterministic wallet systems (such
as BIP32) and give a security reduction in this model from the existential unforgeability of the
ECDSA signature algorithm that is used in BIP32. We conclude by giving concrete security parameter
estimates achieved by the BIP32 standard, and show that by moving to an alternative key derivation
method we can achieve a tighter reduction offering an additional 20 bits of security (111 vs. 91 bits
of security) at no additional costs.
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1 Introduction
Decentralized cryptocurrencies such as Bitcoin or Ethereum have introduced a new digital payment
paradigm which does not rely on a central authority such as a bank or a credit card company. The main
building block used in many popular cryptocurrencies to facilitate secure transfer and holding of assets are
digital signatures. Loosely speaking, a user Alice in the system is identified by her public key pkA which
she uses as her address for receiving and sending payments. If Alice wants to send c coins of the underlying
currency to another user Bob with address pkB , she creates a transaction tx saying “Send c coins from
pkA to pkB” and signs tx using her secret key skA. She then uploads the transaction tx together with
the signature σ to the public ledger (often also called blockchain) of the cryptocurrency. Once the tuple
(tx, σ) is visible on the public ledger, the payment is completed meaning that now Bob owns an additional
c coins of the underlying currency. Clearly, Alice’s funds remain secure only as long as no one can forge a
signature σ on her behalf that verifies under pkA. On top of this, it is generally recommended to use a
fresh signing key for every new transaction stored on the public ledger to avoid that all transactions are
linkable to the same user Alice. In the cryptocurrency space, the management and storage of secret keys
is typically carried out by so-called wallets – which are pivotal for the security of cryptocurrency funds.
Indeed, cryptocurrency wallets are a highly attractive target for hackers as illustrated by spectacular
attacks against common cryptocurrency projects. For example, in 2018 alone, hackers managed to steal
more than one billion USD worth of cryptocurrency from wallets [Ske18, Blo18, Bit18].

While several recent works study the formal security properties of cryptocurrency wallets (see related
work for a detailed discussion), one of the most widely used schemes – the BIP32 wallet [Wik18] –
has not been formally analyzed so far. This is somewhat surprising as BIP32 became a standard for
deterministic Bitcoin wallets in 2012, and has been widely adopted since then (e.g., it is used in the
deployment of popular wallets [Ele13, Tre14, Led14]). In this work, we address this gap and provide the
first comprehensive study of the security properties achieved by the BIP32 wallet standard.



1.1 Deterministic Wallets
As we have already pointed out, to improve privacy it is important to not re-use the same signing key for
too many public transactions. To explain why privacy is also beneficial for security, let us consider a user
Alice who holds a single secret/public key pair (skA, pkA), and that she receives multiple payments to her
address pkA. As we have explained, such transactions contain her public key pkA and are posted to the
public ledger. Hence, an attacker can easily extract Alice’s balance via the public transaction ledger. Over
time, pkA’s balance might grow, and at some point, the attacker may identify pkA as a high-priority target.
The obvious approach to thwart an attacker’s attempts of linking Alice’s transactions would be for Alice
to keep a set of l one-time random key pairs {(sk1, pk1), . . . , (skl, pkl)} within her wallet, where each key
pair is used for a single transaction on the public ledger. However, this approach has the obvious downside
of Alice having to store all of her keys on disk (as long as they still retain some amount of currency). This
requires a lot of storage space and bears the risk of losing one of her keys, at which point the associated
funds of that key are irrevocably lost. A simple approach to overcome these issues are deterministic
wallets, proposed by Buterin [But13]. A deterministic wallet usually contains a pair of master keys
(msk,mpk) and a seed ch, which is also referred to as the chaincode. For every new transaction, the
wallet deterministically derives a fresh session key pair (sk, pk) from the master keys with the help of
deterministic key derivation algorithms. More precisely, the public key derivation algorithm takes as
input the master public key mpk, the chaincode ch and an identifier ID and deterministically computes
a one-time public key pkID. An analogous secret key derivation algorithm takes in msk, ch, and ID and
deterministically computes a one-time secret key skID that matches pkID (given that the arguments ch
and ID in both derivations are identical). Going back to the example of BIP32, (msk,mpk) are generated
as ECDSA keys and public key derivation is done by computing the offset ω := H(mpk, ch, ID), where
ID ∈ [232] and then rerandomizing mpk to pkID by computing pkID := mpk + G · ω. Here, G denotes
the base point of an elliptic curve group of prime order p. A matching secret key can be derived via
skID := msk + ω (mod p).
Hot/Cold Wallets. A typical way of using deterministic wallets in practice is via the hot/cold wallet
paradigm. With this approach, Alice maintains two wallets. The first wallet is referred to as the cold
wallet. It keeps the master secret key msk as well as the chaincode. The cold wallet is usually implemented
via some simple storage device that should be almost permanently disconnected from the internet, so
as to minimize the risk of attack. The second wallet is the so-called hot wallet, which is permanently
online and keeps the master public key as well as the chaincode. Using the deterministic key derivation
procedures, the two wallets can independently derive matching keys to use for one-time transaction on
the public ledger. In a bit more detail, Alice uses her hot wallet as a low-security spending wallet which,
at any point in time, keeps only a small amount of currency. Whenever the funds stored on the hot wallet
exceed a certain amount, Alice can use the public key derivation algorithm to derive a new public key
pkID on her hot wallet and transfer the excess funds to pkID. Note that this requires no interaction with
the cold wallet. At a later point in time, the cold wallet can come online for a brief moment and spend
the funds from pkID, using a matching secret key skID derived via the secret key derivation algorithm.
As far as security goes, we would like to ensure two properties. First, unlinkability ensures that keys
derived from the same master key pair are indistinguishable from random keys, given that the hot wallet
has not leaked the chaincode to the attacker. Second, unforgeability ensures that even if the hot wallet
leaks the chaincode (e.g., because it has been corrupted), signatures from derived keys should still remain
unforgeable. While unlinkability is easy to achieve, unforgeability is a much more subtle issue in this
setting, as the derived keys are all correlated once the chaincode has been revealed to the attacker. Hence,
the standard unforgeability property of the underlying signature scheme is no longer sufficient to ensure
unforgeability of signatures under these derived keys.

1.2 Limitations of Existing Works
The work of Das et al. [DFL19] was the first to provide a formal model to reason about the aforementioned
security properties. It also showed how to achieve secure constructions in their proposed model from
various different signature schemes used in practice, e.g., Schnorr, BLS, and ECDSA. Notably, the latter
construction is very practical and can be integrated directly with the (unmodified) Bitcoin system. In
spite of these achievements, their work makes no progress towards formally proving security properties
for the BIP32 wallet standard that is widely used in many real-world systems. Let us discuss the reasons
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for this in a little more detail.
First, the construction of Das et al. uses a multiplicative rerandomization to derive keys, in which keys

for identity ID are computed from ω = H(mpk, ch, ID) as pkID := mpk · ω, and skID := msk · ω (mod p).
By comparison, as we saw above, BIP32 uses an additive rerandomization. Although this might look like
a minor difference, we will see later that the proof technique and security guarantees achieved by the
additive version differ significantly from the multiplicative one. Second, the work of Das et al. does not
consider the hierarchical key derivation mechanism provided by BIP32. Hierarchical deterministic wallets
allow for keys in the wallet to act simultaneously as signing keys and as parent (master) keys to derive
new child keys in their own right. As a useful example, consider a company that wishes to delegate new
signing key pairs to different entities within the company. Unfortunately, it cannot be guaranteed that
all entities in the company store their keys securely and some of them might be leaked to the adversary
over time. Such a strong adversary cannot be captured by the model and constructions of Das et. al.
Since many wallets that are used in practice follow the BIP32 standard, it is crucial to provide a formal
analysis of the scheme as is, meaning without any modifications to it.

1.3 Our Contributions
In this work we address the above shortcomings and provide, for the first time, a formal analysis of the
full BIP32 specification in the hot/cold wallet setting. An important implication of our work is that we
can establish the exact security that is achieved by the current standard, which also leads us to propose a
minor modification that can significantly improve security without any additional costs.
Rerandomizing ECDSA. We begin by recalling the notion of unforgeability under honestly rerandomized
keys (UFCMA-HRK) introduced by Das et al. [DFL19]. As this notion will serve as the basis of our
wallet constructions, we review it in detail below. Compared to the standard notion of unforgeability
under chosen message attacks (UFCMA), the adversary in the UFCMA-HRK game initially obtains a
challenge public key pk and gets to query for rerandomizations of pk. The game returns the rerandomized
public key p̃k together with the (uniformly chosen) randomness ρ that was used in the rerandomization
process. The exact way that the rerandomization is actually done depends on the scheme; we are mostly
interested in the case where ECDSA keys are additively rerandomized as pk + G · ρ. The game then
allows the adversary to query for signatures relative to any of the rerandomized public keys that it has
previously obtained from the game. It is considered successful if it can return a forgery relative to any of
the requested keys p̃k on a message for which it has not previously asked for a signature under p̃k. As
observed by Das et al., this security notion is a weakened version of unforgeability under rerandomized
keys [FKM+16] in which the adversary can choose the random coins ρ itself and provide them to the
game. In Section 3, we prove that ECDSA with additive rerandomization satisfies UFCMA-HRK as long
as each message is signed only once per key. A first attempt is to naively follow the approach of Das
et al. who showed that ECDSA with multiplicative rerandomization satisfies UFCMA-HRK (without
any restrictions on the number of signatures per message). The main idea of Das et al.’s reduction from
UFCMA-HRK to UFCMA (both with respect to the ECDSA scheme) is to rely on a related key attack
(RKA) that is present in the multiplicatively rerandomized version of the ECDSA scheme. Concretely,
the RKA allows to transform a signature (r, s) on message m0 relative to a key pk0 into a signature
(r, s/ρ) on message m1 that is valid under the related key pk1 = pk0 · ρ, where ρ satisfies ρ = H(m0)

H(m1) . This
attack can be leveraged by the reduction to answer all signing queries in the UFCMA-HRK game. More
precisely, using the RKA, it is possible to transform signatures obtained from the signing oracle in the
UFCMA game into signatures relative to any of the rerandomized keys in the UFCMA-HRK game (via
programming of the random oracle). Hence, we are immediately faced with the following obstacle: this
RKA does not work if keys are additively rerandomized.
Extending to Additive Rerandomization. To overcome this issue with the existing reduction, we
present a new RKA which works for additively rerandomized ECDSA. The attack works as follows:
given a signature (r, s) on m0 relative to pk0, (r, s) is also a valid signature relative to the public key
pk1 = pk0 + ρ ·G on message m1, given that ρ = (H(m0)− H(m1))/r. Rather surprisingly, considering
ECDSA’s huge popularity, we are not aware of this attack having been noticed previously. Using our
new RKA, we are now able to (almost) make the simulation of signatures in Das et al.’s approach work.
However, there is a further issue that comes from the structure of the additive RKA. Suppose that the
reduction is directed to program the random oracle H on a message m so as to provide the attacker with
a signature relative to a (rerandomized) public key p̃k in the UFCMA-HRK game. The above RKA
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forces the reduction to program H on a value that depends on a particular signature (r, s) on m, which it
obtains from the signing oracle in the underlying UFCMA game. Now, the only signature on m that
the reduction can hand to the adversary under p̃k is (r, s). If the adversary requests another signature
on the same message m, we are not able to reply with a fresh signature, as we can program H on m
only a single time. For this reason, we have to restrict ourselves to one-per-message unforgeability. We
emphasize, however, that this notion of security (one signature per-message) is sufficient in our setting, as
transactions are identified by unique nonces in most cryptocurrencies (including Bitcoin) and hence never
signed twice. An additional benefit of our new reduction (compared to [DFL19]) is that it only requires
the weaker assumption that the underlying ECDSA scheme is one signature per-message unforgeable
in its own right. This is worth noting, as the work of Fersch et al. shows that ECDSA achieves this
property in the random oracle model [FKP17] (albeit with a very large security loss). By comparison,
the unrestricted security (i.e., UFCMA) of ECDSA remains only a conjecture in the plain random oracle
model. Our reduction also removes the need for the random salt present in Das et al.’s construction.
This is an important improvement, as it allows using BIP32 without Bitcoin’s scripting language, which
was required by the construction of Das et al. due to their use of the salt. Finally, we remark that our
reduction (by comparison to Das et al.) is non-tight and loses a factor proportional to the total number of
keys derived in the UFCMA-HRK game. We provide further discussion on this issue in the next section
and in Section 3.
Hierarchical Wallets. To complete the analysis of BIP32, the second part of our work focuses on formal
security properties when supporting hierarchies in deterministic wallet constructions (as is the case for
BIP32). As already hinted, the core difficulty in this setting is that some of the wallet’s keys may be
given to untrustworthy users who may leak their cold wallet keys to the adversary. If this happens, it is
important to ensure that the adversary does not gain information about secret keys further up in the
hierarchy. It is easy to see that this property is not achieved if all keys are derived using the derivation
algorithms described so far: if the adversary learns skID = msk + ρ (mod p), where ρ is computed as
ρ = H(mpk, ch, ID), then it can recover msk as msk = skID − ρ (mod p) and learn all cold wallet keys
that were ever derived using msk. Because of this, BIP32 offers a second mode of deriving keys called
hardened key derivation. Hardened keys are derived by changing the computation of the offset ρ above
to ρ = H(msk, ch, ID). Now, even when learning skID, it is not possible for the adversary to recover msk.
The downside of hardened key derivation is that the hot and cold wallet can no longer independently
derive keys (as the hot wallet does not know msk). Thus, this mode of derivation is not intended for use
in the hot/cold wallet paradigm, but simply to create keys with a higher degree of security. These keys
can either be stored (efficiently) as part of the main wallet or handed to users in the system without
any concern for other cold wallet keys. In Section 4, we state the syntactical definition and correctness
properties of a hierarchical deterministic wallet. We then introduce a security model that supports both
types of key derivations (hardened and non-hardened), as well as secret key leakage of hardened keys.
We refer to this notion of security as WUFCMA. In Section 5, we provide a generic construction HDWal
that transforms a signature scheme satisfying UFCMA-HRK into a hierarchical deterministic wallet with
WUFCMA security.1 In this way, we are able to complete the analysis of BIP32 by instantiating HDWal
with ECDSA using additive rerandomization.
On the Tightness of Our Construction. A particular focus of our work is to analyze the tightness
and concrete security achieved by our constructions, most notably BIP32. We have already mentioned
that our reduction from UFCMA-HRK to UFCMA of the ECDSA scheme with additive rerandomization
is non-tight. More precisely, it loses a factor proportional to the number of keys derived by the adversary
in the UFCMA-HRK game. Thus, our goal is to at least achieve the best possible tightness of our generic
transform HDWal. To this end, let us first consider the possible options for potential security losses. From
worst to best (excluding a tight reduction), the options are:

• Loss in the number of random oracle queries.

• Loss in the number of keys derived in the wallet (hardened or non-hardened).

• Loss in the number of signing oracle queries (assuming keys are used only once).

• Loss in the number of hardened keys leaked to the adversary.
1In case the underlying signature scheme has the one signature per message restriction, then the resulting wallet scheme

also does.
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The first three possibilities are quite catastrophic as the number of random oracle queries, signing oracle
queries, or keys derived in practice could be quite high. On the other hand, we expect the number
of leaked keys to be only a small portion of all the keys in a given wallet (we use 1% as an estimate
in our calculations). We are able to prove that HDWal indeed achieves a multiplicative security loss
proportional to only the hardened keys leaked to the adversary over the course of the lifetime of the wallet.
Furthermore, we show that any generic transform from UFCMA-RK (a stronger notion than what is used
in our construction) to WUFCMA must lose at least this factor. Hence, our construction HDWal achieves
the best possible parameters. To prove our results, we adapt the reduction/metareduction techniques
introduced by Coron in his seminal work [Cor02]. Given that his results deal with the tightness of unique
signatures (which is very different from our setting), this requires careful insight into his technique in
order to adapt it to our model.
Concrete Security Parameters. We conclude by giving a discussion of the concrete security levels
achieved by BIP32 and the multiplicative ECDSA scheme of Das et al., when plugged into HDWal. We
find that BIP32 gives roughly 94 bits of security according to our theorems and conservative choices of
parameters. We find that by comparison, the multiplicative version of Das et al. gives 114 bits of security
with a similarly efficient scheme. (We remark that using the techniques introduced in our paper, we can
also remove the salt in the multiplicatively rerandomizable ECDSA version of Das et al.). Given these
insights, we strongly recommend that the Bitcoin community switch rerandomizations in BIP32 from
additive to multiplicative, in particular since these changes essentially come for free.

1.4 Related Work
The most relevant previous work for us is by Das et al. [DFL19] as mentioned previously. However,
there have been other works which try to formalize cryptographic wallets. The work of Gutoski and
Stebila [GS15] proposes an alternative construction for hierarchical wallets where up to d session keys
can leak without the master secret key being compromised under the one-more discrete-log assumption.
However, their security model is weaker than our model (or the security model of Das et al. on which we
base our work). More precisely, in their model, the adversary cannot query the game for signatures under
uncompromised wallet keys. Furthermore, instead of the traditional security model where the adversary
wins if she can forge a signature, the adversary’s goal in their security definition is to extract the master
secret/public key pair. Another more recent work is by Luzio et al. [LFA20] where the authors design a
new hierarchical wallet scheme by using (deterministic) hierarchical key assignment schemes [ABFF09].
Unfortunately, their solution is not compatible with cryptocurrencies such as Bitcoin since their solution
requires a more sophisticated (signature) verification algorithm, where a certificate associated with the
user needs to be verified along with the signature.

Turuani et al. [TVR16] analyzed the Bitcoin Electrum wallet using automated verification in the
Dolev-Yao model. However, many automated verification models only consider “idealized” building blocks,
i.e., cryptographic building blocks that are perfectly secure. Consequently, this type of analysis excludes
weaknesses such as related key attacks, which are of fundamental relevance in the setting of deterministic
wallets.

Another line of work has considered the security of hardware wallets [MPs19, AGKK19] and implemen-
tation bugs in wallets (such as weak randomness) [CEV14, BR18, BH19]. Additionally, there have been
several works with focus on the use of threshold ECDSA signatures [KMOS19, GGN16, LN18, DKLs18]
and multi-signatures [BDN18] in (and outside of) wallet systems.

In a recent work, Alkadri et al. [ADE+20] have shown how to realize deterministic wallets that
are post-quantum secure. To this end, they suitably adapt the model and techniques of Das et al. by
considering an adversary with quantum computing power.

The concept of rerandomizable signature schemes was first introduced by Fleischhacker et al. [FKM+16]
and later used by [DFL19, ADE+20] for their wallet schemes. In addition, related key attacks have been
studied for signature schemes such as Schnorr [Sch90] in many previous works [FF13, KMP16, ZCC+15].
For ECDSA, Das et al. leveraged related key attacks to achieve a multiplicatively rerandomizable ECDSA
scheme which they prove secure w.r.t. the security notion of unforgeability under honestly rerandomizable
keys. Finally, Fersch et. al. [FKP16] provided the first security analysis of ECDSA in an idealized model.

5



2 Preliminaries
Notation. We use the notation s $← H to denote the uniform sampling of a variable s from the set H.
For an integer l, [l] denotes the set of integers {1, · · · , l}. We use upper case letters to denote algorithms.
For an algorithm A, we write y $← A(x) to denote the execution of a randomized algorithm A on input x
that outputs y. We write y ← B(x; ρ) to denote the execution of an algorithm B that, on input x and
randomness ρ, outputs y. Note that in this notation, B is deterministic. We use the notation y ∈ A(x)
to denote that y is in the set of possible outputs of A on input x.

In order to simplify our notation and definitions, we assume that public parameters par have been
securely generated and can be used throughout the paper as input to algorithms. We generally assume
that, initially, boolean variables are set to false, integers are set to 0, lists are set to ∅, and undefined
entries of lists are set to ⊥. For strings a, b ∈ {0, 1}∗, we write a = (b, ·) if b is a prefix of a and likewise,
we write a ≠ (b, ·) if a is not prefixed by b. We denote by κ the security parameter throughout the paper.

We use standard code-based security games [Sho04]. A game G is an interactive probability experiment
between an adversary A and an (implicit) challenger which provides answers to oracle queries posed by
A. The output of G when interacting with adversary A is denoted as GA. Finally, the randomness in
any probability term of the form Pr[GA = 1] is assumed to be over all the random coins in game G.

2.1 Signature Schemes
We now recall the definition of signature schemes and that of signature schemes with perfectly rerandom-
izable keys from [DFL19].

Definition 2.1 (Signature Scheme). A signature scheme is a tuple of algorithms Sig = (Sig.Gen,Sig.Sign,
Sig.Verify) which are defined as follows:

• Sig.Gen(par) : The randomized key generation algorithm Sig.Gen takes as input public parameters par
and outputs a public/secret key pair (pk, sk).

• Sig.Sign(sk,m) : The (possibly) randomized signing algorithm Sig.Sign takes as input a secret key sk
and a message m and outputs a signature σ.

• Sig.Verify(m, pk, σ) : The deterministic verification algorithm Sig.Verify takes as input a public key pk,
a signature σ, and a message m. It outputs either 1 (accept) or 0 (reject).

A signature scheme Sig is correct if the following holds: For all (pk, sk) ∈ Sig.Gen(par) and all m ∈ {0, 1}∗
we have that

σ $← Sig.Sign(sk,m)Pr[Sig.Verify(pk, σ,m) = 1] = 1.

Definition 2.2 (Signature Scheme with Perfectly Rerandomizable Keys). A signature scheme with per-
fectly rerandomizable keys is a tuple of algorithms RSig = (RSig.Gen, RSig.Sign, RSig.Verify,RSig.RandSK,
RSig.RandPK) where (RSig.Gen,RSig.Sign,RSig.Verify) are the standard algorithms of a signature scheme.
Moreover, we assume that the public parameters par define a randomness space R := R(par). Then the
algorithms RSig.RandSK and RSig.RandPK are defined as follows:

• RSig.RandSK(sk; ρ): The deterministic secret key rerandomization algorithm RSig.RandSK takes as
input a secret key sk and randomness ρ ∈ R and outputs a rerandomized secret key sk′.

• RSig.RandPK(pk; ρ): The deterministic public key rerandomization algorithm RSig.RandPK takes as
input a public key pk and randomness ρ ∈ R and outputs a rerandomized public key pk′.

We make the convention that for the empty string ϵ, we have that RSig.RandPK(pk; ϵ) = pk and
RSig.RandSK(sk; ϵ) = sk.

We further require:

1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and ρ $← R, the distributions of
(sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ)) ,
(sk′′, pk′′) $← RSig.Gen (par) .
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2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for all ρ ∈ R, and for all
m ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk; ρ) and pk′ ← RSig.RandPK(pk; ρ) satisfy:

Pr
σ

$←RSig.Sign(sk′,m)
[RSig.Verify

(
pk′, σ,m

)
= 1] = 1.

Security notion uf -cma1. In this work, we use the security notion of one-per message existential
unforgeability under chosen message attacks (uf -cma1) [FKP17] which is a slightly weaker variant of
the standard notion of existential unforgeability under chosen message attacks (uf -cma) security. In
contrast to standard uf -cma, in uf -cma1, the adversary is restricted to querying the signing oracle at
most once for each message. We formalize the uf -cma1 notion for a signature scheme Sig in the form of
a game uf -cma1Sig as follows.

Game uf -cma1Sig:

• Setup Phase: The challenger initiates a list as SigList← {ϵ} for storing messages and samples a pair
of keys (pk, sk) $← Sig.Gen(par). Then, A is run on input pk.

• Online Phase: A is given access to a signing oracle Sign which works as follows. On input a message
m, if m was queried in a previous Sign query, i.e., if m ∈ SigList, then ⊥ is returned. Otherwise, Sign
computes a signature on message m as σ $← Sig.Sign(sk,m). The message m is stored in the SigList
and the signature σ is returned as the answer.

• Output Phase: Finally, A wins the game if it can provide a forgery σ∗ on a message m∗, where (1)
m∗ is fresh, i.e., m∗ /∈ SigList and (2) σ∗ is a valid forgery, i.e., Sig.Verify(pk, σ∗,m∗) = 1.

For an algorithm A we define A’s advantage in the game uf -cma1Sig as AdvAuf -cma1Sig
= Pr[uf -cma1ASig =

1].
Security notion uf -cma-hrk1. For signature schemes with perfectly rerandomizable keys, we in-
troduce the notion of one-per message existential unforgeability under honestly rerandomizable keys
(uf -cma-hrk1), which restricts the security notion of existential unforgeability under honestly rerandom-
izable keys (uf -cma-hrk) as introduced by Das et al. [DFL19]. In this security notion, the signing oracle
cannot only return signatures under sk, but it can also return signatures that were produced with keys
that represent honest rerandomizations of sk. The term honest indicates that the randomness for the
rerandomization is chosen uniformly at random from R (by the game itself). Our security notion of
uf -cma-hrk1 restricts the notion of uf -cma-hrk in the sense that the signing oracle returns at most
one signature for each randomness/message pair (ρ,m). We formally model the notion of uf -cma-hrk1
for a rerandomizable signature scheme RSig in the form of a game uf -cma-hrk1RSig as follows.

Game uf -cma-hrk1RSig:

• Setup Phase: The challenger initializes two lists as SigList ← {ϵ} and RList ← {ϵ} and samples a
pair of keys (pk, sk) $← RSig.Gen(par). Then A is run on input pk.

• Online Phase:

– A is given access to an oracle Rand, which, upon a query, samples a fresh random value from R as
ρ $← R, stores ρ in the list RList, and returns ρ.

– A is given access to a signing oracle RSign which works as follows. On input a message m and
a randomness ρ, if ρ was not obtained via a prior Rand query (i.e., ρ /∈ RList), then return ⊥.
Otherwise, derive a pair of keys rerandomized with the randomness ρ, as sk′ ← RSig.SKDer(sk; ρ)
and pk′ ← RSig.PKDer(pk; ρ). If (pk′,m) ∈ SigList then return ⊥. Otherwise, a signature is derived
on message m under the secret key sk′ as σ ← RSig.Sign(sk′,m). The tuple (pk′,m) is stored in the
SigList and the signature σ is returned as the answer.

• Output Phase: A wins if it returns a forgery σ∗ together with a message m∗ and a public key
pk∗ ← RSig.PKDer(pk; ρ∗),2 s.t. following holds: (1) the randomness ρ∗ has been derived via a Rand
query, i.e., ρ∗ ∈ RList, (2) (m∗, ρ∗) is fresh, i.e., (pk∗,m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e.,
RSig.Verify(pk∗, σ∗,m∗) = 1.
2For simplicity, we tacitly assume that pk∗ identifies ρ∗. This can easily be achieved using appropriate bookkeeping.
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Algorithm EC[H0].Gen (par)
00 x $← Zp

01 X ← x ·G
02 sk← x
03 pk← X
04 Return (pk, sk)

Algorithm EC[H0].Sign (sk = x,m)
05 z ← H0(m)
06 t $← Zp

07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 06
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 06
14 Return σ := (r, s)

Algorithm
EC[H0].Verify (pk = X,σ,m)
15 Parse (r, s)← σ
16 If (r, s) ̸∈ Zp

17 Return 0
18 w ← s−1 mod p
19 z ← H0(m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 1: EC [H0] = (EC[H0].Gen, EC[H0].Sign, EC[H0].Verify): ECDSA signature scheme over to elliptic curve E using
hash function H0 : {0, 1}∗ → Zp.

For an algorithm A we define A’s advantage in game uf -cma-hrk1RSig as AdvAuf -cma-hrk1RSig
=

Pr[uf -cma-hrk1ARSig = 1].
Other than only allowing the adversary to ask for at most one signature per message, our definition

deviates from the one presented in [DFL19] by storing the tuples (pk′,m) in the list SigList instead of
just storing m. This change allows an adversary in the uf -cma-hrk1 game to query a signature for the
same message but under different public keys.

3 Security Analysis of Additively Rerandomizable ECDSA
In the following discussion, let E(par) denote an elliptic curve with base point G and prime order p.
Furthermore, assume hash functions H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp (modeled as random oracles).
In this section, we present a signature scheme with rerandomizable keys REC[H1] based on the standard
ECDSA scheme which we denote by EC[H0] (cf. Figure 1). REC[H1], as illustrated in Figure 7, works
in a similar way as EC[H0] with two main differences. (1) It is extended by two algorithms RandSK
and RandPK for the key rerandomization and (2) it is designed for key-prefixed messages. First, the
two algorithms RandSK and RandPK randomize a key pair by adding a random value to each key. This
is in contrast to the signature scheme with multiplicatively rerandomizable keys based on ECDSA as
presented by Das et al. [DFL19], where the rerandomization algorithms multiply a random value to each
key. Second, REC[H1] is designed for key-prefixed messages, i.e., upon executing REC[H1].Sign(sk,m) for
a secret key sk and a message m, the message is first extended to a key-prefixed message pm← (pk,m)
where pk represents the public key corresponding to sk. Then the prefixed message pm is signed under sk.

We prove that REC[H1] satisfies uf -cma-hrk1 security by providing a reduction from the uf -cma1
security of the standard ECDSA scheme EC[H0]. An integral part of the reduction is the observation that
there exists a so-called “related key attack” (RKA) in the scheme EC[H0]. An RKA allows to transform a
signature that is valid under a public key pk0 into a signature that is valid under another public key pk1
given there exists a specific relation between pk1 and pk0. The RKA in EC[H0] allows to use a signature
σ that is valid under a public key pk0 as a valid signature under a public key pk1 in case pk1 and pk0 are
related as pk1 = pk0 + ρ ·G, where ρ must satisfy ρ = H0(m0)−H1(m1)

r . We formally describe this related
key attack in the following Lemma.

Lemma 3.1 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Suppose
that σ = (r, s) is a valid signature on message m0 ∈ {0, 1}∗ w.r.t. EC[H0] and public key pk0, i.e.,
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Algorithm REC[H1].Sign (sk,m)
00 pm← (pk,m)
01 σ ← EC[H1].Sign (sk, pm)
02 Return σ

Algorithm
REC[H1].Verify (pk, σ,m)
03 pm← (pk,m)
04 Return
EC[H1].Verify (pk, σ, pm)

Algorithm
REC[H1].RandSK (sk; ρ)
00 sk′ ← (sk + ρ) mod p
01 Return sk′

Algorithm
REC[H1].RandPK (pk; ρ)
02 pk′ ← (pk + ρ ·G)
03 Return pk′

Figure 2: Key-prefixed version of the ECDSA signature scheme with perfectly rerandomizable keys REC[H1]
:= (REC[H1].Gen = EC[H1].Gen, REC[H1].Sign, REC[H1].Verify, REC[H1].RandSK, REC[H1].RandPK) based
on the ECDSA signature scheme EC[H1]. Above H1 : {0, 1}∗ → Zp denotes a hash function.
EC[H0].Verify(pk0, σ,m0) = 1. Furthermore, let ρ = H0(m0)−H1(m1)

r (mod p). Then σ is also a valid
signature on message m1 ∈ {0, 1}∗ w.r.t. EC[H1] and public key pk1 = pk0 + ρ ·G, i.e., EC[H1].Verify(pk1,
σ,m1) = 1.

Proof of Lemma 3.1. We have to show that EC[H1].Verify(pk1, σ,m1) = 1 for pk1 = pk0 + ρ · G and
ρ = H0(m0)−H1(m1)

r (mod p). Note that σ = (r, s), where s = t−1(H0(m0)+rsk0) (mod p) and r represents
the x-coordinate of the elliptic curve point t ·G for t $← Zp. As shown in Figure 1, EC[H1].Verify(pk1, σ,m1)
computes the following:

u1 ·G+ u2 · pk1

=H1(m1) · s−1 ·G+ r · s−1 ·
(

pk0 + H0(m0)− H1(m1)
r

·G
)

=s−1 ·G (H1(m1) + r · sk0 + H0(m0)− H1(m1))
=s−1 ·G (r · sk0 + H0(m0))
=t · (H0(m0) + rsk0)−1 · (H0(m0) + rsk0) ·G = t ·G

Since the x-coordinate of t ·G equals r (mod p), it holds that EC[H1].Verify(pk1, σ,m1) = 1.

The RKA from Lemma 3.1 can be extended to an RKA between the schemes EC[H0] and REC[H1]
such that a valid signature under pk0 for a prefixed message pm ← (pk1,m) in EC[H0] is also valid in
REC[H1] under pk1 for message m. This RKA allows to transfer a valid signature from EC[H0] to a valid
signature in REC[H1] and vice versa in case pk0 and pk1 satisfy the relation from Lemma 3.1. We formally
present this RKA in the following Lemma.

Lemma 3.2 Let H0, H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let m ∈ {0, 1}∗
and suppose that σ = (r, s) is a valid signature on message pm← (pk1,m) w.r.t. EC[H0] and public key pk0,
i.e., EC[H0].Verify(pk0, σ, pm) = 1. Furthermore, suppose that pk1 = pk0 + ρ ·G where ρ = H0(pm)−H1(pm)

r
(mod p). Then σ is also a valid signature on message m w.r.t. REC[H1] and public key pk1, i.e.,
REC[H1].Verify(pk1, σ,m) = 1.

Proof of Lemma 3.2. We have to show that REC[H1].Verify(pk1, σ,m) = 1 for pk1 = pk0 + ρ · G and
ρ = H0(pm)−H1(pm)

r (mod p), where pm← (pk1,m). Note that σ = (r, s), where s = t−1(H0(pm) + rsk0)
(mod p) and r represents the x-coordinate of the elliptic curve point t · G for t $← Zp. As shown in
figure 7, REC[H1].Verify(pk1, σ,m) first computes the prefixed message pm ← (pk1,m) and then runs
EC[H1].Verify(pk1, σ, pm). The rest follows from the proof of Lemma 3.1 with m0 = m1 = pm.

3.1 Security analysis of REC
In this section, we analyze the one-per message unforgeability of the honestly rerandomizable signature
scheme, or in short the uf -cma-hrk1 security of the scheme REC[H1]. We prove the following theorem.
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Theorem 3.3 Let H0,H1 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let A be an
algorithm that plays in the game uf -cma-hrk1REC[H1]. Then there exists an algorithm C running in
roughly the same time as A, such that

AdvCuf -cma1EC[H0] ≥

(
AdvAuf -cma-hrk1REC[H1]

−
q2

H1

p

)
· 1
q

where qH1 and q are the number of random oracle queries and Rand queries, respectively, that A makes.

Before providing the full formal proof of Theorem 3.3, we give some intuition on how we overcome
the main difficulties in our simulation. At a high level, the idea is to reduce the uf -cma-hrk1 security
of the additively rerandomizable ECDSA construction REC[H1] from the uf -cma1 security of ECDSA
construction EC[H0]. Therefore, the proof essentially consists of building a reduction C trying to come
up with a valid forgery to win the uf -cma1EC[H0] game, by simulating the uf -cma-hrk1REC[H1] game
to adversary A using the RKA from Lemma 3.2. In the uf -cma1EC[H0] game, C obtains a public key
pkC from its challenger. It can query an oracle Sign to get signatures w.r.t. pkC . C also has access to a
random oracle H0. C’s goal is to somehow embed its public key pkC in one of the rerandomized public keys
pk∗ under which A eventually returns a forgery (pk∗, σ∗,m∗). The hope is that C can use (pk∗, σ∗,m∗)
to win its own game uf -cma1EC[H0].

In more detail, C’s strategy works as follows. Instead of directly using pkC , C generates the challenge
public key for A by additively shifting pkC with a freshly sampled ρ̃ $← R, i.e., pk← pkC − ρ̃ ·G. When
A asks for a signature under a key pk′ = pk + ρ ·G, C can simulate such signatures by querying its Sign
oracle and employing the RKA from Lemma 3.2. This is because, to the adversary A, pk′ looks like a
rerandomization of pk, while in fact, it is derived from pkC as pk′ = pk + ρ ·G = (pkC − ρ̃ ·G) + ρ ·G.
To make this simulation work, the random oracle H1 must be carefully programmed by C such that
the relation between ρ, H0 and H1 satisfies H1(m) = H0(m)− r · ρ (mod p) (according to Lemma 3.2),
where (r, s) := σ is the signature3.Note that, due to the programming of the random oracle, the first
simulated signature for every message and randomness pair (m, ρ) fully determines H1(m). Hence, the
simulated signing oracle in uf -cma-hrk1REC[H1] can be queried at most once on every input pair (m, ρ).
C’s strategy to win uf -cma1EC[H0] is to embed ρ̃ at random as an answer to one of the Rand queries in
uf -cma-hrk1REC[H1]. For signing queries w.r.t. p̃k, C does not reprogram H1; instead, it uses H0 and
signatures obtained from the signing oracle in uf -cma1EC[H0] directly. If A returns a valid forgery σ∗

w.r.t. to pk∗ = p̃k = pk + ρ̃ ·G, then C can simply use this forgery to win the uf -cma1EC[H0] game. This
is because pk∗ = pk + ρ̃ · G = pkC − ρ̃ · G + ρ̃ · G = pkC. Note that pk∗ is the only key for which the
forgery σ∗ is valid in game uf -cma1EC[H0]. For any other key pk′, the simulation of the signing oracle
in uf -cma-hrk1REC[H1] requires to reprogram H1 on any message that is prefixed with pk′. Since this
involves a signing query on that very message to the signing oracle in uf -cma1EC[H0], the forgery would
no longer be fresh in the latter game. This guessing on C’s part is also the reason that our reduction is
not tight.

We now provide the full formal proof.

Proof. For this proof, we consider an adversary A playing in the uf -cma-hrk1REC[H1] game relative to a
random oracle H1. Below, we present a series of games GGG0 to GGG6 where the following holds.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[G6G6G6

A = 1] + qH1
2

p

Game G0G0G0: This game is equivalent to the original game, namely uf -cma-hrk1AREC[H1]. In particular,
a key pair (sk, pk) is sampled as (sk, pk) $← REC[H1].Gen(par). The adversary A is given pk as the
challenge public key and oracle access to Rand, RSign and random oracle H1. A can query Rand to
receive a randomness ρ and make a follow-up query to RSign to receive a signature on message m
with respect to the rerandomized key pk′ ← pk + ρ · G. In particular, A is allowed to query RSign
on every input pair (m, ρ) at most once. Additionally, A can make direct queries to the random
oracle H1. Eventually, in order to win the game, A has to come up with a valid forgery σ∗ on a

3An important aspect of this simulation is that C can program H1 whenever it observes a query m to H1 that is prefixed
with a previously rerandomized key. In particular, this can be done before m is ever queried to the signing oracle in
uf -cma-hrk1REC[H1].
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new message m∗ with respect to a randomness ρ∗. Since G0G0G0 proceeds as uf -cma-hrk1 we have that
Pr[G0G0G0

A = 1] = Pr[uf -cma-hrk1AREC[H1] = 1] = AdvAuf -cma-hrk1REC[H1]
.

Game G1G1G1: This game is similar to game G0G0G0 with the following modification. A is now given a public
key p̃k instead of pk (which served as the challenge public key in GGG0) as the challenge public key. p̃k is
derived as p̃k← pk− ρ̃ ·G with a freshly sampled randomness ρ̃ $← R. The corresponding secret key is
obtained as s̃k = sk− ρ̃.

Due to the perfect rerandomizablity of keys of the rerandomizable signature scheme REC, pk is
indistinguishable from p̃k. Hence, we have Pr[G0G0G0

A = 1] = Pr[G1G1G1
A = 1].

Game G2G2G2: This game is similar to game G1G1G1 with the following modification in the Rand oracle. An index
j is sampled uniformly at random from the set {1, . . . , q}, where q is an upper bound on the number of
queries to the oracle Rand. The game returns ρ̃ at the jth Rand query. For all other queries, ρ is sampled
randomly as ρ $← R.

Since both ρ̃ and ρ are sampled randomly from R, the output distribution of the Rand oracle is the
same in games G1G1G1 and G2G2G2. Hence, we have Pr[G2G2G2

A = 1] = Pr[G1G1G1
A = 1].

Game G3G3G3: This game behaves exactly like the game G2G2G2 with the following modifications: First, the game
internally maintains a random oracle H0 (in addition to H1) in a straightforward manner, by storing a list
H0 of query/response pairs. Second, the game programs the oracle H1 by maintaining three lists H1, H ′1
and Γ, where the first two will be used as possible replies to queries to H1, and Γ stores pre-computed
signatures. In the beginning of the game, H1, H ′1 and Γ are initially set to ⊥ in each entry. Whenever
A queries a message m to H1, the values H1[m], H ′1[m] and Γ[m] are set in one of two ways depending
on whether m is prefixed with a public key pk′ or not. Here, pk′ is a rerandomized form of the public
key p̃k (i.e., pk′ ← p̃k + ρ · G where ρ ← Rand is a previous answer to any Rand oracle query), where
p̃k = pk− ρ̃ ·G (see Game GGG1). Concretely, on query m to H1, the lists H1, H ′1 and Γ are maintained in
the following way:

• If H1 has already been programmed in a previous query, i.e., H1[m] ̸= ⊥, return H1[m].

• Else H1[m] = ⊥, then sample uniformly at random h $← Zp, set H1[m] = h, and proceed as follows:

– Case 1: m is of the form (pk′,m′), where pk′ = p̃k + ρ ·G = pk + (ρ− ρ̃) ·G, for ρ ∈ RList. Derive
a signature σ as σ ← REC[H1].Sign(sk′,m′) for sk′ = s̃k + ρ = sk + (ρ − ρ̃) (mod p) and parse
σ := (r, s). Then set H ′1[m] = H0[m]− r · (ρ− ρ̃) (mod p) and Γ[m] = σ. Finally return H1[m].

– Case 2: m is not of the form (pk′,m′). Set Γ[m] = ϵ and return H1[m].

In both the cases, the output of H1 is uniformly distributed from A’s point of view. It follows that
Pr[G2G2G2

A = 1] = Pr[G3G3G3
A = 1].

Game G4G4G4: This game proceeds as the previous game with a modification in the Rand oracle. Upon A
querying the Rand oracle, sample ρ as before, then compute the rerandomized public key pk′ ← p̃k + ρ ·G
and check if there exists a message m with prefix pk′ such that Γ[m] = ϵ. In that case, the game aborts.

Claim 3.4 Let E1 be the event that the game G4G4G4 aborts during a Rand query. Then, we have that
Pr[E1] ≤ qH1

2

p .

Proof. Event E1 can only occur if A has queried H1 on input m with prefix pk′ ← p̃k + ρ · G prior to
making a query to Rand that returns ρ. Since A makes at most qH1 queries to H1, for each query to
Rand that the adversary A makes, we have that with probability qH1

p we receive a value ρ such that
pk′ ← p̃k + ρ ·G is a prefix of input m that was earlier made to H1. Since there are at most q such queries
to Rand by taking the union bound over qH1 we obtain Pr[E1] =

∑qH1
i=1

qH1
p = qH1

2

p .

From the above, we have that Pr[G3G3G3
A = 1] ≤ Pr[G4G4G4

A = 1] + qH1
2

p .
Game G5G5G5: This game is similar to the game G4G4G4 except for a modification in the RSign oracle. Upon A′s
query on input (m, ρ), the game simulates the RSign oracle in the following manner. It computes the
rerandomized public key pk′ ← p̃k + ρ · G and creates the public key prefixed message pm ← (pk′,m).
The signature is implicitly derived via querying the simulated random oracle H1 (see Game G3G3G3 above) on
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input the prefixed message pm. This results into Γ[pm] = σ = REC[H1].Sign(sk′,m), which is returned as
the response to the signature query.

Observe that all queries to RSign on input the tuple (m, ρ) output the same signature. However,
since ECDSA signatures are randomized, the output of RSign should be different with overwhelming
probability for each query on the same input tuples. Here, we exploit that A is allowed to query RSign
at most once for the same input pair (m, ρ). Hence, the output distribution of RSign is identical to the
distribution of the RSign oracle in the previous game and it holds that Pr[G4G4G4

A = 1] = Pr[G5G5G5
A = 1].

Game G6G6G6: This game is similar to game G5G5G5 except for the following changes: In the oracles RSign and
H1 the game uses EC[H0].Sign instead of REC[H1].Sign to compute the signatures stored in Γ (and in case
of RSign this implicitly happens via H1). More precisely, when H1 is queried on pm = (pk′,m′), where
pk′ = p̃k + ρ ·G = pk + (ρ− ρ̃) ·G for ρ ∈ RList, we derive σ ← EC[H0].Sign(sk, pm), for sk′ = sk + (ρ− ρ̃)
(mod p). Furthermore, upon H1 being queried on m, H1 returns H ′1[m] instead of H1[m] whenever
Γ[m] ̸= ⊥ and Γ[m] ̸= ϵ.

Claim 3.5 It holds that Pr[G5G5G5
A = 1] = Pr[G6G6G6

A = 1].

Proof. First, note that in this game, H1 returns H0[m]−r · (ρ− ρ̃) on a message m for which a signature is
stored in Γ. We have to show now that when H1 is queried on pm = (pk′,m′), where pk′ = pk + (ρ− ρ̃) ·G
and sk′ = sk + (ρ− ρ̃) (mod p) for ρ ∈ RList, we derive σ ← EC[H0].Sign(sk, pm) (Game G6G6G6) instead of
computing σ ← REC[H1].Sign(sk′,m′) (Game G5G5G5).

To this end, we recall Lemma 3.2, which states that if σ = (r, s) is a valid signature for pm← (pk′,m′)
under pk w.r.t. EC[H0], it is also a valid signature for m′ under pk′ ← pk + (ρ− ρ̃) ·G w.r.t. REC[H1], if
it holds that H1(pm) = H0(pm)− r · (ρ− ρ̃) (mod p). Note that we replaced the REC[H1].Sign procedure
call on a message m′ in G5G5G5 by a EC[H0].Sign procedure call on a prefixed message pm← (pk′,m′), where
pk′ = pk + (ρ − ρ̃) · G. It remains to show that the condition H1(pm) = H0(pm) − r · (ρ − ρ̃) (mod p)
holds. But since H ′1[pm] = H0[pm]− r · (ρ− ρ̃) (mod p) is programmed accordingly (latest when RSign
is queried), this follows directly.

Combining results from GGG0 to GGG6, we have that

Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] + qH1
2

p
. (1)

Reduction to uf -cma1 security. Having shown that the original uf -cma-hrk1AREC[H1] game is indistin-
guishable from game G6G6G6, it remains to show that an adversary A winning in game GGG6 can be turned into
an adversary C that wins uf -cma1CEC[H0] game with related success probability. To this end, we construct
C that runs in the game uf -cma1CEC[H0] and simulates to A game GGG6. Thus, C proceeds as game GGG6 and
leverages oracle access to its own signing oracle (with respect to its challenge public key) in the following
way:

1. On input the challenge public key pkC from uf -cma1EC[H0], the adversary C sets pk to pkC . Note that
this implicitly sets the challenge public key in C’s simulation of GGG6 to p̃k = pkC − ρ̃ ·G. Hence, C runs
A on input p̃k.

2. In case A returns a forgery (m∗, σ∗, ρ∗) with ρ∗ ̸= ρ̃, C aborts.

C perfectly simulates GGG6 for A except in case where it aborts. Moreover, note that in case there is no
abort, we have that

pk∗ = p̃k + ρ∗ ·G = pkC − ρ̃ ·G+ ρ̃ ·G = pkC .

From the above programming strategy, we conclude that for A’s queries to H1 that are prefixed with pk∗,
the oracles H0 and H1 are identical. It remains to calculate the success probability of C in winnning the
uf -cma1EC[H0] game in case A returns a valid forgery.

Claim 3.6 Let E2 be the event that A outputs (m∗, σ∗, ρ∗) s.t. (pm∗, σ∗) constitutes a valid forgery in
game uf -cma1CEC[H0]. Then, we have that Pr[E2|G6G6G6

A = 1] ≥ 1
q , where q is the number of queries to the

Rand oracle.
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Proof. In order to prove this claim, we need to show that with probability 1
q it must hold that (1)

(pm∗, σ∗) is a valid forgery in game uf -cma1CEC[H0] under public key pkC and (2) the Sign oracle of the
uf -cma1CEC[H0] game has not been queried on input pm∗.
First, note that if σ∗ is a valid signature for message (pk∗,m∗) under the public key pk∗ relative to
REC[H1], then σ∗ is also a valid signature on pm∗ under public key pkC = pk∗ relative to EC[H0], as H0
and H1 are identical for messages prefixed with pk∗. Since there are at most q possible values of ρ∗ and C
chooses one of them uniformly at random, the probability that C’s guess is correct is at least 1

q . Note that
from the adversary’s perspective, the public key generated at index j is no different than other public
keys.
Second, since (m∗, σ∗, ρ∗) is a valid forgery in uf -cma-hrk1AREC[H1], A has not previously queried the
RSign oracle on input (m∗, ρ∗). Correspondingly, the Sign oracle of the uf -cma1EC[H0] game has also
not been queried on message pm∗ and hence, (pm∗, σ∗) is a valid forgery in uf -cma1EC[H0].

From Eq. 1 we get the following.

AdvAuf -cma-hrk1REC[H1]
= Pr[GGGA0 = 1] ≤ Pr[GGGA6 = 1] +

q2
H1

p

or, Pr[GGGA6 = 1] ≥ AdvAuf -cma-hrk1REC[H1]
−
q2

H1

p

Since C can use a valid forgery by A in its own game whenever E2 occurs,

AdvCuf -cmaEC[H0] ≥ Pr[GGGA6 = 1] · Pr[E2 |GGGA6 = 1] = Pr[GGGA6 = 1] · 1
q

≥

(
AdvAuf -cma-hrk1REC[H1]

−
q2

H1

p

)
· 1
q

4 A Model for Hierarchical Deterministic Wallets
In this section, we introduce a formal model for hierarchical deterministic wallets. This model closely
reflects the BIP32 specification [Wik18] with only minor differences which we list in Section 6. At a high
level, a hierarchical deterministic wallet scheme can be visualized as a tree, where every node in the tree
corresponds to a wallet. As is usual in a tree structure, the scheme originates from a root node, which
contains a pair of master keys - a master public key mpk and a master secret key msk as well as a seed
ch0,0 which we will refer to as chaincode from now on. We say that the root node is located at level 0 of
the tree. The root can create a child node at level 1 and position t by deriving a new key pair (pk1,t, sk1,t)
and a chaincode ch1,t from its master keys and chaincode ch0,0. This child node represents a new wallet
that is initiated with the key pair (pk1,t, sk1,t) and chaincode ch1,t and using these values it can in turn
create a child node for level 2. This child creation process can continue recursively. Note, however, that a
node at level i can only create children for the immediate lower level, i.e., for level i+ 1.

In our model, we distinguish between two different kinds of nodes, namely non-hardened and hardened
nodes. Non-hardened nodes are, in essence, the nodes as discussed above, i.e., nodes that can be used for
child creation at the next lower level. We assume that the public key and the chaincode of a non-hardened
node can be corrupted by an adversary, whereas the secret key remains protected. One might think of
non-hardened nodes as wallets in the hot/cold wallet setting, where the hot wallet stores the public key,
the cold wallet stores the secret key and the chaincode is provided to both wallets. While the hot wallet
is permanently online and thereby vulnerable to attacks, the cold wallet stays offline for the majority of
the time and is therefore protected against attacks. To create a non-hardened child node at level i and at
position t, its parent must generate the child node’s key pair (pki,t, ski,t) and chaincode chi,t. We model
the derivation of these values in such a way that the derivation process of ski,t involves the parent’s secret
key, while the derivation of pki,t and chi,t requires only the parent’s public key and chaincode (i.e., it is
independent of the parent’s secret key).
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Hardened nodes, on the other hand, represent the leaves of the tree, i.e., we do not consider any
child derivation from hardened nodes4. However, in comparison to non-hardened nodes we allow secret
key leakage, along with public key and chaincode leakage for hardened nodes. That is, we consider full
corruption of hardened nodes. Our security goal is that the secret key leakage of a hardened node does
not affect the security of any other node in the tree. As opposed to non-hardened nodes, the creation
process of a hardened child node requires the secret key of the parent node, i.e., even for the derivation of
the child’s public key and chaincode . The tree structure of a hierarchical deterministic wallet scheme,
containing hardened as well as non-hardened nodes can be found in Figure 3.

While hardened nodes clearly exhibit stronger security guarantees than non-hardened nodes, the
advantage of non-hardened nodes lies in the child creation process. We will illustrate this advantage in
the following example. In a company there might be trusted and untrusted employees. Trusted employees
operate a non-hardened node, as they are trusted to properly protect their secret key, e.g., by storing it in
a cold wallet. On the other hand, untrusted employees have to operate a hardened node as they might leak
their secret key or simply get compromised. Assume a trusted employee maintains a non-hardened node
with key pair (pki,t, ski,t) and chaincode chi,t. Further assume that the node is operated in a hot/cold
wallet setting, i.e., the tuple (ski,t, chi,t) is stored in a cold wallet and the tuple (pki,t, chi,t) is stored
in a hot wallet. If the employee wishes to receive payments to different public addresses, it can simply
generate these addresses by deriving non-hardened child public keys using only the information stored
in its hot wallet. In particular, the cold wallet can remain offline during this process. Only when the
employee wants to spend the coins it received, it has to use ski,t from the cold wallet to generate the
secret keys corresponding to the public addresses it generated earlier.

Another example for the usefulness of non-hardened nodes is the following. Consider a company A
that operates a non-hardened node with key pair (pki,t, ski,t) and chaincode chi,t only to receive payments
from a company B. In this case, company A can simply share pki,t and chi,t with company B, which can
then by itself generate non-hardened child public keys and make the payments to those addresses. Note
that in this case, company A does not have to be involved in the payment process at all.

Root

NH

NH

H H

NH

H H

NH

H H

NH

NH

H H

NH

H

level 0

level 1

level 2

Figure 3: Tree structure of a hierarchical deterministic wallet scheme. Hardened nodes are denoted by H
while non-hardened nodes are denoted by NH.

Flat Vs Hierarchical Deterministic Wallets. Let us now briefly discuss the main difference between
the model for hierarchical deterministic wallets and the setting originally analyzed by Das et. al [DFL19]
which we denote as the flat model. The key derivation process in the flat model works in the same way as
the non-hardened key derivation in the hierarchical model with the difference that the flat model allows to
derive keys only directly from the master key pair. Hardened nodes are not considered in the flat model.
Therefore, the flat model basically represents a hierarchical wallet structure with non-hardened leaf nodes
at level 1 (see Figure 4). Since the flat model allows only for non-hardened key derivation, the essential
difference to the hierarchical model is that the flat model cannot allow for any secret key leakage as this
would render the entire scheme insecure. Hierarchical wallets, on the other hand, introduce hardened
nodes whose secret keys can be leaked without affecting the security of any other node in the tree.

In the following, we refer to a tree as a tuple (h, n0,0,N , E) if (N , E) defines a tree of height h with
node set N and edge set E , and a root node n0,0 ∈ N . We denote a directed path pt

i of length i from the
4We show in Appendix A that child derivation of hardened nodes is possible under certain conditions.
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Figure 4: Tree structure of a deterministic wallet scheme in the flat setting.

root to a node ni,t ∈ N at level i and position t in the tree as the corresponding ordered sequence of
edges pt

i = (e1, · · · , ei) ∈ E i. A path of length 1 from a node ni−1,s ∈ N to a node ni,t ∈ N consists of
only one edge which we denote as es,t

i ∈ E .

Definition 4.1 (Address Structure). Let T = (h, n0,0,N , E) be a tree. Define a labeling of the nodes in
N as follows.

• The root node n0,0 is labeled by an address addr0,0.

• For 1 ≤ t < |N | and 0 ≤ i ≤ h, a node ni,t ∈ N is labeled by an address addri,t := (addr0,0, p
t
i).

A tuple (T ,Addr) is said to be an address structure (with respect to T ) if Addr consists of a set of labels
for the nodes in N that meets the above requirements. A prefix address addrj

i,t for a node ni,t ∈ N
with 0 ≤ j < i ≤ h and t < |N | is a vector of length j + 1 consisting of the first j + 1 components of
addri,t ∈ Addr.

We are now ready to define hierarchical deterministic wallets. In short, these schemes consist
of a Setup algorithm, which initializes the root node, hardened and non-hardened secret and public
key derivation algorithms SKDerH,PKDerH and SKDerNH,PKDerNH and finally signing and signature
verification algorithms Sign and and Verify. We assume that public parameters par are known to all
parties and we define appropriate secret and public key sets SK and PK respectively. We assume there
exists a function ToPubKey : SK → PK that on input a secret key from SK outputs the corresponding
public key in PK. Formally we have:

Definition 4.2 (Hierarchical Deterministic Wallets). Let T = (h,
n0,0,N , E) be a tree. A hierarchical deterministic wallet scheme is defined w.r.t. an address struc-
ture (T ,Addr) and consists of seven algorithms HDWal = (Setup,SKDerH,SKDerNH,PKDerH,PKDerNH,
Sign,Verify) which are defined as follows:

• Setup(1κ): The probabilistic setup algorithm takes as input a security parameter 1κ and outputs a
non-hardened master key pair (msk0,0,mpk0,0) with msk0,0 ∈ SK, mpk0,0 ∈ PK and a chaincode ch0,0.

• SKDerH(ski,s, chi,s,addri,s, es,t
i+1): The deterministic hardened secret key derivation algorithm takes as

input a secret key ski,s ∈ SK, a chaincode chi,s, an address addri,s ∈ Addr for level i < h, positions
s, t, as well as an edge es,t

i+1 ∈ E . It outputs a secret key ski+1,t ∈ SK, a chaincode chi+1,t and an
address addri+1,t ∈ Addr for level i+ 1 and position t.

• SKDerNH(ski,s, pki,s, chi,s,addri,s, es,t
i+1): The deterministic non-hardened secret key derivation algo-

rithm takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a secret key
ski+1,t ∈ SK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerH(ski,s, pki,s, chi,s,addri,s, es,t
i+1): The deterministic hardened public key derivation algorithm

takes as input a secret key ski,s ∈ SK, a public key pki,s ∈ PK, a chaincode chi,s, an address
addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a public key
pki+1,t ∈ PK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.

• PKDerNH(pki,s, chi,s,addri,s, es,t
i+1): The deterministic non-

hardened public key derivation algorithm takes as input a public key pki,s ∈ PK, a chaincode chi,s, an
address addri,s ∈ Addr for level i < h, positions s, t, as well as an edge es,t

i+1 ∈ E . It outputs a public
key pki+1,t ∈ PK, a chaincode chi+1,t and an address addri+1,t ∈ Addr for level i+ 1 and position t.
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• Sign(ski,s,m): The probabilistic signing algorithm takes as input a secret key ski,s and a message m.
It outputs a signature σ.

• Verify(pki,s,m, σ): The probabilistic verification algorithm takes as input a public key pki,s, a message
m and a signature σ. It outputs 0 or 1.

A hierarchical deterministic wallet is correct, if a secret and public key pair is derived correctly using
the algorithms SKDerH,PKDerH or SKDerNH,PKDerNH, the keys represent a valid signing key pair.

We denote keys with subscript nh (e.g., sknh,·,· or pknh,·,·) as non-hardened keys and keys with subscript
h (e.g., skh,·,· or pkh,·,·) as hardened keys. A key without the subscript nh or h indicates that it can be
both a non-hardened or hardened key.

Definition 4.3 (Correctness of Hierarchical Deterministic Wallets). Let HDWal be a hierarchical de-
terministic wallet scheme with respect to an address structure (T ,Addr). For any e0,s

1 ∈ E and any
(ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ), we define tuples (skh,1,s, ch1,s,addr1,s) and (pkh,1,s, ch1,s,addr1,s)
as

(skh,1,s, ch1,s,addr1,s) := SKDerH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

(pkh,1,s, ch1,s,addr1,s) := PKDerH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

and tuples (sknh,1,s, ch1,s,addr1,s) and (pknh1,s, ch1,s,addr1,s) as

(sknh,1,s, ch1,s,addr1,s) := SKDerNH(msknh,0,0, ch0,0,addr0,0, e0,s
1 )

(pknh,1,s, ch1,s,addr1,s) := PKDerNH(mpknh,0,0, ch0,0,addr0,0, e0,s
1 ).

Further, for any addri−1,s ∈ Addr, and any edge es,t
i ∈ E we define the tuples (skh,i,t, chi,t,addri,t)

and
(
pkh,i,t, chi,t,addri,t

)
recursively as

(skh,i,t, chi,t,addri,t) := SKDerH(sknh,i−1,s, chi−1,s,addri−1,s, es,t
i )(

pkh,i,t, chi,t,addri,t

)
:= PKDerH(sknh,i−1,s, chi−1,s,addri−1,t, es,t

i )

and tuples (sknh,i,t, chi,t,addri,t) and
(
pknh,i,t, chi,t,addri,t

)
as

(sknh,i,t, chi,t,addri,t) := SKDerNH(sknh,i−1,s, chi−1,s,addri−1,s, es,t
i )(

pknh,i,t, chi,t,addri,t

)
:= PKDerNH(pknh,i−1,s, chi−1,s,addri−1,s, es,t

i )

HDWal is correct if for all m ∈ {0, 1}∗, all 1 ≤ i ≤ h, all 1 ≤ t ≤ (1 − dh+1)/(1 − d), and all
(ch0,0,msknh,0,0,mpknh,0,0) ∈ Setup(1κ) it holds that

Pr
σ←Sign(skh,i,t,m)

[Verify(pkh,i,t, σ,m) = 1] = 1

∧ Pr
σ←Sign(sknh,i,t,m)

[Verify(pknh,i,t, σ,m) = 1] = 1.

4.1 Oracles
Let us now describe the general capability and influence that the adversary has over the hierarchical
wallet schemes. An adversary is allowed to create new hardened and non-hardened nodes in the tree.
Furthermore, the adversary can corrupt the hot wallet of all non-hardened nodes, thereby learning the
public key and the chaincode of these nodes, as well as learning the secret key and chaincode of the
hardened nodes. As we mentioned earlier, since hardened keys are given to untrustworthy nodes, the
adversary is able to corrupt both their hot and cold wallets and as such, we do not consider the hardened
nodes to derive new children. One way to look at hardened nodes, is that such nodes are the root of a new
tree. We will later show in App. A that an adversary cannot distinguish hardened key pairs from freshly
generated keys except with negligible probability. Therefore, our model can be recursively extended to
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consider settings where the hardened nodes can also derive new keys. Finally, the adversary can query
any node on a freely chosen message m and receive a signature for this message. To model the above
mentioned capabilities, we describe the oracles which the adversary gets access to in the unlinkability
game unlHDWal and the unforgeability game wufcma1HDWal.

Initially, two lists SK = ∅ and CH = ∅ are initialized. These are used throughout the oracles to
bookkeep which secret keys and chaincodes have been leaked to the adversary. In the following, we
consider a fixed address structure (T ,Addr).

• Hardened Child Creation HChildO: On inputs an address addri,s and an edge es,t
i+1 from A,

return ⊥ if the address addri,s belongs to a hardened node or the address addri,s is not valid (i.e.,
addri,s /∈ Addr). Further, return ⊥, if the address addri+1,t exists already. Otherwise, compute the
keys and chaincode (skh,i,s, pkh,i,s) and chi,s for the node addri,s by recursively deriving keys along
the path in the tree, starting from the first node in the path that has already been assigned a key.
Create a hardened child with address addri+1,t as follows. Generate keypair (skh,i+1,t, pkh,i+1,t) by
executing both secret and public key derivation algorithms.

(skh,i+1,t, chi+1,t,addri+1,t)← SKDerH(sknh,i,s, chi,s,addri,s, es,t
i+1)

(pkh,i+1,t, chi+1,t,addri+1,t)← PKDerH(sknh,i,s, chi,s,addri,s, es,t
i+1).

Return pkh,i+1,t.

• Non-Hardened Child Creation NHChildO: On inputs an address addri,s and an edge es,t
i+1 from

A, return ⊥ if the address addri,s belongs to a hardened node or the address addri,s is not valid (i.e.,
addri,s /∈ Addr). Further, return ⊥, if the address addri+1,t exists already. Otherwise, compute the
keys and chaincode (skh,i,s, pkh,i,s) and chi,s for the node addri,s by recursively deriving keys along
the path in the tree, starting from the first node in the path that has already been assigned a key.
Create a non-hardened child with address addri+1,t as follows. Generate keypair (sknh,i+1,t, pknh,i+1,t)
by executing both key derivation algorithms

(sknh,i+1,t, chi+1,t,addri+1,t)← SKDerNH(sknh,i,s, chi,s,addri,s, es,t
i+1)

(pknh,i+1,t, chi+1,t,addri+1,t)← PKDerNH(pknh,i,s, chi,s,addri,s, es,t
i+1).

Return pknh,i+1,t.

• Signing HDSignO: On input message m and an address addri,s from A, proceed as follows. Return ⊥
if the address addri,s is not valid (i.e., addri,s /∈ Addr). Further, check if addri,s has already been
queried to either NHChildO or HChildO and return ⊥ if this is not the case. Let ski,s be the secret
key for the node with address addri,s. Then compute a signature σ ← Sign(ski,s,m), add m to the
message list SigList[addri,s] and return σ.5

• Chaincode Leakage CHLeakO: On input an address addri,s from A, check if addri,s has already
been queried to either NHChildO or HChildO and return ⊥ if this is not the case. Set CH[addri,s] = 1
to denote that the chaincode chi,s of address addri,s has been leaked and return (pki,s, chi,s).

• Secret Key Leakage (for hardened node) SKLeakO: On input an address addri,s from A, check
if the address is that of the root, i.e., addri,s = addr0,0 or if the address belongs to a non-hardened
node; in this case, return ⊥. Further, check if addri,s has already been queried to either NHChildO
or HChildO and return ⊥ if this is not the case. Else, set SK[addri,s] = 1 and CH[addri,s] = 1 to
denote that the secret key skh,i,s and the chaincode chi,s of address addri,s have been leaked and
return (skh,i,s, chi,s).

4.2 Unlinkability
Intuitively, the notion of unlinkability for hierarchical deterministic wallets guarantees that public keys in
the tree, i.e., public keys that have been derived directly or indirectly from the master key of the tree

5In case of one-per message unforgeability, the oracle aborts if it has been queried previously on input (m, addri,s).
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root, cannot be distinguished from from a freshly generated public key. More concretely, the distribution
of public keys from the tree should be computationally indistinguishable from a distribution of public
keys that have been derived from an independently chosen master key. While this is a valuable privacy
notion, it does not quite model practical scenarios in the hot/cold wallet setting. Recall that this setting
assumes public keys and chaincodes to be stored in hot wallets, which are prone to corruptions. Therefore,
we extend the unlinkability notion as described above in the following way. We consider hot wallet
corruption upon which the public key and chaincode of the corrupted wallet are leaked. This extended
notion gives more power to the adversary and is more close to the capabilities that an adversary has
in real life scenarios. Naturally, the adversary can distinguish the distribution of keys derived from
public keys of corrupted hot wallets from a distribution of public keys that have been derived from an
independently chosen master key. Therefore, in our new unlinkability notion the adversary should not be
able to distinguish the distribution of keys derived from non-compromised hot wallets and keys derived
from independently chosen master keys.

In the following we describe the unlinkability game unlHDWal with respect to a challenger C and
an adversary A. In the first step of the game, the challenger generates a fresh master key pair and a
chaincode via the execution of Setup(1κ). The adversary receives the master public key as input and
obtains access to all oracles as described in subsection 4.1. At some point, the adversary outputs an
address addri,s and an edge es,t

i+1 and receives a public key from the challenger. This public key is either
the correct key for the node at address addri,s or a public key derived for a random address from a fresh
master public key. A wins the game if it can successfully distinguish these two scenarios. In the following
we give a detailed description of the game unlHDWal:

Game unlHDWal:

• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0)← Setup(1κ) and sends mpk0,0 to A.

• Online Phase: On input the security parameter and the master public key mpk0,0, the adversary A
is allowed to make queries to the oracles as explained in subsection 4.1.

• Output Phase: Eventually, A chooses an address addri,s, an edge es,t
i+1 and a value c ∈ {h, nh} and

sends them to the challenger. Let (ski,s, pki,s) be the key pair and chi,s the chaincode of the node
at address addri,s. If the address addri,s belongs to a hardened node, C returns ⊥. Otherwise, the
challenger chooses a bit b $← {0, 1} and generates a public key pki+1,t as follows:

– If b = 0:
∗ If c = h: C computes (pkh,i+1,t, ·, ·)← PKDerH(sknh,i,s, chi,s,addri,s, es,t

i+1).
∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been leaked, i.e.,

CH[addrj
i,s] = 1, for any j < i, then C returns ⊥. Else, C computes (pknh,i+1,t, ·, ·) ←

PKDerNH(pknh,i,s, chi,s,addri,s, es,t
i+1).

– If b = 1: The challenger computes (ch′0,0,msk′0,0,mpk′0,0)← Setup(1κ).

∗ If c = h: C derives a public key pk′h,1,t ← PKDerH(msk′0,0, ch′0,0,addr0,0, e0,t
1 ).

∗ If c = nh: If the chaincode for addri,s or any of its prefix addresses has been leaked, i.e.,
CH[addrj

i,s] = 1, for any j < i, then C returns ⊥. Else C derives a public key pk′nh,1,t ←
PKDerNH(mpk′0,0, ch′0,0,addr0,0, e0,t

1 ).
– Based on the value of b and c, the challenger sends to the adversary either pkh,i+1,t or pknh,i+1,t or

pk′h,1,t or pk′nh,1,t.

• The adversary can continue to make oracle queries under the restrictions as mentioned above.

• Eventually, A outputs a bit b′ and wins the game if b = b′.

We define the advantage of an adversary A in unlHDWal as

AdvAunlHDWal
:=
∣∣∣∣Pr[unlAHDWal = 1]− 1

2

∣∣∣∣ .
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On Forward Unlinkability The model of hierarchical wallets as defined in Definition 4.2 in Section 4
is stateless. In other words, each node in the tree maintains a fixed chaincode chi,s which is used as an
input parameter for the child key derivation algorithms. If the (non-hardened) public key pki,s as well as
the chaincode chi,s of a node are leaked (e.g., due to a hot wallet corruption of the node in the hot/cold
wallet setting), then the adversary can as well compute the non-hardened keys in the entire sub-tree
under pki,s. Consequently, unlinkability of the sub-tree is lost. To enhance the unlinkability property, we
can extend our model to a stateful variant where, each node maintains a state Stt

i,s. On every child key
derivation, the state of the node is refreshed to a new state Stt+1

i,s . As a result of this modification, we
can guarantee forward unlinkability for hierarchical wallets, which is similar to the standard notion of
forward security. Precisely, on a hot wallet corruption, the adversary learns the current state Stt

i,s and
the public key pki,s of a node. However, the existing children of this node were derived from earlier states
Stt′

i,s, for t′ < t - which are not known to the adversary. Thus it can no longer break the unlinkability of
the existing child keys in the sub-tree under pki,s. However, it would be able to link any future child keys
derived from pki,s.

4.3 Unforgeability
The notion of unforgeability for hierarchical deterministic wallets in the hot/cold wallet setting guarantees
that an adversary cannot forge a signature of any uncorrupted node in the tree. In our model, non-
hardened keys are always stored in hot/cold wallets, i.e., the secret keys are secured in the cold wallet
storage, which cannot be corrupted by an adversary. Hardened keys, on the other hand, can be stored on
any device and are thereby prone to corruption. Therefore, we allow an adversary to corrupt hardened
secret keys, while non-hardened secret keys must remain uncorrupted.

In more detail, the unforgeability game proceeds as follows. The challenger generates a master key pair
and a chaincode via the execution of Setup(1κ). The adversary receives the master public key and obtains
access to the oracles as described in subsection 4.1. Eventually, the adversary outputs a forgery, i.e., a
message and a signature for a specific node in the tree. The adversary wins the game, if the signature is
valid, the message has not been queried to the signing oracle HDSignO for this specific node before and
the cold wallet of the node is uncorrupted. We note that a slightly weaker variant of unforgeability for
hierarchical deterministic wallets is the notion of one-per message unforgeability, where the security game
proceeds exactly as the game of the unforgeability notion with the difference that the adversary is allowed
to query the HDSignO oracle only once for each message/address pair. We now give a detailed description
of the unforgeability game wufcma1HDWal.

Game wufcma1HDWal:

• Setup Phase: The challenger computes (ch0,0,msk0,0,mpk0,0) ← Setup(1n) and sends ch0,0 and
mpk0,0 to A.

• Online Phase: On input the security parameter, the adversary A is allowed to make queries to the
oracles as explained in subsection 4.1.

• Output Phase: Eventually, A outputs a public key pki∗,s∗ , a message m∗, an address addri∗,s∗ and
a signature σ∗. A wins if all of the following conditions hold,

– Verify(pki∗,s∗ , σ∗,m∗) = 1
– m∗ /∈ SigList[addri∗,s∗ ]
– Either addri∗,s∗ belongs to a non-hardened node or addri∗,s∗ belongs to a hardened node and

its secret key has not been corrupted, i.e., SK[addri∗,s∗ ] = 0.

We define the advantage of an adversary A in wufcma1HDWal as

AdvAunlHDWal
:= Pr[wufcma1AHDWal = 1].
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5 Generic Construction
In this section, we first show how to generically construct a hierarchical deterministic wallet scheme
HDWal from a signature scheme with perfectly rerandomizable keys RSig = (RSig.Gen,RSig.RandSK,
RSig.RandPK,RSig.Sign,RSig.Verify). We denote the construction of HDWal with respect to a signature
scheme with rerandomizable keys RSig by HDWal[RSig]. Our generic construction HDWal[RSig] uses
internally a hash function H : {0, 1}∗ → R×{0, 1}κ. We detail our construction in Figure 5. Subsequently,
we analyze the security of our generic construction by proving the unlinkability and the unforgeability
properties of HDWal[RSig]. We defer the full proof for unlinkability of HDWal[RSig] to Appendix A. In
the following subsection, we present the theorem that states that HDWal[RSig] satisfies wufcma1HDWal
security with a loss in the security reduction. We then show that this loss is indeed unavoidable which
means that our security reduction is optimal.

Algorithm HDWal[RSig].Setup(par)
00 ch0,0

$← {0, 1}κ

01 (msk0,0,mpk0,0) $← RSig.Gen(par)
02 Return (msk0,0,mpk0,0, ch0,0)

Algorithm HDWal[RSig].Sign(ski,s,m)
00 σ ← RSig.Sign(ski,s,m)
01 Return σ

Algorithm
HDWal[RSig].Verify(pki,s, σ,m)
00 0/1← RSig.Verify(pki,s, σ,m)
01 Return 0/1

Algorithm HDWal[RSig].SKDerH(ski,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].SKDerNH(ski,s, pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 ski+1,t ← RSig.RandSK(ski,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (ski+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].PKDerH(ski,s, pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(ski,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t,addri+1,t)

Algorithm HDWal[RSig].PKDerNH(pki,s, chi,s,addri,s, es,t
i+1)

00 (ω, chi+1,t)← H(pki,s, chi,s, es,t
i+1)

01 pki+1,t ← RSig.RandPK(pki,s;ω)
02 addri+1,t ← addri,s ∥ es,t

i+1
03 Return (pki+1,t, chi+1,t,addri+1,t)

Figure 5: Generic construction of a hierarchical deterministic wallet scheme HDWal[RSig] from a signature
with perfectly rerandomizable keys RSig. HDWal[RSig] is defined w.r.t. an address structure (T ,Addr),
where T = (h, n0,0,N , E), such that addri,s ∈ Addr and es,t

i ∈ E for 0 ≤ i ≤ h and 1 ≤ s, t ≤ |N |.
We denote by (pki,s, ski,s) and chi,s the public/secret key pair and chaincode of the node with address
addri,s. We denote by H a hash function H : {0, 1}∗ → R× {0, 1}κ.

5.1 Unforgeability of Generic Construction
We now analyze the unforgeability property of our generic construction HDWal[RSig] of a hierarchical
wallet. We require the following properties from the underlying signature scheme RSig. RSig must satisfy
(1) the definition of a signature scheme with rerandomizable keys as well as (2) a transitive property of
the keys. We formally define the latter below.

Definition 5.1 (Transitive Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,RSig.RandSK,
RSig.RandPK) be a signature scheme with perfectly rerandomizable keys. We say that RSig transitively
rerandomizes if there exists an operation ⊙ : R × R → R s.t. for all (sk, pk) ∈ RSig.Gen(par) and all
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(ρ, ρ′) ∈ R×R, the values (sk′, pk′), (sk′′, pk′′), ρ̃ which are defined as

(sk′, pk′)← (RSig.RandSK(sk; ρ),RSig.RandPK(pk; ρ))
(sk′′, pk′′)← (RSig.RandSK(sk′; ρ′),RSig.RandPK(pk′; ρ′)),
ρ̃ = ρ⊙ ρ′ satisfy
(sk′′, pk′′) = (RSig.RandSK(sk; ρ̃),RSig.RandPK(pk; ρ̃)).

Definition 5.2 (Invertible Rerandomization). Let RSig = (RSig.Gen, RSig.Sign, RSig.Verify,RSig.RandSK,
RSig.RandPK) be a signature scheme with perfectly rerandomizable keys. We say that RSig has invertible
rerandomization if there exist (efficient) algorithms RandSK−1 and RandPK−1 s.t. for all (sk, pk) ∈
RSig.Gen(par) and all ρ ∈ R it holds

sk = RandSK−1(RSig.RandSK(sk; ρ); ρ)
pk = RandPK−1(RSig.RandPK(pk; ρ); ρ)

We note that the signature schemes with rerandomizable keys based on Schnorr [FKM+16], BLS
[DFL19] and ECDSA (additive variant presented in Section 3 of this work and multiplicative variant
presented in [DFL19]) all satisfy the properties of transitive rerandomization and invertible rerandmization
as defined in Definitions 5.1, 5.2. For the Schnorr, BLS and additive ECDSA based schemes, the ⊙
operation is a simple addition, while for the multiplicative ECDSA scheme it is a multiplication (modulo
the group order p). Below we state our theorem for the one-per message unforgeability property of
HDWal[RSig].

Theorem 5.3 Let HDWal[RSig] be the construction defined in Figure 5, let H : {0, 1}∗ → R×{0, 1}κ be a
hash function modeled as a random oracle and let RSig be a signature scheme with rerandomizable keys that
satisfies the property of transitive rerandomization and invertible rerandomization as in Definitions 5.1, 5.2.
Let A be an adversary playing in the game wufcma1AHDWal[RSig], then there exists an algorithm C running
in roughly the same time as A, and that makes as many queries to the oracle Rand in uf -cma-hrk1 as
A makes queries to NHChildO/HChildO such that

AdvCuf -cma-hrk1RSig
≥ 1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
.

where qsk is the number of SKLeakO oracle queries from A.

We stated Theorem 5.3 w.r.t. the one-per message unforgeability notions of hierarchical deterministic
wallet schemes and signature schemes with reradomizable keys, because these notions are sufficient in
the setting of deterministic wallets. This is because wallets sign each unique transaction at most once.
However, we note that we can likewise state and prove the above theorem with respect to the standard
unforgeability notions, i.e., the notions that do not restrict the adversary to obtain at most one signature
on a specific message.

In the following, we provide the full formal proof of Theorem 5.3.

Proof. The proof of Theorem 5.3 exhibits an adversary C who uses the adversary A who plays in game
wufcma1AHDWal[RSig] to win its own game uf -cma-hrk1CRSig. The main idea of our proof is that C guesses
in advance which hardened nodes A might corrupt (i.e., calls the SKLeakO oracle on). In case the guess
of C is wrong, C cannot answer all SKLeakO oracle queries from A and therefore has to abort. This
leads to a polynomial loss in the number of SKLeakO oracle queries (i.e., qsk) in C’s advantage in its
uf -cma-hrk1CRSig game. We use Coron’s technique as presented in [Cor02] to bound this loss.

We now provide the formal proof via a series of games GGG0 to GGG6.
Game GGG0: This is the regular wufcma1HDWal[RSig] game at the beginning of which a key pair (pk, sk)

is generated and the adversary A is given as input pk and oracle access to the following oracles: HChildO,
NHChildO, HDSignO, CHLeakO and SKLeakO oracles and a random oracle H. The random oracle H is
internally programmed in a straight forward manner, by maintaining a list H. In particular, on input
s, if H[s] ̸= ⊥, then return H[s]. Otherwise, sample a fresh randomness ρ $← R and a fresh value as
ψ $← {0, 1}κ and set (ρ, ψ) =: H[s] and return H[s]. In addition, the game keeps a list R in which it
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stores the randomness used to derive the keys at position s and level i at entry R[i, s]. We have that
AdvAwufcma1HDWal[RSig]

= Pr[wufcma1AHDWal[RSig] = 1] = Pr[GGGA0 = 1].

Game GGG1: Upon generating the key pair (pk, sk), the game chooses a fresh chaincode ch0,0
$← {0, 1}κ

and fresh randomness ρ $← R. Then it derives the root public key for the wufcma1HDWal[RSig] game as
mpk0,0

$← RSig.RandPK(pk; ρ), stores ρ in a list as R[0, 0] = ρ. The game sends ch0,0 and mpk0,0 to A.
Since the randomness ρ is chosen uniformly at random from R, the rerandomizability of keys

property of the signature scheme RSig holds. This implies that the distributions of (·,mpk0,0) and
(·,mpk′0,0) $← RSig.Gen(par) are identical. Therefore, it holds that Pr[GGGA1 = 1] = Pr[GGGA0 = 1].

Game GGG2: This game behaves like GGG1 with a modification in the NHChildO oracle. Upon an oracle query
on input (addri,s, es,t

i+1) the NHChildO oracle executes PKDerNH(pki,s, chi,s,addri,s, es,t
i+1) and creates the

public key pknh,i+1,t at level i+ 1 and position t as pknh,i+1,t ← RandPK(pk;ω ⊙R[i, s]), i.e., the public
key pknh,i+1,t is derived directly from pk with randomness ω ⊙R[i, s], where (ω, ·)← H(pki,s, chi,s, es,t

i+1).
The game then sets the list R[i+ 1, t] = ω⊙R[i, s]. If any of the values (pki,s, chi,s,addri,s, R[i, s]) is not
defined yet, the game recursively derives the path from the root node up to (pki,s,addri,s) and updates
the list up to R[i, s].

Note that RandPK(pk;ω ⊙R[i, s]) and RandPK(pknh,i,s;ω) derive the same key pknh,i+1,t, due to the
transitive property of rerandomizable keys. Since ω and R[i, s] are uniformly at random from R, we have
that Pr[GGGA2 = 1] = Pr[GGGA1 = 1].

Game GGG3 : This game proceeds similarly to the previous game with a modification in the random oracle.
The game aborts upon the adversary querying the random oracle on input (sknh,i,s, ·, ·) where sknh,i,s

is either a non-hardened secret key that corresponds to a public key pknh,i,s previously output by the
NHChildO oracle or sknh,i,s is the master secret key msk0,0 corresponding to mpk0,0.

Claim 5.4 Let ϵ be the probability that game GGG3 aborts during a random oracle query. Then there
exists an algorithm C1 playing in game uf -cma-hrk1RSig such that AdvC1

uf -cma-hrk1RSig
≥ ϵ.

Proof. We prove this claim by providing a reduction to the uf -cma-hrk1 security of RSig. More
concretely, we show that there exists an algorithm C1 with AdvC1

uf -cma-hrk1RSig
≥ ϵ assuming C1 has access

to an adversary A that causes GGG3 to abort with probability ϵ. Initially, C1 receives as input a public key
pk from the uf -cma-hrk1RSig game and chooses at random a chaincode ch $← {0, 1}κ. From pk and ch,
C1 can honestly simulate the NHChildO and CHLeakO oracles to A. The simulation of the random oracle
H works as described in GGG3 with the exception that instead of sampling the randomness ρ $← R uniformly
at random from R, C1 calls the Rand oracle in game uf -cma-hrk1RSig to obtain the randomness ρ. A
query from A to the HDSignO oracle on input (m,addr·,·) is forwarded to the RSign oracle on input m
and the randomness corresponding to addr·,· of the uf -cma-hrk1C1

RSig game. For a HChildO oracle query
on input (addri,s, es,t

i+1), C1 chooses a fresh key pair (independently of pk) (sk′, pk′) $← RSig.Gen(par),
assigns (skh,i+1,t, pkh,i+1,t) :− (sk′, pk′) and returns pkh,i+1,t. The SKLeakO oracle is then simulated by
returning skh,i+1,t on input addri+1,t. The simulation of the HChildO and HDSignO oracles cannot be
distinguished by A from the oracles in GGG3 due to the rerandomizability of keys property of RSig. The
only way in which A could detect the difference between GGG3 and the reduction provided by C1 would
be if the following event occurs. A makes a random oracle query of the form (sknh,i,s, ·, ·) where sknh,i,s

is either a non-hardened secret key that corresponds to a public key pknh,i,s previously output by the
NHChildO oracle or sknh,i,s is the secret key corresponding to pk (if sknh,i,s belongs to a public key pknh,i,s

can be efficiently checked via the function ToPubKey(sknh,i,s)). By Claim 5.4, this event happens with
probability ϵ. However, when this event occurs, C1 learns the secret key sknh,i,s which it can use to
compute the secret key sk of the uf -cma-hrk1RSig game. This is due to the transitivity and invertible
rerandomization property of RSig. C1 can then use sk to create a valid forgery in the uf -cma-hrk1C1

RSig
game. Therefore, we have that AdvC1

uf -cma-hrk1RSig
≥ ϵ.

It follows that Pr[GGGA2 ] ≤ Pr[GGGA3 ] + ϵ.

Game GGG4 : This game works like the previous game with a modification to the HChildO oracle which
works as follows. Let qsk be the number of hardened nodes that A corrupts via the SKLeakO oracle. Upon
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A querying the HChildO oracle, with probability 1
qsk+1 , the address of this node is added to a list L. Let

Bad define the event that a node corresponding to an address in L is corrupted.
Since the change in this game is only syntactical, A’s winning probability is not affected by whether

Bad occurs. It follows that Pr[GGGA3 ] = Pr[GGGA4 ].

Game GGG5 : This game works like the previous game with the only difference that GGG5 aborts in case event
Bad occurs.

Lemma 5.5 Pr[GGGA4 = 1] ≤ Pr[GGGA5 = 1] · e.

Proof. A can distinguish GGG5 from the previous game if the game aborts i.e., when the event Bad happens.
This event happens for each SKLeakO query, independently, with probability 1

qsk+1 . With probability
(1− 1

qsk+1 ), a SKLeakO oracle query does not lead to an abort. Hence, the overall probability with which
the game does not abort on any SKLeakO oracle query can be lower bounded by (1− 1

qsk+1 )qsk ≥ e−1, i.e.,
Bad occurs with probability at most 1− e−1. As we have argued that Bad occurs in GGG4 independently of
the event GGG4 = 1, we have that Pr[GGGA4 = 1] = Pr[GGGA5 = 1] · 1/Pr[¬Bad] ≤ Pr[GGGA5 = 1] · e.

Game GGG6 : This game works like the previous game with a modification to the HChildO oracle which
works as follows. For the nodes that are chosen to be added to the list L, the game derives the public key
of that node as a public key of a non-hardened node. The rest of the hardened nodes are generated as
(sk, pk) $← RSig.Gen(par) and assigned (skh,i+1,t, pkh,i+1,t) := (sk, pk).

Lemma 5.6 Pr[GGGA5 = 1] = Pr[GGGA6 = 1].

Proof. A can distinguish GGG6 from the previous game if it corrupts a hardened node which is simulated as
a non-hardened node i.e., one of the nodes in the list L. The only other way for A to distinguish these
two games would be if A was able to query the random oracle on input the secret key of a non-hardened
node as this would allow to recursively compute the secret key of the corresponding child hardened node.
This case is, however, has already been excluded in G3G3G3. As explained in game GGG5, upon A making a
corruption query for a node in list L, the game aborts. Therefore, the adversary cannot distinguish this
game from the previous game.

By the transition from game GGG0 to game GGG6, we get that

AdvAwufcma1HDWal[RSig]
= Pr[GGGA0 = 1] ≤

(
Pr[GGGA6 = 1] · e

)
+ ϵ

or, Pr[GGGA6 = 1] ≥ 1
e
· AdvAwufcma1HDWal[RSig]

− 1
e
· ϵ

Reduction to uf -cma-hrk security. Having shown that the transition from game wufcma1AHDWal[RSig]
to the game GGG6 is indistinguishable, it remains to show that there exists a challenger C2 that simulates GGG5
and uses A to win its own game uf -cma-hrk1RSig. The challenger code is same as GGG6 with the following
changes: (1) The sampling of ρ $← R within the programming of H is replaced by a call to the oracle Rand
(2) pk is replaced by the challenge public key pkC2 from the underlying game uf -cma-hrk1C2

RSig. Since
the above changes are trivially indistinguishable to A, we move on to analyze C2’s probability to win
the uf -cma-hrkC2

RSig game using the forgery of A. There are two possibilities for A; either to output a
forgery for a non-hardened node or for a hardened node. We analyze each case separately and show that
for both cases our simulator can win its game with non-negligible probability.

• Adversary outputs a forgery for a non-hardened node: If the adversary provides a forgery for a non-
hardened node, C2 can always use this forgery to win the uf -cma-hrkC2

RSig game. Therefore, the overall
probability of C2 winning the game in case of A generating a forgery for a non-hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1] ≥ 1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e
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• Adversary outputs a forgery for a hardened node: We now compute the probability that the game
aborts in case the adversary generates a forgery for a hardened node.
Let i∗ be the index of the hardened node for which the adversary outputs a forgery. In this case
C2 needs to abort if i∗ was sampled randomly. Recall, the probability that i∗ has been sampled at
random is 1− 1

qsk+1 . Therefore, the overall probability of the simulator winning the game in case of A
generating a forgery for a hardened node is:

AdvC2
uf -cma-hrk1RSig

≥ Pr[GGGA6 = 1] · 1
qsk + 1 ≥

(
1
e
· AdvAwufcma1HDWal[RSig]

− ϵ

e

)
· 1
qsk + 1

We can now compose a challenger C from the challengers C1 of Claim 5.4 and C2, such that C uses
adversary A to win in its game uf -cma-hrk1CRSig. C executes either of C1 and C2 with probability 1

2 . In
order to compute C’s advantage AdvCuf -cma-hrk1RSig

, we distinguish the following two cases:

• Case ϵ ≥ 1
2 AdvAwufcma1HDWal

: In this case, we have by claim 5.4 that

AdvC1
uf -cma-hrk1RSig

≥ ϵ ≥ 1
2AdvAwufcma1HDWal

.

Therefore we can lower bound C’s advantage by

AdvCuf -cma-hrk1RSig
≥ 1

2AdvC1
uf -cma-hrk1RSig

≥
AdvAwufcma1HDWal

4 .

• Case ϵ < 1
2 AdvAwufcma1HDWal

: In this case, we can lower bound C2’s advantage by

AdvC2
uf -cma-hrk1RSig

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− ϵ

e

)
· 1
qsk + 1

≥
(

AdvAwufcma1HDWal[RSig]
· 1
e
− 1

2e · AdvAwufcma1HDWal[RSig]

)
· 1
qsk + 1

= 1
2e(qsk + 1) · AdvAwufcma1HDWal[RSig]

Hence, C’s overall advantage can be lower bounded by

AdvCuf -cma-hrk1RSig
≥ min

(
1
2AdvC1

uf -cma-hrk1RSig
,

1
2AdvC2

uf -cma-hrk1RSig

)
≥ 1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
.

The proof of Theorem 5.3 incurs a polynomial loss in the number of SKLeakO oracle queries (i.e., qsk)
in C’s advantage in its uf -cma-hrk1CRSig game. Interestingly, the following theorem states that this loss
is inherent and that, in fact, there does not exist a tighter security reduction. In Appendix B, we recall
the security notion of unforgeability under rerandomized keys uf -cma-rkRSig for a signature scheme with
rerandomizable keys RSig as introduced in [FKM+16] and prove Theorem 5.7. Below, we denote as AA2

1
that A1 has black-box access to A2. In particular, it does not rewind A2.

Theorem 5.7 Let HDWal be an algorithm such that for any signature scheme with rerandomizable keys
RSig, HDWalRSig is a hierarchical deterministic wallet scheme. Moreover, suppose that there is a reduction
R such that for every signature scheme with rerandomizable keys RSig and every adversary A running in
time tA with ϵA = AdvAwufcma1HDWalRSig

, it holds that AdvR
A

uf -cma-rkRSig
≥ ϵR and RA runs in time tR. Then

there exists an algorithm M running in time tM ≤ 2 · tR s.t. AdvMuf -cma-rkRSig
≥ ϵR − ϵA · 2 exp(−1)

qsk
.
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Theorem 5.7 implies that if there exists a reduction from
uf -cma-rkRSig to wufcma1HDWalRSig for a signature scheme with rerandomizable keys RSig s.t. the
reduction loses less than a factor proportional to qsk, then there exists an efficient algorithm M that
can break the uf -cma-rkRSig security. We formulate and prove this result w.r.t. a reduction from the
strongest possible security notion of signature schemes with rerandomizable keys (i.e., uf -cma-rk) to the
restricted notion of one-per message wallet unforgeability (i.e., wufcma1HDWal). Clearly, this implies that
the result from Theorem 5.7 also holds for the weaker notion of uf -cma-hrk1 for signature schemes with
rerandomizable keys which we use in Theorem 5.3. We note that Theorem 5.7 can likewise be stated and
proved with respect to the standard unforgeability notion of hierarchical deterministic wallet schemes,
i.e., the notion that does not restrict the adversary to obtain at most one signature on a specific message.

6 Discussion
On Security Parameters We instantiate our generic hierarchical deterministic wallet construction
HDWal[RSig] with two schemes, namely REC[H1] (Figure 7) and REC′[H1] (Figure 6). Note that
HDWal[REC[H1]] corresponds to the BIP32 wallet, while HDWal[REC′[H1]] is instantiated from the
multiplicatively rerandomized construction REC′[H1] from [DFL19], we will refer to it as BIP32-m.

First, let us recall, how to compute the bit security level of a scheme. A hierarchical wallet scheme
HDWal is said to have a bit security level of κ bits, if any algorithm A with running time t and advantage
ϵ in wufcma1HDWal takes expected running time t

ϵ ≥ 2κ to break the scheme for the first time. (The
security level for a conventional signature scheme is defined analogously). From our Theorems C.1, C.2,
we compute the bit security level of our schemes, considering an algorithm A with parameters t′, ϵ′ (in
game wufcma1HDWal), where t′ ≈ t and ϵ′ = ϵ · Q for some Q ≥ 1 and where t, ϵ denote the runtime
and advantage of the related forger C in game uf -cma1EC. By assumption, EC satisfies κ = 128 bits of
security, hence t

ϵ ≥ 2128. Thus, we obtain t′

ϵ′ = t
ϵ·Q ≥

2128

Q = 2κ−log Q. Our results are reported in Table 1,
where we took an estimate of the practical parameters as follows: the total number of keys is q = 220, the
number of qsk of secret keys leaked is roughly 1% of the total number of keys q, i.e., qsk ≈ 214.

Scheme Theorem Ref. Bit Security with κ = 128
BIP32 Thm C.1 log(Q) = log(q · 4e · qsk) ≈ 37, κ− log(Q) = 91

BIP32-m Thm C.2 log(Q) = log(4e · qsk) ≈ 17, κ− log(Q) = 111

Table 1: Bit Security Level of BIP32 and BIP32-m, relying on uf -cma1 of EC[H0]

On BIP32 Parameters. Our construction of HDWal[REC[H1]] gives us the BIP32 construction as
specified in [Wik18]. Here we list the exact parameters used in BIP32 and minor differences of BIP32
with our construction HDWal[REC[H1]].

• Each node can derive at most 232 children nodes.

• e·,·· is chosen from {0, 1}32, which allows each non-hardened node to generate 231 non-hardened and
231 hardened child keys.

• A child key is derived as a hardened or a non-hardened node based on whether e·,·· ≥ 231 or ≤ 231

respectively. However, this is syntactical, and does not affect our security analysis.

• Although at each level, the total number of derived keys can be at most (232) ·p, where p is the number
of parent nodes in the immediate upper level, we do not imagine that all of these keys are derived at
every level. As can be seen, this would already exceed our parameter q = 220, as selected above.

• The chaincode ch·,· is chosen from {0, 1}256.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string. We use this
parameter to indicate the position in the tree, at which the child key is derived and to ensure that the
actual BIP32 derivation algorithms are called on the proper inputs for this position.

• The input parameter addr·,· to the key derivation algorithms is set to an empty string λ. Let us
briefly explain this syntactical difference. In our Definition 4.2, addr·,· ≠ λ is provided as input. This
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makes the user aware of the position in the tree, at which the child key is derived and makes sure that
the actual BIP32 derivation algorithms are called on the proper inputs for this position in the tree.

Open Questions Finally, let us mention some interesting open questions that can be answered in future
works:

• Is it possible to remove the one per-message restriction and prove the security of the additively
rerandomizable ECDSA scheme in the uf -cma-hrk notion? Additionally, is there a tight reduction to
uf -cma-hrk?

• Can we improve the tightness of uf -cma1 security [FKP17] of ECDSA from the semi-logarithm
problem?
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A Unlinkability Proof of Generic Construction
Theorem A.1 Let HDWal[RSig] be the construction defined in Figure 5. Then for any adversary A
playing in game unlAHDWal[RSig] there exists an adversary A1 that plays in the game uf -cma-hrk1RSig such
that

AdvAunlHDWal[RSig]
≤ qH(qC + 1)

2κ
+ AdvA1

uf -cma-hrk1RSig

where qH and qC are the number of random oracle and child creation queries from A, respectively.

Proof. Consider the unlAHDWal[RSig] game for an adversary A. In the beginning, the challenger generates a
fresh master key pair and chaincode

(msknh,0,0,mpknh,0,0, ch0,0)← HDWal[RSig].Setup(par)

and runs A on inputs the security parameter and the master public key mpknh,0,0. During the output phase
of the unlAHDWal[RSig] game, A outputs a tuple (addri,s, es,t

i+1, c), where es,t
i+1 is the edge from the node with

address addri,s to the challenge node with address addri+1,t and c indicates if addri+1,t is a hardened or
non-hardened node. In case addri,s is a hardened node, the game aborts and hence we have that the adver-
sary’s advantage is 0, i.e.,
AdvAunlHDWal[RSig]

= 0. Likewise, if A has previously queried the CHLeakO oracle on address addri,s or
any of its prefix addresses, i.e., CH[addrj

i,s] = 1 for any j < i, and if the challenge node is non-hardened
(i.e., c = nh) then the game aborts and we have that AdvAunlHDWal[RSig]

= 0.
Let pknh,i+1,t and pknh,1,t denote the challenge public keys in case A challenges a non-hardened node

(i.e., c = nh) with address addri+1,t. Further, let (pkj,·, chj,·) for 1 ≤ j ≤ i denote the public key and
chaincode pair of all nodes in the prefix address of addri+1,t. Recall that the non-hardened public keys
are computed as follows:

(ω, chj+1,t)←H(pkj,s, chj,s, es,t
j+1),

pkj+1,t ←RSig.RandPK(pkj,s;ω)

According to the (perfect) rerandomizability of keys property (cf. Def 2.2) the public keys derived
via the RSig.RandPK algorithm are identically distributed to freshly generated keys from A’s view as
long as ω is uniformly random. Therefore, the challenge public keys pknh,i+1,t and pknh,1,t are identically
distributed from A’s point of view as long as A has not previously queried the random oracle H on input
(pkj,·, chj,·, e·,·j+1). If A makes one of the aforementioned queries, it can recursively compute the public
key of the challenge node, thereby trivially winning the unlAHDWal[RSig] game. By assumption, A makes at
most qC queries to the child creation oracles. Therefore, there are at most qC + 1 potential chaincodes
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that A can guess correctly and query the random oracle on. For each of these, the probability of correctly
guessing it is 1

2κ and thereby the probability of correctly guessing any of the chaincodes is at most qC +1
2κ

during any particular random oracle query. Since A makes at most qH calls to H, the overall probability
of querying the random oracle on an input as above is qH(qC+1)

2κ .
It remains to show A’s probability of winning the unlAHDWal[RSig] game in case the adversary challenges

a hardened node with address addri+1,t. In this case, let pkh,i+1,t and pkh,1,t denote the challenge public
keys and let (pkj,·, chj,·) for 1 ≤ j ≤ i denote the public key and chaincode pair of all nodes in the prefix
address of addri+1,t.
A is allowed to query the CHLeakO oracle for parent nodes, thereby eliminating the need to correctly

guess a relevant chaincode. Recall that hardened public keys are derived as follows:

(ω, chj+1,t)←H(skj,s, chj,s, es,t
j+1)

pkj+1,t ←RSig.RandPK(pkj,s;ω)

Hence, having access to the CHLeakO oracle does not reveal all required inputs to the random oracle,
i.e., the secret key of the parent node is still unknown to the adversary. As such, according to the (perfect)
rerandomizability of keys property (cf. Def 2.2), A can distinguish pkh,i+1,t from pkh,1,t only if it is able
to compute the secret key of one of the challenge nodes’ parents. Let E be the event that A can compute
a secret key skj,· that corresponds to any of the public keys pkj,· and calls the random oracle on input
(skj,·, ·, ·). Then we can upper bound the probability that event E occurs as follows:

Claim A.2 There exists an algorithm A1 such that

AdvA1
uf -cma-hrk1RSig

≥ Pr[E].

Proof. The proof of this claim corresponds to the proof of claim 5.4 in Section 5.

Therefore, the adversary’s advantage in case of a hardened challenge node can be upper bounded by
AdvA1

uf -cma-hrk1RSig
andA’s overall advantage in game unlAHDWal[RSig] can be upper bounded by AdvAunlHDWal[RSig]

≤
qH(qC+1)

2κ + AdvA1
uf -cma-hrk1RSig

.

Indistinguishability of Hardened nodes Recall that in our construction HDWal[RSig], a hardened
key pair (skh,(i+1),t, pkh,(i+1),t) is derived via SKDerH and PKDerH as follows:

(ω, ch(i+1),t)←H(sknh,i,s, chi,s, es,t
i+1)

skh,(i+1),t ←RSig.RandSK(sknh,i,s;ω)
pkh,(i+1),t ←RSig.RandPK(pknh,i,s;ω)

Due to the key rerandomizability property of the underlying signature scheme RSig, A can only
distinguish (skh,(i+1),t, pkh,(i+1),t) from a fresh key pair if it can distinguish ω from random. Since we
model H as a random oracle, this happens only if A has previously queried H on the same input, i.e.,
(sknh,i,s,Sti,s, ei+1,t). Since our model excludes secret key leakage of non-hardened nodes, the adversary
cannot distinguish the output of H from a random value except if it correctly guesses sknh,i,s or any parent
secret key that sknh,i,s has been (directly or indirectly) derived from.

B Impossibility of a tighter bound
In this section, we first recall the security notion of unforgeability under rerandomized keys for signature
schemes with rerandomizable keys as introduced in [FKM+16]. This notion is stronger than the notion
of unforgeability under honestly rerandomized keys in the sense that an adversary is not restricted to
randomness chosen uniformly at random from the randomness space R for the key rerandomization. We
recall the following security game:
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Game uf -cma-rkRSig:

• Setup Phase: The challenger initializes the list SigList← {ϵ} and samples a pair of keys (pk, sk)←
RSig.Gen(par). Then the public key pk is sent to the adversary A.

• Online Phase: A is given access to a signing oracle RSign which works as follows. On input
a message m and a randomness ρ, derive a pair of keys rerandomized with the randomness ρ, as
sk′ ← RSig.SKDer(sk, ρ) and pk′ ← RSig.PKDer(pk, ρ). A signature is then derived on message m under
the secret key sk′ as σ ← RSig.Sign(sk′,m). The message m is stored in the SigList and eventually the
signature σ is returned as the answer.

• Output Phase: Finally, the adversary A wins the game if it can provide a signature σ∗ for a
message m∗ relative to randomness ρ∗, where the following holds: (1) the message m∗ has not been
queried before, i.e., m∗ /∈ SigList, and (2) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗,m∗) = 1, where
pk∗ ← RSig.PKDer(pk, ρ∗).

For an algorithm A we define A’s advantage in game
uf -cma-rkRSig as AdvAuf -cma-rkRSig

= Pr[uf -cma-rkARSig = 1].
We now show the proof of Theorem 5.7 as presented in Section 5. Concretely, we show that for any

signature scheme with rerandomizable keys RSig that satisfies uf -cma-rk security and for any generic
transformation from RSig to a hierarchical deterministic wallet scheme HDWalRSig there exists no reduction
from uf -cma-rkRSig to wufcma1HDWalRSig that does not incur a loss polynomial in the number of SKLeakO
oracle queries qsk. In particular, this shows that the reduction in our proof of Theorem 5.3 is optimal
and cannot be improved even assuming a generic transformation HDWalRSig from a uf -cma-rk secure
signature scheme with rerandomizable keys. We show this result by assuming a reduction R that reduces
uf -cma-rkRSig to wufcma1HDWalRSig and by providing a metareduction M that uses R to win its own
uf -cma-rkRSig game. We show that the advantage of M in game uf -cma-rkRSig has a polynomial loss
in the number of SKLeakO oracle queries qsk. Our proof proceeds in a similar fashion as the proofs in
[KK18, Theorem 2] and [Cor02, Theorem 4].

We now provide the full formal proof of Theorem 5.7.

Proof. We describe a metareduction M that plays in the game uf -cma-rkMRSig and simulates the game
uf -cma-rkRRSig to R. Additionally, M simulates an adversary in game wufcma1HDWalRSig to R. M
receives a public key pkM from its challenger, and access to a signing oracle RSign. The goal of M is to
come up with a valid forgery in the uf -cma-rkMRSig game. The metareduction proceeds as follows:

1. M runs the reduction R with public key pkM as input and simulates game uf -cma-rkRRSig to R by
simply forwarding R’s queries to its own challenger. R sends a public key pk to M in the game
wufcma1HDWalRSig .

2. Assume thatM in game wufcma1HDWalRSig has made q queries to the HChildO oracle on input pairs
(addr·,·, e·,·· ) and let X be a set consisting of the q addresses thatM has queried the HChildO oracle
on (for simplicity we write X = {addr1, · · · ,addrq}). Let qsk ≤ ⌊q/2⌋ be the number of addresses,
for whichM invokes the Secret Key Leakage oracle. M picks i $← {1, . . . , qsk}, chooses addr∗ $← X
and (addr1, · · · ,addrqsk) $← (X \ {addr∗})qsk . This defines the following two sequences:

Xs := (addr1, . . . ,addri−1,addr∗)

X ′s := (addr1, · · · ,addrqsk)

3. M queries the SKLeakO oracle on addresses in the set Xs and receives the corresponding secret keys
as answers from R. In particular, since addr∗ ∈ Xs, M knows the secret key sk∗.

4. R is then rewound to the initial state. Then M, in game wufcma1HDWalRSig , queries the SKLeakO
oracle on addresses from the set X ′s. Since addr∗ /∈ X ′s, M has not corrupted the node with addr∗.

5. M now tosses a biased coin τ with probability ϵA of outputting 1. If τ = 0, M sends ⊥ to R in
the wufcma1HDWalRSig game. If τ = 1, M samples a random message m, creates a signature σ on
m with secret key sk∗ and returns (σ,m) as a valid forgery. This execution is done in time tA such
that M correctly simulates an adversary in game wufcma1HDWalRSig .
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6. Since R was rewound, sk∗ was not revealed and (σ,m) constitutes a valid forgery. R derives a
signature (σ′,m′) corresponding to challenge key pkM and returns it to M. M can return (σ′,m′)
to the uf -cma-rkMRSig game.

Success probability of M We now analyze the probability with whichM can win the uf -cma-rkMRSig
game. Let Q be a set of sequences of addresses such that for any sequence (addr1, · · · ,addrj) ∈ Q,
the corresponding SKLeakO oracle queries are answered correctly by R. Additionally, it holds that
if (addr1, · · · ,addrj) ∈ Q, then also (addr1, · · · ,addrj−1) ∈ Q. Let us now consider a (possibly
unbounded) real adversary A (i.e., A is not simulated by M), who issues queries to the SKLeakO oracle
on inputs addrj ∈ X ′s and eventually outputs a valid forgery (σ,m) with success probability ϵA. The
view of R is exactly the same when interacting with the real adversary A or with the adversary who is
simulated by M (which we denote by AM) except if the following bad event occurs: Xs ̸∈ Q but X ′s ∈ Q.
In this case, the reduction R did not answer all SKLeakO oracle queries correctly in the interaction with
AM before the rewind but did so after the rewind. If this event occurs, the real adversary A would
output a valid forgery, while the simulated adversary AM would not. Hence, the reduction R would be
able to distinguish the real from the simulated execution.

Let RA and RAM denote the execution of the reduction w.r.t. the real and simulated adversary,
respectively. The executions RA and RAM are identical, except if the following bad events occur in RAM :
X ′s ∈ Q and Xs ̸∈ Q and τ = 1. Therefore, we get:

|Pr[(σ′,m′)← RAM(pkM) ∧ (σ′ is valid on m′)]− Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]|
≤ ϵA · Pr[X ′s ∈ Q ∧ Xs ̸∈ Q].

We recall the following lemma due to Coron [Cor02].

Lemma B.1 Let Q be a set of sequences of at most qsk integers in X , such that for any sequence
(addr1, · · · ,addrj) ∈ Q, we have (addr1, · · · ,addrj−1) ∈ Q. Then:

Pr
i

$←{1,··· ,qsk}
(addr1,··· ,addrqsk ,addr∗)

$←X qsk+1

[
(addr1, · · · ,addrqsk) ∈ Q
∧ (addr1, · · · ,addri−1,addr∗) ̸∈ Q

]
≤ exp(−1)

qsk
.

From lemma B.1, representing addresses as integers, we get that

Pr[X ′s ∈ Q ∧ Xs ̸∈ Q] ≤ exp(−1)
qsk

(
1− qsk

q

)−1
.

Note that the additional term
(

1− qsk
q

)−1
comes from the fact that we chose all addri from the set

X \ {addr∗} instead of X . Hence, we need to consider the probability that for all addri it holds that
addri ̸= addr∗.

From this, we obtain the success probability AdvMuf -cma-rkRSig
for M as follows:

AdvMuf -cma-rkRSig
= Pr[(σ′,m′)← RAM(pkM) ∧ (σ′ is valid on m′)]

≥Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]− ϵA ·
exp(−1)
qsk

(
1− qsk

q

)−1

≥Pr[(σ′,m′)← RA(pkM) ∧ (σ′ is valid on m′)]− ϵA ·
2 exp(−1)

qsk

≥ϵR(ϵA)− ϵA ·
2 exp(−1)

qsk

Note that, since M rewinds the reduction R once, the running time of M can be upper bounded by
tM ≤ 2 · tR(tA).
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Algorithm REC′[H1].Sign(sk,m)
00 ψ $← {0, 1}κ

01 m̂← (pk, ψ,m)
02 σ′ ← EC[H1].Sign(sk, m̂)
03 Return σ = (ψ, σ′)

Algorithm
REC′[H1].Verify(pk, σ,m)
04 (ψ, σ′)← σ
05 m̂← (pk, ψ,m)
06 Return EC[H1].(pk, σ′, m̂)

Algorithm
REC′[H1].RandSK (sk; ρ)
00 sk′ ← sk · ρ mod p
01 Return sk′

Algorithm
REC′[H1].RandPK (pk; ρ)
02 pk′ ← pk · ρ
03 Return pk′

Figure 6: Salted and key-prefixed version of the ECDSA signature scheme with perfectly rerandomiz-
able keys REC′[H1] := (REC′[H1].Gen = EC[H1].Gen, REC′[H1].Sign, REC′[H1].Verify, REC′[H1].RandSK,
REC′[H1].RandPK) from the ECDSA signature scheme EC[H1]. H1 : {0, 1}∗ → Zp denotes a hash function.

C Discussion (contd.)
The following Theorem follows from Theorems 3.3 and 5.3.

Theorem C.1 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be a hash function modeled as a random
oracle. Let REC[H1] be the scheme as defined in Figure 7. Let HDWal[RSig] be the construction as
defined in Figure 5. We define HDWal[REC[H1]] as the construction of HDWal[RSig], instantiated with
RSig = REC[H1]. Let A be an algorithm that plays in the game wufcma1HDWal[REC[H1]], then there exists
an algorithm C running in roughly the same time as A such that

AdvCuf -cma1EC[H0] ≥

(
1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
−
q2

H1

p

)
· 1
q
,

where qH1 is the number of random oracle queries, q is the total number of HChildO and NHChildO oracle
queries and qsk is the number of queries to the SKLeakO oracle.

The following Theorem follows from Theorem 5.3 and Theorem 5.1 from [DFL19].

Theorem C.2 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled as a random oracles.
Let REC′[H1] be the scheme as defined in Figure 6. Let HDWal[RSig] be the construction as defined in
Figure 5. We define HDWal[REC′[H1]] as the construction of HDWal[RSig], instantiated with RSig =
REC′[H1]. Let A be an algorithm that plays in the game wufcma1HDWal[REC′[H1]], then there exists an
algorithm C running in roughly the same time as A such that

AdvCuf -cma1EC[H0] ≥
1

4e(qsk + 1) · AdvAwufcma1HDWal[RSig]
− 3qH1

2

p
,

where qH1 is the number of random oracle queries and qsk is the number of queries to the SKLeakO oracle.

Lemma C.3 Consider the algorithm Trf[H0,H1]EC in Figure 8. Suppose that:

• ω = H1(m1)
H0(m0) ∈ Zp,

• X0, X1 ∈ E s.t. X0 = x0 ·G and X1 = ω ·X0,

• EC[H1].Verify(X1, σ1,m1) = 1,

• σ0 ← Trf[H0,H1]EC(m0,m1, σ1, ω,X0, X1).

Then EC[H0].Verify(X0, σ0,m0) = 1.
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Algorithm
MREC[H1].Sign (sk,m)
00 pm← (pk,m)
01 σ ← EC[H1].Sign (sk, pm)
02 Return σ

Algorithm
MREC[H1].Verify (pk, σ,m)
03 pm← (pk,m)
04 Return
EC[H1].Verify (pk, σ′, pm)

Algorithm
MREC[H1].RandSK (sk; ρ)
00 sk′ ← sk · ρ mod p
01 Return sk′

Algorithm
MREC[H1].RandPK (pk; ρ)
02 pk′ ← pk · ρ
03 Return pk′

Figure 7: Salt-free and key-prefixed version of the ECDSA signature scheme with perfectly rerandomizable
keys MREC[H1] := (MREC[H1].Gen = EC[H1].Gen, MREC[H1].Sign, MREC[H1].Verify, MREC[H1].RandSK,
MREC[H1].RandPK) from the ECDSA signature scheme EC[H1]. H1 : {0, 1}∗ → Zp denotes a hash function.

Trf[H0,H1]EC(m0,m1, σ1, ω,X0, X1)
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If (EC[H1].Verify(σ1,m1, X1) = 0) ∨

(
ω ̸= z1

z0
∨X1 ̸= X0 · ω

)
:

03 Return ⊥
04 (r, s1)← σ1
05 s0 ← s1

ω mod p
06 σ0 ← (r, s0)
07 Return σ0

Figure 8: Figure shows the TrfECDSA algorithm for hash functions H0,H1 : {0, 1}∗ → Zp.

Theorem C.4 Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be a hash function modeled as a random oracle.
Let A be an algorithm that plays in the game uf -cma-hrkMREC[H1], then there exists an algorithm C
running in roughly the same time as A such that

AdvCuf -cmaEC[H0] ≥ AdvAuf -cma-hrkMREC[H1]
− 3q2

p

Proof. Consider an adversary A playing in Game
uf -cma-hrkMREC[H1]. As such A is granted access to the oracles Rand, RSign, and the random ora-
cle H1 : {0, 1}∗ → Zp. In the following, we use that 2κ ≤ p. We prove the statement via a sequence of
games. Each game GGGi(i>0) is presented in Figure 10 via the description of the oracles that are modified
with respect to the previous game GGGi−1. The exact differences of game GGGi to game GGGi−1 are highlighted
in the form of boxed pseudocode. Moreover, we denote by Ei−1,i a difference event, where the indices of
the event correspond to games GGGi−1,GGGi that are affected by the event.
Game GGG0: This game is equivalent to the original uf -cma-hrkMREC[H1] game. In particular, a key
pair (sk, pk) is sampled as (sk, pk) $← MREC[H1].Gen(par). The adversary A is given pk as the challenge
public key and oracle access to Rand, RSign and random oracle H1. A can query Rand to receive a
randomness ρ and make a follow-up query to RSign to receive a signature on message m with respect to
the rerandomized key pk′ ← pk · ρ. In particular, A is allowed to query RSign on every input pair (m, ρ)
at most once. Additionally, A can make direct queries to the random oracle H1. The game internally
maintains a random oracle H0 in a straightforward manner, by storing a list H0 of query/response
pairs. Eventually, in order to win the game, A has to come up with a valid forgery σ∗ on a new
message m∗ with respect to a randomness ρ∗. Since G0G0G0 proceeds as uf -cma-hrkMREC[H1] we have that
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Game GGG0
00 RList← {ϵ}
01 bad← false
02 (sk, pk) $← MREC[H1].Gen (par)
03 (m∗, σ∗, ρ∗) $← AH1,Rand,RSign (pk)
04 pk∗ ← pk · ρ∗
05 If pm∗ ∈ SigList : bad← true
06 If ρ∗ ̸∈ RList : bad← true
07 b ← MREC[H1].Verify (pk∗, σ∗,m∗)
08 Return b ∧ ¬bad

Oracle Rand
09 ρ $← R
10 RList← RList ∪ {ρ}
11 Return ρ

Oracle RSign (m, ρ)
12 If ρ /∈ RList : Return ⊥
13 pk′ ← pk · ρ mod p
14 sk′ ← sk · ρ mod p
15 pm← (pk′,m)
16 σ ← MREC[H1].Sign (pm, sk′)
17 SigList← SigList ∪ {pm}
18 Return σ

Oracle H1 (m)
19 If H1 [m] ̸= ⊥
20 Return H1 [m]
21 H1 [m] $← Zp

22 Return H1 [m]

H0 [m]
23 If H0 [m] ̸= ⊥
24 Return H0 [m]
25 H0 [m] $← Zp

26 Return H0 [m]

Figure 9: Game GGG0 = uf -cma-hrkMREC[H0] with adversary C.

Pr[G0G0G0 = 1] = Pr[uf -cma-hrkMREC[H1] = 1] = AdvAuf -cma-hrkMREC[H1]
.

Game GGG1: In GGG1, the way that random oracle queries to H1 from A are answered, is internally modified as
follows. To answer queries to H1, GGG1 internally keeps two lists H1 and H ′1 which it programs throughout
its interaction with A. Depending on whether a queried message m contains as part of its prefix a public
key pk′, it programs H1[m] and H ′1[m] in two different possible ways. Note that pk′ is the result of
rerandomizing pk as pk′ = pk · ρ, where ρ← Rand(ρ ∈ RList) is a previous answer to an oracle query Rand.
We now analyze the three types of queries to H1 that can occur.

• H1[m] ̸= ⊥: In this case, GGG1 returns H1[m].

• H1[m] = ⊥ and m is of the form m = (pk′, ·), s.t. pk′ = pk · ρ for some ρ ∈ RList: In this case,
GGG1 computes h← H0(ctr), where ctr $← {0, 1}κ. Consequently, GGG1 sets H1[m]← ρ · h mod p and
H ′1[m]← ctr. It returns H1[m].

• Otherwise, GGG1 samples h $← Zp and sets the values H1[m]← h, H ′1 [m]← ϵ. It then returns H1[m].

It is easy to see that all answers for queries to H1 that GGG1 returns are uniformly distributed from A’s
perspective. This follows from the uniformity of output h computed via random oracle H0. Therefore, GGG1
behaves exactly as GGG0.
Game GGG2: In GGG2, the way in which queries to Rand are answered, is internally modified as follows. When
A asks a query of the form Rand, the game aborts if there exists a message of the form m = (pk′, ·) for
which H ′1 [m] evaluates to ϵ and where pk′ is the (rerandomized) key that corresponds to the return value
ρ of Rand, i.e., pk′ = pk · ρ. The following claim bounds the probability of such an abort scenario.
Claim C.5 Let E1,2 denote the event that GGG2 aborts during a Rand query, for which H ′1 [m] evaluates to
ϵ, where m = (pk′, ·). Then Pr [E1,2] ≤ q2

p .

Proof. During any particular call to the oracle Rand, this event can only occur if A has already made
a query of the form H1(m), where m = (pk′, ·) (prior to the oracle Rand returning the value ρ for this
query). Since RList contains at most q values at any point during the game, any of them coincide with
the (uniformly chosen) value ρ with probability at most q

p . Since keys are uniquely rerandomizable, a
query of the form H1(m) thus also has probability at most q

p of having been made prior to this particular
call to Rand. Since there at most q queries to Rand, it follows that Pr [E1,2] ≤ q2

p .
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Oracle H1 (m) in GGG1
00 If H1 [m] ̸= ⊥
01 Return H1 [m]
02 Parse m as (pk′, ·)
03 If ∃ρ ∈ RList : pk′ =
pk · ρ
04 ctr ← {0, 1}κ

05 h← H0[ctr]
06 H1 [m] ← ρ · h
mod p
07 H ′1 [m]← ctr
08 Else
09 h $← Zp

10 H1 [m]← h
11 H ′1 [m]← ϵ
12 Return H1 [m]

Oracle Rand in GGG2
13 ρ $← R
14 pk′ ← pk · ρ

15 ∀m = (pk′, ·) :
16
If H ′1 [m] = ϵ : Abort

17 RList← RList ∪ {ρ}
18 Return ρ

Oracle RSign (m, ρ) in GGG3
19 If ρ ̸∈ RList : Return ⊥
20 pk′ ← pk · ρ
21 pm← (pk′,m)
22 If H ′1[pm] = ⊥

23 Query H1(pm)

24 m′ ← H ′1[pm]

25 σ′ ← EC[H0].Sign(sk,m′)

26 σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk)
27 SigList← SigList ∪ {pm}
28 Return σ

main in GGG4
29 RList← {ϵ}
30 bad← false
31 (sk, pk) $← MREC[H1].Gen (par)
32 (m∗, σ∗, ρ∗) $← AH1,Rand,RSign(pk)
33 pk∗ ← pk · ρ∗

34 pm∗ ← (pk∗,m∗)

35 If H ′1[pm∗] = ϵ : Abort
36 If pm∗ ∈ SigList : bad← true
37 If ρ∗ ̸∈ RList : bad← true
38 b← MREC[H1].Verify (pk∗, σ∗,m∗)
39 Return b ∧ ¬bad

Figure 10: Games GGG1-GGG4

Since the games GGG1, GGG2 are equivalent unless the event Pr[E1,2] occurs, Pr[GGG0 = 1] ≤ Pr[GGG1] + q2

p

Game GGG3: In GGG3, the way that signing queries from A are answered, is again internally modified
as follows. When A makes a query of the form RSign(m, ρ), GGG3 first checks whether ρ ∈ RList and
if not, returns ⊥. Otherwise, it computes pk′ ← pk · ρ, and sets pm ← (pk′,m). If H1[m̂] = ⊥, it
internally queries H1 on input message pm. This means it queries h← H(ctr), where ctr $← {0, 1}κ. GGG3
internally sets H1[pm]← ρ · h mod p and stores H ′1[pm]← ctr. After making the query to H1, GGG3 fetches
m′ ← H ′1[pm], where m′ was set to ctr during H1 query. Since sk is known to the game, it can now
compute the signature σ′ as σ′ $← EC[H0].Sign(sk,m′). Finally, it computes and returns the signature σ
as σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk), where pk = pk′ · ρ−1.

Claim C.6 Pr[GGG2 = 1] = Pr[GGG3 = 1]

Proof. We argue that in both games, the answers to signing queries are identically distributed. To this end,
we analyze how GGG3 replies to a query of the form RSign (m, ρ). GGG3 derives signature σ on input (m, ρ) as
σ ← Trf[H0,H1]EC(pm,m′, σ′, ρ−1, pk′, pk), where m′ = H ′1[pm], pk = pk′ ·ρ−1,EC[H0].Verify(pk, σ′,m′) =
1, and H0[m′]

H1[pm] = h′

H1[pm] = h′

ρ·h′ = ρ−1 mod p. It follows from Lemma C.3 that σ constitutes a correct
signature on message pm and under public key pk′ relative to EC[H0].Verify. It follows immediately that
the signature σ constitutes a valid signature relative to MREC[H1].Verify. This concludes the proof.

Game GGG4: GGG4 behaves identically toGGG3 except for the following modification in the main procedure: Upon
receiving a forgery of the form (m∗, σ∗, ρ∗) from A, it sets pm∗ ← (pk∗,m∗) and aborts if H ′1[pm∗] = ϵ.

Claim C.7 Let E3,4 be the event that GGG4 aborts if H ′1[pm∗] = ϵ, where pm∗ = (pk∗,m∗). Then
Pr[E3,4] ≤ q2

p .
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Proof. The only way this event can happen, is if A manages to make a query of the form H1(pm∗) before
querying Rand to obtain the corresponding value of ρ∗. The proof of this claim follows in a similar way as
the corresponding proof in claim C.5.

Since the games GGG3, GGG4 are equivalent unless event E3,4 occurs, Pr[GGG3 = 1] ≤ Pr[GGG4 = 1] + q2

p
Reduction to UF-CMA security. We describe an algorithm C that plays in the uf -cmaEC[H0] game
and simulates game GGG4 to A. Instead of sampling its own key pair as is done in GGG4, C obtains as input
a public key pkC from the uf -cmaEC[H0] game and is given access to the signing oracle Sign to obtain
signatures under pkC under messages of its choice. Furthermore, C has access to the random oracle H0 by
which it replaces the list H0. C runs A on input pkC .
Simulation of Randomness Queries. Queries to Rand from A do not require knowledge of the secret
key corresponding to pkC and hence are straight forward to simulate.
Simulation of Random Oracle Queries. C’s simulation of random oracle queries coincides with the
above programming strategy that is already internally present in GGG4.
Simulation of Signing Queries. Recall that in GGG4, queries of the form RSign (m, ρ) internally prompt
the computation of signature σ′ = EC[H0].Sign(skC ,m′), where m′ ← ctr. Since C does not know skC , it
needs to compute σ′ via a call to its signing oracle, i.e., as σ′ ← Sign(m′). Other than that C simulates
such a query exactly as internally done for GGG4.
Extracting the forgery. When the tuple (m∗, σ∗, ρ∗) is returned as an answer from A, C checks
whether it constitutes a valid forgery, and aborts otherwise (note that in this case, GGG4 would return 0, so
C can safely abort). In case C does not abort, it computes pk∗ = pkC · ρ∗, where pk∗ is the public key
under which A’s forgery is valid. C computes pm∗ ← (pk∗,m∗) and if H ′1 [pm∗] = ϵ, it aborts. Otherwise,
C fetches m′ ← H ′1 [pm∗] and computes

σ′ ← Trf[H1,H0]ECDSA (m′, pm∗, σ∗, ρ∗, pkC , pk∗) .

Since H1 [pm∗] = H0(H ′1 [pm∗]) · ρ∗ = H(m′) · ρ∗, we have that H1[pm∗]
H0(m′) = H0(m′)·ρ∗

H0(m′) = ρ∗. Together with
pk∗ = pkC · ρ∗ and MREC[H1].Verify(pk∗, σ∗, pm∗) = 1, Lemma C.3 implies that

EC[H0].Verify (pkC , σ′,m′) = 1.

Claim C.8 (m′, σ′) constitutes a valid forgery in uf -cmaEC[H0] with probability 1− q2/p.

Proof. We have to show that the query Sign(m′) was not made by C during its simulation and hence
(m′, σ′) is a valid forgery in uf -cmaEC[H0]. Note that A has not made a query of the form RSign (m∗, ρ∗)
throughout the simulation. If it had, (m∗, σ∗, ρ∗) would not constitute a valid forgery in GGG4 and
the simulation would have aborted at this point. This implies that C never had to simulate a query
RSign(m∗, ρ∗) to A which entailed a H1 query on message pm∗ ← (pk∗,m∗). Hence, m′ associated with
query H1(pm∗) was not queried by C to the oracle Sign in any query of the form RSign (m, ρ) with
m ̸= m∗ unless there exist (any) two values m1,m2 s.t. H ′1[m1] = H ′1[m2] ̸= ⊥. It is easy to see that this
happens with probability at most q2/p during C’s simulation, since all values that C queries to the oracle
Sign are sampled independently and uniformly at random from {0, 1}κ.

From claims C.5-C.7, we have Pr[GGG0 = 1] ≤ Pr[GGG4] + 3q2

p Since C provides a perfect simulation of GGG4
to A up to an error of q2/p, as shown in the previous claim, we obtain

AdvAuf -cma-hrkuf -cma-hrkuf -cma-hrk,MREC[H1] ≤ AdvAGGG4
+ 3q2

p
≤ AdvCuf -cma,EC[H0] + 3q2

p
,

which implies the theorem.

Theorem 5.3 can be combined with Theorem C.4 in a similar manner as Theorem C.2.
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