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Abstract. This paper proposes a new lattice-based weak curve fault
attack on ECDSA, which assumes that a continuous bits block of curve
parameter a is disturbed randomly by fault injection. Firstly, the faulty
a′ can be deduced by a distinguisher of quadratic residue, from which
a weak curve with order n′ is derived. Secondly, under the assumption
that there exists a solvable smooth small factor d in n′, we obtain some
reduced information of the nonce by solving the ECDLP constructed in a
small subgroup with order d. Finally, based on the reduced information,
a model of lattice attack can be constructed to recover the signature
private key by solving special instances of closest vector problem(CVP)
in lattice.
Compared with the previous weak curve fault attacks, our attack increas-
es the success rate of fault injection sharply, since it is not required that
the constructed instance of ECDLP with order n′ is practically solvable.
In addition, the application of lattice-based attack is further extend-
ed in our attack by relaxing the restriction on the information leakage
of nonces in comparison with the traditional partially known informa-
tion attacks. Moreover, when there is a general random scalar masking
in ECDSA, our attack still works without the additional masked bits
leakage. Finally, the experiments demonstrate that the practical rate of
effective faulty a′ is up to 94.9% when the bit length of d is greater than
8, and the corresponding lattice attack is also feasible practically.

Keywords: ECC, Weak Curve Attack, Fault Attack, Lattice Attack,
ECDSA

1 Introduction

1.1 Background

Elliptic curve digital signature algorithm (ECDSA) is one of the most commonly
used signature algorithms of Elliptic Curve Cryptography (ECC). It is mainly
used for authentication in network communication protocols (e.g., TLS proto-
col), financial IC cards and smart keys and various embedded cryptographic
devices. Side channel attack (SCA) and fault attack (FA) are the most popular



physical attacks on ECDSA. In the models of SCA on ECDSA, by the detection
on the leakage of nonces or other intermediate values during the signature gen-
eration, an adversary can recover the private key in signature by solving specific
instances of shortest vector problem (SVP) or closest vector problem (CVP) in
the lattice constructed by the leakages [14,20,21]. Therefore, how to obtain the
bits-leakage information of nonces should be an initial step of SCA. For exam-
ple, Brumley etc. in ESORICS 2011 [4] target wNAF scalar multiplication in
OpenSSL, and obtain some leaked bits of nonces by timing attack. In addition,
flush + reload attack [2,1] is used to obtain the leaked bits by employing the
flaws of instruction cache and scheduling (of CPU), while power analysis [12]
and template attack [10] can also be used based on the collected power traces.

1.2 Previous Works

Fault attacks on ECDSA have the same purpose with SCA, i.e., managing to
obtain the leaked information of nonces so as to recover the private key by trans-
forming it to a lattice problem. In the model, fault injections such as laser injec-
tion, electromagnetic injection or voltage glitch interference are induced during
signature generation procedure, which makes some steps skipped or some inter-
mediates faulty. In PKC 2005 [18], Nacache et al. introduced lattice-based fault
attack on DSA. Some least significant bits of nonces are set to 0 by inducing
voltage glitch, and the private key in DSA is recovered by solving a CVP in some
lattice. In addition, Schmidt et al. in FDTC 2009 [24] introduced a new differ-
ential fault model where a point addition or doubling operation during scalar
multiplication is skipped by fault injection. Thereby, some bits of the nonces can
be obtained by differential analysis. After that, Nguyen et al. [22] summarized
this kind of fault attacks, and called them lattice-based fault attack. Then, Cao
et al. in ICISC 2015 [6] also introduced a random fault model targeting the
y-coordinate of intermediate point during the calculation of scalar multiplica-
tion, which can tolerate more random faulty bits. To sum up, all the ultimate
purpose of the attacks is to obtain some leaked bits of nonces for constructing
the condition of lattice attack. The approaches of fault analysis mainly include
two categories. The first one is based on the fact that fault injection [18,22] is
induced directly toward the nonces during signature generation to make some
bits known or fixed, and the second one assumes that fault injection is induced
into the calculation of scalar multiplication for constructing differential distin-
guisher [24,6].

Besides, another weak curve fault attack [15] based on the faulty modulus p
can also be applied on ECDSA. The attack assumes that fault injection can flip
every bit of modulus p, and obtain a weak curve on which solving elliptic curve
discrete logarithm problem (ECDLP) is computationally feasible. The solution
can reveal some leaked information of nonce k, by which two faulty signatures
can construct the model of lattice attack to recover the private key. However,
the approach requires a strong fault model that only one bit of p is flipped and
the faulty modulus p′ is known for adversary. Moreover, in order to solve the
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ECDLP, it requires all the prime factors pi(i = 1, ..., u) of p′(where p′ =
u∏

i=1

peii ,

pi < pj for 1 ≤ i < j ≤ u and ei ∈ Z) to be relatively small, i.e.,
√
pu steps is

a feasible amount of computation. In addition, in order to mount lattice attack,

the product n′(=
u∏

i=1

ni) of all the orders ni(i = 1, ..., u) of subgroups Z/peii

should satisfy n′ ≥ n1/2, that is, the bit length of n′ should be greater than half
of the key length of ECDSA, which will restrain the fault injection.

1.3 Our contributions

In this paper, we propose a lattice-based weak curve fault attack on ECDSA by
virtue of the partially solvable smoothness of the weak curve order n′. Firstly, by
selecting a small factor d of n′, we can construct an ECDLP on a small subgroup
with order d, and thereby get some reduced information of the scalar(i.e., the
nonce k) in ECDSA. Finally, based on the reduced information, we construct a
new model of lattice attack to recover the private key in ECDSA signature.

– The fault model is based on the fact that a continuous bit block of the curve
parameter a is disturbed by fault injection. The faulty a′ is not required to be
known, and can be determined by a specific quadratic residual distinguisher.

– Unlike the traditional weak curve attacks [15,3,8], our attack does not re-
quire that all the prime factors of the weak curve order n′ are enough small
such that it is computationally feasible to solve ECDLP. In addition, it is
unnecessary that the bit length of n′ is greater than f/2(where f is the key
length of ECDSA) as in the reference [15]. Our attack just requires that there
exist some small prime factors(not all the factors) in n′, by which a compu-
tationally feasible ECDLP in a small subgroup can be constructed to obtain
some reduced information of nonce k. The probability that there are some
small prime factors in n′ is much greater than that of all the prime factors
being small(see Section 3.5). Hence, our attack increases the success rate of
fault injection and reduces the computational complexity dramatically.

– Our proposed lattice attack is an extension of previous lattice attacks. Al-
though there are no partial bits of nonces leaked as introduced in [14,20,21],
we can construct a new model of lattice attack by virtue of the modulo-d
reduced information of nonces obtained by the weak curve attack. When the
modulus d is the format of 2l, our model is equivalent to the model based
on bit leakage of nonces.

– For ECDSA with random scalar masking, our attack is still feasible without
any additional masked bits leakage. For example, if k′ = k + λn, where k is
the real scalar and λ is a 64-bits random number, our attack can succeed by
selecting bigger modulus d with high success rate of fault injection.

The remainder of this paper is organized as follows: Section 2 is the preliminaries
where the overview of ECC, the traditional weak curve attack and some necessary
backgrounds on lattice are introduced. Section 3 describes the concrete attack
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approach. Section 4 shows the experimental facets of the validity, including the
rate of effective faulty parameter a′s and the complexity of lattice attack. Finally,
conclusion is given in Section 5.

2 Preliminaries

In this paper, we consider elliptic curves on prime field Fp, where p is an odd
prime.

2.1 Elliptic curve in Fp

Generally, the Weierstrass equation of elliptic curves in Fp is given by

E(a, b) : y2 = x3 + ax+ b mod p,

where parameters a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0.
The group of rational points in elliptic curve E(a, b) is defined by

G =
{
(x, y)|y2 = x3 + ax+ b mod p, x, y, a, b ∈ Fp

}
∪ {O},

where O is the infinite point.
Let G be an element in G with order n (which is usually a prime), ⟨G⟩ be

the additive subgroup of G generated by G. If P = (x, y) ∈ ⟨G⟩, then the inverse
element −P ∈ ⟨G⟩ of P is (x,−y). For any integer k ∈ Zn, the calculation of
kG = G + G + . . . + G (k times) is called the scalar multiplication in E(a, b),
and can be calculated using point doubling and addition operations.

Point Addition
If P = (x1, y1) ∈ ⟨G⟩,Q = (x2, y2) ∈ ⟨G⟩, and P ̸= ±Q, then (x3, y3) = P+Q

satisfies
x3 = λ2 − x2 − x1
y3 = λ(x1 − x3)− y1

, where λ = y2−y1

x2−x1
.

Point doubling
If P = (x1, y1) ∈ ⟨G⟩ and P ̸= −P , then (x3, y3) = 2P satisfies
x3 = λ2 − 2x1
y3 = λ(x1 − x3)− y1

, where λ =
3x2

1+a
2y1

.

An important notice is that the parameter b is not involved in the calculation
of point doubling and addition. The order of E(a, b), denoted by #E (a, b) can
be calculated using SEA algorithm [11].

2.2 ECDSA digital signature algorithm

The ECDSA signature algorithm is described in Algorithm 1 with some less
important details being abstracted away.

As shown in Algorithm 1, the randomly generated nonce k is involved in the
calculation of scalar multiplication kG (step 3) and the calculation of s (step 6),
which are exactly the targets of our attacks.
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Algorithm 1 Signature generation of ECDSA

Input: The definition of a specific elliptic curve E(a, b), a base point G of the curve
with order n, private key dA ∈ Zn, message m.

Output: Signature pair (r, s).
1: e = H (m), where H is a cryptographic hash function;
2: Generate k randomly from Zn ;
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e+ dAr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

2.3 Smoothness of weak curve order

The following definitions are required to better describe our approach. For all of
them, let n be the order of point G in E(a, b).

Definition 1. Denote the prime factorization of n by n =
u∏

i=1

qeii , where qi ∈ N

is a prime factor of n, ei > 0 denotes the degree of qi in the factorization and
qi < qj for 1 ≤ i < j ≤ u. For y ∈ N, if the biggest prime factor qu meets qu ≤ y,
then n is called y-smooth.

Definition 2. The elliptic curve discrete logarithm problem (ECDLP) in E(a, b)
is defined as: given G,n and an element Q ∈ ⟨G⟩, compute the value k ∈ Zn

such that Q = kG.

To our knowledge, the best known generic algorithm [29,23] in classical com-
puter for solving ECDLP in arbitrary elliptic curves needs O(

√
qu) group oper-

ations in computation. We call an ECDLP instance is practically solvable if its
solving complexity is not bigger than a predefined constant PRAC COMP. In
this paper, we set PRAC COMP= 264 group operations by considering current-
ly achievable computing power of classical computers, which can be changed to
adapt to the future development of computing technology.

Definition 3. We call n practically solvable smooth (related to the group ⟨G⟩)
if the ECDLP on ⟨G⟩ is practically solvable. We call n partially solvable smooth

(related to the group ⟨G⟩) if there exists a factor d =
σ∏

i=1

qeii of n such that

the ECDLP on ⟨(n/d)G⟩(with order d) is practically solvable. Finally, we call n
(practically) non-solvable smooth (related to the group ⟨G⟩) if n dose not meet
the above two cases.

2.4 Existing fault attacks to weak curves

In this section, we introduce the approach of traditional weak curve fault attack
based on solvable smooth order [15,3], which also can be used for solving the
ECDLP based on the partially solvable smooth order.
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It is assumed that the y-coordinate of G is disturbed by fault injection, i.e.,
G = (xG, yG) is changed into G′ = (xG, yG′). Obviously, the faulty G′ is not
on the original curve E(a, b). As stated in Section 2.1, since parameter b is not
involved in the calculation of scalar multiplication, G′ can be viewed on a new

weak curve E(a, b′) and has a solvable smooth order n′ =
u∏

i=1

qeii . Consequently,

Q′ = kG′ based on E(a, b′) is calculated, where b′ = y2Q′ − xQ′3 − axQ′ =

y2G′ − xG′3 − axG′ . Given Q′, G′ and n′, the following approach can be used to
solve the scalar k.

Firstly, the reduced value k mod qi can be obtained by solving the ECDLP
n′

qi
Q′ = k n′

qi
G′(i = 1, ..., u) with Pollard-rho algorithm [29]. Next, the reduced

value ki = k mod qeii (i = 1, ..., u) can be obtained by Pohlig-Hellman algorith-
m [23]. Finally, the modulo-n′ reduced value t = k mod n′ can be obtained by
Chinese remainder theorem(CRT). Hence, k = t+µn′, where µ ∈ {0, ..., ⌊n/n′⌋}.
Guess all the possible values of µ and calculate the corresponding k. If Q = kG,
then k is just the correct one.

The above approach shows that n′ must be solvable smooth so as to solve
ECDLP on ⟨G′⟩. Otherwise, the approach can not be applied in practice.

2.5 Lattice-based attack

Lattice attack is a key step in our approach. Here we will give some fundamental
backgrounds about lattice attack.

Let B = {b1, . . . , bN} ⊆ Rm be a series of N linearly independent vectors.
The lattice generated by B is defined as

L(B) =

{
N∑
i=1

xibi : xi ∈ Z

}
,

where B is denoted as a basis for the lattice L(B), and we call the integers N
and m as its rank and dimension respectively. If m = N , L is called full rank
lattice with dimension N .

Shortest vector problem (SVP) and Closest vector problem (CVP) are two
computational complexity problems crucial to lattice-based cryptography. The
definitions of SVP and CVP are given as follows.

Definition 4. [17] We give the definitions of SVP and CVP.

(1) Shortest Vector Problem (SVP): Given a basis of a lattice L, find
a lattice vector v ̸= 0 such that ∥v∥ ≤ ∥u∥ for any nonzero vector u ∈ L.
(2) Closest Vector Problem (CVP): Given a basis of a lattice L and a
target vector t ∈ Rm, find a lattice vector v closest to the target t, which
means dist(v, t) ≤ dist(u, t) for any vector u ∈ L, where dist denotes the
Euclid norm of two points.
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For an N -dimensional approximate SVP, there exist polynomial-time basis
reduction algorithms to output a short lattice vector when the approximate
factor is large enough, among which the LLL algorithm[16] is the most typical
one. Based on a series of optimizing technique[25,26,27], the BKZ-algorithm[7]
has been the most practical algorithm to lattice basis reduction. Lemma 1 gives
the approximate factor of the LLL algorithm.

Lemma 1. [17,16] There exists a polynomial time algorithm on that input an
integer basis B of lattice L outputs a nonzero lattice vector x meeting ∥x∥ ≤
(2/

√
3)Nλ1 (L), where N is the dimension of the lattice L and λ1 (L) is the

length of shortest vector in L.

For random lattices with dimension N , Gaussian heuristic gives a probable
estimation on the length of shortest lattice vector in the sense of average.

Definition 5. [19] Gaussian Heuristic: let L be a full rank lattice in RN , and C
be a measurable subset of RN . The Gaussian Heuristic predicts that the number
of points of L ∩ C is roughly vol(C)/vol(L), where vol denotes the volume or
determinate.

From Gaussian Heuristic, the Gaussian expected shortest length of an N -
dimensional lattice L could be defined to be

σ(L) =
√

N

2πe
vol(L)1/N .

Generally, the actual shortest lattice vector is much easier to be found as the
increment of the gap between the shortest length and the Gaussian heuristic. If
it is significantly shorter than σ(L), it shall be located in polynomial time by
using LLL and related algorithms. Heuristically, assuming the lattice L behaves
like random, if there exists a lattice vector whose distance from the target is
much shorter than σ(L), this lattice vector is expected to be the closest vector
to the target. Accordingly, this special CVP instance usually could be solved by
Babai algorithm or embedding-based SVP.

3 Lattice-based weak curve attack

In this section, we present the concrete approach of lattice-based weak curve
attack on ECDSA. The whole attack consists of two steps: 1) Some reduced
information of nonce is obtained by weak curve fault attack; 2) By virtue of the
reduced information, a special instance of CVP can be constructed in a lattice
to recover the private key.

3.1 Fault model

Generally, weak curve fault attack aims at the physical objects including RAM
or PPROM, corresponding to the algorithmic objects including basis point G,
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curve parameter a and modulus p. The faults are classified as temporary fault,
permanent fault and semi-permanent fault (i.e., after fault injection, the faulty
data is kept until the device restores the correct one). In this paper, we mainly
consider the random permanent fault or semi-permanent fault based on the fact
that a continuous l-bits block of a is disturbed randomly by fault injection and
its faulty starting location is random, where l is usually valued from {1, 8, 16,
24 and 32}. It is assumed that an adversary induces one random permanent
or semi-permanent fault into parameter a before signature generation such that
a is transformed into a′(a′ has continuous l bits different from a). Hence, the
subsequent scalar multiplication is not Q = kG(step 3 in Algorithm 1) on E(a, b)
but Q′ = kG on a new weak curve E(a′, b′) : x3 + a′x + b′ mod p, where G is a
point on E(a′, b′) with an order n′ and b′ = yG

2 − xG
3 − a′xG mod p. Finally,

the results (r′, s′) of signature are output to adversary.
Note that our fault model has the following limitations: 1) parameter a must

be involved in the calculation of scalar multiplication (except the case that a is
usually substituted with p− 3 when a = p− 3); 2) There is no point verification
checking whether the input point is on the original elliptic curve during the
calculation of scalar multiplication. Otherwise, our attack will not work.

3.2 Weak curve fault attack

Assuming that the signatures on the weak curve can be executed, we will carry
on the following steps to obtain some reduced information of nonces ks.

(1) Guess and determine a′ and xQ′

1. Set T as the set to store all the guessed values of a′.
2. Perform signature generation based on a′, and obtain the faulty signature

results (r′, s′).
3. The x-coordinate xQ′ mod p of the faulty Q′ can be deduced by xQ′ =
r′ mod n. In the standard curves, the cofactor h(hn = #E(a, b) is generally
very small, such as h = 1 or 2. From Hasse theorem [13], we have p+1−2

√
p <

hn < p+1+ 2
√
p. Hence, xQ′ mod p has t possible values which is bounded

by h+ 1, depending on the concrete values of p and n.
4. Guess all the values of a′ ∈ T:

Calculate b′ = yG
2 − xG

3 − a′xG mod p, substitute the t possible values of
xQ′ into the guessed curve E(a′, b′) and obtain

Y = xQ′
3 − a′xQ′ + b′ mod p.

If Y is a quadratic residue, i.e., there exists a square root yQ′ of Y , then keep
the guessed value of a′ in T. Otherwise, eliminate the guessed value from T.

5. If the number of T is greater than 1, then go to step 2; Otherwise, the only
value in T is just the correct value of a′.

Since there is a continuous l-bits block in a disturbed and the starting position
of the faulty bits is random, there are (la− l+1)2l possible guessed values, where
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la is the bit length of a. That is, the number of the initial T is (la− l+1)2l. The
“quadratic residue” distinguisher can eliminate about half of the guessed values
in each invocation. Hence, the total complexity is about O((la− l+1)2l+1), and
the faulty values of xQ′ can also be eliminated along with distinguishing.

(2) Obtain the reduced value of nonce k

1. Based on the known a′, carry on the signature generation and get the results
(r′, s′).

2. As mentioned above, xQ′ mod p has t possible values from xQ′ = r′ mod n.
For each value of xQ′ mod p, calculate the corresponding Y = xQ′3−a′xQ′ +
b′ mod p. If only one value of Y s is quadratic residue, then the corresponding
xQ′ mod p is the correct one; Otherwise, go to step 1 and re-carry on the
signature generation.

3. Substitute the correct xQ′ into curve E(a′, b′), and obtain two possible points

(xQ′ ,±
√
Y ) of Q′.

4. Let Q′
1 =

(
xQ′ ,

√
Y
)

= uG. It is assumed that there exists a factor d(=
σ∏

i=1

qeii ) in the order n′(=
u∏

i=1

qeii , qi < qj for 1 ≤ i < j ≤ u) of G on E(a′, b′)

is solvable smooth(see the definitions in Section 2.3), i.e., n′ is partially

solvable smooth. Let L = n′/d =
u∏

i=σ+1

qeii . Consequently, in the subgroup

⟨LG⟩ with order d, the ECDLP

LQ′
1 = u(LG)

can be solved to obtain u mod d. If Q′
1 is the correct choice of Q′, then

k = u mod d; Otherwise, k = d− u mod d.

In the above analysis, it is unnecessary that n′ is solvable smooth, as long as n′

is partially solvable smooth.
Repeat the above steps 1 − 4 for N times to obtain two possible reduced

values of nonce ki, i.e., ki = ui mod d and ki = d− ui mod d. Hence, we have

ki = ci + λid(i = 1, ..., N),

where ci =

{
ui|yQ′ = Y
d− ui|yQ′ = −Y and 0 < λi < n/d.

3.3 Lattice attack based on partially solvable smooth order

As mentioned above, the traditional model of lattice attack [14,21] could not
work since there is no leaked bits of kis. However, similar to the lattice attack on
ECMQV [5], we still can construct a new lattice attack model with the reduced
information of kis .

For i = 1, ..., N , substituting ci into si, we can get

si(ci + λid) = ei + ridA, (1)
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where ei is the hash value of message mi and 0 < λi < n/d.
The equation (1) can be transformed as

λi = si
−1d−1ridA − (d−1ci − si

−1d−1ei) mod n. (2)

Let Ai = si
−1d−1ri mod n, Bi = d−1

(
ci − si

−1ei
)
+n/(2d), then there must

exist hi ∈ Z such that

|AidA + hin−Bi| < n/(2d)(i = 1, ..., N). (3)

We can construct a lattice L by the above inequations (3), whose basis matrix
M ∈ Z(N+1)×(N+1) is 

n 0 · · · 0
...

. . .
...

0 n 0
A1 · · · AN 1/(2d)

 .

The row vectors {b1, ..., bN+1} of M is a basis of L. Let the target vec-
tor t = (B1, . . . , BN , 0) ∈ ZN+1, and there exists a lattice vector v = xM =
(A1dA + h1n, . . . , ANdA + hNn, dA/(2d)) ∈ L with coordinate vector x = (h1, . . . , hN , dA) ∈
ZN+1. From inequations (3), we have

∥v − t∥ <
√
N + 1n/(2d), (4)

Heuristically, we assume L is a random lattice. As introduced in Section 2.5,

if ∥v − t∥ is much less than σ (L) (=
√

N+1
2πe vol(L)

1
N+1 ), we expect that v is the

closest vector to t in L, where vol (L) = det(M) = nN/(2d). Hence, it is required

∥v − t∥ <
√
N + 1n/(2d) ≪

√
N + 1

2πe

(
nN/(2d)

) 1
N+1 . (5)

Let the bit length of ECDSA be denoted by f = ⌈logn⌉ and the bit length

of d be denoted by ld = ⌈log d⌉. If N > f+log
√
2πe

ld+1−log
√
2πe

and ld > log
√
2πe − 1,

then the above inequality can be viewed as a special instance of CVP in lattice
L heuristically.

Consequently, the vector v can be determined by solving the instance of CVP
and thereby to recover the private key dA. If PA = dAG(PA is the public key of
signature), the attack is successful.

In addition, the inequality (3) is equivalent to

|AidA + hin−Bi| < n/2ld(i = 1, ..., N), (6)

which is a hidden number problem(HNP)[20,21]. By the same way, it can be
transformed into a CVP to recover dA.

It is noted that the above lattice attack can recover dA successfully only when
all the values of ci(i = 1, ...N) are correct. Nevertheless, there are two solutions
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to ci in the weak curve attack and it is not sure which one is the correct value.
Therefore, it is necessary to enumerate all the possible values of ci to carry on
lattice attack. The maximum time complexity of the attack is 2NT , where T is
the time required for one-time lattice attack. The needed number N of faulty
signatures depends on the size of factor d. The larger d is, the smaller N and
T are. Generally, In order to ensure the absolute success rate of lattice attack,
d should not be too small. For example, d is generally recommended to satisfy
ld ≥ 8 such that N ≈ 45 for 256-bits ECDSA.

3.4 Attack on ECDSA with scalar masking

If d = 2l (l ∈ Z > 0), which means the least significant l bits of nonces are
known, the above lattice attack is equivalent to the lattice attack described
in [14,20,21]. Therefore, our lattice attack extends the traditional model of lat-
tice attack with bit leakage, and is still feasible for ECDSA with general scalar
masking countermeasure.

If the nonce ki in signature generation is masked with a random number αi,
then the masked nonce k′i is equal to ki + αin(i = 1, ..., N) and we have

Q = k′iG, si = ki
−1(ei + ridA) = k′i

−1
(ei + ridA) mod n,

where the bit length of αi is denoted by lαi .
Accordingly, the reduced information derived by weak curve fault attack

is k′i = ci + λid, where λi < 2f+lαi
−ld . Similarly, substitute the reduced in-

formation into si and mount lattice attack. If ld > log
√
2πe + lαi − 1 and

N > f+log
√
2πe

ld−lαi
+1−log

√
2πe

, the private key dA still can be recovered by constructing

a CVP. In practice, αi is usually a 32 or 64-bits random number in view of per-
formance. For the traditional model of lattice attack with bit leakage, it means
αi bits of k

′
i is needed to be acquired for an adversary, which add the difficulty

of the attack extremely. However, for our attack, if lαi = 64, the experimental
success rate of fault injection is still up to 66% since ld is recommended as 72
(see Section 4). Obviously, it is also practical for fault injection.

3.5 Comparison with other fault attacks

Compared with the weak curve fault attack proposed in [15,3,8], our attack
has higher success rate of fault injection. Firstly, it is not required to know
the faulty parameter a′. The number of continuous faulty bits can be up to
PRAC COMP(= 264) and its starting position is random, which reduces the
requirements of fault injection. Secondly, the generated weak curve order is not
required to be solvable smooth. In view of the influence of different smoothness
of n′ on our attack, we will discuss the density of its smoothness as follows.

The density of smooth numbers

Let z be an integer with prime factorization z =
u∏

i=1

peii . We say z is smooth

with respect to an integer x if max
1≤i≤u

{pi} ≤ x as mentioned in Section 2.3.
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We denote by ψ(x, y) the number of integers z ≤ y such that z is x-smooth.
In [9], a result on the bound of ψ(x, y) shows smooth numbers with suitable
x, y are relatively common to meet. Specifically, let ϵ be an arbitrary positive
constant, then uniformly for y ≥ 10 and x ≥ (ln y)1+ϵ, we have

ψ(x, y)/y = e−(1+o(1))u lnu as y → ∞,

where u = ln y/ lnx and e is the natural number. Note that for a fixed y, the
density of smooth numbers (i.e., ψ(x, y)/y) is an increasing function with re-
spect to the bound x of factors. In particular, we can roughly estimate that
ψ(2256, 280)/2256 = 0.024 and ψ(2256, 2128)/2256 = 0.25. It means, given a fixed
y, smooth numbers in the scope [1, . . . , y] with at least one large factor could be
much more frequent than those with only smaller factors.

In this paper, we assume n′, i.e., the order of G′ on the fault induced weak
elliptic curve E(a′, b′), is a smooth number. Note the action of the generation
of n′ may not be uniformly random, since the injected fault is only considered
to impact very limited bits of the parameter a of the curve. (Or in other words,
a′ is not randomly selected to generate the new curve). Similar to the heuristic
assumption given in [9], we assume that the probability that n′s are sampled
in this method is comparable to the density ψ(x, y)/y. As shown in Figure 1,
the density(y-coordinate) for x-smooth n′(x-coordinate) in 256-bits ECDSA is
depicted. When n′ is 2247-smooth, the probability, i.e., density is about 96.3%,
which is much greater than 25% for 2128-smooth n′ required in the previous
weak curve attacks [15,3,8]. For this 2247-smooth case, there could be small
factor d ≥ 28 such that our attack is feasible. And the practical experiment in
Section 4 also supports this assumption.

Fig. 1. The density for x-smooth n′

In conclusion, There could exist large prime factor in n′ with high probability
such that the traditional weak curve attacks [15,3,8] are infeasible. However, if n′
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is partially solvable smooth which has absolutely higher probability than those
solvable smooth orders, our attack still work.

In addition, our model of lattice attack is simpler and more feasible, except
the needed number N of faulty signatures is greater than the one in [15]. Table 1
lists the detailed differences between our attack and the attacks in [15,3,8]. Our
attack has less restrictions than the previous attacks and increases the success
probability of fault injection extremely.

Table 1. Comparison of our attack with the fault attack in [15] for 256-bits ECDSA

Items
Attacks

Our attack Attack in [15] Attacks in [3,8]

solvable smooth order # ! !
success probability of fault injection ≫ 25% 25% 25%

given exact faulty value # ! !
tolerant faulty bits PRAC COMP 1 —

needed signature number N N > f+log
√
2πe

ld+1−log
√

2πe
2 —

4 Experimental validation of feasibility

In this section, the feasibility of our attack is verified by simulations. First of all,
the proportions of the effective faulty a′s are counted out by the simulations of
fault injection. Secondly, the lattice attack is implemented by virtue of the faulty
signatures derived from the effective a′s. The experiments are conducted in a
commonly used computer with 8-core CPU 3.4GHz, 8G memory and Windows7
OS. The weak curve order n′ derived form faulty a′ is calculated by the SEA
algorithm implemented in miracl library(C/C++), and the constructed CVP in
lattice is solved by the BKZ algorithm implemented in NTL library [28] with
block 10.

In the first experiment, two kinds of 256-bits curve parameters based on prime
field Fp recommended in FIPS and SM2 digital signature algorithm(hereafter
called SM2) are selected to simulate the fault injection. Moreover, two types of
fault injection are also simulated, including single-bit flipped fault and 16-bits
random fault. The single-bit flipped fault is simulated to flip every bit of a AND
results in 256 kinds of cases. The 16-bits random fault is simulated to XOR a
16-bits random number β with any continuous 16-bits block of parameter a, i.e.,
a′ = a⊕β2l, where l(0 < l < f) is also random. The simulations are also carried
on for 256 times. Hence, there are four faulty simulation cases( i.e., two types
of fault injection for two kinds of curves): 1) single-bit flipped fault of a on the
curves recommended by FIPS and SM2; 2) 16-bits random fault of a on the
curves recommended by FIPS and SM2.

Table 2 lists the proportion γ of the partially solvable smooth n′s(i.e., effective
a′s) when ld is greater than 8, 16, 32, 40, 64, 72 and 128. It is noted that the
factor d is required to be solvable 2128-smooth( i.e., the constructed ECDLP
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is practically solvable) in experiment. As shown in Table 2, when ld ≥ 8, the
proportion is greater than 94.9% for the four faulty cases. In order to ensure
100% experimental success rate of the consequent lattice attack, the needed
dimension N of the constructed lattice is about 45 in experiments. Obviously,
the complexity of enumerating the correct ci in lattice attack is computationally
feasible. In addition, to speed up enumerating, the case ld ≥ 16 is generally
selected in experiments, whose proportion is also up to 92.6% at least. The
results show that the success rate of fault injection is significantly high.

Table 2. The proportion of the effective a′s in the four cases

Fault type
d is 2128-solvable smooth

ld ≥ 8 ld ≥ 16 ld ≥ 32 ld ≥ 40 ld ≥ 64 ld ≥ 72 ld ≥ 128
γ γ γ γ γ γ γ

single-bit flipped fault(FIPS) 96.5% 92.6% 85.2% 81.6% 69.9% 66% 34.8%
16-bits random fault(FIPS) 94.9% 92.6% 85.6% 82.8% 74.2% 68.4% 32.4%
single-bit flipped fault(SM2) 96.5% 94.1% 83.1% 80.7% 70.1% 66.9% 34.7%
16-bits random fault(SM2) 98.1% 93.4% 86.3% 83.2% 71.1% 66.8% 32%

Moreover, Figure 2 depicts the proportion γ(y-coordinate) of the effective
faulty a′s when ld > X (x-coordinate). No matter whether the curve belongs to
FIPS or SM2, and the fault type is single-bit flipped fault or random fault, all
the proportions of the four cases are roughly similar with the density mentioned
in Section 3.1. Hence, our weak curve fault attack is effective for most of ECC
signatures based on prime field.

Fig. 2. The proportion γ of effective a′ when ld > X

Finally, based on the faulty a′ in SM2 signature, select the ds with different
bit length, and carry on the corresponding lattice attacks. As shown in Table 3,
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N is the number of signatures required to achieve 100% success rate of lattice
attack, T is the time of each lattice attack (8-core CPU 3.4GHz, 8G memory and
BKZ with block 10) and O is the maximum complexity of the attack including
the enumerating. From Table 3, ld = 16 with 92.6% high success rate of fault
injection and 219T time complexity is the optimal selection in our experiments.

Table 3. The number of faulty signatures and complexity for lattice attack

Items ld = 8 ld = 9 ld = 16 ld = 32 ld = 64
N 45 40 19 9 5
T (s) ≈ 5.788 ≈ 3.675 ≈ 0.255 ≈ 0.021 ≈ 0.005
O 245T 240T 219T 29T 25T

5 Conclusion

We propose a new lattice-based weak curve fault attack on ECDSA which com-
bines the advantages of weak curve fault attack and lattice attack. The order n′ of
the weak curve generated by faulty a′ is not required to be solvable smooth, and
the reduced information of nonces is obtained by solving the ECDLP construct-
ed in a small subgroup, by which a new model of lattice attack is constructed
to recover the private key. For the single-bit fault or 16-bits random fault, the
success rate of fault injection that there exists a solvable smooth factor d of n′

to satisfy ld ≥ 8 can be as high as 94.9%. In addition, for ECDSA with w-bits
scalar masking, our attack still work with high success rate of fault injection by
selecting an appropriate d satisfying ld − w > log

√
2πe− 1.

Further Work. Our attack is based on the disturbed parameter a. However,
if a is not involved in the calculation of point doubling and addition, e.g., a =
p − 3, or there is the countermeasure of point verification, our attack will not
work. Hence, it is worthy of further study on whether there are more effective
fault vulnerabilities which can be exploited for carrying on weak curve attack
and lattice attack, modulus p, for example.
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