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Abstract. The extended GCD (XGCD) calculation, which computes Bézout coeffi-
cients ba, bb such that ba ∗ a0 + bb ∗ b0 = GCD(a0, b0), is a critical operation in many
cryptographic applications. In particular, large-integer XGCD is computationally
dominant for two applications of increasing interest: verifiable delay functions that
square binary quadratic forms within a class group and constant-time modular inver-
sion for elliptic curve cryptography. Most prior work has focused on fast software
implementations. The few works investigating hardware acceleration build on variants
of Euclid’s division-based algorithm, following the approach used in optimized soft-
ware. We show that adopting variants of Stein’s subtraction-based algorithm instead
leads to significantly faster hardware. We quantify this advantage by performing
a large-integer XGCD accelerator design space exploration comparing Euclid- and
Stein-based algorithms for various application requirements. This exploration leads
us to an XGCD hardware accelerator that is flexible and efficient, supports fast
average and constant-time evaluation, and is easily extensible for polynomial GCD.
Our 16nm ASIC design calculates 1024-bit XGCD in 294ns (8× faster than the
state-of-the-art ASIC) and constant-time 255-bit XGCD for inverses in the field of
integers modulo the prime 2255 −19 in 85ns (32× faster than state-of-the-art software).
We believe our design is the first high-performance ASIC for the XGCD computation
that is also capable of constant-time evaluation. Our work is publicly available at
https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022.
Keywords: Extended GCD · ASIC · Verifiable delay function · Class groups ·
Squaring binary quadratic forms · Constant-time · Modular inversion · Curve25519

1 Introduction
Computing the greatest common divisor (GCD) is a fundamental operation in number
theory, with wide-ranging applications in cryptography [SRC20, Wes19, NLRC10, RSA78,
Mil85, Kob87]. GCD algorithms repeatedly apply GCD-preserving transformations, pri-
marily building from Stein’s binary GCD algorithm [Ste67, Pur83, BK85, YZ86, Por20]
or Euclid’s algorithm [Leh38, Jeb93, Web95, Jeb95, Sor95, WTM05]. Both of these al-
gorithms rely on the fact that the GCD between two numbers is the same as the GCD
between their difference and the smaller number: GCD(a, b) = GCD(|a − b|,min(a, b)).
Stein’s algorithm [Ste67] directly uses this property when both a and b are odd but also
removes factors of two to reduce the number of iterations: GCD(a, b) = GCD(a/2, b) if a is
even and GCD(a, b) = GCD(a, b/2) if b is even. Euclid’s algorithm subtracts as many mul-
tiples of the smaller input as possible by dividing: GCD(a, b) = GCD(min(a, b),max(a, b)
mod min(a, b)). Other GCD algorithms are asymptotically fast and based on subquadratic
multiplication [Knu70, Sch71, Sch91, TY00, PW02, Möl08, SZ04]. These algorithms
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primarily build from Lehmer’s algorithm [Leh38] (which, in turn, builds from Euclid’s
algorithm) and use a divide-and-conquer approach to recursively determine the quotients
sequence.

Until recently, there has been little advancement in fast GCD algorithms and the
extended GCD (XGCD) computation that also computes Bézout coefficients ba, bb satisfying
the Bézout identity: ba ∗ a0 + bb ∗ b0 = GCD(a0, b0). However, two recent developments
suggest an increasing need for faster large-integer XGCD algorithms and implementations.
The first is increased interest in a verifiable delay function [BBBF18] construction based on
squaring binary quadratic forms over class groups [Wes19], a computation for which XGCD
is the bottleneck. The second is the realization that constant-time XGCD can be faster than
Fermat’s Little Theorem [DG11] for use in constant-time modular inversion [BY19, Por20].

These applications motivate rigorous exploration of fast XGCD hardware acceleration.
However, only four relevant works currently exist in the literature. The first pair of
works present 1024-bit XGCD ASIC designs based on Euclid’s algorithm for squaring
binary quadratic forms over a class group [ZST+20, ZTW21]. The other two works
present FPGA designs for the Bernstein-Yang algorithm [BY19] for constant-time modular
inversion [DdPM+21] and Euclid’s algorithm [AHAJS16]. All these prior works provide
point solutions to improve either average performance (for squaring binary quadratic
forms) or worst-case performance (for constant-time applications). They also all build from
Euclid’s algorithm, citing its low iteration count and efficient software implementations.

We make two key observations to improve upon prior work. First, we observe that while
individual applications may favor point solutions, one unified design that can efficiently
support multiple applications is desirable since ASIC solutions can be expensive. Second,
we show that Euclid’s algorithm is not the optimal target for hardware acceleration, despite
low iteration counts, since execution time depends on the iteration count and the time
per iteration. Unlike in software, hardware designs are not constrained by a processor’s
instruction set architecture and can instead implement fast and wide custom datapaths
that do not correspond to any instruction, enabling extremely short iteration times.

Leveraging these observations, we create an efficient parameterizable hardware architec-
ture and conduct a large-integer XGCD design space exploration that considers different
application requirements and XGCD algorithms. In Section 2, we review the importance
and requirements of the XGCD computation in our motivating applications. Then, in
Section 3, we analytically compare hardware execution times for Euclid- and Stein-based
algorithms within the context of our application requirements. Despite the lower average
number of iterations for Euclid-based algorithms, we find that using a redundant repre-
sentation and carry-save adders for repeated addition significantly decreases the iteration
time for Stein-based algorithms, resulting in faster average execution times. Since both
algorithm types have similar worst-case iteration counts, this approach also results in faster
worst-case execution times, which is used for constant-time XGCD. Thus, unlike all prior
XGCD hardware papers, we choose to build from Stein-based algorithms, specifically the
two-bit PM algorithm [YZ86]. In Section 4, we present our optimized XGCD design for
higher performance and in Section 5, we build full accelerators with our XGCD design for
our motivating applications. Finally, we evaluate our design in Section 6.

Our 16nm design computes 1024-bit XGCD 8× faster than the current state-of-the-art
ASIC [ZST+20], after scaling its performance to the same technology, enabling squaring
binary quadratic forms 14× faster than optimized C++ on Apple’s M1 processor in 5nm.
We also compute 255-bit XGCD 32× faster than the state-of-the-art software [Por20],
directly translating into a 32× speedup for computing modular inverses for Curve25519.
We believe this work contributes the first high-performance ASIC for constant-time XGCD.
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Table 1: Summary of motivating cryptographic applications using large-integer XGCD.
VDF: Squaring binary Computing inverses
quadratic forms over mod 2255 − 19 for
class groups [Wes19] Curve25519 [Ber06]

Constant-time No Yes
State-of-the-art algorithm NUDUPL [JvdP02] Optimized Stein’s [Por20]
– Number of XGCDs 2 1
– XGCD % of execution time 91% 100%
– XGCD input bitwidth 1024 255
– GCD = 1 Yes for 1st XGCD Yes
– Requires minimal pair Yes for 2nd XGCD Yes
Other approaches
– that use XGCD [Lon19] Bernstein-Yang [BY19]
– that do not use XGCD N/A Fermat’s Little Theorem [DG11]

2 Applications
We focus on two cryptographic applications of XGCD that have drawn recent interest: a
verifiable delay function construction based on squaring binary quadratic forms over class
groups and modular inversion for elliptic curve cryptography (Table 1). These applications
represent two distinct spaces of application requirements (1024-bit fast average XGCD
versus 255-bit constant-time XGCD), showcasing the flexibility of our design.

2.1 Verifiable Delay Functions
A verifiable delay function (VDF) is a cryptographic primitive that requires a specified
amount of sequential work to be evaluated but outputs a unique result that is still efficiently
and publicly verifiable. This fast verification but slow evaluation property is useful for
adding delays in decentralized systems to avoid adversarial data manipulation [BBBF18]. In
particular, VDFs have been considered a promising candidate to serve as the core function
for blockchain systems to disincentivize dishonest behavior: they have been integrated
into the Chia Network’s blockchain design [chi21], while the Ethereum Foundation and
Protocol Labs anticipate that VDFs will also be crucial to their designs.

One proposed VDF construction is exponentiation in a group of unknown order such
as an RSA group [Wes19, Pie18] or a class group [Wes19], which requires T sequential
squarings performed in a group using a modulus N in order to compute f(x) = x2T [BBF18].
The Chia Network chose to incorporate a VDF construction based on squaring binary
quadratic forms over a class group [Wes19] in their blockchain design. We refer the reader to
Buell’s textbook [Bue89] for detail on binary quadratic forms. Since the repeated squaring
in this construction continually doubles the output bitwidth, each squaring operation is
followed by a reduction operation (Algorithm 5.4.2 of [Coh93]) to ensure that the output
(and subsequent input) bitwidth do not exceed the bitwidth of the original input.

The Chia Network has hosted several competitions for fast software implementations for
this repeated squaring computation. Both the Chia Network reference and the competition
winner chose to implement the NUDUPL algorithm [JvdP02]. This algorithm not only
computes the squaring operation, but it also partially reduces the output values to help
with the reduction operation to ensure that values stay within a certain size.

Profiling the operations required for the NUDUPL algorithm with 1024-bit inputs
shows that XGCD dominates, requiring 91% of the total execution time (Table 2). We
averaged over one million trials of the Chia Network’s reference C++ implementation
(compiled with g++ and -O3 optimization) on a 2020 MacBook Pro with the M1 chip and
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Table 2: NUDUPL algorithm profiling on Apple’s M1 processor with 1024-bit inputs.
% of execution time in % of execution time in few

Operation 99.999% of squarings remaining squarings
XGCD 91 85

Modular Multiplication 4 7
Additions, Multiplications, Divisions 5 8

used the standard C++ chrono library with nanosecond precision. The algorithm takes one
of two branches in each squaring, depending on whether the size of intermediate variables
need to be reduced. The branch taken significantly more often (99.999% of the time)
computes two XGCDs: the first is the conventional XGCD while the second is a partial
XGCD that terminates when the remainder in Euclid’s algorithm is below a precomputed
value instead of waiting until it is zero. The other branch only requires the first XGCD.

For this application, the GCD will always be one in the first XGCD, so the important
operation is finding a pair of Bézout coefficients. We observe that the second partial XGCD
can be replaced by a XGCD that does not terminate early as long as the returned Bézout
coefficients are one of the two minimal pairs possible. While multiple solutions can satisfy
Bézout’s identity for a pair of inputs, solutions are called minimal pairs only if the absolute
values of the Bézout coefficients are less than the absolute values of the inputs divided
by the GCD [MH94]. Euclid’s algorithm always returns such a pair, while Stein-based
algorithms may require extra iterations or a final correction to produce minimal results.

Understanding the speedup that dedicated hardware can achieve for this squaring
helps determine the security level needed (i.e., the number of squarings and the minimum
input bitwidth required) to guarantee a certain amount of time has passed with the
VDF evaluation. Thus, high performance is the primary objective for VDF solutions. In
addition, since this work is sequential by definition and not much computation can be
done in parallel, area and power consumption are lesser concerns. Finally, since VDFs have
a verification step, their inputs are not secret. Thus, there is no need for constant-time
evaluation to protect against timing attacks and it is beneficial to minimize the average
XGCD execution time even if constant-time execution does not improve.

To ensure our XGCD speedup translates well into overall squaring speedup, we acceler-
ate the other large-integer operations required (one modular multiplication and various
additions, multiplications, and divisions) to build the first hardware accelerator for the
NUDUPL algorithm (Section 5). We note that there are varying reports on a reason-
able input bitwidth for class-group-based VDFs, ranging from 833 bits [HM00] to 3000+
bits [DGS20]. Since both the Chia Network and recent work [ZST+20, ZTW21] evaluate
1024-bit XGCD, we also use 1024-bit inputs, as listed in Table 1. Fortunately, we use a
redundant representation which makes our iteration time relatively independent of bitwidth
(Section 4.2). Thus, our design ensures high performance even as bitwidths change.

2.2 Modular Inversion
A modular inverse of an integer x (mod y) is defined as the integer x−1 such that x∗x−1 =
1 (mod y). This computation is used in public-key cryptography, including RSA [RSA78]
and elliptic curve cryptography (ECC) [Mil85, Kob87]. In both of these applications, some
value must be kept a secret: in RSA, the secret key is generated by inverting the public
key and in ECC, the value to be inverted is a secret while the modulus is publicly known.
To protect such systems from timing attacks, we require constant-time solutions where the
execution time does not depend on the secret values. For ECC, computing the modular
inverse must take the same execution time regardless of the input value.

One part of ECC consists of elliptic curves defined over a finite field of positive integers
modulo a prime number p. Curve25519 is one of the fastest and mostly commonly used
elliptic curves defined with p = 2255 − 19 [Ber06]. Operations on points of the elliptic
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curve consist of field operations, the most time-consuming of which is modular inversion
with modulus p. As a result, many ECC implementations use different coordinate systems
for most of the computation to minimize the number of inversions required [Ras17].

There are two approaches to compute the modular inverse when the modulus is
prime. The first approach is Fermat’s Little Theorem (FLT) [DG11], which states that
x−1 = xp−2 (mod p). For Curve25519, this computation requires 254 squarings and 11
multiplications [Ber06, BY19]. The second approach computes the XGCD between x,
the value to be inverted, and p, the modulus. This approach is valid because x ∗ x−1 =
1 (mod p)→ x∗x−1− 1 = 0 (mod p)→ x∗x−1− 1 is divisible by p, so x∗x−1− 1 = y ∗p
for some y or x∗x−1−1 = −z ∗p for z = −y. This can be rewritten as the Bézout Identity:
x ∗ x−1 + z ∗ p = 1. Thus, finding the XGCD returns the Bézout coefficient x−1. Note
that the modular inverse is unique and corresponds to one of the minimal pairs.

In 2019, the Bernstein-Yang algorithm, a subquadratic XGCD algorithm, showed that
constant-time XGCD can be faster than FLT [BY19], leading to a shift in the state of
the art. In 2020, Pornin achieved faster results for computing inverses mod 2255 − 19 on
recent 64-bit x86 CPUs by optimizing Stein’s algorithm [Por20]. Pornin’s work is used to
generate RSA key pairs in several projects [Por18, FaPKL+]. In 2021, the Bernstein-Yang
algorithm was incorporated into the MirageOS unikernel operating system [HAS21]. This
work is up to 2.5× faster compared to FLT implementations but 3.8× slower than Pornin’s
Curve25519 results, so Pornin’s work remains the state-of-the-art software for computing
inverses mod 2255 − 19. Only one prior work considers constant-time XGCD hardware.
This prior work implements the Bernstein-Yang algorithm on an FPGA and is faster than
prior FLT-based designs for Curve25519 [DdPM+21]. Note that the FPGA execution time
is slower than the software records [BY19, Por20] since the FPGA is run at a 7× to 11×
slower frequency compared to the frequency of the Intel processors in the software papers.

These works show the recent adoption of XGCD-based modular inversion with modulus
2255 − 19. However, most of these approaches (all but Pornin’s) build from Euclid-based
algorithms. Given this growing interest, an in-depth design-space exploration is useful to
determine the more suitable XGCD algorithm for fast constant-time execution in hardware.

3 Hardware Performance Analysis of XGCD Algorithms
As previously discussed, all the prior XGCD hardware papers build from Euclid-based
algorithms and represent point solutions in the XGCD hardware acceleration space,
optimizing either for fast average-case or worst-case performance. Thus, we explore the
broader design space over multiple axes: algorithm family (Euclid versus Stein), target
platform (software versus hardware), and application requirements (fast average-case
execution versus worst-case execution). We find that using a redundant representation
with the two-bit PM algorithm [YZ86] in the Stein family is faster in hardware for fast
average-case and worst-case execution (the latter of which we use for constant-time XGCD).

3.1 Algorithm Family
XGCD algorithms use the same control flow as GCD algorithms and iteratively apply
GCD-preserving reduction transformations. This section overviews the transformations
used by the three major GCD algorithm families and their suitability for our applications.

Stein’s algorithm continually reduces its inputs by replacing the larger number with
their difference when both numbers are odd or by dividing by two when a number is
even [Ste67]. The Purdy algorithm also removes factors of two when possible but replaces
the subtraction transformation with GCD(a, b) = GCD(a+b

2 , a−b
2 ) to avoid comparing

the two numbers [Pur83]. Note that a ± b will be even when a, b are odd. To further
avoid large-integer comparisons, the Plus-Minus (PM) algorithm approximates the binary
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logarithm of a − b [BK85] and the two-bit PM algorithm duplicates cases in the PM
algorithm and removes two factors of two when possible in a single iteration [YZ86].

Euclid’s algorithm continually reduces its inputs by replacing the larger number with
the remainder from dividing the two numbers. Lehmer’s algorithm [Leh38] is faster for large
integers by observing that most quotients are small and the initial parts of the quotients
only depend on the most significant bits of the large inputs. Other papers build on this work
with efficient techniques to detect when approximate division based on the MSBs is correct,
further reducing the number of large-integer divisions required [Jeb93, Jeb95, Sor95].

Subquadratic XGCD algorithms are based on subquadratic multiplication and are thus
asymptotically fast. The Knuth-Schönhage algorithm [Knu70, Sch71], one of the earliest
subquadratic GCD algorithms, uses a divide-and-conquer approach based on Lehmer’s
algorithm to recursively determine the quotients sequence. Further work more clearly
details and extends these ideas [Sch91, TY00, PW02, Möl08], including binary recursive
approaches [Sor94, SZ04] and Bernstein and Yang’s recent constant-time approach [BY19].

For the input bitwidths in our applications (Table 1), profiling from existing literature
already strongly suggests that Euclid’s and Stein’s algorithms are faster than subquadratic
algorithms [Möl08]. More recently, Pornin’s XGCD implementation [Por20], published
after Bernstein-Yang’s subquadratic XGCD algorithm [BY19], uses a quadratic approach
(Stein’s algorithm) to achieve higher performance: 2000+ fewer cycles on recent x86 CPUs.
Thus, we focus on comparing the XGCD execution time in hardware for Euclid- and
Stein-based algorithms to determine the more promising family for hardware acceleration.

3.2 Target Platform
In both software and hardware, execution time is the product of the number of iterations
and the time per iteration. The number of iterations only depends on the XGCD algorithm
and is independent of the target platform. Thus, optimizations to reduce the number of
iterations directly translate from software to hardware. The time per iteration, or iteration
time, is the latency for the longest series of data-dependent operations that complete in
an iteration. This is also known as the critical path. Note that the critical path delay may
not be the sum of delays for all operations since some operations may be performed in
parallel. Since software is constrained to using instructions predefined in the processor’s
instruction set architecture (ISA), software iteration times correspond to the longest set
of dependent instructions. In contrast, hardware is not limited to an ISA and allows for
implementing fast, wide, and custom datapaths with extremely short iteration times. This
additional control over the iteration time in hardware opens the opportunity to accelerate
XGCD algorithms that require more iterations but have far simpler operations, resulting
in shorter iteration times and faster overall execution times.

3.3 Hardware Design Performance Comparison
To select the most suitable XGCD algorithm for hardware acceleration across our applica-
tions, we compare the number of iterations (Section 3.3.1) and iteration time (Section 3.3.2)
for the Stein and Euclid algorithm families in the average case and in the worst case. The
key difference between the average- and worst-case is the algorithm termination condition,
which affects the number of iterations. In the average case, the algorithm is run until the
GCD is found (i.e., one of the two inputs has been reduced to zero). In the worst case, the
algorithm is run for a fixed number of iterations, set to the worst-case number.

3.3.1 Number of Iterations

We use uniform random 1024-bit inputs with our functional models to find the average
number of iterations required for various algorithms. Since Euclid’s algorithm divides every
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iteration while Stein’s algorithm [Ste67] only reduces a factor of two, Euclid’s algorithm
requires 3.6× fewer iterations compared to Stein’s algorithm on average (598 versus 2163).
The PM algorithm [BK85] requires more iterations compared to Stein’s algorithm since it
can incorrectly approximate a > b and reduce the smaller number instead of the larger one.
The two-bit PM algorithm [YZ86] reduces more bits per iteration than Stein’s algorithm
and thus requires only 2× more iterations (1195) compared to Euclid’s algorithm. Since
Euclid-based algorithms have low iteration counts but require expensive divisions, prior
work improving Euclid has focused on optimizing iteration time over iteration count. Thus,
most Euclid-based algorithms still require 598 iterations on average [Leh38, Sor95].

We next consider the number of iterations required for these algorithms in the worst-
case. For Euclid’s algorithm, the maximum number of iterations is 5 log(min(a, b)) [Mol97],
with the Fibonacci numbers as inputs [Lam44]. While all Stein-based algorithms reduce
at least one bit per iteration, only the two-bit PM algorithm reduces at least two bits
when a, b are odd. Thus, in the Stein family, this algorithm requires the lowest worst-case
number of iterations: 1.51 ∗ n+ 1, where n is the input bitwidth [YZ86]. These equations
closely track each other for the bitwidths in our applications. For 255-bit inputs, Euclid’s
algorithm requires 384 iterations, which is marginally smaller than the two-bit PM’s 387.

3.3.2 Iteration Time and Execution Time

Given the simplicity of operations in the two-bit PM algorithm, we expect the iteration
time for the two-bit PM algorithm to be shorter than that for Euclid’s algorithm. Then,
for the worst-case execution time, the similarity in the worst-case number of iterations
between the two algorithms in Section 3.3.1 alone indicates that the two-bit PM algorithm
will likely yield faster constant-time implementations. In the average case, the two-bit PM
algorithm requires twice the number of iterations as Euclid’s algorithm. Thus, the two-bit
PM can be faster overall if its hardware critical path is less than half of the critical path of
Euclid’s algorithm. We find this to be the case when comparing 1024-bit hardware designs.

Using two bits to represent each bit of a number is a redundant number representation
called carry-save form (CSA form), and enables one to build adders with no carry propa-
gation delays. Carry-save adders (CSAs) add three inputs and produce two outputs (the
sum of the two outputs is equal to the sum of the three inputs) and have O(1) instead
of O(log(n)) delays, where n is the input bitwidth [SKN08, RM19, Pur83, YZ86]. These
savings are especially important in wide-word arithmetic with large bitwidths. Since the
actual result is not directly stored, the value of the result is not known and it thus cannot
be compared to other values. The actual result can be recovered with a normal addition
with carry propagation. We further describe CSAs in our hardware design in Section 4.2.

Since XGCD algorithms require repeated additions, the iteration times for hardware
designs can be reported in units of CSA delays, which also serves as a technology-agnostic
unit. One CSA delay is approximately equal to the delay of two two-input XOR gates
in series. Multiplier arrays also use CSAs to efficiently sum partial products [FdCBM05,
SKS09, RSPR11, JLL+15], so we can easily translate this operation into CSA delays. For
non-CSA operations, we report latency in equivalent fractions of a CSA delay.

The critical path for computing the XGCD with the two-bit PM algorithm consists of
adding three numbers and shifting two bits to the right when a, b, and other variables are
all odd (please see details in Section 4.1). Since shifting is a fast rewiring operation in
hardware, we only consider the delay for the addition. This addition translates to adding
five values in total: two values in CSA form and one constant. This operation requires
three CSAs in series, where each CSA reduces three inputs into two outputs. We then
multiply this critical path delay (three CSA delays) by the average iteration count (1195)
to estimate the average execution time as 3585 CSA delays.

The critical path for computing the XGCD with Euclid’s algorithm consists of generating
the quotient q = max(a, b)/min(a, b) and computing the remainder max(a, b)−q∗min(a, b).
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The algorithm applies the Bézout coefficient updates in parallel with the GCD computation
by similarly multiplying this quotient by the corresponding variables and subtracting.
Thus, these operations do not increase the critical path delay. We denote a as the larger
number and rewrite the critical path computation as a− q ∗ b for the rest of this section.

We first consider generating the quotient. Division algorithms are iterative, requiring
repeated multiplication or subtraction. Multiplication-based division algorithms [Fly70,
Gol64] are not competitive since each division would require hundreds of CSA delays for
large-integer multiplications. However, subtraction-based division algorithms are also slow
because they iterate bit-by-bit, requiring many iterations. Thus, Euclid-based algorithms
instead avoid full-bitwidth divisions by looking at the most significant bits (MSBs) of the
inputs to estimate quotients [Leh38, Jeb93, Jeb95, Sor95]. Using lookup tables (LUTs) is
the fastest estimation approach. However, since only the MSBs are used, this estimate can
be incorrect and the algorithm then needs to fall back to slow large-integer division.

We find that even in the optimistic scenario where no large-integer divisions are required,
the critical path delay for Euclid’s algorithm will be long enough such that it will be slower
than the two-bit PM algorithm for overall execution time. We calculate critical path delay
by splitting the computation into three steps and assigning a delay (in CSA delays) to
each. These three steps are generating the quotient (q), multiplying q and b (q ∗ b), and
subtracting to generate the remainder (a−q ∗b). For an optimistic estimate, we assume the
lookup for the quotient estimate requires zero delay. The LUT takes pairs of the c MSBs of
a, b as input, denoted ac, bc, respectively. Since a, b are stored in CSA form, retrieving the
values of ac, bc requires c-bit carry-propagate adds. This requires blog2(c)c+ 1 CSA delays
for a binary logarithmic adder tree structure (three CSA delays for c = 6). Note that the
LUT has 22∗c entries and c bits per entry. Thus, LUTs with c ≥ 10 require over a million
entries and are impractical. We precompute the LUT entries for ac/(bc + 2) instead of
ac/bc to guarantee that the quotient estimate is not greater than the true quotient. Then,
the LUT entry can be shifted to the left to obtain the quotient estimate, denoted qestimate.

The next step computes the partial products for qestimate∗b. Since b is in CSA form, this
becomes qestimate∗bcarry +qestimate∗bsum. Summing the partial products can be combined
with the subtraction step for the final remainder as a− qestimate ∗ bcarry − qestimate ∗ bsum.
First, we assume that generating the partial products takes zero delay since this minimally
requires a few shifts, which are fast rewiring operations in hardware. We then need to
sum 2 ∗ c + 2 values, where 2 ∗ c values represent the partial products and the last two
values represent a in CSA form. Since each CSA has three inputs and two outputs, we
need an adder tree with roughly blog3/2(c)c CSAs in series (six CSA delays for c = 6).
Finally, we sum the CSAs delays for generating qestimate and for evaluating the remainder
a− qestimate ∗ b, resulting in 3 + 6 = 9 CSA delays for a six-bit qestimate example. We then
multiply this delay (nine CSA delays) by the average iteration count (598) to estimate the
average execution time for Euclid’s algorithm as 5382 CSA delays.

Thus, even with our conservative estimate, the two-bit PM iteration time is 3× shorter
than the Euclid iteration time. As a result, the two-bit PM execution time (3585 CSA
delays) is 1.5× shorter than the Euclid execution time (5382 CSA delays) and we conclude
that division-based XGCD is not competitive for hardware designs.

4 Fast XGCD Algorithm and Hardware Design Space
Based on our analysis in Section 3, we build from the two-bit PM algorithm [YZ86]. Since
this algorithm was originally not completely specified, especially regarding iterative updates
for odd Bézout coefficient values, we first present a complete extended two-bit PM algorithm
(Section 4.1). We then consider further optimizations that enable high-performance XGCD
hardware acceleration: using carry-save adders (Section 4.2), increasing the number of
bits reduced per iteration (Section 4.3), handling carry propagation for the termination
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Figure 1: XGCD Execution Flow Diagram – Key components in the execution flow are
broken out in detail. (A) Pre-processing step to generate odd inputs to iterations loop;
(B) Update for δ register; (C) Variable updates for a, b, u, y,m, n registers in the iterations
loop illustrating the wide parallel datapath with late selects (the logic for unique update
types are shown in detail); (D) Control flow state diagram with termination condition; (E)
Post-processing step to generate XGCD outputs.

condition for non-constant-time execution (Section 4.4), and minimizing control overhead
(Section 4.5). Finally, we show how our design easily supports constant-time evaluation
and polynomial XGCD (Section 4.6).

Figure 1 shows the execution flow of our hardware with the sequence of operations on
the critical path. Note that in our hardware design, we execute one iteration every clock
cycle. Thus, the operations on the iteration critical path (Section 3.3.2) must finish in a
single clock cycle and the maximum frequency is determined by this critical path delay.

4.1 Complete Extended GCD with Two-Bit PM
Listing 1 includes our variable definitions and pseudocode for our XGCD algorithm.

This section explains the subset of the algorithm that corresponds to the two-bit PM
algorithm and our extensions to compute the XGCD. Section 4.3 explains the additional
updates included and their suitability for constant-time versus fast average-case evaluation.

XGCD algorithms calculate Bézout coefficients by introducing four variables u,m, y, n
such that u ∗ am +m ∗ bm = a and y ∗ am + n ∗ bm = b hold true for inputs am, bm and
variables a, b in every iteration. We denote these relations together as Equation 1. At the
start of the iterations loop, a = am and b = bm, so initially, u = 1,m = 0 and y = 0, n = 1.
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1# inputs :
2# a0, b0 (int) -- numbers to find the gcd for , with factors of two removed
3# constant_time (bool) -- whether this should use our constant -time algorithm
4# bitwidth (int) -- the maximum bitwidth of the inputs
5

6# outputs :
7# gcd (int) -- gcd(a0, b0)
8# ba, bb (int) -- Bezout coefficients ba, bb such that ba ∗ a0 + bb ∗ b0 = gcd(a0, b0)
9

10def xgcd(a0 , b0 , constant_time, bitwidth):
11# Step 1: Pre - processing
12# ensure a_m , b_m are odd
13if (a0%2 == 0): am = a0 + b0; bm = b0
14elif (b0%2 == 0): am = a0; bm = a0 + b0
15else: am = a0; bm = b0
16

17if constant_time: iterations = 0
18

19# δ ≈ log2(a)− log2(b) ∝ a− b to approximate if a > b
20a = am; b = bm; u = 1; m = 0; y = 0; n = 1; δ = 0; end_loop = False
21

22# Step 2: Iteration loop
23def xgcd_update (num_bits_reduced, u, m, bm , am):
24for i in range (num_bits_reduced):
25if u%2 == 1: u = (u+ bm)//2; m = (m− am)//2
26else: u = u//2; m = m//2
27return (u,m)
28

29while (not end_loop):
30if (not constant_time and (a%8 == 0)):
31a = a//8; δ = δ − 3; (u,m) = xgcd_update (3, u, m, bm , am)
32elif (not constant_time and (a%4 == 0)):
33a = a//4; δ = δ − 2; (u,m) = xgcd_update (2, u, m, bm , am)
34elif (a%2 == 0):
35a = a//2; δ = δ − 1; (u,m) = xgcd_update (1, u, m, bm , am)
36elif (not constant_time and (b%8 == 0)):
37b = b//8; δ = δ + 3; (y, n) = xgcd_update (3, y, n, bm , am)
38elif (not constant_time and (b%4 == 0)):
39b = b//4; δ = δ + 2; (y, n) = xgcd_update (2, y, n, bm , am)
40elif (b%2 == 0):
41b = b//2; δ = δ + 1; (y, n) = xgcd_update (1, y, n, bm , am)
42elif ((δ ≥ 0) and ((b+ a)%4 == 0)):
43a = (a+ b)//4; δ = δ − 1; (u,m) = xgcd_update (2, u+ y, m+ n, bm , am)
44elif ((δ ≥ 0) and ((b− a)%4 == 0)):
45a = (a− b)//4; δ = δ − 1; (u,m) = xgcd_update (2, u− y, m− n, bm , am)
46elif ((δ < 0) and ((b+ a)%4 == 0)):
47b = (a+ b)//4; δ = δ + 1; (y, n) = xgcd_update (2, u+ y, m+ n, bm , am)
48else:
49b = (a− b)//4; δ = δ + 1; (y, n) = xgcd_update (2, u− y, m− n, bm , am)
50

51# termination condition
52if constant_time:
53iterations = iterations+ 1
54end_loop = (iterations >= 1.51 ∗ bitwidth+ 1)
55else: end_loop = (a == 0 or b == 0)
56

57# Step 3: Post - processing
58# account for making a_m , b_m odd before iteration loop
59gcd = a+ b; u = u+ y; m = m+ n
60

61if (a0%2 == 0): m = u+m
62elif (b0%2 == 0): u = u+m
63

64if gcd < 0: gcd = −gcd; u = −u; m = −m
65ba = u; bb = m
66return gcd, ba, bb

Listing 1: Our XGCD algorithm (building from the two-bit PM GCD algorithm [YZ86])
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Table 3: Update possibilities for Bézout coefficient variables u,m when a is shifted by two.

Divisibility of u,m uupdate mupdate

u,m divisible by 4 u/4 m/4
u,m divisible by 2 but not 4 (u+ 2 ∗ bm)/4 (m− 2 ∗ am)/4
u+ bm,m− am divisible by 4 (u+ bm)/4 (m− am)/4
u+ bm,m− am divisible by 2 but not 4 (u+ 3 ∗ bm)/4 (m− 3 ∗ am)/4

During the iterations loop, the two-bit PM algorithm updates either a or b. When
a is not updated, there is no need to update u,m since Equation 1 automatically holds.
The same is true for b and y, n. When a or b is divided by two or four, we need to divide
u,m or y, n by the same factor to maintain the relations in Equation 1. However, the
divisibility of the coefficient variables may not match that of a and b. For example, if odd
coefficients are shifted right, their truncated values may not satisfy Equation 1.

To address this problem, we consider the shift-by-one case first. If a is even and thus
divided by two, we need to ensure that uupdate ∗ am +mupdate ∗ bm = a

2 . If the previous
u,m are even, the update is straightforward: uupdate = u

2 ,mupdate = m
2 . If the previous

u,m are odd, we add bm to u and subtract am from m as similarly done to extend the PM
algorithm to compute XGCD [BK85]. Since bm, am are odd by construction and the sum
of two odd numbers is even, u+ bm,m− am will be even. Then, we can reduce one bit
by computing uupdate = u+bm

2 ,mupdate = m−am

2 . This update preserves the relations in
Equation 1 since we have added and subtracted am∗bm

2 from the result.
For the shift-by-two case, we apply our updates rules for the shift-by-one case twice

to satisfy uupdate ∗ am +mupdate ∗ bm = a
4 . The worst-case update rule is when m is not

divisible by two and m − am is not divisible by four, resulting in mupdate =
m−am

2 −am

2 .
To reduce this update delay, we rewrite this update as m−3∗am

4 . Note that this result
is truncated the same way as the original result when shifting. Since am is known at
the start, 3 ∗ am is a constant that we can precompute in a pre-processing step (A in
Figure 1).1 Table 3 shows how we similarly rewrite the other u,m updates. Thus, the
worst-case update delay is half the original form and similar to the shift-by-one case.

While half of the updates in the two-bit PM algorithm directly reduce bits from a or b
(when a or b is even), the other half reduce two bits from a± b (when a, b are odd). To
preserve the relations in Equation 1 in these other updates, we apply the shift-by-two
strategy on u± y, m± n instead of individually on u, y,m, n (i.e., substitute u with u± y
andm withm±n in Table 3). Thus, the critical path in this algorithm has two subtractions
and one right shift to compute m−n−3∗am

4 as an update for m, which requires one extra
subtraction compared to the worst-case updates for m when a or b is even. This finishes
extending the variable updates in the iterations loop for the XGCD (C in Figure 1).

Finally, we consider necessary pre-processing and post-processing steps. Typically,
GCD algorithms assume that the inputs have no common factors of two since such factors
can be easily accounted for by shifting before the iterations loop and then shifting the
common factor back in at the end. As a result, at most one input may be even. In this
case, we apply a pre-processing step (A in Figure 1) that replaces the even input with the
sum of the inputs to ensure that the inputs to the iterations loop are odd, as done in prior
work [YZ86]. In a post-processing step after the iterations loop (E in Figure 1), we calculate
the Bézout coefficients as ba = u+ y and bb = m+n since a+ b is the GCD and adding the
relations in Equation 1 results in (u+y)∗am +(m+n)∗ bm = a+ b = GCD(am, bm). If we
applied the pre-processing step, we need to replace the even input’s Bézout coefficient with
the sum of the coefficients to satisfy Equation 1. If the gcd is negative (due to updating the
smaller number when incorrectly approximating a > b), we negate the gcd and coefficients.

1We compute 3 ∗ am as 2 ∗ am + am, so it requires one cheap left shift and one addition.
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4.2 Carry-Save Adders
As previewed in Section 3.3.2, carry-save adder (CSA) designs improve the delay of back-to-
back additions by removing carry propagation in all intermediate computations and storing
the resulting sum in CSA form. As a result, CSAs have been used for many cryptography
applications [MMM03, SKN08, RM19]. Since CSAs have constant delays, an added benefit
is that the clock frequency for such designs will not be sensitive to the input bitwidth.

We keep our main variables (a, b, u, y,m, n) in CSA form while constants (am, bm and
their multiples) are not kept in CSA form since they do not change. The approximate
difference of a and b is not stored in CSA form since its sign determines which value to
update when both a, b are odd. Fortunately, we use binary logarithms for this approxima-
tion, so this value is small (e.g., ten bits for 1024-bit inputs) and updates for this variable
(B in Figure 1) do not limit cycle time. While prior work has also suggested using CSAs
for GCD algorithms [Pur83, YZ86], we find that using CSAs in practice in an XGCD
hardware design surfaces challenges that have not been previously addressed:

• To ensure the carry-propagate adds required in our pre-processing and post-processing
steps do not limit the cycle time, we run these steps at one-quarter of the clock
frequency of the system clock. As shown in Figure 1, this slower frequency allows
these few cycles at the start and end to support the longer carry propagation while
keeping the short CSA-defined cycle time as our system clock period.

• When carry and sum are shifted right (and inherently truncated) in CSA form, we
must efficiently add one to the result in the case where summing the bits that were
shifted out would have generated a carry. Note that we cannot simply set the lowest
bit of carry or sum to one, since these bits can both be one after a shift. Thus, we
instead use a full-bitwidth half adder to add the shifted carry and sum to produce
another (carry, sum) pair for the same number represented in CSA form, where the
lowest bit of the carry output will be zero by design. We can set that bit to one
when needed. This adds one XOR gate delay to the critical path delay.

• We approximate a > b when a, b are odd, as done in prior work [BK85]. If this
approximation is incorrect, we update the smaller number and our variables become
negative. Thus, when shifting right, we need to preserve sign in CSA form (even
though it is unknown). Earlier work provides a truth table relating the two most
significant bits of carry and sum before and after shifting to preserve sign [TPT06].
We adapt and extend this prior work to determine balanced equations for these bits
for right shifts by several bits in CSA form to minimize the critical path delay.

4.3 Optimal Reduction of Bits Per Cycle
Stein-based algorithms reduce the average number of iterations required by removing
factors of two or four when possible. The higher the factor of two that can be removed per
iteration, the fewer the iterations required. While removing these factors by shifting is
cheap, this increases the number of update choices for u, y,m, n since they may not be
divisible by powers of two. This added control logic can increase the cycle time if deciding
which branch to take becomes more expensive than computing the variable updates.

We explore this hardware design space to quantify the tradeoff between the cycle time
and the average- and worst-case number of clock cycles required in order to determine the
optimal reduction of bits per cycle. We separately vary the maximum reduction factor
for updates when a or b is even and updates when a and b are odd (referred to as even
and odd reduction factors) to see which parameterizations yield a net benefit for total
execution time, the product of the number of clock cycles and the cycle time.

We update a, b with a−b
2 for an odd reduction factor of two since a − b will be even

when a, b are odd. Using the procedure in Section 4.1, we support an odd reduction factor
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Table 4: Execution time and area in 16nm technology for 1024-bit XGCD ASIC designs
for various even and odd reduction factor combinations.

Max factor of two Max factor of two Average Cycle XGCD ASIC
reduced when reduced when Number Time Execution Area
a or b is even a and b are odd of Cycles (ns) Time (ns) (mm2)

2 2 2210 0.193 427 0.16
4 2 1845 0.218 402 0.22
8 2 1740 0.256 445 0.36
2 4 1450 0.234 339 0.22
4 4 1211 0.247 299 0.28
8 4 1143 0.257 294 0.41
2 8 1091 0.297 324 0.27
4 8 972 0.320 311 0.33
8 8 938 0.330 310 0.47

of up to eight. Our efficient rewriting of the updates requires us to compute k ∗ bm and
k ∗ am for k = 1 to k = 7 for the three-bit reductions and does not increase the data path
delay compared to a design with an odd reduction factor of four. Note that the following
(even, odd) maximum reduction factor pairs correspond to reduction factors of two in prior
GCD algorithms: (2, 1) is Stein’s, (2, 2) is Purdy’s and PM, and (4, 4) is two-bit PM.

Table 4 shows the execution time and area for various reduction factor pairs and all
optimizations in Section 4. The longest sequence of operations is updating m,n when a, b
are odd. This is the critical path for all the designs but the (8, 8) design, where the critical
path becomes the control path. Finally, since the execution time for designs with an odd
reduction factor of eight does not improve compared to designs with an odd reduction
factor of four, factors of 16+ would not be beneficial due to the longer control path delay.

We observe that the execution times for these designs are close, especially if the odd
reduction factor is the same. Thus, while average number of cycles is reduced when more
bits are reduced per cycle, the resulting increase in the cycle time mostly negates that
benefit. Choosing which design to use depends on the target application requirements,
namely the number of XGCDs computed and whether XGCD must be constant-time.

These small execution time differences become important when this computation is
repeated many times. Since most VDF applications require a large delay, we may need
to compute over a million or billion squarings, each of which requires two XGCDs in the
NUDUPL algorithm. In this context, the five-nanosecond difference between the (4, 4) and
(8, 4) designs becomes critical. Since this application requires high performance,
the fastest design — the (8, 4) design — would be most appropriate.

For constant-time applications like modular inversion for Curve25519, we consider the
worst-case number of cycles to determine the optimal reduction factors. The two-bit PM
algorithm — corresponding to the (4, 4) design — takes a maximum of 1.51n+ 1 cycles
for n-bit inputs [YZ86] since every cycle, at least one bit is reduced if a or b is even and
two bits are reduced if they are both odd (since either a+ b or a− b will be divisible by
four). The two-bit PM algorithm [YZ86] notes that reducing three bits — corresponding
to the (8, 8) design — will not reduce the worst-case number of cycles because there is no
guarantee that a+ b or a− b will be divisible by eight when a, b are odd (just as a, b may
not be divisible by eight when they are even), so these branches may never be taken.

We observe that this logic also applies for the (2, 8), (4, 8), (2, 4), and (8, 4) designs
since the only guaranteed transitions remain dividing by two when a, b are even and
dividing a + b or a − b by four when a, b are odd. Thus, shifting by more than one bit
when a, b are even or more than two bits when a, b are odd only adds further value for the
average case, not the worst case. In addition, the average execution times for the designs
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with an odd reduction factor of two is higher than the worst-case execution time for the
other designs, so these designs are not competitive in this context. Thus, the optimal
reduction factors for constant-time applications are (2, 4).

4.4 Termination Condition Carry Propagation
For non-constant-time XGCD execution, algorithms terminate when a or b is zero (D in
Figure 1). However, when a, b are in CSA form, their values are not known. Computing
two carry-propagate adds in parallel to find a = acarry + asum and b = bcarry + bsum every
cycle would negate the benefit of using CSAs. As a more minor concern, this operation
also requires a large AND-gate tree to check whether all the bits of a, b are zero. We
investigate two approaches to improve the delay of this termination condition check.

Our first approach computes our variable updates for each iteration in a clock cycle,
while in parallel, a = acarry + asum and b = bcarry + bsum are computed over x cycles. The
true values of a, b are then sampled every x cycles. For 1024-bit inputs, x = 4 ensures that
these additions do not limit the cycle time. With this approach, we can only check if the
termination condition has been satisfied every four cycles and at most require four extra
iterations to compute the XGCD. This is a very small overhead: 0.18% to 0.43% of the
number of cycles for the (2, 2) to (8, 8) reduction factor designs (Section 4.3).

Our second approach repurposes α ≈ log2(a), β ≈ log2(b) from the PM algorithm [BK85].
In prior work, these variables approximate a > b and are updated every cycle by the
minimum number of bits a, b will be reduced by. We instead use α, β in our termination
condition: when α or β is zero, we run one more iteration (to ensure a or b is zero since α, β
can be zero when a, b are one) and initiate the post-processing step. Since the termination
condition no longer checks a, b, we avoid the carry-propagation for a = acarry + asum and
b = bcarry + bsum. In addition, we reduce the AND-gate tree delay by checking whether
log2(a) + log2(b) bits are zero instead of the number of bits for a, b.

However, α, β can significantly diverge from the true values of log2(a), log2(b). For
example, when a is updated with a − b, multiple bits may be reduced, but α is only
updated with α − 1. Thus, checking if α, β are equal to zero instead of a, b adds 150+
cycles for 1024-bit inputs (a 7 to 16% overhead for different reduction factor designs).
We experimented with correcting α, β to the true values of log2(a), log2(b) as often as
possible. This requires computing 1024-bit carry-propagate adds to produce a, b, the
absolute values of a, b (since a, b can be negative), and log2(|a|), log2(|b|). We ran these
operations in parallel to the variable updates and, as in the sampling approach, found that
these operations can complete every four cycles without limiting our cycle time. While
this approach is functional, the sampling approach without α, β requires less computation
and also runs in parallel to the iterations loop. Thus, our design uses the first approach.

4.5 Minimal Control Overhead
Having improved the data path delay, we focus on minimizing the control path delay. We
note that our control logic for detecting divisibility by factors of two is not as simple as
checking if bits are zero since our variables are in CSA form. To minimize the delay for this
logic, we duplicate computation to allow control signals to arrive as late as possible (late
selects) and precompute control signals each cycle for the next cycle’s branching decisions.

First, we use late selects. Either a, u,m or b, y, n is updated every cycle. The update
logic for these values is identical but requires different inputs. Re-purposing the same
hardware to perform these updates would add an extra two-to-one multiplexer before each
input, doubling the number of branches. Thus, we intentionally duplicate hardware for
separate update modules for a, b and u, y,m, n to allow control signals to arrive late in the
cycle. We also apply this parallel computation and late select strategy wherever possible
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within all the update modules, avoiding redundant computation for updates that use the
same inputs regardless of the updated variable (e.g., a± b is computed only once).

Second, we precompute control signals. For 1024-bit inputs, our control signals
determine the updates for 1028-bit numbers since several extra bits account for carry
bits from repeated addition. As a result, these gates have very high fanout. For a (4, 4)
reduction factor pair design, we initially observed that the critical path was the control
path and not the data path due to long delays of 0.15ns from several large buffers in
16nm designs. To reduce this delay, we compute the control signals that determine which
branch to take for the next cycle in parallel with the updates for a, b, u, y,m, n, rather than
generating this control from the values computed in the same cycle. For example, when we
update u, we compute whether the updated u for the next cycle will be divisible by factors
of two by computing the divisibility of all the possible u update options in parallel. Then,
we select the control signal update based on the u update chosen. To similarly compute
the divisibility of a± b, u± y, and n±m for the next cycle, we add a few XORs (≈ 20ps
each in 16nm), which is significantly smaller than the 0.15ns large buffer delay. Due to
this optimization, the critical path is the data path for our designs, except for the (8, 8)
reduction factor pair. In the (8, 8) design, the disproportional increase in the number of
branches compared to the increase in computation makes the control path dominant.

4.6 Extensions
Our design supports constant-time XGCD and polynomial XGCD execution. For constant-
time XGCD, we pad our algorithm so that it always runs for its worst-case execution time
(D in Figure 1). Note that running beyond the nominal termination condition still yields
the correct answer. Since inputs to the iterations loop have no common factors of two,
the XGCD has been found when either a or b is zero and the other is an odd value. With
padding, the algorithm will continually detect the zero as even and divide it by two. Since
all variables are in CSA form, we do not know when they become zero. Thus, we can keep
track of the number of cycles and exit the iterations loop when that count is equal to the
worst-case cycle count. The (2, 4) reduction factor pair is most optimal for constant-time
XGCD and requires 1.51 ∗ n+ 1 iterations for n-bit inputs (Section 4.3).

We can use the same algorithmic control flow to find the XGCD between two polynomials
with integer coefficients by describing the polynomial equivalents for all the integer XGCD
operations required, building from prior work [BK84, BY19]. The polynomial equivalent
of reducing factors of two, the smallest prime, is reducing factors of x (x, x2, x3, etc.), i.e.,
reducing the polynomial degree. Similarly, evenness translates to polynomial divisibility by
x. To ensure adding “odd” polynomials guarantees an “even” result (like with integers), we
can multiply the polynomials by the other polynomial’s constant term to enable cancelling
the constant terms in addition [BY19]. For comparisons, we compare polynomial degrees.
To find the XGCD, we maintain the relations in Equation 1 each iteration: am, bm are
now polynomials, where am = a if a is not divisible by x or a/x if a is, and similarly for
bm with b. Then, we initialize u = 1,m = 0 and y = 0, n = 1, as with integer GCD, and
apply the same updates, with shifts converted to divisions by x.

5 Complete Hardware Accelerators for Target Applications
Since XGCD directly implements constant-time modular inversion (the first Bézout coeffi-
cient is itself the modular inverse), we accelerate the remaining operations required for
the NUDUPL algorithm (Section 2.1) in this section (summarized in Table 5). Since the
additions on the critical path are in isolation, there is no benefit to using CSAs and we
use efficient adders from our synthesis tool library. After the first XGCD, every execution
requires a single modular multiplication. Since this operation is not repeated, conventional
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Table 5: Critical path operations and our implementations for the NUDUPL algorithm.
Operation (Op) Implementation Op Runtime (ns) Count Total Runtime (ns)

Addition Designware 0.159 51 8
Parallel-Prefix Adder

Multiplication Toom-3 17.58 54 949
Inverter Standard cell 0.01 4 0.04
XGCD Our design with 294 2 588

(8, 4) reduction factors
Total 1545

techniques like Montgomery multiplication (which converts to an intermediate representa-
tion) and Barrett Reduction (which precomputes constants) are expensive. Given that this
operation minimally contributes to execution time, we use a straightforward approach and
compute x = y ∗ z (mod a) as a multiplication (m1 = y ∗ z), division (d = m1/a), another
multiplication (m2 = d ∗ a), and a subtraction for (m1 −m2), all with 1024-bit inputs.

The Karatsuba algorithm recursively splits a large-integer multiplication into three
smaller multiplications and a few additions and shifts until a base case input bitwidth [Kar63].
Several papers have implemented this algorithm in hardware [wMZ+08, vzGS05, ROH17,
ZST+20]. However, the Toom-Cook polynomial algorithm is more efficient and gen-
eral [Too63, CA69, BZ07]. It splits numbers into k parts (k = 3 for Toom-3, which
we implement) to use as polynomial coefficients, finds the product of evaluating these
polynomials at various points to find the product polynomial, and then uses the product’s
coefficients to find the integer product. This algorithm is well-suited for our inputs since it
is faster than asymptotically fast algorithms for numbers smaller than 2215 [Sch77]. How-
ever, few hardware designs use Toom-Cook [GL18, DLG18] since it requires an expensive
hardware operation, division by three. We reduce the cost of this division by rewriting
this problem as x

3 + 2x
3 = x, as shown in Listing 2. Given x0...xn−1, we solve for y = x

3
bit by bit, starting from the least significant bit with y0 = x0. Note that yn−1 = 0 is also
known, since dividing by three reduces at least one bit.

1x
3 yn−1 yn−2 ... y1 y0

2+ 2x
3 yn−2 yn−3 ... y0 0

3------------------
4x xn−1 xn−2 ... x1 x0

Listing 2: Rewriting x
3 as x− 2x

3 to reduce the complexity of division by three in Toom-3.
The Newton-Raphson [Fly70] and Goldschmidt [Gol64] algorithms are often used for fast

division. They initially estimate the reciprocal of the divisor and then iteratively multiply
to refine this estimate. Few papers implement division in hardware [HSGJ10, ZST+20].
The NUDUPL critical path requires two divisions with 2048-bit dividends and 1024-bit
divisors. Since these divisions constitute a small portion of total execution time, we directly
implement the Newton-Raphson algorithm with Toom-3 multiplication. We include the
additions and multiplications required for this division under those operations in Table 5.

6 Design Evaluation
We use a vertically integrated methodology spanning cycle-level performance modeling,
VLSI-level modeling, and detailed physical design. We wrote our RTL in Kratos 0.0.33 [Zha],
a hardware design language capable of generating SystemVerilog, and built a testbench
with Fault 3.052 [THS+20] to verify our designs with our functional model in Python
for various parameterizations (bitwidth, reduction factors, constant time support) and
randomly-generated inputs. We use mflowgen 0.3.1 [CTN+22] for our physical design flow,
with Synopsys DC 2019.03 for synthesis and Cadence Innovus 19.10.000 for floorplan,
power, place, clock tree synthesis, and route. We report post-layout signoff numbers.
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Table 6: XGCD critical path breakdown for 1024-bit Design (1) and 255-bit Design (2).
Design (1) Design (1) Design (2) Design (2)

Operation Delay (ns) FO4 Inv Delay Delay (ns) FO4 Inv Delay
DFF clk to Q 0.040 4.4 0.045 5
Inverter 0 0 0.007 0.8
Add u+ y: CSA 1 0.039 4.3 0.018 2
Add u+ y: CSA 2 0.039 4.3 0.031 3.4
Buffer 0 0 0.013 1.4
Add u+ y + 2bm: CSA 0.034 3.8 0.030 3.3
Shift in CSA form 0.018 2 0.015 1.7
Late select multiplexers 0.018 2 0.018 2
Precomputing control 0.022 2.4 0.027 3
Setup Time 0.005 0.56 0.002 0.22
Clock Skew 0.041 4.6 0.016 1.8
Total 0.257 28.6 0.220 24.4

We evaluate two parameterizations of our ASIC design: Design (1) is a 1024-bit
XGCD with (8, 4) reduction factors for squaring binary quadratic forms over class groups,
and Design (2) is a 255-bit constant-time XGCD with (2, 4) reduction factors for
modular inversion for Curve25519. Both designs are in TSMC 16nm, using SVT, LVT,
and ULVT libraries at 0.8V. Table 6 shows the critical path delay breakdown for the
designs. We include technology-agnostic delays in units of inverter fanout-of-4 (FO4)
delays [HHWH97], with the 16nm ULVT FO4 delay as 9ps. Since both designs have
an odd reduction factor of four, they have identical critical paths limited by the same
worst-case sequence of operations. As expected from Section 4.1, the critical path requires
three CSAs to add the Bézout coefficient variables and a multiple of bm or am when a, b,
and these variables are odd. Then, we need to preserve sign when shifting in CSA form
and use a full-bitwidth half-adder to correctly truncate these results. Finally, we use late
selects to choose our variable updates and precompute control signals for the next cycle.
The extra inverter and buffer delays in Design (2) compared to Design (1) are not tied
to specific logic and reflect stochastic decisions made by the physical design tools. Our
critical path includes clock skew delay that could be removed with manual optimization.
We conservatively assume it remains in the critical path. Since we use CSAs, our designs
have similar cycle times even though Design (1) has a 4× longer input bitwidth.

The post-layout areas for our Design (1) and (2) ASICs are 0.41mm2 and 0.059mm2

(0.26mm2 and 0.04mm2 for standard cells excluding physical cells), respectively. The
modules to update the Bézout coefficient variables comprise the majority of the standard
cells area (68% and 61% in Designs (1) and (2), respectively), since they have the most
update possibilities and we duplicate computation for late selects (Section 4.5). We
compute the u± y and m± n updates only in the update u,m modules since they are the
same for (u, y) and (m,n). Thus, the u,m modules in Designs (1) and (2) are respectively
2× and 5× bigger than the y, n modules. The m,n modules are slightly larger, since the
m,n updates require subtractions with am while u, y updates require additions with bm.

6.1 Design (1) Comparison: 1024-Bit XGCD
In Table 7, we compare Design (1) to prior software, FPGA, and ASIC designs. We ran
the GNU Multiple Precision Arithmetic Library (GMP) XGCD C++ function optimized
for large integers on a 2020 MacBook Pro with the M1 chip in 5nm, compiled with g++
and -O3 optimization. We use the standard C++ chrono library with nanosecond precision
to profile this code with random 1024-bit inputs. Our 16nm ASIC for Design (1) is 36×
faster than the C++, showing that building specialized hardware for XGCD is worthwhile.
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Table 7: Comparison of our non-constant-time 1024-bit design to prior work, split by
software, FPGA, and ASIC results. NR = not reported. * Please see Table 9.

Technology Node / Area Clock
XGCD Design Platform (mm2) Frequency Cycles Time (ns)
GNU XGCD C++ Apple M1 | 5nm - - - 10650
[AHAJS16] Xilinx XC7K70T-2- NR 39.94 MHz NR NR

FBG676 | 28nm
Our Design (1) Xilinx XC7K410T * 204 MHz 1143 5603

FBG676-1 | 28nm
[ZTW21] TSMC 28nm ASIC 2.4 250 MHz 1623 6490
[ZST+20] TSMC 28nm ASIC 9.9 500 MHz 3000 6000
Our Design (1) TSMC 16nm ASIC 0.41 3.89 GHz 1143 294

Our Design (1) runs at a 5× faster clock frequency post place-and-route (with Xilinx
Vivado 2019.2) on the Xilinx XC7K410TFBG676-1 FPGA compared to the prior 1024-bit
FPGA work [AHAJS16] on the Xilinx XC7K70T-2-FBG676. We use a bigger FPGA in the
same Kintex-7 family since Design (1) does not fit on the smaller XC7K70T. While this
prior work mentions using CSAs, it does not report any further implementation details,
the number of cycles required for XGCD, or the FPGA utilization for us to compare
to. We likely achieve this speedup by building from the two-bit PM algorithm instead
of Euclid’s algorithm like this prior work. We conservatively use 598 cycles (the average
number of cycles for Euclid’s algorithm for 1024-bit inputs) for this prior work to estimate
that Design (1) is at least 2.7× faster for XGCD execution time and our 16nm ASIC for
Design (1) is at least 21× faster after technology-scaling this prior work to 16nm. Since
the XC7K70T-2-FBG676 FPGA is built in an older node (28nm versus 5nm) and run at a
slower frequency compared to the M1 processor (40MHz versus a max of 3.2 GHz), their
work is slower than software. Finally, we report the utilization of Design (1) in Table 9.

Our Design (1) ASIC is 8× faster and 8× smaller than the state-of-the-art 1024-
bit XGCD ASIC [ZST+20], after technology-scaling the prior work to 16nm for a fair
comparison. We achieve this speedup by reducing the number of cycles by over 60%
and also reducing the cycle time. The prior work builds from Euclid’s algorithm and
uses the most significant bits to estimate division. As we found in Section 3, building
from the two-bit PM algorithm with simpler operations (carry-save adds and shifts) will
result in shorter cycle times: our Design (1) ASIC runs at a 3.2× faster clock frequency
(technology-scaled). In addition, our Design (1) on the XC7K410 FPGA is slightly faster
overall than this prior ASIC. Finally, this prior paper reports synthesis results, which may
use simpler wire delay approximations. We instead execute the full physical design flow
including place-and-route with signoff-quality RC extracted wire delays for our results.

6.2 Design (2) Comparison: Constant-Time 255-Bit XGCD
Table 8 compares Design (2) to prior software and FPGA designs. We are not aware of
prior ASIC designs and believe our work presents the first ASIC for constant-time XGCD.

Design (2) achieves a 32× speedup over the state-of-the-art software implementa-
tion [Por20], which also builds from Stein’s algorithm. This shows that building an ASIC
for constant-time XGCD is also worth the designer time and effort. Pornin focuses on
equalizing the time for each iteration, which naturally happens in hardware with a set
clock frequency. Pornin also approximates large values for faster computation, while we
instead use CSA form (Section 4.2) and sample true values (Section 4.4) for the same goal.

Note that despite our lower cycle counts in Table 8, we do not expect our algorithm to
be significantly faster than [Por20] and [BY19] in software. As discussed in Section 3.2,
datapaths in software and custom hardware greatly differ. Our hardware design completes
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Table 8: Comparison of our constant-time 255-bit XGCD design to prior work, split by
software, FPGA, and ASIC results. NR = not reported. * Please see Table 9.

Technology Node / Area Clock
XGCD Design Platform (mm2) Frequency Cycles Time (ns)
[BY19] Intel Kaby Lake | 14nm - NR 8543 NR
[Por20] Intel Coffee Lake | 14nm - 2.3 GHz 6253 2720
[DdPM+21] (1) Zynq UltraScale+ * 207 MHz 8466 40900

XCZU7EG | 16nm
[DdPM+21] (2) Zynq UltraScale+ * 346 MHz 73700 213000

XCZU7EG | 16nm
Our Design (2) Zynq UltraScale+ * 447 MHz 387 864

XCZU7EG | 16nm
Our Design (2) TSMC 16nm ASIC 0.059 4.55 GHz 387 85

Table 9: Comparison of FPGA utilization post place-and-route against prior work. FPGAs
used: Xilinx XC7K410TFBG676-1 for Design (1) and Zynq UltraScale+ XCZU7EG for
Design (2) and [DdPM+21]. TAP = time-area product, with time equal to the microseconds
required to compute one XGCD and area equal to the number of slices. NR = not reported.

XGCD Design Slices LUTs Flip-flops BRAMs DSPs % Utilization TAP (103)
Our Design (1) 57012 225776 31438 0 0 89.71 319
Our Design (2) 4199 27074 5888 0 0 14.58 3.63
[DdPM+21] (1) 1847 NR 6704 NR NR 6.41 76
[DdPM+21] (2) 115 NR 241 0.5 NR 0.4 25

all operations for one iteration in one clock cycle, resulting in a low cycle count equal to
the iteration count. In software, each iteration of our algorithm would expand to many
instructions emulating large-integer operations, resulting in larger cycle counts closer to
prior work [Por20]. In addition, since there is no CSA instruction in most processor ISAs,
our speedups attributed to CSAs would not translate into software gains.

The only prior constant-time XGCD FPGA work presents two designs with different
time-area tradeoffs: [DdPM+21] (1) is faster than [DdPM+21] (2) but utilizes more
resources. Note that we use their 16-bit architecture variant for [DdPM+21] (2) since that
has the shortest clock period within the second design group. Compared to [DdPM+21] (1)
and (2), our Design (2) is 47× and 247× faster, respectively, post place-and-route (with
Xilinx Vivado 2019.2) on the same Zynq UltraScale+ XCZU7EG FPGA in this prior work.

We achieve this speedup due to three reasons. First, our critical path consists of
fast carry-save adds and shifts while their critical path requires modifying fractions and
dividing to implement the Bernstein-Yang algorithm [BY19]. Second, we use CSAs to
eliminate the carry-propagation delay for iterative large-integer additions while this prior
work pipelines this delay. Third, we reduce the cycle count by over 95% since we complete
one XGCD iteration in one clock cycle, while this prior work’s cycle count is comparable
to software [BY19]. Since their FPGA design is run at a 7× to 11× slower frequency
compared to the Intel processor in Pornin’s work, their work is slower than software. Thus,
our 16nm ASIC for Design (2) is 481× faster than [DdPM+21] (1) (their faster design).

Finally, we compare the utilization of Design (2) to [DdPM+21] on the same FPGA in
Table 9. We compare time-area products, with time equal to the microseconds required
to compute one XGCD and area equal to the number of slices (since number of slices
dominates design area) [DdPM+21]. Our Design (2) has a time-area product of 3.63 ∗ 103.
Compared to [DdPM+21] (1) (their faster design), our Design (2) has a 21× lower time-area
product. Compared to [DdPM+21] (2) (their smaller design), our Design (2) still has a 7×
lower time-area product. Thus, our approach is faster and yields lower time-area products.
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6.3 Unified ASIC Design
Our 1024-bit Design (1) can be deployed and repurposed for constant-time 255-bit modular
inversion by setting the constant time configuration to true and the bitwidth to 255. The
bitwidth is not specified for functionality and is instead used to determine the constant
worst-case number of cycles required for 255-bit inputs rather than 1024-bit inputs. Our
unified ASIC is 27× faster than Pornin’s work [Por20] and 413× faster than the fastest prior
FPGA design [DdPM+21]. Since ASICs can be expensive, achieving high performance by
re-purposing one hardware unit for several applications that vary in bitwidth (1024 versus
255 bits) and constant-time requirements is advantageous and a key benefit of our work.

6.4 Squaring Comparison
We ran over one million trials of the Chia Network’s C++ for the NUDUPL algorithm on
a 2020 MacBook Pro with the M1 chip in 5nm, compiled with g++ and -O3 optimization.
Their code uses functions from the GMP library for large-integers and takes an average of
21us per squaring and partial reduction. If we accelerate only the two XGCD computations
required by using our 1024-bit XGCD Design (1), we reduce the 0.91 ∗ 21us = 19.11us
XGCD execution time to 2 ∗ 294ns = 588ns and speed up the full algorithm by 8.5×,
which is close to 9.1×, the best speedup possible if accelerating only the XGCD.

By accelerating the remaining operations on the critical path (Section 5), we can execute
the full computation in 1.5us, achieving a 14× speedup over the C++. We believe our work
is the first to accelerate the NUDUPL algorithm in hardware. One prior work implements a
different squaring algorithm without the reduction algorithm [ZST+20]. Comparing these
works would not be fair since NUDUPL squares and also partially reduces the outputs. In
terms of core components, our XGCD design is faster (Section 6.1) and we implement the
more efficient Toom-3 algorithm instead of the Karatsuba algorithm.

7 Conclusion
Fast XGCD implementations are becoming increasingly important as the cryptography
community investigates applications dominated by large-integer XGCDs, including ver-
ifiable delay function constructions based on squaring over class groups and modular
inversion for elliptic curve cryptography. Our algorithm and design-space exploration
for large-integer XGCD showed that building hardware using Stein’s subtraction-based
algorithm and carry-free carry-save adders yields the highest performance. Our accelerator
completes a full XGCD iteration in each clock cycle (a task that takes a processor tens of
instructions), with clock frequencies that still match or exceed those in high-performance
processors. In a 16nm technology, our hardware design runs at 4+ GHz clock frequen-
cies and leverages further optimizations to achieve state-of-the-art performance for both
average- and worst-case XGCD execution. It is 8× faster than the state-of-the-art ASIC for
1024-bit XGCD and 32× faster than the state-of-the-art software for constant-time 255-bit
XGCD, significantly advancing XGCD performance for future cryptographic applications.
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