
This is the full version of the extended abstract which appears in
Proceedings of the 13th International Conference on Security and Cryptography for Networks (SCN ’22)
(12–14 September 2022, Amalfi, Italy)
Clemente Galdi and Stanislaw Jarecki Eds. Springer-Verlag, LNCS

MyOPE: Malicious securitY for Oblivious Polynomial
Evaluation

Malika Izabachène1 ID , Anca Nitulescu2 ID ,

Paola de Perthuis1,3 ID , and David Pointcheval3 ID

1 Cosmian, Paris, France
2 Protocol Labs, Paris, France
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Abstract. Oblivious Polynomial Evaluation (OPE) schemes are interactive protocols between a
sender with a private polynomial and a receiver with a private evaluation point where the receiver
learns the evaluation of the polynomial in their point and no additional information. In this work,
we introduce MyOPE, a “short-sighted” non-interactive polynomial evaluation scheme with a poly-
logarithmic communication complexity in the presence of malicious senders. In addition to strong
privacy guarantees, MyOPE enforces honest sender behavior and consistency by adding verifiability
to the calculations.
The main building block for this new verifiable OPE is an inner product argument (IPA) over rings
that guarantees an inner product relation holds between committed vectors. Our IPA works for
vectors with elements from generic rings of polynomials and has constant-size proofs that consist
in one commitment only while the verification, once the validity of the vector-commitments has
been checked, consists is one quadratic equation only.
We further demonstrate the applications of our IPA for verifiable OPE using Fully Homomorphic
Encryption (FHE) over rings of polynomials: we prove the correctness of an inner product between
the vector of powers of the evaluation point and the vector of polynomial coefficients, along with
other inner-products necessary in this application’s proof.
MyOPE builds on generic secure encoding techniques for succinct commitments, that allow real-
world FHE parameters and Residue Number System (RNS) optimizations, suitable for high-degree
polynomials.

1 Introduction

1.1 Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) is a protocol that allows two parties, the sender and
the receiver, to evaluate a polynomial f(X) of fixed public degree N secretly chosen by the
sender in a point m known only by the receiver. The receiver obtains the value f(m) without
learning anything else about the polynomial f and without giving the sender any information
about the point m.

OPE is an important building block for various 2-party computation (2-PC) schemes that
generally require multiple executions of an OPE protocol for the same polynomial and differ-
ent evaluation points, such as for Private Set Intersection (PSI), data mining [LP00], privacy-
preserving keyword search [JL09], set membership (related to PSI) or and RSA key genera-
tion [Gil99], to mention a few. Our building blocks for OPE can also be used to attain Symmetric
Private Information Retrieval (SPIR). However, the standard definition of receiver privacy does
not preclude the sender from cheating by using a polynomial of higher degree than expected,
changing the polynomial between multiple executions, or sending polynomial evaluation results
in a wrong order, thus potentially easily leaking private information if the protocol includes a
step to return the intersection result to the sender in the PSI application. Therefore, extending
the security to malicious senders is essential in practical contexts.

With generic 2PC techniques in the malicious setting, some efficiency overheads incur, with
the cut-and-choose technique or an expensive preprocessing to generate correlated random-
ness, that needs to be regularly repeated, and for the techniques using FHE ciphertexts to get
better asymptotic communication and less interaction, this level of security had not yet been
guaranteed.
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1.2 Inner-Product Arguments over Rings

An inner product argument ensures the correctness for an inner product evaluation between two
committed vectors. Following the observation that a polynomial evaluation can be written as
an inner product between the vector of its coefficients and the vector of the consecutive powers
of the evaluation point, we can use such protocols to enforce honest behavior in OPE schemes.

Inner-product arguments [BCC+16, BBB+18, WTs+18, LMR19, BCMS20, DRZ20, BMM+21]
are core components of many other primitives, including zero-knowledge proofs and polynomi-
al/vector commitment schemes. While all of these IPAs follow the same strategy using folding
techniques, they only achieve logarithmic-size proofs without privacy, and they support only
inner product of vectors with elements from a field. While the verification time is linear in most
of the mentioned works, the recent results by [DRZ20, BMM+21] achieve logarithmic-time ver-
ification using a trusted setup.

We design a new ring Inner-Product Argument (ring-IPA) that allows the verification of inner
product evaluations for vectors with elements from a ring. Our scheme relies on a trusted setup
in order to achieve succinct proofs and verification. We also offer a new commitment scheme
for vectors with elements from generic rings of polynomials, compatible with FHE ciphertexts,
as an improvement to previous such schemes that only work for vectors over fields or groups of
elliptic curve elements.

Our ring-IPA construction improves on proof sizes and verification times achieving constant-
size proofs and constant-time verification, independent of the size of the vectors. Moreover, the
ring-IPA can be used for vectors over rings of polynomials, compatible with the rings used by
various FHE schemes, providing proofs for the evaluation of inner products over ciphertexts,
which can then also be seen as ciphertexts of inner products, from their homomorphic properties.

1.3 Related Work

Despite its broad applicability, the study of the OPE functionality includes few practical and
secure protocols, initiated in [NP99] and further continued in works like [CL01, ZB05, HL09].

While [NP99] proposed a first construction for OPE, it relies on a newly introduced in-
tractability assumption: the noisy polynomial interpolation. Naor and Pinkas conjectured that
it could be reduced to a more widely studied assumption, the polynomial reconstruction prob-
lem. Nevertheless, as shown in [BN00], this conjecture seems not to hold in general.

OPE Schemes with Active Security. Among recent OPE schemes, to the best of our knowledge,
some of the best schemes with security against malicious adversaries are given by [HL09, Haz18].
However, [HL09] has at least 17 rounds of interaction and the parties send each other O(λN)
Paillier encryptions, where λ is the security parameter and N the degree of the polynomial, and
their claimed efficiency holds only for sufficiently low degree polynomials. [Haz18] shows an
OPE scheme for polynomial evaluation in the exponent of a DLog group using algebraic Pseudo-
Random Functions (PRF). They focus on improving the computational efficiency of [HL09] by
reducing the number of modular exponentiations, and removing the trusted setup requirement,
while preserving the same number of rounds of interaction and communication complexity as
in [HL09], and apply their scheme to private set membership 2PC. [PRTY20] gives malicious
security for PSI with symmetric set sizes, but the communication is linear in the set sizes.
There are also efficient schemes like [BC22], but they don’t have the sublinear communication
complexity and reduced interactivity we get with FHE methods.

Verifiable Computation (VC). Introduced by [GGP10], VC schemes are cryptographic systems that
enable checking the integrity of results from delegated computations. More recent works [FNP20,
BCFK21] have improved the efficiency of VC schemes to work for computations over encrypted
data. These schemes, however, require proving the entire FHE circuit evaluation which is very
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expensive. Moreover, they neither allow using practical parameters for the FHE scheme, nor
speedups through classical optimizations such as Residue Number System (RNS).

Then, [GNS21] also gives constructions for general algebraic circuits over ring elements, but
using a general approach which is not optimized for our inner-product and OPE application,
which we can instantiate with a small cleartext modulus t = 3 (when theirs are greater to have
big enough ideal subsets), and for which we select parameters compatible with OPE require-
ments like the computation privacy, when this other work is focused on non-private algebraic
circuit calculations, and would thus not hide the polynomial.

1.4 Our Contribution

Our first contribution is a generic framework based on any secure encoding that allows building
an inner product argument (IPA) over vectors with elements coming from wider spaces, not
only from fields as defined in prior works. Depending on the instantiation of the underlying
secure encoding scheme, we are able to obtain IPA schemes for vectors of ciphertexts from Fully
Homomorphic Encryption (FHE) schemes, such as the Fan-Vercauteren scheme [FV12], that
can provide privacy under the Ring-LWE (RLWE) assumption. Other FHE schemes relying on
the RLWE assumption could also be used.

Equipped with our new constant-size and constant-time inner product argument, we next
apply our techniques to enhance the security of OPE schemes to malicious senders, by enforcing
an honest behavior when evaluating the polynomial. We focus on OPE schemes with mini-
mal communication requirements and without an offline pre-processing phase, based on Fully
Homomorphic Encryption (FHE) on an encrypted point.

More precisely, we introduce MyOPE, a scheme for verifiable oblivious evaluation of polyno-
mials of high degrees N that achieves O((log(N))2) communication cost, for a constant security
level (when considering the privacy, correctness, and soundness properties). This sublinear com-
munication improves on the state-of-the-art, with just a logN factor with respect to schemes
without an active security.

As a straightforward use case, we illustrate our verifiable OPE application to Private Set
Intersection (PSI) in the unbalanced-set setting: basically, the sender, who owns the larger set
X = {x1, . . . , xN}, defines the polynomial f =

∏N
i=1(X−xi), and the receiver asks for evaluations

f(yj) for each element in Y = {y1, . . . , yK} to detect the common roots. Our communication
complexity then becomes O(K · (log(N))2), with just a logN factor compared to the most
efficient PSI algorithm [CLR17] without verifiability, where K is the size of the small set and
N is the size of the large set.

Our scheme guarantees the client’s privacy with post-quantum FHE ciphertexts, under the
Ring-LWE assumption, while the soundness of the proof can rely on a variety of secure encoding
schemes, from pairings (under the Power Knowledge of Exponent Assumption) to any linear-
only encryption scheme such as the Paillier scheme [Pai99] (under the integer factoring) and
the Castagnos-Laguillaumie scheme [CL15] (under some class group problems), but also based
on the post-quantum Learning With Errors (LWE) problem [GMNO18], thus making the entire
scheme post-quantum secure.

1.5 Technical Overview

Inner Product Argument. Our first tool is of independent interest: it allows to prove inner-product
evaluation of two vectors ~u and ~v, with respect to their commitments U and V̄ respectively. Our
vector commitments will be based on commitments keys that encode powers of a secret point
s, using any secure encoding scheme, [1], [s], . . . , [sn−1], defined and published once for all. We
define U = [

∑
i uis

i] =
∑

i ui[s
i] while V̄ will be in the reverse order: V̄ =

∑
i vi[s

n−i]. The
notation [.] is an informal representation of a secure encoding, that leads to a computationally
binding commitment. The hiding property is achieved with an additional secret component
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and Schnorr-like proofs. It will additionally have bilinear properties, which lead to U × V̄ =∑
i,j(uivj)[s

n+i−j ] = 〈~u,~v〉[sn] +
∑

i 6=j(uivj)[s
n+i−j ]. By showing U × V̄ − α[sn] has no term

in [sn], one proves that 〈~u,~v〉 = α. Whereas the analysis will be performed on polynomials
evaluated in a secret point s, the Schwartz-Zippel lemma [Sch80, Zip79] will lift the relations
on the polynomials, as non-zero polynomials are unlikely evaluated to 0. But this assumes good
properties for the algebraic structures, which are not always satisfied. A favorable situation is
considered first, in fields of large characteristic, then more complex structures are discussed
in appendix C, in rings. Globally, the soundness of the proofs relies on the secure encodings
(which can require the Power Knowledge of Exponent Assumption when pairings are used,
or the linear-only property of any encryption scheme) and the Schwartz-Zippel lemma (that
requires no computational assumption, but appropriate alg

Verifiable Polynomial Evaluation. Now, from a polynomial f =
∑

fiX
i, which can be encoded as

a vector ~v = (fi)i, and thus committed as V̄ (in reverse order), and an element m, which can
be encoded as a vector ~u = (mi)i, and thus committed as U , f(m) = 〈~u,~v〉, correctness can
be proven as above with respect to the binding commitments U and V̄ . Again, efficiency will
depend on the actual algebraic structures. For the reader’s convenience, indices for vectors start
at 0, to consider the constant monomial in polynomials.

Receiver Privacy: Fully Homomorphic Encryption. When both f and m are public, which easily allows
getting confidence in U and V̄ , the above approach is convincing. When receiver privacy is
expected, with a private point m, the receiver could send encryptions Mi of the mi under an
additively homomorphic encryption scheme: ifW is a commitment of the vector ~w = (Mi)i, using
the linear property of the encryption scheme, 〈~w,~v〉 =

∑
fiMi is the encryption of f(m) =

∑
fim

i,
which can be proven with respect to W and V̄ , as above. Once convinced, the receiver can
decrypt it to get f(m). Their privacy is guaranteed by the semantic security of the encryption
scheme. But sending all the Mi’s implies a huge communication cost. One can then use a Fully
Homomorphic Encryption (FHE) to let the sender generate the vector: the receiver provides M
as an encryption (under their own key) of m, and FHE allows the sender to compute Mi. The
additive homomorphism allows continuing as above.

But why should the receiver trust the sender to have correctly computed the Mi’s as the
encryptions of the successive powers of m and the commitment W correctly? Let us assume
each Mi, in ~w committed in W , encrypts the plaintext mi. One can use another verifiable inner
product to check mi = mi: from a random common public element n, chosen after the publication
of W , and the vector ~z = (ni)i publicly committed into Z̄ (in reverse order), the receiver can
verifiably compute the inner product 〈~w, ~z〉 with respect to W and Z̄. Since it is proven correct,
it decrypts to

∑
min

i, while one would like it to be
∑

mini. In case of equality, this means that
polynomials

∑
miX

i and
∑

miXi evaluate the same way on the random point n. By applying
the Schwartz-Zippel lemma in the plaintext-space, this means that mi = mi with overwhelming
probability. This concludes the security analysis.

To draw the above conclusion, we assumed the Schwartz-Zippel lemma could be applied in
both the plaintext-space (for getting mi = mi) and the ciphertext-space (for verifying the two
inner product evaluations between (Mi)i and (fi)i, and between (Mi)i and (ni)i). Furthermore,
for effective application of FHE, additional constraints might be added to the ciphertext-space,
such as Residue Number System (RNS) representation. All these questions will be addressed
below, dealing with arbitrary rings.

Sender Privacy: Noise-Flooding and Hiding Commitments. OPE also expects sender privacy, with no
leakage about the polynomial f. However, the commitment U might leak some information,
unless it guarantees the additional hiding property. Furthermore, the homomorphic evaluation
f(m) in the ciphertexts may leak more than just the result, and possibly the evaluation steps,
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as the final noise in 〈~w,~v〉 leaks them. To avoid such a leakage, the sender can add extra super-
polynomial noise to 〈~w,~v〉. This is the so-called noise-flooding technique [Gen09]. One will of
course have to prove this does not impact the decrypted result, requiring a small enough norm
for the added noise. Which results in another inner-product proof, as the L2-norm is an inner
product square root.

Efficiency for two Secure Encoding Instantiations. Any Secure Encoding scheme can be used in our
construction: depending on the instantiation choice different assumptions will be used, and if
the Secure Encoding scheme uses a modulus which is not a multiple of q, then the size will have
a O(log(N)) complexity. We compare two example instantiations in table 1.

Secure Encoding Pairings Paillier Encryption

Assumptions Power Knowledge of Exponent
Hardness of Integer Factoring

+ Linear-Only Encryption
Field/Ring Modulus q prime composite (for RNS)

Size complexity O(1) O(log(N))

Fig. 1. Comparison of pairing and Paillier encryption instantiations of the secure encoding
scheme. The size complexity (of both the individual encodings and the total proof) is given in
N , the size of the inner-product vectors.
Efficiency in Practice. With the Fan-Vercauteren FHE scheme [FV12], from the plaintext ring
Rt = Zt[X]/r(X), where r(X) = Xn + 1, into the ciphertext ring Rq = Zq[X]/r(X), the core
parameters are the integers n, q, and t, to guarantee the semantic security under the Ring-LWE
assumption. For the PSI application, one needs to encode elements from X and Y into Rt. Since
n > 128, t = 3 will be big enough. Each ciphertext is 2n log2 q bits long.

With a MyOPE instantiation for polynomials of degree N = 230, we set n = 214 which
leads to q over 610 bits to obtain an appropriate FHE semantic security (according to the LWE
estimator [APS15]) and decryption correctness, including with noise-flooding. To exploit RNS
optimizations [BEHZ16], as proposed in SEAL1, q can be the product of 11 primes on less than
60 bits each.

Then, the size of the FHE ciphertext to be sent is of about 3 MBytes. The result of the sender
and proof of their honest behavior consists of about 5 MBytes, for a prime q and soundness of
2−128. If RNS is used, with a composite q, the Schwartz-Zippel guarantees are lower, and our
commitments will have to be repeated several times for the soundness: the result and proof then
consists of some 170MBytes, from our analysis in appendix F.

2 Preliminaries

2.1 MyOPE: Verifiable OPE

We first formalize the notion of verifiable oblivious polynomial evaluation. A MyOPE = (OPE.Setup,
OPE.KeyGen,OPE.QueryGen,OPE.Compute,OPE.Verify,OPE.Decode) scheme for polynomial eval-
uation consists of the following algorithms:

OPE.Setup(1λ) → (PK, SK): Given the security parameter λ, output a pair of keys indepen-
dent on polynomials to compute. The public key PK will be provided as input to all the
subsequent algorithms.

OPE.KeyGen(PK, f)→ pkf : Given the polynomial f , output a public key pkf .
OPE.QueryGen(PK, pkf , x)→ σx: Given the public key pkf and the input x, encode the evalu-

ation point x into σx, and output it.
OPE.Compute(PK, f, σx) → σy: Given the polynomial f and the encoded input, output an

encoded value σy of the result y.

1 https://github.com/microsoft/SEAL

https://github.com/microsoft/SEAL
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ExpSNDΠ,A(λ):

(PK,SK)← Setup(1λ); (f, x, st)← A1(PK)
pkf ← KeyGen(PK, f); σx ← QueryGen(PK, pkf , x); σy ← A2(PK, pkf , σx, st);
if Verify(PK, [SK], pkf , σx, σy) = 1 and Decode(SK, σy) 6= f(x), then return 1
else return 0.

ExpR-Privacy
Π,A (λ):

b
$← {0, 1}; (PK,SK)← Setup(1λ); (f, x0, x1, st)← A1(PK)

pkf ← KeyGen(PK, f); σb ← QueryGen(PK, pkf , xb); b
′ ← A2(PK, σb, st)

if f(x0) 6= f(x1), then return ⊥ else return (b = b′)

ExpS-Privacy
Π,A (λ):

b
$← {0, 1}; (PK,SK)← Setup(1λ); (f0, f1, st)← A1(PK)

pkf ← KeyGen(PK, fb); b
′ ← ACO(.)

2 (PK, SK, pkf , st)
if f0 or f1 invalid functions, if some σx asked to CO decodes to an x such that f0(x) 6= f1(x), then return ⊥

else return (b = b′)

CO(σx): return σy ← Compute(PK, fb, σx)

Fig. 2. Security Games

OPE.Verify(PK, [SK], pkf , σx, σy)→ acc: Given the secret key SK, in case of designated-verifier
scheme, the public key pkf for polynomial f , and the encoding σx of the evaluation point,
accept (with acc = 1) or reject (with acc = 0) an output encoding σy.

OPE.Decode(SK, σy)→ y: Given the secret key SK for polynomial f , and an output encoding
σy, output the result y.

For concrete use, between a sender with input polynomial f and a receiver with evaluation point
x:

– The Setup algorithm is first run by the receiver (in case of designated-verifier) or a trusted
party.

– The Sender executes the KeyGen algorithm with their input polynomial f .
– The Receiver runs QueryGen on their input x.
– The Sender runs Compute algorithm to obtain an encoding of the result σy.
– The Receiver can verify and decode the result with algorithms Verify and Decode.

Note that the QueryGen and Decode correspond to the encryption and decryption algorithms of
a (fully) homomorphic encryption scheme.

Correctness. The correctness of a MyOPE scheme requires that if one runs Compute on an
honestly generated query encoding of x, after honest Setup and KeyGen executions for f , then
the output must verify and its decoding should be y = f(x).

Soundness. The verifiability of a MyOPE guarantees the receiver of correct computation,
even in front of a malicious sender, once Setup and KeyGen have been run honestly. This is done
by means of a proof, the encoded value of the result σy should contain a proof of correctness of
y.

Definition 1 (Soundness (SND)). Let Π be an instance of our VC protocol and A =
(A1,A2) a two-stage adversary. Protocol Π is SND-secure if the advantage AdvSNDΠ,A(λ) = Pr[1←
ExpSND

Π,A(1λ)] is negligible.

However, one may also expect some privacy properties which are now defined.
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Receiver Privacy. This notion ensures that the input x of the receiver remains hidden during
the protocol execution, for an honestly generated pkf .

Definition 2 (Receiver Privacy (R-Privacy)). Let Π be an instance of our MyOPE protocol
and A = (A1,A2) a two-stage adversary, where A2 has adaptive access to the Compute-oracle

on legitimate queries only. Protocol Π is R-Privacy-secure if the advantage AdvR-PrivacyΠ,A (λ) =

Pr[1← ExpR-PrivacyΠ,A (1λ)] is negligible.

Sender Privacy. This notion ensures that the polynomial f of the sender remains hidden dur-
ing the protocol execution, for adaptive legitimate requests by the receiver. We indeed exclude
Compute-queries that trivially help to distinguish between two functions.

Definition 3 (Sender Privacy (S-Privacy)). Let Π be an instance of our MyOPE protocol
and A = (A1,A2) a two-stage adversary, where A2 has adaptive access to the Compute-oracle

on legitimate queries only. Protocol Π is S-Privacy-secure if the advantage AdvS-PrivacyΠ,A (λ) =

Pr[1← ExpS-PrivacyΠ,A (1λ)] is negligible.

2.2 Building Blocks

Let us recall the generic definitions of verifiable computation to illustrate our inner-product
argument and verifiable oblivious polynomial evaluation, with fully homomorphic encryption.
First we will need compact binding encodings with verifiable commitments.

Verifiable Commitments. A first tool is verifiable commitments Com = (Setup,Commit,
Verify,Open) for elements in a space X :

Com.Setup(1λ)→ (ck, [vk]): Given the security parameter, output the commitment key ck and
possibly a secret verification key vk in case of designated-verifier proof.

Com.Commit(ck, x) → (cx, w): Given the commitment key and an element x ∈ X , output a
commitment cx and an opening value w.

Com.Verify(ck, [vk], c) → acc: Given the commitment key, optionally the verification key, and
a commitment c, accept (with acc = 1) or reject (with acc = 0) a commitment c.

Com.Open(ck, x, c, w)→ acc: Given the commitment key, an element x, a commitment c, and
the opening value w, accept (with acc = 1) or reject (with acc = 0) the commitment c for
x.

The correctness property means that the Verify and Open algorithms accept when commitments
have been honestly generated on inputs in the appropriate space X . On the other hand, the
binding property means that no adversary can make Verify accept on committed elements that
open outside the appropriate space X nor make Open accept on two different values. Addition-
ally, one may expect the hiding property which means that cx does not reveal any information
about x (at least computationally). We stress that the target space X is verified: an acceptable
commitment necessarily encodes an element in X

rIPA: Inner Product Argument for Rings. We are first interested in the verifiable com-
putation of inner products between committed vectors. As already noted, when there is no
privacy issue, the commitment algorithm can simply be the identity function. But for efficiency
reasons, we expect a more compact binding verifiable commitment to encode inputs. Then,
from pkx ← cx with a commitment cx of ~x (from Com.Commit(ck, x)) and σy ← (~y, cy) with a
commitment cy of ~y, the sender generates σz = (z, π), where π is a proof of z = 〈~x, ~y〉, when
cx and cy are valid commitments of appropriate vectors ~x and ~y (in the correct vector spaces).
One may additionally expect receiver and/or sender privacy, with private ~y and/or ~x.
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Verifiable OPE: Oblivious Polynomial Evaluation. This is another case of VC, with a
polynomial f(X) ∈ R[Xn] as function, and m ∈ R as evaluation point. Only f(m) is learnt by
the receiver, and no other information leaks. It also ensures the computations were executed as
pledged in the protocol by providing verifiability.

FHE: Fully Homomorphic Encryption. We will achieve privacy-preserving VCs using
Fully Homomorphic Encryption (FHE). FHE has been introduced in [Gen09]. This is particular
case of classical public-public encryption, with a KeyGen algorithm that generates a key-pair
(pk, sk) as well as encryption and decryption algorithms Enc and Dec, but with an additional
Eval algorithm to operate on ciphertexts to build a ciphertext of f((xi)i) from the ciphertexts of
the xi’s. Since the initial construction, major improvements have been made, with now practical
and efficient solutions. In this work we will use the Fan-Vercauteren (FV) FHE scheme [FV12]
for our analyses, with Rt = Zt[X]/r(X) as the plaintext message space and Rq × Rq as the
ciphertext space, where Rq = Zq[X]/r(X), with r(X) = Xn + 1 for some well-chosen integer n
(usually a power of 2). Semantic security relies on the Ring-LWE assumption. To enable some
optimizations as the RNS representation used in SEAL, we will allow q with small prime factors
on 60 bits. Detail about this FHE scheme is given in appendix A. We use the notation [a]q = a
mod q for a ∈ Z, and, for a ring element a, [a]q will represent the ring element with [·]q applied
to all its coefficients. Essentially, the public key is then pk = (p, p′) = ([−(a · s + e)]q, a) ∈ R2

q ,

for random polynomials a
$← Rq, s, e ← χ (for χ a discrete centered Gaussian distribution in

Rq), while the secret key is sk = s. To encrypt a message m ∈ Rt, one computes (c, c′) =
([p · u + e1 +∆ ·m]q, [p

′ · u + e2]q) with small noises u, e1, e2 ← χ, where ∆ = bq/tc. One can
see that with d = [c + c′ · s]q = [∆ ·m− e · u + e2 · s + e1]q = ∆ ·m + v, with ||v||, the resulting
noise vector, having a small enough norm for correct decryption, m′ = [bd/∆e]t = [m + bv/∆e]t
leads to m, if the error term v is small enough (with an infinity norm ‖v‖∞ less than ∆/2).
We do not detail Eval, but for our analysis to hold, we will need the following property, in the
particular case where L = 2N (N being the maximal degree of our OPE polynomial), which
can be guaranteed with an appropriate parameter choice, for d one less than the minimal circuit
depth enabling bootstrapping:

Definition 4 ((L, d)-Rt-Linear-Homomorphism). For any ai,mi ∈ Rt, and some cipher-
texts (ci, c

′
i) ∈ R2

q of mi obtained from a circuit of multiplicative depth at most d,

Dec

(
sk,

L∑
i=1

ai · (ci, c′i)

)
=

L∑
i=1

ai ·mi ∈ Rt

2.3 Secure Encoding Schemes

Our main ingredient will be secure, or linear-only, encodings introduced by [BCI+13, GGPR13]
for succinct non-interactive arguments of knowledge (SNARKs). We provide a general definition
over rings. An encoding scheme over a ring R consists in a tuple of algorithms:

– (pk, sk, vk)← Gen(1λ), a key generation algorithm that takes as input a security parameter
and outputs public information pk, a secret key sk, and a verification key vk, that can be
either public or private;

– E ← Esk(a), a (probabilistic) encoding algorithm mapping a ring element a ∈ R in the
encoding space E , using the secret key sk.

It should then satisfy a few properties:

– L-Linearly homomorphic, with an algorithm Evalpk that homomorphically combine encod-
ings into the encoding of the same linear combination of the inputs;

– L-Quadratic root verification, with an algorithm QCheckvk that can check a quadratic re-
lation between the encoded elements, just from the encodings;
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– Image verification, with an algorithm Verifyvk that check the validity of the encoding. This
certifies the membership of the encoded element in the appropriate space.

According to the verification key that can be either public or private, the verification processes
will be either public or private. The encoding is linearly-homomorphic, but for a secure encoding,
one expects no one to be able to derive new valid encodings except from linear combinations,
hence the linear-only property: any new valid encoding E of some a ∈ R will necessarily sat-
isfy a =

∑
i ciai, for extractable elements ci ∈ R. Intuitively, when an encoding E passes the

verification test, one can extract the linear combination of the given initial encodings.
The above properties will be enough for a binding commitment, but additional blinding

factors will be required for hiding commitments, together with zero-knowledge proofs to keep
the above verifications possible, without leaking more information.

In appendix B, we provide a more formal definition, with two illustrations. First, encodings
over Zq, with q a prime large enough, in a pairing-friendly setting pk = (G1,G2,GT , q, g, g, e),
using the Knowledge of Exponent Assumption [Dam92]. If we denote G = e(g, g) and vk = gα for

the secret key α
$← Zq, the encoding function can be defined as Esk(a) = (ga, gα·a, ga) ∈ G2

1×G2.
Image verification can be publicly done with e(ga, g) = e(g, ga) and e(ga, vk) = e(gα·a, g). It is
clearly L-linearly-homomorphic for any L. The bilinear map e allows public quadratic root
verification, on the elements ga and ga. To hide the content of an encoding, one just needs
the encoding E′ = (g, gα, g) of 1, multiplied by a private random factor in M = Zq. Classical
Schnorr-proof can then be applied. Such encodings just consist of three group elements (2 in
G1 and 1 in G2).

We then discuss the situation where q is the product of smaller primes. Then, the hardness
of discrete logarithm does not hold anymore, but one can use linear-only encryption schemes,
which limit to linear combinations only. We develop more the case of the Paillier encryption
scheme [Pai99] with large RSA modulus N . Such secure encodings just consist of two Paillier
ciphertexts in ZN 2 each. We could also use a secure encoding scheme based on the Learning
With Errors (LWE) problem to make the whole scheme post-quantum secure.

When the receiver has published secure encodings of successive powers Esk(1), Esk(s), . . . ,
Esk(s

n−1), for a random secret point s, the sender can only generate valid commitments of
polynomials f of degree at most n−1, as Esk(f(s)), thanks to the linear property of the encoding
and the image verification. Quadratic root verification allows the sender to verify any quadratic
relations between polynomials committed by the sender. Note that the initial secure encodings
of successive powers can either be generated by a trusted third party, when using the above
pairing-based secure encodings that are publicly verifiable, or by the receiver when using a
linear-only encryption scheme.

In the body of the paper, for the sake of clarity, hiding commitments and zero-knowledge
proofs will be ignored, as their computational and communication impacts are minimal, since
they only deal with few scalars.

3 Verifiable Commitments

A major contribution of this paper is the construction of commitments of multivariate poly-
nomials over rings so that succinct proofs can later be described. This is in the same vein
as in [FNP20], but the latter is only defined for secure encodings based in pairings, whereas
we describe here the construction from any secure encodings. With a linear-only encryption
scheme, they will not be publicly verifiable anymore, but this will be useful to build compact
commitments of polynomials over Zq in 2PC protocols, whatever the integer q (large prime or
composite).

We provide here the intuition of our approach for polynomials in R1 = Zq[Xn−1] (polyno-
mials of degree at most n−1), while more polynomial spaces will be used in the global protocol.
We stress again that commitments are specific to a space X and when valid they ensure the
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committed element actually lies in X . The verifier first generates secure encodings Ei ← Esk(s
i),

for i ∈ [[0;n− 1]] and a random secret element s
$← Z∗q . Thanks to the linear-only extractability,

when a player generates a valid encoding E, being only given (E0, . . . , En−1), one can extract
(ci) such that E is an encoding of c0 + c1s + . . . cn−1s

n−1 in Zq, and thus of the polynomial
c =

∑
i ciX

i in R1. The encoding E is thus a commitment of c ∈ R1: the list of initial encodings
Ei specifies a basis of the exact space X we target. Here, R1 is spanned by (1, X, . . . ,Xn−1) in
Zq.

In addition, thanks to the quadratic verification on the encodings, if we have four polynomials
u, v, m and r such that m = u ·v mod r, which means that m = u ·v+ r ·q for some polynomial q,
where all the polynomials are of degree at most n− 1, we can check such a product: from valid
commitments U and V of u and v, R and Q of r and q, respectively, and M of the polynomial
m, all of degree at most n − 1, as they are all simple encodings, QCheckvk(X1X2 + X3X4 −
X5, U, V,R,Q,M) = true implies that m(s) = u(s) · v(s) + r(s) · q(s).

Under the Schwartz-Zippel lemma, if q is a large prime, the probability to have this equality
in a random point s ∈ Zq whereas m 6= u · v + r · q in Zq[X] is bounded by 2n/q, as the
total degree of the relation is at most 2n. Hence, the probability over s to have a false positive
is bounded by 2n/q. This is negligible in the large prime case but if we want to use RNS
optimizations when computing modulo q, we need to take q a product of primes, and will hence
need more repetitions with probability bounds stated by the Schwartz-Zippel lemma. Detail
about this case is given in appendix C, along with a complete description of binding and hiding
polynomial commitments, for univariate and bivariate polynomials, with multiple evaluation
points when necessary.

4 Inner Product Arguments

4.1 Description of our ring-IPA

Our main tool is verifiable computation of inner products, from commitments on vectors, in
various structures. To this aim, we convert vectors in polynomials to commit them as explained
above. We stress that for the moment, we do not consider privacy, nor FHE ciphertexts, but
just vectors in clear.

To start off, let us consider vectors in a field Zq (with a prime q). We will extend our method
to the case where q is a product of primes, and Zq a ring, in the appendix, adding necessary
repetitions. To commit such vectors, we will consider them as coefficients of a polynomial, and
then commit the corresponding polynomials, as above. Let us consider A = (a0, . . . , aN ) and
B = (b0, . . . , bN ) in ZN+1

q (equivalent to R3 = Zq[Y N ], as defined in appendix C), two vectors
whose inner-product is equal to c = 〈A,B〉 in Zq. As explained in Section 1.4, the commitments
Ā of A and B of B with secure encodings are Ā = ā(s) and B = b(s) for the polynomials
ā(Y ) =

∑N
j=0 ajY

N−j and b(Y ) =
∑N

j=0 bjY
j in R3. Note that coefficients of A are set into ā

in a reversed order:

ā(Y ) · b(Y ) =

N∑
i,j=0

aibj · Y N+j−i =

N∑
j=0

ajbjY
N +

∑
0≤i 6=j≤N

aibjY
N+j−i.

Let us define the polynomial d(Y ) = ā(Y ) · b(Y )− cY N of degree at most 2N . If c is correct, d
is in the subspace R4 = Zq[Y 2N\N ] (the polynomials of degree at most 2N , without monomial
of degree N). By publishing a commitment D of d, that is verifiably in R4, one can verify the
above quadratic relation, using Ā, B, c, and D, and get convinced of the inner product value c.
The proof of correct computation of c = 〈A,B〉 with respect to the given commitments Ā and
B just consists of π = {D} (1 commitment only), and the verification consists in checking the
validity of the commitments and one quadratic relation.
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Inner-Product Arguments Algorithms. More generally, one can define rIPA scheme on
vectors A,B ∈ XN+1 and the result c = 〈A,B〉 in a space X for which XN+1 has either vectorial
space (when X is a field) or module (when X is a ring) structure:

rIPA.Setup(1λ) generates the verifiable commitment keys for the acceptable bases for R3 and
R4 in PK to allow verifying commitments in these spaces. According to the encoding,
verification will need SK or not;

rIPA.KeyGen(PK,A), from a vector A, outputs Ā, a commitment of A (in the reverse order)
using the commitment scheme Com;

rIPA.QueryGen(PK,B), from a vector B, outputs (B, B), where B is a commitment of B;
rIPA.Compute(PK,A, (B, B)), from the two vectors A and B, outputs c = 〈A,B〉 and π = {D}

(where D is a commitment of d, as defined above);
rIPA.Verify(PK, [SK], Ā, B, (c, π)), with π = {D}, checks the relation d(Y ) = a(Y ) ·b(Y )−c ·Y N

from Ā, B, D and c.

Since there is no privacy in this protocol, rIPA.Compute directly outputs the result c = 〈A,B〉:
there is no need of private rIPA.Decode.

Polynomial Evaluation. It can be turned into a polynomial evaluation y = P (x), with one
vector A containing the coefficients of P and the other vector B built from the powers of x, and
the expected inner product being y.

Infinity Norm Evaluation. It also provides a setting to compute the L2-norm ‖e‖2, of
e ∈ Zq[Xn−1], as ‖e‖22 = 〈E,E〉, for the vector E of the polynomial’s coefficients. This leads to
an approximation of the infinity norm with ‖e‖∞ ≤ ‖e‖2 ≤

√
n · ‖e‖∞ ≤

√
n · ‖e‖2. One just

needs E = e(s) and Ē = ē(s), where

e(X) =

n−1∑
0

eiX
i ē(X) =

n−1∑
0

eiX
n−1−i = Xn−1 · e(1/X)

which can be verified with the existence, for a random challenge β
$← Z∗q , of polynomials e′ and

ē′ that satisfy, with e = e(1/β),

e(X)− e = e(X)− e(1/β) = (X − 1/β) · e′(X)

ē(X)− βn−1 · e = ē(X)− βn−1 · e(1/β) = ē(X)− ē(β) = (X − β) · e′′(X).

Indeed, as e and ē have been committed in E and Ē before the random choice of β, the first
equation guarantees that e = e(1/β) while the second equation guarantees ē(β) = βn−1e =
βn−1e(1/β). The Schwartz-Zippel lemma ensures that the polynomials e and ē, of degree n− 1,
satisfy with high probability ē(X) = Xn−1e(1/X): ē is indeed e with order of coefficients
reversed. From the commitment E of e and the result ‖e‖2 to be proven (or a commitment
of it), the proof consists of the commitments E′ = e′(s) and E′′ = e′′(s) (to verify the two
above equations), plus the inner-product proof (with the commitment D as above) with the
additional commitment Ē and the scalar e. The validity of the proof requires the verification of
the validity of the commitments and three quadratic relations (the two above, and the one for
the inner product). For strong privacy, one can first commit the scalar ‖e‖22, prove the correct
computation of this hidden value with the above approach, and then perform a zero-knowledge
range proof for the committed value, to show it is of appropriate size.
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4.2 Inner Product Arguments with Privacy

If we now consider vectors A = (a0, . . . , aN ) and B = (b0, . . . , bN ) in RN+1
t , where Rt =

Zt[X]/r(X), they can be committed with bivariate polynomials in Zt[X,Y ], using secure encod-
ings with monomials sis′j : Ā = ā(s, s′) and B = b(s, s′), where

ā(X,Y ) =

n−1∑
i=0

N∑
j=0

aj,iX
iY N−j b(X,Y ) =

n−1∑
i=0

N∑
j=0

bj,iX
iY j

One can get p = 〈A,B〉 ∈ Rt. If one wants to keep vector B private, the latter can be encrypted
with the FV FHE scheme, in (ci, c

′
i) ∈ Rq × Rq, for i = 0, . . . , N . Thanks to the linear-

homomorphism of the FHE, Dec(〈A,C〉, 〈A,C′〉) = 〈A,B〉, where C = (c0, . . . , cN ) and C′ =
(c′0, . . . , c

′
N ) are in RN+1

q (equivalent to R2 = Zq[Xn−1, Y N ], as denoted in appendix C). One

now needs the verifiability of 〈A,C〉 and 〈A,C′〉 in Rq: we consider A = (a0, . . . , aN ) ∈ RN+1
t

and C = (c0, . . . , cN ) ∈ RN+1
q , and we want to compute d = 〈A,C〉 ∈ Rq and prove it. One can

similarly operate to compute and prove d′ = 〈A,C′〉.
We set both polynomials in R2 = Zq[Xn−1, Y N ],

ā(X,Y ) =
n−1∑
i=0

N∑
j=0

aj,iX
iY N−j c(X,Y ) =

n−1∑
i=0

N∑
j=0

cj,iX
iY j .

They are committed as Ā = ā(s, s′) and C = c(s, s′). The result of the inner product d ∈ Rq
is committed into D. However, in Zq[X], the result of the inner product is equal to d + q · r,
where r is the public quotient polynomial in rings Rt and Rq, and q is the quotient, committed
into Q. We want to prove 〈A,C〉 = d + q · r in Zq[X].

Then, for a random scalar σ ∈ Zq, one has the following relations, with ā′(Y ) = ā(σ, Y ) and
c′(Y ) = c(σ, Y ), committed into Ā′, C ′,

ā(X,Y )− ā′(Y ) = (X − σ) · ā′′(X,Y ) c(X,Y )− c′(Y ) = (X − σ) · c′′(X,Y )

for some polynomials ā′′ and c′′ that can be computed from ā, ā′, c, c′ and committed into Ā′′, C ′′,
as well as the polynomial X − σ, so the receiver can check the above quadratic relations. Then,
we also have

ā′(Y ) · c′(Y ) =

N∑
j=0

a′j · c′j · Y N +
∑

0≤i 6=j≤N
a′i · c′j · Y N+j−i

and

N∑
j=0

a′j · c′j =

N∑
j=0

aj(σ) · cj(σ) = d(σ) + q(σ) · r(σ)

Setting δ = d(σ), φ = q(σ) and ρ = r(σ), the values can be sent and checked with respect to d,
Q, and r, as q(X)−φ = (X−σ)·q′(X). If we additionally set e(Y ) = ā′(Y )·c′(Y )−(δ+φ·ρ)·Y N ,
committed in E, by proving it relies in R4 = Zq[Y 2N\N ], this proves the result d of the inner
product in Rq.

The proof of correct computation of d = 〈A,C〉 inRq, with respect to the given commitments
Ā and C just consists of π = {Q,Q′, Ā′, Ā′′, C ′, C ′′, E, φ} (7 commitments and a scalar), for
publicly generated or computed σ, δ and ρ, and the verification consists in checking the validity
of the commitments and four quadratic relations. The same is needed for d′ = 〈A,C′〉. By then
decrypting (d, d′) one should get p = 〈A,B〉 ∈ Rt.
Inner-Product Arguments with Privacy. More formally, we can define a inner products
argument with privacy for one of the vectors rIPAwP. Given vectors A, B in the ring RN+1

t we
prove the correctness of their inner product result p ∈ Rt, while keeping B private:
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rIPAwP.Setup(1λ) generates the parameters for the FV FHE with plaintext space Rt and
cyphertext space Rq. The secure encodings on the acceptable bases for R1, R2 and R4 with
the FHE encryption key are put in PK to allow encryption and evaluations on ciphertexts,
as well as the generation of commitments in these spaces. The verification key of the secure
encodings (if needed) and the FHE decryption key are put in SK;

rIPAwP.KeyGen(PK,A), from a vector A, outputs Ā, a commitment of A (in the reverse order);
rIPAwP.QueryGen(PK,B), from a vector B, outputs ((C,C′), (C,C ′)), where in C = (ci)i, C

′ =
(c′i)i with (ci, c

′
i) the ciphertext of bi, for i = 0, . . . , N , and then C,C ′ the commitment of

C and C′ respectively;
rIPAwP.Compute(PK,A, (C,C′, C, C ′)), from the two pairs of vectors (A,C) and (A,C′), outputs

d = 〈A,C〉 and d′ = 〈A,C′〉 and π, for proving the correct inner-product evaluations;
rIPAwP.Verify(PK, [SK], Ā, (C,C ′), (d, d′, π)), checks the proof π from the initial commitments

Ā, (C,C ′) and the additional ones in π;
rIPAwP.Decode(SK, (d, d′, π)), from the FHE decryption key, decrypts the pair (d, d′) to get

p = 〈A,B〉.

In this case, rIPAwP.Compute outputs an encryption of the expected result, hence the need of
the private rIPAwP.Decode. We used again the Schwartz-Zippel lemma to translate equalities
between evaluated polynomials into equalities between polynomials, based on the unpredictabil-
ity of σ. But according to q (large prime or product of smaller primes), one may reduce the bad
cases by using multiple σκ’s.

4.3 Verifiability of the Committed Ciphertext

As already explained in the overall description of our protocol in Section 1.4, before verifying
the correct inner products d = 〈A,C〉 and d′ = 〈A,C′〉 and decrypt the pair (d, d′) to get 〈A,B〉,
one may want to be sure that each (ci, c

′
i), ciphertext that would decrypt to mi, is actually a

correct encryption of mi in Rt. This means that B should be the vector (m0, . . . ,mN ) in RN+1
t .

Indeed, the sender receives an encryption of m (and possibly some additional information) and
generates the vectors C and C′ thanks to the linearity of the FHE scheme. Why would they be
honest?

To verify that, we use the above inner-product proof between each vector of ciphertexts
C = (c0, . . . , cN ) or C′ = (c′0, . . . , c

′
N ) and a vector of powers N = (n0, n1, . . . , nN ) derived from a

public random n ∈ Rt drawn by the verifier (or generated from a hash). Neither of these vectors
need to be kept private as they are generated from information both parties have.

Let u = 〈N,C〉 and u′ = 〈N,C′〉 be the results of the inner products in Rq, proven as
above (with 12 commitments and 2 scalars, and 8 quadratic relations to check). From the
linear-homomorphism of the FHE, with appropriate parameters, Dec(u, u′) =

∑N
j=0 n

j ·mj . The

verifier checks this decryption is
∑N

j=0 n
j · mj , with appropriate error (bounded as expected).

This leads to
∑N

j=0 n
j · mj =

∑N
j=0 n

j · mj in Rt. Note that Rt is unfortunately not a field,

but possibly a ring that is the product of large fields only: r = X2k + 1 is not irreducible in
any Zt[X] for a prime t, but for well-chosen prime, all the factors of Xn + 1 may have large
degrees in Zt[X]: according to [BGM93], with t + 1 = 2α(2τ + 1), for any integer τ , α ≥ 2,

and n = 2k, then all the factors of X2k + 1 have degree 2k+1−α. If one chooses t = 3 mod 8,
α = 2, and in particular t = 3 (with τ = 0), there are just two irreducible factors of degree
2k−1 = n/2 in Zt[X]: the above polynomial thus has all zero coefficients by the Schwartz-Zippel
lemma, excepted with probability 2N/tn/2, as the polynomial is of degree N and n is randomly
chosen among tn/2 possible values in each of the two fields. Hence, mi = mi in Rt, excepted with
probability bounded by 2N/tn/2, which is clearly negligible. Note that one cannot use t = 2 as
r(X) = Xn + 1 is divisible by X + 1 in Z2[X].

By checking the noise in (u, u′), as expected with reasonable margin, as one knows the
expected plaintext, one gets an upper-bound on individual errors. Even if this might be larger
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than initially expected, one can guarantee appropriate noise in the (ci, c
′
i)’s to satisfy the linear-

homomorphism, as we will take additional margin to take care of the noise-flooding. If the
sender tries to cheat with larger noise in the (ci, c

′
i)’s, they may reduce the privacy impact of

the noise-flooding. But soundness remains guaranteed.

5 Verifiable OPE with Privacy

We now have the tools to allow the receiver/verifier with their private input message m to learn
in a verifiable way the inner product of the vector M = (mj)j with a private vector F = (fj)j ,
for indices j in [[0;N ]], both committed by the sender/prover.

5.1 Complete Protocol

More details and more applications are provided in appendix D, but we sketch here a full verifi-
able OPE protocol, where we assume all the global parameters set, and the sender’s polynomial
F = (fj)j committed in a hiding way in F̄ . Once the receiver has encrypted the input m ∈ Rt
under their own FHE key and sent Enc(m) = (c, c′) ∈ R2

q to the sender, the latter

– computes the (uj , u
′
j) = Enc(mj), for j ∈ [[0;N ]], from (c, c′) thanks to the homomorphic

properties of the encryption scheme; generates the vectors U = (uj) and U′ = (u′j) as well
as their commitments U and U ′; and provides a proof of valid computation of the inner
products b = 〈N,U〉 and b′ = 〈N,U′〉, for a common vector N = (nj)j for a random n

$← Rt
(chosen with a random hash function on the previous information), with respect to the
commitments U,U ′: ignoring scalars, the proof consists of 12 commitments (to be sent and
checked), the ciphertext (b, b′), and 6 quadratic relations to be verified;

– generates a zero-ciphertext (z, z′) with a proof of small norm of the error, and provides a
proof of valid computation of the noisy inner products d + z and d′ + z′, where d = 〈F,U〉
and d′ = 〈F,U′〉, with respect to the commitments F̄ , U, U ′: the proof consists of 9 new
commitments (and also the original commitment of the polynomial) (to be sent and checked)
and 5 quadratic relations to be verified, along with the result (d, d′), once the noise-flooding
has been proven. The latter consists of 15 commitments (to be sent and checked) and 9
quadratic relations to be verified;

By first verifying Dec(b, b′) =
∑

(nm)j and the appropriate noise, the receiver gets convinced
(U,U ′) commits to correct encryptions of the powers mj . Then, with the verification of the inner
products and the small noise, one gets the guarantee that Dec(d+z, d′+z′) = 〈F,M〉 = F(m). As
there are common commitments in the successive phases and one actually considers the noise
components of (z∗, z′∗) instead of these directly in practical applications, the global proof consists
of 33 commitments and the verification checks them plus 20 quadratic relations (ignoring scalars
and zero-knowledge proofs on scalars), as shown in appendix F (figures 5 and 6). This is thus
independent of the degree of the polynomials.

5.2 Security Remarks

The soundness of this protocol is guaranteed by the proofs of valid computations of inner
products, first to ensure the content of the commitments U and U ′ (with 2 inner products),
and then to convince of the correct computation of the ciphertext (d + z, d′ + z′) (with 2 inner
products). The small additional noise (z, z′) is also proven by inner products to bound the infinity
norms of the 3 polynomials u, e1, e2 involved in (z, z′) = (p · u + e1 mod q, p′ · u + e2 mod q), and
proven with linear relations:

Theorem 5. Our MyOPE scheme is SND-secure against malicious adversaries (see Defini-
tion 1), under the security of the secure encoding (and namely the quadratic root verification
and the image verification properties).
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The complete proof is provided in appendix D, together with the analysis of the privacy prop-
erties, as stated in definitions 2 and 3. First, the receiver’s privacy is ensured by the semantic
security of the FHE encryption of m that protects its input. This is a computational security,
under the Ring-LWE assumption. Second, the sender’s privacy is guaranteed by the hiding com-
mitment F̄ and the noise (z, z′) that hides the evaluated circuit. They both provide statistical
privacy to the sender.

For a non-interactive proof, the random elements chosen by the receiver can be generated
by a hash function, using the Fiat-Shamir paradigm. Then, the security holds in the random
oracle model.

5.3 FHE Security Analysis

Semantic Security. [FV12] gives us a condition in the relationship between parameters q,
σ, n that will grant us the security relying on the difficulty of the RLWE problem. For a fixed
root-Hermite factor δ, which we take such that log2(δ) = 1.8/(λ+ 110), where λ is the security
parameter, that we will take equal to λ = 128 in our applications, and if ε is the advantage
of the distinguishing attack in [LP11], which we take equal to ε = 2−64 for a corresponding
λ = 128 in applications, and α =

√
ln(1/ε)/π (ε = 2−64 leads to α ≈ 3.758), we then have the

condition:

α · q
σ
< 22
√
n log2(q) log2(δ). (1)

So that a parameter n can be derived from a (q, σ) pair and reciprocally. In particular, taking
σ = αq =

√
n meets the above condition, thus granting the asymptotic security. For the practical

security, in order to grant privacy with specific parameter sets, we will use [APS15]’s estimator,
with results shown in figure 3.

Correctness. We now study the parameters needed for the correctness of the computations
on FV ciphertexts.

Correctness for Basic FV. From [FV12], assuming χ is B-bounded, we find that the decryption
of ciphertexts obtained from a d-depth circuit of somewhat homomorphic operations will be
correct if d verifies:

4β(ε)δdR · (δR + 1.25)d+1 · td−1 < q

σ

where β(ε) is drawn from the security parameter for [LP11]’s distinguishing attack ε, taken
equal to ε = 2−64 when λ = 128 which yields β(ε) ≈ 9.2. For a cyclotomic polynomial r in R,
the above becomes:

4β(ε)nd · (n+ 1.25)d+1 · td−1 < q

σ
(2)

Which gives an upper bound on d. Then, if we want full FHE capabilities from boot-
strapping, [FV12], we will need the minimum allowed circuit depth dmin to verify the above
equation, where dmin = dbs + 1 (where dbs is the depth of the bootstrapping operation) is
given in [FV12]’s third theorem to have full FHE bootstrapping capacities with the condition:
dmin ≥ BitSize(dν · te) + HammingWeight(t) + 2, with ν = γ · (H(r) · h + 1) with 2 < γ < 3,
H(r) = 1 for r a cyclotomic polynomial, and h the hamming weight of the FV scheme’s secret
key s, for which we can take h = 63 according to [FV12]. Taking some margin on h, that we
can consider as high as h = 169 for better security, with t = 3 in our scheme, and using a
cyclotomic polynomial ring, we can thus take dmin = 12. Replacing relation (1) in equation (2),
with a security parameter λ = 128, β(ε) ≈ 9.2, α ≈ 3.8, t = 3, we find the relation:

4α · β(ε) · δdmin
R (δR + 1.25)dmin+1tdmin−1 < 22

√
n log2(q) log2(δ)
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is verified with:
25 + 25 log2(n) < 0.1743 ·

√
n log2(q)

So if we choose n = 214, then FHE capabilities will be granted with q on 283 bits or more.

Correctness with 2N-Linearity. Then, as we also want to be able to perform L = 2N additions
(N being the public degree of the sender’s polynomial) on FV ciphertexts without additional
bootstrapping in our protocol, we need to check that the error growth they give on bootstrapped
ciphertexts still allows decryption. In a nutshell, we will need the (L, dmin − 1)-Rt linear ho-

momorphism property: Dec
(∑L

i=1 ai · (ci, c′i)
)

=
∑L

i=1 ai · mi for any ai ∈ Rt and ciphertexts

(ci, c
′
i) ∈ R2

q generated with a circuit of multiplicative depth dmin−1 (applying the bootstrapping
operation), encrypting mi ∈ Rt.

In order to decrypt the linear combination, we compute:[ L∑
i=1

ai · ci + s ·
L∑
i=1

ai · c′i
]
q

=
[ L∑
i=1

ai

(
ci + s · c′i

)]
q

=
[ L∑
i=1

ai(∆ ·mi + vi)
]
q

=
[
∆ ·

L∑
i=1

ai ·mi +
L∑
i=1

ai · vi
]
q

where each vi is the noise contained on the bootstrapped ciphertext (ci, c
′
i), of infinite norm

bounded by 2β(ε)σ · δdmin−1
R · (δR + 1.25)dmin · tdmin−3.

The decryption will be correct if:∥∥∥∥∥
L∑
i=1

ai · vi

∥∥∥∥∥
∞

≤
L∑
i=1

n‖ai‖∞ · ‖vi‖∞ ≤ nt
L∑
i=1

‖vi‖∞ ≤ ntL‖v‖∞ ≤ ∆/2,

for a noise bounded by ‖v‖∞ ≤ 2β(ε)σ · δdmin−1
R · (δR + 1.25)dmin · tdmin−3.

So the decryption works if:

4nLβ(ε)σ · δdmin−1
R · (δR + 1.25)dmin · tdmin−1 ≤ q

With a cyclotomic polynomial ring R, and approximating β(ε) with 9.2 this becomes:

36.8× Lσ · ndmin · (n+ 1.25)dmin · tdmin−1 ≤ q (3)

With σ ≤
√
n, n ≥ 29, t = 3 and dmin from the above calculations, we get the previous inequality

with the following condition, with L = 2N :

23.8 + log2(N) + 24.5 log2(n) ≤ log2(q)

As an example, if N = 240 and n = 214, then taking q on 407 bits or more will grant this
condition.

Correctness with Noise-Flooding. A linear combination of ciphertexts can leak the coefficients,
from the evolution of the final noise, which can be recovered by the owner of the decryption
key. To avoid this leakage, one can add super-polynomial noise to the result, this is the so-called
noise-flooding technique: the sender will generate encryption of 0, i.e. polynomials (z∗, z′∗) of
the form

(z∗, z′∗) =
(
p · u + e1 mod q, p′ · u + e2 mod q

)
,

with coefficients of u, e1, e2 follow the appropriate distribution for their own privacy: according
to a Gaussian distribution on Z with standard deviation 2λ larger than the error in the result,
that we bounded by B′ = 2Lnβ(ε)δdbs

R · (δR + 1.25)dbs+1 · tdbs−1 · σ. Using the verifiable inner-
product for provable L2-norm, one can prove that ‖u‖2, ‖e1‖2, ‖e2‖2 are lower than 2λB′, which
guarantees the infinity norms are also lower than that.
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Asymptotic Parameters. One now needs q ≥ 2λ × 2tB′: With the above B′, this means
that

4Ln2λβ(ε)δdbs
R · (δR + 1.25)dbs+1 · tdbs · σ ≤ q (4)

guarantees the (L, dbs)-Rt linear homomorphism property and noise-flooding, and combined
with the required hardness of the RLWE problem in equation 1, we now require:

4αLn2λβ(ε)δdbs
R · (δR + 1.25)dbs+1 · tdbs < 22

√
n log2(q) log2(δ)

with L = 2N (N being the public degree of the sender’s polynomial), a cyclotomic polynomial
ring, λ = 128, t = 3, n ≥ 29, dbs = 11 (from the above dmin = 12 calculation in section 5.3),
α ≈ 3.8, β(ε) ≈ 9.2, the above equation is verified if:

151.7 + 28 log2(n) + log2(N) < 0.1743 ·
√
n log2(q)

So for instance for n = 214 and N = 240, we are sure that q on 685 bits or more will grant full
FHE functionalities, and we also get the following FHE ciphertext size complexity: n log2(q) =
O(log(N)2).

5.4 Succinctness

As explained above, the proof is succinct, with a constant number of elements, and independent
of the degree of the polynomial, but the size of the commitments may depend on q for some
choices of Secure Encodings. In section 5.3, we studied asymptotic bounds for q and n, to
get correctness, and get log q = O(logN), and n = O(logN). Then the size of a ciphertext
is in O(n log q) = O((logN)2) bits and this gives the receiver’s communication complexity.
Then, the sender essentially sends back the result (1 ciphertext = O((logN)2)) and the proof
which consists in a constant number of commitments in O(log q) = O(logN). So, globally, the
communication complexity is in O((logN)2).

We estimated practical sizes using security bounds on the privacy of FHE given by the LWE
estimator [APS15]. For N between 220 and 240, a prime q should be on 600 to 620 bits, which
would lead to 3MBytes for the FHE ciphertext to be sent, and about 5MBytes for the result
and its proof.

In the appendix, we give more details with a composite q, which allows RNS optimizations
for FHE. Then, the size of the proof increases because of the repetitions of the commitments, as
the Schwartz-Zippel lemma provides a smaller soundness, but it remains in a 90 to 520MBytes
range for N less than 240, from our analysis in appendix F using our correctness formula,
the [APS15] estimator, and the Schwartz-Zippel lemma for the proof soundness. In table 3, we

|N | |n| |q| Receiver Communications Sender Communications
FHE Security Total Size νc νe Total Size

20 14 600 115 3 MB 33 20 5 MB
25 14 605 114 3 MB 33 20 5 MB
30 14 610 113 3 MB 33 20 5 MB
35 14 615 111 3 MB 33 20 5 MB
40 14 620 110 3 MB 33 20 5 MB

Fig. 3. Parameters and security bounds for the FHE ciphertexts and the proof, with a prime
ciphertext modulus q and the plaintext modulus t = 3. The proof size column encompasses all
the elements communicated by the sender, including the result. This is for a 2−128-soundness. |x|
is the bit-length of x. As q is a large prime, one can use an encoding scheme based on pairings:
G2 elements are encoded on 880 bits for a 128-bit security, as in [Gui21]’s recommendations.
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give parameters and resulting sizes for our OPE construction. We achieve the correctness from
inequality (4)’s exact requirements (without the following approximations), and the privacy
provided by the FHE security is calculated using [APS15]’s estimator. Soundness requirements
given by the Schwartz-Zippel lemma then provide the number of required repetitions on which
the number of commitments νc and the number of checked equations νe depend.
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Appendix

A Fully Homomorphic Encryption: FV Scheme

As explained in the preliminaries, we consider the Fan-Vercauteren (FV) Fully Homomorphic
Encryption (FHE) scheme [FV12].

A.1 Description

Notations. LetR be the ring Z[X]/r(X), where r(X) = Xn+1 for n = 2k. Given a polynomial
p ∈ R, we denote ‖p‖∞ the infinity norm, i.e. the max of its coefficients. We also define the
polynomial multiplication expansion factor δR as

δR = max
c,d∈R

{‖c · d‖∞/(‖c‖∞ · ‖d‖∞)}.

By taking the cyclotomic polynomial r(X) = Xn + 1, the worst-case bound for this expansion
factor is δR = n.

The Fan-Vercauteren FHE. In FV scheme, the plaintext space is Rt = Zt[X]/r(X) while
the ciphertext space isRq×Rq, whereRq = Zq[X]/r(X). FV encryption scheme is thus described
by parameters Γ = (q, t, n, σ), with 0 < σ < 1, the noise parameter. They all will depend
on several constraints, namely the expected multiplicative depth for the correctness and the
hardness of the Ring-LWE problem for the semantic security.

For efficiency reasons, one may want to use FHE with RNS [BEHZ16]. We then assume
q =

∏`
i=1 pi for distinct prime factors p1 < . . . < p`, assumed larger than p (that will be assumed

a lower bound on the pi’s all along this paper). We additionally take t = 3 in our applications
(though bigger primes could also be used, but still with the constraint that t = 3 mod 8 as
explained in Section 4.3). We denote ∆ = bq/tc and χ = Dn

Z,σ the centered discrete Gaussian
distribution over Z with standard deviation σ for each coordinate. A distribution is B-bounded
if it lies on a [−B;B] support, and we consider χ to be statistically indistinguishable from a
B-bounded distribution for B large enough, in practice taken to be B = 10σ.

The FV encryption scheme [FV12] consists in the following algorithms, with the notation
[a]q = a mod q for a ∈ Z, and, for a ring element a, [a]q representing the ring element with [·]q
applied to all its coefficients:

KeyGen(1λ, Γ )→ (sk, pk): On input the security parameter λ and the efficiency parameters set
Γ , sample a ← Rq, s ← R2 and set (p, p′) = ([−(a · s + e)]q, a) ∈ R2

q . sk = s is the secret
key, where the coefficients of e are taken from χ. The public key pk contains (p, p′) with a
relinearization key rlk.

Enc(pk,m)→ (c, c′): Using (p, p′) from pk and a message m ∈ Rt, compute the ciphertext
(c, c′) = ([p · u + e1 +∆ ·m]q, [p

′ · u + e2]q) , with coefficients of e1, e2 also taken from χ,
and u← R2.

Dec(sk, (c, c′))→ m: Given sk = s, compute

d = [c + c′ · s]q = [∆ ·m− e · u + e2 · s + e1]q = ∆ ·m + v

with ||v|| ≤ 2 · δR ·B2 +B considering χ is B-bounded. Then, compute:

m′ = [bd/∆e]t = [b(∆ ·m + v)/∆e]t = [m + bv/∆e]t

where v = −e · u + e2 · s + e1 is the error term: m′ = m if ‖v‖∞ ≤ ∆/2.
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Eval(pk, f, (ci, c
′
i)i=1,...,`)→ (cf , c

′
f ): Given pk, an arithmetic circuit for a function f with bounded

multiplicative depth and ` ciphertexts (ci, c
′
i)i=1,...,` output the ciphertext (cf , c

′
f ).

The addition of two ciphertexts is a ciphertext of the sum of the plaintexts. Multiplicative
operations have also been shown possible with additional information to relinearize the cipher-
text after a product using rlk (the relinearization key included in pk). For Eval to be correct,
Dec(sk, (cf , c

′
f )) should return f(m1, . . . ,m`) where Dec(sk, (ci, c

′
i)) = mi for i = 1, . . . , `, with

overwhelming probability.

B Secure Encodings

We here give a bit more detail about secure encodings sketched in Section 2.3. Some examples
are described in the Appendix B.2.

B.1 Definitions

Definition 6 (Encoding Scheme). An encoding scheme over a ring R consists in a tuple of
algorithms (Gen,E).

– (pk, sk, vk)← Gen(1λ), a key generation algorithm that takes as input a security parameter
and outputs public information pk, a secret key sk, and a verification key vk, that can be
either public or private;

– E ← Esk(a), a (probabilistic) encoding algorithm mapping a ring element a ∈ R in the
encoding space E , using the secret key sk.

Properties. An encoding scheme should satisfy the following properties, with efficient and
correct algorithms:

– L-Linearly homomorphic: An algorithm Evalpk(E1, . . . , EL; c1, . . . , cL), on input public in-
formation pk, encodings E1 = Esk(a1), . . . , EL = Esk(aL), and coefficients c1, . . . , cL ∈ R,

outputs an encoding of
∑L

i=1 ci · ai;
– L-Quadratic root verification: An algorithm QCheckvk(Q,E1, . . . , EL), on input the verifi-

cation key vk, a quadratic polynomial Q ∈ R[X1, . . . , XL] and encodings E1 = Esk(a1), . . . ,
EL = Esk(aL), checks whether or not the relation Q(a1, . . . , aL) = 0 is satisfied in R;

– Image verification: An algorithm Verifyvk(E), on input the verification key vk and an element
E, verifies E is an actual encoding of some element in R: this algorithm not only verifies
that E ∈ E , but also that there exists an element a ∈ R such that E can be an encoding of
a.

According to the verification key that can be either public or private, the verification processes
will be either public or private.

Secure Encodings. We now formally define the soundness properties for the above verifica-
tion algorithms, in terms of knowledge-soundness:

Definition 7 (Linear-Only Extractability). An encoding scheme (Gen,E) over R is ex-
tractable if for any PPT adversary A, there exists a PPT extractor ExtA such that the following
probability is negligible in the security parameter:

Pr

[
QCheckvk

(
X −

n∑
i=1

ciXi, E,E1, . . . , En

)
= false Verifyvk(E) = true

]

on the probability space (pk, sk, vk) ← Gen(1λ), a1, . . . , an
$← R, Ei ← Esk(ai), for i = 1, . . . , n,

and (E; c1, . . . , cn)← (A||ExtA)(pk, (Ei)i).
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While the encoding is linearly-homomorphic, the above extractability property requires that
it be impossible to derive new valid encodings excepted by linear combinations: any new valid
encoding E of some a ∈ R will necessarily satisfy a =

∑
i ciai, for extractable elements ci ∈

R. Intuitively, when an encoding E passes the verification test, one can extract the linear
combination of the given initial encodings.

Zero-Knowledge Proofs. The above properties will be enough for a binding commitment,
but additional blinding factors in an appropriate masking set M will be required for hiding
commitments, which will depend on the ring R (see below for the particular case of R = Zq).
Then, Zero-Knowledge proofs will be needed for Quadratic root verifications with private linear
combinations: ZKLQCheckvk(Q,E1, . . . , EL;E′1, . . . , E

′
µ), on input a quadratic polynomial Q ∈

R[X1, . . . , XL] and encodings E1 = Esk(a1), . . . , EL = Esk(aL), E′1 = Esk(b1), . . . , E′µ = Esk(bµ).
The verification key vk on the verifier side and the private coefficients c1, . . . , cµ on the prover
side prove that the relation Q(a1, . . . , aL) =

∑
ci · bi is satisfied. The ci’s will be the blinding

factors in M.

B.2 Examples

In the following we illustrate the definition of secure encodings with two distinct constructions.
the first provides public verifiability whereas the second will be for designated-verifier only.

Encodings over R = Zq from Pairings. The Knowledge of Exponent Assumption, intro-
duced by Damgard [Dam92] states that given g and gα in a group G, it is hard to create c and ĉ
in that group G so that ĉ = cα, without knowing a such that c = ga. The only way to compute
ĉ being to generate (gα)a.

In a pairing-friendly setting pk = (G1,G2,GT , q, g, g, e), one can check the appropriate rela-
tion between c and ĉ, with gα. We can thus consider such a pairing-friendly setting with a large
prime q, we denote G = e(g, g). The verification key is vk = gα for the secret key α

$← Zq: the
encoding function Esk is Esk(a) = (ga, gα·a, ga) ∈ G2

1 ×G2. It is clearly L-linearly-homomorphic
for any L. The bilinear map e allows public quadratic root verification, on the elements ga

and ga: for example, Q = X1 · X2 − X3 on encodings of a1, a2 and a3, it can be done with
e(ga1 , ga2) · e(g−a3 , g) = e(g, g)Q(a1,a2,a3). This must be done after image verification of any in-
dividual encoding with e(ga, g) = e(g, ga) and e(ga, vk) = e(gα·a, g). They are both public, as vk
is public.

To hide the content of an encoding, one just needs the encoding E′ = (g, gα, g) of 1, multi-
plied by a private random factor inM = Zq. To prove the existence of µ such private coefficients
ci such that Q(a1, . . . , aL) =

∑
cibi mod q is satisfied, one has to prove the knowledge of (ci)i

such that
V = e(g, g)Q(a1,...,aL) =

∏
e(gbi , g)ci

which can be done with a classical Schnorr-proof, from the encodings Esk(bi), as V = e(g, g)Q(a1,...,aL)

can be computed thanks to the pairing. Using the Fiat-Shamir paradigm [FS87], this proof can

be non-interactive: with random exponents ki
$← Zq, the prover sets D =

∏
e(gbi , g)ki , gets

a random challenge e = H(V, {Esk(bi)}, D) ∈ [[0; 2λ]], with 2λ < q, and generates the proof
Π = ({si = ki − eci mod q}, e) ∈ Zµq × [[0; 2λ]]. The verifier can compute

D′ =
∏

e(gbi , g)si × V e

and check whether e
?
= H(V, {Esk(bi)}, D′). Indeed, if the statement is true∏
e(gbi , g)si × V e =

∏
e(gbi , g)si × (

∏
e(gbi , g)ci)e

=
∏

e(gbi , g)si+eci =
∏

e(gbi , g)ki = D.
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The linear-only extractability relies on the above Knowledge of Exponent Assumption, that
requires the hardness of the discrete logarithm in the bilinear generic group model, which
additionally requires q to be large enough (at least 2λ bits, for a security parameter λ). An
encoding is a tuple of elements in E = G2

1×G2, and a zero-knowledge proof of µ scalars contains
µ elements from Zq and the challenge in [[0; 2λ]]. In case of multiple proofs, one can use a unique
global challenge e, and the same (ki, si) can be used for the same private scalars ci. Hence,
globally, the size is thus µ′ elements from Zq where µ′ is the total number of private scalars,
independently of the number of equations, plus one challenge. The requirement of a large prime
will be prohibitive when used with Fully Homomorphic Encryption, as RNS optimizations do
not apply.

Encodings over R = Zq from a Linear-Only Encryption Scheme. Given a linear-only
encryption scheme (Enc,Dec) from Zq onto C, for any integer q, one chooses a random private

element α
$← Z∗q , to be the secret key of the encoding. Then, pk is the public key of the encryption

scheme, while vk is α together with the secret decryption key of the encryption scheme. It
is thus private. Then, the encoding function Esk is Esk(a) = (Enc(a),Enc(α · a)) ∈ C × C.
It is clearly linearly-homomorphic from an additively-homomorphic encryption scheme. The
decryption algorithm allows any root verification using the decryption key in vk, while the
image verification tests whether the two decryption values verify the secret ratio α. The linear-
only extractability depends on the specific encryption scheme: but either the encryption scheme
is fully/somewhat homomorphic, or this property is satisfied. An encoding is a pair of elements
in E = C × C. Such schemes can be obtained from class groups, Paillier encryption or TFHE,
among other examples.

Encodings from TFHE The Torus Fully Homomorphic Encryption (TFHE) scheme can be used
without enabling the multiplication of ciphertexts, thus turning the scheme in a linear-Only
Encryption scheme. On can use the Concrete library for the implementation. Using this scheme,
which relies on the LWE (Learning With Errors) problem, makes our construction entirely post-
quantum. To use these encodings over R = Zq, one uses q as the cleartext modulus of the TFHE
scheme, and then uses a larger ciphertext modulus.

B.3 Encodings from Paillier Encryption

More concretely, one can use Paillier encryption scheme [Pai99] with a large RSA modulus N ,

the encryption of x ∈ ZN is E = (1 + N )x · rN mod N 2, for r
$← Z∗N . The ciphertext space

is thus C = Z∗N 2 . For the decryption, one needs the value λ = λ(N ), where λ is Carmichael’s
function, which is equivalent of the knowledge of the factorisation of N . As λ(N 2) = Nλ,
Eλ = (1 +N )xλ = 1 + xλ · N mod N 2. If λ is invertible modulo N , one can extract x modulo
N .

For the encoding, the public key pk is thus the modulus N , the secret key sk is a random
element α

$← Z∗N , and the verification key vk is the decryption key λ(N ) and the secret value
α:

– Esk(a) = ((1 +N )a · rN0 mod N 2, (1 +N )α·a · rN1 mod N 2), for r0, r1
$← Z∗N ;

– Decvk(C0) decrypts x0 from C0 as
Cλ0 mod N 2−1

N × λ−1 mod N .
– Verifyvk,sk(C0, C1) first decrypts both ciphertexts using λ(N ) to get x0, x1 mod N , and

checks whether x1 = α · x0 mod N .

Decryption and verification can be optimized using the CRT as in [Pai99]. An encoding is
thus 4 logN bit-long.

We want an encoding on Zq, one can thus take N > q to encode elements x ∈ [[0; q − 1]].
Decoding first decrypts both ciphertexts modulo N , with the elements in [[−N/2;N/2]], checks
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the relation with α modulo N , and reduces it again modulo q in [[0; q−1]] to extract the encoded
value in Zq. For further verifications (quadratic checks), one just considers the decryption of
the first ciphertext in [[−N/2;N/2]], and relations among the plaintexts.

From L ciphertexts Ei = (1 +N )xi · riN mod N 2, for ri
$← Z∗N , one can compute the linear

combination with coefficients smaller than q,
∏
Ecii = (1 + N )

∑
cixi · (

∏
rcii )N , which is an

encryption of
∑
cixi mod N . It decodes to

∑
cixi if |

∑
cixi| < N/2: we thus have to take

N > 2L · q2 if the encodings are fresh encodings that encrypt elements in [[0; q − 1]]. For a
quadratic check, using vk, the verifier can decrypt all the encodings modulo N and reduce them
modulo q to check the relation modulo q. There is no more constraint on N .

To hide the content of an encoding, even with respect to the owner of the secret key, one
uses a random encoding of a random private mask in [[0; 2λLq2]], to act as a statistically hiding
one-time pad, furthermore randomized with N -th powers to remove any information in the
initial random coins. In this case, one needs N > 2L · 2λq2 for correct decryption modulo N ,
without wrapping around modulo N before the reduction modulo q. Hence M = [[0; 2λLq2]].

About the zero-knowledge verification ZKLQCheck(Q, (Ei)i; (E′i)i), to prove the existence of
µ coefficients ci ∈M such that:

Q(a1, . . . , aL) =
∑

cibi mod q,

on the encodings E1 = Esk(a1), . . . , EL = Esk(aL), E′1 = Esk(b1), . . . , E′µ = Esk(bµ), one has to
prove the knowledge of (ci) in

V = Eval({E′i}, {ci}), for i ∈ [[1;µ]],

where the verifier knows, after decryption of the encodings (Ei)i and quadratic computations
modulo q,

V ′ = (1 +N )Q(a1,...,aL) mod q mod N 2.

One wants to prove that V and V ′ decrypt to the same value modulo q: V = V ′ × (1 +
N )qr1 · rN0 mod N 2, but for unknown values r0, r1. We stress that we only consider the first
ciphertext in the encodings. One thus proves the knowledge of ci ∈ M for i ∈ [[1;µ]] such that
V =

∏
E′i

ci = V ′×(1+N )qr1 ·rN0 mod N 2. The ci’s are the masks in [[0; 2λLq2]], but one can use
their q-reduction. Then, as the encodings E′i can encrypt elements in [[−Lq2;Lq2]], |r1q| ≤ µLq3.

For the latter zero-knowledge proof, the prover chooses random ki
$← Zq, with additional

noise ν ′
$← [[0; 2λLq2]] and ν

$← Z∗N , to hide any extra information beyond the modulo q relation,

and sets D =
∏
E′i

ki · (1 +N )qν
′
νN mod N 2, gets a random challenge e (possibly derived from

(Q, (Ei)i, (E
′
i)i, D) in [[0; 2λ

′ − 1]] and outputs the proof Π = (D, (si = ki − eci mod q)i) ∈
ZN 2 × Zµq .

For the moment, we use a different space [[0; 2λ
′ − 1]] for the challenge, with λ′ possibly

smaller than λ or − log εs, in which case − log εs/λ
′ parallel repetitions should be performed for

correct soundness. One can check

e← H(Q, (Ei)i, (E
′
i)i, D) D′ ←

∏
E′i

si · (V ′)e mod N 2 Dec(D/D′)
?
= 0 mod q

Indeed,

D′ =
∏

E′i
si × (V ′)e =

∏
E′i

si × V e · (1 +N )−eqr1 · r−eN0

=
∏

E′i
ki−eci ×

∏
E′i

eci × (1 +N )−eqr1 · r−eN0

=
∏

E′i
ki · (1 +N )−eqr1 · r−eN0 = D · (1 +N )−q(er1+ν

′) · (re0ν)−N mod N 2.

One must make sure that 2eqr1 ≤ N : with N ≥ 2µL · pq3 (where p is the smallest prime
factor of q and 2λ

′
< p), there is no reduction modulo N before the reduction modulo q. The

zero-knowledge proof Π of µ scalars thus contains 2 logN + µ× log q bits.
In case of multiple equations involving the same secret ci, the same challenge is used, and

the same (ki, si), reducing the bit-size to 2 logN×#Equations + log q×#Secrets.
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Proofs for a Hiding Commitment in R2. Let us illustrate on the proof of validity of
a hiding commitment in R2 = Zq[Xn−1, Y N ], as presented in Section C.3. Commit∗(u,R2),

outputs the tuple C∗ = (E∗u = (E∗k , E
(2∗)
k )k, Π

∗
u), where for all indices k ∈ [[1;K]] and m ∈ [[1;M ]],

with ρk, ρ
′
k

$←M and σk, σ
′
k ∈ Z∗N :

E∗k ←
∏
j,i

E
uj,i
k,j,i × E

ρk
k,0,0 × σ

N
k mod N 2

E
(2∗)
k ←

∏
j,i

E
(2)
k,j,i

uj,i × Eρ
′
k
k,0,0 × σ

′
k
N

mod N 2

with ZKLQCheck(X1 −X2 ·X3, E
(2∗)
k , E∗k , E

(2)
k,0,0;Ek,0,0, E

(2)
k,0,0) = true for which the verifier can

compute the plaintexts in E
(2∗)
k and E∗k , and then the quadratic relation ak, that should be

ak = ρ′k × 1− ρk × r
(2)
k mod q:

V ′k = (1 +N )ak = (1 +N )ρ
′
k×1−ρk×r

(2)
k mod q mod N 2

and the encodings in the proof Π∗u :

V ∗k,m ← (1 +N )vm(sk,tk)+ρk,m mod q · σNk,m mod N 2

W ∗k,m ← (1 +N )wm(sk)+ρ
′
k,m mod q · σ′k,m

N
mod N 2

for random ρk,m, ρ
′
k,m

$← M, chosen by the prover for their privacy, and some unknown

σk,m, σ
′
k,m ∈ Z∗N , using random xm, ym

$← Zq given by a hash function, and

ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true

where

E
(m)
k,1,0 = Ek,1,0 · E−ymk,0,0 mod N 2 E

(m)
k,0,1 = Ek,0,1 · E−xmk,0,0 mod N 2

Again, the verifier can compute the plaintexts in the input encodings, and the plaintext bk,m to
be proven, that should be bk,m = ρk + u(xm, ym)− ρk,m(tk − ym)− ρ′k,m(sk − xm) mod q. They
build V ′k,m:

V ′k,m = (1 +N )bk,m = (1 +N )ρk+u(xm,ym)−ρk,m(tk−ym)−ρ′k,m(sk−xm) mod q mod N 2

As the same ρk and the same um = u(xm, ym) are used many times, the prover first randomly

chooses Tk, T
′
k, vm, Tk,m, T

′
k,m

$← [[0; q − 1]], ν ′k, ν
′
k,m

$← [[0; 2λLq2 − 1]], νk, νk,m
$← Z∗N and sets

Dk = E
T ′k
k,0,0 · (E

(2)
k,0,0)

−Tk(1 +N )qν
′
kνNk mod N 2

Dk,m = ETkk,0,0 × E
vm
k,0,0 × E

(m)
k,1,0

−Tk,m × E(m)
k,0,1

−T ′k,m
(1 +N )qν

′
k,mνNk,m mod N 2

The huge range for ν ′k, ν
′
k,m

$← [[0; 2λLq2−1]] is to hide the random values even if then encodings
come from L-linear combinations (which is not the case in this specific proof, but will be for
relation (11), with vκ).

A challenge e ∈ [[0; 2λ
′−1]] is provided by the verifier or drawn from a hash function evaluated

on the statement to be proven and all the (Dk)k and (Dk,m)k,m, and the proof eventually consists
of Π = ((Dk)k, (Dk,m)k,m, (Sk, S

′
k)k, (wm)m, (Sk,m, S

′
k,m)k,m), where

Sk = Tk − eρk mod q S′k = T ′k − eρ′k mod q

wm = vm − eum mod q

Sk,m = Tk,m − eρk,m mod q S′k,m = T ′k,m − eρ′k,m mod q
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It thus contains K(M + 1) ciphertexts (the number of equations), of 2 logN bits, and 2K(M +
1) +M scalars in [[0; q − 1]] (the number of private masks), of less than log q bits.

The verifier can first compute the challenge e, and

D′k = E
S′k
k,0,0 · (E

(2)
k,0,0)

−Sk × (V ′k)e mod N 2

D′k,m = ESkk,0,0 × E
wm
k,0,0 × E

(m)
k,1,0

−Sk,m × E(m)
k,0,1

−S′k,m × (V ′k,m)e mod N 2

They then decrypt all the Dk/D
′
k and Dk,m/D

′
k,m, that should be 0 modulo q, as there is no

reduction modulo N before the reduction modulo q, thanks to the constraint on N > 2µL ·2λq3.

Soundness. After a rewinding, with a different challenge ẽ 6= e, such that D′k and D̃′k decrypt
to the same value modulo q, and D′k,m and D̃′k,m decrypt to the same value modulo q, where

D′k = E
S′k
k,0,0 · (E

(2)
k,0,0)

−Sk × (V ′k)e mod N 2

D̃′k = E
S̃′k
k,0,0 · (E

(2)
k,0,0)

−S̃k × (V ′k)ẽ mod N 2

D′k,m = ESkk,0,0 × E
wm
k,0,0 × E

(m)
k,1,0

−Sk,m × E(m)
k,0,1

−S′k,m × (V ′k,m)e mod N 2

D̃′k,m = ES̃kk,0,0 × E
w̃m
k,0,0 × E

(m)
k,1,0

−S̃k,m × E(m)
k,0,1

−S̃′k,m × (V ′k,m)ẽ mod N 2

we have both

Ak = E
S′k−S̃

′
k

k,0,0 · (E(2)
k,0,0)

S̃k−Sk × (V ′k)e−ẽ mod N 2

Ak,m = ESk−S̃kk,0,0 × Ewm−w̃mk,0,0 × E(m)
k,1,0

S̃k,m−Sk,m × E(m)
k,0,1

S̃′k,m−S
′
k,m × (V ′k,m)e−ẽ mod N 2

decrypt to 0 modulo q, while the small size of the answers and the evaluation of V ′k and V ′k,m by

the verifier on small scalars guarantees no wrap-up modulo N : qαk, qαk,m < 2µLq3 + 2λ
′
q < N ,

even with encodings generated from L-linear combinations in

Ak = (1 +N )qαkβNk mod N 2 Ak,m = (1 +N )qαk,mβNk,m mod N 2

If we assume ẽ− e invertible modulo q, and set ε = (ẽ− e)−1 mod q, we can compute

ρ′k ← (S′k − S̃′k) · ε mod q ρk ← (Sk − S̃k) · ε mod q

um ← (wm − w̃m) · ε mod q

ρk,m ← (Sk,m − S̃k,m) · ε mod q ρ′k,m ← (S′k,m − S̃′k,m) · ε mod q

all smaller than q

E
ρ′k
k,0,0 · (E

(2)
k,0,0)

−ρk = V ′k · (1 +N )qα
′
kγNk mod N 2

Eρkk,0,0 × E
um
k,0,0 × E

(m)
k,1,0

−ρk,m × E(m)
k,0,1

−ρ′k,m
= V ′k,m · (1 +N )qα

′
k,mγNk,m mod N 2

Eventually, if N > 2µLq3, all the exponents to (1 +N ) remain smaller than N , which proves
the soundness, until ẽ− e is invertible: one can take 2λ

′
smaller than the smallest prime factor

of q, so that any non-trivial difference will always be invertible, and iterate several times in
parallel with multiple challenges e, to increase soundness. For N , it is safe to take it larger
than 2µL2λq3. As µ will always be smaller than 4, in each individual equations, we can take
N > L2λ+3q3.
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Zero-Knowledge. Thanks to the random masks inM, the plaintexts are statistically hidden. The
proofs contain tuples ((Dk)k, (Dk,m)k,m, (Sk, S

′
k)k, (wm)m, (Sk,m, S

′
k,m)k,m), where the cipher-

texts statistically hide their representations modulo q, and the scalars are uniformly distributed
in [[0; q − 1]]. Hence, a statistical zero-knowledge proof that guarantees the hiding property of
the commitments.

C Commitments

We here develop more on the sketch provided in Section 3. In particular, when q is large and
prime, as already shown, under the Schwartz-Zippel lemma, the probability to have equalities
between polynomials evaluated in a random point s ∈ Zq whereas equalities do not hold between
the polynomials of total degree at most 2n is less than 2n/q, which is negligible. Then, the
soundness is straightforward. When q is the product of ` distinct prime factors greater than p,
this is less than 2n`/p. This probability is unfortunately non-negligible for polynomial prime
factors. In particular, for SEAL implementation of FV FHE, the prime factors are at most
60-bit long.

According to the expected soundness parameter ε, to reduce the probability of false positive
cases, the natural solution is to iterate K times, with multiple evaluation points sk, for k ∈
[[1;K]], so that (2n`/p)K ≤ ε. But then, we have to make sure the same polynomials are
committed in each point. This is discussed below.

C.1 Binding Commitments

Because of the linear-only combinations, one can limit encodings in sub-spaces. As we can
also do quadratic verifications, we will be able to check products of two polynomials. From an
encoding scheme (Gen,E) over a ring R, we can define a compact binding commitment scheme
over multivariate polynomials. More precisely, such commitment schemes will be defined by 4
algorithms:

– Setup(1λ,R, (Rπ)π) generates the public key pk and the verification key vk, according to
the polynomial space R, and the authorized subspaces (Rπ)π;

– Commitpk(u,Rπ), for a polynomial u ∈ Rπ ⊆ R, outputs a commitment C of u;
– Validityvk(C,Rπ), for a commitment C, verifies whether this is a valid commitment for an

(unknown) polynomial u in the appropriate subspace Rπ;
– Quadraticvk(Q,C1, . . . , C`), for valid commitments Ci of (unknown) polynomials ui and a

quadratic polynomial Q in ` variables, verifies whether Q(u1, . . . , u`) = 0 in R.

For the above definition to make sense, for any adversary A, there exists an extractor ExtA such
that for any valid commitment C generated by A, ExtA outputs the committed polynomial
u ∈ Rπ.

While R will usually be a global ring of polynomials, such as R[X] or R[X,Y ], the sub-spaces
Rπ will only be the module generated by a limited basis, R[Xn−1], R[Y N ], or R[Xn−1, Y N ], where
the explicit exponents limit the degrees.

A Warm-Up with the Ring of Polynomials R = R[X]. Before dealing with multivariate
polynomials, we start with univariate polynomials, to illustrate some requirements and some
issues:

– Setup(1λ,R = R[X], (R1 = R[Xn−1])) first runs (pk′, sk′, vk′)← Gen(1λ), chooses a random

element s
$← R∗ and, for i ∈ [[0;n − 1]], sets Ei ← Esk′(s

i). Then, the public key of the
commitment scheme is pk = (pk′, {Ei}i), while the verification key is vk = vk′;

– Commitpk(u,R1), for a polynomial u =
∑n−1

i=0 uiX
i ∈ R1 ⊂ R of degree at most n − 1,

outputs E = Eval({Ei}i, {ui}i) = E(
∑

i uis
i) = E(u(s));
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– Validityvk(E) is exactly the Verify of the encoding scheme, as it outputs whether this is a
valid encoding or not, and thus a valid commitment or not.

Thanks to the linear-only extractability, when a player generates a valid encoding (or commit-
ment) E, being only given (E0, . . . , En−1), one can extract (ci) such that E is an encoding of
c0 + c1s + . . . cn−1s

n−1 in R, and thus of the polynomial c =
∑

i ciX
i in R. Our above com-

mitment scheme on polynomials is thus extractable under the linear-only extractability of the
secure encoding scheme.

In addition, thanks to the quadratic verification on the encodings, if we have four polynomials
u, v, m and r such that m = u·v mod r, which means that m = u·v+r·q, where all the polynomials
are of degree at most n−1, we can check such a product: from valid commitments U and V of u
and v, R and Q of r and q, respectively, and M of the polynomial m, all of degree at most n−1,
as they are all simple encodings, QCheck(X1X2 +X3X4−X5, U, V,R,Q,M) = true implies that
m(s) = u(s) · v(s) + r(s) · q(s). According to the ring R, this might imply the expected relation,
or not. If R is a large enough field, this is true.

However, in the following, we will be interested in the particular case of R = Zq, with
q = p1 · . . . · p` a product of ` prime integers p1 < . . . < p`, greater than p. Having m(s) =
u(s) ·v(s)+ r(s) ·q(s) mod q while m 6= u ·v+ r ·q in Zq[X] means there is an index j ∈ [[1; `]] such
that m(s) = u(s) · v(s) + r(s) · q(s) mod pj while m 6= u · v+ r · q in Zpj [X]. Under the Schwartz-
Zippel lemma [Sch80, Zip79], this probability is bounded by 2n/pj for each j, as the total degree
of the relation is at most 2n. Hence, the probability over s to have a false positive is bounded
by 2n`/p. This probability is unfortunately non-negligible for polynomial prime factors.

C.2 Commitments on Bivariate Polynomials

We now build commitments on bivariate polynomials over Zq for a composite q, providing
a way to deal with scalars and univariate polynomials, when they are evaluated in one-fixed
coordinate or a fixed point. In addition, a bivariate polynomial is a way to encode multiple
univariate polynomials: given N polynomials uj =

∑
i uj,iX

i ∈ Zq[X], of degree n − 1, we can
consider the polynomial in Zq[X,Y ]: u(X,Y ) =

∑
j Y

juj(X) =
∑

j,i uj,iX
iY j .

As explained above, in order to reduce the probability of errors with the Schwartz-Zippel
lemma, we will use encodings in K multiple points. We will additionally prove they all encode
the same polynomial.

Setup(1λ,R = Zq[X,Y ],R3 = Zq[Xn−1, Y N ]) first runs (pk′, sk′, vk′) ← Gen(1λ), chooses K

tuples of random elements sk, tk
$← Z∗q and, for k ∈ [[1;K]], i ∈ [[0;n − 1]], and j ∈ [[0;N ]], sets

Ek,j,i ← Esk′(s
i
k · t

j
k). To explicitly limit to some degrees, such as R3 = Zq[Xn−1, Y N ] or even

to univariate polynomials. One also chooses K tuples of random elements r
(3)
k

$← Z∗q . Then,

for k ∈ [[1;K]], i ∈ [[0;n − 1]], and j ∈ [[0;N ]], one sets E
(3)
k,j,i ← Esk′(r

(3)
k · s

i
k · t

j
k) for bivariate

polynomials in R3 = Zq[Xn−1, Y N ]. The public key of the commitment scheme is composed of

the above encodings pk = (pk′, {Ek,j,i, E
(3)
k,j,i}k,j,i), and the verification key is vk = vk′. For our

application, other sub-spaces will be added, but in this section, we focus on R3 = Zq[Xn−1, Y N ].

More spaces are detailed in Appendix C, with other random values r
(ι)
k .

Commit(u,Zq[Xn−1, Y N ]), for a polynomial u =
∑N

j=0

∑n−1
i=0 uj,iX

iY j in R3 = Zq[Xn−1, Y N ],

outputs C = (Eu = (Ek, E
(2)
k )k, Πu), for k ∈ [[1;K]], with Πu detailed later, where

Ek ← Eval({Ek,j,i}j,i, {uj,i}j,i) = E(u(sk, tk))

E
(3)
k ← Eval({E(3)

k,j,i}j,i, {uj,i}j,i) = E(r
(3)
k · u(sk, tk))

such that QCheck(X1 −X2 ·X3, E
(3)
k , Ek, E

(3)
k,0,0) = true
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The idea behind the twin encodings Eu = (Ek, E
(3)
k )k is that the first element Ek is com-

patible between all the polynomials in R = Zq[X,Y ], independently of the constraints on the
allowed monomials, while the second element restrains the polynomial space: the limited basis

in {E(3)
k,j,i}j,i and the relation with E

(3)
k,0,0 limits to R3 = Zq[Xn−1, Y N ]. Note there is still a

non-negligible probability of false positives when accepting a twin encoding, as remarked above,
as the quadratic check might accept the relation on the specific points without the relation
holding on the polynomials. We will say an encoding Ek is valid when the relation really holds

on the extracted polynomials from the twin encodings (Ek, E
(3)
k ). Intuitively, for each index k,

the probability of false positive (accepting an invalid twin encoding) is bounded by `D/p, where
D will be the maximal total degree of the polynomials that one will be able to generate from the

elements in the basis provided as input, as E
(3)
k,0,0 encodes a polynomial of degree 0. An additional

proof Πu (either provided from an interactive protocol or built in a non-interactive way) is thus
appended to the commitment to make the validity check sound, with error-probability εc for
each commitment: a huge fraction of the encodings are valid and encode the same polynomial.

In this section, we target the soundness of the commitments, whereas our ultimate goal will
be a soundness bound εs for our global proof. To achieve this soundness bound, we will first
require all the commitments to be correct, excepted an error probability εs/3, the relations be-
tween the commitments to also hold excepted with error probability εs/3, and the bounds on the
noise-flooding to be small enough with error probability εs/3. Hence, we use a specific soundness
parameter εc ≤ εs/3νc for commitments, where νc will be the total number of commitments.

Validity(C) first verifies the twin encodings, which checks the appropriate sub-spaces for each

Ek: the quadratic check with the limited bases in {E(3)
k,j,i}k,j,i guarantees the limited list of

monomials, but with an error probability bounded by 2`D/t. Note that in this section, D =
N + n − 1, because of the limited R3, but monomials with higher degrees will be required
later. With K large enough, we can expect a large number of valid encodings Ek: let us assume
more than K/5 encodings are not valid, this will remain undetected with probability at most
(`D/p)K/5. If we constrain p with p ≥ 2S × 2`D (where S will be seen as a security margin, all
along this analysis), the error probability is less than 2−(S+1)K/5. Hence, the number of valid
encodings Ek is greater than 4K/5 excepted with probability upper-bounded by 2−(S+1)K/5.

But this is not enough to amplify the above Schwartz-Zippel lemma: one also has to make
sure that all the valid Ek encode the same polynomial u to exploit the iterations in the quadratic
check between encoded polynomials:

uk(X,Y )− u(X ′, Y ′) = u(X,Y )− u(X ′, Y ′)

= u(X,Y )− u(X,Y ′) + u(X,Y ′)− u(X ′, Y ′)

= (Y − Y ′) · v(X,Y, Y ′) + (X −X ′) · w(X,X ′, Y ′).

This can be checked with random xm, ym
$← Zq, sent by the verifier:

u(X,Y )− u(xm, ym) = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X),

from the proof

Πu = (um ← u(xm, ym), (Vk,m ← E(vm(sk, tk)),Wk,m ← E(wm(sk)))k)m

that can be checked as

QCheck(X1 − um − (X2 − ym) ·X3 − (X4 − xm) ·X5,

Ek, Ek,1,0, Vk,m, Ek,0,1,Wk,m) = true

For each k ∈ [[1;K]], if the above relations do not hold at the polynomial level (which means for
the polynomials vk,m, wk,m, encoded in Vk,m, and Wk,m respectively, possibly in any subspace)
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for more than 1/3 of the m ∈ [[1;M ]], they will remain undetected with probability at most
(`(D + 1)/p)M/3 ≤ 2−(S+1)M/3. Otherwise

uk(X,Y )− um = (Y − ym) · vk,m + (X − xm) · wk,m
for more than 2M/3 indices m. Then, for any k′ 6= k, that correspond to valid encodings Ek and
Ek′ , at least M/3 common values (xm, ym) satisfy both relations in k and k′, hence uk(xm, ym) =
uk′(xm, ym) = um. As a consequence, as the polynomials uk and uk′ were committed before seeing
(xm, ym), there are M/3 random points in which the two polynomials are equal. Then uk =
uk′ , excepted with probability upper-bounded by (`D/p)M/3 ≤ 2−2M . A false acceptance for
some pair (k, k′) of consecutive valid encodings is upper-bounded by 2K · 2−(S+1)M/3. Globally,
the probability of having a false positive among the valid encodings Ek is bounded by 2K ·
2−(S+1)M/3.

We thus complete the commitments inR3: in addition to the twin encodings Eu = (Ek, E
(3)
k )k,

after having received (or seen) (xm, ym)m, one completes the commitment with the proofs Πu,
for k ∈ [[1;K]], m ∈ [[1;M ]]

– in Commit(u,Zq[Xn−1, Y N ]), Πu = (um, (Vk,m,Wk,m)k)m;

Then, we can state the following security result, which can be extended to other subspaces:

Theorem 8 (Knowledge-Soundness of Commitments in R2). For any commitment C =

(E = (Ek, E
(3)
k )k, Π = (um, (Vk,m,Wk,m)k)m), if C successfully passes all the validity checks and

quadratic root checks, on randomly chosen (xm, ym)
$← Z2

q, there exists a polynomial u ∈ R3

such that at least 4K/5 of the twin encodings actually encode u (which can be extracted from the
extractability of valid encodings), excepted with probability less than 2−(S+1)K/5+2K ·2−(S+1)M/3,
where q =

∏`
i=1 pi, with all pi ≥ 2S × 2`D, and D is the maximal degree of the polynomials in

the subspace.

Quadratic Root Checks. According to the above analysis, if we assume p ≥ 2S × 2`D, for
all the accepted commitments, we know that we have at least 4K/5 valid encodings of the same
polynomials in all twin encodings:

– if the number of invalid encodings is greater than K/5, they will remain undetected with
probability less than 2−(S+1)K/5.

– all these valid encodings contain the same polynomial u, excepted with probability less than
2K · 2−(S+1)M/3.

Therefore, when all the verifications succeed for the commitment, there are at least 4K/5 valid
encodings on the same polynomial u, excepted with small error probability. Hence, when 4
commitments are involved in a quadratic check, at least K/5 common indices k correspond to
valid encodings on the same polynomials in the 4 commitments. Those polynomials then satisfy
the relation excepted with probability less than (2`D/p)K/5 ≤ 2−S·K/5.

More Parameters. Commitments in Zq[Xn−1] thus consist of 2K + KM = K(M + 2)
encodings, and M scalars in Zq while commitments in Zq[Xn−1, Y N ] consist of 2K + 2KM =
2K(M + 1) encodings, and M scalars in Zq.

The above analysis was for commitments that appear in quadratic checks involving c = 4
commitments, hence one required 4K/5 valid encodings. When other values of c in {2, 3}, it is
enough to have cK/(c + 1) valid encodings in the c commitments to have K/(c + 1) common
indices, and then the soundness of the equation is 2−S·K/(c+1).

Corollary 9. When all the tests pass in a quadratic check between at most c prover-generated
commitments, that are all valid, the relation is really satisfied on the committed polynomials
(which can be extracted from the extractability of valid encodings), excepted with probability less
than 2−S·K/(c+1).
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Bounds on K and M are detailed in Appendix F.

C.3 Hiding Commitments

These commitments with encodings are strongly binding, because of the knowledge-soundness,
but are not hiding, as sometimes expected from commitments. Because of the quadratic verifi-
cation, if the verifier hesitates between two polynomials in a commitment C, they can commit
them and do a simple linear verification, as they know vk.

To statistically hide the content, one has to add random blinding elements from the appro-
priate masking set M to every encodings, to get hiding encodings. We illustrate this here with
with R3 = Zq[Xn−1, Y N ]. We later detail the case of R4 = Zq[Y N ].

Commit∗(u,Zq[Xn−1, Y N ]), the hiding commitment for a bivariate polynomial u(X,Y ) =∑N
j=0

∑n−1
i=0 uj,iX

iY j ∈ R2 = Zq[Xn−1, Y N ], outputs the tuple C∗ = (E∗u = (E∗k , E
(3∗)
k , πk)k, Π

∗
u),

where for all indices k ∈ [[1;K]] and m ∈ [[1;M ]], with ρk, ρ
′
k

$←M:

E∗k ← Eval({Ek,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρk}) = E(u(sk, tk) + ρk)

E
(3∗)
k ← Eval({E(2)

k,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρ
′
k}) = E(r

(3)
k · u(sk, tk) + ρ′k)

with πk = {ZKLQCheck(X1 −X2 ·X3, E
(3∗)
k , E∗k , E

(3)
k,0,0;Ek,0,0, E

(3)
k,0,0) = true}

as the quadratic relation is equal to ρ′k × 1 − ρk × r
(3)
k , with private scalars ρk and ρ′k, and a

proof, using random xm, ym
$← Zq invertible modulo N 2 sent by the verifier, of

u(X,Y )− u(xm, ym) = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X)

= (Y − ym) · vm + (X − xm) · wm

which can be verified with

Π∗u = (V ∗k,m ← E(vm(sk, tk) + ρk,m),W ∗k,m ← E(wm(sk) + ρ′k,m), πk,m)k,m

for random ρk,m, ρ
′
k,m

$←M, chosen by the prover for their privacy, and

πk,m = {ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true}

where anyone can compute:

E
(m)
k,1,0 = Eval({Ek,1,0, Ek,0,0}, {1,−ym}) = E(tk − ym)

E
(m)
k,0,1 = Eval({Ek,0,1, Ek,0,0}, {1,−xm}) = E(sk − xm)

as the quadratic relation is equal to ρk + u(xm, ym)− ρk,m(tk − ym)− ρ′k,m(sk − xm). One thus
proves their knowledge of the 4 private scalars, ρk ∈M (the same as above), um = u(xm, ym) ∈ R
(the same for all the k’s), and ρk,m, ρ

′
k,m ∈M.

Let us assume that a reasonable fraction of the twin encodings (E∗k , E
(3∗)
k ) are valid for a

polynomial u∗k in Zq[Xn−1, Y N ]. For each k, the quadratic check guarantees that

u∗k(X,Y ) = uk(X,Y ) + ρk = (Y − ym) · vk,m + (X − xm) · wk,m
+ ρk + um − ρk,m · (Y − ym)− ρ′k,m · (X − xm)

excepted with the same error probability as in Theorem 8. On the other hand, one can state:
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Theorem 10 (Hiding Property of Commitments in R3). For any commitment C∗ =

(E∗ = (E∗k , E
(3∗)
k , πk)k, Π

∗ = (V ∗k,m,W
∗
k,m, πk,m)k,m), thanks to the random masks, and the zero-

knowledge proofs, all the encodings are statistically indistinguishable from random encodings.

Note that for a hiding commitment, we have zero-knowledge proofs on K(M + 1) equations
involving globally 2K(M + 1) + M private scalars (but at most 4 in each equation). In Ap-
pendix B.3, we detail the zero-knowledge proofs when the encoding relies on the Paillier’s en-
cryption scheme: soundness is 2−λ

′
, for λ′ < log2 p, then one needs to iterate − log2(εs/3νc)/λ

′

times. Each proof consists of K(M + 1) Paillier ciphertexts and 2K(M + 1) +M scalars in Zq,
iterated log(3νc/εs)/ log p times. Soundness also implies the RSA modulus needs to be larger
than L · 2λ+3q3.

C.4 Quadratic Root Check

The check Quadratic(Q,C1, . . . , C`), on non-hiding commitments, for a quadratic polynomial Q,
that verifies whether the committed polynomials Pi’s in the Ci’s satisfy the relationQ(P1, . . . , P`) =
0, is performed as a QCheck on the encodings for each index k. Since a huge fraction of the in-
dices k encode the same polynomials, for the prover-generated commitments, iterations amplify
the soundness.

When some hiding commitments are involved, one additionally has to prove the appropriate
blinding factors. More concretely, let us consider the binding commitment D of d, and the
hiding commitments C∗ and H∗ of c∗ and h∗ respectively, with blinding factors ρk, σk ∈ M
respectively. The relation c∗ = d× h∗ can be checked as:

Quadratic(X1 −X2 ·X3, C
∗, D,H∗)

= ZKLQCheck(X1 −X2 ·X3, C
∗
k , Dk, H

∗
k ;Ek,0,0, Dk) for all k

as the quadratic relation is equal to ρk · 1− σk · d, where ρk and σk are the same private values
as the ones used in the validity verification of the hiding commitments C∗ and H∗.

We stress that we only allow quadratic verifications where at most one polynomial is com-
mitted in a hiding way in each quadratic product. In the end, we know that the quadratic
equations among polynomials are satisfied in at least K/5 random points. They are thus satis-
fied by the polynomials excepted with probability less than 2−S·K/5, which is chosen to be much
less than εs/3νe, where νe is the global number of equations to be checked.

C.5 Commitments in Additional Subspaces

As already explained, in our application, we are considering q = p1 · . . . · p`, a composite
modulus q, with ` prime factors p1 < . . . < p` larger than p. We will work in subspaces of
R = Zq[X2n−2, Y 2N ]. We will consider the subspaces R1 = Zq[Xn−1], R2 = Zq[X(2n−2)\(n−1)],
R3 = Zq[Xn−1, Y N ],R4 = Zq[Y N ], and Zq[Y 2N ] with no term in Y N , denotedR5 = Zq[Y 2N\N ],
hence D = 2N , so we will assume p ≥ 2S × 4N`. Details on the complete construction of the
commitments with system setup and detailed contents and checks are given in the following
section.

In our proof of inner product, we will use polynomials in multiple subspaces ofR = Zq[X,Y ].
In addition to R2 = Zq[Xn−1, Y N ], we will use R1 = Zq[Xn−1], R2 = Zq[X(2n−2)\(n−1)],
R3 = Zq[Xn−1, Y N ],R4 = Zq[Y N ], and Zq[Y 2N ] with no term in Y N , denotedR5 = Zq[Y 2N\N ].
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For this, we draw additional random elements r
(1)
k , r

(2)
k , r

(4)
k , r

(5)
k

$← Z∗q for k ∈ [[1;K]], and set:

E
(1)
k,i ← E(r

(1)
k · s

i
k) i ∈ [[0;n− 1]]

E
(2)
k,i ← E(r

(2)
k · s

i
k) i ∈ [[0; 2n− 2]] \ {n− 1}

E
(4)
k,j ← E(r

(4)
k · t

j
k) j ∈ [[0;N ]]

E
(5)
k,j ← E(r

(5)
k · t

j
k) j ∈ [[0; 2N ]] \ {N}

and we extend

Ek,j,i ← E(sik · t
j
k) i ∈ [[0; 2n− 2]], j ∈ [[0; 2N ]]

Note that D becomes max{N + n − 1, 2N, 2n − 2} = 2N , for N ≥ n. We then commit the
polynomials Commit(u,Zq[Y N ]) or Commit(u,Zq[Y 2N\N ]) with appropriate twin encodings, that
can be verified as above: for each pair k 6= k′ of valid encodings:

uk(Y )− uk′(Y
′) = u(Y )− u(Y ′) = (Y − Y ′) · v(Y, Y ′)

and so for a random ym
$← Zq chosen by the prover:

u(Y )− u(ym) = (Y − ym) · v(Y, ym) = (Y − ym) · vm,

from
Πu = (um ← u(ym), (Vk,m ← E(vm(tk)))k)m

as

QCheck(X1 − um − (X2 − ym) ·X3, Ek, Ek,1,0, Vk,m) = true

and the rest of the proof follows as in Section C.2, with thus Πu = (um, (Vk,m)k)m, for k ∈ [[1;K]],
m ∈ [[1;M ]].

C.6 Complete Construction of the Commitment

In the following, we are considering q = p1 · . . . · p`, a composite modulus q, with ` distinct
prime factors p1 < . . . < p` larger than p. We will work in subspaces of R = Zq[X2n−2, Y 2N ].
We will consider the subspaces R1 = Zq[Xn−1], R2 = Zq[X(2n−2)\(n−1)], R3 = Zq[Xn−1, Y N ],
R4 = Zq[Y N ], and R5 = Zq[Y 2N\N ], hence D = 2N , so we will assume p ≥ 128N`.

Setup of the System: Setup(1λ,R, (Ri)i) first runs (pk′, vk′)← Gen(1λ), chooses K tuples of

random elements sk, tk
$← Z∗q , as well as K tuples of random elements r

(1)
k , r

(2)
k , r

(3)
k , r

(4)
k , r

(5)
k ,

$←
Z∗q , to limit the combinations of the bases. Then, for k ∈ [[1;K]], one sets

R = Zq[Xn−1, Y N ] Ek,j,i ← E(sik · t
j
k) (i, j) ∈ ([[0;n− 1]]× [[0;N ]])

+ Zq[X2n−2] + Zq[Y 2N ] ∪([[n; 2n− 2]]× {0})
∪({0} × [[N + 1; 2N ]])

R1 = Zq[Xn−1] E
(1)
k,i ← E(r

(1)
k · s

i
k) i ∈ [[0;n− 1]]

R2 = Zq[X(2n−2)\(n−1)] E
(2)
k,i ← E(r

(2)
k · s

i
k) i ∈ [[0; 2n− 2]] \ {n− 1}

R3 = Zq[Xn−1, Y N ] E
(3)
k,j,i ← E(r

(3)
k · s

i
k · t

j
k) i ∈ [[0;n− 1]], j ∈ [[0;N ]]

R4 = Zq[Y N ] E
(4)
k,j ← E(r

(4)
k · t

j
k) j ∈ [[0;N ]]

R5 = Zq[Y 2N\N ] E
(5)
k,j ← E(r

(5)
k · t

j
k) j ∈ [[0; 2N ]]\{N}

Then, the public key of the commitment scheme is set to pk′ with all these encodings, while the
verification key is vk′. For R, we can limit encoded elements to Zq[Xn−1, Y N ] + Zq[X2n−2] +
Zq[Y 2N ], with (n+ 1)×N + 2n− 1 encodings in the public key, sent once for many proofs.
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Commitment Generation: there are two binding commitment algorithms, with or without
the hiding property.

Non-Hiding Commitment. We have defined commitments on specific subspaces: R1 = Zq[Xn−1],
R2 = Zq[X(2n−2)\(n−1)], R3 = Zq[Xn−1, Y N ], R4 = Zq[Y N ], and R5 = Zq[Y 2N\N ]:

Commit(u,Zq[Xn−1]): it outputs C = (Eu = (Ek, E
(1)
k )k, Πu), for k ∈ [[1;K]], where

Ek ← E(u(sk)) E
(1)
k ← E(r

(1)
k · u(sk)),

and for all m ∈ [[1;M ]]: xm
$← Zq chosen by the verifier (or from a hash function for a

non-interactive proof), and then

Πu = (um ← u(xm), (Wk,m ← E(wm(sk)))k)m

where wm is such that u(X) − um = (X − xm) · wm(X): in total, these are 2K encodings,
plus M scalars and KM encodings for the proof.

Commit(u,Zq[X(2n−2)\(n−1)]): as the previous case but replacing r(1) with r(2) and analogously
(1) indices with (2) indices.

Commit(u,Zq[Xn−1, Y N ]): it outputs C = (Eu = (Ek, E
(3)
k )k, Πu), for k ∈ [[1;K]], where

Ek ← E(u(sk, tk)) E
(3)
k ← E(r

(3)
k · u(sk, tk)),

and for all m ∈ [[1;M ]]: (xm, ym)
$← Z2

q chosen by the verifier (or from a hash function for
a non-interactive proof), and then

Πu = (um ← u(xm, ym), (Vk,m ← E(vm(sk, tk)),Wk,m ← E(wm(sk)))k)m

where vm and wm are such that

u(X,Y )− um = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X).

In total, these are 2K encodings, plus M scalars and 2KM encodings for the proof.

Commit(u,Zq[Y N ]): it outputs C = (Eu = (Ek, E
(4)
k )k, Πu), for k ∈ [[1;K]], where:

Ek ← E(u(tk)) E
(4)
k ← E(r

(4)
k · u(tk)),

and for all m ∈ [[1;M ]]: ym
$← Zq chosen by the verifier (or from a hash function for a

non-interactive proof), and then

Πu = (um ← u(ym), (Vk,m ← E(vm(tk)))k)m

where vm is such that u(Y )−um = (Y −ym) · vm(Y ). In total, these are 2K encodings, plus
M scalars and KM encodings for the proof.

Commit(u,Zq[Y 2N\N ]): as the previous case but replacing r(4) with r(5) and analogously (4)
indices with (5) indices.

Hiding Commitment. We only focus on R1, R2, R3 and R4:

Commit∗(u,Zq[Xn−1, Y N ]): outputs C∗ = (E∗u = (E∗k , E
(3∗)
k , πk)k, Π

∗
u), for k ∈ [[1;K]], where,

with ρk, ρ
′
k

$←M, where M is the appropriate masking set:

E∗k ← Eval({Ek,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρk}) = E(u(sk, tk) + ρk)

E
(3∗)
k ← Eval({E(3)

k,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρ
′
k}) = E(r

(3)
k · u(sk, tk) + ρ′k)

with πk = {ZKLQCheck(X1 −X2 ·X3, E
(3∗)
k , E∗k , E

(3)
k,0,0;Ek,0,0, E

(3)
k,0,0) = true}
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and for all m ∈ [[1;M ]]: (xm, ym)
$← Z2

q with xm and ym invertible modulo N 2 chosen by
the verifier (or from a hash function for a non-interactive proof), and then for random

ρk,m, ρ
′
k,m

$← Z∗q chosen by the prover for their privacy:

Π∗u = (V ∗k,m ← E(vm(sk, tk) + ρk,m),W ∗k,m ← E(wm(sk) + ρ′k,m)k,m

where vm and wm are such that

u(X,Y )− u(xm, ym) = (Y − ym) · vm + (X − xm) · wm

with

πk,m = {ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true}

KM additional zero-knowledge proofs of knowledge of 4 scalars ρk,m, ρ′k,m, ρk, and um =
u(xm, ym). In total, this is 2K encodings, plus KM encodings for the proof, and KM
zero-knowledge proofs of 4 scalars.

Commit∗(u,Zq[Y N ]): outputs C∗ = (E∗u = (E∗k , E
(4∗)
k , πk)k, Π

∗
u), for k ∈ [[1;K]], where, with

ρk, ρ
′
k

$←M:

Ek ← E(u(tk) + ρk) E
(4∗)
k ← E(r

(4)
k · u(tk) + ρ′k)

with πk = {ZKLQCheck(X1 − X2 · X3, E
(4∗)
k , E∗k , E

(4)
k,0,0;Ek,0,0, E

(4)
k,0,0) = true}, and for all

m ∈ [[1;M ]]: ym
$← Zq invertible modulo N 2 chosen by the verifier (or from a hash function

for a non-interactive proof), and then for random ρk,m
$← Z∗q chosen by the prover for their

privacy:
Π∗u = (V ∗k,m ← E(vm(tk) + ρk,m))k,m

for vm such that u(Y ) − u(ym) = (Y − ym) · vm(Y ) with KM additional zero-knowledge
proofs of knowledge of 3 scalars ρk,m, ρk, and um = u(ym). In total, this is 2K encodings,
plus KM encodings for the proof, and KM zero-knowledge proofs of 3 scalars.

Commit∗(u,Zq[X(n−1)]) and Commit∗(u,Zq[X(2n−2)\(n−1)]) are analogous to the previous hiding
commitment description, but in the other variable.

Validity Check: it also depends on hiding or non-hiding commitments and on the space Rπ.

Non-Hiding Commitment. Validity(C,Rπ) first checks the twin encodings, for k ∈ [[1;K]]:

R1,R2 QCheck(X1 −X2 ·X3, E
(1/2)
k , Ek, E

(1/2)
k,0 ) = true

R3 QCheck(X1 −X2 ·X3, E
(3)
k , Ek, E

(3)
k,0,0) = true

R4,R5 QCheck(X1 −X2 ·X3, E
(4/5)
k , Ek, E

(4/5)
k,0 ) = true

and then, for k ∈ [[1;K]] and m ∈ [[1;M ]], either

R1,R2 QCheck(X1 − um − (X2 − xm) ·X3, Ek, Ek,0,1,Wk,m) = true

R3 QCheck(X1 − um − (X2 − ym) ·X3 − (X4 − xm) ·X5,

Ek, Ek,1,0, Vk,m, Ek,0,1,Wk,m) = true

R4,R5 QCheck(X1 − um − (X2 − ym) ·X3, Ek, Ek,1,0, Vk,m) = true
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Hiding Commitment. Validity∗(C,Rπ) first checks the twin encodings, for k ∈ [[1;K]]:

R1 ZKLQCheck(X1 −X2 ·X3, E
(1∗)
k , E∗k , E

(1)
k,0,0;Ek,0,0, E

(2)) = true

R2 ZKLQCheck(X1 −X2 ·X3, E
(2∗)
k , E∗k , E

(2)
k,0,0;Ek,0,0, E

(2)) = true

R3 ZKLQCheck(X1 −X2 ·X3, E
(3∗)
k , E∗k , E

(3)
k,0,0;Ek,0,0, E

(3)) = true

R4 ZKLQCheck(X1 −X2 ·X3, E
(4∗)
k , E∗k , E

(4)
k,0,0;Ek,0,0, E

(4)) = true

and then, for k ∈ [[1;K]] and m ∈ [[1;M ]], the zero-knowledge proofs

R1,R2 ZKLQCheck(X1 − (X2 − xm) ·X3, E
∗
k , Ek,0,1, V

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,0,1)

= true

R3 ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5, E
∗
k , Ek,1,0, V

∗
k,m,

Ek,0,1,W
∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true

R4 ZKLQCheck(X1 − (X2 − ym) ·X3, E
∗
k , Ek,1,0, V

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0)

= true

D More Detail on the Protocol

Here is more detail on some steps of our protocol, when explained succinctly in Section 5, with
a more general description than just OPE and vector of powers.

We indeed consider the receiver/verifier with their private input message m to learn in a
verifiable way the inner product of the vector Φ(m) = (φ(m, j))j∈[[0;N ]] with a private vector
F = (fj)j∈[[0;N ]], committed by the sender/prover, where φ is a function known by them both,
depending on the application. If φ(m, j) = mj , the inner product corresponds to the Oblivious
Polynomial Evaluation (OPE) of the polynomial F with coefficients (fj)j on the message m; if
φ(m, j) = δµ,j , with δ the Kronecker symbol and µ ∈ [[0;N ]] such that m is the representation
of µ, it provides the µ-th coefficient of f, which would coincide with a Symmetric Private
Information Retrieval (SPIR) application (see Appendix E). We now show how the sender can
provide this evaluation with fully homomorphic encryption in a provable way.

More precisely, we consider the above FV scheme that encrypts messages from Rt =
Zt[X]/r(X), where r = Xn + 1, into Rq = Zq[X]/r(X).

The receiver encrypts the input m ∈ Rt under their own key, and sends Enc(m) = (c, c′) ∈
R2
q , in order to get back the homomorphic inner product of Φ(m) = (φ(m, j))j∈[[0;N ]] ∈ RN+1

t

with F = (fj)j∈[[0;N ]] ∈ RN+1
t , committed by the sender, with a proof of correct value (d, d′) =

Enc(〈Φ(m),F〉) ∈ R2
q , that thereafter decrypts to 〈Φ(m),F〉 ∈ Rt, using the receiver’s decryption

key.
From (c, c′), the sender is able to compute (uj , u

′
j) = Enc(φ(m, j)), for j ∈ [[0;N ]], in any

way they want, using the homomorphic properties of the encryption scheme:

(uj , u
′
j) = Enc(φ(m, j)) =

(
n∑
i=0

uj,i ·Xi,

n∑
i=0

u′j,i ·Xi

)
∈ R2

q .
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Thereafter, the goal is to evaluate the inner products:

(d, d′) = Enc(〈Φ(m),F〉) = Enc

 N∑
j=0

fj · φ(m, j)

 =

N∑
j=0

fj · Enc(φ(m, j))

=

N∑
j=0

fj · (uj , u′j) =

 N∑
j=0

fj · uj ,
N∑
j=0

fj · u′j

 .

As already explained, the sender can add noise to hide F in the evaluation and prove the correct
evaluation of d̃ = d + z∗ and d̃′ = d′ + z′∗ so that (d̃, d̃′) decrypts to 〈Φ(m),F〉. The pair (z∗, z′∗)
will be committed in a hidden way using three noise polynomials in R1 from the FV encryption
scheme for encodings of zero, with a proof of correct noise, in the appropriate range, to ensure
the correct decryption. As such we will take (z∗, z′∗) = (p · u + e1, p

′ · u + e2), knowing that
the quadratic relation checks will be made modulo q, where p and p′ are public polynomials
from the FV scheme setup, and commit the noise polynomials u, e1, e2 ∈ R1 into U∗, E∗1 and
E∗2 respectively.

This verifiable evaluation will be done in two steps: first, the sender will prove the correct
evaluation of all the (uj , u

′
j), while committed in a very compact way. Then, a proof of the inner

product is provided, as described in Section 4. We will later explain how everything remains
succinct.

We also claim this protocol to be SND-secure, proving theorem 5, with steps provided in the
following sections.

D.1 Commitment of F

One can first note that ring elements in Rt and Rq are polynomials of degree at most n − 1,
and can be encoded into R1 = Zq[Xn−1]. The sender’s vector F ∈ RN+1

t can be committed

using the polynomial f =
∑N

i=0 fj · Y j in Rt[Y ], where fj =
∑n−1

i=0 fj,i · Xi, can be committed

in a hidden way in R3 = Zq[Xn−1, Y N ] as f∗ =
∑N

j=0

∑n−1
i=0 fj,i · XiY N−j (with reverse order

coefficients) into F ∗.
The sender can also compute and publish the noisy inner products d̃ and d̃′ in Rq, the

expected ciphertext of the result, for some private q∗, q′∗, z∗, z′∗ ∈ Rq:

d̃ =

N∑
j=0

fj · uj + z∗ − q∗ · r d̃′ =
N∑
j=0

fj · u′j + z′∗ − q′∗ · r.

With (z∗, z′∗) = ([p · u + e1]q, [p
′ · u + e2]q), the prover-owned polynomials u∗, e∗1, e

∗
2, q
∗, q′∗ are

committed in a hidden way in U∗, E∗1 , E
∗
2 , Q

∗, Q′∗, from R1 = Zq[Xn−1]. The inner products
must be proven – which is the goal of the following second part – after we have proven the
correct computation of the (uj , u

′
j)’s, as both together will prove correctness of the ciphertext

(d̃, d̃′).

D.2 Validity of the (uj, u′
j)’s

From the ciphertexts (uj , u
′
j) that the prover computed on their own, they define the polyno-

mials:

u(X,Y ) =
N∑
j=0

uj(X) · Y j =
N∑
j=0

n−1∑
i=0

uj,iX
iY j u′(X,Y ) =

N∑
j=0

u′j(X) · Y j

and commit them from the subspace R3 = Zq[Xn−1, Y N ] into U and U ′ respectively. Our first
step is to prove that the polynomials committed in U and U ′ by the sender indeed satisfy,
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for any exponents j ∈ [[0;N ]], (uj , u
′
j) = Enc(φ(m, j)), or more precisely that the decryptions

Dec(uj , u
′
j) that we denote ϕm,j are indeed φ(m, j) ∈ Rt, for m initially encrypted by the verifier

in (c, c′).

The verifier first chooses and sends a random polynomial n
$← Rt (or it can be generated

by a hash function on the previous data to remove interaction). Both parties can compute,
nj = nj =

∑n−1
i=0 nj,i ·Xi in Rt, for all j ∈ [[0;N ]], and commit them from R3 = Zq[Xn−1, Y N ] as

t =
∑N

j=0

∑n−1
i=0 nj,i ·XiY N−j (with reverse order coefficients) into T . Then, the prover computes

and sends (b, b′) =
∑N

j=0 nj · (uj , u′j) in R2
q .

Since this is symmetric, we now focus on the first component (without ′), and a similar
analysis will have to be done on the second component (with ′): the prover also computes and
commits l so that

∑N
j=0 nj · uj = b + l · r, into the commitment L from R1 = Zq[Xn−1].

The verifier chooses and sends a sequence of random scalars βκ
$← Zq, for κ ∈ [[1;Λ]]. They

will define vκ,j = uj(βκ) ∈ Zq for j ∈ [[0;N ]]. We thus have the polynomial:

vκ(Y ) =
N∑
j=0

vκ,j · Y j =
N∑
j=0

uj(βκ) · Y j =
N∑
j=0

n−1∑
i=0

uj,iβ
i
κ · Y j = u(βκ, Y )

that can be committed as Vκ from R4 = Zq[Y N ], and proven correct with the quadratic check

u(X,Y )− vκ(Y ) = u(X,Y )− u(βκ, Y ) = (X − βκ) · wκ(X,Y ) (5)

on the commitment Wκ of wκ ∈ R3 = Zq[Xn−1, Y N ] and the public commitment Cκ of X −βκ,
and thus using only 3 prover-generated commitments (U , Vκ and Wκ, as Cκ is public). With
tκ = t(βκ, Y ) =

∑N
j=0 nj(βκ) · Y j publicly computed and committed in Tκ, we can note that

vκ(Y ) · tκ(Y ) =
∑

0≤i,j≤N
vκ,i · nj(βκ) · Y N+i−j

=
∑

0≤i≤N
vκ,i · ni(βκ) · Y N +

∑
0≤i 6=j≤N

vκ,i · nj(βκ) · Y N+i−j

and ∑
0≤i≤N

vκ,i · ni(βκ) =
∑

0≤i≤N
ui(βκ) · ni(βκ) = bκ + lκ · rκ

where bκ = b(βκ), and rκ = r(βκ) can be publicly computed in Zq, and lκ = lκ(βκ) will have to
be checked with respect to the commitment L with the following relation:

l(X)− lκ = (X − βκ) · lκ(X), (6)

also committing lκ from R1 = Zq[Xn−1] into Lκ.
We can now check that:

vκ(Y ) · tκ(Y )− (bκ + lκ · rκ) · Y N =
∑

0≤i 6=j≤N
vκ,i · nj(βκ) · Y N+i−j = yκ(Y ) (7)

with a commitment Yκ of yκ in R5 = Zq[Y 2N\N ] and CN a public commitment of Y N , which
makes only 2 prover-generated commitments (Vκ and Yκ).

We stress that because of the repetitions in each commitment (up to K, according to the
kind of relations they are involved in, and the number of prover-generated commitments), we
know (see Corollary 9) that when all the tests pass, the above equations (5) and (7) are all
satisfied with error probability less than 2Λ · 2−(S+1)K/4.

They altogether prove that, for each κ ∈ [[1;Λ]], bκ + lκ · rκ is the coefficient of Y N in
vκ(Y ) · tκ(Y ), and so

∑
j uj(βκ) · nj(βκ) = b(βκ) + l(βκ) · r(βκ) mod q for the random βκ, on
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polynomials committed beforehand, of degree n. Hence,
∑

j uj ·nj = b+ l · r, excepted with error

probability bounded by 2`n/p ≤ n/2S+1N , from the Schwartz-Zippel lemma.
For Λ large enough (to be set later), after all these steps, on both b and b′, one gets the

proof that, in Rq,

b =
N∑
j=0

nj · uj b′ =
N∑
j=0

nj · u′j : (b, b′) =
N∑
j=0

nj · (uj , u′j).

These relations hold for both b and b′ excepted with error probability bounded by 2 × (2Λ ·
2−(S+1)K/4 + (n/2S+1N)Λ).

D.3 Validity of (d̃, d̃′)

As above, we focus on d̃ with respect to all (uj)j and z∗, q∗. The same should be done for d̃′

with respect to all (u′j)j and z′∗, q′∗, but for the same (fj)j and z, r:

d̃ =
N∑
j=0

fj · uj + z∗ − q∗ · r.

This following analysis is quite similar to the previous one, considering f∗, (z∗, q∗), d̃ instead
of t, p, b, and with hidden intermediate values, as (fj)j is private to the prover, contrarily to n
which was publicly chosen by the verifier. One first proves the quadratic relation on the hidden
commitment of g∗κ(Y ) = f∗(βκ, Y ) =

∑N
j=0 gκ,j · Y N−j in R4 = Zq[Y N ], where gκ,j = fj(βκ),

and the hiding commitment of h∗κ(X,Y ) in R2 = Zq[Xn, Y N ], so that

f∗(X,Y )− g∗κ(Y ) = f∗(X,Y )− f∗(βκ, Y ) = (X − βκ) · h∗κ(X,Y ) (8)

with only 3 prover-generated commitments. And similarly, one proves in a hidden way:

q∗(X)− q∗κ = q∗(X)− q∗(βκ) = (X − βκ) · q∗κ(X) (9)

z∗(X)− z∗κ = z∗(X)− z∗(βκ) = (X − βκ) · z∗κ(X) (10)

with the private q∗κ = q∗κ(βκ) and z∗κ = z∗κ(βκ) in Zq that will be also used below. There are only
2 prover-generated commitments in each relation. We have the following relations:

vκ(Y ) · g∗κ(Y ) =
∑

0≤i,j≤N
vκ,i · gκ,j · Y N+i−j

=
∑

0≤i≤N
vκ,i · gκ,i · Y N +

∑
0≤i 6=j≤N

vκ,i · gκ,j · Y N+i−j

and ∑
0≤i≤N

vκ,i · gκ,i =
∑

0≤i≤N
ui(βκ) · fi(βκ) = d̃(βκ)− z∗(βκ) + q∗(βκ) · r(βκ)

= d̃κ − z∗κ + q∗κ · rκ

where d̃κ = d̃(βκ) and rκ = r(βκ) can be publicly computed, and so one proves

vκ(Y ) · g∗κ(Y )− (d̃κ − z∗κ + q∗κ · rκ) · Y N = s∗κ(Y ) (11)

with a hiding commitment of s∗κ from R5 = Zq[Y 2N\N ] and a public commitment of Y N .
Again, from Corollary 9, when all the tests pass, the above equations (8), (9), (10), and (11)

are all satisfied with error probability less than 3Λ · 2−(S+1)K/4.
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They altogether prove that, for each κ ∈ [[1;Λ]], dκ − z∗κ + q∗κ · rκ is the coefficient of Y N in
vκ(Y ) · g∗κ(Y ), so

d̃(βκ) =
∑
j

uj(βκ) · fj(βκ) + z∗(βκ)− q∗(βκ) · r(βκ) mod q

for the random βκ, on polynomials committed beforehand. Hence,

d̃ =
∑
j

uj · fj + z∗ − q∗ · r,

excepted with error probability bounded by 2`n/p ≤ n/2S+1N , for each κ. Again, these relations
hold for both d̃ and d̃′ excepted with error probability bounded by 2 × (3Λ · 2−(S+1)K/4 +
(n/2S+1N)Λ).

Globally, the error probability is bounded by 2×(5Λ·2−(S+1)K/4+2×(n/2S+1N)Λ). We thus
need to take Λ =

⌈
log2(2νe/εs)/ log2(2

S+1N/n)
⌉

different values for βκ so that 4×(n/2S+1N)Λ ≤
εs/6, and K > 4 log2(60Λ/εs)/(S+ 1) so that 2× 5Λ · 2−(S+1)K/4 ≤ εs/4 too, so that the global
error on the equations be bounded by εs/2.

On the other hand, as shown on Figure 6, the global number of commitments is bounded
by 15Λ+ 14. We thus need to take εc ≤ εs/(2× νc) = εs/(2(15Λ+ 14)).

D.4 SND-Security of our Scheme

For each commitment generated by the prover and sent to the receiver, Theorem 8 grants that
if it passes validity and quadratic root checks, then at least 4K/5 of the twin encodings encode
the polynomial u in the appropriate subspace, that can be extracted by extractability of valid
encodings, excepted with probability less than 2−(S+1)K/5 + 2K ·2−(S+1)M/3, where q =

∏`
i=1 pi

with all pi ≥ 2S × 2`× 2N . We choose K and M such that

2−(S+1)K/5 + 2K · 2−(S+1)M/3 ≤ εs
2νc

,

where εs is the soundness security parameter and νc the total number of prover-generated
commitments in the protocol. So, as νc commitments are going to be checked, this holds for all
of them except with probability less than εs/2.

Then, in our protocol, a total of νe quadratic equations on committed polynomials need to
be checked thanks to their commitments. The checks for one of these relations grants it is valid
except for a probability smaller than 2−SK/5, where K is chosen so that this is less than εs

2νe
.

For νe checked equations, they all hold with probability less than εs/2.
Then, the proof also uses the decryption of 2 FHE ciphertexts, and their soundness is ensured

by the FHE security on more than 128 bits.
In the end, our soundness is granted except for a probability less than our soundness security

parameter εs.

D.5 R-Privacy-Security of our Scheme

The scheme is R-Privacy-secure under the semantic security of the FHE FV scheme. Sending
the public key containing the FHE public information and one FHE ciphertexts of m, with an
FHE scheme with at least 128 bits of security does not reveal any information on the cleartexts,
for any malicious adversary performing polynomial time calculations.

D.6 S-Privacy-Security of our Scheme

Under the statistically hiding properties of our commitment scheme given in Theorem 10 and the
statistical security provided by the noise-flooding, no sender’s information leaks to the receiver.
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E Applications

Our protocol can be deployed for several applications. Hereafter we detail the cases of PSI (using
OPE), and of SPIR.

E.1 Application to Private Set Intersection

As already explained, we can apply this technique to PSI, where the receiver owns a set X =
{x1, . . . , xa} of cardinality #X , the sender a set Y = {y1, . . . , yb} of cardinality #Y, and the
receiver wants to learn the intersection. We consider the case where #Y is much larger than
#X , and hope to get a protocol essentially linear in #X only. To this aim, we follow the basic
approach from [FNP04], with the polynomial P (Y ) =

∏N
i=1(Y − hi) committed once for all in

P ∗, where the values hi ∈ Rt encode the elements yi in the sender’s set, and the degree N = #Y.
Then the receiver wants to check whether P (xi) = 0 on every input xi.

Thanks to the verifiability of our proof, and even the knowledge-soundness of our com-
mitments, our PSI protocol is secure against malicious senders, as they cannot use distinct
polynomials as P in each execution.

The protocol can be adapted to support adding elements to the sender’s set, with a new
check to make sure the old sender’s polynomial divides the new one which only has additional
roots.

E.2 Application to Symmetric Private Information Retrieval

In the Symmetric PIR setting, the sender owns a set Y = {y1, . . . , yN} of cardinality N , and the
receiver wants to retrieve an element of the sender’s set with a private index µ. To this aim, the
sender defines F = (fj)j as a vector of representations of their set elements in Rt, the receiver
has a representation m = τ(µ) of their index µ in Rt. But using our previous notations, we want
to define M = (mj)j , with mj = δµ,j , where δ is the Kroenecker symbol (δi,j = 1 if i = j and 0
otherwise): 〈F,M〉 =

∑
fjmj =

∑
δµ,jfj = fµ, which is the µ-th element in the sender’s set.

F Parameter Calculations

F.1 RNS Compatible Application

In order to use the SEAL FV implementation for our scheme, we need to be able to take a
modulus q that is a product of primes on less than 60 bits. This implies higher false positive
probabilities given by the Schwartz-Zippel lemma, hence we need repetitions in our proofs to
obtain the required soundness. This changes our parameter values, with q = p1 × . . . × p`,
p = min{p1, . . . , p`}, and p ≥ 2S · 4N`.

The size of the proof depends a lot on Λ. The larger N/n is, the shorter the proof, but S
also has a huge impact, when S makes Λ decrease, with the number of encodings. However,
when S grows, so does p, which can make the FHE ciphertexts heavier.

F.2 Summary of Commitments and Checks

In Figures 4, 5, and 6, we present a summary of all the parameters according to the expected
security levels.
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#Prover-Generated Commitments: c 2 3

εc = 2−38 K 26 35
M (and binding case #Scalars) 20 20
#Equations (hiding case) 2184 2940
#Secrets (hiding case) 4448 5960
#Encodings for 1v Pol. 572 770
#Encodings for 2v Pol. 1092 1470

εc = 2−136 K 75 100
M (and binding case #Scalars) 62 62
#Equations (hiding case) 18900 25200
#Secrets (hiding case) 38048 50648
#Encodings for 1v Pol. 4800 6400
#Encodings for 2v Pol. 9450 12600

Fig. 4. Parameters for Commitments with p ≥ 64`D, four repetitions in the zero-knowledge
proofs, εs = 28 · εc, and νe = 21.

Equation c

u(X,Y )− vκ(Y ) = (X − βκ) · wκ(X,Y ) 3
u′(X,Y )− v′κ(Y ) = (X − βκ) · w′κ(X,Y ) 3

l(X)− lκ = (X − βκ) · lκ(X) 2
l′(X)− l′κ = (X − βκ) · l′κ(X) 2

vκ(Y ) · tκ(Y )− (bκ + lκ · rκ) · Y N = yκ(Y ) 2
v′κ(Y ) · tκ(Y )− (b′κ + l′κ · rκ) · Y N = y′κ(Y ) 2

f∗(X,Y )− g∗κ(Y ) = (X − βκ) · h∗κ(X,Y ) 3

q∗(X)− q∗κ = (X − βκ) · q∗κ(X) 2
q′∗(X)− q′∗κ = (X − βκ) · q′∗κ (X) 2

vκ(Y ) · g∗κ(Y )− (d̃κ − z∗κ + q∗κ · rκ) · Y N = s∗κ(Y ) 3

v′κ(Y ) · g∗κ(Y )− (d̃′κ − z′∗κ + q′∗κ · rκ) · Y N = s′∗κ (Y ) 3

ū∗(X) · u∗(X)− n∗u ·Xn−1 = x∗u(X) 3
ē∗1(X) · e∗1(X)− n∗e,1 ·Xn−1 = x∗e,1(X) 3
ē∗2(X) · e∗2(X)− n∗e,2 ·Xn−1 = x∗e,2(X) 3

u∗(X)− u∗κ = (X − 1/βκ) · u∗κ(X) 2
e∗1(X)− e∗1,κ = (X − 1/βκ) · e∗1,κ(X) 2
e∗2(X)− e∗2,κ = (X − 1/βκ) · e∗2,κ(X) 2

ū∗(X)− βn−1
κ · u∗κ = (X − βκ) · ūκ∗(X) 2

ē∗1(X)− βn−1
κ · e∗1,κ = (X − βκ) · ē∗1,κ(X) 2

ē∗2(X)− βn−1
κ · e∗2,κ = (X − βκ) · ē∗2,κ(X) 2

Total number of checked equations: νe = 17Λ+ 3

Fig. 5. Equations to verify with quadratic checks in our full protocol

#variables c
Binding

or
Hiding

Polynomials Domain #commitments

1v

2
B

l, l′, lκ, l
′
κ R1 2(Λ+ 1)

yκ, y
′
κ R5 2Λ

H
q∗, q′∗, q∗κ, q′∗κ R1 5Λ+ 2
u∗κ, e∗1,κ, e∗2,κ

3

B vκ, v
′
κ R4 2Λ

H

u∗, e∗1, e∗2,
ū∗, ē∗1, ē

∗
2

R1 6

x∗u, x
∗
e,1, x

∗
e,2 R2 3

g∗κ R4 Λ
s∗κ, s

′∗
κ R5 2Λ

2v 3
B u, u′,wκ,w

′
κ R3 2(Λ+ 1)

H f∗, h∗κ R3 Λ+ 1

Total 17Λ+ 16

Fig. 6. Number of Commitments in the Global Proof, and Size in Number of Encodings, with
Λ = d(3 + log2(3/εs))/(S + 1 + log2(N/n))e


