
A Fast Large-Integer Extended GCD Algorithm
and Hardware Design for Verifiable Delay

Functions and Modular Inversion
Kavya Sreedhar, Mark Horowitz and Christopher Torng

Stanford University, Stanford, USA,
skavya@stanford.edu horowitz@ee.stanford.edu ctorng@stanford.edu

Abstract. The extended GCD (XGCD) calculation, which computes Bézout coef-
ficients ba, bb such that ba ∗ a0 + bb ∗ b0 = GCD(a0, b0), is a critical operation in
many cryptographic applications. In particular, large-integer XGCD is the compu-
tationally dominant operation for two applications of increasing interest: verifiable
delay functions that perform squaring computations within class groups of binary
quadratic forms and constant-time modular inversion for elliptic curve cryptogra-
phy. Most prior work has focused on fast software implementations, and very few
works have investigated hardware acceleration. All previous hardware literature has
focused narrowly on variants of Euclid’s algorithm following the approach used in
optimized software. However, our work observes that XGCD hardware can perform
significantly faster by adopting variants of Stein’s binary GCD algorithm instead.
In this work, we conduct a detailed large-integer XGCD design space exploration
to quantify the tradeoffs between Euclid- and Stein-based algorithms for hardware
acceleration. We then explore new algorithm and hardware optimizations resulting
in an XGCD hardware accelerator that is flexible and efficient, supports fast and
constant-time evaluation, and is easily extensible for polynomial GCD. Our ASIC in
TSMC 16 nm calculates the XGCD of 1024-bit inputs in 294ns (36 to 211X speedup)
and constant-time XGCD of 255-bit inputs for inverses in the field of integers modulo
the prime 2255 − 19 in 87ns (31 to 470X speedup) over the state of the art.
Keywords: Extended GCD · ASIC · Verifiable delay function · Class groups ·
Squaring binary quadratic forms · Constant-time · Modular inversion · Curve25519

1 Introduction
Computing the greatest common divisor (GCD) is a fundamental operation in number
theory, with wide-ranging applications in cryptography [SRC20, NLRC10, RSA78, Mil85,
Kob87]. GCD algorithms repeatedly apply GCD-preserving transformations, primarily
building from Stein’s binary GCD algorithm [Ste67, Pur83, BK85, YZ86, Jeb93a, Sor94,
Por20] or Euclid’s algorithm [Leh38, Col80, Jeb93b, Web95, Jeb95, Sor95, WTM05].

Both of these algorithms rely on the fact that the GCD of two numbers is the same
as the GCD between their difference and the smaller number: GCD(a, b) = GCD(|a −
b|,min(a, b)). Stein’s binary GCD algorithm [Ste67] directly uses this property when both
a and b are odd but additionally removes factors of two to reduce the number of iterations:
GCD(a, b) = GCD(a/2, b) if a is even and GCD(a, b) = GCD(a, b/2) if b is even. Euclid’s
algorithm also uses this subtraction property but subtracts as many multiples of the smaller
input as possible: GCD(a, b) = GCD(min(a, b),max(a, b) mod min(a, b)).

Among the work derived from Stein’s algorithm, the Purdy algorithm [Pur83] also
removes factors of two when a, b are even but replaces the subtraction transformation with

mailto:skavya@stanford.edu
mailto:horowitz@ee.stanford.edu
mailto:ctorng@stanford.edu

2
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

GCD(a, b) = GCD(a+b
2 , a−b

2) to avoid determining min(a, b). Note that a± b will be even
when a, b are odd. The Plus-Minus (PM) algorithm [BK85] further avoids large-integer
comparisons by approximating the binary logarithm of the difference between the two
numbers. The two-bit PM algorithm [YZ86] avoids more comparisons by duplicating cases
in the PM algorithm and removing two factors of two in a single iteration.

Among the work derived from Euclid’s algorithm, Lehmer’s algorithm [Leh38] provides
faster solutions for large integers by leveraging the fact that most quotients in Euclid’s
algorithm are small and the initial parts of the quotients only depend on the most significant
bits (MSBs) of the large inputs. Other papers build on this work to present efficient
techniques to detect when approximate division based on the MSBs is correct, further
minimizing the number of large-integer divisions required [Col80, Jeb93b, Jeb95, Sor95].

Other developments in GCD algorithms focus on subquadratic algorithms that are
asymptotically fast since they are based on subquadratic multiplication. The first sub-
quadratic GCD algorithm was the Knuth-Schönhage algorithm [Knu70, Sch71]. This
algorithm uses a divide-and-conquer approach based on Lehmer’s algorithm to recursively
determine the quotients sequence. Further work more clearly details and extends these
ideas [Sch91, TY00, PW02, Möl08], including Bernstein and Yang’s more recent constant-
time approach [BY19] and a binary recursive approach based on Stein’s algorithm [SZ04].

Until recently, there has not been much other work on fast GCD algorithms or the
extended GCD (XGCD) computation that also computes Bézout coefficients ba, bb satisfying
the Bézout identity: ba ∗ a0 + bb ∗ b0 = GCD(a0, b0). However two recent developments
suggest an increasing need for faster XGCD algorithms and implementations:

1. Interest in squaring binary quadratic forms over class groups [Wes19] as a verifiable
delay function (VDF) [BBBF18], computation for which XGCD is the bottleneck

2. Realization that constant-time implementations of XGCD can still be faster compared
to Fermat’s method for use in modular inversion [BY19, Por20]

We further explain these applications in Section 2. Since these developments, there
have been four relevant papers in the XGCD hardware acceleration space that we are aware
of. The first pair of works present a low-latency XGCD ASIC design for 1024-bit integers,
targeting use for squaring binary quadratic forms over a class group [ZTW21], and an ASIC
for the full squaring computation that utilizes a different XGCD implementation [ZST+20].
The other two works present FPGA implementations for Euclid’s algorithm for 1024-bit
inputs [AHAJS16] and the recent Bernstein-Yang algorithm [BY19] for constant-time
modular inversion [DdPM+21]. All these papers provide point solutions to improve either
average runtime (for squaring binary quadratic forms) or worst-case runtime (for constant-
time modular inversion) by building from Euclid-based algorithms (citing its low number
of cycles and efficient software implementations). With the exception of [AHAJS16], these
papers all claim to be the first hardware paper for their target applications.

In this paper, we make three key observations. First, performance fundamentally
depends on both cycle count and cycle time, so purely targeting algorithms that minimize
cycle count, as prior work has done, can lead to non-optimal solutions. Second, for similar
reasons, algorithmic decisions that increase efficiency in software may not translate to
efficiency in hardware. Third, although individual applications may favor different points in
an XGCD design space, a single unified pareto-optimal design that can efficiently support
multiple applications is desirable given the cost of building an ASIC.

Leveraging these observations, we create an efficient parameterizable hardware archi-
tecture and conduct a detailed large-integer XGCD design space exploration to quantify
tradeoffs between Euclid- and Stein-based algorithms. Despite the lower number of cycles
for Euclid-based algorithms and the use of division approximations to improve cycle time,
we find that using redundant representations for back-to-back addition dramatically reduces
the cycle time for Stein-based algorithms, resulting in faster average runtimes (Section 3).

Kavya Sreedhar, Mark Horowitz and Christopher Torng 3

Table 1: Summary of application case studies using large-integer XGCD.
Squaring binary Computing inverses

quadratic forms over mod 2255 − 19 for
class groups [Wes19] Curve25519 [Ber06]

Constant-time No Yes
SOTA algorithm NUDUPL [JvdP02] Optimized Stein’s [Por20]
of XGCDs in SOTA 2 1
XGCD % of SOTA runtime 91% 100%
XGCD input bitwidth 1024+ 255
Requires minimal XGCD Yes for 2nd XGCD No
GCD = 1 Yes for 1st XGCD Yes
Other XGCD approaches [Lon19] Bernstein-Yang [BY19]
Non-XGCD approaches N/A Fermat’s Little Theorem
XGCD hardware work [ZST+20, ZTW21] [DdPM+21]

Interestingly, this approach also works well for constant-time applications that rely on
the worst-case runtime instead. We then consider the value of further algorithmic and
hardware optimizations (Section 4) for minimizing average versus worst-case runtime.

Our resulting 16nm ASIC is 8X faster than the state-of-the-art (SOTA) ASIC and 36X
faster than optimized C++ run on Apple’s 5nm M1 processor. These results enable squaring
binary quadratic forms 14X faster than C++ on the M1 and computing modular inverses
for Curve25519 31 to 470X faster compared to SOTA FPGA and software implementations.

2 Applications
In this paper, we focus on two cryptographic applications of XGCD that have drawn recent
interest – squaring binary quadratic forms over class groups as a verifiable delay function
and constant-time modular inversion for elliptic curve cryptography. We choose these
applications to represent two distinct spaces of application requirements. For verifiable
delay functions, the inputs are publicly known, and the goal is to reduce the average
runtime for fast XGCD. For modular inversion, the input is secret, so the goal is reduce
worst-case runtime (i.e., constant-time execution to protect against timing side channel
attacks). We summarize these applications in Table 1.

2.1 Verifiable Delay Functions (VDFs)
A VDF is a cryptographic primitive that requires a fixed amount of sequential work to
be evaluated despite available parallelism but is still efficiently verifiable [BBBF18]. As a
trapdoor function with fast verification but slow evaluation, VDFs are useful for adding
delays throughout decentralized systems to avoid adversarial data manipulation, with
applications detailed in [BBBF18]. In particular, VDFs have been considered a promising
candidate as the core function for blockchain systems to disincentivize dishonest behavior:
they have been integrated into the Chia Network’s blockchain design, while the Ethereum
Foundation and Protocol Labs anticipate that VDFs will also be crucial to their designs.

One proposed VDF construction is exponentiation in a group of unknown order such as
an RSA group [Wes19, Pie18] or a class group [Wes19], which requires T sequential squar-
ings to compute f(x) = x2T [BBF18]. The Chia Network chose to incorporate [Wes19]’s
construction of squaring binary quadratic forms1 over a class group as a VDF in their
blockchain design. The company has hosted several competitions for fast software imple-
mentations for this computation. Both the Chia Network reference and the competition

1We refer the reader to Buell’s textbook [Bue89] for detail on binary quadratic forms.

4
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

Table 2: NUDUPL algorithm software profiling with 1024-bit inputs.
% of runtime in % of runtime in few

Operation 99.999% of squarings remaining squarings
XGCD 91 85

Modular Multiplication 5 8
Additions, Multiplications, Divisions 4 7

winner chose to implement the SOTA NUDUPL algorithm [JvdP02]. This algorithm not
only computes this squaring, but also partially reduces the output values to help with a
later reduction step that ensures values stay within a certain size.

Profiling the operations required for the NUDUPL algorithm with 1024-bit inputs shows
that XGCD is computationally dominant, requiring 95% of the total runtime (Table 2).
We averaged over one million trials of the Chia Network’s reference C++ implementation
on a 2020 MacBook Pro with the M1 chip, compiled with g++ and -O3 optimization, and
used the standard C++ chrono library with nanosecond precision. The algorithm takes
one of two branches each squaring depending on whether the size of intermediate variables
need to be reduced. The branch taken significantly more often (99.999% of the time)
computes two XGCDs: the first is the conventional XGCD while the second is a partial
XGCD that terminates when the remainder in Euclid’s algorithm is below a precomputed
value instead of waiting until it is zero. The other branch only requires the first XGCD.

In the first XGCD, the GCD will always be one, so the critical result is finding any
pair of Bézout coefficients. We observe that the partial XGCD can be replaced by a full
XGCD that does not terminate early and still return valid results as long as the Bézout
coefficients are one of the two minimal pairs possible. While multiple solutions can satisfy
Bézout’s identity for a pair of inputs, only minimal pairs guarantee that the absolute
values of the coefficients are less than the absolute values of the inputs divided by the
GCD. Euclid’s algorithm always returns such a pair, while Stein’s-based algorithms may
need few additional iterations or a final correction to produce minimal results.

Understanding how much dedicated hardware can accelerate this algorithm helps
determine the security level needed to guarantee a certain amount of time has passed with
the sequential work in the VDF evaluation, informing the number of squarings required and
the minimum input bitwidth. Thus, high performance is the primary objective for VDF
solutions. Furthermore, VDFs require sequential work, so area and power consumption are
lesser concerns since not much computation can be done in parallel. Finally, since there
is a verification step, VDF inputs are not secret and timing attacks are not a security
concern, so this application does not require constant-time evaluation. Thus, it is beneficial
to minimize the average XGCD runtime even if the worst-case runtime does not improve.

Since XGCD dominates runtime, there is interest in high-performance solutions, and
only few prior works consider XGCD hardware acceleration outside of a constant-time con-
text [ZST+20, ZTW21, AHAJS16], we use this application as a case study to demonstrate
the effectiveness of our XGCD design. To further ensure our XGCD speedup translates well
into overall squaring speedup, we investigate accelerating the other operations required,
which consist of one modular multiplication and various additions, multiplications, and
divisions. We describe our hardware for these large-integer arithmetic operations and the
resulting runtime for this algorithm Section 5. We find that our XGCD algorithm and
design coupled with efficient large-integer multiplication and division algorithm implemen-
tations result in an efficient accelerator for this squaring. To our knowledge, our work is
the first paper considering hardware acceleration for the NUDUPL algorithm.

Finally, we note that there are varying reports on a reasonable input bitwidth for
applications using class-group-based VDFs, ranging from 833 bits [HM00] to 3000+
bits [DGS20]. Since the Chia Network uses 1024-bit inputs and recent prior work has done
the same [ZST+20, ZTW21], we evaluate 1024-bit XGCD as well. Note that our hardware

Kavya Sreedhar, Mark Horowitz and Christopher Torng 5

implementation is parameterizable and can easily generate the larger bitwidth hardware,
and our use of redundant binary representation (Section 4.2) makes the cycle time of our
hardware relatively independent of the input bitwidth, as shown in Section 6.

2.2 Modular Inversion
A modular inverse of an integer x (mod y) is defined as the integer x−1 such that x∗x−1 =
1 (mod y). This computation is used in public key cryptography, including RSA [RSA78]
and elliptic curve cryptography (ECC) [Mil85, Kob87]. In both these applications, there
are values that need to be kept a secret: in RSA, the secret key is generated by inverting
the public key and in ECC, the value that needs to be inverted is a secret while the
modulus is publicly known. Thus, there is a need for constant-time solutions where the
execution time does not depend on the secret values, making such systems invulnerable
to timing attacks. In the case of ECC, computing the modular inverse needs to take the
same execution time regardless of the input value.

One part of ECC consists of elliptic curves defined over a finite field of positive integers
modulo a prime number p. Curve25519 is one of the fastest and mostly commonly used
elliptic curves defined with p = 2255 − 19 [Ber06]. Operations on points of the elliptic
curve consist of field operations, one of which is modular inversion with modulus p. This
modular inversion is the most time-consuming field operation needed. As a result, many
ECC implementations use different coordinate systems such as projective coordinates for
most of the computation to avoid inversions, resulting in one inversion at the end [Ras17].

There are two common approaches to find the modular inverse when the modulus
is prime. The first method is Fermat’s little theorem (FLT) [DG11], which states that
x−1 = xp−2 mod p). For Curve25519, this computation requires 254 squarings and
11 multiplications [Ber06, BY19]. The second method finds the XGCD between x, the
value to be inverted, and p, the modulus with the Bézout coefficient associated as x
as the resulting inverse x−1. This is a valid approach because x ∗ x−1 = 1 (mod p) →
x ∗ x−1 − 1 = 0 (mod p) → x ∗ x−1 − 1 is divisible by p, so x ∗ x−1 − 1 = y ∗ p for some
y or x ∗ x−1 − 1 = −z ∗ p for z = −y. This can be rewritten as the Bézout Identity:
x ∗ x−1 + z ∗ p = 1. Thus, finding the XGCD returns the Bézout coefficient x−1, as desired.

Until recently, FLT was more often used to find modular inverses because it could
more efficiently be implemented with a constant-time execution [XGW+17] compared to
constant-time XGCD implementations. In 2019, the Bernstein-Yang algorithm showed that
it is possible for constant-time XGCD to be faster than FLT by designing a subquadratic
XGCD algorithm building from Lehmer’s algorithm [BY19]. In 2020, Pornin instead
optimized Stein’s algorithm to build a software implementation faster than the Bernstein-
Yang algorithm for computing inverses mod 2255 − 19 on recent 64-bit x86 CPUs [Por20].
Pornin’s implementation is used for the key pair generation of (1) RSA in the BearSSL
library [Por18] (a C implementation of the SSL/TLS protocol) and (2) Falcon [FaPKL+]
(a cryptographic signature algorithm part of the NIST Post-Quantum Cryptography
Project [nis17]). In 2021, a software implementation of the Bernstein-Yang algorithm
was shown to be up to 2.5X faster than FLT implementations in most cases and was
incorporated in the MirageOS unikernel operating system [HAS21]. However, this work is
3.8X slower than Pornin’s results for Curve25519 [HAS21], so Pornin’s work remains the
state of the art for computing inverses mod 2255 − 19 in software.

The only hardware paper on constant-time XGCD that we are aware of implements
the Bernstein-Yang algorithm on an FPGA and is faster than prior FLT-based designs
for Curve25519 [DdPM+21]. We note that the FPGA runtime is slower than the software
records [BY19, Por20] since the FPGA design is run at a much lower frequency (207 MHz)
compared to frequency of the Intel processors (2.3 GHz) in the software papers, and the
FPGA is built in a 16nm node while the processors are built in 14nm.

6
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

These recent papers show the fast adoption of XGCD-based modular inversion, par-
ticularly with the modulus 2255 − 19. We observe that all but Pornin’s approach uses
Euclid-based algorithms to compute the XGCD. Given the growing interest in constant-time
XGCD implementations, we conduct a detailed design space exploration to determine which
algorithmic approach is more suitable for high performance with hardware acceleration.

3 Performance Analysis of Extended GCD Algorithms
The existing works in Section 2 each represent point solutions in the space of XGCD
hardware acceleration. In this section, we take a more holistic view of the design space
over multiple axes, including the target platform (software versus hardware), the impact
of choosing different algorithmic families (Euclid versus Steins), and the requirements
of our two application spaces (minimizing average-case performance versus worst-case
constant-time performance). We end by selecting the family of XGCD algorithms that
offers the most potential for fast hardware acceleration.

3.1 Software versus Hardware Platform
In both software and hardware contexts, computation time is the product of cycle count
and cycle time. This relationship remains true for both optimized software (with CPU cycle
count and CPU clock frequency) and custom hardware implementations (with accelerator
cycle count and accelerator clock frequency). However, software and hardware developers
view these two quantities in different ways. From the perspective of a software developer,
CPU clock frequency is fixed within a predetermined range and not under the developer’s
control. There is a limit to the fastest frequency at which a CPU can clock. As a result, fast
software algorithms optimize for cycle count but largely ignore cycle time. On the other
hand, hardware can be designed aggressively for extremely short cycle times. This opens
the opportunity to select algorithms with higher cycle counts but far simpler operations,
resulting in a faster overall computation time.

As described in Section 2, most prior work has focused on optimized software algorithms.
To consider optimal XGCD in the hardware context, the remainder of this section evaluates
XGCD algorithmic families in the context of both cycle count and cycle time.

3.2 Families of Extended GCD Algorithms
The two major families of XGCD algorithms that we consider include the variants of
Euclid’s algorithm and Stein’s algorithm. While we also consider asymptotically fast
sub-quadratic GCD algorithms described in Section 1, for the size of the input bitwidths in
our applications (1024 bits for squaring binary quadratic forms, and 255 bits for computing
inverses mod 2255− 19), existing literature with detailed profiling already strongly suggests
that Euclid’s and Stein’s algorithms are faster [Möl08]. As a result, we exclude this
family from our exploration. To quantify the tradeoffs between Euclid- and Stein-based
algorithms, we compare the number of iterations required for both classes of algorithms
in the average case and in the worst case (i.e., constant time). We will then estimate
the cycle times of optimal hardware implementations to determine that which family of
algorithms is more promising for faster overall computation time.

3.3 Comparing the Number of Iterations
Average Number of Iterations Required We generate uniform random 1024-bit
inputs for various GCD algorithms with our functional models in Python and find that, as
expected, Euclid’s algorithm requires the fewest average number of iterations: 598. Since

Kavya Sreedhar, Mark Horowitz and Christopher Torng 7

Stein’s algorithm reduces only a factor of two each cycle, it requires 3.6X the number of
iterations. The PM algorithm requires even more iterations compared to Stein’s algorithm
since it can incorrectly approximate whether a or b is larger. The two-bit PM algorithm
reduces more bits each iteration and requires only twice the number of iterations required
for Euclid’s algorithm. Since Euclid-based algorithms require fewer iterations but more
expensive operations compared to Stein-based algorithms, prior work has focused reducing
the time per iteration (and not iteration count) for Euclid-based algorithms. Thus, we find
that most optimized Euclid algorithms all still require 598 average cycles [Leh38, Sor95].

Worst-case Number of Iterations Required We next consider the number of
iterations required for these algorithms in the worst-case. For Euclid’s algorithm, the
maximum number of iterations is 5 log(min(a, b)) [Mol97], when the inputs are Fibonacci
numbers [Lam44]. For 1024-bits, this evaluates to 1541 iterations. From the Stein-based
algorithms, we observe that the original Stein’s, PM, Purdy, and two-bit PM algorithm are
all able to reduce one bit when a or b is even, but only the two-bit PM algorithm is able
to reduce two bits instead of just one when a, b are odd. In addition, the approximations
that the PM and two-bit PM algorithms make (to avoid comparisons that inefficiently
result in reducing the smaller number instead of the bigger) do not occur often enough for
their worst-case iterations to be higher than Stein’s or Purdy’s algorithm [BB87].

Thus, the two-bit PM algorithm requires the lowest worst-case number of iterations out
of these Stein-based algorithms at 1.51∗ log2(min(a, b)) + 1 iterations [YZ86]. Interestingly,
this evaluates to 1547 iterations, which is very close to Euclid’s 1541 iterations. In general,
these equations closely track each other for the range of bitwidths we are interested in and
the maximum number of iterations for the two-bit PM case is barely above that required
for Euclid’s algorithm. Given the simplicity of operations in the two-bit PM algorithm
compared to those in Euclid’s algorithm, the cycle time for the two-bit PM algorithm will
likely be faster than that for Euclid’s algorithm, as we estimate below. Since both require
essentially the same worst-case number of cycles, the two-bit PM algorithm will likely
yield faster runtimes for constant-time implementations and offers a faster starting point.

3.4 Comparing the Cycle Time
We use 1024-bit inputs for the below estimates. To report technology-agnostic delays, we
report our cycle time estimates in carry-save adder (CSA) delays, with CSAs explained
briefly below and in more detail in Section 4.2. In terms of basic logic gates, one CSA
delay is roughly the delay of two XOR gates.

Two-bit PM Cycle Time Estimate In the average case, the two-bit PM algo-
rithm [YZ86] (Listing 1) requires twice the number of cycles as Euclid-based algorithms.
Thus, the two-bit PM algorithm could be faster if its hardware critical path, which sets
the clock cycle time, is less than half of the critical path of the Euclid algorithm. We find
this to be the case if the two-bit PM hardware uses CSAs to perform the 1000+ 1024-bit
additions required. CSAs require a constant delay independent of bitwidth. These adders
output numbers in redundant binary or CSA form, which uses two bits to represent one bit
of the original value, as explained in Section 4.2. To compute XGCD with the two-bit PM
algorithm (Section 4.1), the worst-case chain of operations requires two additions between
two values in CSA form and one constant. CSAs take in three inputs, so we estimate this
delay as the delay for three carry-save adds. We multiply this cycle time delay estimate by
the average number of cycles to estimate the total runtime as 3588 CSA delays.

Euclid Cycle Time Estimate Euclid’s algorithm applies the same sequence of
operations to find the GCD and the two Bézout coefficients. These operations can be
done in parallel, so we can estimate the cycle time for the algorithm by considering how
we can optimally implement the operations required to compute remainder sequence
max(a, b) mod min(a, b) each cycle to find the GCD. This sequence is determined by
generating the quotient q = max(a, b)/min(a, b) and then computing the remainder with

8
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

max(a, b) − q ∗ min(a, b) every cycle. Since this algorithm requires a subtraction every
iteration, it is advantageous to keep our variables in CSA form in this case as well to avoid
the carry-propagation for large-integer subtraction each cycle (Section 4.2). Note that in
CSA form, we cannot determine whether a or b is greater since their actual values are
not directly stored, but we can perform this comparison once at the start and continue
swapping the values each iteration. For simplicity, we denote a as the larger number and b
as the smaller number in this discussion, rewriting the core computation as a− q ∗ b.

Prior work has introduced the idea of dividing just the most significant bits (MSBs) and
computing the full large-integer division if the approximate division does not return correct
results [Leh38, Jeb93b, Jeb95, Sor95]. Note that the number of iterations stays the same,
but the number of iterations requiring a large-integer division is lower. We build upon this
work to estimate the delay for an optimal hardware implementation for such algorithms.
When considering only the c MSBs of the divisor and the dividend, an optimal way to
implement division in hardware is to use a look up table (LUT) that takes as input pairs
of c bits and outputs an approximate quotient. We require this quotient to be less than
or equal to the true quotient, since subtracting a smaller factor will still result in a valid
quotient and remainder sequence for Euclid’s algorithm but just require more iterations.
This is accomplished by storing the quotient for all these c-bit pair combinations, assuming
that the remaining 1024− c bits of the 1024-bit dividend are all zero while the remaining
bits of the 1024-bit divisor are all one. In this way, every approximate quotient guarantees
a valid quotient that can be used to generate a valid remainder every iteration.

We note that the size of the LUT inputs is 2 ∗ c, so the LUT will have 2(2∗c) entries.
Thus, the LUT size grows exponentially, requiring over a million entries for c > 10,
which is impractical. Thus, we consider the delays for when c = 5 and c = 8 to have
reasonably-sized LUTs. Since the a, b are in CSA form, we require a c-bit carry-propagate
addition to get the LUT inputs, equal to blog2(c)c CSA delays with an efficient adder
implementation. Note that in this approach, we can reduce at most c bits every cycle
(aside from any additional lucky cancellation), so more than an average of 598 iterations
are likely required since that count assumed that any number of bits could be reduced
every iteration. If we keep the conservative estimate of 598 iterations for the algorithm
(which will not reflect the advantage of using c = 8 compared to c = 5), the total delay
for getting the inputs for the look up alone requires blog2(5)c ∗ 598 = 1196 CSA delays
when c = 5 or blog2(8)c ∗ 598 = 1794 when c = 8. The CSA approach with the resulting
higher cycle count is still preferable since the alternative approach requires 598 1024-bit
carry-propagate subtractions, i.e., 5980 CSA delays. Note that the time for lookup would
require additional delay since the LUT sizes are 1024 and 65536 for c = 5 and c = 8,
respectively, but this delay is not included in these conservative estimates.

After this look up, we need to multiply the c-bit quotient, qc, by the 1024-bit divisor to
get qc∗b for computing the remainder. Since b is in CSA form, we require two multiplications
to compute this result. Thus, the delay for this operation is equal to the delay of generating
2 ∗ c partial products and using CSAs to sum them together, with the final result stored
in CSA form. We do not include the delay for generating the partial products in our
conservative estimates. To sum the partial products: for c = 5, we need to sum ten
numbers. With three-input CSAs, we first require d 10

3 e = 4 CSAs which output 4 ∗ 2 = 8
results. Similarly continuing to reduce the number of results until two results that store
one number in redundant form are left requires d 10

3 e+ d 8
3e+ d 6

3e+ d 4
3e = 4 + 3 + 2 + 1 = 10

CSA delays. For c = 8, we similar find that adding the partial products requires 16
CSA delays. Multiplying these values by the conservative 598 estimate for the number of
iterations gives 5980 and 9568 delays for this multiplication in the c = 5 and c = 8 cases,
respectively, making this the most expensive operation required each iteration.

To compute the remainder, we need to subtract a− qc ∗ b. Since qc ∗ b, a are in CSA
form, we require two three-input CSAs. Then, each iteration requires two additional CSA

Kavya Sreedhar, Mark Horowitz and Christopher Torng 9

delays, resulting in a total of 1196 more CSA delays. Finally, after all the iterations are
over, we need to compute one 1024-bit carry-propagate add to convert the final results out
of CSA form, requiring log2(1024) = 10 CSA delays.

Thus, our delay estimate for an optimal implementation of Euclid-based algorithms is
1196 + 5980 + 1196 + 10 = 8382 CSA delays with c = 5, which is 2.3X higher than our
two-bit PM delay estimate. Furthermore, we note that our delay estimate for Euclid-based
algorithms is conservative. In addition to the reasons noted as we derived the estimates,
we note that an efficient implementation would require a c-bit leading ones detector to
determine where the most significant bits start in the 1024-bit variables every iteration,
which will contribute some additional delay every cycle. Furthermore, if more than c bits
are able to be cancelled based on the lower bits of the numbers, then this detector would
not accurately find the MSB and require more computation and/or cycles to adjust for
that. Note that due to our conservative cycle count estimate, the delay for c = 8 is higher
and we compare the delay of the c = 5 case since it is the lower estimate.

Finally, we note that alternatively using fast large-integer division algorithms [Fly70,
Gol64] would require about 15 iterations per division in Euclid’s algorithm, where each
iteration requires an 1024-bit by 1024-bit multiplication. This results in 15 ∗ 598 = 8970
expensive multiplications, which is already considerably more expensive than the two-bit
PM estimate and the more optimal implementation approach discussed above.

3.5 Summary
We have made the following key observations. First, software algorithms tend to optimize
performance for cycle count (as most literature has done), but when designing hardware, it
is more efficient to switch to an algorithm that optimizes both cycle time and cycle count.
We note that for both our motivating applications, the existing ASIC and FPGA papers
choose to adapt existing high-performing software algorithms that focus on variants of
Euclid’s algorithm [ZST+20, ZTW21, DdPM+21]. Second, we conclude that for a hardware
design context, using redundant representations with the two-bit PM algorithm is more
promising compared to accelerating variants of Euclid’s algorithm. Third, we find that
this decision can be expected to improve both average-case and worst-case performance.

4 Fast XGCD Algorithm and Hardware Design Space
Our performance analysis in Section 3 motivates a deeper evaluation into Stein-based
algorithms in the context of hardware acceleration. This section presents and evaluates an
algorithm and hardware design space within this context. Before we begin, we first note
that the fastest existing algorithm in our analysis was the two-bit PM algorithm [YZ86]
(see Listing 1). However, this algorithm was originally not completely specified and did
not address corner cases that require updating odd intermediate Bézout coefficients. We
therefore begin by contributing a complete extended two-bit PM algorithm. With this
modified algorithm, we then present a series of both algorithmic modifications (handling
carry propagation for the termination condition and increasing the number of bits reduced
per cycle) as well as hardware design choices (using carry-save adders and minimizing
control overhead) that together enable high-performance XGCD hardware acceleration
with an extremely short cycle time. Finally, we show how our XGCD design easily supports
constant-time evaluation and polynomial XGCD.

Notation-wise in this section, we note that GCD algorithms usually consider the case
when the inputs are odd for simplicity, since common factors of two can be easily removed
by shifting before the main computation loop. If one input is even after this reduction, we
add the two inputs so that both inputs are odd, as in [YZ86]. Let a0 and b0 represent the
true initial inputs and let am and bm represent the odd inputs after shifting.

10
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

11. [initialization] δ := 0 and a := A and b := B
22. [iterations] case 1 (EVEN(a/2) and EVEN(a)): a := a/4 and δ := δ − 2
3case 2 (not EVEN(a/2) and EVEN(a)): a := a/2 and δ := δ − 1
4case 3 (EVEN(b/2) and EVEN(b)): b := b/4 and δ := δ + 2
5case 4 (not EVEN(b/2) and EVEN(b)): b := b/2 and δ := δ + 1
6case 5 (δ ≥ 0 and EVEN(b+a

2)): a := b+a
4 and δ := δ − 1

7case 6 (δ ≥ 0 and EVEN(b−a
2)): a := b−a

4 and δ := δ − 1
8case 7 (δ < 0 and EVEN(b+a

2)): b := b+a
4 and δ := δ + 1

9case 8 (δ < 0 and EVEN(b−a
2)): b := b−a

4 and δ := δ + 1
103. [termination condition] return GCD= a+ b if a = 0 or b = 0, or repeat step 2

Listing 1: Two-bit PM algorithm [YZ86]. δ ≈ log2(a)− log2(b) ≈ a− b to check if a > b.

Table 3: Update possibilities for Bézout coefficient variables u,m when a is shifted by two.

Divisibility of u,m uupdate mupdate

u,m divisible by 4 u/4 m/4
u,m divisible by 2 but not 4 (u+ 2 ∗ bm)/4 (m− 2 ∗ am)/4
u+ bm,m− am divisible by 4 (u+ bm)/4 (m− am)/4
u+ bm,m− am divisible by 2 but not 4 (u+ 3 ∗ bm)/4 (m− 3 ∗ am)/4

4.1 Complete Extended GCD with Two-Bit PM
Typically, existing GCD algorithms can be extended to calculate the Bézout coefficients
by introducing four intermediate variables u,m, y, n such that the relations in Equation 1
hold true for inputs a, b in every iteration. At the start of the main computation loop,
a = am and b = bm, so the initial values must be u = 1,m = 0 and y = 0, n = 1.

u ∗ am +m ∗ bm = a

y ∗ am + n ∗ bm = b
(1)

The two-bit PM algorithm updates either a or b each iteration. When a is not updated,
there is no need to update u,m since Equation 1 automatically holds. The same goes for b
and y, n. When a or b is divided by 2n, we need to divide u,m or y, n by the same factor
to maintain the relations in Equation 1. However, the divisibility of u,m and y, n are not
guaranteed to match the divisibility of a and b, respectively, and if odd values are shifted,
the truncated results will not preserve these relations. We need to address this problem.

We consider the shift-by-one case first. Assume, a is even and thus divided by two.
We need to ensure that uupdate ∗ am + mupdate ∗ bm = a

2 . If the previous u,m are even,
the update is straightforward: uupdate = u

2 ,mupdate = m
2 . If the previous u,m are odd, we

add bm to u and subtract am from m as similarly done to extend the PM algorithm to
compute XGCD [BK85]. Since bm, am are odd by construction and the sum of two odd
numbers is even, u+ bm,m− am will be even. Then, we are still able to reduce one bit
by computing uupdate = u+bm

2 ,mupdate = m−am

2 . This update preserves the relation in
Equation 1, since we have added and subtracted am∗bm

2 from the result.
For the shift-by-two case, we can apply our updates rules for the shift-by-one case

twice to satisfy uupdate ∗ am +mupdate ∗ bm = a
4 . Then, the worst-case update rule for the

shift-by-two case is when m is not divisible by two and m− am is not divisible by four,
resulting in mupdate =

m−am
2 −am

2 . To reduce this update delay, we rewrite this update as
m−3∗am

4 , noting that rounding due to the truncation when shifting is preserved. Since am

is known at the start of the computation, 3 ∗ am is a constant that we can precompute
beforehand.2 We similarly rewrite the other u,m updates as shown in Table 3. Thus, the

2We compute 3 ∗ am as 2 ∗ am + am, so it requires one cheap left shift and one addition.

Kavya Sreedhar, Mark Horowitz and Christopher Torng 11

worst-case update delay is half the original form and similar to the shift-by-one case.
While cases one through four of the two-bit PM algorithm (Listing 1) apply updates

directly with a or b, the last four cases apply updates on a± b and then reduce two bits.
To preserve the relations in Equation 1 in cases five through eight, we apply a similar
strategy to that used in the shift-by-two case on u± y, m± n instead of individually on
u, y,m, n. Thus, in these cases, we can substitute u with u ± y and m with m ± n in
Table 3. Thus, the critical path in this algorithm has two subtractions and one right shift
to compute the update for m in case six and n in case eight (m−n−3∗am

4), requiring an
extra subtraction compared to the worst-case operations in the first four cases.

Finally, at the end of the computation, we add the equations in Equation 1 to get
(u + y) ∗ am + (m + n) ∗ bm = a + b = GCD(am, bm) since a + b will ultimately be the
GCD. Then, we calculate the Bézout coefficients as ba = u+ y and bb = m+ n.

4.2 Carry-Save Adders
Carry-save adder (CSA) designs improve the delay of back-to-back additions by removing
carry propagation in all intermediate computations. This results in O(1) delays rather than
O(log(n)), where n is the input bitwidth, making such savings important in wide-word
arithmetic with large bitwidths. CSAs output the sum in CSA form, or redundant binary
form, where two bits represent one bit of the result. In this form, a number x is represented
by carry and sum, where x = carry + sum. Since CSAs have a constant delay, the cycle
time for our designs will not be very sensitive to the input bitwidth.

Since our XGCD iterations require repeated additions to update a, b and u,m, y, n,
we can benefit from relatively fast carry-save additions during the iterations until a time-
consuming carry-propagate add at the end to convert out of CSA form. This approach
reduces the number of carry-propagate additions from O(n), where n is the number of
iterations, to O(1). During the iterations, we keep most variables in CSA form. However,
we directly store and update δ, an approximation of a− b, out of CSA form since we need
to check the sign of δ every cycle to determine which branch to take, and the sign of a
number is not directly known in CSA form. Since this variable is small (log2(1024) = 10
bits with 1024-bit inputs), carry-propagate adds to update this value do not limit the
cycle time. As a result, for constant-time designs, we also keep a cycle counter, which
is log2(1.51 ∗ n + 1) bits (Section 4.6), out of CSA form, since it is similar in size to δ.
Additionally, there is no benefit to keep constants am, bm and their multiples k ∗ bm, k ∗ am

for k = 2 to k = 7 (Section 4.1) in CSA form since they are not continually updated.
While prior work has suggested using CSAs for GCD algorithms [Pur83, YZ86], we

found that using CSAs in practice surfaces challenges that have not been previously
addressed. We describe our solutions to these challenges below.

Remaining carry-propagate adds Carry-propagate adds are still required to (1)
add inputs a0 and b0 if one is even at the start to generate two odd inputs am, bm for the
initial values of a, b in the main computation loop, (2) precompute k ∗bm for k = 2 to k = 7
when k is odd (e.g., to compute 3 ∗ bm as 2 ∗ bm + bm), and (3) convert from CSA form to
normal representation at the end for the final results. We need to ensure these additions
do not limit our cycle time for the hardware to benefit from the delay savings of using
CSAs each iteration. Since these necessary carry-propagate adds occur either before the
iterations as in (1), (2), or afterwards as in (3), we run the initial and final computations
at one-half and one-quarter of the clock frequency of the system clock, respectively. This
slower frequency allows these few cycles at the start and end to support the longer carry
propagation while keeping the short CSA-defined cycle time as our system clock period.

Incorrect truncated results when shifting When carry and sum are shifted to
the right in CSA form, there is a need to efficiently add one to get the correct result when a
carry-in would have been generated by the shifted (now lost) bits. The inherent truncation
associated with the shift loses this information, resulting in an incorrect answer compared

12
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

to if we shifted (and truncated) the represented number out of CSA form. We note that
we cannot simply set the lower bit of carry or sum to be one to correct the result, since
the LSB for both can already be one after a shift. Thus, we instead use a half adder to
add the shifted carry and sum. This operation results in another (carry, sum) pair for
the same number represented in this split CSA form. Since the LSB of the carry output
from a half adder will be zero by design, we set that bit to one whenever we need to add
one back. In this way, we only add the delay of a single XOR gate for this correction.

Detecting when to apply this addition-by-one correction is cheap: an AND gate delay
in the divide-by-two case and an OR gate delay in the divide-by-four and divide-by-8 cases.
A carry-in to the next bit will be generated whenever the relevant LSBs of carry and sum
are not all zeros. In the divide-by-two case, we use an AND gate to check when the LSBs
are both odd. In the divide-by-four and divide-by-eight cases, we use an OR gate on the
second and third LSBs of carry and sum, respectively. This gate correctly detects all the
cases a carry-in is generated and the addition-by-one correction is needed. If the OR gate
output is one but the number is not divisible by four or eight, then the calculated result is
not used. As a result, there is no need for extra logic to detect the other bits.

Arithmetic right shifts Prior work approximates which of a, b is larger when both
are odd [BK85]. If the approximation is incorrect, the smaller number is updated, making
a, b (and u, y,m, n) negative. While the sign of a number cannot be directly determined
in CSA form, it can be preserved. Earlier work determines the relation between the two
most significant bits of carry and sum before and after shifting to the right [TPT06]. We
use the truth table from that paper to determine balanced equations for shifting numbers
in this form, with the worst-case delay equal to the delay for an XOR gate and an OR
gate. While this logic can be applied sequentially for dividing by higher powers of two, this
approach increases delay: physical design tools are unable to automatically simplify this
chained logic since this shifting logic is separated by a half adder for the addition-by-one
correction. As a result, we further specialize the logic when dividing by four and eight to
make the worst-case delay is in these cases equal to the delay for two OR gates.

4.3 Termination Condition Carry Propagation
Stein-based algorithms, including the two-bit PM, check whether a or b is equal to zero
to decide to exit the main computation loop. This check is expensive because checking if
a or b is equal to zero requires knowing what the actual values of a and b are. However,
since it is beneficial to store a and b in a redundant form when working with large integers
(Section 4.2), obtaining their actual values would require two parallel carry-propagate adds:
a = acarry + asum and b = bcarry + bsum. This computation would negate the benefit of
storing these numbers in a redundant form since we need to convert out of this form every
cycle with an expensive carry propagation. In addition, this operation requires a large
AND-gate tree to check whether all 2 ∗ n bits are zero every cycle, where n is the bitwidth
of the inputs. To improve the delay of this check, we investigated the tradeoffs of two
possible approaches and their suitability for software versus hardware implementations.

Sampling Our first approach spreads out the carry propagation for a = acarry + asum

and b = bcarry + bsum over x cycles and then samples the true values of a, b every x cycles.
For 1024-bit inputs, we find that x = 4 ensures these additions do not limit our cycle time.
We then run the XGCD iterations at our system clock frequency and run these expensive
additions over four clock cycles in parallel. With this approach, we can only check if the
termination condition has been satisfied every four cycles and in the worst case, require
four extra iterations to compute the XGCD. This is a very small overhead, with a range of
0.18 to 0.43% of the number of cycles for the (2, 2) to (8, 8) reduction factor designs in
Section 4.5. Since we can run this computation in parallel to our variable updates and it
minimally adds to the number of cycles, we use this approach in our hardware designs.

Approximating variables Our second approach repurposes α ≈ log2(a), β ≈ log2(b)

Kavya Sreedhar, Mark Horowitz and Christopher Torng 13

from the PM algorithm [BK85] in a novel way. These variables are updated every cycle
by the minimum number of bits a and b will be reduced by. Prior work further does
not store α, β but instead stores δ = α − β directly to approximate which number is
greater [BK85, YZ86]. We instead continue storing α, β to use these values for our
termination condition: when α or β is equal to zero, we run one more iteration (to ensure
either a or b is zero since α, β can equal zero when a, b are one) and initiate the final result
computation. In this way, we completely avoid the carry-propagation for a = acarry +asum

and b = bcarry + bsum since the termination condition no longer checks a, b. Also, since
α, β approximate the binary logarithms of a, b, we only need to check if log2(1024) ∗ 2 = 20
bits are zero instead of 2048 bits for 1024-bit inputs, reducing the AND-gate tree delay.

However, since α and β are approximations, we found that they significantly diverged
from the true values of log2(a) and log2(b). In particular, when a or b is updated with
a− b, multiple bits could be reduced, but only one bit is subtracted from α, β. As a result,
using α, β instead of a, b for the termination condition adds 150+ cycles for 1024-bit inputs,
which is a 7 to 16% overhead depending on the reduction factors used (Section 4.5).

We experimented with occasionally correcting the α, β approximations to be the true
values of log2(a), log2(b) for the a, b at a given point, which would require 1024-bit carry-
propagate adds. Since these additions can be computed in parallel, it is beneficial to run
this correction as often as possible – every four cycles as in the sampling approach. In this
way, α, β closely track the actual logarithms and at most four extra cycles are required.
However, this correction requires not only 1024-bit carry-propagate adds to convert a, b
out of CSA form, but also requires computing the absolute values of a, b since they can be
negative and then computing log2(|a|), log2(|b|). Thus, for a hardware design, the sampling
approach without α, β requires less computation, area, and energy.

4.4 Minimal Control Overhead
Having sped up the data path, we focus on minimizing the control path delay. We note
that our control logic for detecting divisibility by factors of two is not as simple as checking
if bits are zero since our variables are in CSA form. To minimize the delay for this logic,
we duplicate computation to allow the control signals to arrive as late as possible (late
selects) and precompute control signals each cycle for the next cycle’s branching decisions.

Late selects Either a, u,m or b, y, n is updated every cycle. The update logic for
(a, b), (u, y), and (m,n) is identical but requires different inputs. Using the same hardware
to perform these updates would thus add an extra two-to-one multiplexer before each
input compared to dedicating separate hardware for each variable, doubling the number of
branches to choose between. We instead intentionally duplicate modules to have separate
update modules for a, b and u, y,m, n to allow control signals to arrive late in the cycle.
We similarly apply this parallel computation and late select strategy wherever possible
within all the update modules as well. We note that some computation uses the same
inputs regardless of the updated variable (e.g. u± y in both the update u and y modules),
so we avoid redundantly computing such updates to save area and energy.

Precomputing control signals For 1024-bit inputs, our control signals determine
the updates for 1028-bit numbers since several extra bits account for carry bits from
repeated addition. As a result, these gates have very high fanout. For (4, 4) reduction
factor pair design, we originally observed that the critical path was the control path and
not the data path due to the 0.15ns of delay from several large buffers in 16nmn designs.

To reduce this delay, we compute the control signals to determine which branch to
take for the next cycle in parallel with computing the updates for a, b, u, y,m, n. We do
this instead of generating the control signals from the original values to determine which
branch to take in the same cycle. For example, when we update u, we compute whether
the updated u for the next cycle will be divisible by factors of two by computing the
divisibility of all the possible update options for u in parallel. Then, we select the right

14
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

Table 4: Runtime and area in 16nm technology for 1024-bit XGCD ASIC designs that
remove a maximum of different factors of two depending on whether a, b are even or odd.

Max factor of two Max factor of two Average Cycle XGCD ASIC
reduction when reduction when Number Time runtime area
a or b is even a and b are odd of Cycles (ns) (ns) (mm2)

2 2 2210 0.193 427 0.16
4 2 1845 0.218 402 0.21
8 2 1740 0.251 437 0.35
2 4 1450 0.234 339 0.22
4 4 1211 0.247 299 0.28
8 4 1143 0.257 294 0.41
2 8 1091 0.297 324 0.27
4 8 972 0.320 311 0.33
8 8 937 0.330 309 0.47

control signal update based on the u update chosen. To similarly compute the divisibility
of a± b, u± y, and n±m during the previous cycle as inputs for the next cycle, we add a
few XORs (≈ 20ps each in 16nm), which is still smaller than the 0.15ns large buffer delay.

This optimization eliminated enough buffer delay on the control path such that the
critical path is the data path for all the reduction factor pair designs we considered, except
for the (8, 8) design. In this design, the control path is dominant and has larger delay than
the data path due to the disproportional increase in the number of branches compared to
the computation required for higher odd reduction factors.

4.5 Optimal Reduction of Bits Per Cycle
Stein-based algorithms reduce the number of iterations required by removing factors of
two or four in an iteration. The higher factors of two that can be removed per iteration,
the fewer iterations required on average. When computing only the GCD, removing more
factors of two is cheap since that just requires shifting more bits to the right. However, for
the XGCD, reducing more bits requires more branches to choose between depending on
the divisibility of u, y,m, n. This added control logic can increase cycle time if deciding
which branch to take becomes more expensive than computing the updates required.

Thus, we explore this hardware design space to quantify the tradeoff between the cycle
time and the average number of clock cycles required to determine the optimal reduction
of bits per cycle. We separately vary the maximum reduction factor for the case of when a
or b is even and the case of when a and b are odd (referred to as even and odd reduction
factors) to see which parametrizations yield a net benefit for total runtime (cycles ∗ cycle
time) in the average and worst-case scenarios and for our two motivating applications.

We implement an odd reduction factor of two as updating a or b with a−b
2 (their sum

is never computed since we only either update a or b each cycle). We support a an odd
reduction factor of eight such that the worst-case path requires two subtractions and a
shift three bits to the right, with the procedure in Section 4.1. Our efficient rewriting
of the updates (requiring us to compute k ∗ bm and k ∗ am for k = 1 to k = 7 for the
three-bit reductions) maintains the same number of additions/subtractions on our data
path compared to the shift-by-two updates. Note that the following (even, odd) maximum
reduction factor pairs describe factors of two reduced in prior GCD algorithms: (2, 1) –
Stein’s algorithm, (2, 2) – Purdy’s and PM algorithms, and (4, 4) – two-bit PM algorithm.

Table 4 shows the runtime and area for designs with various reduction factor pairs.
Note that these designs include the other optimizations described in this section. The
worst-case data path is updating m,n when a and b are odd. Our efficient rewriting of

Kavya Sreedhar, Mark Horowitz and Christopher Torng 15

this computation as explained in Section 4.1 ensures that all the branches when a and b
are odd require the same amount of worst-case scenario computation. We observe that the
critical path (cycle time) is the data path for all the designs but the (8, 8) design. In that
case, the cycle time is dictated by the control path delay determining which branch to take
instead. Finally, we note that since an odd reduction factor of eight does not result in any
benefit in average cycle time compared to a reduction factor of four, designs with an odd
reduction factor of 16 or higher would not be beneficial since the increase in the control
logic delay and thus cycle time, outweighs the benefit of the lower number of cycles.

We observe that the XGCD runtimes for these designs are close to each other, especially
within a given odd reduction factor group. These results show that while we can reduce the
average number of cycles required by reducing more bits per cycle, the resulting increase
in the cycle time mostly cancels that benefit. Choosing which design to use depends on
the application requirements, primarily the number of XGCDs required, the importance of
a small design, and the necessity of a constant-time design.

These small XGCD runtime differences become important when this computation is
repeated many times. For squaring binary quadratic forms, the number of squarings
required can be over a million or billion as most applications require a large delay. Each
squaring requires two XGCDs in the NUDUPL algorithm, so a 5ns difference in XGCD
runtime can result in a 10ms to 10s difference for this application. Since this application
requires high performance, using the fastest design corresponding to the (8, 4) design
would be most appropriate and preferable over the 5ns-slower (4, 4) design.

For constant-time applications like modular inversion for Curve25519, we must consider
the worst-case number of cycles to determine the optimal reduction factors. The two-bit
PM algorithm – corresponding to the (4, 4) design – takes a maximum of 1.51n+1 cycles for
n-bit inputs [YZ86], which evaluates to 1547 cycles for 1024-bit inputs. In the worst-case
in every cycle, one bit is reduced if the values are even or one bit is reduced if the values
are odd (since either a+ b or a− b may generate a carry but will be divisible by four when
both a, b are odd). However, if δ incorrectly approximates whether a is greater than b,
than no bits will be reduced from the larger number and the smaller one will be updated.

The authors of the two-bit PM algorithm note that reducing three bits – corresponding
to the (8, 8) design – will not reduce the maximum number of cycles because there is no
guarantee that a+ b or a− b will be divisible by eight when a, b are odd (just as a and b
may not be divisible by eight when they are even), so these additional branches may never
be taken. We note that this logic extends for the (2, 8), (4, 8), (2, 4), and (8, 4) designs
as well since the only guaranteed transitions remain either reducing one bit when a, b are
even or dividing a+ b or a− b by four when a, b are odd. Thus, shifting by three bits is
beneficial for applications that require optimizing the average runtime but does not add
any further value for applications that require optimizing the worst-case time. In addition,
the two-bit PM algorithm with (4, 4) does not reduce the worst-case time compared to the
smaller and more energy-efficient (2, 4) design. Finally, we note that the average runtimes
for the designs with an odd reduction factor of two is higher than the worst-case runtime
for all the other designs, so these designs are not competitive in this context. Thus, the
optimal reduction factors for constant-time applications are (2, 4).

4.6 Extensions
Constant-time Constant-time implementations require the execution to take the same
amount of time regardless of the input values. In other words, the execution runtime
should always be equal to maximum runtime. Our XGCD algorithm can be padded to
achieve a constant-time algorithm. For any of the reduction factor pairs from Section 4.5,
running for any number of cycles beyond the nominal termination condition will still yield
the correct answer. Since the inputs to the main computation loop are preprocessed to
remove common factors of two, the GCD and valid Bézout coefficients will be found when

16
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

one of a or b is equal to zero and the other is equal to an odd number. Then, the algorithm
will continually detect one of these numbers to be even and keep dividing zero by a factor
of two. Note that when these values are stored in a redundant representation as explained
in Section 4.2, it is not clear when numbers become zero since they are not directly stored.
Thus, the termination condition can instead keep track of the number of cycles and when
that count is equal to the worst-case cycle count, the computation can end. As determined
in Section 4.5, our optimal design for constant-time XGCD is with reduction factors (2, 4),
which requires 1.51 ∗ n+ 1 number of iterations for n-bit inputs.

Polynomial XGCD We can use the same algorithmic control flow to find the GCD
between two polynomials with integer coefficients by describing the polynomial equivalents
for all the integer XGCD operations required, building from prior work [BK84, BY19].
Stein’s-based integer GCD algorithms reduce factors of two, the smallest prime. The
polynomial equivalent is reducing factors of x: x, x2, x3, Accordingly, evenness translates
to polynomial divisibility by x. To ensure adding/subtracting “odd” polynomials guarantees
an "even" result (as is the case with integers), we can multiply the polynomials by the other
polynomial’s constant term to enable cancelling the constant terms in addition/subtraction
to reduce the polynomial degree by at least one [BY19]. For comparisons, we compare
the degrees between polynomials. This maps all the integer GCD operations to valid
polynomial equivalents. To also find the polynomial XGCD, we maintain the same relations
in Equation 1 each iteration: am, bm are now polynomials, where am = a if a is not divisible
by x or a/x if a is, and similarly for bm with b. Then, we initially set u = 1,m = 0 and
y = 0, n = 1, as with integer GCD. The same updates can be applied by reducing factors
of x instead of 2 and adding/subtracting polynomial coefficients.

5 Complete Hardware Accelerators for Target Applications
We build a complete hardware accelerator for each of our two cryptographic applications.
For constant-time modular inversion, the XGCD hardware accelerator in fact directly
implements modular inversion and requires no additional hardware since the first Bézout
coefficient is the modular inverse result. This section will therefore describe our complete
accelerator for the VDF squaring application, which includes the remaining operations on
the critical path for the NUDUPL algorithm (see Section 2.1). Our implementations for
these non-XGCD operations are summarized in Table 5.

We first note that the additions on the critical path are in isolation, so there is no
benefit to using CSAs and we use efficient adders from our synthesis tool library. After the
first XGCD, every execution requires a single modular multiplication. Since this operation
is not repeated, conventional techniques like Montgomery multiplication (which converts to
an intermediate representation) and Barret Reduction (which precomputes constants) are
expensive and not effective. Given that this operation minimally contributes to runtime,
we naively implement x = y∗z (mod a) as a multiplication (m1 = y∗z), division d = m1/a,
another multiplication m2 = d ∗ a, and a subtraction for m1 −m2, which is equal to x.

For fast large-integer multiplication, Karatsuba multiplication [Kar63] was one of the
first algorithms introduced, requiring at most nlog2(3) ≈ n1.58 multiplications instead of the
traditional schoolbook algorithm’s n2 limit, given n-bit inputs. Karatsuba breaks up one
multiplication into three smaller ones and a few additions and shifts. This process can be
recursively applied to a base case input bit length. Implementing this algorithm in hardware
has proven popular [EhyMZ+08, vzGS05, ROH17, NdMM03a, NdMM03b, ZST+20].

The Toom-Cook algorithm [Too63, CA69] is a more efficient and general version of
the Karatsuba algorithm that splits numbers into some k parts (k = 3 for Toom-3, which
we implement). The commonly used Toom-Cook polynomial algorithm [BZ07] finds the
product of evaluating polynomials formed with the split numbers as coefficients at various
points to determine the product polynomial, and then uses the product’s coefficients to

Kavya Sreedhar, Mark Horowitz and Christopher Torng 17

Table 5: Critical path operations and our implementations for the NUDUPL algorithm.
Operation (Op) Implementation Op Runtime (ns) Count Total Runtime (ns)

Addition Designware 0.159 49 7.8
Parallel-Prefix Adder

Multiplication Toom-3 17.58 51 897
Inverter Standard cell 0.01 3 0.03
XGCD Our design with 294 2 588

(8, 4) reduction factors
Total 1492

1x xn−1 xn−2 ... x1 x0
2- 2x

3 yn−1 yn−2 ... y1 0
3------------------------------
4x

3 0 yn−1 ... y2 y1

Listing 2: Rewriting x
3 as x− 2x

3 to reduce the complexity of division by three in Toom-3.

get the answer to the original multiplication problem. This algorithm is well-suited for our
input size since it is slower than schoolbook multiplication for smaller numbers and the
fast fourier transform-based Schönhage-Strassen algorithm [Sch77] for numbers larger than
2215 . Few hardware designs use Toom-Cook [GL18, DLG18], however, since it requires a
division by three, which is typically not hardware-friendly. We reduce the complexity of
the division by rewriting x

3 as x− 2x
3 as shown in Listing 2. This allows us to calculate bit

by bit of the output, x
3 , which generates the next bit for 2x

3 to use in the subtraction.
Fast division algorithms include the Newton-Raphson [Fly70] and Goldschmidt [Gol64]

iterative algorithms, which convert division operations into multiplication and then use
fast multiplication methods. Both of these algorithms start with an initial estimate of the
quotient and require around the same number of iterations for similarly-sized inputs [ESF05].
Few papers focus on accelerating division algorithms in hardware [HSGJ10, ZST+20]. Since
there are only two divisions in our critical path and they constitute a small portion of
total squaring runtime, we implement the Newton-Raphson algorithm with Toom-3 for
multiplication. For 1024-bit inputs, this algorithm requires 15 multiplications and 15
additions. The additions and multiplications in Table 5 include the operations necessary
for the divisions with Newton-Raphson, so there is no separate row for division.

6 ASIC Evaluation
Setup We use a vertically integrated methodology spanning cycle-level performance
modeling, VLSI-level modeling, and detailed physical design before taping out our design.
We designed our RTL in Kratos 0.0.33 [Zha], a hardware design language capable of
generating SystemVerilog, and built a parameterizable testbench with Fault 3.052 [THS+20]
to verify our designs with different input bitwidths, reduction factors, and levels of constant
time support. We randomly generate inputs to verify our designs with our functional model
in Python. We use mflowgen 0.3.1 [CTN+21] for our physical design workflow which relies
on Synopsys DC 2019.03 for synthesis, Cadence Innovus 19.10.000 for floorplan, power,
place, clock tree synthesis, and route. All our numbers in this paper are signoff numbers,
reported after placing and routing our designs and executing the full physical design flow.

Unless otherwise specified, all C++ code is run on a 2020 MacBook Pro with the M1
chip, compiled with g++ and -O3 optimization, with random 1024-bit inputs. We use the
standard C++ chrono library with nanosecond precision for timing results.

ASIC Designs We evaluate two XGCD ASIC designs generated with different param-

18
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

Table 6: XGCD critical path breakdown for 1024-bit Design (1) and 255-bit Design (2).
Design (1) Design (1) Design (2) Design (2)

Operation Delay (ns) FO4 Inv Delay Delay (ns) FO4 Inv Delay
Local clock gating 0.035 3.9 0.018 2
DFF clk to Q 0.040 4.4 0.045 5
Inverter 0 0 0.007 0.8
Add u+ y: CSA 1 0.039 4.3 0.018 2
Add u+ y: CSA 2 0.039 4.3 0.031 3.4
Buffer 0 0 0.013 1.4
Add u+ y + 2bm: CSA 0.034 3.8 0.030 3.3
Shift in CSA form 0.018 2 0.015 1.7
Late select multiplexers 0.018 2 0.018 2
Precomputing control 0.022 2.4 0.027 3
Total 0.257 28.6 0.220 24.4

Table 7: XGCD chip area breakdown for 1024-bit Design (1) and 255-bit Design (2). Chip
density is 70% for Design (1) and 79% for Design (2).

Module Design (1) Area (µm2) Design (2) Area (µm2)
Pre-iterations computation 25053 2844

Update a, b 25006 5255
Update u 55755 9958
Update y 30878 2019
Update m 56813 9932
Update n 32744 2032

Termination condition 4720 8
Post-iterations computation 17301 4274

JTAG 10577 2707
Miscellaneous 1553 475

Total 260400 39504

eters, one for each motivating application: (1) 1024-bit XGCD with reduction factor pair
(8, 4) for squaring binary quadratic forms over class groups and (2) 255-bit constant-time
XGCD with reduction factor pair (2, 4) for modular inversion for Curve25519. Both
designs are in TSMC 16 nm, using SVT, LVT, and ULVT libraries at 0.8V. Table 6 shows
the critical path delay breakdown for the designs. We include technology-agnostic delays
in units of inverter fanout-of-4 (FO4) delays [HHWH97], with the 16nm FO4 delay as 9ps.

Since both these designs have an odd reduction factor of four, they have identical critical
paths as the same worst-case sequence of operations limit the cycle time. As expected
from our earlier analysis, the critical path requires three CSAs to compute the sum of the
Bézout coefficient variables when a, b are odd and additionally add a multiple of bm when
these variables are odd. Then, we require some logic to preserve sign when shifting in
CSA form, with a half-adder to correct incorrectly truncated results. Finally, we select
the update to apply for our coefficient variables using late selects and precompute control
signals for the next cycle. We note that Design (2) includes extra inverter and buffer delays
compared to Design (1), which are not tied to specific logic and reflect stochastic decisions
made by the physical design tools. Thus, our timing is as expected from our design-space
exploration. In addition, both our 1024-bit and 255-bit designs have similar cycle times,
showing that our use of CSAs makes our cycle time relatively independent of input size.

Table 7 shows the area breakdown of our designs. Since the u± y and m± n updates
for (u, y) and (m,n) are interchangeable and their divisibility by factors of two are always

Kavya Sreedhar, Mark Horowitz and Christopher Torng 19

Table 8: Comparison of our fast 1024-bit and constant-time 255-bit XGCD designs to
implementations in prior work. NR = not reported. * NR but assumed from other work.

Technology / Area Clock
XGCD Design Processor (mm2) Frequency Cycles Time (ns)
1024-bit inputs
[AHAJS16] Xilinx XC7VH290T-2- NR 39.94 MHz 598 * 151777

HCG1155 FPGA | 28nm
GNU XGCD C++ Apple M1 | 5nm - - - 10650
[ZTW21] TSMC 28 nm 2.4 250 MHz 1623 6490
[ZST+20] TSMC 28 nm 9.9 500 MHz 3000 6000
Our Design (1) TSMC 16 nm 0.41 3.89 GHz 1143 294
255-bit inputs
Constant-time
[DdPM+21] Zynq UltraScale+ NR 207 MHz 8466 40900

XCZU7EG FPGA | 16nm
[BY19] Intel Kaby Lake | 14nm - 2.3 GHz * 8543 3714
[Por20] Intel Coffee Lake | 14nm - 2.3 GHz 6253 2719
Our Design (2) TSMC 16 nm 0.059 4.55 GHz 396 87

the same, we compute these values in only the update u and m modules to avoid redundant
computation with no performance penalty. Thus, our update y, n modules are 2X and 5X
smaller than the u,m modules for the 1024-bit and 255-bit designs, respectively. These
modules comprise the majority of the area since we duplicate computation for late selects
and these updates have the most options to compute and select from.

XGCD Comparison We compare our designs to prior work in Table 8. Design (1)
achieves a 211X speedup over prior FPGA designs [AHAJS16], a 36X speedup over the
GNU XGCD implementation in C++ profiled on Apple’s M1 processor in 5nm, and a 8X
speedup over the state-of-the-art ASIC design [ZST+20] for 1024-bit inputs. We profile the
time for the C++ implementation of XGCD in the GNU Multiple Precision Arithmetic
Library (GMP), which has been optimized for large integers. For the ASIC and FPGA
comparisons, we scale prior work runtimes in 28nm to 16nm for fairer comparisons.

The FPGA design implements Euclid’s algorithm and mentions using CSAs [AHAJS16],
though no further detail is provided. Our 40X shorter clock period, along with our decision
to build from the two-bit PM algorithm instead, likely result in our significant speedup.

We achieve the speedup over the SOTA ASIC design due to two reasons: First,
Zhu et al. implemented the GMP XGCD algorithm, which requires an average of 3000
cycles [ZST+20], while our Design (1) reduces the number of cycles required by over 60%.
Second, the GMP algorithm uses the most significant bits of the numbers for some division
steps in Euclid’s algorithm, which we estimated will likely not translate into faster total
runtimes compared to the two-bit PM algorithm (Section 3). Since our work uses simpler
operations — adds, shifts, and comparisons — building upon the two-bit PM [YZ86] and
Stein’s algorithms [Ste67], we reduce both the cycle count and cycle time compared to
Zhu et al.’s work. Finally, we note that Zhu et al. provide synthesis numbers, which uses
approximations for wire delays and thus may not translate into measured ASIC runtimes.
We instead build an ASIC for our design by executing the full physical design flow, which
includes the final layout and does signoff-quality RC extraction for wire delay.

Design (2) achieves a 31X speedup and a 470X speedup over the state-of-the-art
software [Por20] and FPGA design [DdPM+21], respectively. Pornin builds from Stein’s
algorithm as we do but focuses on (1) equalizing the time for each iteration of the algorithm,
which naturally happens in a hardware design with a standard clock frequency and (2)

20
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

using approximations of large values for faster computation [Por20], which we solve by
approximating log2(a)− log2(b) as in prior work [BK85, YZ86], storing our numbers in CSA
form (Section 4.2), and sampling the values for our termination condition (Section 4.3).

On the hardware side, [DdPM+21] is the first (and only) constant-time XGCD paper
we are aware of. These authors implement the integer version of the Bernstein-Yang XGCD
algorithm [BY19] on an FPGA [DdPM+21]. Compared to their fastest design, we are able
to achieve a much faster cycle time compared to this prior work for two reasons. First,
their faster design pipelines all additions to achieve a cycle time of 4.8ns for 255-bit inputs,
while we use carry-save adders to eliminate rather than pipeline the carry propagation
in addition. Second, the Bernstein-Yang algorithm requires modifying fractions and
implementing division efficiently, while our approach based on Stein’s algorithm inherently
requires simpler operations, translating into faster runtimes, as estimated in Section 3.

Finally, we note that we can use Design (1) for both applications by setting the constant
time configuration to be true and the bitwidth to 255 in the 1024-bit design. The worst-case
number of cycles for the algorithm is the same for both designs and even with a longer
cycle time, the performance of Design (1) is still 9X faster than Pornin’s work [Por20] and
139X faster than the prior FPGA design [DdPM+21]. Since ASICs can be costly, using the
same hardware unit to obtain state-of-the-art performance for various applications with
different bitwidths (1024 vs 255 bits) and requirements (constant-time vs not) is beneficial.

Squaring speedup We ran over one million trials of the Chia Network’s reference
C++ implementation to find that their NUDUPL implementation takes an average of 21us
per squaring and partial reduction. If we accelerate only the two XGCD computations
required by using our 1024-bit XGCD Design (1), we reduce the 0.91 ∗ 21us = 19.11us
XGCD runtime to 2 ∗ 294ns = 588ns and speed up the full algorithm by 8.5X, which is
close to 9.1X, the best we could do by accelerating only the XGCD. To further speed up
the full algorithm, we accelerate the remaining operations on the critical path (Section 5)
to execute this computation in 1.5us, achieving a 14X speedup over the C++.

To our knowledge, this paper is the first to consider hardware acceleration for the
NUDUPL algorithm. One prior paper accelerates a less efficient squaring algorithm for
squaring over class groups, with a runtime of 6.3us per squaring for 1024-bit inputs in
28nm [ZST+20]. However, we note that comparing our work to this prior paper is not a
fair comparison because their work considers solely the squaring operation without any
reduction afterwards, while the NUDUPL algorithm squares and additionally partially
reduces the outputs. Despite handling more of the overall computation required, our work
is 1.7X faster than this prior design due to the higher efficiency of our XGCD design (as
compared to this prior work earlier) and our use of the more efficient Toom-3 algorithm
instead of the Karatsuba algorithm for large-integer multiplication and division.

7 Conclusion
Fast XGCD implementations are increasingly important as the cryptography community
investigates applications that are dominated by the XGCD operation: verifiable delay
functions based on class groups and modular inversion for elliptic curve cryptography
based on XGCD. However, existing literature is sparse on XGCD hardware, providing only
point solutions for specific applications, and focusing narrowly on one specific family of
algorithms (i.e., Euclid’s algorithm). This work contributes an algorithm and hardware
design space exploration that reveals that the best algorithm in an optimized software
context is not the same as that in a hardware acceleration context. Unlike other hardware
XGCD works, we build on variants of Stein’s algorithm and greatly improve performance
using redundant representations and various algorithm and hardware techniques. Our
16nm ASIC achieves 8X speedup over the state-of-the-art ASIC and 36X speedup over
optimized C++ running on an Apple 5nm M1 processor. These results enable squaring

Kavya Sreedhar, Mark Horowitz and Christopher Torng 21

binary quadratic forms 14X faster than C++ on the M1 and computing modular inverses
for Curve25519 31 to 470X faster compared to FPGA and software implementations,
significantly advancing XGCD performance for future cryptographic applications.

22
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

References
[AHAJS16] Qasem Abu Al-Haija, Monther Al-Ja’fari, and Mahmoud Smadi. A compar-

ative study up to 1024 bit euclid’s gcd algorithm fpga implementation and
synthesizing. In 2016 5th International Conference on Electronic Devices,
Systems and Applications (ICEDSA), pages 1–4. IEEE, 2016.

[BB87] Adam W Bojanczyk and Richard Peirce Brent. A systolic algorithm for
extended gcd computation. Computers & Mathematics with Applications,
14(4):233–238, 1987.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable
delay functions. Cryptology ePrint Archive, Report 2018/712, 2018. https:
//eprint.iacr.org/2018/712.

[Ber06] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In
International Workshop on Public Key Cryptography, pages 207–228. Springer,
2006.

[BK84] Richard P. Brent and H. T. Kung. Systolic vlsi arrays for polynomial gcd
computation. IEEE Transactions on Computers, C-33(8):731–736, 1984.

[BK85] R. P. Brent and H. T. Kung. A systolic algorithm for integer gcd computation.
In 1985 IEEE 7th Symposium on Computer Arithmetic (ARITH), pages
118–125, 1985.

[Bue89] Duncan A Buell. Binary quadratic forms: classical theory and modern
computations. Springer Science & Business Media, 1989.

[BY19] Daniel J Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 340–398, 2019.

[BZ07] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication:
Towards optimal toom-cook matrices. In Proceedings of the 2007 international
symposium on Symbolic and algebraic computation, pages 17–24, 2007.

[CA69] Stephen A Cook and Stål O Aanderaa. On the minimum computation time of
functions. Transactions of the American Mathematical Society, 142:291–314,
1969.

[Col80] GE Collins. Lecture notes on arithmetic algorithms. University of Wisconsin,
1980.

[CTN+21] Alex Carsello, James Thomas, Ankita Nayak, Po-Han Chen, Mark Horowitz,
Priyanka Raina, and Christopher Torng. Enabling reusable physical design
flows with modular flow generators. arXiv preprint arXiv:2111.14535, 2021.

[DdPM+21] Sanjay Deshpande, Santos Merino del Pozo, Victor Mateu, Marc Manzano,
Najwa Aaraj, and Jakub Szefer. Modular inverse for integers using fast
constant time gcd algorithm and its applications. In 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), pages
122–129. IEEE, 2021.

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

Kavya Sreedhar, Mark Horowitz and Christopher Torng 23

[DG11] Ulrich Daepp and Pamela Gorkin. Fermat’s little theorem. In Reading,
Writing, and Proving, pages 315–323. Springer, 2011.

[DGS20] Samuel Dobson, Steven D Galbraith, and Benjamin Smith. Trustless groups
of unknown order with hyperelliptic curves. IACR Cryptol. ePrint Arch.,
2020:196, 2020.

[DLG18] Jinnan Ding, Shuguo Li, and Zhen Gu. High-speed ecc processor over nist
prime fields applied with toom–cook multiplication. IEEE Transactions on
Circuits and Systems I: Regular Papers, 66(3):1003–1016, 2018.

[EhyMZ+08] wajih El hadj youssef, Mohsen Machhout, Medien Zeghid, Belgacem Boual-
legue, and Rached Tourki. Efficient hardware architecture of recursive
karatsuba-ofman multiplier. In 2008 3rd International Conference on Design
and Technology of Integrated Systems in Nanoscale Era, pages 1–6, 2008.

[ESF05] Guy Even, Peter-M Seidel, and Warren E Ferguson. A parametric error
analysis of goldschmidt’s division algorithm. Journal of Computer and System
Sciences, 70(1):118–139, 2005.

[FaPKL+] Pierre-Alain Fouque, Jeffrey Hoffstein annd Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based com-
pact signatures over ntru. https://falcon-sign.info/.

[Fly70] Michael J Flynn. On division by functional iteration. IEEE Transactions on
Computers, 100(8):702–706, 1970.

[GL18] Zhen Gu and Shuguo Li. A division-free toom–cook multiplication-based
montgomery modular multiplication. IEEE Transactions on Circuits and
Systems II: Express Briefs, 66(8):1401–1405, 2018.

[Gol64] Robert E Goldschmidt. Applications of division by convergence. PhD thesis,
Massachusetts Institute of Technology, 1964.

[HAS21] Benjamin Salling Hvass, Diego F Aranha, and Bas Spitters. High-assurance
field inversion for curve-based cryptography. IACR Cryptol. ePrint Arch.,
2021:549, 2021.

[HHWH97] David Harris, Ron Ho, Gu-Yeon Wei, and Mark Horowitz. The fanout-of-4
inverter delay metric. Unveröffentlichtes Manuskript: http://odin. ac. hmc.
edu/harris/research/FO4. pdf, 1997.

[HM00] Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class
groups of imaginary quadratic orders. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 234–
247. Springer, 2000.

[HSGJ10] Andreas Habegger, Andreas Stahel, Josef Goette, and Marcel Jacomet. An
efficient hardware implementation for a reciprocal unit. In 2010 Fifth IEEE
International Symposium on Electronic Design, Test Applications, pages
183–187, 2010.

[Jeb93a] Tudor Jebelean. A generalization of the binary gcd algorithm. In Proceedings
of the 1993 international symposium on Symbolic and algebraic computation,
pages 111–116, 1993.

https://falcon-sign.info/

24
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

[Jeb93b] Tudor Jebelean. Improving the multiprecision euclidean algorithm. In Alfonso
Miola, editor, Design and Implementation of Symbolic Computation Systems,
pages 45–58, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[Jeb95] Tudor Jebelean. A double-digit lehmer-euclid algorithm for finding the gcd
of long integers. Journal of Symbolic Computation, 19(1):145–157, 1995.

[JvdP02] Michael J. Jacobson and Alfred J. van der Poorten. Computational aspects
of nucomp. In Claus Fieker and David R. Kohel, editors, Algorithmic Number
Theory, pages 120–133, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, volume 7, pages 595–596, 1963.

[Knu70] Donald E Knuth. The analysis of algorithms. In Actes du congres interna-
tional des Mathématiciens, volume 3, 1970.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Lam44] Gabriel Lamé. Note sur la limite du nombre des divisions dans la recherche
du plus grand commun diviseur entre deux nombres entiers. 1844.

[Leh38] Derrick H Lehmer. Euclid’s algorithm for large numbers. The American
Mathematical Monthly, 45(4):227–233, 1938.

[Lon19] Lipa Long. Binary quadratic forms. https://github.com/Chia-Network/
vdf-competition/blob/main/classgroups.pdf, 2019.

[Mil85] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques, pages 417–426. Springer,
1985.

[Mol97] Richard A Mollin. Fundamental number theory with applications. Crc Press,
1997.

[Möl08] Niels Möller. On schönhage’s algorithm and subquadratic integer gcd com-
putation. Mathematics of Computation, 77(261):589–607, 2008.

[NdMM03a] Nadia Nedjah and Luiza de Macedo Mourelle. Fast less recursive hardware
for large number multiplication using karatsuba-ofman’s algorithm. In
International Symposium on Computer and Information Sciences, pages
43–50. Springer, 2003.

[NdMM03b] Nadia Nedjah and Luiza de Macedo Mourelle. A reconfigurable recursive
and efficient hardware for karatsuba-ofman’s multiplication algorithm. In
Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA
2003., volume 2, pages 1076–1081. IEEE, 2003.

[nis17] Post-quantum cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography, 2017.

[NLRC10] JAM Naranjo, JA López-Ramos, and LG Casado. Applications of the
extended euclidean algorithm to privacy and secure communications. In
Proc. of 10th international conference on computational and mathematical
methods in science and engineering, pages 702–713, 2010.

https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Kavya Sreedhar, Mark Horowitz and Christopher Torng 25

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th innovations in
theoretical computer science conference (itcs 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[Por18] Thomas Pornin. Bearssl: a smaller ssl/tls library. https://bearssl.org/,
2018.

[Por20] Thomas Pornin. Optimized binary gcd for modular inversion. Cryptology
ePrint Archive, Report 2020/972, 2020. https://ia.cr/2020/972.

[Pur83] George B Purdy. A carry-free algorithm for finding the greatest common
divisor of two integers. Computers & Mathematics with Applications, 9(2):311–
316, 1983.

[PW02] Victor Y Pan and Xinmao Wang. Acceleration of euclidean algorithm and
extensions. In Proceedings of the 2002 international symposium on Symbolic
and algebraic computation, pages 207–213, 2002.

[Ras17] Bahram Rashidi. A survey on hardware implementations of elliptic curve
cryptosystems. arXiv preprint arXiv:1710.08336, 2017.

[ROH17] Ciara Rafferty, Máire O’Neill, and Neil Hanley. Evaluation of large integer
multiplication methods on hardware. IEEE Transactions on Computers,
66(8):1369–1382, 2017.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120–126, 1978.

[Sch71] Arnold Schönhage. Schnelle berechnung von kettenbruchentwicklungen. Acta
Informatica, 1(2):139–144, 1971.

[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristik 2. Acta Informatica, 7(4):395–398, 1977.

[Sch91] Arnold Schönhage. Fast reduction and composition of binary quadratic
forms. In Proceedings of the 1991 international symposium on Symbolic and
algebraic computation, pages 128–133, 1991.

[Sor94] Jonathan Sorenson. Two fast gcd algorithms. Journal of Algorithms,
16(1):110–144, 1994.

[Sor95] Jonathan Sorenson. An analysis of lehmer’s euclidean gcd algorithm. In
Proceedings of the 1995 International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’95, page 254–258, New York, NY, USA, 1995.
Association for Computing Machinery.

[SRC20] M Siddhartha, Jelwin Rodriques, and BR Chandavarkar. Greatest common
divisor and its applications in security: Case study. In 2020 International
Conference on Interdisciplinary Cyber Physical Systems (ICPS), pages 51–57.
IEEE, 2020.

[Ste67] Josef Stein. Computational problems associated with racah algebra. Journal
of Computational Physics, 1(3):397–405, 1967.

[SZ04] Damien Stehlé and Paul Zimmermann. A binary recursive gcd algorithm.
In International Algorithmic Number Theory Symposium, pages 411–425.
Springer, 2004.

https://bearssl.org/
https://ia.cr/2020/972

26
A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay

Functions and Modular Inversion

[THS+20] Lenny Truong, Steven Herbst, Rajsekhar Setaluri, Makai Mann, Ross Daly,
Keyi Zhang, Caleb Donovick, Daniel Stanley, Mark Horowitz, Clark Barrett,
et al. fault: A python embedded domain-specific language for metaprogram-
ming portable hardware verification components. In International Conference
on Computer Aided Verification, pages 403–414. Springer, 2020.

[Too63] Andrei L Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. In Soviet Mathematics Doklady, volume 3,
pages 714–716, 1963.

[TPT06] A.F. Tenca, S. Park, and L.A. Tawalbeh. Carry-save representation is shift-
unsafe: the problem and its solution. IEEE Transactions on Computers,
55(5):630–635, 2006.

[TY00] Klaus Thull and Chee Yap. A unified approach to fast gcd algorithms for
polynomials and integers: Technical report from fachbereich mathematik,
frie universitaet berlin. In Fundamental problems in algorithmic algebra,
pages Chapter–2. Oxford University Press, 2000.

[vzGS05] Joachim von zur Gathen and Jamshid Shokrollahi. Efficient fpga-based
karatsuba multipliers for polynomials over f2. In International Workshop on
Selected Areas in Cryptography, pages 359–369. Springer, 2005.

[Web95] Kenneth Weber. The accelerated integer gcd algorithm. ACM Transactions
on Mathematical Software (TOMS), 21(1):111–122, 1995.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 379–407. Springer, Heidelberg, May 2019.

[WTM05] Kenneth Weber, Vilmar Trevisan, and Luiz Felipe Martins. A modular
integer gcd algorithm. Journal of Algorithms, 54(2):152–167, 2005.

[XGW+17] Sen Xu, Haihua Gu, Lingyun Wang, Zheng Guo, Junrong Liu, Xiangjun Lu,
and Dawu Gu. Efficient and constant time modular inversions over prime
fields. In 2017 13th International Conference on Computational Intelligence
and Security (CIS), pages 524–528, 2017.

[YZ86] D. Y. Y. Yun and C. N. Zhang. A fast carry-free algorithm and hardware
design for extended integer gcd computation. In Proceedings of the Fifth ACM
Symposium on Symbolic and Algebraic Computation, SYMSAC ’86, page
82–84, New York, NY, USA, 1986. Association for Computing Machinery.

[Zha] Keyi Zhang. Kratos: Debuggable Hardware Generator. https://github.
com/Kuree/kratos.

[ZST+20] Danyang Zhu, Yifeng Song, Jing Tian, Zhongfeng Wang, and Haobo Yu. An
efficient accelerator of the squaring for the verifiable delay function over a
class group. In 2020 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), pages 137–140, 2020.

[ZTW21] Danyang Zhu, Jing Tian, and Zhongfeng Wang. Low-latency architecture
for the parallel extended gcd algorithm of large numbers. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE,
2021.

https://github.com/Kuree/kratos
https://github.com/Kuree/kratos

	Introduction
	Applications
	Verifiable Delay Functions (VDFs)
	Modular Inversion

	Performance Analysis of Extended GCD Algorithms
	Software versus Hardware Platform
	Families of Extended GCD Algorithms
	Comparing the Number of Iterations
	Comparing the Cycle Time
	Summary

	Fast XGCD Algorithm and Hardware Design Space
	Complete Extended GCD with Two-Bit PM
	Carry-Save Adders
	Termination Condition Carry Propagation
	Minimal Control Overhead
	Optimal Reduction of Bits Per Cycle
	Extensions

	Complete Hardware Accelerators for Target Applications
	ASIC Evaluation
	Conclusion

