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Abstract. We propose a new idea for public key quantum money. In the

abstract sense, our bills are encoded as a joint eigenstate of a fixed system of

commuting unitary operators. We perform some basic analysis of this black
box system and show that it is resistant to black box attacks. In order to

instantiate this protocol, one needs to find a cryptographically complicated

system of computable, commuting, unitary operators. To fill this need, we
propose using Brandt operators acting on the Brandt modules associated to

certain quaternion algebras. We explain why we believe this instantiation is

likely to be secure.

1. Introduction

One of the main challenges to building a purely digital currency is that digital
information can be copied, allowing adversaries to duplicate bills or more generally
perform double spending attacks. Existing cryptocurrencies solve this problem by
maintaining a tamper-proof ledger of all transactions to ensure that the same bill
is not spent multiple times by the same actor. Essentially, in these schemes, money
is not represented by a digital token so much as a number on this decentralized
ledger.

Another idea for solving the bill copying problem is to make use of the quantum
no-cloning principle and taking advantage of the idea that quantum information
in general cannot be copied. A scheme to take advantage of this was proposed by
Wiesner in [27]. His scheme involved the bank preparing a quantum state that was
an eigenstate in a secret basis. The bank could verify the correctness of the state,
but it was information-theoretically impossible for an adversary without possession
of this secret to copy the state in question. Unfortunately, this scheme has the
disadvantage that one needs to contact the bank in order to verify the legitimacy
of a bill.

Since then, there has been an effort to develop schemes for public key quantum
money—that is, a scheme by which there is a publicly known protocol for checking
the validity of a bill. In such a system, the bank has a mechanism for producing
valid bills, and there is a publicly known mechanism that, with high probability,
non-destructively checks the validity of a given bill. It should be computationally
infeasible to produce n+1 valid bills, given access to n valid bills, without access to
the bank’s secret information. Such schemes can at best be computationally secure
rather than information theoretically secure, as it is a finite computational problem
to construct a quantum state that reliably passes the publicly known verification
procedure. There have been several proposals over the years for cryptographically
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secure quantum money based on ideas such as knot theory [10] and function obfus-
cation [1, 28].

In this paper, we give a new proposal for public-key quantum money using
quaternion algebras, which the first author was led to from ideas about the theory
of modular forms. We hope that the ideas and techniques of this paper could be
used for other problems in cryptography and computer science. We also expect this
paper to inspire work on the associated computational algebra problems.

This paper can be viewed as an extended version of [15]. While the title of
[15] refers to modular forms, the proposed scheme did not use modular forms, but
only quaternion algebras and Brandt operators. The known connection between
quaternion algebras and modular forms leads one to wonder whether modular forms
can be used cryptanalytically, and we address that question in the security section.

In his March 27, 2020 lecture at the Simons Institute for the Theory of Com-
puting [23], Peter Shor listed Kane’s quantum money scheme in [15] as one of very
few quantum money proposals that had not yet been broken.

1.1. Our Proposed Scheme. The verification procedure for quantum money
should ideally be non-destructive.1 A natural way to achieve this goal is to make
the state an eigenstate of some (commuting collection of) unitary operators, that is,
consider a scheme where there is a set of commuting unitary operators U1, U2, . . . , Ut,
and a bill is a joint eigenstate |ψ〉. One can easily verify such a state is a valid bill
and measure the corresponding eigenvalues of the Uj non-destructively. One can
also produce a random joint eigenstate by starting with some arbitrary state |ρ〉
and measuring with respect to the eigenbasis of the Uj . In fact one can construct
pairs of eigenstates with the same eigenvalues by starting with a maximally en-
tangled state. However, there seems to be no obvious way to produce more than
these two eigenstates with the same eigenvalues. This makes this into a scheme for
quantum lightning (see [28]), which by standard methods can be turned into a quan-
tum money protocol. In particular, to create quantum money, one merely needs
the state |ψ〉 |ψ〉 along with a classical digital signature certifying the sequence of
eigenvalues. We show (in Theorem 4.1 below) that this quantum money scheme is
secure if the Uj are implemented as oracles.

In order to obtain a practical version of this scheme, one needs to find explicit
commuting operators Uj so that the joint eigenstates are cryptographically com-
plicated. This is a non-trivial problem, but we have a candidate collection coming
from Brandt matrices acting on the Brandt modules associated to certain quater-
nion algebras.

The action of the p-Brandt matrices on the Brandt modules associated to our
maximal order ON in a suitable quaternion algebra can be viewed as a computa-
tionally efficient way to implement the action of the Hecke operators Tp on a space
of modular forms, namely, the space S2(Γ0(N)) of weight two cusp forms of level
N , where for us, N is a large prime. Modular forms are spaces of highly symmetric
analytic functions on the upper half of the complex plane with a storied math-
ematical history, finding applications in problems as diverse as the computation
of partition numbers and the proof of Fermat’s Last Theorem. The vector space
S2(Γ0(N)) has dimension Θ(N), and the operators eiTp acting on this space are a

1Though as Zhandry [28, Remark 3.1] observes, if the verification procedure succeeds with
high probability, then it can be modified to a new verification procedure that is non-destructive

with high probability.
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collection of commuting, unitary operators acting on a large, complex vector space.
These operators seem relatively likely to be cryptographically complicated.

1.2. Outline. We discuss the details of the black box version of this protocol in
Section 2, the related security problem in Section 3, and a proof of black box secu-
rity in Section 4. In Section 5 we give details of our instantiation using quaternion
algebras. We describe some of the relevant theory of quaternion orders and ideal
class sets in Section 5.1, using [26] as a reference. We introduce the Brandt ma-
trices in Section 5.2, obtain canonical encodings of ideal classes in Section 5.3 that
help to make the Brandt matrices computationally tractable, and give additional
information about the Brandt operators in Section 5.4. We provide an efficient
algorithm to produce a maximally entangled state in Section 5.5. We formally in-
stantiate the protocol in Section 5.6. In Section 6 we discuss the security of the
instantiation. Theorem 6.2 reduces the security of the instantiation to the hardness
of Problem 6.1, while Sections 6.2 to 6.6 give possible avenues of attack and why
we do not expect them to succeed.

2. The Black Box Protocol

A quantum money protocol consists of a set B of bills, an efficient verification al-
gorithm Verify, and an efficient minting algorithm Mint. The verification algorithm
takes as input public parameters PP and a candidate bill x, and outputs True if and
only if x ∈ B. The minting algorithm takes as input public and private parameters
and outputs a bill x ∈ B.

Suppose V is an N -dimensional complex vector space, and U1, . . . , Ut are com-
muting unitary operators on V . Since the Uj ’s commute, there exists an eigenbasis
{|ψi〉}Ni=1. Let zij denote the eigenvalue of Uj associated to the eigenvector |ψi〉,
that is, Uj |ψi〉 = zij |ψi〉. Set vi = (zi1, . . . , zit), the vector of eigenvalues for |ψi〉.

Definition 2.1. If ε ∈ R>0, we say that an eigenbasis {|ψi〉}i is ε-separated if
|vk − vj | ≥ ε in the L2-norm whenever j 6= k.

Given an oracle that can compute controlled versions of the Uj , we present the
following quantum money protocol:

The public parameters consist of:

• an efficient digital signature algorithm and a verification key VK,
• an N -dimensional complex vector space V along with a computationally

feasible basis for V ,
• commuting unitary operators U1, U2, . . . , Ut on V , and
• a positive real number ε.

Assume there is an ε-separated eigenbasis {|ψi〉}Ni=1. For each i, let vi be the vector
of eigenvalues for |ψi〉, as above. Then a bill consists of a triple (|ψ〉 , v, σ), called
respectively the note, serial number, and signature, given as follows:

• the note |ψ〉 is |ψi〉 ⊗ |ψi〉 for some i,
• the serial number v is classical information providing an approximation of
vi to error less than ε/3, and
• σ is a digital signature of v signed with the signing key SK that corresponds

to the verification key VK.

The verification algorithm Verify(PP, (|ψ〉 , v, σ)) is as follows:

(1) Verify the digital signature σ of v.
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(2) For each j = 1, ..., t, use phase estimation to verify that the note |ψ〉 is an
eigenstate of Uj ⊗ IN and of IN ⊗ Uj with eigenvalues within ε/2 of those
given by the entries of the serial number v (where IN is the N ×N identity
matrix.

The minting algorithm Mint(PP,SK) is as follows:

(1) Prepare a maximally entangled state
1√
N

N∑
i=1

|ψi〉 |ψi〉 for V that is the

uniform superposition over all notes.
(2) Apply phase estimation with Uj⊗IN for each j. Set |ψ〉 to be the resulting

state, and set the jth entry of the serial number v to be an approximation
to the eigenvalue.

(3) Set σ to be the digital signature of v with signing key SK.

Remark 2.2. There are a few important things to note about this protocol:

(1) The separation assumption implies that, up to scalar multiple, the eigen-
basis {|ψi〉} is unique. Therefore the verification algorithm is correct.

(2) If the bill is valid, verification does not change it.
(3) If the note was not an eigenstate of all the Uj ⊗ IN and IN ⊗ Uj before

applying the verification algorithm, it will be after the phase estimation
step.

(4) Due to the assumed separation of {|ψi〉}, every pair of bills that validate
for the same serial number must (after verification) have notes that are the
same eigenstate.

If the serial number is required to be an appropriate unique rounding of the
eigenvalues of |ψi〉 rather than merely an approximation, this looks very much like
a protocol for quantum lightning in the sense of [28], that is, a mechanism that
can produce and label one of a number of states but for which it is hard even for
an adversarial algorithm to produce multiple copies of the same such state. We
chose to use arbitrary approximations so that one does not need to worry about
precision errors if the true eigenvalues are near the boundary between two different
roundings. However, our proposal should still give many of the applications of
quantum lightning, including quantum money and verifiable randomness.

3. The Security Problem

What might an attack against this scheme look like? For quantum lightning, an
attack would require a method for producing two copies of the same bolt (in this
case a pair of identical eigenstates). We argue that any attack on our quantum
money protocol should be able to do this. In fact it is enough to note that having
four copies of the same eigenstate, one can throw away one to get three copies.
Thus, we base our security on the following problem:

Problem 3.1. Given N , V ∼= CN , and commuting unitary operators U1, . . . , Ut on
V , output a state of the form |ψ〉 |ψ〉 |ψ〉, where |ψ〉 is an eigenvector of all the Uj .

The black box version of the problem is when the adversary only has black box
access to the Uj .

We claim that any agent capable of attacking this system must be capable of
solving Problem 3.1. In particular, we consider three kinds of attacks on the system:
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(1) Attacks by the mint: This would apply for systems where the mint creates
a public registry of valid serial numbers (or perhaps puts them into a hash
tree, publishing only the root). In such a system, the mint itself might try
to cheat by creating multiple copies of bills appearing in the registry.

(2) Attacks by others: An attacker given access to some number of valid bills
and perhaps a much larger number of valid serial number signatures finds
some procedure to spend more bills than they initially had access to.

(3) Attacks on random instances: An attacker, for a random public key/private
key pair for the digital signature scheme and making some number of calls
to a signing oracle, finds some procedure to spend more bills than they
initially had access to.

Theorem 3.2 below shows that an adversary who succeeds with any of the above
types of attack can then solve Problem 3.1. Note the similarity between its proof
and the security proof in [1, Theorem 14].

We note some differences between (2) and (3) of Theorem 3.2. Part (2) says that
if you have an algorithm that attacks the given instance, then you can produce an
algorithm that either attacks that instance of the digital signature scheme, or (with
additional input of chosen signatures) solves Problem 3.1. While (2) addresses
attacks on a specific system, it cannot be algorithmically hard, since there is an
algorithm that forges signatures—namely, a signing algorithm that has the private
key of the instance hard-coded. In contrast, (3) attacks a random instance of the
protocol (which is what we might hope would be computationally hard), and the
second conclusion of (3) is an unequivocal attack on Problem 3.1.

Theorem 3.2. (1) If an adversary using a quantum computer and given the secret
key to the signing protocol can in time T run a procedure that with probability
at least p produces n+ 1 valid bills with at most n total serial numbers among
them, then the adversary can with constant positive probability solve Problem
3.1 in time O(T/p).

(2) If an adversary, given n bills and s uniformly random valid signatures of serial
numbers, but without access to the signing key, can in time T run a procedure
that with probability at least p produces n + 1 bills that pass the verification
procedure, then the adversary in time O(T ) with probability p can, given n+ s
chosen signatures, either:
• produce a new valid signature without access to the signing key, or
• solve Problem 3.1.

(3) Suppose there is a quantum algorithm that for a random instantiation of the
quantum money protocol (i.e., a random choice of parameters for the digital
signature scheme, but without access to the signing key), given n uniformly
random bills and the signatures corresponding to s other uniformly random
bills, can generate n+ 1 valid bills in time T with probability p (with the proba-
bility taken over both the space of measurement outcomes and the set of public
key/private key pairs for the signature scheme). Then either:
• there is a quantum algorithm that for a random instantiation of the digital

signature scheme and given n+ s chosen signatures can in time O(T ) and
with probability at least p

2 produce a new valid signature without access to
the signing key, or
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• there is a quantum algorithm that in time O(T+c(n+s)
p ) and with probability

at least 1
2 solves Problem 3.1, where c is the time required to run the

minting algorithm once.

Proof. The argument for (1) is easy. By the pigeonhole principle, at least two of the
bills produced must have the same serial number. Given the separation between
the vi, this must mean that the notes in question are both of the form |ψi〉 |ψi〉 for
the same value of i. Using one and a half of these, the adversary (i.e., the mint) has
produced a state of the form |ψi〉 |ψi〉 |ψi〉. Thus, in time T the adversary can solve
Problem 3.1 with probability at least p. Repeating O(1/p) times yields a constant
probability of success.

For (2), the adversary can use the chosen signatures and the minting algorithm
to produce n + s valid bills x1, . . . , xn, y1, . . . , ys; namely, to produce a bill, the

adversary can produce a maximally entangled state
∑N
i=1 |ψi〉⊗ |ψi〉, measure with

respect to the operators I ⊗Uj for j ∈ {1, . . . , t}, and then sign the tuple of eigen-
values resulting from the measurements using a single call to the signing algorithm
(where N and t are as in Problem 3.1). For each k, let σk denote the signature for
bill yk. By hypothesis, using x1, . . . , xn, σ1, . . . , σs, the adversary with probability
at least p can in time T produce n + 1 bills that pass the verification procedure.
These bills along with y1, . . . , ys give n+s+1 valid bills. Thus either the adversary
has produced a valid signature that is not one of the original n + s signatures of
valid bills (thus producing a new signature without the private key), or at least two
of the n+ s+ 1 bills have the same serial number, which implies that the adversary
has three copies of the same eigenstate, and the adversary has solved Problem 3.1.

For (3), the desired quantum algorithm first generates an instance of the quantum
money protocol, i.e., generates a public key/private key pair for the digital signature
algorithm. As in (2), using n + s calls to the signature algorithm, the algorithm
with probability at least p either produces a new signature without using the private
key, or solves Problem 3.1. If the former holds with probability at least p

2 , then the
first conclusion holds. Now suppose that is not the case. Then the algorithm solves
Problem 3.1 with probability at least p/2. A solution to Problem 3.1 is independent
of the signature keys. Repeat O(1/p) times with O(1/p) random instances of the
signature key pair to obtain the second conclusion. �

3.1. A
√
N Attack. There is an obvious O(

√
N) time attack on Problem 3.1:

• Produce
√
N notes using the minting procedure.

• Search for pairs of notes with serial numbers sufficiently close to each other.

Each note is |ψi〉 |ψi〉 for a uniform random value of i. By the birthday paradox,

we expect to find a collision within the first O(
√
N) notes.

4. Black Box Security

One might worry about black box attacks against the proposed system, that is,
attacks on Problem 3.1 that do not make use of any special structure of V or the
Uj and only have black box access to the operators Uj . In this section we show

that any such attack must have query complexity at least Ω((N/ log(N))1/3).
If D is a probability distribution over (S1)t, then for each N , we obtain an

induced probability distribution over tuples of commuting N×N unitary operators
(U1, . . . , Ut) by letting {|ψi〉} be a random orthonormal basis of CN (under the
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Haar measure), letting vi = (zi1, . . . , zit) be i.i.d. samples from D for i = 1, . . . , N ,
and defining Uj by the equations Uj |ψi〉 = zij |ψi〉.

Theorem 4.1. Suppose D is any probability distribution over (S1)t such that with
high probability, any finite number of samples chosen from D are distinct. Then any
circuit consisting of standard gates and controlled Uj gates that solves Problem 3.1
with constant positive probability for sets of operators U1, . . . , Ut chosen according
to D and with uniformly random eigenbasis {|ψi〉} must have Ω((N/ log(N))1/3)
controlled Uj gates.

The hypothesis on D in Theorem 4.1 holds, for instance, if D is the uniform
distribution over (S1)t. Additionally, for each small positive ε, if t� log(N), then
the eigenvectors are ε-separated with high probability. This shows that Theorem
4.1 holds even when the eigenvectors are ε-separated (which implementations of
our quantum money protocol require).

The proof of Theorem 4.1 will proceed in three steps:

(1) Replace Problem 3.1 with a refinement, Problem 4.2, that is equivalent
when the eigenspaces are one-dimensional.

(2) Show that with degenerate eigenspaces (i.e., eigenspaces of dimension greater
than one), Problem 4.2 is impossible to solve with constant positive prob-
ability even with an unbounded number of queries (with probability of
success depending on how degenerate the eigenspaces are).

(3) Then define a family of input distributions parameterized by an integer M
so that when M is large we have ε-separation with high probability and
when M is small we do not. We use the bounds from (2) to show that the
probability of success with small M is bounded and then use the polynomial
method to show that unless we make a large number of queries, this implies
that the probability of success is small even in the range where we do have
ε-separation.

4.1. Preliminary lemmas. Consider the following refinement of Problem 3.1:

Problem 4.2. Given N , V ∼= CN , and commuting unitary operators U1, . . . , Ut
on V , output a state of the form |ψi〉 |ψi〉 |ψi〉 for some 1 ≤ i ≤ N , where {|ψi〉} is
a fixed secret eigenbasis of V for the operators Uj .

When the eigenbasis is ε-separated, then Problems 4.2 and 3.1 are equivalent.
But if the eigenspaces are degenerate, then Problem 4.2 is impossible to solve. To
see this, suppose that a circuit attempting to solve Problem 4.2 outputs a state |φ〉,
and think of the choice of basis {|ψi〉} as a random variable. Then it suffices to show
that the probability that |φ〉 has a large component in any |ψi〉 |ψi〉 |ψi〉 direction is
small. We first consider the case of a single, totally degenerate eigenspace; we will
consider the general case in Claim 2 of the proof of Theorem 4.1.

Lemma 4.3. If W is a complex vector space and |φ〉 ∈W ⊗W ⊗W , then

E
{|ψi〉} orthonormal basis of W

[∑
i

| 〈ψi| 〈ψi| 〈ψi| |φ〉 |2
]
≤ 3

dim(W )
.

Proof. Let m = dim(W ). It suffices to show that

E
||ψ〉|2=1

[
| 〈ψ| 〈ψ| 〈ψ| |φ〉 |2

]
≤ 3

m2
.
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Rewrite |ψ〉 as 1√
m

∑m
i=1 xi |ψi〉 where {|ψi〉} is a random orthonormal basis for W

and xi are i.i.d. ±1 random variables. We claim that even after fixing the |ψi〉, the
expectation over xi is at most 3/m2. In particular let

|φ〉 =
∑

1≤i,j,k≤m

aijk |ψi〉 |ψj〉 |ψk〉

where
∑

1≤i,j,k≤m |aijk|2 = 1. Then the expectation over xi is

1

m3 E
xi

[|
∑

1≤i,j,k≤m

aijkxixjxk|2].

Collecting like terms this is

1

m3 E
xi

[|
∑

1≤i<j<k≤m

(aijk + aikj + ajik + ajki + akij + akji)xixjxk

+

m∑
i=1

xi(aiii +

m∑
j=1,j 6=i

(aijj + ajij + ajji))|2].

By orthogonality of the variables xixjxk and xi, this is

(4.1)
1

m3 E
xi

[
∑

1≤i<j<k≤m

|aijk + aikj + ajik + ajki + akij + akji|2

+

m∑
i=1

|aiii +

m∑
j=1,j 6=i

(aijj + ajij + ajji)|2].

For each i, there are 3m − 2 terms in the sum aiii +
∑m
j=1,j 6=i(aijj + ajij + ajji).

Thus by Cauchy-Schwartz, (4.1) is at most

1

m3

 ∑
1≤i,j,k≤m
i6=j 6=k

6|aijk|2 + (3m− 2)

m∑
i=1

|aiii|2 +

m∑
j=1,j 6=i

(|aijj |2 + |ajij |2 + |ajji|2)


 .

Collecting terms, this is at most

1

m3

m∑
i,j,k=1

(3m− 2)|aijk|2 ≤
3

m2
,

as desired. �

Our proof of Theorem 4.1 in §4.2 will also make use of the following two lemmas.

Lemma 4.4. Suppose N,M ∈ Z>0, and M ≤ N
16 logN . With the probability taken

over the space of all functions h : [N ]→ [M ], we have

Pr

(
#(h−1(j)) >

N

2M
for all j

)
≥ 1− 1

16N logN
.

Proof. Fix j ∈ [M ]. For i ∈ [N ], define a random variable Xi by

Xi =

{
1 h(i) = j,

0 h(i) 6= j.
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The probability that Xi = 1 is 1
M , and the Xi are independent. Let X =

∑N
i=1Xi.

Observe that E
h

[X] = N
M . By the Chernoff bounds,

Pr

(
X ≤ N

2M

)
≤ e− N

8M ≤ 1

N2
,

where the last inequality holds since M ≤ N
16 logN . By the union bound, we have

Pr

(
#(h−1(j)) ≤ N

2M
for some j

)
≤

M∑
j=1

Pr

(
X ≤ N

2M

)
≤ M

N2
≤ 1

16N logN
.

The claim now follows. �

Lemma 4.5. If i ∈ Z≥1, then

∣∣∣∣∣∣∣∣
∏
j≥1
j 6=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣∣∣∣∣∣ = O

(
1

i

)
.

Proof. Let f(z) :=
∏∞
j=1

(
1− z

(2j−1)2

)
= cos(π

√
z

2 ). Then∣∣∣∣∣∣∣∣
∏
j≥1
j 6=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1

(2i− 1)2f ′((2i− 1)2)

∣∣∣∣
= O

 1

|(2i− 1) sin
(

(2i−1)π
2

)
|

 = O

(
1

i

)
.

�

4.2. Proof of Theorem 4.1. Next, we use the polynomial method. Let C be any
circuit consisting of standard gates and at most d controlled Uj gates. We show
that under the correct distributions over Uj , any circuit with d too small will be
unable to distinguish the cases where the eigenspaces of Uj are degenerate, and
those where it is not.

Let v1, . . . , vN be i.i.d. samples from D, let {|ψi〉} be a random orthonormal
basis, and let (U1, . . . , Ut) be the operators determined by these choices. Since,
by hypothesis, N samples chosen from D are with high probability distinct, every
solution of Problem 3.1 is also a solution of Problem 4.2, and so the probability
that circuit C solves Problem 3.1 is

E
|ψi〉,vi

[∑
i

| 〈ψi| 〈ψi| 〈ψi|C(U1, . . . , Ut) |0〉 |2
]
,

where the expectation is over all choices of orthonormal basis {|ψi〉} and tuples of
eigenvalues v1, . . . , vN . By the polynomial method [2, Lemma 4.2], this expectation
is of the form E

vi
[p(zij , zij)], where p is some polynomial of degree at most 2d and

vi = (zi1, . . . , zit).
For integers M , we define a slightly different probability distribution over the vi.

We let h : [N ]→ [M ] be a function chosen uniformly at random, and let vi = uh(i)
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where the uj are i.i.d. elements of D. We let

AM = E
h,vi

[p(zij , zij)]

where the h vary uniformly among functions [N ]→ [M ] and the vi are distributed
as above, with vi = uh(i) and the uj distributed according to D.

There are several things worth noting about this distribution. First, it is easy to
see that our original probability of success is limM→∞AM . This is because for large
M , with high probability h has no collisions and therefore the distribution over the
vi is arbitrarily close in total variational distance to i.i.d. copies of D. Second, we
have the following:

Claim 1. For each N , there exists a polynomial qN (x) of degree at most 2d such
that AM = qN (1/M).

Proof. Since p(zij , zij) is a polynomial of degree at most 2d, to prove the claim it
suffices to show that if m is a monic monomial of degree e, then E

h,ui

[m(zij , zij)] is

a polynomial in 1/M of degree at most e. Write m(zij , zij) = m1(zij)m2(zij) with
m1 and m2 monic. Observe that

E
vi

[m(zij , zij)] =

{
1 if m1 = m2

0 if m1 6= m2.

Write uij for the jth component of ui. Given h, define a ring homomorphism
H : C[{zij}] → C[{uij}] by H(zij) = uh(i)j . Then E

h,ui

[m(zij , zij)] equals the

probability over the set of h’s that H ◦ m1 = H ◦ m2. If m1 = m2, then this
probability is 1. Now suppose that m1 6= m2. For k = 1 and 2, let

Bk = {zij | zij appears in mk with positive exponent}.
Since zijzij = 1 whenever zij ∈ S1, by cancelling such terms in m we may assume
that B1 ∩ B2 = ∅. Without loss of generality, |B1| ≥ |B2|. If t is a surjective map
B1 � B2, say that h has collision type t if H(z) = H(t(z)) for all z ∈ B1. There is a
finite set T of collision types with the property that h has collision type in T if and
only if H ◦m1 = H ◦m2. The number of h having collision type in the set T is given
by an inclusion-exclusion formula. Each term in the inclusion-exclusion is given by
the number of h having collision type t for all t in some subset T ′ ⊆ T . For a given
collision type t ∈ T , the probability that h has type t is 1

M |B1| . The probability that

h has type t for every t ∈ T ′ is of the form K/Mf for some constant K and some
integer f . The maximum value of f occurs for the sets T ′ such that h has type t
for all t ∈ T ′ if and only if H|B1∪B2

is a constant, in which case f = |B1|+ |B2|−1.
Since |B1|+ |B2| ≤ e, Claim 1 follows. �

We next show:

Claim 2. If M ≤ N
16 logN , then qN (1/M) = O(M/N).

Proof. By the above discussion and Claim 1 we have:

(4.2) qN (1/M) = E
h,|ψi〉,vi

[∑
i

| 〈ψi| 〈ψi| 〈ψi|C(U1, . . . , Ut) |0〉 |2
]
,

where the h vary uniformly over functions from [N ] to [M ], the vi are distributed
according to h and D as above, and the sets {|ψi〉} vary over random orthonormal
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bases for V . Suppose M ≤ N
16 logN , and let h be a random function from [N ] to

[M ]. By Lemma 4.4, with probability at least 1 − 1
16N logN , for every j ∈ [M ]

we have #(h−1(j)) = Ω(N/M). Let Vj = span{|ψi〉 : h(i) = j}, so that with
probability at least 1 − 1

16N logN we have dimVj = Ω(N/M). Fix both the values

of the uj and the spaces Vj . The Vj are eigenspaces for Uk with eigenvalues ujk.
The output of C depends only on the Vj and the uj , but not on which basis of Vj
is given by {|ψi〉 : h(i) = j}. Thus the output is

∑
j aj |φj〉 for some |φj〉 ∈ V ⊗3j

and
∑
j |aj |2 = 1. Therefore the right-hand side of (4.2) is

E
Vj ,uj

∑
j

|aj |2
 E
|ψi〉 given Vj

 ∑
i:|ψi〉∈Vj

| 〈ψi| 〈ψi| 〈ψi| |φj〉 |2
 .

Here, we vary over orthogonal decompositions V = ⊕Mj=1Vj , tuples of eigenvalues
uj , and orthonormal bases {|ψi〉} that are a union of orthonormal bases for the
Vj . Note that h can be recovered from this data by defining h(i) = j if and only
if |ψi〉 ∈ Vj . Thus varying over tuples ({|ψi〉}, h, uj) is the same as varying over
tuples ({Vj}, {|ψi〉} given Vj , uj), with an appropriate choice of distribution on the
latter tuples. By Lemma 4.3, with probability at least 1− 1

16N logN we have:

∑
j

|aj |2 E
|ψi〉 given Vj

 ∑
i:|ψi〉∈Vj

| 〈ψi| 〈ψi| 〈ψi| |φj〉 |2
 =

∑
j

|aj |2O(1/ dim(Vj))

= O(M/N).

By (4.2) we have qN (1/M) = O(M/N), as desired. �

We now proceed to prove Theorem 4.1 by contradiction. Suppose that for every
k > 0 there is a circuit for which d3 < k N

log(N) . To prove Theorem 4.1, it suffices to

show that for sufficiently large N the success probability of such a circuit is O(k),
where the implied constant is independent of N . By Claim 1, for each N the success
probability is limM→∞AM = qN (0), so it suffices to show that qN (0) = O(k).

We may assume that k < 1
16 . For i ∈ {1, . . . , 2d+ 1}, let

mi =
d3

(2i− 1)2
and Mi = bmic ∈ Z.

Then Mi ≤ d3 < N
16 logN , so by Claim 2 we have qN (1/Mi) = O(Mi/N) for each i.

Using standard polynomial interpolation, we have:

qN (0) =

2d+1∑
i=1

qN (1/Mi)
∏
j 6=i

1/Mj

1/Mj − 1/Mi
.

We begin by bounding these expressions if the Mj were replaced by mj :∣∣∣∣∣∣
∏

j 6=i,j≤2d+1

1/mj

1/mj − 1/mi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏

j 6=i,j≤2d+1

(2j − 1)2/d3

(2j − 1)2/d3 − (2i− 1)2/d3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

j 6=i,j≤2d+1

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∏
j 6=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣∣∣∣ ,
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where the final product is over all positive integers j. By Lemma 4.5, the latter
product is O(1/i). Since Mi = bmic, we have 1/Mi = 1/mi +O(1/m2

i ). Thus,∣∣∣∣∣∣
∏
j 6=i

1/Mj

1/Mj − 1/Mi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏
j 6=i

1/mj +O(1/m2
j )

1/mj − 1/mi +O(1/m2
i + 1/m2

j )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∏
j 6=i

1/mj

1/mj − 1/mi

∣∣∣∣∣∣
∏
j 6=i

(
1 +

O(1/m2
i + 1/m2

j )

|1/mi − 1/mj |

)

= O(1/i) exp

∑
j 6=i

O

(
i4 + j4

(i2 − j2)d3

)
≤ O(1/i) exp

∑
j 6=i

O

(
max(i, j)4

(max(i, j)|i− j|d3

)
≤ O(1/i) exp

∑
j 6=i

O

(
max(i, j)3

|i− j|d3

) .

Now if i ≤
√
d, the terms with j ≤ 2i sum to at most O(1/d), and the larger terms

in the sum are O
(
j2

d3

)
, and therefore sum to O(1). If i ≥

√
d, then the terms are

O
(

1
|i−j|

)
, and thus sum to O(log(d)). This implies that

qN (0) =

2d+1∑
i=1

qN (1/Mi)
∏
j 6=i

1/Mj

1/Mj − 1/Mi

=

√
d∑

i=1

qN (1/Mi)O(1/i) +

2d+1∑
i=
√
d

qN (1/Mi)O(log(d)/i)

=

√
d∑

i=1

O

(
Mi

Ni

)
+

2d+1∑
i=
√
d

O

(
log(d)Mi

Ni

)

=

√
d∑

i=1

O

(
d3

Ni3

)
+

2d+1∑
i=
√
d

O

(
d3 log(d)

Ni3

)
= O(d3 log(d)/N).

Since d3 < kN
log(N) and k < 1/16, it follows that for N ≥ 2 we have d3 log(d)

N <
k log(d)
log(N) < k, as desired.

Remark 4.6. The bound in Theorem 4.1 is nearly tight. In particular, if we
assume ε-separation of the vi’s for the operators U1, . . . , Ut, then there is actu-
ally an algorithm for solving Problem 3.1 with constant probability in O(N1/3t/ε)
queries, similar to the collision algorithm of [4]. The algorithm involves computing
N1/3 pairs |ψi〉 |ψi〉, then preparing N2/3 other maximally entangled states. These
maximally entangled states can be thought of as being in a superposition of all
combinations of N2/3 pairs tensored together. There is a reasonable probability
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that one of these N2/3 pairs agrees with one of our N1/3 pairs, and we can find
the index of such a pair using Grover’s algorithm by measuring the eigenvalues of
only O(N1/3) of our pairs. In order to compute the eigenvalues to sufficient ac-
curacy takes only O(t/ε) queries each. Thus, this algorithm has query complexity
O(N1/3), although the full complexity is O(N2/3).

5. Instantiation using Quaternion Algebras

Above, we discussed a quantum money protocol that depends on having access
to a number of black box, commuting operators. However, for our protocol to
be cryptographically secure, we will need to implement it using operators that
are cryptographically difficult to work with. This is a bit of an issue as most
easily computable sets of commuting operators will not be secure in this way. For
example, taking Uj to be the Pauli matrix on the jth qubit Zj gives an easy set of
commuting operators, but one for which it is easy to manufacture eigenstates (even
with specified eigenvalues). We come up with a hopefully secure set of commuting
operators using the theory of quaternion algebras.

5.1. Quaternion Algebras. Before we discuss our implementation in detail, we
review some basic facts about orders in quaternion algebras, for which [26] can be
used as a reference.

Given a, b ∈ Q, define H(a, b) = Q+Qi+Qj+Qij to be the Q-algebra with basis
{1, i, j, ij} and relations i2 = a, j2 = b, and ji = −ij. Then H(a, b) has dimension
four as a Q-vector space, and H(a, b) is a quaternion algebra over Q. For example,
H(−1,−1) is the Q-algebra of Hamilton quaternions.

For z = x0 + x1i + x2j + x3ij ∈ H(a, b) (with xi ∈ Q), its conjugate is z̄ :=
x0 − x1i− x2j − x3ij and its reduced norm is nrd(z) := zz̄.

A quaternion algebra H over Q is ramified at a prime N (respectively, at ∞) if
the completion H ⊗Q QN (respectively, H ⊗Q R) is a division algebra (equivalently,
is not the matrix algebra M2(QN ), respectively M2(R)). An order O in H is by
definition a subring that is also a lattice (i.e., a finitely-generated Z-submodule such
that OQ = H).

From now on, suppose N is a prime number and N ≥ 5. Let HN be the unique
quaternion algebra over Q ramified at N and ∞; see Proposition 5.1 of Pizer [21]
for a and b such that HN = H(a, b). If N ≡ 1 (mod 6) let ON be the maximal
order given explicitly in Proposition 5.2 of Pizer [21], and if N ≡ 5 (mod 6) let

HN = H(−3,−N) and ON = Z + Z 1+i
2 + Z j+ij

2 + Z i−ij
3 . (In particular, if N ≡ 7

(mod 12) then HN = H(−1,−N) and ON = Z+Zi+Z 1+j
2 +Z 1+ij

2 .) Then ON is
an N -extremal maximal order in HN , that is, a maximal order for which the unique
ideal of reduced norm N is principal (see [26, Chapter 21]).

A (left) fractional ideal of ON is by definition a (full-rank) lattice in HN that
is closed under left multiplication by elements of ON . Define the ideal class set
Cls(ON ) to be the set of fractional ideals of ON modulo right multiplication, i.e.,
modulo the equivalence relation defined by I ∼ J if and only if there exists z ∈ HN

such that I = Jz. The ideal class set Cls(ON ) is finite (see [26, Chapter 21]). If
I is a fractional ideal of ON , let [I] denote its ideal class, i.e., the set of fractional
ideals J of ON such that I = Jz for some z ∈ HN .
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If I is a left fractional ON -ideal, then the reduced norm nrd(I) is defined in [26,
§16.3], and satisfies IĪ = nrd(I)ON . If I ⊂ ON then nrd(I)2 = [ON : I] (see [26,
§16.4.8]).

The quaternion algebra H(a, b) embeds in R4 via the homomorphism of abelian
groups

x0 + x1i+ x2j + x3ij 7→ (x0, x1
√
|a|, x2

√
|b|, x3

√
|ab|).

Identifying H(a, b) with its image, for all z ∈ H(a, b) we have nrd(z) = ‖z‖2,
where ‖ · ‖ denotes the Euclidean norm on R4. The image of ON and of any left
fractional ideal of ON is a lattice in R4. We thus may represent a fractional ideal
by a Minkowski reduced basis. Since every fractional ideal is a rank four lattice,
given a Z-basis, a Minkowski reduced basis can be computed in polynomial time
[20]. In algorithms, we specify a fractional ideal for ON by a Minkowski reduced
basis for it.

5.2. Normalized Brandt operators T (p).

Definition 5.1. If I is a left fractional ON -ideal, define its right order OI := {z ∈
HN | Iz ⊂ I} and its weight wI := #(O×I /{±1}) = 1

2#OI .

Then OI is a maximal order, and wI depends only on the ideal class [I]. In
Proposition A.7 in Appendix A we completely describe the wI . Our choices for the
maximal orders ON were designed to give Proposition A.7 a clean statement.

Suppose p is a prime not equal to N , and suppose I and J are non-zero fractional
ideals of ON . Define ap([I], [J ]) to be the number of fractional ideals I ′ ⊂ J such
that I ′ ∼ I and J/I ′ ∼= Z/pZ×Z/pZ. Let h = #Cls(ON ) and let T ′(p) be the h×h
matrix with [I], [J ]-entry ap([I], [J ]). The matrix T ′(p) is the p-Brandt matrix for

level N . The action of T ′(p) is self-adjoint for the pairing on CCls(ON ) given by〈
(x[I])[I], (y[I])[I]

〉
=
∑
[I]

1

wI
x[I]y[I]

(see [26, §41.1.9]). Let W be the diagonal h× h matrix whose [I], [I]-entry is
√
wI ,

and let T (p) = WT ′(p)W−1. We call T (p) the normalized p-Brandt matrix
for level N . For example, if N ≡ 1 (mod 12), then T (p) = T ′(p). Let VN be
the subset of CCls(ON ) orthogonal (under the usual inner product) to the vector
(
√
wI)[I]. Then T (p) acts on CCls(ON ), preserves VN , and acts as a self-adjoint

operator for the usual inner product. In our protocol, we will use the associated
unitary operator eiT (p)/

√
p.

In order to use the operators T (p) in our quantum money scheme, we will need
to find a way to make these operators computationally tractable. First, we will
need to find a better way of representing our ideal classes. While it is easy to
give a single fractional ideal in the class, it is important for us to find a canonical
representation.

5.3. Canonical encoding. We next show how to obtain a canonical representation
of an ideal class.

Algorithm 5.2.
INPUT: A prime number N ≥ 5, an N -extremal maximal order ON in HN , and

a left fractional ON -ideal I.
OUTPUT: A triple of integers (d, a, b) such that gcd(d, a, b) = 1 and b > a ≥ 0

and d ≥ 1.
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(1) Apply a shortest vector algorithm such as Algorithm 2.7.5 of [6] to the lattice
I to produce an element z ∈ I of minimal non-zero reduced norm.

(2) Compute the ideal Jz := 1
nrd(I)Iz̄.

(3) Repeat steps (1) and (2) for each of the (at most six) z ∈ I of minimal
non-zero norm. Let J be the ideal Jz with lexicographically first encoding,
and compute m := nrd(J).

(4) Compute the image I ⊂ M2(Z/mZ) of J/mON under the isomorphism

fN,m : ON/mON
∼−→M2(Z/mZ) from the algorithm of Proposition A.4.

(5) Letting H ⊂ (Z/mZ)2 be the (cyclic) subgroup (of order m) generated by
the rows of all the elements of I, apply the algorithm of Proposition A.3 to
obtain (d, c) ∈ Z2 that generates H and satisfies d | m and gcd(d, c) = 1.

(6) Compute b = m/d and a = c (mod b). Output (d, a, b).

We call the triple (d, a, b) obtained in this way the canonical encoding of the
ideal class of I. Theorem 5.3 below justifies the terminology and shows that the
algorithm works.

Theorem 5.3. In Algorithm 5.2, we have:

(i) mON ⊂ J ⊂ ON ;
(ii) N - m;

(iii) H is a cyclic group of order m;
(iv) gcd(d, a, b) = 1;
(v) if inputs I and I ′ are in the same ideal class in Cls(ON ), then they output

the same triple (d, a, b), and produce the same J , I, and H;
(vi) if the same triple is output by inputs I and I ′, then [I] = [I ′], and I and I ′

produce the same J , I, and H;
(vii) Algorithm 5.2 is a quantum polynomial-time algorithm.

Proof. If γ ∈ HN and I0 is a left fractional ON -ideal, then

(5.1) I0γ ⊂ ON if and only if γ ∈ I−10 = I0nrd(I0)−1.

Since z̄/nrd(I) ∈ Īnrd(I)−1 = I−1, it follows that Jz = Iz̄/nrd(I) ⊂ ON , so
J ⊂ ON . Then 1 ∈ J−1 = J̄m−1 by (5.1), so m ∈ J , so mON ⊂ J , giving (i).

We claim that m is the minimum of the reduced norms of the integral ideals in
[I]. Say I ′ = Iγ. By (5.1), we have that Iγ ⊂ ON if and only if γ = ᾱ/nrd(I) with

α ∈ I. The reduced norm nrd(Iγ) = nrd(α)
nrd(I) is minimized when α is an element of

I of minimal non-zero reduced norm. The minimality of m follows.
Since ON is N -extremal, the Frobenius ideal of ON is principal; let π be a

generator. As in [26, 42.2.4], we have J = πrJ ′ for some r ∈ Z≥0 and some ideal
J ′ ⊂ ON satisfying N - nrd(J ′). Then m = nrd(J) = Nrnrd(J ′) and J ′ ∈ [J ] = [I].
By the minimality of m we have N - m, giving (ii).

If r is a divisor of m, and r 6= 1,m, then rON 6⊂ J and J 6⊂ rON . To see this,
first suppose J ⊂ rON . Then r−1J is an integral ideal in the ideal class of J , of
strictly smaller norm, contradicting the minimality of m. If rON ⊂ J , then r ∈ J ,
so by (5.1) with J in place of I, the ideal Jr̄/m = Jr/m is integral. It is then
an integral ideal of strictly smaller norm in the ideal class of J , contradicting the
minimality of m. The map that sends a matrix to its rowspace induces a bijection
from the set of left ideals of M2(Z/mZ) to the set of subgroups of (Z/mZ)2 (Lemma
A.5). It follows that r(Z/mZ)2 6⊂ H and H 6⊂ r(Z/mZ)2 for all non-trivial proper
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divisors r of m, from which one can show that the subgroup H must be cyclic of
order m, giving (iii).

Since gcd(d, c) = 1, we have gcd(d, c, b) = 1. Since a ≡ c (mod b), we have (iv).
For (v), suppose that the inputs I and I ′ give J and J ′, respectively, in step (4)

of the algorithm. Since J ′ is an integral ideal in [I] with minimal norm, as shown
in the second paragraph of this proof there is an element z ∈ I of minimal non-zero
norm such that J ′ = Iᾱ/nrd(I). Therefore when running the algorithm on input
I, both J and J ′ appear in the list of ideals generated in step (3); by symmetry,
the same occurs with input I ′. Since both J and J ′ are lexicographically first, we
have J = J ′. Let H be as in step (5). By the last sentence of Proposition A.3, the
integer d, and thus b, is uniquely determined. Suppose that (d, c) and (d, c′) are
two generators for H. Then there exists λ ∈ (Z/mZ)× such that λ(d, c) = (d, c′) in
H. Since λd ≡ d (mod m), we have λ ≡ 1 (mod b), so c ≡ c′ (mod b). Thus a is
also unique.

For (vi), suppose that inputs [I] and [I ′] have the same output (d, a, b). The
groups H and H ′ from step (5) of the algorithm are both subgroups of (Z/mZ)2,
where m = db. The group H is generated by (d, c) for some c with a = c (mod b)
and gcd(d, c) = 1, and H ′ is generated by (d, c′) for some c′ with a = c′ (mod b)
and gcd(d, c′) = 1. By Lemma A.6 we have H = H ′. Since (by Lemma A.5) the
map that sends a matrix to its rowspace induces a bijection from the set of left
ideals of M2(Z/mZ) to the set of subgroups of (Z/mZ)2, we have I = I ′. Then
J/mON = J ′/mON , so J = J ′ and [I] = [J ] = [J ′] = [I ′].

For (vii), the Z-rank of I is 4, so step (1) runs in polynomial time.
Viewed as lattices in R4, the index [ON : I] can be computed as the square root

of a ratio of determinants. Since nrd(I) =
√

[ON : I], the reduced norm in step (2)
can be computed in polynomial time.

In step (3), it is easy to compute all the elements of minimal non-zero norm from
one of them, since each I has at most six z of minimal non-zero norm. To see this,
observe that z, z′ ∈ I both have minimal norm if and only if z′ = uz for some unit
u ∈ O×N . The proof of Proposition A.7 gives an explicit generator for O×N , which

has order at most 6. If N ≡ 1 (mod 12), then O×N = {±1}, so up to sign there is a
unique z ∈ I of minimal non-zero norm, and only one ideal Jz.

Thus all steps run in polynomial time, except that the invocation of Propo-
sition A.4 in step (4) might necessitate the use of a quantum polynomial-time
algorithm to factor m. �

Unfortunately, some triples (d, a, b) are not canonical encodings, as seen in the
following example. Fortunately, we can detect when a triple is not canonical; we
do that in the Algorithm 5.5 below.

Example 5.4. Let N = 23, so H23 = H(−3,−23) and O23 = Z + Z 1+i
2 + Z j+ij

2 +

Z i−ij
3 . Let α = 1+i

2 and β = α+ i−ij
3 = 3+5i−2ij

6 and I = (2, β). Then nrd(I) = 2,

and I, Iα, and Iα2 are the only ideals in [I] of minimal norm. Applying the

algorithm of Proposition A.4 gives the isomorphism O23/2O23
∼−→ M2(Z/2Z) that

sends α to [ 0 1
1 1 ] and β to [ 0 0

1 1 ]. The image of I (resp., Iα, Iα2) is the set of matrices
with row space generated by (1, 1) (resp., (1, 0), (0, 1)). It follows that exactly one of
(1, 1, 2), (1, 0, 2), and (2, 0, 1) (depending on which of I, Iα, Iα2 is lexicographically
first) can be a canonical encoding of an ideal class in Cls(O23).
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Algorithm 5.5. INPUT: A prime N ≥ 5, a Z-bases (ω1, ω2, ω3, ω4) for a maximal
order ON in HN , and a triple of integers (d, a, b).

OUTPUT: 1 if (d, a, b) is the canonical encoding of some fractional ideal of ON ,
along with an ideal J ⊂ ON whose canonical encoding is (d, a, b); 0 otherwise.

(1) If a ≥ b or a < 0 or d < 1 or b < 1 or gcd(d, a, b) > 1, output 0 and stop.
(2) Apply the algorithm in Lemma A.2 to compute an integer c such that

gcd(d, c) = 1 and c ≡ a (mod b).
(3) Set m = db. Apply the algorithm of Proposition A.4 to obtain an iso-

morphism fN,m : ON/mON
∼−→ M2(Z/mZ), let π : ON → ON/mON →

M2(Z/mZ) be the composition of reduction mod N with fN,m, and compute
π(ωi) for each i.

(4) Compute xi ∈ Z such that
∑4
i=1 xiπ(ωi) = [ d c0 0 ].

(5) Compute α =
∑4
i=1 xiωi and compute a Z-basis for the ideal J ⊂ ON

generated by m and α.
(6) Apply Algorithm 5.2 to compute the canonical encoding (d′, a′, b′) of J .
(7) Output 1 and the ideal J if (d′, a′, b′) = (d, a, b), and otherwise output 0.

Proposition 5.6. Algorithm 5.5 is correct and runs in quantum polynomial time.

Proof. Suppose that I is a left fractional ideal of ON and suppose that (d, a, b) is
its canonical encoding. Let c, m = db, and J be as in Algorithm 5.5 with input
(d, a, b). To show correctness, by Theorem 5.3(v) it suffices to show that [I] = [J ].

Let J ′, c′, and H ′ = 〈(d, c′)〉 be as in steps (3) and (5) of Algorithm 5.2 with
input I. Let H be the subgroup of (Z/mZ)2 generated by (d, c). Then gcd(d, c) =
1 = gcd(d, c′) and c ≡ c′ (mod b). By Lemma A.6 we have H = H ′. Since J (resp.,

J ′) is the inverse image, under the composition ON → ON/mON
∼−→ M2(Z/mZ),

of the set of matrices whose rows are in H = H ′, we have J = J ′, so [J ] = [J ′] = [I].
Steps (4) and (5) are linear algebra. All steps run in polynomial time, except

that steps (3) and (6) might necessitate the use of a quantum polynomial-time
algorithm to factor m. �

We will need to bound the size of m that we may need to deal with.

Lemma 5.7. Suppose z is an element of minimal non-zero norm in a fractional
ideal I for ON . Let J = 1

nrd(I)Iz̄ and m = nrd(J). Then m ≤
√

2
√
N .

Proof. Let λ1(I) denote the length of a shortest non-zero vector in the lattice I,
and let D denote the discriminant of I. By the Hermite bound we have λ1(I)4 ≤
2|det(I)| = 2

√
D. But nrd(z) = λ1(I)2, so nrd(z) ≤

√
2 4
√
D.

By Lemma 15.2.15 and Proposition 16.4.3 of [26] we have nrd(I) = 4
√
D/
√
N .

Thus m = nrd(z)/nrd(I) = nrd(z)
√
N/ 4
√
D ≤

√
2
√
N . �

5.4. Computation of normalized Brandt Operators T (p). Given an ideal
class [J ], we will need to find the multiset of ideal classes [I] with non-zero ap([I], [J ])-
entries. This is relatively straightforward as we need to find I ⊃ J ⊃ pI that are in-
variant under left multiplication byON , or equivalently we need to find J/pI ⊂ I/pI
that are invariant under ON/pON . It is a standard fact that the action of ON/pON
on I/pI is isomorphic to the action of M2(Z/pZ) on itself. Once such isomorphisms
are computed using the algorithm of Proposition A.4 in Appendix A, the invariant
elements of I/pI correspond to {A ∈M2(Z/pZ) | Av = 0} for v some non-zero ele-
ment in (Z/pZ)2. Since these sets are invariant under scaling of v, there are exactly
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p+1 such J ’s, and they are computable in a straightforward manner. Furthermore,
since J is a small index sublattice of I, from a reduced basis of I it is relatively
simple to compute a reduced basis for J and thus, the appropriate canonical rep-
resentation for [J ]. This allows us to compute the non-zero entries of a row of the
Brandt matrix T ′(p). Proposition A.7 in Appendix A gives the wI , and hence the
normalized Brandt matrix T (p). Then, using standard Hamiltonian simulation al-
gorithms, it is straightforward to approximate the action of eiT (p)/

√
p on VN . By [3,

Theorem 1], eiT (p)/
√
p can be computed with gate complexity polynomial in p and

log(N).
If p is small compared to N , then T (p) is a sparse matrix, since each column has

at most p+ 1 non-zero entries and the matrix is h× h with h = O(N/12).

5.5. Producing Maximally Entangled States. There is one additional diffi-
culty in implementing our scheme in this context. Namely, there is no obvious way
to produce a maximally entangled state for VN ⊗ VN . In this section, we provide
an efficient algorithm for doing this.

In order to produce this representation, we first note that it suffices to produce
a state that is a uniform superposition of the representatives for the elements of
Cls(ON ). In order to do this, we begin by providing a different representation of
such elements.

The following algorithm efficiently produces a superposition over canonical en-
codings of ideal classes.

Algorithm 5.8.
INPUT: A prime number N ≥ 5 and an N -extremal maximal order ON .
OUTPUT: Either a quantum state proportional to

∑
|d, a, b〉, where (d, a, b)

varies over the canonical encodings of the elements in Cls(ON ), or else ⊥.

(1) Prepare a state |ψ〉 proportional to
∑b√2Nc
d=1

1√
d
|d〉 .

(2) Apply to |ψ〉 the linear map that sends |d〉 to

|d〉 ⊗

(
1√
Cd

Cd∑
i=1

|i〉

)⊗2
,

where Cd = b
√

2N/dc, and call the resulting state |ψ1〉.
(3) Writing f for a function that implements Algorithm 5.5, apply to |ψ1〉 |0〉 the

operator that sends |d, a, b〉 |0〉 to |d, a, b〉 |f(d, a, b)〉, and call the resulting
state |ψ2〉.

(4) Measure the last register of the quantum state |ψ2〉. If the result is 0, output
⊥. Otherwise, output |ψ2〉.

If the algorithm outputs ⊥, we say it fails; otherwise we say it succeeds.

Theorem 5.9. Algorithm 5.8 succeeds with probability at least (1− 1
N ) 1

32π2 .

Proof. Step (1) can be implemented by first preparing the state 1√
M

∑M
m=1 |m〉

where M := blog2(
√

2N)c, then appending a zero qubit to this state and applying
the operator defined by

|m0〉 7→
2m+1∑
d=2m

[
1√
d
|d0〉+

√
1

2m
− 1

d
|d1〉

]
,
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and then measuring the last qubit. If the result is 1, start over. If the result is 0,
step (1) has succeeded. One can compute that the success probability for step (1)
is at least 1

2 .
For each d let C ′d be the least power of 2 larger than Cd. To implement step

(2), consider the following procedure. First, apply the operator defined by |d0〉 7→
1√
C′

d

|d〉
∑C′

d
i=1 |i〉 . Define B(d, i) := 0 if i > Cd and B(d, i) := 1 if i ≤ Cd. Apply

the operator defined by |di〉 7→ |di〉 |B(d, i)〉 and measure the last register. If the
result is 0, reject and start over. Rejection occurs with probability ≤ 1

2 . If the

result is 1, discarding the last register leaves a state of the form 1√
Cd
|d〉
∑Cd

i=1 |i〉 .
Applying the above procedure twice produces the output of step (2). The success
probability for step (2) is ≥ 1

4 .
Step (2) outputs a state that approximates the uniform distribution of |d, a, b〉

for (d, a, b) running over positive integers with da, db ≤
√

2N . By Lemma 5.7, these
triples include all the canonical encodings of elements of Cls(ON ). The number of
states in this distribution is thus

b
√
2Nc∑
d=1

(√
2N

d

)2

≤ 2N

∞∑
d=1

1

d2
=
π2N

3
.

The number of triples (d, a, b) that are canonical encodings is #Cls(ON ) ≥ (N −
1)/12. Thus the success probability in step (4) is at least ((N − 1)/12)/(π2N/3) =
(1− 1

N ) 1
4π2 . The claim follows. �

Using Algorithm 5.8, we can next obtain a maximally entangled state by ap-
plying a controlled-NOT operator. We implement this in the next section in our
instantiation of the minting algorithm.

5.6. Instantiation of protocol. Algorithm 5.10 below is our instantiation of the
minting algorithm using normalized Brandt operators. Fix N , HN ,ON , and VN as
before, and choose primes p1, . . . , pt distinct from N . Let T (pj) be the normalized

pj-Brandt matrix for level N (as defined in §5.2) and let Uj = eiT (pj)/
√
pj . Recall

that §5.4 allows one to compute T (pj) and the action of Uj on VN . Let {|ψi〉} be
a joint eigenbasis for the Uj ’s, and fix ε for which {|ψi〉} is ε-separated. Set the
public parameters PP to be (N,HN ,ON , p1, . . . , pt, ε). Let SK be a signing key for
a fixed digital signature algorithm. The Mint algorithm is as follows.

Algorithm 5.10. INPUT: PP,SK
OUTPUT: a uniformly random valid bill (|ψ〉 , v, σ) with |ψ〉 ∈ VN .

(1) Apply Algorithm 5.8 to obtain the superposition
∑
|d, a, b〉, where the sum

is over all the canonical encodings of the elements of Cls(ON ).
(2) Append an ancillary register initialized to 0 and apply controlled-NOT op-

erators to obtain the quantum state
∑

(|d, a, b〉 ⊗ |d, a, b〉).
(3) Apply phase estimation with the operators Uj ⊗ Ih and Ih ⊗ Uj for j =

1, . . . , t. Let |ψ〉 be the resulting quantum state and v the tuple of eigenval-
ues.

(4) If vj = ei(pj+1)/
√
pj for all j, output ⊥. Otherwise, let σ be the signature

of v, and output (|ψ〉 , v, σ).
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This instantiation of the minting algorithm is essentially the same as the black
box Mint algorithm of §2, except that it takes place in the subspace VN , not in all
of CCls(ON ).

Theorem 5.11. The Mint Algorithm 5.10 has correct output with probability at
least 1

32π2 (1− 1
N )(1− 12

N ), and runs in quantum polynomial time.

Proof. The subspace VN is the orthogonal complement of the span of |ψ0〉 :=∑
1
wI
|d, a, b〉 , where the sum is over the canonical encodings of the elements of

Cls(ON ), and wI = #O×I /{±1} where OI is the right order of any ideal I with
canonical encoding (d, a, b). As |ψ0〉 is itself an eigenvector for the normalized
Brandt operators, in the minting protocol it suffices to check that the output is
not |ψ0〉 ⊗ |ψ0〉. (When N ≡ 1 (mod 12), then |ψ0〉 ⊗ |ψ0〉 is the maximally en-
tangled state as in Step 2 of Algorithm 5.10.) Since T (p) |ψ0〉 = (p + 1) |ψ0〉, we
have Up |ψ0〉 = ei(p+1)/

√
p |ψ0〉. By ε-separation, step (4) outputs ⊥ if and only if

|ψ〉 = |ψ0〉 ⊗ |ψ0〉; otherwise, the output is a valid bill with a note in VN .
By Theorem 5.9, step (1) succeeds with probability bounded below by 1

32π2 (1−
1
N ). The state proportional to∑

(|d, a, b〉 ⊗ |d, a, b〉)

is a uniform superposition of all of the eigenstates of the form |ψi〉 ⊗ |ψi〉. Since
there are at least N/12 such states, the probability of obtaining the state |ψ0〉⊗|ψ0〉
is at most 12

N . The claim follows. �

Remark 5.12. Our motivation for working in VN instead of CClsON is that |ψ0〉⊗
|ψ0〉 is an easy state to manufacture, so allowing this state to be a valid note would
permit easy attacks by the mint or by others as in §3.

The instantiation of the verification algorithm Verify is identical to the black box
algorithm of §2.

5.7. ε-separation. Our quantum money protocol instantiation requires that the
eigenbasis for the operators eiT (p)/

√
p be ε-separated. Table 1 in Appendix B gives

experimental data that suggests that the eigenbasis is ε-separated even for ε quite
large; for instance, ε = 1/(4 log2(N)) works for all N in Table 1, where we use
eiT (p)/

√
p for all primes p < log2(N).

For the normalized Brandt operators T (p), rather than eiT (p)/
√
p, Goldfeld and

Hoffstein [11] obtain ε-separation when the number of operators m is O(N logN),
and obtain a bound form that is polylog(N) if they assume a version of the Riemann
hypothesis. However, the ε is not explicit. Note that Goldfeld and Hoffstein, as
well as Serre’s result below, deal with the Brandt operators T ′(p), but since T (p)
and T ′(p) are similar, the eigenvalues are identical, and so these results apply to
T (p) as well.

Theorem 5.13 ([11], Theorems 3 and 2). Let N ≥ 5 be a prime. For each prime
p 6= N , let T (p) be the normalized p-Brandt matrix for level N . Then:

(1) There exist a constant K = O(N logN) and ε > 0 such that if p1, . . . , pt is
the list of primes ≤ K with pi 6= N , then every eigenbasis for the operators
T (p1), . . . , T (pt) is ε-separated.
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(2) If the Riemann hypothesis for Rankin-Selberg zeta functions holds, then
there exist a constant K = O((logN)2(log logN)4) and ε > 0 such that
if p1, . . . , pt is the list of primes ≤ K with pi 6= N , then every eigenbasis
for the operators T (p1), . . . , T (pt) is ε-separated. If N > e15, one can take
K = 16(logN)2(log logN)4.

Proposition 5.14. Suppose p1 . . . , pt, N are distinct prime numbers with N ≥ 5.
Then every eigenbasis with respect to T (p1), . . . , T (pt) that is ε-separated for some

ε > 0 is also an eigenbasis with respect to
{
e

i√
pj
T (pj)}

that is ε′-separated for some

ε′ such that 0 < ε′ = O(ε/
√

maxj{pj}).

Proof. Let Uj = e
i√
pj
T (pj)

and K = maxj{pj}. By Deligne’s proof of the Weil
conjectures [8], the eigenvalues of T (pj) lie in the interval [−2

√
pj , 2
√
pj ], so the

eigenvalues of 1√
pj
T (pj) lie in [−2, 2]. Let H = {z ∈ S1 | −2 ≤ arg(z) ≤ 2}. The

map on t-tuples ρ : [−2, 2]t → Ht given coordinate-wise by λ 7→ eiλ sends tuples of
eigenvalues with respect to the 1√

pj
T (pj) to the corresponding tuple of eigenvalues

with respect to the Uj . Since ρ−1 is Lipschitz continuous, there exists M > 0 such
that for all v1, v2 ∈ [−2, 2]t we have |v1 − v2| ≤ M |ρ(v1)− ρ(v2)|. If v1 and v2 are
two distinct tuples of eigenvalues for 1√

pj
T (pj), then |v1 − v2| > 1√

pj
ε. It follows

that with respect to the Uj ’s our joint eigenbasis is ε′-separated for ε′ = 1
M
√
K
ε. �

Theorem 5.15 below gives heuristic evidence that a “random” eigenbasis will
most likely be ε-separated for a large value of ε. Fix primes p1, . . . pt. As before,
for each prime N distinct from p1, . . . , pt, let {vi,N}hi=1 denote the set of vectors
of eigenvalues for an eigenbasis for { 1√

pj
T (pj)}tj=1, where T (pj) is the normalized

pj-Brandt matrix for level N and h = #Cls(ON ). On the interval [−2, 2], let µp
denote the probability measure

p+ 1

π
· (1− x2/4)1/2

(
√
p+ 1√

p )2 − x2
dx.

Theorem 5.15 (Théorème 3, [22]). The distribution of vectors {vi,N}hi=1 ⊂ [−2, 2]t,

where N is a prime not equal to p1, . . . , pt, approaches the product measure
∏t
i=1 µpi

as N goes to infinity.

For p large, µp approaches the distribution 1
2π

√
4− x2dx. Thus the distribution

of the eigenvalues of the Uj = eiT (pj)/
√
pj in the subset of S1 with argument x ∈

[−2, 2] will approach the distribution 1
2π

√
4− x2dx. A more precise statement on

the distribution of eigenvalues is given in [19, Theorem 19].

Remark 5.16. In light of Theorem 5.15, a natural assumption is that the vi,N
act like independent random samples drawn from the distribution

∏t
i=1 µpi . Under

this assumption, if 0 < ε < 1, then for t larger than a sufficiently large multiple of
logN , with high probability the eigenbasis for the Uj is ε-separated.

6. Security of the Instantiation

In Theorem 6.2 we reduce the security of the instantiation to the hardness of
Problem 6.1 below.
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As the operators Uj in the instantiation are no longer black box, one must now
consider additional attacks. In §§6.2–6.6 we note some of the most obvious attacks
on Problem 6.1, and reasons we do not expect them to work. In each case, instead
of an attacker with only black box access to the Uj we consider an attacker that
uses some property of the instantiation.

6.1. Security Reduction. The following problem restates Problem 3.1 in the set-
ting of our instantiation.

Problem 6.1. Given a prime N ≥ 5, and operators Uj = eiT (pj)/
√
pj , where the

T (pj) are the normalized Brandt matrices acting on VN corresponding to distinct
primes p1, . . . , pt not equal to N , output a state of the form |ψ〉 |ψ〉 |ψ〉, where |ψ〉
is an eigenvector for all the Uj ’s.

The following result shows that our quantum money proposal is secure if Prob-
lem 6.1 is hard and the digital signature algorithm is secure.

Theorem 6.2. (1) If an adversary using a quantum computer and given the secret
key to the signing protocol can in time T run a procedure that with probability at
least p produces n+1 valid bills with at most n total serial numbers among them,
then the adversary can with constant positive probability solve Problem 6.1 in
time O(T/p).

(2) If an adversary, using a quantum computer and given n bills and s uniformly
random valid signatures of serial numbers, but without access to the signing key
for the signatures, can in time T run a procedure that with probability at least
p produces n + 1 bills that pass the verification procedure, then with constant
positive probability the adversary in time O(T/p) and given n+s valid bills can
either produce a new valid signature without access to the private key, or else
solve Problem 6.1.

Proof. The proof is word for word the same as that of Theorem 3.2, with Prob-
lem 6.1 in place of Problem 3.1. �

6.2. Use of Other Uj. An attacker will have access not just to the Uj used in

the quantum money protocol but also to eiT (p)/
√
p for any reasonably sized prime

p. Since the black box lower bound from Theorem 4.1 does not depend on the
number of operators, its conclusion still holds, if one were to treat the Uj as black
box operators.

6.3. Other Powers of eiT (p)/
√
p. An attacker will be able to apply arbitrary pow-

ers of the Uj , by computing eiγT (p)/
√
p for any γ ∈ R. The following modification

of Theorem 4.1 shows that this does not help.

Theorem 6.3. Suppose A is an algorithm that, on input a real number γ ∈ R
and a black-box unitary operator eT , outputs a black-box unitary operator that ap-
proximates eγT . Suppose D is any probability distribution over (S1)t such that
with high probability, any finite number of samples chosen from D are distinct.
Then any circuit consisting of standard gates and controlled A(γ, Uj) gates that
solves Problem 3.1 with constant positive probability for sets of operators U1, . . . , Ut
chosen according to D and with uniformly random eigenbasis {|ψi〉} must have
Ω((N/ log(N))1/3) controlled A(γ, Uj) gates.
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The only difference between the proofs of Theorems 6.3 and 4.1 is that the calls
to A might give a different distribution D of eigenvalues. We may assume that the
γ chosen in Theorem 6.3 all satisfy 0 < γ ≤ 1. Then the distribution induced by
replacing each sample from D with its γth power for some 0 < γ ≤ 1 also has the
property that with high probability, any finite number of samples are distinct.

6.4. Sparse Logarithms. The matrices T (p) are too large to be able to directly
compute their eigenvectors via classical algorithms from linear algebra. However,
the log(Uj) = 1√

pj
T (pj) used in our protocol are sparse operators. One might

potentially take advantage of this. A potential worry is that one might use an
HHL-like quantum algorithm [13] to find eigenvectors (one cannot use HHL directly
as the matrix used would not be invertible). Since an HHL-like algorithm would
deal with eitT (p) for t ∈ R via Hamiltonian simulation, rather than directly with
the sparse matrices 1√

pT (p), this would be covered by our black box lower bounds.

It is not clear how else an attack might make use of the sparsity of each 1√
pT (p).

6.5. Quantum State Restoration. A technique in [9] was developed to break a
number of quantum money schemes that look superficially like ours. These schemes
use eigenstates of some operator H where the state itself has some clean (but
secret) product representation. They show in [9] that if one is given a state |ψ〉 =
|ψA〉⊗ |ψB〉 ∈ VA⊗VB and can compute a measurement of whether we are in state
|ψ〉, we can produce a duplicate of the state |ψB〉 in time poly(dim(VB)). If the
supposedly secure state is a tensor product of many small pieces, this can be used
to recover the individual pieces one at a time.

However, we have no reason to believe that the eigenstates involved in our al-
gorithm can be decomposed as such tensor products, so this class of attacks seems
unlikely to work. In fact, it is unclear if there is even any natural way to write VN
as a tensor product.

6.6. Modular Forms and Elliptic Curves. The system of operators T (p) acting
on VN is isomorphic to the system of Hecke operators Tp acting on the space
S2(Γ0(N)) of weight two cusp forms of level N (see [21, 18]). Further, there is an
equivalence of categories between classes of left ideals in a fixed maximal order in a
quaternion algebra of prime discriminant p and isomorphism classes of supersingular
elliptic curves over Fp (see for example [26, Chapter 42]).

We do not see a way to use these relationships between quaternion algebras and
modular forms, or between quaternion algebras and elliptic curves, to provide an
attack. Since one uses quaternion algebras to make computations associated with
modular forms easier [21, 26, 16], it seems unlikely that it would be helpful to
use modular forms to attack a protocol based on quaternion algebras. Below, we
attempt to use the theory of modular forms to attack our instantiation, and give
a more detailed explanation as to why we think that a modular forms approach
is likely to be fruitless. Here we focus on using the theory of modular forms, but
one could equivalently phrase this using elliptic curves, via the equivalence given
in [18]. A reference for the theory of modular forms is [17].

To try to solve Problem 6.1, one could try to directly manufacture a specific
eigenstate |ψ〉 three times in succession to obtain a solution to Problem 6.1. We
next consider two “direct manufacture” problems.
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Cusp forms are typically encoded as power series f(q) =
∑∞
n=1 anq

n. If f is a
simultaneous eigenvector of all the Hecke operators Tp, normalized so that a1 = 1,
then the eigenvalue of Tp is ap. Such a cusp form f is called an eigenform for the
Hecke operators.

Problem 6.4. Given a prime N and a normalized eigenform f ∈ S2(Γ0(N)) for
the Hecke operators Tp with corresponding eigenvalue ap for all primes p, output a

simultaneous eigenstate |ψ〉 of eiT (p)/
√
p for all primes p, such that the corresponding

eigenvalue is eiap/
√
p.

Problem 6.5. Given a prime N ≥ 5, complex numbers α1, . . . , αt, operators Uj =

eiT (pj)/
√
pj , where the T (pj) are the normalized Brandt matrices acting on VN

corresponding to distinct primes p1, . . . , pt not equal to N , and a promise that
there is a simultaneous eigenstate of U1, . . . , Ut such that Uj has eigenvalue αj for
each j, output such a simultaneous eigenstate |ψ〉 of U1, . . . , Ut with eigenvalues
α1, . . . , αt, respectively.

Lemma 6.6.

(i) Every solution to Problem 6.4 is unique (up to scalar).
(ii) If every instance of Problem 6.5 with fixed choice of N and U1, . . . , Ut as

part of the input has a solution that is unique up to scalar, then every
eigenbasis for this choice of N,U1, . . . , Ut is ε-separated for some ε > 0.

(iii) Given N and U1, . . . , Ut, if there is an ε-separated eigenbasis for the Uj’s for
some ε > 0, then every solution to Problem 6.5 with these N and U1, . . . , Ut
as part of the input is unique (up to scalar).

Proof. For (i), fix an instance N and f =
∑
anq

n of Problem 6.4, and suppose
|ψ〉 and |ψ′〉 are simultaneous eigenstates for eiT (p)/

√
p with eigenvalue eiap/

√
p for

all primes p. Then for each prime p, the states |ψ〉 and |ψ′〉 are simultaneous
eigenvectors for the operators T (p). The eigenvalue for T (p) of |ψ〉 is

ap
pj

+ 2πkp
for some kp ∈ Z. Since T (p) is an integer matrix, its eigenvalues, including ap, are
algebraic numbers. Therefore 2πkp is also algebraic, so kp = 0 for all p. Thus,
ap is the eigenvalue for the operator T (p) of |ψ〉, and similarly of |ψ′〉. By the
multiplicity one theorem for weight two cusp forms of prime level, two normalized
eigenforms in S2(Γ0(N)) with the same eigenvalues for all the Hecke operators Tp
must be equal. Since the system of Hecke operators Tp acting on S2(Γ0(N)) is
isomorphic to the system of operators T (p) acting on VN , it follows that |ψ〉 and
|ψ′〉 are scalar multiples, giving (i).

For (ii), suppose {|ψi〉}hi=1 is an eigenbasis that is not ε-separated for any ε,
with eigenvalues zij satisfying Uj |ψi〉 = zij |ψi〉 for i = 1, . . . , h and j = 1, . . . , t.
Then there exist k 6= ` such that zkj = z`j for all j. Set αj = zkj for each j.
Then |ψk〉 and |ψ`〉 are linearly independent solutions to Problem 6.5, for the given
N,U1, . . . , Ut. This gives (ii).

For (iii), suppose {|ψi〉}hi=1 is an ε-separated eigenbasis for some ε > 0, with
eigenvalues zij satisfying Uj |ψi〉 = zij |ψi〉, and suppose |ψ〉 and |ψ′〉 are two solu-
tions to Problem 6.5. Write |ψ〉 =

∑
ci |ψi〉 and |ψ′〉 =

∑
c′i |ψi〉 with ci, c

′
i ∈ C.

Applying Uj to both equations gives ciαj = cizij and c′iαj = c′izij for all i and j.
Choose k so that ck 6= 0. Then αj = zkj for all j. Suppose i 6= k. Since {|ψi〉} is
ε-separated, there exists j such that zij 6= zkj = αj . It follows that ci = c′i = 0 for
all i 6= k. Thus both |ψ〉 and |ψ′〉 are non-zero multiples of |ψk〉, giving (iii). �



QUANTUM MONEY FROM QUATERNION ALGEBRAS 25

In the next result, “with complexity T” for classical algorithms means in time
T , and for quantum algorithms means with gate complexity T .

Proposition 6.7. Suppose there are an algorithm B that on input N can solve
Problem 6.5 with complexity BN , and an algorithm C that on input N with com-
plexity CN outputs a positive number ε and a list of primes p1(N), . . . , ptN (N)

such that there is an ε-separated eigenbasis for {eiT (pj(N))/
√
pj(N)}tNj=1. Let gN,p be

the complexity of computing eiT (p)/
√
p. Then there is an algorithm that can solve

Problem 6.4 on input N with complexity BN + CN +
∑tN
j=1 gN,pj(N).

Proof. Given an instance (N, f) of Problem 6.4, run algorithm C with input N

to obtain ε > 0 and primes p1(N), . . . , ptN (N). Set Uj = eiT (pj(N))/
√
pj(N) and

αj = eiapj(N)/
√
pj(N), and run algorithm B with inputs N , α1, . . . , αtN , U1, . . . , UtN

to obtain output |ψ〉. Suppose |ψ0〉 is a solution to Problem 6.4; a solution exists
since VN acted on by the T (p) is isomorphic to S2(Γ0(N)) acted on by the Tp. For
each j the state |ψ0〉 is an eigenvector for Uj with eigenvalue αj . By Lemma 6.6(iii),
|ψ〉 is a non-zero scalar multiple of |ψ0〉, so it is a solution to Problem 6.4.

For the complexity, algorithms B and C are each run once, and each Uj is
computed once. �

Theorem 5.13 and Proposition 5.14 guarantee that ε and the list of primes
p1(N), . . . , ptN (N) as in the above proof exist. As in §5.4, each Uj can be com-
puted via a quantum algorithm with gate complexity that is polynomial in pj(N)
and log(N).

Proposition 6.8. An adversary that can solve Problem 6.4 and has a simultaneous
eigenform f for the Hecke operators can solve Problem 6.1.

Proof. Solve Problem 6.4 with input f three times in succession. �

There is no known efficient algorithm for solving Problems 6.4 or 6.5. Also,
there is no known algorithm that runs in time polynomial in log(N) for finding
a simultaneous eigenform f for the Hecke operators. Indeed, a standard method
for finding such forms is to compute eigenvectors of the Brandt matrices (see [18,
§2.3], [7]). As mentioned in §6.4, directly computing eigenvectors is difficult since
the T (p) are large matrices.

7. Conclusion

We have presented what seems like it should be a fairly efficient quantum money
protocol. As far as we can tell, there are no subexponential attacks on this protocol,
and so it should be possible to implement securely with only a few hundred qubits.
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Appendix A. Arithmetic lemmas

Lemma A.1. There is a deterministic polynomial-time algorithm that, given pos-
itive integers m, e, and r such that e | m and gcd(r, e) = 1, computes k ∈ Z such
that k ≡ r (mod e) and gcd(k,m) = 1.

Proof. For i = 1, 2, . . . compute di := gcd(ei,m) until di = di+1, and fix that
i. Then gcd(di,m/di) = 1. Compute k such that k ≡ r (mod di) and k ≡ 1
(mod m/di). Since i ≤ log2m, the algorithm runs in polynomial time. �

Lemma A.2. There is a deterministic polynomial-time algorithm that, given pos-
itive integers d, a, and b such that gcd(d, a, b) = 1, computes c ∈ Z such that c ≡ a
(mod b) and gcd(d, c) = 1.

Proof. Let e = gcd(d, b). By hypothesis, gcd(a, e) = 1. Apply the algorithm in
Lemma A.1 to compute c′ ∈ Z such that c′ ≡ a (mod e) and gcd(c′, d) = 1. Since
c′ ≡ a (mod e), we can apply the Chinese Remainder Theorem to compute c ∈ Z
such that c ≡ c′ (mod d) and c ≡ a (mod b). Then gcd(d, c) = gcd(d, c′) = 1. �

Proposition A.3. There is a deterministic polynomial-time algorithm that, given
a positive integer m and a cyclic subgroup H ⊂ (Z/mZ)2 of order m, computes
(d, c) ∈ Z2 that generates H and satisfies d | m and gcd(d, c) = 1. The integer d is
the unique divisor of m such that (d, γ) generates H for some γ ∈ Z.

Proof. Theorem 2.6.9 of [5] gives a deterministic polynomial-time algorithm that
given m and H, produces (d′, c′) ∈ Z2 that generates H. Since H has order m
we have gcd(d′, c′,m) = 1. Let d = gcd(d′,m). Compute integers r, s such that
d = rd′ + sm. Letting e = m/d, then gcd(r, e) = 1. Apply the algorithm in
Lemma A.1 to compute k ∈ Z such that k ≡ r (mod e) and gcd(k,m) = 1. Then
kd′ ≡ rd′ (mod md′/d), so kd′ ≡ rd′ ≡ d (mod m). Let c = kc′ (mod m). Then
(d, c) = k(d′, c′) generates H. Since d | m we have gcd(d, c) = gcd(d, c,m) = 1.
Since i ≤ log2m, the algorithm runs in polynomial time.

Projecting H onto the first component gives a cyclic subgroup of Z/mZ of order
m/d, for which d is the unique generator that divides m. �

The next result gives an algorithm that computes an isomorphism ON/mON
∼−→

M2(Z/mZ), whereON is a maximal order and the primeN - m. For our purposes, it
is important that the algorithm produce the same isomorphism each time it is given
the same inputs N , ON , and m. The algorithm invokes a polynomial-time quantum
algorithm to factor m. As such, there is some small failure probability. After that,
it uses a classical polynomial-time algorithm due to Voight to deterministically
construct isomorphisms ON/prON

∼−→ M2(Z/prZ) for each prime divisor p of m,
where pr||m.

Proposition A.4. There is an algorithm in complexity class BQP that, given a
positive integer m, a prime N that does not divide m, a maximal order ON in HN ,
and a Z-basis for ON , produces an isomorphism

fN,m : ON/mON
∼−→M2(Z/mZ).

Proof. Factor m (for example using Shor’s algorithm). For each prime divisor
p of m, with pr||m, apply Proposition 4.8 of [25] and the results mentioned in

the paragraph after Problem 4.9 of [25] to obtain an isomorphism ON/prON
∼−→

M2(Z/prZ). Then apply the Chinese Remainder Theorem. �
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Lemma A.5. Fix m ∈ Z>0. Let f denote the map from the set of left ideals of
M2(Z/mZ) to the set of subgroups of (Z/mZ)2 induced by sending a matrix to its
rowspace. Then f is a bijection, and its inverse is the map g that sends a subgroup
H to the set of matrices whose rows are in H.

Proof. Suppose that H is a subgroup of (Z/mZ)2. The left action of M2(Z/mZ)
on H is by row operations, so if A ∈ M2(Z/mZ) and B ∈ g(H), then the rows of
AB are linear combinations of the rows of B, so AB ∈ g(H). Thus g(H) is a left
ideal, and fg is the identity.

To show that gf is the identity, suppose I is a left ideal of M2(Z/mZ) and let
H = f(I). Then I ⊂ g(H). To show g(H) ⊂ I, suppose (x, y) ∈ H. By the
definition of H, there are matrices A1, ..., Ar ∈ I and for each i a row ai of Ai such
that (x, y) =

∑r
i=1 ai. Left-multiplying Ai by [ 0 1

1 0 ] if necessary, we may assume that

ai is the top row of Ai. Then [ x y0 0 ] = [ 1 0
0 0 ]

∑r
i=1Ai ∈ I, and

[
0 0
x y

]
= [ 0 1

1 0 ] [ x y0 0 ] ∈ I.
Since such matrices generate g(H), we have g(H) ⊂ I. �

Lemma A.6. Suppose that d, b ∈ Z>0, that c, c′ ∈ Z, that c = c′ (mod b), and
that gcd(d, c) = 1 = gcd(d, c′). Let m = db and suppose that H and H ′ are the
subgroups of (Z/mZ)2 generated by (d, c) and by (d, c′), respectively. Then H = H ′.

Proof. Since gcd(d, c) = 1, there exist integers x and y such that cx = 1 + dy.
Setting λ = 1 + x(c′ − c), then λc = c′ + yd(c′ − c), and since c′ ≡ c (mod b)
it follows that λc ≡ c′ (mod m) and λd ≡ d (mod m). Thus λ(d, c) = (d, c′) in
(Z/mZ)2, so H ′ ⊂ H. By symmetry, H ⊂ H ′, so H = H ′. �

Recall (Definition 5.1) that if I is a left fractional ON -ideal of the quaternion
algebra HN , then we let OI be its right order and we let wI = #(O×I /{±1}) =
1
2#O×I . An integral solution to x2 − 3y2 = −N can be found in polynomial time
by [24].

Proposition A.7. We have wI = 1 for all [I] ∈ Cls(ON ), with the following
exceptions:

(1) If N ≡ 5 (mod 12), then wI = 3 for all I ∈ [ON ].
(2) If N ≡ 7 (mod 12), then wI = 2 for all I ∈ [ON ].
(3) Suppose N ≡ 11 (mod 12). Let (a, b) ∈ Z2 be a solution to x2−3y2 = −N .

Let α := a
3b i + 1

3b ij and Ô := Z + 1+j
2 Z + αZ + α−αj

2 Z. Then wI = 3 for

all I ∈ [ON ], and wI = 2 for all I ∈ [ON · Ô].

Proof. Table 1.3 of [12] shows that wI = 1 for all [I], with the following exceptions:
when N ≡ 5 (mod 12) one ideal class satisfies wI = 3; when N ≡ 7 (mod 12) one
ideal class satisfies wI = 2; and when N ≡ 11 (mod 12) there are two ideal classes
[I] and [J ] such that wI = 3 and wJ = 2. If N ≡ 7 (mod 12) then i2 = −1 so
i ∈ O×N has order 4, and hence wON

= 2. If N ≡ 5 (mod 6) then i2 = −3 so
1+i
2 ∈ O

×
N has order 6, and hence wON

= 3. Now suppose N ≡ 11 (mod 12). One

can check that Ô is a maximal order, and Ô is the right order of the ideal ON · Ô.

We have α2 = −(a2+N)
3b2 = −1, so α ∈ Ô× has order 4 and hence wON ·Ô = 2. �

See also [14], where ON is denoted O(3) when N ≡ 5 (mod 6), and Ô is denoted
O′(1).
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Table 1. ε-separation for {eiT (p)/
√
p | p < log2(N)}

N ε

547 0.4824236848637427
557 0.7199773703667618
563 0.7553525215246627
569 0.9200347021863563
571 0.48205861423463164
577 0.40674046098264244
587 0.7982583121867862
593 0.9266761931828437
599 0.62563971482572
601 0.7182238262429224
607 0.7313809878961292
613 0.768492003890778
617 0.5983414655675874
619 0.6187541297546084
631 0.45419000886679206
641 0.43490142944562354
643 0.6346083766649872
647 0.7432521901131
653 0.5063114409620633
659 0.6777125171096566

N ε

12569 0.22159756788222007
12577 0.22690747823008486
12583 0.2774346724081338
12589 0.22865081262562248
12601 0.25482871813162855
12611 0.16451483770778993
12613 0.09017383560136713
12619 0.18211198468203824
12637 0.16246553818517484
12641 0.19366213429958556

20011 0.34309639146812015
20021 0.3536950173591149
20023 0.2610129987276544
20029 0.19283243271645334
20047 0.30798681044672843
20051 0.2711650765294632
20063 0.21456144876447153
20071 0.3506564319413416
20089 0.2942067355453101

Appendix B. ε-separation data

For each prime N in Table 1, let p1, . . . , pt be the primes less than log2(N), and
set Uj = eiT (pj)/

√
pj . Letting |ψ1〉 , . . . , |ψh〉 ∈ VN be the simultaneous eigenvec-

tors for the Uj ’s, we used Sage to compute the corresponding tuples of eigenvalues
v1, . . . , vh, and the minimum Euclidean distance between pairs of tuples of eigen-
values. In Table 1, the value ε is the minimum Euclidean distance |vi − vj | for
i 6= j, and therefore is the largest value of ε for which the eigenbasis is ε-separated.
Sage code used to generate the table is available at https://github.com/ssharif/
QuantumMoneyCode.
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Hecke Tp, J. Amer. Math. Soc. 10, no. 1 (1997), 75–102, https://doi.org/10.1090/

S0894-0347-97-00220-8.
[23] Peter W. Shor, Quantum Money, March 27th, 2020 virtual lecture at workshop on Lattices:

New Cryptographic Capabilities, at Simons Institute for the Theory of Computing, https:
//simons.berkeley.edu/talks/quantum-money-based-lattices.

[24] Denis Simon, Solving Quadratic Equations Using Reduced Unimodular Quadratic Forms, in
Math. of Comp 74 (2005), 1531–1543.

https://doi.org/10.1007/BFb0054319
https://tel.archives-ouvertes.fr/tel-01378003v2/document
https://tel.archives-ouvertes.fr/tel-01378003v2/document
https://arxiv.org/abs/2010.10745
https://doi.org/10.1007/BF02684373
http://doi.org/10.1103/PhysRevLett.105.190503
http://doi.org/10.1103/PhysRevLett.105.190503
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1017/S002776300002016X
https://arxiv.org/abs/1809.05925
https://arxiv.org/abs/1809.05925
https://wstein.org/papers/bib/kohel-sydney.pdf
https://wstein.org/papers/bib/kohel-sydney.pdf
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1016/0021-8693(80)90151-9
https://doi.org/10.1090/S0894-0347-97-00220-8
https://doi.org/10.1090/S0894-0347-97-00220-8
https://simons.berkeley.edu/talks/quantum-money-based-lattices
https://simons.berkeley.edu/talks/quantum-money-based-lattices


30 D. M. KANE, S. SHARIF, AND A. SILVERBERG

[25] John Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic

forms, in Quadratic and higher degree forms, Developments in Math. 31, Springer, New

York, 2013, 255–298.
[26] John Voight, Quaternion Algebras, Graduate Studies in Mathematics 288, Springer Inter-

national Publishing, 2021. https://math.dartmouth.edu/~jvoight/quat-book.pdf.

[27] Stephen Wiesner, Conjugate coding, ACM SIGACT News (1983), 78–88, https://doi.org/
10.1145/1008908.1008920.

[28] Mark Zhandry, Quantum Lightning Never Strikes the Same State Twice, in Advances in

Cryptology—EUROCRYPT 2019, Lect. Notes in Comp. Sci. 11478, Springer, (2019), 408–
438, https://doi.org/10.1007/978-3-030-17659-4_14, full version available at https://

eprint.iacr.org/2017/1080.

Mathematics Department, UCSD, La Jolla, CA 92093
Email address: dakane@ucsd.edu

Mathematics Department, California State University, San Marcos, CA 92096

Email address: ssharif@csusm.edu

Mathematics Department, University of California, Irvine, CA 92697

Email address: asilverb@uci.edu

https://math.dartmouth.edu/~jvoight/quat-book.pdf
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1007/978-3-030-17659-4_14
https://eprint.iacr.org/2017/1080
https://eprint.iacr.org/2017/1080

	1. Introduction
	1.1. Our Proposed Scheme
	1.2. Outline

	2. The Black Box Protocol
	3. The Security Problem
	3.1. A N Attack

	4. Black Box Security
	4.1. Preliminary lemmas
	4.2. Proof of Theorem 4.1

	5. Instantiation using Quaternion Algebras
	5.1. Quaternion Algebras
	5.2. Normalized Brandt operators T(p)
	5.3. Canonical encoding
	5.4. Computation of normalized Brandt Operators T(p)
	5.5. Producing Maximally Entangled States
	5.6. Instantiation of protocol
	5.7. -separation

	6. Security of the Instantiation
	6.1. Security Reduction
	6.2. Use of Other Uj
	6.3. Other Powers of ei T(p)/p
	6.4. Sparse Logarithms
	6.5. Quantum State Restoration
	6.6. Modular Forms and Elliptic Curves

	7. Conclusion
	8. Acknowledgments
	Appendix A. Arithmetic lemmas
	Appendix B. -separation data
	References

