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Abstract. A (t, n)-public key threshold cryptosystem allows distributing the execution of a crypto-
graphic task among a set of n parties by splitting the secret key required for the computation into n
shares. A subset of at least t + 1 honest parties is required to execute the task of the cryptosystem
correctly, while security is guaranteed as long as at most t < n

2
parties are corrupted. Unfortunately,

traditional threshold cryptosystems do not scale well, when executed at large-scale (e.g., in the Internet-
environment). In such settings, a possible approach is to select a subset of n players (called a committee)
out of the entire universe of N � n parties to run the protocol. If done naively, however, this means
that the adversary’s corruption power does not scale with N as otherwise, the adversary would be able
to corrupt the entire committee. A beautiful solution for this problem is given by Benhamouda et al.
(TCC 2020) who present a novel form of secret sharing, where the efficiency of the protocol is indepen-
dent of N , but the adversarial corruption power scales with N (a.k.a. fully mobile adversary). They
achieve this through a novel mechanism that guarantees that parties in a committee stay anonymous
until they start to interact within the protocol.
In this work, we initiate the study of large-scale threshold cryptosystems. We present novel protocols
for distributed key generation, threshold encryption, and signature schemes that guarantee security in
large-scale environments with complexity independent of N . One of our key contributions is to show
how one can transform a scheme which is only secure against static adversaries to a large-scale threshold
cryptosystem via anonymity and prove that it is secure against a fully mobile adversary. We believe
that our framework and proof techniques can be used in the future to design and prove schemes secure
in the large-scale setting.

1 Introduction

In a threshold cryptosystem [23, 27, 22], a secret key sk is distributed among a set of n parties, where each
party holds a share sk i of the secret key. A subset of t + 1 parties is needed to re-construct the secret key
(or carry out the cryptographic task such as signing), while ≤ t parties learn nothing about the sensitive
information. A threshold cryptosystem consists of two components. First, a protocol for securely generating
the secret key – so-called distributed key generation (DKG) [47] – that enables the parties to securely generate
a shared sk and the corresponding public key pk . At the end of this protocol each party holds its secret
key share sk i and is aware of the public key pk . Second, a distributed version of the cryptosystem, where
the parties can use their shares to perform the cryptographic tasks at hand. Two important examples of
threshold cryptosystems are threshold signatures for signing messages in a distributed fashion (e.g., [12, 43]),
and threshold public key encryption for distributed decryption of ciphertexts (e.g., [49, 17, 42]).

Traditionally, threshold cryptographic schemes have been considered in a setting where the number of
parties n is relatively small and the adversary is restricted to corrupt at most t < n/2 parties. This upper
bound is required to achieve guaranteed output delivery [20], i.e., the adversary cannot stall the system even
when behaving in an arbitrary malicious way. When we move to a large-scale Internet setting with a large user
base (e.g., as prominently considered in the blockchain setting), several new challenges arise. In particular,
we aim for a solution that is scalable when the number of users in the universe – denoted by N – drastically
increases. On the one hand, we aim at a protocol where only a small subset of the entire population carry
out the cryptographic computation (e.g., running DKG with thousands of users is practically infeasible). On
the other hand, we want that the adversary can corrupt a fraction of all parties N , such that its corruption
power is not bounded by a small value t.



To address these two challenges, the recent work of Benhamouda et al. [9] introduces the concept of
evolving-committee proactive secret sharing (ECPSS). In a nutshell, to achieve an efficient solution, ECPSS
considers a committee of n parties (where n is independent of the number N of parties in the universe) that
hold a shared secret. In addition, to ensure that the corruption power of the adversary is linear in N , Ben-
hamouda et al. combine two ideas, namely (1) using dynamic proactive secret sharing and (2) anonymizing
the identity of the secret shareholders in this protocol. Let us provide some more details on the solution of [9].
Dynamic proactive secret sharing is a secret sharing protocol that proceeds in epochs, where the adversary
is allowed to corrupt at most t parties per epoch. Such an adversary is often also referred to as a mobile
adversary [46]. To ensure security in this setting dynamic proactive secret sharing schemes deploy a so-called
handover protocol, where the shared secret is re-shared to a new committee at the end of each epoch. While a
mobile adversary can corrupt over time� N users, the naive application of dynamic proactive secret sharing
only tolerates t < n/2 corruptions. To circumvent this, inspired by recent advances in blockchain consensus,
Benhamouda et al. introduce a novel concept of anonymity. More precisely, after a party in a committee is
activated and communicates (e.g., for reconstructing the shared secret), a new committee is selected in such
a way that the members of the new committee stay anonymous. This feature guarantees that an adversary
cannot target the members of the small-sized committee, even for a corruption power of � n corruptions
per epoch.

The original work of Benhamouda et al. [9] considers only the question of how to store a secret in a
large scale environment. This work has recently been extended in the so-called YOSO model of computation
(“You only speak once”) [31], which presents a general framework for committee-style secure computation
with anonymity. The result of [31] is however mainly a feasibility result (we will discuss it – and in par-
ticular its limitations – in more detail in Sec. 1.2), and relies on techniques from general purpose secure
multiparty computation. In this work we initiate the study of scalable threshold cryptography for large scale
environments, where the adversary’s corruption power per epoch can grow with N . We discuss our main
contributions in more detail below.

1.1 Our Contribution

The goal of this work is to study threshold public key cryptosystems that are executed by a small set
of n parties among a large universe of N parties. We call such schemes large-scale threshold public key
cryptosystems and require that these schemes must be secure in presence of an adversary whose corruption
power is proportional to N , and in particular � n. We call such an adversary fully mobile adversary.
Traditionally, threshold cryptography considered three different corruption models, namely (1) static, (2)
adaptive and (3) mobile adversaries, where a static adversary must choose the set of corrupted parties at
the beginning of a protocol execution while an adaptive adversary is allowed to corrupt parties at any time.
Finally, a mobile adversary has been considered in the proactive setting, where a protocol proceeds in epochs
and the adversary is not only allowed to corrupt parties during an epoch but to also “uncorrupt” parties
at the end of an epoch. All of these adversarial models are restricted in that the corruption power of the
adversary is a fraction (typically < 1/2) of the size of protocol participants n. In contrast, in this work we
consider fully mobile adversaries, whose corruption power is proportional to the universe size N thereby
allowing to corrupt > n parties.

In our work, we first formalize the concept of discrete-log-based large-scale distributed key generation
schemes and show a concrete instantiation. We follow the idea of Benhamouda et al. [9] to achieve security
against a fully mobile adversary through anonymization. This, however, complicates the construction and
security proof as we have to ensure that parties stay anonymous as long as they are involved in the protocol
execution. The main challenge arises from the fact that distributed key generation protocols are typically
highly interactive which poses a problem in our full security setting since parties can at most speak once in
order to preserve their anonymity. Surprisingly, we cannot use the ECPSS construction from Benhamouda
et al. entirely in black-box for our instantiation, as we require anonymous parties to broadcast DKG-specific
values which are not needed (and thus not supported) in the ECPSS construction itself. In a bit more detail,
since parties can at most speak once, DKG-specific values have to be broadcast during a state handover from
one anonymous committee to another. To tackle this issue we provide a generalized handover procedure
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which allows parties to broadcast auxiliary information while handing over their internal state. We believe
that our formalization of large-scale DKG protocols and the corresponding discrete-log-based protocol can
pave the way for designing DKG protocols under different assumptions such as the RSA assumption which
has been mentioned as an open problem in [31].

We next consider the setting of large-scale non-interactive threshold public key encryption and signature
schemes by first providing formal definitions of such primitives and then showing concrete instantiations.
To this end, we show how the statically-secure non-interactive threshold public key encryption scheme from
Shoup and Gennaro [49] can be transformed to the large-scale setting with security against fully mobile
adversaries. Similarly, in Appendix E we show how the statically-secure threshold signature scheme from
Boldyreva [12] can be transformed to the large-scale setting. The main challenge for both of these transfor-
mations is to prove security against a powerful fully mobile adversary. In general, the issue when proving
security of threshold schemes with adaptive or mobile security is that one must exhibit a simulator that
simulates the view of the adversary without knowing the secret key of the scheme. That is, the simulator
does not know the secret key shares of some honest parties and thereby, upon corruption of these parties,
cannot provide an internal state that is consistent with previous information that the adversary has seen.

We circumvent this issue by designing our protocols carefully in such a way that allows us to construct a
simulator whose answers to the adversary’s corruption queries are consistent with the view of the adversary.
At a high level, we achieve this by postponing the publication of secret key share dependent values to the
end of an epoch while still guaranteeing correctness and security of our scheme. As such, the simulator can
maintain a set of secret key shares which look consistent from the adversary’s view of the protocol execution,
as long as the adversary does not corrupt more than t secret key shareholders per epoch. We ensure this
corruption upper bound by leveraging the idea of Benhamouda et al. [9] of keeping the identities of secret
key shareholders anonymous until the end of an epoch.

As a next step, we argue that the two transformations of statically-secure threshold public key encryp-
tion and signature schemes to the large-scale setting can be generalized to any discrete-log-based threshold
encryption/signature scheme which satisfies certain properties.

Finally, we provide various applications of our schemes in the blockchain setting, including the fair
exchange of secret values and the checkpointing of individual blocks in a blockchain to decrease computational
effort for new parties in the network. The latter further has applications in blockchain interoperability, where
parties in a blockchain network have to prove to parties outside of the network that a specific block is indeed
included in the blockchain.

1.2 Related Work

Anonymity and You Only Speak Once Paradigm. The most relevant previous work for us is by Benhamouda
et al. [9] who introduce the notion of evolving-committee proactive secret sharing (ECPSS) which extends
previous secret sharing notions in the following ways: (1) an ECPSS scheme includes a procedure to select
the committee of secret shareholders, and (2) an ECPSS scheme does not assume that an adversary corrupts
at most a minority of parties in a committee but rather provides a mechanism for provably achieving this.
Benhamouda et al. present an instantiation of an ECPSS scheme which they prove secure against a fully
mobile adversary by keeping the identities of the secret shareholders anonymous among a large set of parties.
That is, they prove that if the adversary corrupts at most 25% of all parties in the universe, their ECPSS
scheme remains secure. A recent work by Gentry et al. [30] improves Benhamouda et al.’s solution by allowing
for a more powerful adversary that can corrupt up to less than 50% of all parties. We recall the definition of
ECPSS schemes in Sec. 2.6 and we provide a more detailed description of the ECPSS scheme of Benhamouda
et al. in Sec. 3.

Another recent work of Gentry et al. [31] generalizes the concept of computing on secrets among anony-
mous parties by introducing the you only speak once (YOSO) model and showing how to realize information
theoretical and computational secure multi-party computation in this model. However, this work is mainly
a feasibility result and it relies on certain idealized functionalities that currently cannot be instantiated. In
a similar spirit, a recent work by Choudhuri et al. [19] presents general-purpose multi-party computation
in the so-called fluid model, where parties can dynamically join and leave the protocol execution. However,
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the authors of [19] do not analyze their solution w.r.t. a fully mobile adversary who has sufficient corruption
power to potentially corrupt a majority of the universe’s participants. Finally, Campanelli et al. [16] analyze
the notion of encryption to the future which generally allows parties to send messages to an anonymous and
yet to be selected committee.

Threshold Cryptosystems. There has been extensive work in the field of threshold cryptosystems. Distributed
key generation (DKG) protocols have been studied in the past mostly in the static corruption setting (e.g., [47,
29, 39, 18]). Recently, Gurkan et al. [34] presented a DKG protocol with aggregatable and publicly-verifiable
transcripts based on a gossip network which reduces communication complexity and verifcation time but is
secure only against static adversaries. Likewise, Abraham et al. [2] recently presented an asynchronous DKG
protocol and Shrestha et al. [50] presented a synchronous DKG protocol that does not require broadcasts.
Both these works are in the static security setting. Abe and Fehr [1] and Canetti et al. [17] proposed DKG
protocols which are secure against adaptive adversaries. Most related to our work is the recent work by
Groth [33] which introduces a non-interactive distributed key generation protocol, which is secure against a
mobile adversary who corrupts at most a minority of parties at a time. However, this work does not consider
the fully mobile setting that we consider in our work.

Threshold public key cryptosystems have been extensively studied with security against static adversaries
(e.g., [15, 13, 51, 49, 12]) and adaptive adversaries (e.g., [28, 17, 38, 41, 42, 43, 24]). Herzberg et al. [37]
proposed a solution how to generically proactivize discrete-log-based public key threshold cryptosystems.
However, their generic construction is only secure in the static proactive setting, i.e., the adversary has
to decide which parties to corrupt at the beginning of each epoch. Finally, there have been works in the
adaptive proactive adversarial setting (e.g., [26, 17, 3]) which is the setting that is most similar to the setting
we consider in this work. However, all of the above mentioned works focus on an adversary (static, adaptive
or mobile) that is restricted to only corrupt at most a minority of the participants in the universe, whereas
we consider a fully mobile adversary that has sufficient corruption power to corrupt a large fraction of all
parties.

We provide discussion on additional related work in Appendix A.

2 Preliminaries

In this section, we provide required notation and discussion on our communication and adversarial model as
well as building blocks that we require for our work.

2.1 Notation

We use the notation s ←$ H to denote that a variable s is sampled uniformly at random from a set H.
For an integer i, we use [i] to denote the set {1, · · · , i}. For a probabilistic algorithm A, we use s ←$ A(x)
to denote that s is the output of an execution of A on input x. For a deterministic algorithm B, we use
s ← B(x, r) to denote that s is the output of an execution of B on input x and randomness r. We use the
notation s ∈ A(x) to denote that s is in the set of possible outputs of A on input x.

For a set of parties C and a protocol Π, we use the notation Π[C〈x1,··· ,x|C|〉] to denote that Π is jointly

executed by all parties Pi ∈ C with respective secret inputs xi for i ∈ [|C|]. Furthermore, we use the notation
Π[C〈x1,··· ,x|C|〉](y) if all Pi ∈ C receive a common public input y. Finally, for a set of parties U s.t. C ⊂ U

and a protocol Π ′ we use the notation Π ′[C〈x1,··· ,x|C|〉, U ](y) to denote the joint execution of Π ′ by all parties

in U with common public input y where party Pi ∈ C has secret input xi with i ∈ |C|.

2.2 Communication and Adversarial Model

Our communication and adversarial model follows the model of Benhamouda et al. [9]. We assume that parties
have access to an authenticated broadcast channel and a public key infrastructure (PKI). Furthermore, we
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consider a synchronous communication model where messages broadcasted in some round i are received by all
other parties in round i+δ where δ is a fixed upper bound. A blockchain network satisfies this communication
model.

The authenticated broadcast channel is the only means of communication in our model. In particular,
we do not consider sender-anonymous channels which are inherently difficult to construct in practice and
significantly simplify the problem of keeping the identity of parties anonymous.

We further assume that communication between parties during the lifetime of the system can be divided
into epochs. At the beginning of each epoch, all parties broadcast a new public key via the PKI.

We consider a fully mobile adversary who can monitor the broadcast channel and corrupt parties at
any point in time. Corrupted parties are controlled by the adversary and can deviate arbitrarily from the
protocol execution. A fully mobile adversary can corrupt a certain fraction p of all parties in the system
at any point in time. The fraction p is called the adversary’s corruption power. The adversary can further
decide to “uncorrupt” a corrupted party, i.e., once an uncorrupted party broadcasts a new public key to the
PKI it is no longer controlled by the adversary.

We also assume that parties can erase their internal states such that upon their corruption, the adversary
would be oblivious to the secret values that a party had previously stored and erased. Note that this is an
inherent requirement in all proactive protocols.

2.3 Public Key Encryption

Throughout this work, we use different notions of public key encryption (PKE) which we briefly recall
here. We first give the definition of a PKE scheme and then provide the security notion of secrecy under
selective opening attacks. We then recall the definition of anonymous PKE before providing the definition
of a non-interactive threshold PKE scheme.

Definition 1. A public key encryption scheme PKE consists of a tuple PKE = (KeyGen,Enc,Dec) of efficient
algorithms which are defined as follows:

KeyGen(1λ): This probabilistic algorithm takes as input a security parameter λ and outputs a public key pk
and a secret key sk.

Enc(pk ,m): This probabilistic algorithm takes as input a public key pk and a message m and outputs a
ciphertext ct.

Dec(sk , ct): This algorithm takes as input a secret key sk and a ciphertext ct and it outputs either ⊥ or a
message m.

Where necessary, we will explicitly mention the random coins used during the encryption procedure as
Enc(pk ,m; r) where r is sampled from the randomness space R used in the encryption procedure. Note that
when using this notation the encryption algorithm itself is deterministic.

Furthermore, we will later in this paper use the assumption that given a secret key sk generated by
the KeyGen algorithm, it is possible to derive the corresponding public key pk via a deterministic function
SkToPk.

Secrecy under selective opening attacks (RIND-SO). We now recall the indistinguishability-based
notion of receiver selective opening security (RIND-SO) from Hazay et al. [36] for public key encryption
schemes, which in turn is based on [25] and [8]. The RIND-SO notion defines a security game between
a challenger and an adversary in which the challenger first samples a set of key pairs and then sends
the public keys to the adversary. The adversary then chooses a distribution D and receives a vector of
ciphertexts, which encrypt messages that are sampled from D. The adversary can then choose some of the
ciphertexts and receives the corresponding secret keys which can be used to decrypt them. Finally, for the
remaining ciphertexts, the adversary either receives the correct plaintext or randomly sampled messages
from D, conditioned on the opened plaintext1.

1 Note that D must be efficiently resamplable, namely it should be possible to draw new elements from D conditioned
on the opened plaintexts.
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Definition 2 (Efficiently Resamplable Distribution). Let k, n > 0. A distribution D over ({0, 1}k)n is
efficiently resamplable if there is a PPT algorithm ResampD such that for any I ⊂ [n] and any partial vector
m′I consisting of |I| k-bit strings, ResampD(m′I) returns a vector m sampled from D|m′I i.e., m is sampled
from D conditioned on mI = m′I .

Definition 3 (RIND-SO Security). For a PKE scheme PKE = (Gen,Enc,Dec), security parameter λ ∈ N,
and a stateful PPT adversary A, the RIND-SO game Rind-SOAPKE(λ) is defined as follows:

1. (sk,pk) := (sk i, pk i)i∈[n] ← (Gen(1λ))i∈[n]
2. (D,ResampD, state1)← A(pk)
3. m := (mi)i∈[n] ← D
4. c := (ci)i∈[n] ← (Enc(pk i,mi; $))i∈[n]
5. (I, state2)← A(c, state1)
6. m′ ← ResampD(mI)

7. b← {0, 1}, m∗ ←

{
m′ if b = 0

m if b = 1

8. b′ ← A(skI ,m
∗, state2)

The advantage of the adversary A is defined as 2 · |Pr[b = b′] − 1
2 |. A PKE scheme is RIND-SO secure,

if every PPT A only has negligible advantage (in λ) in winning the above game.

We note that the RIND-SO definition given here is “semi-adaptive”, i.e., the adversary decides in one
shot which secret keys are revealed. However, the ECPSS construction by Benhamouda et al. [9] (and
consequently our constructions) relies on public key encryption schemes that are secure against a “fully-
adaptive” adversary who can choose the keys that are revealed adaptively [11]. Throughout this paper, we
use this adaptive RIND-SO setting.

Anonymous PKE We now briefly recall the definition of an anonymous PKE scheme as introduced by
Bellare et al. [7].

Definition 4. A public key encryption scheme PKE = (KeyGen,Enc,Dec) is anonymous if for every PPT
adversary A there exists a negligible function ν in the security parameter λ such that Pr[AnonAPKE(λ) = 1] ≤
1/2 + ν(λ) where the game AnonAΣAPKE

(λ) is defined as follows:

1. The game executes the key generation procedure twice to obtain key pairs (pk i, sk i) ←$ KeyGen(1λ) for
i ∈ {0, 1} and forwards pk0, pk1 to the adversary.

2. The game receives a message m from the adversary.
3. The game chooses at random a bit b ←$ {0, 1} and executes ctb ← Enc(pk b,m). The game sends ctb to

the adversary.
4. The adversary outputs a bit b′ and wins the game if b′ = b.

We define the advantage of the adversary A as

AdvAAnon,PKE(λ) = 2 · Pr[AnonAΣAPKE
(λ) = 1)]− 1

2
.

Threshold Public Key Encryption

Definition 5. A non-interactive (t, n)-threshold public key encryption scheme TPKE consists of a tuple
of efficient algorithms and protocols TPKE = (Setup,KeyGen,TEnc,TDec,TShareVrfy,TCombine) which are
defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and output public param-
eters pp.
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KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters pp and two integers t, n ∈ N.
It outputs a public key pk, a set of verification keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message m and a label L as input and
outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a ciphertext ct and a label L and it
outputs either ⊥ or a decryption share ct i of the ciphertext ct.

TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext ct, a verification key vk i
and a decryption share ct i and it outputs either 1 or 0. If the output is 1, ct i is called a valid decryption
share.

TCombine(T, ct): This deterministic algorithm takes as input a set of valid decryption shares T such that
|T | = t and a ciphertext ct and it outputs a message m.

Correctness A (t, n)− TPKE scheme must fulfill the following two requirements.
Let pp ← Setup(1λ) and (pk , {vk i}i∈[n], {sk i}i∈[n])←$ KeyGen(pp, t, n).

1. For any message m, any label L and any ciphertext ct ←$ TEnc(pk ,m,L), it must hold that

TShareVrfy(ct , vk i,TDec(sk i, ct , L)) = 1.

2. For any message m, any label L, any ciphertext ct ←$ TEnc(pk ,m,L) and any set T = {ct1, · · · , ct t} of
valid decryption shares ct i ← TDec(sk i, ct , L) with sk i being t distinct secret key shares, it must hold
that TCombine(T, ct) = m.

CCA-Security We recall the definition of chosen-ciphertext security for a (t, n)− TPKE scheme with static
corruptions. Consider a PPT adversary A playing in the following game TPKE–CCAATPKE:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its corruption choice. Let H :=
{1, · · · , n} \B.

2. The game executes
pp ← Setup(1λ)

and
(pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n).

It sends pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the adversary.
3. The adversary A is allowed to adaptively query a decryption oracle, i.e., on input (ct , L, i) with ct ∈
{0, 1}∗, L ∈ {0, 1}∗ and i ∈ H, the decryption oracle outputs TDec(sk i, ct1, L).

4. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L and sends them to the game.
The game chooses a random bit b←$ {0, 1} and sends ct∗ ←$ TEnc(pk ,mb, L) to A.

5. A is allowed to make decryption queries with the exception that it cannot make a query on ciphertext
ct∗.

6. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

Definition 6. A non-interactive (t, n)-threshold public key encryption scheme TPKE is secure against chosen-
ciphertext attacks with static corruptions if for every PPT adversary A there exists a negligible function ν
in the security parameter λ, such that Pr[TPKE–CCAATPKE(λ) = 1] ≤ 1/2 + ν(λ). We define the advantage of
A in game TPKE–CCAATPKE as AdvATPKE–CCATPKE

= |Pr[TPKE–CCAATPKE = 1]− 1/2|.

Definition 7 (Decryption Consistency). A TPKE scheme satisfies decryption consistency if for all PPT
adversaries A it must hold that:

Pr

∀i ∈ [t+ 1] : TShareVrfy(ct∗, vk i, ct i) = 1
∧TShareVrfy(ct∗, vk i, c̃t i) = 1

∧TCombine(T, ct∗) 6= TCombine(T̃ , ct∗)

∣∣∣∣∣∣∣∣
K := (pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n)

(ct∗, T, T̃ )← A(K) s.t.,
T := {ct1, · · · , ct t+1}
T̃ := {c̃t1, · · · , c̃t t+1}

 ≤ ν(λ).

where ν is a negligible function in the security parameter λ.
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2.4 Non-Interactive Zero-Knowledge

We now recall the definition of a non-interactive zero-knowledge (NIZK) proof of knowledge which has first
been introduced in [10].

Definition 8. A NIZK proof of knowledge for a language L with a polynomial-time recognizable binary
relation R is given by the following tuple of PPT algorithms NIZK := (Setup,Prove,Verify), where (i)
Setup(1λ) outputs a common reference string crs; (ii) Prove(crs, (Y, y)) outputs a proof π for (Y, y) ∈ R;
(iii) Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of knowledge w.r.t. R should satisfy
the following properties:

(i) Completeness: For all (Y, y) ∈ R and crs← Setup(1λ), it holds that Verify(crs, Y,Prove(crs, (Y, y))) = 1
except with negligible probability;

(ii) Soundness: For any (Y, y) 6∈ R and crs← Setup(1λ), it holds that Verify(crs, Y,Prove(crs, (Y, y))) = 0
except with negligible probability;

(iii) Zero knowledge: For any PPT adversary A, there exist PPT algorithms Setup′ and S, where
Setup′(1λ) on input the security parameter, outputs a pair (c̃rs, τ) with τ being a trapdoor and S(c̃rs, τ, Y )
which on input c̃rs, τ and a statement Y , outputs a simulated proof π̃ for any (Y, y) ∈ R. It must hold
that (1) the distributions {crs : crs ← Setup(1λ)} and {c̃rs : (c̃rs, τ) ← Setup′(1λ)} are indistinguishable
to A except with negligible probability; (2) for any (c̃rs, τ) ← Setup′(1λ) and any (Y, y) ∈ R, the distribu-
tions {π : π ← Prove(c̃rs, Y, y)} and {π̃ : π̃ ← S(c̃rs, τ, Y )} are indistinguishable to A except with negligible
probability.

For simplicity, we use throughout our paper a single NIZK proof system for multiple languages. We
emphasize that we do so only to improve readability. Naturally, this more general NIZK proof system can
be replaced by concrete NIZK proof systems for each language, thereby improving efficiency.

2.5 Secret Sharing

We briefly recall the notions of (robust) secret sharing and evolving-committee proactive secret sharing. For
completeness, we provide descriptions of the notions of proactive secret sharing and dynamic proactive secret
sharing in Appendix A.

Secret Sharing A (t, n)-secret sharing scheme consists of sharing and reconstruction procedures, where
the sharing procedure allows a dealer to share a secret s to a committee of n parties and the reconstruction
procedure allows a subset of this committee of size ≥ t to reconstruct the original secret s. In its simplest
form, a (t, n)-secret sharing scheme must fulfill the following two properties against an efficient adversary A
that corrupts at most t− 1 parties.

1. Secrecy: A samples two secrets s0 and s1, one of which is shared by an honest dealer to a committee of
n parties. A must be able to distinguish which secret was shared at most with negligible probability.

2. Reconstruction: Any set of honest secret shareholder of size ≥ t can reconstruct the original secret s.

Shamir’s secret sharing [48] is the most prominent (t, n)-secret sharing scheme and we will recall it here
briefly. Let q be a prime and let 1 ≤ t ≤ n < q. The dealer chooses a secret s ∈ Zq and a random polynomial
F (x) = a0 +a1x+ · · ·+at−1x

t−1 where a0 = s. For 1 ≤ i ≤ n, the dealer computes si = F (i) and sends si to
secret shareholder Pi. A set S of honest shareholders with |S| ≥ t can reconstruct s via interpolation. More
concretely, for any i ∈ Zq and any j ∈ S there exist lagrange coefficients li,j such that F (i) =

∑
j∈S li,jsj .

Robust Secret Sharing. Robust secret sharing extends the reconstruction property of secret sharing
schemes in the sense that a secret s can be successfully reconstructed from any set of secret shares as long
as the set includes at least t correct shares.
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2.6 Evolving-Committee Proactive Secret Sharing

Recently, Benhamouda et al. [9] introduced the notion of evolving-committee proactive secret sharing (ECPSS),
which is defined w.r.t. a universe of N parties and parameters t ≤ n < N . Similar to dynamic proactive
secret sharing (see Appendix A), ECPSS allows to share a secret to a committee of parties and to periodically
exchange the secret shareholders of the committee. ECPSS further extends previous secret sharing notions
by providing a procedure that selects a size n committee from all N parties and by proving that a fully
mobile adversary with corruption power p s.t. p ·N > t− 1 can at most corrupt t− 1 shareholders at a time.

We now recall the definition of an ECPSS scheme as given in [9].

Definition 9 (ECPSS). An evolving-committee proactive secret sharing scheme with parameters t ≤ n < N
consists of the following procedures:

Setup: Optional procedure that provides the initial state for a universe of N parties.
Sharing: Shares a secret s among an initial committee of size n.
Committee-Selection: This procedure is executed among all N parties and selects the next n-party com-

mittee.
Handover: This procedure is executed among n parties, takes the output of committee-selection and the

current shares and re-shares them among the next committee.
Reconstruction: Takes t or more shares from the current committee and reconstructs the secret s or outputs
⊥ on failure.

An ECPSS protocol is scalable if the messages sent during committee-selection and handover are bounded in
total by some fixed poly(n, λ), independent of N .

An ECPSS scheme must fulfill the same secrecy and (robust) reconstruction properties as a (robust)
secret sharing scheme.

We call an ECPSS scheme (λ, n, t − 1, p)-secure, if it satisfies the secrecy and reconstruction property
w.r.t. a security parameter λ, committee size n, upper bound t − 1 of corrupted parties in the committee
and adversarial corruption power p.

3 ECPSS Construction from Benhamouda et al. [9]

In this section, we recall the scalable ECPSS scheme with security against a fully mobile adversary as
presented by Benhamouda et al. [9] as it constitutes an important building block of our work. We denote the
scheme by ΣECPSS. The main idea behind the scheme is to achieve scalability by choosing small committees
of secret shareholders whose size n does not depend on the total set of parties N . However, due to the small
committee size, a fully mobile adversary, whose corruption power is proportional to N instead of n, is able
to corrupt all members of the committee, thereby compromising security. Benhamouda et al.’s idea to tackle
this issue is to keep the identity of the committee members hidden from the adversary, i.e., the committee
members should be anonymous until they have to communicate for the first time.

We now provide an overview of the ΣECPSS scheme to show how anonymity is achieved. The scheme
proceeds in epochs, at the beginning of which all parties in the system generate a key pair for an anonymous
public key encryption scheme. This key pair is denoted to as the long-term keys of a party. All parties
broadcast their long-term public key to the PKI.

In each epoch two committees are selected, a nominating and a holding committee. The latter is respon-
sible for maintaining the secret shares of the original secret while the former is responsible for selecting the
members of the holding committee. The nominating committee self-selects, for instance by the use of verifi-
able random functions. This self-selection process ensures that members of the nominating committee remain
anonymous until they send a message via the broadcast channel for the first time in the current epoch. After
self-selecting, each member of the nominating committee randomly selects a member of the holding commit-
tee, generates a fresh session key pair (also referred to as ephemeral key) and encrypts the ephemeral secret
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key under the long-term public key of the selected holding committee member. The resulting ciphertext is
then broadcast along with the ephemeral public key.

Upon broadcasting these values the members of the nominating committee erase their internal state as
their identity is now known to the adversary. All N parties can now check if they were selected to the
next holding committee by trying to decrypt the published ciphertexts. At this point, the previous-epoch
holding committee (which holds the shares of the secret) encrypts (a sharing of) the secret shares under
the ephemeral public keys and broadcasts the resulting ciphertexts. Again, as broadcasting compromises
anonymity, the parties in the previous holding committee first erase their internal states. We refer the reader
to [9] for the full description of the ΣECPSS scheme.

We denote the general idea of selecting an anonymous committee (holding committee) through another
committee (nominating committee) as the two committee framework and we will later use this framework to
build schemes that are secure against fully mobile adversaries.

We will now describe the Setup procedure as well as the Select and Handover procedures in more detail
as these are most relevant for our work.

The Setup procedure works as follows.

Setup(1λ): On input a security parameter λ, this procedure chooses a λ-bit prime q and executes crs ←
NIZK.Setup(1λ) to generate the common reference string crs of a NIZK proof system (cf. Def. 8). The
procedure outputs public parameters pp := (crs, q).2

During the Select procedure, a nominating committee first self-selects and then in turn selects the next
n-party holding committee. We omit the details on the self-selection of the nominating committee and just
describe the selection of the holding committee. In the following, we denote by APKE the anonymous public
key encryption scheme and by PKE the public key encryption scheme that generates the ephemeral keys.

Select procedure:

Let Cnom be the self selected committee (nominating committee) which selects the next n-party holding committee.
Each party Pi ∈ Cnom does the following:

1. Choose a nominee for the next holding committee p ∈ [N ] and let pkp be this selected party’s long-term public
key which was broadcast to the PKI at the beginning of the current epoch.

2. Generate a new ephemeral key pair (eski, epki)← PKE.KeyGen(1λ), and compute ci ← APKE.Enc(pkp, eski).
3. Erase eski, and broadcast (epki, ci).

Upon receiving pairs ((epk1, c1), · · · , (epkn, cn)), all parties Pj with j ∈ [N ] do the following:

4. Verify that the broadcasters were indeed in the self-selected committee Cnom. Otherwise, ignore the tuple sent
by a party not in the committee Cnom.

5. For each tuple (epki, ci) try to decrypt ci using your long-term secret key sk j . If successful, Pj is in the next
holding committee and stores the decrypted value eski.

Due to the self-selection of the nominating committee and the use of the anonymous public key encryption
scheme APKE, the members of the holding committee are anonymous from the adversary’s point of view
(except for members already corrupted before being selected). Indeed, Benhamouda et al. show that for
specific holding committee sizes and adversarial corruption power, the adversary cannot corrupt more than
t ≈ n/2 members of the holding committee except with negligible probability in the security parameter. We
note that there is no guarantee that the Select procedure will indeed select a holding committee of size n,
since malicious parties in the nominating committee can refuse to nominate a party to the holding committee.
However, this does not affect the functionality or security of the ΣECPSS scheme, since a malicious party in the
nominating committee can always nominate a malicious party to the holding committee. Therefore, refusing
to nominate any party to the holding committee decreases the number of total parties n but likewise, the
number of possibly corrupted parties t. For simplicity, we assume for the rest of this work that Select chooses
holding committees of size exactly n.

2 For simplicity, we omit the setup of the PKI here.
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We now describe the Handover procedure. This procedure enables the current holding committee to “pass”
its shares of a secret to the next-epoch holding committee (selected via the Select procedure). In order to do
so, each member of the current holding committee re-shares their secret share and sends the resulting shares
to the new holding committee by encrypting them under the ephemeral public keys broadcast at the end of
the Select procedure.

Handover procedure:

Let C be a holding committee such that each party Pi ∈ C for i ∈ [n] knows a secret share si ∈ Zq. In this
procedure, the entire universe of parties U first runs a self-selection process to select a nominating committee Cnom

and then executes Select to select the next-epoch holding committee C′ such that each Pj
′ ∈ C′ is associated with

an ephemeral public key epkj .
a

Each party Pi ∈ C does the following:

1. Choose a random degree-t polynomial Fi(x) = ai,0 + ai,1x+ · · ·+ ai,tx
t ∈ Zq[x] with ai,0 = si and compute the

shares si,j := Fi(j) for j ∈ [n].
2. For each j ∈ [n] compute ci,j ← PKE.Enc(epkj , si,j).
3. Let comi be a commitment to si from the Handover procedure of the previous epoch. Compute a NIZK proof

πi,Handover for the statement that (comi, {ci,j}j∈[n]) are a commitment and encryptions of values on a degree-t
polynomial w.r.t. evaluation points j ∈ [n].

4. Choose a long-term key pair (sk ′i, pk
′
i)← APKE.KeyGen(1λ) and erase sk i and all protocol secrets.

5. Broadcast (pk ′i, πi,Handover, {ci,j}j∈[n]).

Upon receiving (pk ′i, πi,Handover, {ci,j}j∈[n]) for i ∈ [n], all parties P ′j ∈ C′ do the following:

6. Verify the NIZKs πi,Handover and for the first t+ 1 valid proofs πi store i in a set Qual.
7. Compute si,j ← PKE.Dec(eskj , ci,j) for all i ∈ Qual.
8. Compute the secret share s′j =

∑
i∈Qual li · si,j ∈ Zq, where li are the corresponding Lagrange coefficients.

a For simplicity, we assume that Select is executed as part of the Handover procedure. This is different from the
original protocol description in [9], but does not affect the functionality or security of the protocol.

We would like to point out that the encryption schemes PKE and APKE are used in the spirit of a hybrid
encryption scheme, i.e., secret keys from PKE are encrypted under public keys of APKE and messages are
encrypted under the public keys of PKE. Benhamouda et al. call this a “combined” encryption scheme and
we will denote it by CPKE. This combined scheme must be RIND-SO secure. We recall this scheme more
formally in Appendix A.3.

Finally, we note that Benhamouda et al.’s solution can be instantiated with different parameters. For
instance, it has been shown to be (128, 889, 425, 0.05)-secure or (128, 38557, 19727, 0.25)-secure. A recent
work by Gentry et al. [30] showed how to improve these parameters by introducing a new Select mechanism
that allows ΣECPSS to remain secure for any p < 1

2 . More concretely, for p = 0.25 they only require a
holding committee of size 680 and for p = 0.40 a committee of size 3500, which are significant improvements
compared to the original parameters from [9].

Generalized Handover procedure. As can be seen from the above description, the Handover procedure pre-
sented by Benhamouda et al. is tailor-made for the ECPSS construction, i.e., parties in the holding committee
cannot broadcast any additional values during the execution of the procedure. This makes it difficult to use
the ΣECPSS scheme in black-box in other protocols. As such, we define a generalized Handover procedure,
denoted by G–Handover, where parties can also broadcast additional values depending on the protocol build-
ing on the ΣECPSS scheme. More precisely, we write G–Handover[Cj〈(sj1,auxj

1),··· ,(s
j
n,aux

j
n)〉, U ](pp) to state that

the Handover procedure is executed in epoch j between the current holding committee members Cj and
the parties in the universe U where each committee member P ji ∈ Cj uses its secret input sji as in the

original Handover procedure and additionally broadcasts its auxiliary input auxji alongside the other values
in step 5 of the ΣECPSS.Handover procedure. Note that this change does not affect the correctness of the
ΣECPSS.Handover procedure.
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We will later see how protocols can be proven secure when using G–Handover as a building block. In a
nutshell, it must be proven that the auxiliary information does not leak any information about the secret
value that is being passed on to the next committee. We believe that, by defining G–Handover and later
showing how security proofs can be written when G–Handover is used, we have paved the way for future
works to build upon the ΣECPSS scheme and prove their protocols to be secure in the YOSO model.

4 Large-Scale Distributed Key Generation

In this section, we first formally define the notion of large-scale distributed key generation (LS–DKG) and
then present a construction in our model.

4.1 Model

A (t, n)-distributed key generation protocol (DKG) allows a set of n parties to generate a public/secret key
pair (pk , sk) such that all n parties learn pk , but no single party learns sk . Instead each party learns a share
of the secret key s.t. any subset of t+ 1 parties can reconstruct sk . A DKG protocol is considered secure if
an adversary that corrupts at most t parties learns no information about sk .

A large-scale (t, n)-distributed key generation protocol (LS–DKG) differs from the above notion of dis-
tributed key generation protocols in the sense that it is defined w.r.t. a universe of parties U from which a
committee of parties C of size n with n < |U | is selected. This committee can then execute the key generation
protocol. In terms of security, an LS–DKG protocol does not rely on the assumption that an adversary can
corrupt at most t parties in C (as previous notions of DKG do), but rather assumes a fully mobile adversary
with corruption power p that can corrupt up to p · |U | > t parties.

We now present the formal definition of a LS–DKG protocol.

Definition 10. A large-scale (t, n)-distributed key generation protocol (LS–DKG) is run among a universe
of parties U = {P, · · · , PN} with N > n and consists of a tuple LS–DKG = (Setup,TKeyGen) of an efficient
algorithm and a protocol which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a secret key
share sk i.

In this work, we focus on discrete-log-based threshold cryptosystems, i.e., threshold schemes that operate
over a cyclic group G of prime order q and output secret/public key pairs of the form (x, gx), where x ∈ Zq
and g is a generator of G. We now present the correctness properties of an LS–DKG scheme, which are similar
to the correctness properties for DKG schemes in the discrete-log setting as introduced by Gennaro et al.
[29].

Correctness: An LS–DKG protocol must satisfy the following three correctness properties.

1. All subsets of t+ 1 secret key shares provided by honest parties in C define the same unique secret
key sk .

2. After the execution of TKeyGen, all parties Pj ∈ U know the same public key pk which corresponds
to the secret key sk .

3. sk and pk are uniformly distributed in Zq and G, respectively.

In addition to correctness, an LS–DKG scheme must satisfy the following secrecy property similar to the
definition of Gennaro et al. [29].
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Secrecy: An LS–DKG scheme is (λ, n, t, p)-secret if for every fully mobile adversary A with corruption power
p s.t. p·|U | > t, there exists an efficient algorithm S, which on input a uniformly random element pk ∈ G,
generates an output distribution which is computationally indistinguishable from A’s view of the output
distribution of a real execution of the LS–DKG scheme that outputs pk .

We call a large-scale distributed key generation protocol LS–DKG (λ, n, t, p)-secure, if it is (λ, n, t, p)-secret
and satisfies the correctness property.

4.2 Construction

We are now ready to present our construction of a large-scale distributed key generation (LS–DKG) protocol.
Before we explain our construction in detail, we first give an overview about the challenges that arise when
designing an LS–DKG protocol and how we solve these challenges.

Technical challenges. Typically, discrete-log based DKG protocols are executed among a fixed set of parties
where the execution can be divided into three phases: (1) share distribution, (2) qualification and (3) public
key reconstruction phase. In the first phase, i.e., the share distribution phase, each party Pi chooses a
random value si and distributes shares of this value to the other parties via a verifiable secret sharing
protocol. Additionally, party Pi broadcasts a commitment to the group element gsi . The verifiability of the
sharing is crucial as it allows to identify misbehaving parties and consequently to exclude those parties from
the further execution of the protocol. In other words, the verifiability allows to identify a set of parties,
which behaved honestly in the first phase and therefore “qualify” to participate in the further execution of
the protocol. As such, the phase of identifying the set of qualified parties is called the qualification phase. At
this point, all qualified parties can reconstruct their respective secret key share which is typically done by
summing up the secret shares each party received from all qualified parties. In the final phase of the protocol,
the public key reconstruction phase, each qualified party Pi opens its commitment to gsi , which enables the
parties to reconstruct the public key from all the opened commitments of qualified parties (which is typically
done by taking the product of the opened elements).

In our setting, we need to design a scheme that is secure against fully mobile adversaries. Note that such
an adversary has sufficient corruption power p to corrupt p · |U | > t parties, which would trivially break the
security of the scheme. To tackle this issue, we resort to anonymity, i.e., our protocol keeps the identity of
parties anonymous by using the ECPSS scheme ΣECPSS as described in Sec. 3. In order to achieve anonymity
using ΣECPSS, we must instantiate our DKG protocol in the YOSO (you only speak once) model, where each
party is allowed to communicate at most once per epoch with other parties3. This, however, raises two issues
as compared to previous DKG schemes since (1) parties cannot interactively identify misbehaving parties
as is typically done in verifiable secret sharing protocols and (2) parties cannot first commit to a value and
later send the opening of the commitment. To overcome these restrictions imposed by the YOSO model,
we must design a protocol which can be executed in the span of multiple committees such that parties in
one committee hand-over their state to the parties of the subsequent committee. Note however, that parties
cannot simply forward their internal state to the next committee as this would allow the adversary to learn
up to 2t shares and therefore compromise security.

Overview of our construction. Our LS–DKG protocol (which we denote throughout this paper by ΠLS–DKG) is
inspired by the DKG protocol of Damg̊ard et al. [21] and follows the same three-phase framework as described
above, while addressing the challenges of being executed in the YOSO model. At the core of our protocol lies
the two committee framework of Benhamouda et al. [9] which allows selecting a committee of anonymous
parties. Note that the YOSO model requires parties to perform any communication while handing over their
secret states to the next anonymous committee. Therefore, it is not sufficient to simply employ the ΣECPSS

scheme in black-box, since the ΣECPSS.Handover procedure does not allow parties to broadcast additional
DKG-specific values. Instead we have to use the generalized handover procedure G–Handover as described

3 Recall that parties are no longer anonymous upon sending a message.
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in Sec. 3 which allows parties to broadcast additional values while handing over their state to the next
committee and simultaneously ensuring that parties speak at most once. Note, however, that we still use
the ΣECPSS.Select procedure in black-box to select anonymous committees. Further, we make use of NIZK
proofs to tackle the challenges mentioned above, i.e, to remove the need to interactively identify maliciously
behaving parties and to avoid committing to a value and opening the commitment at a later time. In the
following, we provide a more detailed description of our solution.

As the starting point of our protocol we assume that an anonymous committee C has been previously
selected via the execution of the ΣECPSS.Select procedure. In the first phase of our protocol, the committee
selection phase, another anonymous committee C ′ of size n is selected. The protocol then proceeds to the
share distribution phase, during which each party Pi ∈ C chooses a random value si which it shares to
committee C ′ via the techniques of the ΣECPSS scheme. In order to make the sharing publicly verifiable
without the need for any interaction, Pi broadcasts a NIZK proof that proves honest behavior of Pi during
the share distribution phase.

In the next phase of our protocol, the qualification phase, each party Pj
′ ∈ C ′ creates a set of qualified

parties Qual, which consists of the first t + 1 parties from committee C who gave a correct NIZK proof.
We note that at this point, the public and secret key of the protocol are fixed as pk =

∏
i∈Qual g

si and

sk =
∑
i∈Qual si. Each party Pj

′ can now reconstruct a secret key share sk ′j from the shares of si it received
from parties Pi ∈ Qual. The only missing piece is to reconstruct and publish the corresponding public key
pk . In order to do so, party Pj

′ broadcasts gsk
′
j along with a NIZK proof that proves that gsk

′
j was computed

correctly.
In the final phase of the protocol, the public key reconstruction phase, all parties in U can use the elements

gsk
′
i to compute the public key via lagrange interpolation in the exponent.
We now give a formal description of our LS–DKG protocolΠLS–DKG using theΣECPSS.Select and G–Handover

procedures and a NIZK proof system NIZK.

Setup(1λ): On input a security parameter λ, execute ppECPSS ← ΣECPSS.Setup(1λ) and crs← NIZK.Setup(1λ).
Parse ppECPSS := (crs′, q). Choose a group G of prime order q with generator g such that the dlog problem
is hard in G. Output public parameters ppLS–DKG := (crs,G, q, g).

TKeyGen(ppLS–DKG, t, n) procedure:

In the following, we denote by PKE the public key encryption scheme that generates the ephemeral keys of the
ΣECPSS scheme. Note that PKE together with the anonymous public key encryption scheme APKE as used for the
long-term keys in ΣECPSS constitute the combined public key encryption scheme CPKE (cf. Sec. 3).

Input: ppLS–DKG := (crs,G, q, g), integers t, n ∈ N, s.t. n ≥ 2t+1 and an anonymous committee C where |C| = n
selected via the ΣECPSS.Select procedure in the previous epoch.

Committee Selection Phase:
1. During the committee selection phase, the procedure ΣECPSS.Select is executed to select a new committee C′

where |C| = |C′| = n. Note that after the execution of ΣECPSS.Select each party Pj
′ ∈ C′ is associated to an

ephemeral public key epkj which is known to all parties in C.

Share Distribution Phase:
2. Each party Pi ∈ C does the following:

(a) Choose si ←$ Zq.
(b) Choose a random degree-t polynomial Fi(x) = ai,0 + ai,1x+ · · ·+ ai,tx

t ∈ Zq[x] with ai,0 = si.
(c) Compute shares si,j := Fi(j) for j ∈ [n].
(d) For all j ∈ [n] compute ci,j ← PKE.Enc(epkj , si,j).
(e) Compute a NIZK proof πi for the following language:

L := {((ci,1, · · · , ci,n), (epk1, · · · , epkn))|
∃(si,1, · · · , si,n), (ri,1, · · · , ri,n), Fi s.t. ci,j ← PKE.Enc(epkj , si,j ; ri,j)

∧ Fi(j) = si,j ∈ Zq, ri,j ∈ R for j ∈ [n] ∧ deg(Fi) = t}.
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Informally, πi proves for a statement consisting of ciphertexts (ci,1, · · · , ci,n) and ephemeral public keys
(epk1, · · · , epkn) that each ci,j is a ciphertext encrypted under public key epkj and ci,j encrypts a value
si,j in Zq such that any size t subset of {si,1, · · · , si,n} uniquely defines the polynomial Fi.

(f) Erase all secret values, i.e., shares si,j , polynomial Fi and the value si.
(g) Broadcast (πi, {ci,j}j∈[n])a.

Qualification Phase:
3. Let Qual = ∅. Upon receiving the tuples (πi, {ci,j}j∈[n]) for i ∈ [n], all parties Pj

′ ∈ C′ check if πi is valid and
if so, store i in Qual until |Qual| = t+ 1.b

4. For all i ∈ Qual compute si,j ← PKE.Dec(eskj , ci,j).
5. Compute the secret key share sk ′j ∈ Zq as sk ′j =

∑
i∈Qual si,j .

6. Compute S′j = gsk
′
j .

7. Compute a NIZK proof π′j for the following language:

L′ := {{ci,j}i∈Qual, epkj , S
′
j)|∃eskj s.t. g

∑
i∈Qual PKE.Dec(eskj ,ci,j) = S′j

∧ epkj = SkToPk(eskj)}.

Informally, π′j proves that the dlog of S′j is the sum of the decryptions of ci,j for i ∈ Qual under eskj .
8. Execute the G–Handover[C′〈(sk′1,(S′1,π′1)),··· ,(sk′n,(S′n,π′n))〉, U ](pp) procedure. This execution selects a committee

C′′ with |C′′| = n s.t. each party Pi
′′ ∈ C′′ learns a refreshed secret key share sk ′′i .

Public Key Reconstruction Phase:
9. Let PK = ∅. All parties in U compute the set Qual as above and check for all j ∈ [n] if π′j is valid and if so

store S′j in PK until |PK| = t+ 1.

10. The public key pk ∈ G can then be computed as pk =
∏
k∈PK S

′lk
k where lk are the corresponding lagrange

coefficients.

a To be precise, parties must also provide a proof that they were indeed selected as members of the holding
committee C in the previous epoch as in the Handover procedure of the ΣECPSS scheme. We omit this here for the
sake of brevity.

b We are implicitly assuming that there is an order on these tuples.

Theorem 1. Let the discrete-log assumption hold in G, let NIZK be a non-interactive zero-knowledge proof
system as per Def. 8, ΣECPSS be a (λ, n, t, p)-secure instantiation of the evolving-committee proactive secret
sharing scheme as presented in Sec. 2.6 and CPKE be a RIND-SO secure public key encryption scheme. Then
the protocol ΠLS–DKG from Sec. 4.2 is a (λ, n, t, p)-secure large-scale (t, n)-distributed key generation scheme.

In order to prove Theorem 1, we have to show that ΠLS–DKG satisfies the correctness and secrecy property
w.r.t. to a fully mobile adversary with corruption power p. We therefore state and prove the following lemmas.

Lemma 1. The large-scale (t, n)-distributed key generation scheme ΠLS–DKG as presented in Sec. 4.2 the
correctness property.

We provide the proof of Lemma 1 in Appendix B.

Lemma 2. The large-scale (t, n)-distributed key generation scheme ΠLS–DKG as presented in Sec. 4.2 is
(λ, n, t, p)-secret.

Proof Sketch We provide the full proof of Lemma 2 in Appendix B, and only give the main ideas here. To
prove that our scheme is (λ, n, t, p)-secret, we need to construct a simulator which on input a public key pk ,
can simulate an execution of the ΠLS–DKG protocol to a fully mobile adversary A in such a way that (1) the
simulated execution is computationally indistinguishable from a real execution of ΠLS–DKG from A’s point of
view and (2) the public key that is output by the simulated execution is pk .

At a high level, the main challenge in the simulation is the following. The simulator, on behalf of honest
parties Pi in committee C, has to first share the values si to committee C ′ and later adjust these values

15



depending on the set of qualified parties and the values chosen by the adversary such that the following
condition holds

pk =
∏
k∈PK

gsk
′lk
k =

∏
k∈PK

g(
∑

j∈Qual sk,j)
lk
. (1)

As a first step of our proof, we show that a fully mobile adversary A can corrupt at most t parties in
each committee (i.e., in C, C ′ and C ′′ respectively) by exhibiting a reduction to the secrecy property of
the ΣECPSS scheme. That is, we show that if A is able to corrupt more than t parties in either of C, C ′ or
C ′′ with non-negligible probability, then we can construct an adversary that corrupts more than t parties
of a holding committee in ΣECPSS with non-negligible probability, thereby breaking the secrecy property of
ΣECPSS. From this follows that there is an honest majority in each of the committees C, C ′ and C ′′.

The main idea behind our simulation is to use the fact that the adversary corrupts at most a minority
of parties in each committee. More concretely, this fact allows to make the following two observations: (1)
there must exist at least one honest party in Qual since the set of qualified parties Qual consists of t + 1
parties, and (2) the simulator has sufficient information to reconstruct all secret key shares sk ′k for all parties
Pk
′ ∈ C ′ and thereby to learn all elements S′k. The simulator then “adjusts” the elements S′j for some honest

parties Pj
′ in C ′ such that for any subset T ⊂ {S′1, · · · , S′n} with |T | = t + 1 it is possible to reconstruct

pk via interpolation in the exponent. This ensures that Eq. (1) holds. The simulator can then broadcast
the adjusted elements S′j along with a simulated NIZK proof. In order to prove that the adversary cannot
distinguish the simulated values S′j from the real ones, we exhibit reductions to the RIND-SO security of
the CPKE scheme.

5 Large-Scale Threshold Public Key Encryption

In this section, we first introduce the notion of large-scale non-interactive threshold public key encryption
(LS–TPKE) and then show a construction based on the threshold public key encryption scheme by Shoup and
Gennaro [49], the evolving-committee proactive secret sharing solution ΣECPSS from Section 3, the large-scale
distributed key generation scheme ΠLS–DKG from the previous section and a NIZK proof system.

5.1 Model

We now formally define the notion of a large-scale non-interactive threshold public key encryption scheme
LS–TPKE. Let us start by pointing out the main differences between an LS–TPKE scheme and a TPKE
scheme.

First, in contrast to a TPKE scheme, an LS–TPKE scheme does not consider the committee of secret key
shareholders as an external input to the protocol, but rather includes the committee selection procedure as
part of the scheme. More precisely, we define an LS–TPKE scheme w.r.t. to a universe U of parties from which
committees are selected. Second, the execution of an LS–TPKE scheme proceeds in epochs, i.e., its execution
is divided into time intervals at the beginning of which a new committee of secret key shareholders is selected.
In order to transition from one epoch to the next, the previous-epoch committee must pass the secret key
shares on to the next-epoch committee. We therefore add a refresh procedure to an LS–TPKE scheme which
allows for such a transition between epochs. Finally, and most importantly, we define the security of an
LS–TPKE scheme w.r.t. to a fully mobile adversary whose corruption power grows in the universe size |U |
instead of the size of the committee of secret key shareholders. Hence, the adversarial corruption power
suffices to possibly corrupt all secret key shareholders in one epoch.

We now provide the formal definition of an LS–TPKE scheme.

Definition 11. A large-scale non-interactive (t, n)-threshold public key encryption scheme (LS–TPKE) is
defined w.r.t. a universe of parties U = {P, · · · , PN} with N > n and consists of a tuple LS–TPKE =
(Setup,TKeyGen,TEnc,TDec,TShareVrfy,TCombine,Refresh) of efficient algorithms and protocols which are
defined as follows:
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Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a verification
key vk i and a secret key share sk i.

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message m and a label L as input and
outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a ciphertext ct and a label L and it
outputs either ⊥ or a decryption share ct i of the ciphertext ct.

TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext ct, a verification key vk i
and a decryption share ct i and outputs either 1 or 0. If the output is 1, ct i is called a valid decryption
share.

TCombine(T, ct): This deterministic algorithm takes as input a set of valid decryption shares T , s.t. |T | =
t+ 1 and a ciphertext ct and it outputs a message m.

Refresh[C〈(sk1,vk1,dl1),··· ,(skn,vkn,dln)〉, U ](pp): This is a protocol involving a committee C with |C| = n and
the universe of parties U . Each Pi ∈ C takes as secret input a secret key share sk i, verification key vk i
and decryption share list dli, and all parties Pj ∈ U take as input public parameters pp. The protocol
selects a committee of parties C ′ with |C ′| = n and outputs to each party Pi

′ ∈ C ′ a verification key vk ′i
and a secret key share sk ′i. Furthermore, all parties in the universe receive vk i and dli for i ∈ [n].

We will now define the properties that an LS–TPKE must satisfy, namely Correctness, CCA-Security and
Decryption Consistency. In these definitions, we denote by Cj the committee in the j-th epoch (similarly for
a party Pi

j ∈ Cj , we denote verification keys as vk ji , secret key shares as sk ji , decryption shares as ctji and

decryption share lists as dlji ).

Correctness A (t, n) − LS–TPKE scheme must fulfill the following two requirements. For any λ ∈ N, any
pp ← Setup(1λ) and any (pk , {vk1

i }i∈[n], {sk1
i }i∈[n])← TKeyGen[U ](pp, t, n) with selected committee C1, for

j > 1 we define ({vk ji}i∈[n], {sk ji}i∈[n]) recursively as

({vk ji}i∈[n], {sk ji}i∈[n])← Refresh[Cj−1〈(skj−1
1 ,vkj−1

1 ,·),··· ,(skj−1
n ,vkj−1

n ,·)〉, U ](pp)

Recall that during these executions verification keys vk j−1i and decryption share lists dlj−1i for i ∈ [n] are
broadcasted.

1. For any message m, any label L and any ciphertext ct ← TEnc(pk ,m,L), it must hold that

TShareVrfy(ct , vk ji ,TDec(sk ji , ct , L)) = 1

2. For all decryption share lists dlj−1i where i ∈ [n], each element in the list is computed as ctj−1i,k ←
TDec(sk j−1i , ctk, L), where ctk ← TEnc(pk ,mk, Lk) for a message mk and a label Lk. Further, for any

set Tk = {ctj−11,k , · · · , ctj−1t+1,k}, it holds that TCombine(Tk, ctk) = mk.

CCA-Security In the following, we give the definition of chosen-ciphertext security for a (t, n) − LS–TPKE
scheme considering an efficient fully mobile adversary A with corruption power p s.t. p · |U | > t. The
state-of-the-art communication model for designing and analyzing protocols that are secure against such a
strong adversary is the YOSO model, in which committee members can speak at most once before having
to hand over their secret key share to the next committee. This has the following interesting implications
on the definition of the security game as compared to the notion of CCA-security for a TPKE scheme (cf.
Appendix A). First, upon a decryption oracle query, the game has to output decryption shares on behalf of
honest secret key shareholders. However, this requires these shareholders to “speak”. As each party should
speak only once, decryption shares must be computed locally without immediately outputting them. Instead,
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only upon refreshing the secret key shares to the next committee can all previously computed decryption
shares be output. Second, in contrast to traditional threshold public key encryption schemes, the verification
key of each honest committee member remains private until decryption shares are output. Note that (1) the
verification keys are required only to check the validity of decryption shares and (2) verification keys depend
on the secret key shares, i.e., they are refreshed in each epoch. Therefore, it is sufficient to output verification
keys simultaneously with the decryption shares at the end of an epoch.

We formally define the following game LSTPKE–CCAALS–TPKE(λ) which is initialized with a security pa-
rameter λ:

1. The game executes Setup(1λ) and obtains public parameters pp, which it forwards to the adversary A.
For each epoch j ≥ 0, the game maintains a set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following corruption oracle:

– Corruption oracle: On input an index i ∈ [N ], the game checks if
⌊
|Bj |+1
|U |

⌋
≤ p. If so, A receives

the internal state of party Pi
j and the game sets Bj ← Bj ∪ {Pij}.

3. The protocol TKeyGen[U ](pp, t, n) is executed. The protocol selects a committee C1 with |C1| = n
and outputs a public key pk , a set of verification keys {vk1

1, · · · , vk1
n} and a set of secret key shares

{sk1
1, · · · , sk1

n}, such that Pi
1 ∈ C1 learns vk1

i and sk1
i .

4. At this point, A additionally obtains access to the following two oracles. Let dl1i := ∅ for i ∈ [n]:

– Refresh oracle: On input a setNBj ⊆ Bj , the protocol Refresh[Cj〈(skj
1,vk

j
1,dl

j
1),··· ,(sk

j
n,vk

j
n,dl

j
n)〉, U ](pp)

is executed and the game sets Bj+1 ← Bj \ NBj . It further initializes lists dlj+1
i := ∅ for parties

Pi ∈ Cj+1 \Bj+1.
– Decryption oracle: On input a set of ciphertexts CT j with a set of associated labels ALj , the

game computes ctji,k ← TDec(sk ji , ctjk, L
j
k) for all ctjk ∈ CT j and Ljk ∈ ALj and for all parties

Pi
j ∈ Cj \Bj . Then, the oracle adds all ctji,k to the list dlji .

5. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L and sends them to the game.
The game chooses a random bit b←$ {0, 1} and sends ct ′ ←$ TEnc(pk ,mb, L) to A.

6. A is allowed to make queries as described in steps 2. and 4. with the exception that it cannot make a
decryption query on ciphertext ct ′.

7. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

Definition 12. A large-scale non-interactive (t, n)-threshold public key encryption scheme LS–TPKE with a
universe of parties U is secure against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p) s.t. p · |U | > t
if for every fully mobile PPT adversary A with corruption power p there exists a negligible function ν in the
security parameter λ, such that

Pr[LSTPKE–CCAALS–TPKE(λ) = 1] ≤ 1/2 + ν(λ).

We define the advantage of A in game LSTPKE–CCAALS–TPKE as

AdvALSTPKE–CCA,LS–TPKE(λ) = |Pr[LSTPKE–CCAALS–TPKE(λ) = 1]− 1/2|.

Definition 13 (Decryption Consistency). An LS–TPKE scheme satisfies decryption consistency w.r.t.
parameters (λ, n, t, p) if there exists no fully mobile PPT adversary A with corruption power p that wins the
game LSTPKE–DC described below with non-negligible probability:

LSTPKE–DC: The game begins with steps 1.-4. as in game LSTPKE–CCA with the difference that the adver-
sary is allowed to learn all secret key shares in each epoch j4. The adversary eventually outputs a ciphertext

ct∗, two sets of verification keys V K = {vk j1, · · · , vk jt+1} and ˜V K = {ṽk
j

1, · · · , ṽk
j

t+1} and two sets of de-

cryption shares T = {ctj1, · · · , ctjt+1} and T̃ = {c̃t
j
1, · · · , c̃t

j
t+1} and wins the game if the following conditions

hold:

4 Note however that the adversary is not controlling these parties, i.e., not all parties are corrupted.
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1. For all i ∈ [t+ 1] it holds that TShareVrfy(ct∗, vk ji , ctji ) = 1 and TShareVrfy(ct∗, ṽk
j

i , c̃t
j
i ) = 1.

2. TCombine(T, ct∗) 6= TCombine(T̃ , ct∗)

We call a large-scale non-interactive (t, n)-threshold public key encryption scheme LS–TPKE (λ, n, t, p)-
secure, if it satisfies correctness, decryption consistency and CCA-security w.r.t. parameters (λ, n, t, p).

5.2 Construction

Shoup and Gennaro [49] introduced two threshold public key encryption schemes denoted as TDH1 and
TDH2 respectively, which are both CCA-secure against static adversaries in the random oracle model [6]. In
the following, we show how the scheme TDH1 = (Setup,KeyGen,TEnc,TShareVrfy,TCombine) can be trans-
formed into a secure large-scale threshold public key encryption scheme ΠLS–TPKE = (Setup,TKeyGen,TEnc,
TDec,TShareVrfy,TCombine,Refresh). For this transformation we make use of the large-scale distributed key
generation scheme ΠLS–DKG = (Setup,TKeyGen) as described in Sec. 4, the two committee framework of
Benhamouda et al. as well as the G–Handover procedure as presented in Sec. 3 and a NIZK proof system
NIZK = (Setup,Prove,Verify) as per Def. 8.

Note that for similar reasons as for our ΠLS–DKG protocol, we cannot use the ΣECPSS.Handover procedure
in black-box. Instead we have to use the generalized handover procedure G–Handover, which internally uses
the ΣECPSS.Select procedure and the combined public key encryption scheme CPKE (cf. Sec. 3).

We detail the construction of the ΠLS–TPKE scheme below and we recall the TDH1 scheme in Appendix D.

ΠLS–TPKE.Setup(1λ): On input a security parameter λ, execute

ppTDH1 ← TDH1.Setup(1λ), p̃pLS–DKG ← ΠLS–DKG.Setup(1λ)

crs←NIZK.Setup(1λ)

Recall that ppLS–DKG can be parsed as p̃pLS–DKG := (crs′,G, q, g). Define ppLS–DKG := (crs,G, q, g) and
output public parameters pp := (ppTDH1, ppLS–DKG).

ΠLS–TPKE.TKeyGen[U ](pp, t, n): On input public parameters pp and two integers t, n ∈ N s.t. n ≥ 2t + 1,
this protocol parses pp := (ppTDH1, ppLS–DKG) and calls the ΠLS–DKG.TKeyGen(ppLS–DKG, t, n) procedure,
which selects a committee C1 with |C1| = n and outputs a public key pk to all parties in U and secret

key shares sk1
i to each party Pi

1 ∈ C1. Additionally, all Pi
1 compute v̂k

1

i := gsk
1
i and a NIZK proof

π1
i proving that v̂k

1

i was computed correctly5. Pi
1 then sets the verification key vk1

i := {v̂k
1

i , π
1
i } and

initializes a decryption share list dl1i := ∅.

ΠLS–TPKE.TEnc(pk ,m,L): This procedure executes TDH1.TEnc.

ΠLS–TPKE.TDec(sk ji , ct , L): This procedure executes TDH1.TDec and adds the resulting decryption share to
a list dli.

ΠLS–TPKE.TShareVrfy(ct , vk ji , ctji ): On input a ciphertext ct , a verification key vk ji := {vk j
′

i , π
j
i } and a

decryption share ctji , this procedure checks if πji is a valid proof w.r.t. v̂k
j

i (i.e., it checks if v̂k
j

i is indeed
the correct verification key of party Pi

j ∈ Cj). If this check does not hold, the procedure outputs 0.

Otherwise, it outputs TDH1.TShareVrfy(ct , v̂k
j

i , ctji ).

ΠLS–TPKE.TCombine(T, ct): This is the TDH1.TCombine procedure.

5 The language for this proof is the same as the language L′ in the ΠLS–DKG protocol.

19



ΠLS–TPKE.Refresh[Cj〈(skj
1,vk

j
1,dl

j
1),··· ,(sk

j
n,vk

j
n,dl

j
n)〉, U ](pp): This protocol is executed between a committee Cj

in epoch j and the universe U , where each Pi
j ∈ Cj receives as input a secret key share sk ji , the

verification key vk ji and the decryption share list dlji . Furthermore, each party Pk ∈ U receives as input
pp := (ppTPKE, ppLS–DKG).
The protocol first runs G–Handover[Cj〈(skj

1,(vk
j
1,dl

j
1)),··· ,(sk

j
n,(vk

j
n,dl

j
n))〉, U ](pp) which selects a committee

Cj+1 with |Cj+1| = n and outputs refreshed secret key shares sk j+1
i to each Pi

j+1 ∈ Cj+1. Additionally,

all Pi
j+1 ∈ Cj+1 compute v̂k

j+1

i := gsk
j+1
i , generate a NIZK proof πj+1

i that the verification key was

computed correctly 6 and set vk j+1
i := {v̂k

j+1

i , πj+1
i }. Finally, all Pi

j+1 initialize a decryption share list

dlj+1
i := ∅.

Theorem 2. Let ΠLS–DKG be a (λ, n, t, p)-secure instantiation of the large-scale (t, n)-distributed key gen-
eration protocol from Sec. 4, TDH1 be the non-interactive (t, n)-threshold public key encryption scheme as
described in Appendix D which is secure against chosen-ciphertext attacks with static corruptions in the
ROM according to Def. 6, ΣECPSS a (λ, n, t, p)-secure instantiation of the evolving-committee proactive secret
sharing scheme as presented in Sec. 3, NIZK a non-interactive zero-knowledge proof system as per Def. 8
and CPKE a RIND-SO secure public key encryption scheme. Then ΠLS–TPKE is a (λ, n, t, p)-secure large-scale
non-interactive (t, n)-threshold public key encryption scheme in the ROM.

In order to prove Theorem 2, we have to show that ΠLS–TPKE satisfies correctness and decryption consis-
tency as well as security against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p). We therefore state
the following lemmas.

Lemma 3. The large-scale non-interactive (t, n)-threshold public key encryption scheme ΠLS–TPKE as de-
scribed in Sec. 5.2 satisfies correctness.

Proof. This lemma follows directly from the correctness property of the TDH1 scheme, the completeness
property of the NIZK proof system and from the handover correctness [9] of G–Handover. We provide a proof
outline for Lemma 3 in Appendix C.

Lemma 4. The large-scale non-interactive (t, n)-threshold public key encryption scheme ΠLS–TPKE as de-
scribed in Sec. 5.2 satisfies decryption consistency w.r.t. parameters (λ, n, t, p).

Proof. We provide a proof for Lemma 4 in Appendix C.

Lemma 5. The large-scale non-interactive (t, n)-threshold public key encryption scheme ΠLS–TPKE as de-
scribed in Sec. 5.2 is secure against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p).

Proof Sketch. We provide the full formal proof of Lemma 5 in Appendix C. We provide now a high level proof
sketch that summarizes the main ideas of our proof. At a high level, we show that if there exists a fully mobile
adversary B with corruption power p who can win game LSTPKE–CCABΠLS–TPKE

with non-negligible probability,

then there exists an efficient static adversary A who can use B to win its own game TPKE–CCAATDH1 (cf.
Def. 6) with non-negligible probability. Therefore, we show how A can simulate game LSTPKE–CCABΠLS–TPKE

to B in such a way that the simulation is indistinguishable from a real execution to B and how A can use
B’s output bit b′ to win its own game.

The first step of our proof, similar to the proof of Lemma 2, is to show via a reduction to the secrecy
property of the ΣECPSS scheme that B corrupts at most t secret key shareholders (i.e., committee members)
per epoch.

We then show how A simulates the game LSTPKE–CCABΠLS–TPKE
to B w.r.t. the public key pk that it

receives from its own game TPKE–CCAATDH1. A embeds pk in game LSTPKE–CCABΠLS–TPKE
by executing the

simulator code of the ΠLS–DKG scheme (cf. Fig. 1) on input pk . After this execution, A knows the secret key

6 The language for this proof is the same as the language L′ in the ΠLS–DKG protocol.
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shares of all honest and malicious parties. Note however that, according to the simulation strategy for the
ΠLS–DKG scheme, these secret key shares are merely random values in Zq that are independent of pk . The

main idea of the proof is now to show that A can simulate game LSTPKE–CCABΠLS–TPKE
to the adversary B,

without B noticing that the committee members hold a sharing of a random value.
In order to show this, we make the following crucial observation that is unique to the YOSO model.

To simulate the decryption and refresh oracles to B, the adversary A has to simulate verification keys and
decryption shares for honest committee members that are consistent with B’s view. In particular, this means
that these simulated verification keys and decryption shares are not consistent with the secret key shares
of honest parties. However, as the YOSO model requires committee members to first erase their secret
key shares before outputting their verification key and decryption shares, this inconsistency between public
information and the internal state of honest parties remains undetected by B. Said differently, if B corrupts a
committee member before this member has output its verification key and decryption shares, there exists no
inconsistent public information through which B could distinguish the simulation from a real execution (as
long as B corrupts at most t committee members). On the other hand, if B corrupts a committee member
after this member has output its verification key and decryption shares, then the secret key share has already
been erased and there is again no inconsistency between public information and internal states.

Remark 1. We note that the schemeΠLS–TPKE inherits the security guarantee of the underlying TDH1 scheme,
i.e., since the TDH1 scheme is chosen-ciphertext secure, so is ΠLS–TPKE.

6 Transformation Framework from TPKE to LS–TPKE

We now discuss how the transformation of the TDH1 scheme to an LS–TPKE scheme as shown in Sec. 5
can be generalized to a framework that transforms discrete-log-based non-interactive threshold encryption
schemes secure against static adversaries to a large-scale non-interactive threshold encryption scheme. We
will show in Appendix E how the same idea can be applied to non-interactive threshold signature schemes.

At a high level, we utilize our LS–DKG protocol ΠLS–DKG as presented in Sec. 4, the evolving-committee
proactive secret sharing scheme ΣECPSS as described in Sec. 3, the G–Handover procedure and a NIZK proof
system to transform a non-interactive (t, n)-threshold encryption scheme secure against static adversaries
TPKE to a large-scale non-interactive (t, n)-threshold encryption scheme secure against fully mobile adver-
saries LS–TPKE. For the transformation to succeed the TPKE scheme must satisfy certain properties which
we discuss in the following.

Properties of the TPKE scheme. We abstract the properties that the TDH1 scheme satisfies and which
allowed us to transform it into a secure LS–TPKE scheme.

Compatibility with ΠLS–DKG. The TDH1 scheme is compatible with our ΠLS–DKG protocol, i.e., the public
key pk and secret key shares (sk1, · · · , skn) as output by ΠLS–DKG.TKeyGen can be used in TDH1. More
concretely, it must hold that (pk , ·, (sk1, · · · , skn)) ∈ TDH1.KeyGen.

Dlog-Based Verification Keys. Secret key shares and the corresponding verification keys form a discrete-log
instance in TDH1, i.e., for a secret key share sk i the corresponding verification key is of the form vk i = gski .

Simulatability. There exists a simulator for the TDH1 scheme that simulates the TPKE–CCA game (cf. Sec. 2.3)
to a static adversary on input a public key, verification keys and t secret key shares in such a way that the
simulated execution of the TPKE–CCA game is computationally indistinguishable from a real execution to
the adversary. Intuitively, we use such a simulator in our security proof to simulate decryption oracle (and
possibly random oracle) queries to the fully mobile adversary playing in game LSTPKE–CCALS–TPKE. How-
ever, since an LS–TPKE scheme is executed in epochs, it must be ensured that the simulation of the oracles
remains consistent across multiple consecutive executions of the protocol with differing secret key shares and
verification keys while the public key stays the same.
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Let us now show why the above properties are crucial to transform a TPKE scheme into a secure LS–TPKE
scheme.

The first property is naturally required in order to use our ΠLS–DKG protocol in combination with the
TPKE scheme to construct an LS–TPKE scheme. The second property might seem less obvious and requires
some further intuition. In our security proof of the ΠLS–TPKE scheme from Sec. 5, the reduction has to output
verification keys for honest parties in each epoch without knowing the corresponding secret key shares.
However, the reduction knows the verification keys of corrupted parties (say w.l.o.g. (vk1, · · · , vk t)) and the
public key pk . We know that the public key is of the form pk = gsk and hence, if a verification key vk i is of
the form vk i = gski , then the reduction can use pk and (vk1, · · · , vk t) to construct a degree-t polynomial F
in the exponent such that F (0) = sk and F (i) = sk i for i ∈ [t]. The reduction can then evaluate F in the
exponent at points j ∈ [t+ 1;n] to compute valid verification keys for honest parties without the knowledge
of the corresponding secret key shares. For the third property, we already provided an intuition above. In a
nutshell, we require a simulator which we can use in our security proof to simulate the responses to oracle
queries from a fully mobile adversary in game LSTPKE–CCALS–TPKE.

This transformation framework can be used for multiple different discrete-log-based TPKE schemes such
as [49], [5] and [44]).

In Appendix E, we present a model for large-scale non-interactive threshold signature schemes and argue
that the framework presented in this section can be applied for threshold signature schemes as well.

7 Applications

In this section, we show several interesting applications of our LS–TSIG and LS–TPKE schemes. Our schemes
are perfectly suited to be used in blockchain networks, which have increasingly gained attention in the
cryptography community as they have proven to be surprisingly versatile for the realization of cryptographic
primitives and protocols. We split applications of our solutions into two categories, (1) storage of blockchain-
backed secrets and (2) adding signing functionality to a blockchain.

7.1 Storage of Blockchain-Backed Secrets

Any information stored on a blockchain is publicly available to all users which severely restricts the usefulness
of a blockchain and the class of applications it supports. Recently, Benhamouda et al. [9] and Goyal et al. [32]
presented solutions based on secret sharing to allow the storage of secret values on a blockchain7. At a high
level, these solutions allow a client to secret share a value to a committee, which then stores the secret and
periodically refreshes the shares to a new committee. However, for many applications it is not necessary to
store the secret on the entire blockchain, but it rather suffices to have a functionality that allows to commit
to a secret and have the blockchain open the commitment in case of malicious behavior during the execution
of the application.

Consider the example of a fair exchange protocol. Assume two parties, say Alice and Bob, wish to exchange
secrets a and b, where Alice initially owns a and Bob owns b. Alice and Bob could now use either solution
of Benhamouda et al. or Goyal et al. to share a and b to the committee and once both parties have done
so, the committee could send the shares of b to Alice and vice versa. There are, however, several issues with
this solution: (1) Alice and Bob have to interact with the committee, (2) the committee has to store shares
of a and b and has to possibly refresh the shares to a new committee and (3) the committee members learn
that Alice and Bob exchange secrets, thereby compromising the two parties’ privacy. Instead, assume that
each committee member holds a secret key share of an LS–TPKE scheme and that the corresponding public
key pk is stored on the blockchain. In this case, Alice and Bob could just encrypt their secrets under pk

7 Likewise Kokoris-Kogias et al. [40] presented a solution for auditable data-management based on blockchain and
threshold encryption which allows for storage of secrets on a blockchain. We refer to Appendix A for further
discussion.
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and exchange the ciphertexts8. Once each of them have received the respective ciphertext, they can reveal
their secrets to each other. If one party misbehaves, say Alice, by not revealing her secret, Bob can let the
committee decrypt Alice’s ciphertext9. Note that, in the optimistic case, i.e., when no party misbehaves,
then we have that (1) there is no interaction with the committee required, (2) the committee does not have
to store and refresh the secrets a and b and (3) the committee does not learn which parties interact with
each other.

Naturally, the same idea can be used to store secrets on a blockchain if necessary, i.e., if Alice wants
to store a secret on the blockchain, she can simply encrypt the secret under the committee’s public key
and publish the ciphertext to the blockchain. The advantage of this solution compared to the secret sharing
based solutions of Benhamouda et al. and Goyal et al. is that the committee has to only refresh its secret key
shares (instead of all secrets that are stored on the blockchain) and therefore the communication complexity
of replacing a committee by a new committee is independent of the number of stored secrets.

7.2 Adding Signing Functionality to a Blockchain

Our LS–TSIG scheme can be used to generate signatures “on behalf” of the blockchain. This allows to sign
individual blocks of the blockchain, thereby certifying that the block is indeed a valid part of the blockchain
or sign certain messages indicating that a specific event has occurred on the blockchain. Benhamouda et
al. [9] previously mentioned that extending their solution to a threshold signature scheme (as we did in this
work) opens the door to various interesting applications. We briefly recall two applications here. We note
that Benhamouda et al. have never formally shown how to construct such a threshold signature scheme from
their solution.

Blockchain Interoperability. Blockchain interoperability deals with the issue of running applications across
multiple different blockchain networks. This often requires proving to a blockchain B that a certain event
has occurred on another blockchain A. In order to do so, trusted parties can be used that are part of both
networks and therefore can mediate between two blockchains. With our LS–TSIG scheme, however, blockchain
A can simply create a signature on a message indicating that the event in question has occurred and this
message/signature pair can be sent to blockchain B. Parties in blockchain B merely require the signing public
key of blockchain A to verify the signature.

Blockchain Checkpointing. Checkpoints on a blockchain allow to certify that a certain blockchain state is
valid. This proves to be particularly useful for new parties joining a blockchain network, as these parties
are not anymore required to download and validate the entire blockchain starting at the first block. Instead,
new parties can download the blocks since the latest checkpoint and validate the blocks that succeed this
checkpoint. This significantly improves computation time of parties joining a blockchain system. A threshold
signature scheme, like our LS–TSIG scheme, can be used to build such checkpoints by simply signing valid
blocks. The signature serves as a proof for the block’s validity.
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[11] F. Böhl et al. “On Definitions of Selective Opening Security”. In: PKC 2012. 2012.
[12] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-

Hellman-Group Signature Scheme”. In: PKC 2003. 2003.
[13] D. Boneh et al. “Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Ora-

cles”. In: CT-RSA 2006. 2006.
[14] D. Boneh et al. “Short Signatures from the Weil Pairing”. In: ASIACRYPT 2001. 2001.
[15] D. Boneh et al. “Threshold Cryptosystems from Threshold Fully Homomorphic Encryption”. In:

CRYPTO 2018, Part I. 2018.
[16] M. Campanelli et al. Encryption to the Future: A Paradigm for Sending Secret Messages to Future

(Anonymous) Committees. Cryptology ePrint Archive, Report 2021/1423. 2021.
[17] R. Canetti et al. “Adaptive Security for Threshold Cryptosystems”. In: CRYPTO’99. 1999.
[18] J. F. Canny and S. Sorkin. “Practical Large-Scale Distributed Key Generation”. In: EURO-

CRYPT 2004. 2004.
[19] A. R. Choudhuri et al. Fluid MPC: Secure Multiparty Computation with Dynamic Participants. Cryp-

tology ePrint Archive, Report 2020/754. 2020.
[20] R. Cohen and Y. Lindell. “Fairness Versus Guaranteed Output Delivery in Secure Multiparty Compu-

tation”. In: Journal of Cryptology 4 (2017).
[21] I. Damg̊ard et al. “Fast Threshold ECDSA with Honest Majority”. In: Security and Cryptography for

Networks. Cham, 2020.
[22] A. De Santis et al. “How to Share a Function Securely”. In: 26th ACM STOC. 1994.
[23] Y. Desmedt and Y. Frankel. “Threshold Cryptosystems”. In: CRYPTO’89. 1990.
[24] J. Devevey et al. “Non-Interactive CCA2-Secure Threshold Cryptosystems: Achieving Adaptive Secu-

rity in the Standard Model Without Pairings”. In: (2021).
[25] C. Dwork et al. “Magic Functions”. In: 40th FOCS. 1999.
[26] Y. Frankel et al. “Optimal-resilience proactive public-key cryptosystems”. In: Proceedings 38th Annual

Symposium on Foundations of Computer Science. 1997.
[27] Y. Frankel. “A Practical Protocol for Large Group Oriented Networks”. In: EUROCRYPT’89. 1990.
[28] Y. Frankel et al. “Adaptively-Secure Distributed Public-Key Systems”. In: Algorithms - ESA’ 99.

Berlin, Heidelberg, 1999.

24



[29] R. Gennaro et al. “Secure Distributed Key Generation for Discrete-Log Based Cryptosystems”. In:
EUROCRYPT’99. 1999.

[30] C. Gentry et al. Random-index PIR and Applications. Cryptology ePrint Archive, Report 2020/1248.
2020.

[31] C. Gentry et al. YOSO: You Only Speak Once / Secure MPC with Stateless Ephemeral Roles. Cryp-
tology ePrint Archive, Report 2021/210. 2021.

[32] V. Goyal et al. Storing and Retrieving Secrets on a Blockchain. Cryptology ePrint Archive, Report
2020/504. 2020.

[33] J. Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive,
Report 2021/339. 2021.

[34] K. Gurkan et al. Aggregatable Distributed Key Generation. Cryptology ePrint Archive, Report
2021/005. 2021.

[35] T. Hanke et al. “DFINITY Technology Overview Series, Consensus System”. In: CoRR (2018). arXiv:
1805.04548.

[36] C. Hazay et al. “Selective Opening Security for Receivers”. In: ASIACRYPT 2015, Part I. 2015.
[37] A. Herzberg et al. “Proactive Public Key and Signature Systems”. In: ACM CCS 97. 1997.
[38] S. Jarecki and A. Lysyanskaya. “Adaptively Secure Threshold Cryptography: Introducing Concurrency,

Removing Erasures”. In: EUROCRYPT 2000. 2000.
[39] A. Kate et al. Distributed Key Generation in the Wild. Cryptology ePrint Archive, Report 2012/377.

2012.
[40] E. Kokoris-Kogias et al. “CALYPSO: Private Data Management for Decentralized Ledgers”. In: Proc.

VLDB Endow. 4 (2020). issn: 2150-8097.
[41] B. Libert and M. Yung. “Adaptively Secure Non-interactive Threshold Cryptosystems”. In: ICALP

2011, Part II. 2011.
[42] B. Libert and M. Yung. “Non-interactive CCA-Secure Threshold Cryptosystems with Adaptive Secu-

rity: New Framework and Constructions”. In: TCC 2012. 2012.
[43] B. Libert et al. “Fully Distributed Non-Interactive Adaptively-Secure Threshold Signature Scheme

with Short Shares : Efficiency Considerations and Implementation ?” In: 2019.
[44] X.-J. Lin and L. Sun. Efficient CCA-secure Threshold Public-Key Encryption Scheme. Cryptology

ePrint Archive, Report 2013/749. 2013.
[45] S. K. D. Maram et al. “CHURP: Dynamic-Committee Proactive Secret Sharing”. In: Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security. London, United
Kingdom, 2019.

[46] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks (Extended Abstract)”. In: 10th
ACM PODC. 1991.

[47] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”. In:
CRYPTO’91. 1992.

[48] A. Shamir. “How to Share a Secret”. In: Communications of the Association for Computing Machinery
11 (1979).

[49] V. Shoup and R. Gennaro. “Securing Threshold Cryptosystems against Chosen Ciphertext Attack”.
In: EUROCRYPT’98. 1998.

[50] N. Shrestha et al. Synchronous Distributed Key Generation without Broadcasts. Cryptology ePrint
Archive, Report 2021/1635. 2021.

[51] H. Wee. “Threshold and Revocation Cryptosystems via Extractable Hash Proofs”. In: EURO-
CRYPT 2011. 2011.

25

http://arxiv.org/abs/1805.04548


Supplementary Material

26



A Additional Related Work and Preliminaries

A.1 Additional Related Work

Threshold Cryptography in Blockchains Numerous works have considered the use of threshold cryptographic
primitives in the context of blockchain (e.g., [40, 4, 35]). The works of Maram et al. [45] and Goyal et al. [32]
both present dynamic proactive secret-sharing (DPSS) constructions for blockchain networks under an honest
majority assumption. Goyal et al. then proceed to define the notion of extractable witness encryption on
blockchains and show an instantiation based on their DPSS scheme. Benhamouda et al. [9] extend the notion
of DPSS to an evolving-committee proactive secret sharing scheme that does not require the honest majority
assumption. Kokoris-Kogias et al. [40] present an auditable data-management solution that is based on
blockchain and threshold encryption. However, their work lacks a formal security analysis of the presented
solution and focuses mostly on a static committee of secret key shareholders. Finally, Groth [33] presents a
non-interactive distributed key generation protocol together with a refresh procedure that allows refreshing
the secret key shares to a new committee.

A.2 Further Notions of Secret Sharing

Proactive Secret Sharing Proactive secret sharing schemes (PSS) further extend robust secret sharing
by providing an additional procedure, which allows to refresh the secret shares. More concretely, a PSS
scheme proceeds in epochs, i.e., time intervals which are delimited by periodical executions of share refresh
procedures. The refresh procedure guarantees that shares from different epochs cannot be combined in order
to retrieve the original secret. The adversary model for PSS schemes considers mobile adversaries that can
corrupt and uncorrupt parties, but never more than t − 1 per epoch. PSS schemes must fulfill the secrecy
and (robust) reconstruction properties as mentioned above.

Dynamic Proactive Secret Sharing Similar to PSS schemes, dynamic proactive secret sharing schemes
(DPSS) proceed in epochs with the difference that the committee of shareholders changes in each epoch,
i.e., the refresh procedure is executed between two different (but not necessarily disjoint) committees. DPSS
schemes must fulfill the same properties as PSS schemes.

A.3 Combined Encryption Scheme from [9]

The security of the ΣECPSS scheme of Benhamouda et al. [9] relies on the fact that the combined public key
encryption scheme CPKE, consisting of the anonymous and ephemeral schemes APKE and PKE, is RIND-SO
secure. We recall here the construction of this combined scheme as used in [9].

Let APKE = (KeyGen,Enc,Dec) be the anonymous public key encryption scheme and PKE = (KeyGen,Enc,Dec)
be the ephemeral public key encryption scheme as used in [9]. The combined encryption scheme CPKE consists
of a tuple CPKE = (KeyGen,Enc,Dec) which are defined as follows:

CPKE.KeyGen(1λ): This is the key generation of the APKE scheme, i.e., (sk , pk)← APKE.KeyGen(1λ).
CPKE.Enc(pk ,m):

– Execute (esk, epk)← PKE.KeyGen(1λ)
– Encrypt esk under pk , i.e., cAPKE := APKE.Enc(pk , esk)
– Encrypt m under epk, i.e., cPKE := PKE.Enc(epk,m)
– Output c := (epk, cAPKE, cPKE)

CPKE.Dec(sk , c): Parse c as (epk, cAPKE, cPKE) and:
– Decrypt cAPKE as esk := APKE.Dec(sk , cAPKE)
– Check if esk is a valid secret key corresponding to epk. If it is not, abort.
– Decrypt cPKE as m := PKE.Dec(esk, cPKE)
– Output m
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B Proof of Theorem 1

In this section, we provide a proof of Theorem 1. We do so by first proving Lemma 1 and then Lemma 2.

B.1 Proof of Lemma 1

Proof. In order to prove Lemma 1, we have to show that the correctness properties 1.-3. hold. The correctness
proof for properties 1. and 3. proceeds in a similar manner as for the DKG protocol in [29]. We briefly recall
the proof here.

First, we note that all parties in U compute the same set Qual during an execution of ΠLS–DKG.TKeyGen.
This is because (1) each party in U can verify the NIZK proofs {πi}i∈[n] that are output by parties Pi ∈ C
and, due to the completeness property of the NIZK proof system, identify valid tuples and (2) the fact that
there exists an order on the tuples. Therefore it holds that all honest parties in U compute the same set
Qual consisting of t+ 1 valid tuples.

1. Note that if it holds that k ∈ Qual, then party Pk ∈ C must have shared ak,0 correctly to committee
C ′. Therefore, each party Pj

′ ∈ C ′ receives secret shares sk,j ∈ Zq for all k ∈ Qual and subsequently
computes its secret key share as sk ′j =

∑
k∈Qual sk,j . Further, from Shamir’s secret sharing we know that

it must hold for any set S with |S| ≥ t+ 1 of correct secret shares that ak,0 =
∑
j∈S lj · sk,j . From this,

it follows that

sk =
∑

k∈Qual

ak,0 =
∑

k∈Qual

∑
j∈S

lj · sk,j

 =
∑
j∈S

lj ·

 ∑
k∈Qual

sk,j

 =
∑
j∈S

lj · sk ′j .

The correctness for secret key shares sk ′′j of parties Pj
′′ ∈ C ′′ follows directly from the above and from

the handover correctness [9] of G–Handover.
2. In order to show that correctness property 2. is satisfied, we have to show that all parties Pj ∈ U know

the same public key pk = gsk = g
∑

k∈Qual ak,0 after an execution of ΠLS–DKG.TKeyGen. If k ∈ PK, then
Pk ∈ C ′ must have broadcast the group element gsk

′
k alongside a valid NIZKs proof π′k (which is possible

to produce and verify due to the completeness property of the NIZK proof). All parties Pj ∈ U then

compute the public key as pk =
∏
k∈PK g

sk
′lk
k = gsk .

3. Since the secret key is computed as sk =
∑
k∈Qual ak,0 and ak,0 is chosen uniformly at random from Zq,

it holds that sk is uniformly distributed in Zq. Since sk is uniformly distributed in Zq, so is pk = gsk ∈ G.

B.2 Proof of Lemma 2

In order to prove Lemma 2, we first state and prove the following lemma:

Lemma 6. Let ΠLS–DKG be the large-scale distributed key generation protocol from Sec. 4 instantiated with
a (λ, n, t, p)-secure instantiation of ΣECPSS. Then there exists no fully mobile adversary A with corruption
power p who can corrupt more than t parties in either of C, C ′ or C ′′ with more than negligible probability
in λ.

Proof. We prove this lemma by reduction to the secrecy property of the ΣECPSS scheme. More precisely,
we show that if there exists an adversary A who can corrupt more than t parties in either of C, C ′ or C ′′

with non-negligible probability, then we can construct a fully mobile adversary B with corruption power p
who uses A to break the secrecy property of ΣECPSS. In fact, we distinguish the following three cases: (1) A
corrupts more than t parties in C, (2) A corrupts more than t parties in C ′ and (3) A corrupts more than t
parties in C ′′. We then show that in each of these cases we can write a reduction to the secrecy property of
ΣECPSS.

Recall that the secrecy property of ΣECPSS states that upon choosing two secrets x ∈ Zq and y ∈ Zq and
subsequently interacting with the ΣECPSS scheme, the adversary B cannot distinguish whether x or y has
been shared in ΣECPSS.
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– Case 1: A corrupts more than t parties in C
The reduction in this case works as follows: Before the execution of ΠLS–DKG begins, B chooses two secrets
x ∈ Zq and y ∈ Zq, one of which is then shared in ΣECPSS. B then sets the universe of parties in ΠLS–DKG

to the same universe as in ΣECPSS and simulates the behavior of all honest parties in this universe to A.
The main idea of the reduction is that B sets committee C in ΠLS–DKG to the same committee of parties
that is selected in ΣECPSS. Therefore, when the procedure ΣECPSS.Select is executed in ΠLS–DKG to select
committee C, B executes the same procedure in ΣECPSS and relays the outputs of honest parties in
ΣECPSS to adversary A and the outputs of A to ΣECPSS. This ensures that the same committee is selected
in ΣECPSS and ΠLS–DKG.
Apart from the simulation of the ΣECPSS.Select procedure, B executes the ΠLS–DKG correctly for all honest
parties in C, i.e., it follows the protocol instructions. Note, however, that B does not know the identities
of uncorrupted parties in C. Therefore, B follows the protocol instructions of ΠLS–DKG for all honest
parties in C without knowing the identities of these parties. Said differently, B prepares the internal
states of honest parties in C without knowing the identities of these parties. Upon A corrupting a party
Pi, B corrupts the corresponding party in ΣECPSS and hence learns whether Pi is part of C. If it is, B
returns one of the internal states that it had previously prepared for honest parties in C along with
the ephemeral secret key eski

10. Otherwise, if Pi is not in C, B forwards the internal state of Pi to A.
Clearly, if A is able to corrupt more than t parties in committee C during the ΠLS–DKG execution, then
B is able to corrupt more than t parties in the ΣECPSS scheme and can consequently break the secrecy of
ΣECPSS. Hence, the probability of B corrupting more than t parties in ΣECPSS is equal to the probability
of A corrupting more then t parties in C. Therefore, A corrupts more than t parties in C with at most
negligible probability in λ.

– Case 2: A corrupts more than t parties in C ′

The reduction in this case works in a similar way as the reduction in the previous case. The only difference
is that committee C is now selected independently of ΣECPSS and instead committee C ′ is set to the
same committee as in ΣECPSS.

– Case 3: A corrupts more than t parties in C ′′

The reduction in this case works as the reduction for Case 2 with the only difference that committee C ′′

is set to the same committee as in ΣECPSS.

We note that during our proof we do not use the NIZK crs of the underlying ECPSS scheme. Instead, as
prescribed by the protocol description of ΠLS–DKG, B generates a crs during the ΠLS–DKG.Setup procedure. We
therefore do not use the ΣECPSS.Setup procedure in black-box. However, since the ΣECPSS.Select procedure
does not make use of the crs, we can still employ it in black-box in our protocol.

With Lemma 6 in place, we can now prove Lemma 2.

Proof. We describe a simulator S which on input a public key pk = gx ∈ G where x ∈ Zq simulates an
execution of ΠLS–DKG to an efficient fully mobile adversary A such that the output distribution of S is
computationally indistinguishable from A’s view of an execution of the real protocol which ends with pk
as its output public key. In the following, we first describe the behavior of simulator S on input pk and
subsequently we show that the output distribution produced by S is computationally indistinguishable to A
from the output distribution of a real protocol execution of ΠLS–DKG.

During theΠLS–DKG.Setup(1λ) procedure, S runs (c̃rs, τ)← NIZK.Setup′(1λ) instead of crs← NIZK.Setup(1λ).
This allows S to obtain a trapdoor τ for the NIZK proof system. Afterwards the execution ofΠLS–DKG.TKeyGen
begins during which the adversary A can corrupt honest parties at any time.

For all honest parties, S follows the protocol instructions of ΠLS–DKG.TKeyGen until step 6. As such, it
correctly executes the protocol for all honest parties in committee C. Let H ′ ⊆ C ′ and B′ ⊂ C ′ denote the
sets of honest and corrupted parties in committee C ′ respectively. Note that S knows the correct internal

10 To be exact, B returns the prepared internal state which is specific to the ΠLS–DKG protocol together with any other
internal secrets that party Pi might hold, e.g., secret information for the self-selection functionality.
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states of all parties Pj
′ ∈ H ′11, in particular the values sk ′j . Further, note that due to Lemma 6 there is

an honest majority in each of C, C ′ and C ′′ through which S can learn the values sk ′k for all Pk
′ ∈ B′.

Therefore, S can learn the elements S′j for all parties Pj
′ ∈ C ′.

In step 6, S chooses t− |B′| parties from H ′ and assigns them to a new set SH ′ (i.e., SH ′ ∩H ′ = ∅). For
all parties in SH ′, S follows the protocol instructions of step 6 while for parties Pj

′ ∈ H ′, S sets

S̃′j = pk lj,0 ·
∏

i∈B′∪SH′
S
′lj,i
i (2)

where lj,i are the appropriate lagrange coefficients. Note that this allows any set T ⊂ {{S̃′j}j∈H′∪{S′i}i∈B′∪SH′}
with |T | = t+ 1 to reconstruct pk via interpolation in the exponent.

In step 7, S then uses the trapdoor τ as generated during the NIZK.Setup′ procedure, to generate simulated
NIZK proofs π̃′j that prove correctness of the elements S′j .

During the simulation of steps 6 and 7, S handles corruptions as follows:

– Upon A corrupting a party Pj
′ ∈ SH ′, S sends the internal state of Pj

′ to A and sets SH ′ = SH ′ \{Pj ′}
and B′ = B′ ∪ {Pj ′}.

– Upon A corrupting a party Pi
′ ∈ H ′, S sends the original internal state which includes S′i = gsk

′
i and π′i

(instead of the simulated values S̃′i and π̃′i as computed in Eq. (2)) to A and chooses a party Pj
′ ←$ SH

′.
It then sets H ′ = H ′ \ {Pi′}, SH ′ = SH ′ \ {Pj ′}, H ′ = H ′ ∪ {Pj ′} and B′ = B′ ∪ {Pi′}.

If A corrupts a party in H ′ during the simulation of steps 6 or 7, S executes the simulation of the respective
step again for the updated sets B′, SH ′ and H ′.

The simulator S executes the rest of the protocol correctly for all honest parties.
We now show that the simulation is computationally indistinguishable toA from a real protocol execution.

Before providing the full formal proof of indistinguishability, we first give a high level overview of why
indistinguishability holds. Note that S only deviates from the protocol instructions during the NIZK.Setup
procedure and during steps 6 and 7 for parties Pj

′ ∈ H ′. Due to the zero-knowledge property of the NIZK proof
system, it holds that the distributions {crs : crs ← NIZK.Setup(1λ)} and {c̃rs : (c̃rs, τ) ← NIZK.Setup′(1λ)}
are computationally indistinguishable to A. In step 6, S replaces the elements S′j = gsk

′
j for all Pj

′ ∈ H ′

by elements S̃′j computed as in Eq. (2). Note that, due to Lemma 6, there exists at least one honest party
Pi ∈ Qual and therefore all elements S′j contain at least one uniformly random value si,j from an honest
party in the exponent. Further, due to the soundness property of the NIZK proof system, all parties in Qual
behaved honestly during the share distribution phase except with negligible probability. Therefore A can
distinguish the simulated elements S̃′j from the real elements S′j only by breaking the RIND-SO security
of the CPKE scheme. Finally, by the soundness and zero-knowledge properties of the NIZK proof system,
A cannot generate a valid NIZK proof for a maliciously computed element S′k for a party Pk

′ ∈ B′ and A
cannot distinguish the simulated NIZK proofs π̃′j from the real proofs π′j except with negligible probability.

We now show formally that the simulated execution of ΠLS–DKG as described above is computationally
indistinguishable from a real execution of ΠLS–DKG to an efficient fully mobile adversary A.

Proof. We show indistinguishability in a series of games.
Game G0G0G0: This is the real execution of the ΠLS–DKG protocol.

GameG1G1G1: In this game we only modify the ΠLS–DKG.Setup procedure. When the common reference string
crs of the NIZK proof system is generated, the simulator executes (c̃rs, τ)← NIZK.Setup′(1λ) instead of crs←
NIZK.Setup(1λ). This allows S to learn a trapdoor τ . Since the distributions {crs : crs ← NIZK.Setup(1λ)}
and {c̃rs : (c̃rs, τ) ← NIZK.Setup′(1λ)} are indistinguishable to A except with negligible probability (due to
the zero-knowledge property of NIZK), it holds that this game is indistinguishable from the previous game
except with negligible probability.

11 For simplicity, we use the notations Pj
′ ∈ H ′ and j ∈ H ′ interchangeably throughout this paper.
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GameG2G2G2: This game works as the previous game with the difference that S aborts if any party Pk ∈ B12

generates a valid proof πk for a statement x = ({ck,i, epki}i∈[n]) such that x /∈ L. The simulator can identify
this situation, since it knows the ephemeral secret keys of all parties in H ′ and since it learns at least t+ 1
decryptions of the ciphertexts (ck,1, · · · , ck,n).

Due to the soundness property of the NIZK proof system, the simulator aborts only with negligible prob-
ability.

Game G3G3G3: This game is the same as the previous game with only a syntactical change. For committee
C ′, the simulator maintains another list SH ′ with |SH ′| = t−|B′|, in addition to the sets H ′ and B′. At the
beginning of the epoch, the simulator randomly assigns t− |B′| parties from H ′ to SH ′ and removes these
parties from H ′ (i.e., H ′ ∩ SH ′ = ∅).

Game G4G4G4: This game is similar to the previous game, with the difference that S handles corruptions as
follows:

– Upon A corrupting a party Pj
′ ∈ SH ′, S sends the internal state of Pj

′ to A and sets SH ′ = SH ′ \{Pj ′}
and B′ = B′ ∪ {Pj ′}.

– Upon A corrupting a party Pi
′ ∈ H ′, S sends the internal state to A and chooses a party Pj

′ ←$ SH
′.

It then sets H ′ = H ′ \ {Pi′}, SH ′ = SH ′ \ {Pj ′}, H ′ = H ′ ∪ {Pj ′} and B′ = B′ ∪ {Pi′}.

The changes in this game are only syntactical.

Game G5G5G5: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the game computes a simulated NIZK proof π̃′j,Handover (i.e., without using the secret key share sk ′j) using
the trapdoor τ and algorithm S (cf. Def. 8).

Due to the zero-knowledge property of the NIZK proof system, the simulated proof π̃′j,Handover is indistin-
guishable from the real proof except with negligible probability.

Game G6G6G6: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the game computes a simulated NIZK proof π̃′j (i.e., without using the secret key share sk ′j) using the
trapdoor τ and algorithm S (cf. Def. 8).

Due to the zero-knowledge property of the NIZK proof system, the simulated proof π̃j
′ is indistinguish-

able from the real proof except with negligible probability.

Game G7G7G7: This game works as the previous game with the following difference. The simulator first

chooses uniformly at random a secret key s̃k ←$ Zq with the corresponding public key p̃k = gs̃k . Then for

each party Pj
′ ∈ H ′, the simulator chooses secret key shares s̃k

′
j conditioned on the secret key shares sk ′k for

k ∈ B′ ∪ SH ′, s.t. ({s̃k
′
j}j∈H′ , {sk ′k}k∈B′∪SH′) form a (t, n)-sharing of s̃k . The simulator then replaces the

secret key shares sk ′j by s̃k
′
j .

Claim. A can distinguish this game from the previous game with at most negligible probability.

Proof. We show that the probability of A being able to distinguish this game from the previous one is
negligible by exhibiting a reduction to the RIND-SO security of the combined public key encryption scheme
CPKE. More concretely, we show that if A is able to distinguish the two games, then we can construct an
adversary B which can break the RIND-SO security of the CPKE scheme. In the beginning of the reduction, B
chooses the following resamplable distribution D: The distribution samples uniformly at random an element
y ←$ Zq and outputs a (t, n)-sharing of y, i.e., it chooses a random degree-t polynomial F (x) = a0 + a1x+
· · · + atx

t ∈ Zq[x] with a0 = y and outputs (F (1), · · · , F (n)). The algorithm ResampD on input a vector
of messages mI for |I| ≤ t samples a uniform random element z ←$ Zq and outputs a (t, n)-sharing of z
conditioned on mI .

12 By B we denote the set of corrupted parties in C.
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Having chosen D, B receives n public keys (pk1, · · · , pkn) from its RIND-SO game which B embeds
in the execution of the ΠLS–DKG protocol on behalf of n honest parties in U . Additionally, B receives n
ciphertexts (c1, · · · , cn) from its game where each ciphertext ci consists of (1) an ephemeral public key epki,
(2) the encryption of the corresponding ephemeral secret key under one of the public keys from the RIND-
SO game, (i.e., ci,APKE = APKE.Enc(pk i, eski)), and (3) the encryption of a message under the ephemeral
public key (i.e., ci,PKE = PKE.Enc(epki,mi)). Whenever A sends a corruption query for any of the public
keys (pk1, · · · , pkn), B forwards the query to its own game. During the nomination of committee C ′, B
nominates parties by embedding pairs (epki,APKE.Enc(pk i, eski)) for which B does not know the secret key
sk i. B then sends the ciphertexts cj,PKE for j /∈ I to honest parties in C ′ and sends messages mi for i ∈ I to
the corrupted parties in C ′ encrypted under their respective ephemeral public keys.13 Finally, B starts the
challenge phase in the RIND-SO game through which it receives messages m̃j for all j /∈ I which are either
the correct messages encrypted in cj,PKE or resampled messages conditioned on the messages of corrupted
parties. Note that each honest party Pi

′ ∈ H ′ receives n messages from committee C of which one is the
message m̃i. Adversary B, on behalf of party Pi

′, then sums up t+ 1 of those messages to obtain an element
sk ′i and broadcasts gsk

′
i . If A realizes that sk ′i does not correspond to the sum of the decrypted ciphertexts

for party Pi
′, then B outputs 0, otherwise B outputs 1.

Note that B wins the RIND-SO game, whenever A successfully distinguishes gamesG6G6G6 andG7G7G7. Therefore,
A succeeds at most with negligible probability.

Game G8G8G8: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the simulator computes S̃′j = p̃k
lj,0 ·

∏
i∈B′∪SH′ S

′lj,i
i where lj,i are the appropriate lagrange coefficients.14 S

then broadcasts S̃′j , however uses sk ′j for the remaining protocol execution. That is, the ciphertexts {c′j,k}k∈[n]
and the elements S̃′j , that are broadcast in the same epoch, are inconsistent.

The indistinguishability argument follows in a similar manner as for game G7G7G7, i.e., we can show a reduc-
tion to the RIND-SO security of the CPKE scheme. Note that the only difference is the fact that the elements
S̃′j are broadcast in the same epoch as the ciphertexts from the RIND-SO game and that the resamplable

distribution must output either a sharing of sk ′j or of the discrete logarithm of s̃k
′
j .

Game G9G9G9: This game works as the previous game with the difference that S aborts if any party
Pk
′ ∈ B′ generates a valid NIZK proof π′j,Handover, but there exists at least one party Pi

′′ ∈ H ′′ such that

PKE.Dec(esk′′i , c
′′
k,i) /∈ Zq or the decryptions of the ciphertexts (c′k,1, · · · , c′k,n) do not form a (t, n)-sharing of

sk ′k. The simulator can identify this situation, since it simulates all parties Pi
′′ ∈ H ′′.

Due to the soundness property of the NIZK proof system, the simulator aborts at most with negligible
probability.

Game G10G10G10: This game works as the previous game with the difference that S aborts if any party
Pk
′ ∈ B′ generates a valid proof π′k for a statement x = ({ci,k}i∈Qual, epkk, S′k) such that x /∈ L′. Note that

the simulator can identify this since it knows the secret key share of at least t+ 1 parties and therefore has
sufficient information to reconstruct the correct elements S′k for all parties in B′.

Due to the soundness property of the NIZK proof system, the simulator aborts only with negligible prob-
ability.

In the final simulation, the simulator replaces the public key p̃k by the input public key pk . Note that if a
corruption of a party Pi

′ ∈ H ′ occurs, then the simulator has to output the correct (not simulated) internal
state of Pi

′ and recompute the internal states for the updated sets H ′.

13 Note that B learns mi for i ∈ I because it receives the secret key sk i from the RIND-SO game, which allows B to
open the ciphertext ci,PKE.

14 Note that the elements S̃′j are the same in this game as in the previous game, i.e., the dlog of S̃′j is s̃k
′
j .
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Simulator Code: Let S := (S1,S2) where S1 simulates ΠLS–DKG.Setup and S2 simulates ΠLS–DKG.TKeyGen. During
the simulation of ΠLS–DKG.Setup, S1 executes NIZK.Setup′(1λ) instead of NIZK.Setup(1λ) through which it learns a
trapdoor τ for the NIZK proof system. Let H ′ ⊆ C′ and B′ ⊂ C′ be the sets of honest and corrupted parties in
committee C′. Note that there is an honest majority in committees C, C′ and C′′ due to Lemma 6.
On input a public key pk , trapdoor τ and public parameters ppLS–DKG, S2 then simulates ΠLS–DKG.TKeyGen as follows:

– S2 follows the protocol instructions for all honest parties until step 6.
– In step 6, S2 proceeds as follows:
• S2 chooses t− |B′| parties from H ′ and assigns those parties to a new set SH ′ s.t. SH ′ ∩H ′ = ∅.
• For all parties Pj

′ ∈ H ′, S2 computes S̃′j = pk lj,0 ·
∏
i∈B′∪SH′ S

′lj,i
i where lj,i are the appropriate lagrange

coefficients.
– In step 7, S2 then uses the trapdoor τ as generated during the NIZK.Setup′ procedure, to generate simulated

NIZK proofs π̃′j that prove correctness of the elements S̃′j .
– During the simulation of steps 6 and 7, S2 handles corruptions as follows:
• Upon A corrupting a party Pj

′ ∈ SH ′, S2 sends the internal state of Pj
′ to A and sets SH ′ = SH ′ \ {Pj ′}

and B′ = B′ ∪ {Pj ′}.
• Upon A corrupting a party Pi

′ ∈ H ′, S2 sends the original internal state which includes S′i = gsk
′
i and π′i

(instead of the simulated values S̃′i and π̃′i as computed in Eq. (2) and in step 7) to A and chooses a party
Pj
′ ←$ SH

′. It then sets H ′ = H ′ \ {Pi′}, SH ′ = SH ′ \ {Pj ′}, H ′ = H ′ ∪ {Pj ′} and B′ = B′ ∪ {Pi′}.
If A corrupts a party in H ′ during the simulation of steps 6 or 7, S2 executes the simulation of the respective
step again for the updated sets B′, SH ′ and H ′.

– The simulator S2 executes the rest of the protocol correctly for all honest parties.

Fig. 1: Simulator code for our large-scale distributed key generation protocol ΠLS–DKG. The simulator code
is divided into two parts S1 generates the simulated crs and the corresponding trapdoor τ and S2 simulates
the DKG execution on input a public key pk and the trapdoor τ .

C Proof of Theorem 2

In this section, we first provide a proof outline of Lemma 3 before giving a formal proofs of Lemma 4 and
Lemma 5.

C.1 Proof outline of Lemma 3

We show that the correctness property holds for ΠLS–TPKE for the first epoch. For all subsequent epochs,
these properties then follow from the handover correctness property [9] of the G–Handover procedure. Let
λ ∈ N be the security parameter and let pp ← ΠLS–TPKE.Setup(1λ) be the public parameters, where pp :=
(ppTDH1, ppLS–DKG).

1. Note that the following holds:

for all (pk , {vk1
i }i∈[n], {sk1

i }i∈[n])← ΠLS–TPKE.TKeyGen(pp),

where vk1
i := (v̂k

1

i , π
1
i ) it holds that

(pk , {v̂k
1

i }i∈[n], {sk1
i }i∈[n]) ∈ TDH1.TKeyGen(ppTDH1).

2. Due to the completeness property of the NIZK scheme, it holds that π1
i is a valid NIZK proof for the

correctness of v̂k
1

i .

3. Correctness in epoch 1 then follows from the above and from the correctness property of the TDH1
scheme.
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C.2 Proof of Lemma 4

We prove Lemma 4 via contradiction to the decryption consistency property of the TDH1 scheme. Assume
an adversary B winning game LSTPKE–DC with non-negligible probability, i.e., B outputs in some epoch j
with non-negligible probability a ciphertext ct∗, two sets of verification keys V K = {vk j1, · · · , vk jt+1} and

˜V K = {ṽk
j

1, · · · , ṽk
j

t+1} and two sets of decryption shares T = {ctj1, · · · , ctjt+1} and T̃ = {c̃t
j
1, · · · , c̃t

j
t+1}

such that the conditions of game LSTPKE–DC hold.
By the soundness property of the NIZK proof system it must hold with all but negligible probability

that V K = ˜V K, i.e., the sets contain the same verification keys. In fact, these verification keys must

be the correct keys for epoch j. Further, it holds that the distributions (pk , {v̂k
1

i }i∈[n], {sk1
i }i∈[n]) and

(pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n]) are computationally indistinguishable where

(pk , {vk1
i }i∈[n], {sk1

i }i∈[n])← ΠLS–TPKE.TKeyGen[U ](pp, t, n) and vk1
i := (v̂k

1

i , π
1
i )

and

(pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n])← TDH1.KeyGen(ppTDH1, t, n)

Due to the properties of the ΣECPSS scheme, this holds likewise for all epochs j > 1. Finally, since the
algorithms ΠLS–TPKE.TCombine and TDH1.TCombine are identical and the algorithms ΠLS–TPKE.TShareVrfy
and TDH1.TShareVrfy differ only in the fact that ΠLS–TPKE.TShareVrfy includes the additional NIZK proof
verification, it must hold that ct∗, T and T̃ satisfy the conditions of the decryption consistency property of
TDH1 w.r.t. public key pk , verification keys (vk j1, · · · , vk jt+1) and secret key shares (sk j1, · · · , sk jt+1).

Therefore, B winning the LSTPKE–DC game with non-negligible probability directly contradicts the
decryption consistency property of the TDH1 scheme.

C.3 Proof of Lemma 5

Proof. We now present the proof of Lemma 5. To this end, we show that if there exists a fully mobile ad-
versary B that can win the LSTPKE–CCABΠLS–TPKE

game with non-negligible advantage, then there also exists

a static adversary A who can win the game TPKE–CCAATDH1 (cf. Section 2.3) with non-negligible advantage.
More precisely, we show in a series of computationally indistinguishable games that A can use B’s output
bit b′ to win its own game.

GameG0G0G0: This is the original LSTPKE–CCABΠLS–TPKE
game. In the beginning of this game, theΠLS–TPKE.Setup

procedure is executed to generate public parameters pp. In each epoch j, the game maintains a list Bj

which indicates the set of corrupted parties in the universe U . Additionally, the game maintains two lists
HCj

and BC
j

which indicate the sets of honest and corrupted parties in committee Cj . The execution of
ΠLS–TPKE.TKeyGen generates a public key pk , selects a committee of secret key shareholders C1 and outputs
a secret key share sk1

i to each party Pi
1 ∈ C1.

Note that B gets access to a corruption oracle, which allows B to corrupt parties in epoch j at any point

in time as long as it holds that
⌊
|Bj |+1
|U |

⌋
≤ p. Further, B obtains access to a decryption oracle, a refresh

oracle and random oracles H1, H2, H3 and H4.

Game G1G1G1: This game proceeds as the previous game with the difference that it aborts in case in any
epoch j it holds that |BCj | > t, i.e., in case in epoch j there are more than t corrupted parties in Cj .

The indistinguishability argument for this game follows from the secrecy property of the ΣECPSS scheme.
That is, if an adversary B was able to corrupt more than t parties in Cj , then we can construct an adversary
A′ who can break the secrecy property of ΣECPSS by corrupting more than t parties in ΣECPSS. The reduction
works in a similar fashion as the one in Lemma 6, i.e., A′ trying to break the secrecy property of ΣECPSS can
simulate game LSTPKE–CCABΠLS–TPKE

to B by correctly executing all instructions for all honest parties except
for the broadcasting of corrupted long-term public keys at the beginning of an epoch and executions of the
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ΣECPSS.Select procedure in ΠLS–TPKE, which are simulated as described in the proof of Lemma 6. The only
difference in this game compared to Lemma 6 is that the protocol execution can take polynomially many
epochs. Hence, we rely on an induction proof here. We can show that in the first committee C1, no more
than t parties are corrupted (as explained in Lemma 6). Now assuming that in Cj−1 at most t parties are
corrupted, (similar to Lemma 6) it is easy to see that in Cj no more than t parties can be corrupted. Note
that as in Lemma 6, A′ executes ΠLS–TPKE honestly to B until the selection of committee Cj .

Hence, we get that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(λ) where ν1 is a negligible function in λ.

Game G2G2G2: This game is the same as the previous game with only a syntactical change. For each epoch
j after the execution of ΠLS–TPKE.TKeyGen the game maintains another list SHCj

with |SHCj | = t− |BCj |,
in addition to the sets HCj

and BC
j

. At the beginning of epoch j, the game then randomly assigns t−|BCj |
parties from HCj

to SHCj

and removes these parties from HCj

(i.e., HCj ∩ SHCj

= ∅).
This change is only syntactical and therefore we get that Pr[G1G1G1 = 1] = Pr[G2G2G2 = 1].

Game G3G3G3: This game is similar to the previous game with a modification to the corruption oracle. In
each epoch j after the execution of ΠLS–TPKE.TKeyGen, the corruption oracle behaves as follows:

– If B sends a corruption query for a party Pk
j ∈ SHCj

, the game returns the internal state of Pk
j and

sets SHCj

= SHCj \ {Pkj} and BC
j

= BC
j ∪ {Pkj}.

– If B sends a corruption query for a party Pi
j ∈ HCj

, the game returns the internal state of Pi
j to B

and chooses a party Pk
j ←$ SH

Cj

. The game then sets SHCj

= SHCj \ {Pkj}, HCj

= HCj ∪ {Pkj},
HCj

= HCj \ {Pij} and BC
j

= BC
j ∪ {Pij}.

For all corruption queries for party Pi
j ∈ U , the game sets Bj = Bj ∪ {Pij} and Hj = Hj \ {Pij}.

The change in this game is only syntactical and therefore we have that Pr[G2G2G2 = 1] = Pr[G3G3G3 = 1].

Game G4G4G4: This game is similar to the previous game with a modification in the ΠLS–TPKE.Setup pro-
cedure. When the common reference string crs of the NIZK proof system is generated, the game executes
(c̃rs, τ) ← NIZK.Setup′(1λ) instead of crs ← NIZK.Setup(1λ). This allows the game to learn a trapdoor τ .
Since the distributions {crs : crs ← NIZK.Setup(1λ)} and {c̃rs : (c̃rs, τ) ← NIZK.Setup′(1λ)} are indistin-
guishable to B except with negligible probability (due to the zero-knowledge property of NIZK), it holds that
Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν2(λ) where ν2 is a negligible function in λ.

GameG5G5G5: This game works as the previous game with the following difference. For each party Pi
j ∈ HCj

,
the game computes a simulated NIZK proof πji (i.e., without using the secret key share sk ji ) using the trapdoor

τ and algorithm S (cf. Def. 8) which proves that the verification key v̂k
j

i has been computed correctly w.r.t.
sk ji .

Due to the zero-knowledge property of the NIZK proof system, the simulated proof πji is indistinguishable
from a real proof except with negligible probability. It holds that Pr[G4G4G4 = 1] ≤ Pr[G5G5G5 = 1] + ν3(λ) where ν3
is a negligible function in λ.

GameG6G6G6: This game proceeds as the previous game with the following modification. After the execution
of ΠLS–TPKE.TKeyGen, the game uses the secret key shares sk1

i of all Pi
1 ∈ HC1

to reconstruct the secret key

sk corresponding to pk . Note that this is possible because |HC1 | ≥ t+ 1. During a decryption oracle query
in an epoch j, the game then proceeds as follows: It reconstructs a degree-t polynomial F̃ j from the secret
key shares {sk jk}k∈BCj∪SHCj and sk , s.t. F̃ j(k) = sk jk and F̃ j(0) = sk . The game then computes secret key

shares F̃ j(i) = s̃k
j

i for all Pi
j ∈ HCj

and uses s̃k
j

i to compute decryption shares for Pi
j .

First, note that in each epoch it holds that |HCj | ≥ t+1 and therefore the game has sufficient information
to compute the secret key shares {sk jk}k∈BCj . Second, note that for each epoch j there exists a degree-t

polynomial F j , s.t. F j(i) = sk ji and F j(0) = sk for all Pi
j ∈ Cj . This polynomial is uniquely identified by

any t+1-size subset of {sk , sk j1, · · · , sk jn}. Therefore, we have that F̃ j = F j and s̃k
j

i = sk ji for all Pi
j ∈ HCj

.
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We therefore get that Pr[G5G5G5 = 1] = Pr[G6G6G6 = 1].

Game G7G7G7: This game works as the previous game with the following difference. After the execution of
ΠLS–TPKE.TKeyGen, the game computes a simulated NIZK proof πji,Handover for each party Pi

j ∈ HCj

(i.e.,

without using the secret key share sk ji ) using the trapdoor τ and algorithm S.

Due to the zero-knowledge property of the NIZK proof system, the simulated proof πji,Handover is indistin-
guishable from a real proof except with negligible probability. We therefore get that Pr[G6G6G6 = 1] ≤ Pr[G7G7G7 =
1] + ν4(λ) where ν4 is a negligible function in λ.

Game G8G8G8: This game works as the previous game with the difference that the game aborts if any party
Pk

j ∈ BC
j

generates a valid NIZK proof πjk,Handover, but there exists at least one party Pi
j+1 ∈ HCj+1

such that PKE.Dec(eskj+1
i , cjk,i) /∈ Zq or the decryptions of the ciphertexts (cjk,1, · · · , c

j
k,n) do not form a

(t, n)-sharing of sk jk. The game can identify this situation, since it knows the internal states of all parties

Pi
j ∈ HCj

and Pi
j+1 ∈ HCj+1

.

Due to the soundness property of the NIZK proof system, it holds that Pr[G7G7G7 = 1] ≤ Pr[G8G8G8 = 1] + ν5(λ)
where ν5 is a negligible function in λ.

Game G9G9G9: This game proceeds similarly as the previous game with a modification in the refresh oracle.
Instead of executing the G–Handover procedure on input the secret key shares sk ji for all parties Pi

j ∈ HCj

,

the game chooses a uniformly random element xji ← Zq for each Pi
j and executes the G–Handover procedure

on input secret key shares sk jk for all Pk
j ∈ SHCj

and xji for all Pi
j ∈ HCj

.

In case B sends a corruption query for a party Pi
j ∈ HCj

during a refresh oracle execution, the game
returns the secret key share sk ji (instead of xji ) and repeats the steps of G9G9G9 w.r.t. the updated sets HCj

,

SHCj

and BC
j

.

The indistinguishability argument of this game to the previous one follows by the RIND-SO security
of the CPKE scheme. The reduction works in a similar manner as the reduction in Game G7G7G7 of Lemma 2.
Therefore, it holds that Pr[G8G8G8 = 1] ≤ Pr[G9G9G9 = 1] + ν6(λ) where ν6 is a negligible function in λ.

Game G10G10G10: This game proceeds as the previous game with a modification to the random oracle H2. The
game programs H2 by maintaining a list H2 in the following way. Upon a query (c, L, u, w) to H2 from B,
the game first checks if H2[c, L, u, w] has already been defined. Otherwise, the game chooses uniformly at
random o← Zq and sets H2[c, L, u, w] = pko. The game then returns H2[c, L, u, w].

Note that o is chosen uniformly at random from Zq and therefore pko is a uniformly random element in
G. Hence, we have that Pr[G9G9G9 = 1] = Pr[G10G10G10 = 1].

Game G11G11G11: This game differs from the previous game in the following ways: First, the game maintains
a list H4 which stores query/response pairs for the random oracle H4. Second, upon B issuing a decryption

query for a ciphertext ct = (c, L, u, ū, e, f), the game computes a decryption share for party Pi
j ∈ HCj

as
follows: it computes ui = uski as prescribed by the protocol description of TDec and then chooses uniformly

at random ei ← Zq and fi ← Zq. Then the game computes ûi = ufi/ueii and ĥi = gfi/v̂k i
jei

, checks if

H4[ui, ûi, ĥi] has been set previously and if so, the game aborts. Otherwise the game sets H4[ui, ûi, ĥi] = ei.
Note that the resulting decryption share ct i = (i, ui, ei, fi) is valid w.r.t. ciphertext ct and verification key
vk ji , i.e., it holds that TShareVrfy(ct , vk ji , ct i) = 1.

Recall that upon a corruption query for a party Pi
j ∈ HCj

, the game removes a party Pk
j at random

from the set SHCj

and adds it to HCj

. Therefore, in case such a corruption query occurs after or during a
decryption oracle execution, the game first computes the correct decryption shares of Pi

j , i.e., without the
programming of H4 and then repeats the steps of G11G11G11 for Pk

j (note that this can happen at most t times).

Adversary B can distinguish this game from the previous one only in the event that game G11G11G11 aborts.
However, since fi is chosen uniformly at random from Zq, the elements ûi and ĥi are uniform random el-
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ements from G and hence the abort event happens at most with negligible probability. Therefore, we have
that Pr[G10G10G10 = 1] ≤ Pr[G11G11G11 = 1] + ν7(λ) where ν7 is a negligible function in λ.

Game G12G12G12: This game proceeds similarly to the previous game with the following modification in

the decryption oracle. For all Pi
j ∈ HCj

, the game first computes the verification key v̂k
j

i as v̂k
j

i =

pk li,0
∏
k∈BCj∪SHCj v̂k

li,k

k . The game then computes decryption shares for all Pi
j as follows:

Upon a decryption query from B on input a ciphertext ct = (c, L, u, ū, e, f) the game first looks up
ḡ = H2[c, L, u, w]. Recall that H2[c, L, u, w] was programmed to be pko in game G10G10G10 and that the game
knows o. It then computes (ū)1/o = (ḡ)r/o = pkr and ui = (ū)li,0/o ·

∏
k∈BCj∪SHCj uskkli,k .

Note that for all parties Pk
j ∈ SHCj

, the game computes decryption shares w.r.t. the secret key share
sk jk according to the protocol description. Upon a corruption query for a party Pi

j ∈ HCj

after or during a

decryption oracle execution, the game first computes the decryption shares of Pi
j w.r.t. the secret key share

sk ji and then repeats the steps of G12G12G12 w.r.t. the updated sets HCj

, SHCj

and BC
j

(note that this gain can
happen at most t times).

This game is indistinguishable from the previous game except if o = 0. In this case, the game cannot
correctly compute the element ui and consequently has to abort. Since t is chosen uniformly at random from
Zq this event happens only with negligible probability and therefore it holds that Pr[G11G11G11 = 1] ≤ Pr[G12G12G12 =
1] + ν8(λ) where ν8 is a negligible function in λ.

Game G13G13G13: This game proceeds similarly to the previous game G12G12G12 with the exception that before the
execution of ΠLS–TPKE.TKeyGen, the game chooses at random a public key pk , s.t. (pk , ·, ·) ∈ TDH1.KeyGen.
Then during the ΠLS–TPKE.TKeyGen procedure, instead of executing ΠLS–DKG.TKeyGen, the game executes
S2, i.e., the simulator code of ΠLS–DKG.TKeyGen (cf. Fig. 1) on input pk , the NIZK trapdoor τ and the public
parameters ppLS–DKG. This code simulates ΠLS–DKG.TKeyGen in a way such that the output public key is
equal to pk .

The indistinguishability argument follows from the secrecy property of the ΠLS–DKG scheme. More pre-
cisely, we showed that for the ΠLS–DKG protocol there exists a simulator which on input a public key pk ,
trapdoor τ and public parameters ppLS–DKG can simulate the execution of LS–DKG.TKeyGen in such a way
that the execution is indistinguishable to an efficient fully mobile adversary except with negligible probabil-
ity and the output public key equals pk . Note that the distribution of (pk , τ, ppLS–DKG) is identical to the
output distribution of S1 in Fig. 1. Therefore, it holds that Pr[G12G12G12 = 1] ≤ Pr[G13G13G13 = 1] + ν9(λ) where ν9 is a
negligible function in λ.

By the transition from game G0G0G0 to G13G13G13 we get that

Pr[LSTPKE–CCABΠLS–TPKE
(λ) = 1] = Pr[G0G0G0 = 1]

≤ Pr[G13G13G13 = 1] + ν1(λ) + ν2(λ) + ν3(λ) + ν4(λ)

+ ν5(λ) + ν6(λ) + ν7(λ) + ν8(λ)

+ ν9(λ)

≤ Pr[G13G13G13 = 1] + ν(λ).

where ν(λ) ≥
∑9
i=1 νi(λ) is a negligible function in λ.

Having shown that the transition from game G0G0G0 to game G13G13G13 is indistinguishable, it remains to show
that there exists an efficient static adversary A who plays in game TPKE–CCAATDH1 and simulates game G13G13G13

to B. We have to show that A can then use B to win its own game. The only differences between game G13G13G13

and A’s simulation are as follows: (1) In TPKE–CCAATDH1, A receives a challenge public key pkC , which it
uses instead of the randomly chosen public key in game G13G13G13, (2) A forwards all queries to random oracles
H1 and H3 to the corresponding oracles in the TPKE–CCAATDH1 game and (3) A forwards all queries to the
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random oracle H2 that are related to the challenge ciphertext to the corresponding oracle of its own game.
Since the challenge public key pkC is chosen uniformly at random, this change is only syntactical.

Finally, we have to show that A can use B to win the TPKE–CCAATDH1 game. Note that the encryption
procedure is the same in both the ΠLS–TPKE and TDH1 scheme. Therefore, upon A receiving challenge
messages m0 and m1 and a label L′ from B, A forwards these messages as challenge messages to its own game.
Upon receiving the challenge ciphertext ct ′ = (c′, L′, u′, ū′, e′, f ′), A forwards it to B. Upon B outputting
a bit b′, A forwards this bit to its own game. Since A forwards queries to H2 that are related to ct ′ to its
own oracle, there is a negligible probability that B has previously (before receiving ct ′) queried H2 on input
(c′, L′, u′, w′). Hence, there exists a negligible function ν′ in λ such that it holds that

Pr[LSTPKE–CCABΠLS–TPKE
(λ) = 1] ≤ Pr[TPKE–CCAATDH1(λ) = 1] + ν(λ)

≤ 1/2 + ν′(λ) + ν(λ).

D The TDH1 Threshold Public Key Encryption Scheme From Shoup and
Gennaro [49]

In the following we briefly recall the (t, n)-threshold encryption scheme from Shoup and Gennaro [49], which
we denote by TDH1. This scheme has previously been proven secure against chosen ciphertext attacks and
static adversaries according to Def. 6.

Setup(1λ): On input a security parameter λ, the setup procedure generates a group G of prime order q with
generator g For simplicity, we assume that both, the messages and labels, are l bits long. In addition, the
setup procedure defines the following hash functions:

H1 : G→ {0, 1}l, H2 : {0, 1}l × {0, 1}l ×G×G→ G, H3, H4 : G3 → Zq

The setup procedure outputs public parameters pp := (G, q, g, l,H1, H2, H3, H4).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥ 2t+ 1, this procedure chooses
a random degree-t polynomial F (x) = a0 + a1x+ · · ·+ atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The
procedure outputs pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it outputs
to each party Pi the secret key share sk i.

TEnc(pk ,m,L): On input a public key pk , a message m ∈ {0, 1}l and label L ∈ {0, 1}l the encryption
algorithm works as follows:

1. Choose r, s←$ Zq at random
2. Compute:
c = H1(pkr)⊕m,u = gr, w = gs, ḡ = H2(c, L, u, w)
ū = ḡr, w̄ = ḡs, e = H3(ḡ, ū, w̄), f = s+ re.

The output is the ciphertext ct = (c, L, u, ū, e, f).

TDec(sk i, ct , L): On input a secret key share sk i, a ciphertext ct = (c, L, u, ū, e, f) and a label L the
decryption algorithm for party Pi does the following:

1. Compute: w = gf/ue, ḡ = H2(c, L, u, w), w̄ = ḡf/ūe.
2. If e 6= H3(ḡ, ū, w̄), output (i, ?)
3. If e = H3(ḡ, ū, w̄), choose si ←$ Zq at random and compute:

ui = uski , ûi = usi , ĥi = gsi , ei = H4(ui, ûi, ĥi), fi = si + sk iei.

The output is a decryption share ct i = (i, ui, ei, fi).
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TShareVrfy(ct , vk i, ct i): On input a ciphertext ct = (c, L, u, ū, e, f), a verification key vk i and a decryption
share ct i = (i, ui, ei, fi), the decryption share verification algorithm does the following:

1. Check if e 6= H3(ḡ, ū, w̄) as in the decryption procedure and if so output 1 only if the decryption share
is (i, ?) and 0 otherwise.

2. Compute: ûi = ufi/ueii , ĥi = gfi/vkeii .

3. If ei 6= H4(ui, ûi, ĥi), output 1 and 0 otherwise.

TCombine(T, ct): On input a set of valid decryption shares T := {ct i}i∈[t+1] and a ciphertext ct =
(c, L, u, ū, e, f), the share combination algorithm does the following:

1. Check if e 6= H3(ḡ, ū, w̄) as in the decryption procedure and if so, output ?. Otherwise, assume that it
holds that all ct i ∈ T are of the form ct i = (i, ui, ei, fi).

2. Compute m = H1(
∏t+1
i=1 u

li,0
i )⊕ c.

The output is the message m.
In [49], Shoup and Gennaro prove in the random oracle model that TDH1 is CCA-secure against static

adversaries corresponding to Def. 6.

E Large-Scale Non-Interactive Threshold Signature Schemes

In this section, we first introduce the notion of large-scale non-interactive threshold signature schemes
(LS–TSIG), before we show an instantiation of an LS–TSIG scheme from the threshold signature scheme
by Boldyreva [12], which we denote by TH–BLS. We then argue that security of the resulting scheme can be
proven in a similar manner as for the ΠLS–TPKE scheme from Sec. 5.

E.1 Model

The formal definition of a large-scale non-interactive threshold signature scheme (LS–TSIG) follows the ideas
of the definition of LS–TPKE schemes. That is, an LS–TSIG scheme is defined w.r.t. to a universe U of parties
and proceeds in epochs at the beginning of which a new committee of secret key shareholders is selected.
Similarly to LS–TPKE schemes, the definition of LS–TSIG schemes includes a refresh procedure which allows
to transition from one epoch to the next by selecting a new committee and refreshing the secret key shares.
Finally, an LS–TSIG scheme must be secure w.r.t. a fully mobile adversary whose corruption power suffices
to corrupt an entire committee of secret key shareholders.

We now provide the formal definition of a non-interactive LS–TSIG scheme.

Definition 14. A large-scale non-interactive (t, n)-threshold signature scheme (LS–TSIG) is defined w.r.t. a
universe of parties U = {P, · · · , PN} with N > n and consists of a tuple LS–TSIG = (Setup,TKeyGen,TSign,
TShareVrfy,TCombine,Verify,Refresh) of efficient algorithms and protocols which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to each party Pj ∈ U a public key pk and to each party Pi ∈ C a verification
key vk i and a secret key share sk i.

TSign(sk i,m): This algorithm takes as input a secret key share sk i and a message m and outputs a signature
share σi.

TShareVrfy(vk i,m, σi): This deterministic algorithm takes as input a verification key vk i, a message m and
a signature share σi and it either outputs 1 or 0. If the output is 1, σi is called a valid signature share.
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TCombine(pk ,m, T ): This deterministic algorithm takes as input a set of valid signature shares T such that
|T | = t+ 1, a public key pk and a message m and it outputs a full signature σ valid under pk.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, a message m and a signature
σ. It outputs either 1 or 0. If the output is 1, σ is called a valid signature.

Refresh[C〈(sk1,vk1,sl1),··· ,(skn,vkn,sln)〉, U ](pp): This is a protocol involving a committee C with |C| = n and
the universe of parties U , where each Pi ∈ C takes as secret input a secret key share sk i verification key
vk i and signature share list sli, and all parties Pj ∈ U take as input public parameters pp. The protocol
selects a committee of parties C ′ with |C ′| = n and outputs to each party Pi

′ ∈ C ′ a verification key vk ′i
and a secret key share sk ′i. Furthermore, all parties in the universe receive vk i and sli for i ∈ [n].

Consistency A (t, n)− LS–TSIG scheme must fulfill the following two consistency properties. For any λ ∈ N,
pp ← Setup(1λ) and (pk , {vk1

i }i∈[n], {sk1
i }i∈[n]) ← TKeyGen[U ](pp, t, n) with selected committee C1, for

j > 1 we define the tuple ({vk ji}i∈[n], {sk ji}i∈[n]) recursively as

({vk ji}i∈[n], {sk ji}i∈[n])← Refresh[Cj−1〈(skj−1
1 ,vkj−1

1 ,·),··· ,(skj−1
n ,vkj−1

n ,·)〉, U ](pp)

Recall that during these executions verification keys vk j−1i and signature share lists slj−1i for i ∈ [n] are
broadcasted.

1. For any message m it must hold that:

TShareVrfy(vk ji ,m,TSign(sk ji ,m)) = 1

2. For all signature share lists slj−1i where i ∈ [n], each element in the list is computed as σi,k ←
TSign(sk j−1i ,mk) for a message mk. Further, for any set Tk = {σj−11,k , · · · , σ

j−1
t+1,k}, it holds that:

Verify(pk ,mk,TCombine(pk ,mk, Tk)) = 1

Unforgeability In the following, we give the definition of unforgeability under chosen-message attacks for a
(t, n)− LS–TSIG scheme considering an efficient fully mobile adversary A with corruption power p · |U | > t.
We define the following game LSSIG–UFCMAALS–TSIG(λ) which is affected by the same implications of the
YOSO model as the CCA-Security game in Sec. 5. The game LSSIG–UFCMAALS–TSIG(λ) is initialized with a
security parameter λ and proceeds as follows:

1. The game executes Setup(1λ) and obtains public parameters pp, which it forwards to the adversary A.
For each epoch j ≥ 0, the game maintains a set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following oracle:

– Corruption oracle: On input an index i ∈ [N ], the game checks if
⌊
|Bj |+1
|U |

⌋
≤ p. If so, A receives

the internal state of party Pi
j and the game sets Bj ← Bj ∪ {Pij}.

3. The protocol TKeyGen[U ](pp, t, n) is executed. The protocol selects a committee C1 with |C1| = n
and outputs a public key pk , a set of verification keys {vk1

1, · · · , vk1
n} and a set of secret key shares

{sk1
1, · · · , sk1

n}, such that Pi
1 ∈ C1 learns vk1

i and sk1
i .

4. Additionally to the corruption oracle, the adversary A obtains access to the following two oracles. Let
sl1i := ∅ for i ∈ [n].
– Refresh oracle: On input a set NBj ⊆ Bj , the protocol Refresh[C〈(skj

1,vk
j
1,sl

j
1),··· ,(sk

j
n,vk

j
n,sl

j
n)〉, U ](pp)

is executed and the game sets Bj+1 ← Bj\NBj . Additionally, the game initializes the lists slj+1
i := ∅

for parties Pi ∈ Cj+1 \Bj+1.
– Signing oracle: On input a set of messages M j , the game computes σji,k ← TSign(sk ji ,m

j
k) for

mj
k ∈M j for all parties Pi

j ∈ Cj \Bj . Then, the oracle adds all σji,k to the list slji .
5. Eventually, A outputs a message m′ and a signature σ′. A wins the game if it has never previously

queried the signing oracle on message m′ and if Verify(pk ,m′, σ′) = 1.
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Definition 15. A large-scale non-interactive (t, n)-threshold signature scheme LS–TSIG with a universe of
parties U is (λ, n, t, p)-unforgeable with p·|U | > t if for every efficient fully mobile adversary A with corruption
power p there exists a negligible function ν in the security parameter λ, such that

Pr[LSSIG–UFCMAALS–TSIG(λ) = 1] ≤ ν(λ).

We define the advantage of A in game LSSIG–UFCMAALS–TSIG as

AdvALSSIG–UFCMA,LS–TSIG(λ) = Pr[LSSIG–UFCMAALS–TSIG(λ) = 1].

Definition 16 (Robustness). An LS–TSIG scheme satisfies (λ, n, t, p)-robustness if there exists no fully
mobile PPT adversary A that wins the following game with non-negligible probability. The game begins with
steps 1.-4. as in game LSSIG–UFCMA with the difference that the adversary is allowed to learn all secret
key shares in each epoch j. The adversary then outputs a message m, a set of verification keys V K =
{vk j1, · · · , vk jt+1} and a set of signature shares T = {σj1, · · · , σ

j
t+1} and wins the game if the following

conditions hold:

1. For all i ∈ [t+ 1] it holds that TShareVrfy(vk ji ,m, σ
j
i ) = 1.

2. Verify(pk ,m,TCombine(pk ,m, T )) = 0.

We call a large-scale non-interactive (t, n)-threshold signature scheme LS–TSIG scheme (λ, n, t, p)-secure,
if it satisfies the consistency, (λ, n, t, p)-robustness and (λ, n, t, p)-unforgeability properties.

E.2 Construction

We construct a large-scale threshold signature schemeΠLS–TSIG = (Setup,TKeyGen,TSign,TShareVrfy,TCombine,
Verify,Refresh) which is secure against fully mobile adversaries using the large-scale distributed key gener-
ation scheme ΠLS–DKG = (Setup,TKeyGen) as described in Sec. 4, the two committee framework of Ben-
hamouda et al. as well as the G–Handover procedure as presented in Sec. 3, the threshold signature scheme
TH–BLS = (Setup,KeyGen,TSign,TShareVrfy,TCombine,Verify) secure against a static adversary as intro-
duced by Boldyreva [12] and a NIZK proof system NIZK = (Setup,Prove,Verify) as per Def. 8.

Note that for similar reasons as for our ΠLS–DKG protocol, we cannot use the ΣECPSS.Handover procedure
in black-box. Instead we have to use the generalized handover procedure G–Handover, which internally uses
the ΣECPSS.Select procedure and the combined public key encryption scheme CPKE (cf. Sec. 3). We detail
our construction below. We recall the TH–BLS scheme in Appx. F.

ΠLS–TSIG.Setup(1λ): On input a security parameter λ, execute

ppTH–BLS ← TH–BLS.Setup(1λ), ppLS–DKG ← ΠLS–DKG.Setup(1λ).

crs←NIZK.Setup(1λ)

Recall that ppLS–DKG can be parsed as ppLS–DKG := (crs′,G, q, g). Define ppLS–DKG := (crs,G, q, g) and
output public parameters pp := (ppTH–BLS, ppLS–DKG).

ΠLS–TSIG.TKeyGen(pp, t, n): On input public parameters pp and two integers t, n ∈ N s.t. n ≥ 2t + 1,
this protocol parses pp := (ppTH–BLS, ppLS–DKG) and calls ΠLS–DKG.TKeyGen(ppLS–DKG, t, n). The protocol
selects a committee C1 and outputs a public key pk to all parties in U and secret key shares sk1

i to

each party Pi
1 ∈ C1. Additionally, all Pi

1 ∈ C1 compute v̂k
1

i := gsk
1
i and a NIZK proof π1

i that the

verification key v̂k
1

i was computed correctly 15. Pi
1 then sets vk1

i := {v̂k
1

i , π
1
i } and initializes a signature

share list sl1i := ∅.
15 The language for this proof is the same as the language L′ in the ΠLS–DKG protocol.
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ΠLS–TSIG.TSign(sk i,m): This procedure executes TH–BLS.TSign and adds the resulting signature share to
the list sli.

ΠLS–TSIG.TShareVrfy(σi, vk ji ,m): On input a signature share σi, a verification key vk ji := {v̂k
j

i , π
j
i } and a

message m, this procedure checks if πji is a valid proof w.r.t. v̂k
j

i (i.e., it checks if v̂k
j

i is indeed the correct
verification key of party Pi

j ∈ Cj). If this check does not hold, the procedure outputs 0. Otherwise, it

outputs TH–BLS.TShareVrfy(σi, v̂k
j

i ,m).

ΠLS–TSIG.TCombine(T, ct): This procedure executes TH–BLS.TCombine.

ΠLS–TSIG.Verify(pk ,m, σ): This procedure executes TH–BLS.Verify.

ΠLS–TSIG.Refresh[C〈(skj
1,vk

j
1,sl

j
1),··· ,(sk

j
n,vk

j
n,sl

j
n)〉, U ](pp): This protocol is executed between a committee Cj in

epoch j and the universe U , where each Pi
j ∈ Cj receives as input a secret key share sk ji , verification key

vk ji and signature share list slji , and each party Pk ∈ U receives as input pp := (ppTSIG, ppLS–DKG). The

protocol first runs G–Handover[Cj〈(skj
1,(vk

j
1,sl

j
1)),··· ,(sk

j
n,(vk

j
n,sl

j
n))〉, U ](pp) which selects a committee Cj+1

and outputs refreshed secret key shares sk j+1
i to each Pi

j+1 ∈ Cj+1. Furthermore, all parties in the

universe receive vk i and sli for i ∈ [n]. Additionally, all Pi
j+1 ∈ Cj+1 compute v̂k

j+1

i := gsk
j+1
i , generate

a NIZK proof πj+1
i that the verification key was computed correctly16 and set vk j+1

i := {v̂k
j+1

i , πj+1
i }.

Finally, all Pi
j+1 initialize a signature share list slj+1

i := ∅.

Theorem 3. Let ΠLS–DKG be the large-scale (t, n)-distributed key generation protocol from Sec. 4, TH–BLS
the non-interactive (t, n)-threshold signature scheme as described in Appx. F, ΣECPSS a (λ, n, t, p)-secure
instantiation of the evolving-committee proactive secret sharing scheme as presented in Sec. 3, NIZK a non-
interactive zero-knowledge proof system as per Def. 8 and CPKE a RIND-SO secure public key encryption
scheme. Then ΠLS–TSIG is a (λ, n, t, p)-secure large-scale non-interactive (t, n)-threshold signature scheme.

In order to prove Theorem 3, we have to show that ΠLS–TSIG satisfies consistency, robustness and
(λ, n, t, p)-unforgeability. We therefore state the following lemmas.

Lemma 7. The large-scale non-interactive (t, n)-threshold signature scheme, ΠLS–TSIG, satisfies consistency.

Proof. This lemma follows directly from the consistency property of the TH–BLS scheme (cf. Definition 19),
the completeness property of the NIZK proof system and from the handover correctness of the G–Handover
scheme. A proof outline of this lemma looks similar to the proof outline of Lemma 3 in Appx. C.

Lemma 8. The large-scale non-interactive (t, n)-threshold signature scheme, ΠLS–TSIG, satisfies (λ, n, t, p)-
robustness.

Proof. The proof of this lemma is similar to the proof of Lemma 4.

Lemma 9. The large-scale non-interactive threshold (t, n)-threshold signature scheme ΠLS–TSIG is (λ, n, t, p)-
unforgeable.

The proof of Lemma 9 is similar to the proof of Lemma 5 with the difference that we have to provide
a reduction to the unforgeability of TH–BLS. As part of this reduction we have to show that signing oracle
queries from the adversary in game LSSIG–UFCMAΠLS–TSIG

can be answered without knowing the correct
secret key shares. We show briefly in Appx. F how such signing oracle answers can be simulated for the
TH–BLS scheme.

16 The language for this proof is the same as the language L′ in the ΠLS–DKG protocol.
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E.3 Transformation Framework from TSIG to LS–TSIG

The same reasoning that we presented in Sec. 5 for the transformation framework from TPKE schemes to
LS–TPKE schemes applies to TSIG and LS–TSIG schemes as well. In a nutshell, a discrete-log-based non-
interactive threshold signature scheme TSIG can be transformed to a large-scale non-interactive threshold
signature scheme LS–TSIG if TSIG satisfies the same properties as described in Sec. 5 for TPKE schemes.
The only minor difference in the properties is that the simulator in the simulatability property receives as
input a public key, n verification keys and t secret key shares and additionally obtains access to a signing
oracle which on input a message outputs a valid signature under the input public key. Apart from this, the
same argumentation from Sec. 5 can be used here to argue that a scheme TSIG can be transformed to an
LS–TSIG scheme.

F The TH–BLS Scheme from Boldyreva [12]

F.1 Background on Digital Signature and Threshold Signature Schemes

Before we recall the TH–BLS scheme, we first recall the basic definitions of digital signature schemes and
threshold signature schemes.

Definition 17 (Digital signatures). A digital signature scheme SIG consists of a triple of algorithms
SIG = (KeyGen,Sign,Verify) defined as:

KeyGen(1λ): This probabilistic algorithm takes as input a security parameter λ and outputs a key pair
(sk , pk);

Sign(sk ,m): This probabilistic algorithm takes as input a secret key sk and message m and outputs a signature
σ;

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, message m and signature σ
and outputs a bit either 1 or 0. If the output is 1, σ is called a valid signature.

A signature scheme must satisfy that for all messages m it holds that:

Pr
[
Verify(pk ,m,Sign(sk ,m)) = 1 | (sk , pk)← KeyGen(1λ)

]
= 1,

where the probability is taken over the randomness of KeyGen and Sign.

Definition 18 (Unforgeability). A signature scheme SIG is unforgeable if for every PPT adversary A
there exists a negligible function ν in the security parameter λ such that Pr[SIG–UFCMAASIG(λ) = 1] ≤ ν(λ),
where the experiment SIG–UFCMAASIG is defined as follows:

1. The game executes KeyGen(1λ) and obtains a key pair (sk , pk). It forwards the public key pk to the
adversary A.

2. A obtains access to a signing oracle, which on input a message m outputs a signature σ for m under
public key pk.

3. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds that Verify(pk ,m∗, σ∗) = 1
and (2) m∗ has never been queried to the signing oracle before.

Definition 19. A non-interactive (t, n)-threshold signature scheme TSIG consists of a tuple of efficient
algorithms TSIG = (Setup,KeyGen,TSign,TShareVrfy,TCombine,Verify) which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and output public param-
eters pp.

KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters pp and two integers t, n ∈ N.
It outputs a public key pk, a set of verification keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TSign(sk i,m): This probabilistic algorithm takes a secret key share sk i and a message m as input and
outputs a signature share σi.
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TShareVrfy(σi, vk i,m): This deterministic algorithm takes as input a signature share σi, a verification key
vk i and a message m and it outputs either 1 or 0. If the output is 1, σi is called a valid signature share.

TCombine(pk ,m, T ): This deterministic algorithm takes as input a public key pk; a message m and a set
of valid signature shares T for m under pk such that |T | = t+ 1 and it outputs a signature σ.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, message m and signature σ
and outputs a bit either 1 or 0. If the output is 1, σ is called a valid signature.

Consistency A (t, n)−TSIG scheme must fulfill the following two consistency properties. Let pp ← Setup(1λ)
and (pk , {vk i}i∈[n], {sk i}i∈[n])←$ KeyGen(pp, t, n).

1. For any message m it must hold that

TShareVrfy(TSign(sk i,m), vk i,m) = 1.

2. For any message m and any set T = {σ1, · · · , σt+1} of valid signature shares σi ← TSign(sk i,m) with
sk i being t distinct secret key shares, it must hold that

Verify(pk ,m,TCombine(pk ,m, T )) = 1.

Unforgeability We recall the definition of unforgeability for a (t, n) − TSIG scheme with static corruptions.
Consider a PPT adversary A playing in the following game SIG–UFCMAATSIG which receives as input a security
parameter λ:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its corruption choice. Let H :=
{1, · · · , n} \B.

2. The game computes pp ← Setup(1λ) and sets (pk , {vk i}i∈[n], {sk i}i∈[n]) ← KeyGen(pp, t, n). It sends
pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the adversary.

3. The adversary A is allowed to adaptively query a signing oracle, i.e., on input (m, i) with i ∈ H, the
signing oracle outputs TSign(sk i,m).

4. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds that Verify(pk ,m∗, σ∗) = 1
and (2) A has not previously made a signing query on message m∗.

Definition 20. A non-interactive (t, n)-threshold signature scheme TSIG is unforgeable if for every PPT ad-
versary A there exists a negligible function ν in the security parameter λ, such that Pr[SIG–UFCMAATSIG(λ) =
1] ≤ ν(λ).

In this work, we define robustness of a TSIG scheme as follows.

Definition 21 (Robustness). A TSIG scheme satisfies robustness if for all PPT adversary A the following
holds:

Pr

∀i ∈ [t+ 1] : TShareVrfy(vk i,m, σi) = 1
∧Verify(pk ,m,TCombine(pk ,m, T )) = 0

∣∣∣∣∣∣
K := (pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n)
(m,T )← A(K) s.t.,
T := {σ1, · · · , σt+1}

 ≤ ν(λ).

where ν is a negligible function in the security parameter λ.

F.2 The BLS and TH–BLS Schemes

In the following we present the non-interactive threshold signature scheme from [12], which we denote by
TH–BLS. We then give a proof sketch for a reduction of TH–BLS to the single party signature scheme
BLS as introduced in [14]. This proof sketch demonstrates how signing oracle responses for TH–BLS can be
simulated without knowing the corresponding secret key shares. As mentioned in Appendix E, this is crucial
for the proof of Lemma 9. Both BLS and TH–BLS operate over so-called Gap Diffie-Hellman (GDH) groups
in which the computational Diffie-Hellman (CDH) problem is hard, whereas the decisional Diffie-Hellman
(DDH) problem is easy. We briefly recall the notions of CDH, DDH and GDH in the following.
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Computational/Decisional Diffie-Hellman Problem and GDH Groups Let G be a cyclic group of prime order
q and with generator g. Let a, b, c be elements chosen uniformly at random from Zq.

Computational Diffie-Hellman (CDH) Given (g, ga, gb), the CDH problem is to compute gab.

Decisional Diffie-Hellman (DDH) Given (g, ga, gb, gc), the DDH problem is to decide whether c = ab.

We now recall the definition of GDH groups as given in [12].

Definition 22 (Gap Diffie-Hellman Group). A group G of prime order q is called a Gap Diffie-Hellman
(GDH) group if there exists an efficient algorithm V-DDH() which solves the DDH problem in G and there
is no polynomial-time (in |q|) algorithm which solves the CDH problem in G.

We now first recall the BLS scheme as presented in [14], before presenting its threshold variant TH–BLS
as presented in [12].

F.3 The BLS scheme

KeyGen(1λ): On input a security parameter λ, this procedure generates a GDH group G of prime order q with
generator g. In addition, the procedure defines the hash function H : {0, 1}∗ → G∗ and sets pp = (G, q, g,H).
Further, it picks a secret key sk ←$ Zq and computes the corresponding public key pk ← gx and sets
sk ′ = (sk , pp), pk ′ = (pk , pp) It outputs (sk ′, pk ′).

Sign(sk ′,m): On input a secret key sk ′ and a message m, this procedure parses sk ′ := (sk , pp) and computes
a signature σ = H(m)sk and outputs σ.

Verify(pk ′,m, σ): On input a public key pk ′, a message m and a signature σ, this procedure parses pk ′ :=
(pk , pp) and checks if V-DDH(g, pk , H(m), σ) = 1. If so, this procedure outputs 1 and 0 otherwise.

The authors of [14] show that the BLS scheme is unforgeable as per Definition 18.

F.4 The TH–BLS scheme

We now recall the threshold variant of the BLS scheme, which we denote by TH–BLS.

Setup(1λ): On input a security parameter λ, the setup procedure generates a GDH group G of prime order
q with generator g. In addition, the setup procedure defines the hash function H : {0, 1}∗ → G∗.

The setup procedure outputs public parameters pp := (G, p, g,H).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥ 2t+ 1, this procedure chooses
a random degree-t polynomial F (x) = a0 + a1x+ · · ·+ atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The
procedure outputs pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it outputs
to each party Pi the secret key share sk i.

TSign(sk i,m): On input a secret key share sk i and a message m, this algorithm outputs σi = H(m)ski .

TShareVrfy(vk i,m, σi): On input a verification key vk i, a message m and a signature share σi, this algorithm
outputs V-DDH(g, vk i, H(m), σi).
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TCombine(pk ,m, T ): On input a public key pk , a message m and a set of valid signature shares T ⊂
{σ1, · · · , σn} with |T | = t+ 1, this algorithm computes σ =

∏
σi∈T (σlii ) and outputs σ.

Theorem 4. If the BLS scheme as presented in Section F.3 is unforgeable as per Definition 18, then the
TH–BLS scheme is unforgeable as per Definition 20 in the random oracle model.

Proof sketch. We provide a proof sketch for Theorem 4 by exhibiting a simulator S := (S1,S2) who uses
an adversary A playing in game SIG–UFCMAATH–BLS to win its own game SIG–UFCMASBLS. S receives a public
key pk from its game SIG–UFCMASBLS as well as access to a signing and a random oracle and it has to simulate
game SIG–UFCMAATH–BLS to A. On a high level, the simulation works as follows:

W.l.o.g. let A corrupt parties (P, · · · , Pt). Upon S receiving pk , S calls its subprocedure S1 on input

(pk , {vk i, sk i}i∈[t]) for sk i ←$ Zq and vk i = gski with i ∈ [t]. S1 computes vk j = pk lj,0
∏t
i=1 vk

lj,i
i for

t+ 1 ≤ j ≤ n. Note that for any subset T ⊂ {vk1, · · · , vkn} with |T | = t+ 1 it holds that pk =
∏

vki∈T vk lii
and therefore any T uniquely identifies pk . S then executes S2 on input (pk , {vk j}j∈[n], {sk i}i∈[t]), which

simulates game SIG–UFCMAATH–BLS as follows:
In the beginning of the game, S2 sends (pk , {vk j}j∈[n], {sk i}i∈[t]) to the adversary. Upon A issuing a

random oracle query on input m, S2 forwards the query to its own random oracle and receives a group
element H(m) ∈ G. Upon A issuing a signing query on input (m, i), S2 issues a signing query on message
m to its signing oracle and receives a signature σ = H(m)sk . S2 then computes the signature share σi as
σi = σli,0

∏t
j=1H(m)skj li,j . Finally, upon A outputting a forgery (m∗, σ∗), S2 can simply forward the forgery

to game SIG–UFCMASBLS. S wins its game SIG–UFCMASBLS whenever A wins game SIG–UFCMAATH–BLS due to
the following reason. If (m∗, σ∗) is a valid forgery in game SIG–UFCMAATH–BLS (i.e., A has never previously
queried the signing oracle on input m∗), then S2 has never previously queried its own signing oracle on
message m∗ and hence (m∗, σ∗) constitutes a valid forgery in game SIG–UFCMASBLS.
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