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Abstract. We introduce report and trace ring signature schemes, balanc-
ing the desire for signer anonymity with the ability to report malicious
behaviour and subsequently revoke anonymity. We contribute a formal
security model for report and trace ring signatures that incorporates
established properties of anonymity, unforgeability and traceability, and
captures a new notion of reporter anonymity. We present a construction
of a report and trace ring signature scheme, proving its security and
analysing its efficiency, comparing with the state of the art in the account-
able ring signatures literature. Our analysis demonstrates that our report
and trace scheme is efficient, particularly for the choice of cryptographic
primitives that we use to instantiate our construction. We contextualise
our new primitive with respect to related work, and highlight, in particu-
lar, that report and trace ring signature schemes protect the identity of
the reporter even after tracing is complete.
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1 Introduction

Group signatures [8] and ring signatures [20] provide signers with anonymity
within a set of users. Anonymity is a sought-after property, yet, under certain
circumstances, it is also desirable to provide a guarantee of traceability, which
means that anonymity can be revoked. This presents an interesting problem: how
does a group or ring signature guarantee anonymity and traceability?

Group signatures rely on a trusted group manager to achieve these conflicting
aims. The group manager determines the members of the group and issues key
pairs to group members. Signers are anonymous within the group, but the group
manager can learn the identity of signers and revoke anonymity. On the other
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hand, ring signatures do not rely on a trusted manager. In fact, signers generate
their key pairs and select the group of users, known as the ring, within which the
signer is anonymous. The solution to achieving anonymous and traceable ring
signatures is accountable ring signatures [25, 6], which define a designated tracer
who can identify signers. Accountable ring signatures retain the versatility of
ring signatures, allowing signers to generate their keys and select the anonymity
ring, and additionally allow signer anonymity to be revoked.

In practice, to begin the tracing process, the designated tracer in an account-
able ring signature will often receive a report of malicious behaviour from a
reporter. However, the reporter is outside the scope of the syntax and secu-
rity model of accountable ring signatures. Consequently, it is implicit that the
tracer must be trusted not to revoke anonymity without first receiving a report.
Moreover, by omitting the role of the reporter from the security model, it is not
possible to make any formal statements about the privacy of the reporter.

To address this, we introduce a new type of ring signature, which we call a
report and trace ring signature. The underlying idea of report and trace is that
a designated tracer can revoke anonymity of a signer if and only if a report of
malicious behaviour is made by a user. In other words, a user reports a malicious
message to the tracer, and the tracer must receive a report to revoke anonymity of
the signer. Accordingly, report and trace achieves the balance between anonymity
and traceability of accountable ring signatures, ensuring that the anonymity of
a signer is preserved until tracing is complete. Additionally, report and trace
incorporates a reporting system that preserves the anonymity of the signer and
the reporter.

1.1 Related Work

Group signatures were introduced in [8], and the first security models were
presented in [2, 3]. Generally, the group manager can revoke the anonymity of
a signer and must be trusted to preserve signer anonymity in the absence of
malicious behaviour. Several variants of group signatures have been proposed to
limit trust in the group manager and protect the anonymity of non-malicious
signers. For example, accountable tracing signatures [15] require that the group
manager produce a proof of correct tracing and, if tracing occurred, a proof
denying tracing cannot be produced. Traceable signatures [14] define a designated
authority that can trace all signatures produced by a particular signer if the group
manager first provides the authority with a tracing token related to that signer. In
this way, the anonymity of non-malicious signers is protected; the group manager
need not revoke anonymity of all signers to determine which signatures were
produced by the signer in question. Furthermore, group signatures with message
dependent opening (MDO signatures) [21] allow the group manager to revoke
the anonymity of all signers that produced a signature for a particular message
if and only if a reporter first produces a report related to that message. Our
report and trace ring signature provides a similar distributed tracing function,
but, in our setting, the report is attached to a signature rather than a message.
Additionally, MDO signatures define the reporter to be a fixed entity with a
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secret key generated during setup. Report and trace ring signatures, on the other
hand, model reporters as system users, and our security model ensures anonymity
of the reporter. Finally, we note that report and trace is a variation of a ring
signature and, as such, does not rely upon a trusted group manager to issue key
pairs to users and allows users to select their anonymity ring.

Ring signatures were first formally defined in [20] and a security model for
ring signatures was presented in [4]. Following this, numerous variations of ring
signatures have appeared (see, for example, [24] for a survey of some of these
variations). Specifically, a number of ring signature variants offer some notion of
traceability. For instance, linkable [17] and traceable [11] ring signatures provide
limited tracing functionality, allowing two signatures generated by the same
signer to be linked. In particular, linkable ring signatures determine whether
two signatures are created by the same signer, without revealing the identity
of the signer, and traceable ring signatures link ring signatures created by the
same signer with respect to the same ‘tag’, and reveal the identity of the signer.
Moreover, accountable ring signatures, introduced in [25] and formalised in [6],
allow revocation of signer anonymity by a designated tracer and are, as a result,
most closely related to our work. In fact, report and trace ring signatures can
be viewed as an extension of accountable ring signatures, where the role of the
tracer is distributed and the reporter is modelled as an anonymous system user.

A closely related line of work is purpose-built reporting systems [1, 16, 19].
Analogously to our work, these systems allow a user to report another user and
subsequently allow revocation of anonymity by a designated tracer. However,
unlike our report and trace scheme, these systems are stand-alone reporting
systems. Specifically, their design allows a user to identify an individual that has,
for example, harassed or assaulted the user, hiding the identity of the accused
and reporter until a threshold of reports related to the accused are submitted,
at which point a tracer reveals the identity of the accused and the reporter(s).
We note that, critically, these systems require a threshold of reports to revoke
anonymity of the accused. This design decision empowers reporters, allowing
them to submit accusations with the confidence that they will remain anonymous
unless (or until) a number of other reporters have come forward. Finally, in [23],
a report and trace scheme was introduced in the context of end-to-end encrypted
messaging. In such systems, a message receiver can report a malicious message
to a designated tracer, and the tracer can revoke anonymity of the sender. The
tracer learns nothing about the sender unless a report is provided by the recipient
of that message, and the identity of the reporter is revealed only to the tracer,
albeit the reporter’s identity is known to the tracer before tracing is complete.

1.2 Our Contributions

We define syntax and a security model for report and trace (R&T) ring signatures
(§2). Our syntax defines a reporting user who provides the tracer with a reporter
token, recovered from a signature, and a designated tracer who uses the reporter
token to revoke anonymity of the signer. Our security model extends the generic
definitions of correctness, anonymity and unforgeability for ring signatures defined
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in [4] to capture ring signatures with a report and trace functionality. Furthermore,
we define traceability, adapting the security properties of an accountable ring
signature to our setting. We complete our security model with a new definition
of reporter anonymity for report and trace ring signatures, which ensures that
the reporter is anonymous even after tracing is complete.

We demonstrate feasibility of report and trace by providing a construction of
an R&T ring signature scheme that relies on standard cryptographic primitives
(§3). Briefly, the signer provably encrypts their identity under the tracer’s public
key for a public-key encryption scheme and then encrypts the resulting ciphertext
using a one-time key-pair for a public-key encryption scheme. Additionally, the
signer provable encrypts the one-time decryption key (which we call the reporter
token) to all potential reporters. Then, the reporter decrypts their token, and the
tracer requires the reporter token to recover the signer’s identity. Our construction
is based on the accountable ring signature of [6] in which the signer provable
encrypts their identity under the tracer’s public key and the tracer can revoke
the signer’s anonymity by decrypting the resulting ciphertext. We choose this
construction due to its efficiency and because its security relies upon standard,
well-understood cryptographic hardness assumptions (namely, the decisional
Diffie-Hellman assumption). Furthermore, this approach allows us to clearly
demonstrate the additional cost of reporting. We prove that our construction
is correct, anonymous, unforgeable, traceable and reporter anonymous, and our
proof of security relies on standard notions of security for the cryptographic
primitives used in our construction.

We analyse the efficiency of our construction (§3.3), summarising the compu-
tational and communication costs associated with signing, reporting and tracing
for our scheme. We provide an instantiation of our construction (§3.2), which
demonstrates that it can be implemented efficiently. In fact, for the cryptographic
primitives we select, our construction performs favourably to the accountable
ring signature of [6], and the additional cost of reporting is small.

Finally, we extend our construction to support multiple reporters (§4) using
threshold publicly verifiable secret sharing [22]. We provide each potential reporter
with a share of the reporter token, and a threshold of shares are required to
recover the reporter token. We conclude with an efficiency analysis for our multiple
reporter construction.

1.3 Contextualising R&T Ring Signatures

In this paper, we introduce a new primitive, an R&T ring signature, and provide
a way to achieve it. We are also interested in placing this primitive in the context
of related schemes and in highlighting the advantages it brings. We explore this
next and summarise our findings in Table 1.

Revoking Anonymity of the Accused. All primitives with tracing function-
ality discussed so far [1, 16, 19, 23, 14, 15, 21, 6, 25] hide the identity of the accused
(i.e., the signer in an R&T ring signature schemes) until tracing is complete, at
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which point, anonymity of the accused is revoked. We note that [1, 16, 19, 23]
reveal the identity of the accused only to the tracer. However, for accountable
ring signatures schemes [25, 6], group signature variants [14, 15] and our R&T
ring signature, anonymity of the accused is publicly revoked to allow for public
verification of the tracing process. Accordingly, the tracer is accountable for their
actions and can only (provably) revoke the anonymity of a real accused user.

Entities Revoking Anonymity. To complete tracing, every primitive we con-
sider [1, 16, 19, 23, 14, 15, 21, 6, 25] requires a designated tracer. In some systems,
e.g., [1, 16, 25], the tracer is distributed. Whilst our R&T ring signature construc-
tion (§3), and our multiple reporter construction (§4), model the tracer as a single
entity, we remark that we can also distribute the tracer, thus distributing trust
amongst a set of tracers. Trust in the tracer can be further reduced by requiring
a reporter. Our R&T ring signature and [23, 1, 16, 19, 21] define a reporter such
that the reporter and tracer must cooperate to revoke anonymity. Additionally,
purpose-built tracing systems [1, 16, 19] require a threshold of reports to trigger
the tracing process. We provide both options: our R&T ring signature construc-
tion (§3) requires a single report; our multiple reporter construction (§4) requires
a threshold of reports.

Anonymity of the Reporter. Our (single reporter) R&T scheme ensures that
the reporter is anonymous even after tracing. This is not true in the context of
MDO signatures [21], where the reporter is a fixed, publicly-known, entity. Also,
for end-to-end encrypted messaging [23], the tracer learns the identity of the
reporter before starting the tracing process. Moreover, purpose-build reporting
systems [1, 16, 19] intentionally reveal the identity of reporters after tracing. Recall
that reporting systems allow reporters to communicate the identity of an accused
person (e.g., a person accused of assault or illegal activity). Therefore, to follow
up on allegations, revealing the reporter’s identity is necessary. As the tracer in
our R&T scheme does not require the identity of the reporter to follow up on an
allegation (in fact, the allegation is that the message signed by the accused is
malicious, and the message is public), we can protect the reporter’s anonymity
even after tracing. This empowers reporters to report malicious signers without
fear of identity exposure.

Integrated Functionality. Finally, we highlight that, in comparison to purpose-
built reporting systems [1, 16, 19], our R&T scheme has integrated functionality.
That is, our R&T scheme is a ring signature scheme with a report and trace
function. Similarly, several primitives build a tracing function atop a group or ring
signature [14, 15, 21, 6, 25], and traceable end-to-end encrypted messaging [23]
incorporates a tracing function into an end-to-end encrypted messaging scheme.

Application. We illustrate the usefulness of report and trace by describing a
potential application. Consider a forum platform and a set of registered users that
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Publicly verifiable
tracing

Entities revoking
anonymity

Reporter
Anonymity

Integrated
functionality

Group signature variants [14, 15] 3 Tracer N/A Signature

Group signature with message
dependent opening [21]

7
Reporter
Tracer

7 Signature

Accountable ring
signatures [6, 25]

3 Tracer N/A Signature

Traceable E2E encrypted
messaging [23]

7
Reporter
Tracer

7 Encryption

Reporting systems [1, 16, 19] 7
Reporter (threshold)
Tracer

3∗ None

R&T ring signatures (This work) 3
Reporter
Tracer

3 Signature

R&T ring signatures (multiple
reporters) (This work)

3
Reporter (threshold)
Tracer

7 Signature

Table 1. Contextualising R&T ring signatures. ∗ denotes anonymity only holds until
tracing is complete.

can post messages to the forum. Users may wish to post messages anonymously,
while also providing a signature proving that they are a registered user. Moreover,
if a user posts a malicious message, the platform may wish to hold the signer
accountable. Certainly, standard group and ring signature facilitate the ability
of a user to sign a message anonymously. Furthermore, group signatures and
accountable ring signatures balance anonymity and traceability. However, we
believe that R&T ring signatures provide a unique solution to this scenario.
Firstly, R&T ring signatures (and group signatures with message dependent
opening) do not rely solely on a designated tracer to revoke anonymity and, as
such, provide additional protection for the signer’s identity above that provided
by accountable ring signatures and group signatures. Moreover, distributing the
tracing function in a busy forum scenario reduces the burden on the tracer to
check for malicious messages. Indeed, the tracer need only check messages for
which the tracer receives a report. Additionally, our R&T signature allows the
tracer to revoke anonymity only for the reported signature. That is, the signer
preserves their anonymity with respect to all other signatures and no other signer
who posts the same message will be de-anonymised. In our forum scenario, it may
not be desirable to revoke anonymity for all signatures produced by the signer of
a single malicious message. Moreover, it may be the case that a signed message
is malicious in the context of which it is reported, but may be entirely innocuous
in a different context. Consequently, R&T ring signatures are more appropriate
than traceable signatures or MDO signatures for this setting. Finally, R&T ring
signatures retain the versatility of ring signatures and define the reporter to be
a system user, which can foster a sense of community responsibility for content
posted on the forum, and provide a unique guarantee of anonymity for the
reporter which can empower users to report malicious behaviour without fear of
repercussions.
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2 Syntax and Security

We introduce the syntax of a report and trace (R&T) ring signature scheme and
accompanying security model. In a standard ring signature, users digitally sign
messages with respect to a set of users, known as a ring. Ring signatures ensure
that the signer cannot be identified; any ring member is equally likely to have
produced the signature. R&T ring signatures extend this notion, allowing a signer
to be identified if an anonymous report is made to a designated tracer, who then
traces the signer.

Alongside a set of users U , an R&T ring signature scheme involves the following
entities. A reporter produces a report. Within our syntax and security model,
reporters are ring members, though this need not be the case. A designated tracer,
denoted T, revokes the signer’s anonymity if the tracer received a report for
the signature in question. Anybody can verify the correctness of the report and
trace by running a public verification algorithm. Formally, we define an R&T
ring signature in Definition 1.

Definition 1 (R&T ring signature). An R&T ring signature scheme is a tuple
of algorithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace) such
that

– Setup(1λ): On input security parameter 1λ, Setup outputs public parameters
pp.

– T.KGen(pp): On input pp, T.KGen outputs a tracer key pair (pkT, skT). We
write that pkT ← T.KGen(pp; skT).

– U.KGen(pp): On input pp, U.KGen outputs a user key pair (pkU, skU). We
write that pkU ← U.KGen(pp; skU).

– Sign(pp, skU, pkT,m,R): On input pp, skU, pkT, message m and ring R, Sign
outputs a signature σ.

– Verify(pp, pkT,m,R, σ): On input pp, pkT, m, R and σ, Verify outputs 1 if σ
is a valid signature on m with respect to R, and 0 otherwise.

– Report(pp, pkT, skU,m,R, σ): On input pp, pkT, skU, m, R and σ, Report
outputs a reporter token Rep.

– Trace(pp, skT,m,R, σ, Rep): On input pp, skT, m, R, σ and Rep, Trace outputs
the signer’s identity pkU, auxiliary information Tr consisting of the reporter
token, and a proof of correct trace ρt.

– VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt): On input pp, pkT, m, R, σ, pkU, Tr
and ρt, VerTrace outputs 1 if the trace is valid, and 0 otherwise.

We define correctness for our syntax as the property that honestly generated
signatures are verifiable.

Definition 2 (Correctness). An R&T ring signature is correct if, for any
n = poly(λ), j ∈ [n] and message m, there exists a negligible function negl such
that,
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Pr


pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi ,skUi ) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj ,pkT,m,R);

b ← Verify(pp,pkT,m,R,σ)

: b = 1

 ≥ 1− negl(λ) .

2.1 Security Model

We present a security model for our syntax that incorporates accepted security
properties from the ring signature literature. Firstly, we extend well-established
definitions of anonymity and unforgeability for standard ring signature schemes,
presented in [4], to our setting. Then, we cast the security requirements of an
accountable ring signature into our syntax. Namely, we define traceability, which
captures notions of trace correctness, non-frameability and tracing soundness
defined in [6]. Finally, we present a definition of reporter anonymity, a new
security property for our report and trace setting.

In Figure 1, we define a number of oracles for our security experiments. We
write OX(y1,...,yn)(z1, . . . , zn) to denote oracle X that has access to parameters
and sets y1, . . . , yn and takes as input z1, . . . , zn. Oracles Oreg, Ocorrupt and
Osign operate as expected: they model registration of users, corruption of users,
and signature generation respectively. Moreover, Oreport is called to obtain a
reporter token for a message and Otrace is called to trace the signer of a message.

Our security model considers entities (i.e., users, reporters and tracers) that
are either honest, corrupt, or under the attacker’s control. In detail, honest
entities do not provide an attacker with secret keys; corrupt entities generate
their keys honestly, but may later provide the attacker with their secret keys;
the attacker can generate keys on behalf of controlled entities. An attacker that
has credentials of users, reporters or tracers can generate signatures, reports or
traces respectively.

Oreg(pp,Qreg,L)()

(pkU, skU)← U.KGen(pp)

Qreg← Qreg ∪ {pkU}
L← L ∪ {(pkU, skU)}
return pkU

Ocorrupt(L,Qcorr)(pkU)

if (pkU, ·) /∈ L return ⊥
Qcorr← Qcorr ∪ {pkU}
return skU

Osign(pp,L,Qsign)(pkU, pkT,m,R)

if (pkU, ·) /∈ L return ⊥
σ ← Sign(pp, skU, pkT,m,R ∪ {pkU})
Qsign← Qsign ∪ {(pkT, pkU,m,R, σ)}
return σ

Oreport(pp,pkT,L,Qreport)(pkU,m,R, σ)

if pkU /∈ R ∨ (pkU, ·) /∈ L return ⊥
Rep← Report(pp, pkT, skU,m,R, σ)

Qreport← Qreport ∪ {(pkU,m,R, σ)}
return Rep

Otrace(pp,skT,Qtrace)(m,R, σ, Rep)

(pkU, Tr, ρt)← Trace(pp, skT,m,R, σ, Rep)

Qtrace← Qtrace ∪ {(m,R, σ)}
return (pkU, Tr, ρt)

Fig. 1: Oracles used in the experiments for anonymity, unforgeability, traceability
and reporter anonymity of an R&T ring signature scheme.
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Anonymity. At an intuitive level, anonymity for an R&T ring signature is the
property that a signature does not reveal the identity of the signer unless the
signature is reported and the signer traced. Our formal definition of anonymity
captures anonymity against adversarially generated keys as defined in [4]. As
such, we assume that the adversary can corrupt and control users and reporters,
but that the tracer is honest. We require that the adversary, when provided with
a challenge signature, cannot determine which of two potential honest signers
generated the signature, on the condition that the adversary does not obtain a
trace for the challenge signature.

Definition 3 (Anonymity). An R&T ring signature is anonymous with respect
to adversarially generated keys if, for any probabilistic, polynomial-time (PPT)
adversary A = (A1,A2), there exists a negligible function negl such that,

Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport, Qtrace ← ∅;
(pkT,skT) ← T.KGen(pp);

(m,R,pkU0 ,pkU1 ,st) ← A
O
1 (pp,pkT);

b ← {0,1};
σ ← Sign(pp,skUb ,pkT,m,R ∪ {pkU0 ,pkU1});
b′ ← AO

2 (σ,st)

: b′ = b ∧ (m,R,σ) /∈ Qtrace
∧ {pkU0 ,pkU1} ⊆ Qreg\Qcorr


≤ 1

2 + negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport,Otrace} are the oracles defined in
Figure 1.

Unforgeability. We require that signatures are unforgeable. That is, an attacker
cannot output a valid signature on behalf of an honest user, even if an attacker
can trace the identity of honest signers through the report and trace functionality.
Formally, we consider an unforgeability definition similar to that presented in [4].
Thus, in our unforgeability experiment, we assume that the adversary controls
the tracer and can corrupt and control users and reporters. We require that the
adversary cannot output a valid signature for a ring of honest users, where the
signature is not the output of the signing oracle.

Definition 4 (Unforgeability). An R&T ring signature scheme is unforgeable
if, for any PPT adversary A, there exists a negligible function negl such that,

Pr

[
pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ) ← AO(pp)

:
Verify(pp,pkT,m,R,σ) = 1
∧ R ⊆ Qreg\Qcorr
∧ (pkT,·,m,R,σ) /∈ Qsign

]
≤ negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Figure 1.

Traceability. R&T signatures must satisfy traceability. In other words, it must be
possible to identify the signer of a message. Traceability comprises three conditions:
trace correctness, non-frameability and trace soundness. Trace correctness requires
that an honestly generated signature must be traceable to the correct signer.
Accordingly, any trace output by the tracer must be valid. We capture trace
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correctness in an experiment that requires an honestly generated report and
trace for an honestly generated signature to verify. Non-frameability states that
a report and trace mechanism cannot identify a non-signer as the signer. To this
end, our non-frameability definition requires that the adversary, with control of
the tracer and a subset of users, cannot output a valid trace such that the trace
identifies a non-signer. Finally, trace soundness, defined in [6], stipulates that
the signer identified by the report and trace mechanism is unique. That is, it
is not possible to verifiably identify two users as the signer of a single message.
The trace soundness definition in [6], which we cast into our syntax, considers
an adversary that controls the tracer and can corrupt and control users and
reporters. Trace soundness requires that the adversary cannot output two valid
traces that identify two different signers for the same message.

Definition 5 (Traceability). An R&T ring signature satisfies traceability if
the following conditions are satisfied:

1. Trace correctness: for any n = poly(λ), j, k ∈ [n] where j 6= k, and message
m, there exists a negligible function negl such that,

Pr


pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi ,skUi ) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj ,pkT,m,R);

Rep ← Report(pp,pkT,skUk ,m,R,σ);

(pkU,Tr,ρt) ← Trace(pp,skT,m,R,σ,Rep);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

: b = 1

 ≥ 1− negl(λ) .

2. Non-frameability; for any PPT adversary A, there exists a negligible function
negl such that,

Pr

[
pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU,Tr,ρt) ← AO(pp);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

:
b = 1 ∧ pkU ∈ Qreg\Qcorr
∧ Verify(pp,pkT,m,R,σ) = 1
∧ (pkT,pkU,m,R,σ) /∈ Qsign

]
≤ negl(λ)

3. Trace soundness: for any PPT adversary A, there exists a negligible function
negl such that,

Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkUi ,Tri,ρti ,pkUj ,Trj ,ρtj ) ← A

O(pp)

b1 ← VerTrace(pp,pkT,m,R,σ,pkUi ,Tri,ρti );

b2 ← VerTrace(pp,pkT,m,R,σ,pkUj ,Trj ,ρtj )

:
b1 = 1 ∧ b2 = 1
∧ pkUi 6= pkUj

 ≤ negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Figure 1.

Reporter Anonymity. We define reporter anonymity, a new property that
requires that a report does not reveal the ring member that produced it. We
formally define reporter anonymity as the property that an adversary, when
provided with a report for a signature, cannot determine which of two potential
reporters produced the report. Our definition captures an adversary that can
corrupt and control users and reporters, and controls the tracer. However, we
require that the adversary does not corrupt either of the potential reporters and
does not obtain a report through access to oracles.
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Definition 6 (Reporter anonymity). An R&T ring signature is reporter
anonymous if, for any PPT adversary A = (A1,A2), there exists a negligible
function negl such that,

Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU0 ,pkU1 ,st) ← A

O
1 (pp);

b ← {0,1};
Rep ← Report(pp,pkT,skUb ,m,R,σ);

b′ ← AO
2 (σ,st)

:

b′ = b
∧{pkU0 ,pkU1} ⊆ (R ∩ Qreg)\Qcorr
∧ (m,R,σ,pkU0 ) /∈ Qreport
∧ (m,R,σ,pkU1 ) /∈ Qreport


≤ 1

2 + negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Figure 1.

3 A Report and Trace Ring Signature Construction

We present an R&T ring signature construction, formally defined in Figure 2.
Our construction requires a one-way function f : X → Y such that, given
y = f(x), it is hard to compute x, and a standard public key encryption
scheme PKE = (PKE.KGen,PKE.Enc,PKE.Dec) that is secure against chosen
plaintext attacks (IND-CPA) [12]. We require a zero-knowledge proof system
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) that satisfies completeness, knowl-
edge soundness and zero-knowledge where such security definitions are drawn
from [13]. Finally, we utilise a signature of knowledge SOK = (SoK.Setup,
SoK.Sign,SoK.Verify) [7], that satisfies correctness, simulatability and extractabil-
ity, all of which are defined in [6].

The idea behind our construction is as follows. The tracer and users obtain
a key pair for a PKE scheme. The signer generates a fresh key pair for a PKE
scheme, and the freshly generated decryption key (known as the reporter token
in our construction) is encrypted to all members of the ring using a PKE scheme.
The signer then uses a double layer of encryption to encrypt their public identity,
which is generated via one-way function f . That is, the signer encrypts their
public identity under the public key of the tracer, and encrypts the resulting
ciphertext under the freshly generated encryption key. In this way, a reporter
and the tracer are required to recover the identity of the signer. Indeed, any ring
member can decrypt the reporter token, and the tracer requires the reporter token,
along with their own decryption key, to remove the double-layer of encryption
and revoke anonymity of the signer. Our construction additionally employs NIZK
proofs and an SOK to ensure that operations are performed correctly, i.e., that
the signer encrypts the correct public identity and reporter token, and that the
reporter and tracer identify the correct signer.

Our construction is similar to the construction in [6], which provides an
efficient accountable ring signature scheme that allows a designated tracer to
revoke signer anonymity. In [6], the signer uses a PKE scheme to encrypt their
public identity under the tracer’s public key, and the tracer recovers the signer’s
identity by decrypting the ciphertext. This construction also relies on an SOK
that allows the signer to prove that they have encrypted a public identity for
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which they know a corresponding secret, and a NIZK proof such that the tracer
can prove correct decryption, i.e., that they traced the correct signer. Our R&T
construction differs from [6] in the following way. We require the encryption of
a token to a set of reporters and provide a NIZK proof of correct encryption.
Additionally, we use a double-layer of encryption, which is crucial to ensuring
that the tracer cannot decrypt the signer’s identity without a reporter token.

3.1 Description of Our Construction

We now describe the details of our construction. A trusted third party runs
Setup, performing setup for the PKE, NIZK and SOK schemes. We assume that
the public parameters generated for each scheme defines the public/secret key,
randomness and message spaces (which we denote respectively as PK, SK, Rand
and M) as appropriate. T.KGen generates a tracer key pair for a PKE scheme,
and U.KGen is run to generate user key pairs. In particular, users generate a
signing/verification key pair (pkRS, skRS) using one-way function f , and a key
pair (pkPKE, skPKE) for a PKE scheme.

To sign a message m with respect to a ring R, the signer runs algorithm Sign.
The signer generates a key pair (pkSign, skSign) for a PKE scheme and encrypts
the reporter token skSign to each member of the ring (i.e., encrypts skSign under
the public encryption key of each ring member). The signer proves that each
PKE ciphertexts encrypt the reporter token skSign associated with pkSign, which
is included in the signature. That is, the signer provides a NIZK proof for the
following relation:

REnc =
{
(pp,(pkSign,pkPKEi ,c1),(r1,1,...,r1,|R|,skSign)) : pkSign := PKE.KGen(ppPKE;skSign)

∧ {∀ i ∈ 1,...,|R| : c1,i := PKE.Enc(ppPKE,pkPKEi ,skSign;r1,i)}
}

(1)

Then, the signer’s verification key pkRS is encrypted under the tracer’s public key,
resulting in ciphertext c2, which is then encrypted under the freshly generated
public key pkSign, giving ciphertext c3. Finally, the signer produces a signature
of knowledge, which proves that c3 encrypts a verification key in the ring such
that the signer knows the associated signing key. The signature of knowledge is
associated with the following relation:

RSOK =
{
(pp,(pkT,pkSign,R,c3),(r2,r3,skRS),m) : c3 := PKE.Enc(ppPKE,pkSign,c2;r3)

∧ c2 := PKE.Enc(ppPKE,pkT,pk;r2) ∧ pk := f(skRS) ∈ R

}
(2)

To report a message, a member of the ring runs Report to decrypt the reporter
token. The reporter additionally provides a proof of correct decryption, without
revealing which member of the ring decrypted the token. This is given by the
following relation:

RDecr =
{
(pp,(R,c1,skSign),skPKE) : skSign := PKE.Dec(ppPKE,skPKE,c1,i)
∧ c1,i ∈ c1 ∧ pkPKE := PKE.KGen(ppPKE;skPKE) ∈ R

}
(3)

On receipt of a report, the tracer runs Trace to decrypt ciphertexts c3 and
c2, thus revealing the signer’s verification key. As skSign is included in the report,
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Setup(1λ)

ppPKE ← PKE.Setup(1λ)

ppNIZK ← NIZK.Setup(1λ)

ppSOK ← SoK.Setup(1λ)

pp← (ppPKE, ppNIZK, ppSOK)

return pp

T.KGen(pp)

parse pp as (ppPKE, ppNIZK, ppSOK)

(pkT, skT)← PKE.KGen(ppPKE)

return (pkT, skT)

U.KGen(pp)

parse pp as (ppPKE, ppNIZK, ppSOK)

skRS ← SK

pkRS ← f(skRS)

(pkPKE, skPKE)← PKE.KGen(ppPKE)

pkU ← (pkRS, pkPKE)

skU ← (skRS, skPKE)

return (pkU, skU)

Sign(pp, skU, pkT,m,R)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ skU as (skRS, skPKE) ∧R as {(pkRS1 , pkPKE1), . . . , (pkRS|R| , pkPKE|R|)}

pk ← f(skRS); (pkSign, skSign)← PKE.KGen(ppPKE); r1,1, . . . , r1,|R|, r2, r3 ← Rand

for i = 1, . . . , |R| : c1,i ← PKE.Enc(ppPKE, pkPKEi , skSign; r1,i); c1 ← (c1,1, . . . , c1,|R|)

ρ← NIZK.Prove(pp, (pkSign, (pkPKE1 , . . . , pkPKE|R|), c1), (r1,1, . . . , r1,|R|, skSign))

c2 ← PKE.Enc(ppPKE, pkT, pk; r2); c3 ← PKE.Enc(ppPKE, pkSign, c2; r3)

σSOK ← SoK.Sign(pp, (pkT, pkSign, R, c3), (r2, r3, skRS),m)

return σ = (pkSign, c1, c3, ρ, σSOK)

Report(pp, pkT, skU,m,R, σ)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ skU as (skRS, skPKE) ∧R as {(pkRS1 , pkPKE1), . . . , (pkRS|R| , pkPKE|R|)}

∧ σ as (pkSign, c1, c3, ρ, σSOK) ∧ c1 as (c1,1, . . . , c1,|R|)

if Verify(pp, pkT,m,R, σ) = 0 return 0

for i ∈ 1, . . . , |R| s.t. f(skPKE) = pkPKEi : skSign ← PKE.Dec(ppPKE, skPKE, c1,i)

ρr ← NIZK.Prove(pp, (R, c1, skSign), skPKE)

return Rep = (skSign, ρr)

Trace(pp, skT,m,R, σ, Rep)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ σ as (pkSign, c1, c3, ρ, σSOK) ∧ Rep as (skSign, ρr)

pkT ← PKE.KGen(ppPKE; skT)

if Verify(pp, pkT,m,R, σ) = 0 return 0

if NIZK.Verify(pp, (R, c1, skSign), skPKE) = 0 return 0

c2 ← PKE.Dec(ppPKE, skSign, c3); pk ← PKE.Dec(ppPKE, skT, c2); ρt ← NIZK.Prove(pp, (pkT, c2, pk), skT)

return (pk, Tr = (c2, Rep), ρt)

Verify(pp, pkT,m,R, σ)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ σ as (pkSign, c1, c3, ρ, σSOK)

∧R as {(pkRS1 , pkPKE1), . . . , (pkRS|R| , pkPKE|R|)}

if NIZK.Verify(pp, (pkSign, (pkPKE1 , . . . , pkPKE|R|), c1), ρ) = 0 return 0

if SoK.Verify(pp, (pkT, pkSign, R, c3),m, σSOK) = 0 return 0

return 1

VerTrace(pp, pkT,m,R, σ, pk, Tr, ρt)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ σ as (pkSign, c1, c3, ρ, σSOK)

∧ Tr as (c2, Rep) ∧ Rep as (skSign, ρr)

if NIZK.Verify(pp, (pkT, c2, pk), ρt) = 0 return 0

if NIZK.Verify(pp, (R, c1, skSign), ρr) = 0 return 0

if Verify(pp, pkT,m,R, σ) = 0 return 0

if PKE.Dec(ppPKE, skSign, c3) 6= c2 return 0

return 1

Fig. 2: Our R&T ring signature construction.

anyone can decrypt c3, hence checking correct decryption directly. As such, the
tracer need only prove correct decryption of c2, which is given by the following
relation:

RDect =
{
(pp,(pkT,c2,pkRS),skT) : pk := PKE.Dec(ppPKE,skT,c2)

∧ pkT := PKE.KGen(ppPKE;skT)

}
(4)

Our construction additionally provides a public signing verification algorithm
Verify, which ensures that the signer provides an encryption of their own public key,
enabling tracing if the message is malicious. Moreover, a public trace verification
algorithm VerTrace ensures that the correct signer is traced.

We prove that our construction satisfies correctness, anonymity, unforgeability,
traceability and reporter anonymity as defined in Section 2. We obtain Theorem 1,
which we formally prove in Appendix A.

Theorem 1. The construction in Figure 2 satisfies correctness, anonymity,
unforgeability, traceability and reporter anonymity as defined in Definitions 2– 6.
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3.2 Instantiating Our Construction

Our construction can be instantiated with ElGamal encryption and the signature
of knowledge of [6], modified to account for the double layer of encryption of
the signer’s identity. Additionally, we instantiate our NIZK protocols for signing,
reporting and tracing with various Σ-protocols, and outline these below. For our
choice of cryptographic primitives, our instantiation is secure. Indeed, our chosen
schemes satisfy the security requirements for the construction to be secure, and
we provide sketch proofs of these results in Appendix B.

Setup and Key Generation. We let ppPKE = ppNIZK = (G, g, q) where G is a cyclic
group of order q with generator g. Moreover, ppSOK = (ek, ck) where ek is an
ElGamal encryption key and ck is a key for a commitment scheme. We define
one-way function f to perform group exponentiation such that f(x) = gx for
some x ∈ Zq. We write pp = (ppPKE, ppSOK) as the output of algorithm Setup.
We write the key pair for the tracer as (pkT = gskT , skT) and the key pair for the
user as (pkU, skU) = ((gskRS , gskPKE), (skRS, skPKE)) where skT, skRS, skPKE ∈ Zq.

Sign. We use a standard ElGamal encryption scheme to generate ciphertext
c1 and to double-encrypt the signer’s identity in algorithm Sign. That is, we
define ciphertexts c2 = (A2, B2) = (gr2 , pkr2T · pk) and c3 = (A2, A3, B3) =
(gr2 , gr3 , pkr3Sign · pk

r2
T · pk).To generate proof ρ for the relation in Equation 1, we

use the Σ-protocol of [22], defined in Figure 3, which shows that c1 encrypts the
discrete log of a public element pkSign and can be transformed into a NIZK proof
using the Fiat-Shamir transform [10].

P(ppPKE, (pkSign, (pkPKE1 , . . . , pkPKE|R| , c1), (r1,1, . . . , r1,|R|, skSign)) V(ppPKE, (pkSign, (pkPKE1 , . . . , pkPKE|R| , c1))

parse ppPKE as (G, g, q) parse ppPKE as (G, g, q)

parse c1 as (c1,1, . . . , c1,|R|)
th1 , . . . , th|R| , tg1 . . . , tg|R| parse c1 as (c1,1, . . . , c1,|R|)

for i = 1, . . . |R| : parse c1,i as (A1,i, B1,i) for i = 1, . . . |R| : parse c1,i as (A1,i, B1,i)

for i = 1, . . . |R| x1, . . . , x|R| ←$ {0, 1} return 1 iff for i = 1, . . . |R|

wi ←$Zq; thi ← gwi ; tgi = g
pk
wi
PKEi thi = gziAxi1,i

for i = 1, . . . , |R| : zi = wi − xir1,i z1, . . . , z|R| if xi = 0 : tgi = g
pk
zi
PKEi

if xi = 1: tgi =
g
B1,i+pk

zi
PKEi

pkSign

Fig. 3: A Σ-protocol for proving that ciphertext c1 encrypts a discrete log of
pkSign.

Finally, we modify the SOK of [6] to generate σSOK, which proves that the
signer knows skRS such that pkRS = gskRS is an element of the ring. Our mod-
ification accounts for the double-layer of encryption used in our construction,
rather than the single ElGamal encryption required in the accountable ring
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signature construction of [6] and we obtain the Σ-protocol for Equation 2 in
Figure 4. We note that this protocol, and the Σ-protocol of [6], relies on two
additional Σ-protocols, one to prove that a commitment opens to a sequence
of bits which contains a single 1, and a second to prove that a list of ElGamal
ciphertexts contains an encryption of 1. These Σ protocols are required to prove
that the signer knows the signing key corresponding to a verification key in
the ring, without revealing their identity in the ring. We can use the additional
Σ-protocols from [6] without any adjustments, and refer the reader to [6, Figs.
4&5] for full details.

P(pp, (pkT, pkSign, R, c3), (r2, r3, skRS)) V(pp, (pkT, pkSign, R, c3))

parse pp as (ppPKE, ppSOK) ∧ ppPKE as (G, g, q)
parse ppSOK as (ek, ck)

parse R as ((pkRS1 , pkRS|R|), . . . , (pkRS|R| , pkPKE|R|))

w1, w2, rD1, rD2, rE ←$Zq C,D2, E, a2

C ←$PKE.Enc(ppPKE, ek, g
skRS ;w2)

E ← PKE.Enc(ppPKE, ek, g
w1 ; rE) parse pp as (ppPKE, ppSOK) ∧ ppPKE as (G, g, q)

D1 = (AD1 , BD1)←$PKE.Enc(ppPKE, pkT, g
w1 ; rD1) parse ppSOK as (ek, ck)

D2 = (AD1 , AD2 , BD2)←$PKE.Enc(ppPKE, pkSign, BD1 ; rD1, rD2) x←$ {0, 1}λ return 1 iff

for i = 1, . . . |R| : ci = C · PKE.Enc(ppPKE, ek, pk−1
RSi

; 0) R ⊂ G2, pkT, pkSign ∈ G, C,E ∈ G2,

a2 ←$P2(pp, (c1, . . . , c|R|), (l, w2)) D ∈ G3, zw1 , zE , zD1, zD2 ∈ Zq
zw1 = skRSx+ w1; zE = w2x+ rE ; zD1 = r2x+ rD1 cx3D2 = PKE.Enc(ppPKE, (pkT, pkSign), g

zw1 ; zD1, zD2)

zD2 = r3x+ rD2; z2 ←$P2(x) zw1 , zE , zD1, zD2, z2 CxE = PKE.Enc(ppPKE, ek, g
zw1 ; zE)

V2(pp, (c1, . . . , c|R|), a2) = 1

Fig. 4: A modified Σ-protocol for RSOK from [6].

Report and Trace. The reporter runs PKE.Dec to generate skSign. For our instan-
tiation, the reporter need not generate a proof of knowledge of correct decryption
for the relation in Equation 3. In fact, as G is a cyclic group, gi = gj if i = j
mod q. Therefore, pkSign is uniquely defined by gskSign . The tracer (and any public
verifier) can trivially check correct decryption of the reporter token by computing
a single group exponentiation, i.e., check gskSign = pkSign where skSign is returned
by the reporter and pkSign is included in the signature. Then, the tracer decrypts

the signer’s identity by computing B3/(A
skT
2 A

skSign
3 ) for c3 = (A2, A3, B3). The

tracer can prove correct decryption of ciphertext c2 using a standard Σ-protocol
as outlined in Figure 5.

3.3 Efficiency of Our Construction

Here, we discuss the efficiency of our construction, showing that our construction
incurs reasonable costs with respect to the functionality provided and that our
proposed instantiation is practical. We also highlight the additional costs associ-
ated with our report and trace functionality by comparing with the accountable
ring signature in [6]. We show that our construction compares favourably to
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P(ppPKE, (pkT, c2 = (A2, B2), pk), skT) V(ppPKE, (pkT, c2 = (A2, B2), pk))

parse ppPKE as (G, q, g)

w←$Zq

C ← gw C,D parse ppPKE as (G, q, g)

D ← Aw2
x←$Zq return 1 iff

z = skTx+ w z A2, B2, pkT, pkRS ∈ G

pkxTC = gz;

(
B2

pk

)x
; D = Az2

Fig. 5: A Σ-protocol for proving correct decryption of an ElGamal ciphertext.

the accountable ring signature construction of [6]: indeed, we require additional
computation, but these computations are minimal considering the extra func-
tionality provided by our R&T construction. We summarise the computation and
communication costs of our generic construction and instantiation in Tables 2
and 3, respectively. We now briefly describe the costs incurred by the signer,
reporter, tracer and verifier.

Signer. The signer’s computation costs are dominated by the SOK and PKE
computations, both of which grow linearly in the size of the ring. In comparison
to the accountable ring signature of [6], we see that encrypting a reporter token
doubles the computation costs for the signer. Moreover, the size of the signature
also increases, requiring the communication of a number of group and field
elements that grow linearly in the size of the ring (whereas the accountable ring
signature communicates a constant number of group elements).

Reporter. The computation and communication costs incurred by the reporter,
which is unique to our construction, are minimal. In fact, for our instantiation,
the reporter need only perform a single decryption (i.e., 1 group exponentiation).
As such, a report consists of a single field element. This demonstrates that,
though our generic construction allows for the case where a reporter proves
correct decryption, by basing our instantiation on cyclic group operations, it is
possible to provide an efficient instantiation in which the computation costs of
the reporter are minimised.

Tracer. The tracer’s costs are small and compare favourably to accountable
ring signatures. Indeed, computation of the trace requires a constant number
of group exponentiations, calling for only 2 additional group exponentiation
when compared to accountable ring signatures. In particular, to verify correct
decryption of the reporter token, the tracer need only perform a single group
exponentiation, rather than verifying a NIZK proof (cf. §3.2). Furthermore, the
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Accountable
ring signature [6]

Our R&T construction
(Fig.3)

R&T with multiple
reporters (§5)

Sign
Comp.

1 PKE.Enc

1 SoK.Sign

|R|+ 2 PKE.Enc
1 NIZK.Prove (|R| enc)
1 SoK.Sign

|R|+ 2 PKE.Enc
|R| NIZK.Prove (enc)
1 SoK.Sign
|R| public share gen

Comm.

1 PKE ciphertext

1 SOK

|R|+ 1 PKE ciphertext
1 NIZK proof (|R| enc)
1 SOK

1 element pkSign

|R|+ 1 PKE ciphertext
|R| NIZK proof (enc)
1 SOK
|R| PVSS public shares
1 element S

Verify
Comp.

1 SoK.Verify 1 SoK.Verify
1 NIZK.Verify (|R| enc)

1 SoK.Verify
|R| NIZK.Verify (enc)
1 SS.Verify

Comm. N/A N/A N/A

Report
Comp.

N/A 1 PKE.Dec
1 NIZK.Prove(dec)

1 PKE.Dec
1 NIZK.Prove(dec)

Comm.
N/A 1 token skSign

1 NIZK proof (dec)
1 sub-token si
1 NIZK proof (dec)

Trace
Comp.

1 PKE.Dec
1 NIZK.Prove (dec)

2 PKE.Dec
1 NIZK.Prove (dec)
1 NIZK.Verify(dec)

2 PKE.Dec
1 NIZK.Prove (dec)
t NIZK.Verify(dec)
1 SS.Combine

Comm.

1 pk of signer

1 NIZK proof (dec)

1 pk of signer
1 token skSign
1 PKE ciphertext
2 NIZK proof (dec)

1 pk of signer
t sub-tokens s1, . . . , st
1 PKE ciphertext
2 NIZK proof (dec)

VerTrace
Comp.

1 NIZK.Verify (dec) 2 NIZK.Verify (PKE dec)
1 PKE.Dec

t+ 1 NIZK.Verify (dec)
1 PKE.Dec
1 SS.Combine

Comm. N/A N/A N/A

Table 2. Computation (comp.) and communication (comm.) costs of generic construc-
tions. We write (enc) and (dec) to indicate a proof of correct encryption or decryption
respectively. For our multiple reporters construction, we provide costs relative to a ring
of size |R| and a threshold of t.

size of a trace is constant and requires only 1 extra field element and 2 extra
group elements, when compared to accountable ring signatures.

Verifier. As for signature generation, signature verification costs are dominated
by the SOK and PKE scheme. Specifically, our PKE computations require compu-
tation costs similar to those required to verify the SOK, which means verification
of an R&T ring signature incurs double the computational costs of an accountable
ring signature. On the other hand, verification of the trace requires only 6 group
exponentiations, only 2 more than accountable ring signatures.
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Accountable
ring signature [6]

Our R&T instantiation
(§3.2)

Sign
Comp. 4|R|+ 14 8|R|+ 19
Comm. 14G + (|R|+ 7)Zq (3|R|+ 19)G + (2|R|+ 7)Zq

Verify
Comp. 3|R|+ 19 6|R|+ 23
Comm. N/A N/A

Report
Comp. N/A 1
Comm. N/A 1Zq

Trace
Comp. 3 5
Comm. 3G + 1Zq 5G + 2Zq

VerTrace
Comp. 4 6
Comm. N/A N/A

Table 3. Computation (comp.) and communication (comm.) costs of instantiations.
We present costs relative to a ring of size |R|. Our computation costs are given in terms
of the number of group exponentiations required, and our communication costs are
presented in terms of the number of group elements from G and field elements from Zq.

Potential Efficiency Improvements. Our instantiation builds upon the ac-
countable ring signature of [6]. It is possible that techniques from group signature
literature (e.g., [14, 15, 21]) could be used to provide a more efficient construction.
However, we opt to build upon the construction of [6] to clearly demonstrate the
additional costs associated with reporting when reporting is incorporated into an
accountable ring signature. Indeed, our instantiation presents worst-case efficiency
results and can perform reasonably for a small ring. Here, we highlight potential
modifications to our instantiation that can lead to efficiency improvements.

Our instantiation could use a broadcast encryption (BE) scheme [9] to encrypt
the reporter token to all members of the ring. Potentially, by using a BE scheme
that is based on bilinear maps (as, for example, [5] and subsequent works), our
costs would be similar to those of the accountable ring signature construction [6].
Our reasons for not following this approach are twofold. First, in contrast with
BE schemes based on bilinear maps, our construction does not require an in-
teractive key generation protocol. In fact, in our construction, users generate
their public/secret key pair without the need for a trusted key distributor that
holds a master secret key. Accordingly, our instantiation retains the benefit of
ring signatures with respect to non-interactive key generation. Second, NIZK
proofs of correct encryption for schemes based on bilinear maps are currently
unknown [18]. Our construction, on the other hand, requires Σ-protocols to prove
correct encryption and decryption of the reporter token. Moreover, by relying on
cyclic groups, our instantiation does not require a proof of correct decryption for
the reporter token, and the tracer can efficiently verify correct decryption.

Furthermore, we note two modifications that lead to a more efficient, yet
more limited, protocol. Firstly, during setup, the signer could choose a static
set of possible reporters that share a secret key for a PKE scheme. Then, more
simply, the reporter share is encrypted under the corresponding public key.
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Though this approach is more efficient, we opt to allow the signer to dynamically
choose the reporter set, fostering a sense of user empowerment and capturing
the functionality of a user posting entries in different fora. Secondly, if reporter
anonymity is not a concern and a proof of correct decryption is required by
the reporter, the reporter can produce a proof that indicates which reporter
decrypted the token, which would decrease the computation costs incurred by the
reporter. However, we opt to provide a construction that meets a strong security
model, ensuring that reporters can produce reports without the concern of their
identity being leaked.

4 Extending R&T to Multiple Reporters

In our construction, we assume that the reporter and tracer do not collude and,
hence, if a reported message is not malicious, the tracer does not reveal the
identity of the signer. That being said, we can further mitigate against a malicious
reporter by requiring that the tracer receive multiple reports to trigger the tracing
process. We describe an extension of our construction to multiple reporters that
requires a (t, n)-publicly verifiable secret sharing scheme PVSS(SS.Gen,SS.Verify,
SS.Combine), with syntax drawn from [22], where n = |R| is the size of the ring
and t is the number of shares required to reconstruct the secret.

The PVSS scheme is used to generate |R| shares of the reporter token, i.e.,
reporter token s = (s1, . . . , s|R|). Each reporter share is encrypted under a ring
member’s public key for a PKE scheme, rather than encrypting a single reporter
token to all members of the ring. This extension requires minimal changes to our
construction, which we outline here.

Sign(pp, skU, pkT,m,R)

parse pp as (ppPKE, ppNIZK, ppSOK) ∧ skU as (skRS, skPKE)

∧R as {(pkRS1 , pkPKE1), . . . , (pkRS|R| , pkPKE|R|)}

pk ← f(skRS); s← SK; r1,1, . . . , r1,|R|, r2, r3 ← Rand

({s1, . . . , s|R|}, {S1, . . . , S|R|}, S)← SS.Gen(s, t, |R|)
for i = 1, . . . , |R|
c1,i ← PKE.Enc(ppPKE, pkPKEi , si; r1,i)

ρi ← NIZK.Prove(pp, (Si, pkPKEi , c1,i), (r1,i, si)); Sharei ← (Si, c1,i, ρ1,i)

c2 ← PKE.Enc(ppPKE, pkT, pk; r2); c3 ← PKE.Enc(ppPKE, S, c2; r3)

σSOK ← SoK.Sign(pp, (pkT, S,R, c3), (r2, r3, skRS),m)

return σ = (S, (Share1, . . . , Share|R|), c3, σSOK)

Fig. 6: Algorithm Sign for our construction with multiple reporters.

To sign a message, the signer uses the PVSS scheme to produce |R| reporter
sub-tokens. Each sub-token si is encrypted under the public key of a ring member
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and accompanied with a NIZK proof of correct encryption and a public version
of the sub-token, Si. For clarity, we outline the changes to the signing algorithm
in Figure 6. As before, our construction provides public verification algorithm
Verify, which additionally requires that the verifier run algorithm SS.Verify to
verify the secret sharing operations.

A ring member reports a message by decrypting their sub-token and sending
the sub-token to the tracer, accompanied with a proof of correct decryption.
Once the tracer has received a threshold number of sub-tokens, the tracer runs
algorithm SS.Combine to recover the reporter token, then decrypts the signer’s
identity as per the original construction.

Anonymity of Reporters. Recall that a feature of our single reporter con-
struction is that the reporter is anonymous, even after tracing. For our multiple
reporter construction, this is no longer the case. Each reporter is provided with
a unique sub-token, and public versions of each sub-token are published in order
to verify correctness of the PVSS scheme. In this way, when a reporter produces
a report, i.e., their sub-token, anyone can check which share (denoted Share) this
belongs to. Thus, it is possible to determine the identity of the reporters in our
multiple reporter construction. For this reason, reporter sub-tokens should be
treated carefully by the tracer before tracing. That is, the sub-tokens should not
be revealed by the tracer until tracing is completed. In this way, the identities of
reporters are known to the tracer before tracing but are not made public until
after tracing.

Efficiency of Multiple Reporters. Our construction with multiple reporters
is less efficient than our generic construction with a single reporter, where the
communication and computation costs are outlined in Table 2. Specifically,
producing a signature requires the additional computation and communication
of |R| reporter sub-tokens, and the computation and communication costs of the
tracer grow linearly in the size of the threshold. Moreover, the computation costs
associated with signature and trace verification grow linearly in the size of the ring
and threshold, respectively. However, these costs can be minimised. In particular,
secret share generation and combination, for efficient PVSS schemes (e.g., [22]),
simply requires the computation of group exponentiations and the addition of
field elements respectively [22]. Additionally, the NIZK proofs associated with
these extra costs can be instantiated with efficient primitives, as in our single
reporter construction. That being said, we note that the size and computation
costs of a report are identical to our single reporter construction, consisting of a
single reporter sub-token, and requiring a single decryption of a PKE ciphertext.

5 Conclusion

We introduced and defined report and trace ring signatures, and presented an
accompanying security model. We showed that our new primitive not only protects
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the identity of the signer until tracing is complete, it also protects the identity
of the reporter even after tracing. We presented a construction of an R&T ring
signature scheme that satisfies our security model, and extended our construction
to the multiple reporter setting. Additionally, we provided an instantiation of
our single reporter construction and compared its efficiency with accountable
ring signatures [6], demonstrating the additional costs associated with our report
and trace functionality, and showing that our proposed instantiation is practical.

Though our construction can be efficiently instantiated, the costs incurred by
the signer and the verifier grow linearly in the size of the ring. An interesting area
of future research is to define an efficient, yet (efficiently) verifiable, broadcast
encryption scheme that can be used to instantiate our construction. We show
that our report and trace construction can be extended to the multiple reporter
setting. This setting could be formalised by extending our existing security model
to capture multiple reporters, and, additionally, a construction that satisfies
reporter anonymity could be sought.

We believe that the cryptographic solution that report and trace provides
can be enhanced through the use of policy and enforcement. In fact, a policy
can define malicious messages, and the possibility of enforcement encourages
reporters and tracers to follow policy. Therefore, we believe that our report and
trace notion forms part of a solution that, when supplemented with policy and
enforcement, leads to a well-functioning system that protects the anonymity of
its participants, with limited room for abuse.
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A Security of Our Construction

Here, we prove Theorem 1 via a series of Lemmata.

Lemma 1. Our construction satisfies correctness if public-key encryption scheme
PKE is correct, non-interactive zero-knowledge proof system NIZK is complete,
and signature of knowledge SOK is correct.

Proof. Consider a signature σ = (pkSign, c1, c3, ρ, σSOK) output by algorithm Sign
with respect to a message m ∈ M and ring R that consists of public keys generated
by algorithm U.KGen. Let pp be the output of algorithm Setup and let (pkT, skT)
be the output of algorithm T.KGen. Moreover, let pk = f(skRS) ∈ R where skRS
is an element of SK and is used to sign message m.

By definition of correctness, our construction is correct if Verify(pp, pkT,m,R,
σ) outputs 1 with overwhelming probability. Assume that algorithm Verify does
not return 1. Then, it must be the case that NIZK.Verify(pp, (pkSign, (pkPKE1

, . . . ,
pkPKE|R|), c1), ρ) = 0 or SoK.Verify(pp, (pkT, pkSign, R, c3),m, σSOK) = 0. We con-
sider these two possibilities in turn. We conclude that, if all building blocks are
correct, our construction satisfies correctness.

First, assume that NIZK.Verify(pp, (pkSign, (pkPKE1
, . . . , pkPKE|R|), c1), ρ) = 0.

By assumption, the PKE scheme satisfies correctness and so c1 encrypts skSign,
which is cryptographically linked to pkSign. Then, the inputs to algorithm
NIZK.Verify are correctly generated and, by completeness of the NIZK scheme,
algorithm NIZK.Verify returns 1 with overwhelming probability.

Now, assume that SoK.Verify(pp, (pkT, pkSign, R, c3),m, σSOK) = 0. As before,
by assumption of correctness of the PKE scheme, ciphertexts c2 and c3 encrypt
pk and c2 respectively. Then, the inputs to algorithm SoK.Sign are generated
correctly and, by correctness of the SOK scheme, algorithm SoK.Verify returns 1
with overwhelming probability.

Lemma 2. Our construction satisfies anonymity if public-key encryption scheme
PKE satisfies IND-CPA, non-interactive zero-knowledge proof system NIZK satis-
fies zero-knowledge and knowledge soundness, and signature of knowledge SOK
satisfies simulatability and extractability.

Proof. Let A be an adversary in the anonymity experiment. We proceed through
a series of game hops that we show are indistinguishable to the adversary. We
define Game 0 as the anonymity experiment with b chosen randomly and let Si
denote the event that A correctly guesses b after Game i.

Game 1 is identical to Game 0 except that we replace algorithm SoK.Setup with
algorithm SimSOK.Setup and, for queries to Osign and the signature output to A,
we replace algorithm SoK.Sign with algorithm SimSOK.Sign. Then, generating
the signature of knowledge does not require a witness. By the simulatability of
the SOK scheme, |Pr[S0 ]− Pr[S1 ]| ≤ negl(λ).

Game 2 is identical to Game 1 except that we replace algorithm NIZK.Setup
with algorithm SimNIZK.Setup and, for queries to Oreport and Otrace, we replace
algorithm NIZK.Prove with algorithm SimNIZK.Prove. As such, generating a proof
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of correct decryption does not require a witness. By the zero-knowledge property
of the NIZK scheme, |Pr[S1 ]− Pr[S2 ]| ≤ negl(λ).

Game 3 requires a further change to Oreport. Rather than decrypting a cipher-
text from c1, we run algorithm NIZK.Extract to output the witness (r1,1, . . . , r1,|R|,
skSign) from proof of correct decryption ρ. By the knowledge soundness property
of the NIZK scheme, |Pr[S2 ]− Pr[S3 ]| ≤ negl(λ).

Game 4 changes Otrace to run algorithm SoK.Extract to obtain the identity
of the signer rather than decrypting ciphertexts c3 and c2. By the simulation
extractability property of the SOK scheme, |Pr[S3 ]− Pr[S4 ]| ≤ negl(λ).

Game 5 requires a change to the challenge signature returned to A when
b = 1. We replace pk1 with pk0. By the IND-CPA property of the PKE scheme,
|Pr[S4 ]− Pr[S5 ]| ≤ negl(λ).

The view of A is now identical for b = 0 and b = 1. Therefore, Pr[S5 ] = 1/2
and the result holds.

Lemma 3. Our construction satisfies unforgeability if f is a one-way function
and signature of knowledge SOK satisfies extractability.

Proof. Let A be an adversary in the unforgeability experiment and assume that
the construction does not satisfy unforgeability. Then, A can output a tuple
(pkT,m,R, σ) such that Verify(pp, pkT,m,R, σ) = 1 where the ring is honest and
the tuple output is not queried to Osign. On behalf of an honest ring member, A
can perform all steps of Sign except produce signature of knowledge σSOK. For
this, A must obtain the secret credential of the signer. If A can obtain the secret
credential without corrupting the signer, A can break the one-wayness of function
f . Else, A can output a valid SOK without a valid witness skRS. If A can output
a valid SOK without a witness skRS then A can be used to construct an adversary
against the extractability property of the SOK. Therefore, by contradiction, A
can succeed in the unforgeability experiment with negligible probability.

Lemma 4. Our construction satisfies traceability. That is:

1. Our construction satisfies tracing correctness if public-key encryption scheme
PKE is correct, non-interactive zero-knowledge proof system NIZK is complete,
and signature of knowledge SOK is correct.

2. Our construction satisfies non-frameability if f is a one-way function, public-
key encryption scheme PKE is correct, non-interactive zero-knowledge proof
system NIZK satisfies knowledge soundness, and signature of knowledge SOK
satisfies extractability.

3. Our construction satisfies soundness if public-key encryption scheme PKE
is correct and non-interactive zero-knowledge proof system NIZK satisfies
knowledge soundness.

Proof. We show that all three properties of traceability are satisfied.

Tracing correctness: Consider a signature σ = (pkSign, c1, c3, ρ, σSOK) output
by algorithm Sign with respect to a message m ∈ M and ring R that consists of
public keys generated by algorithm U.KGen. Let pp be the output of algorithm
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Setup and let (pkT, skT) be the output of algorithm T.KGen. Let pk = f(skRS) ∈ R
where skRS is an element of SK and is used to sign message m. Moreover, let
Rep = (skSign, ρr) and (pk, Tr = (c2, Rep), ρt) be the outputs of algorithms Report
and Trace respectively.

By definition of tracing correctness, our construction is correct if VerTrace(pp,
pkT,m,R, σ, pk, Tr, ρt) outputs 1 with overwhelming probability. Assume that al-
gorithm VerTrace does not return 1. Then, it must be the case that NIZK.Verify(pp,
(pkT, c2, pk), ρt) = 0, NIZK.Verify(pp, (R, c1, skSign), ρr) = 0, Verify(pp, pkT,m,R,
σ) = 0 or PKE.Dec(ppPKE, skSign, c3) 6= c2. We consider these possibilities in turn.
We conclude that, if all building blocks are correct, our construction satisfies
tracing correctness.

First, recall that, by correctness of the construction (Lemma 1), algorithm
Verify returns 1 with overwhelming probability unless one of the building blocks
do not satisfy correctness. Second, as in our proof of correctness, algorithm
NIZK.Verify returns 1 with overwhelming probability if the NIZK scheme satisfies
completeness and the PKE scheme is correct. Finally, by correctness of the PKE
scheme, c2 = PKE.Enc(ppPKE, pkT, c3) with overwhelming probability, and the
result holds.

Non-frameability: Let A be an adversary in the non-frameability experiment
and assume that the construction does not satisfy non-frameability. Then A can
output a tuple (pkT,m,R, σ, pk, Tr = (c2, Rep), ρt) such that VerTrace(pp, pkT,m,
R, σ, pk, Tr, ρt) = 1 where pk is honest and the tuple output by A is not queried
to Osign.

First, we assume that A produces a signature σ = (pkSign, c1, c3, ρ, σSOK) for a
corrupt ring member pk for message m and ring R such that Verify(pp, pkT,m,R,
σ) = 1. Then A must construct a report and trace that identifies a different,
honest, ring member pk′ as the signer. A must construct proofs ρr and ρt such
that algorithm NIZK.Verify returns 1. However, if the public-key encryption
scheme is correct, by knowledge soundness of the NIZK scheme, an adversary can
create valid proofs without a valid witness with negligible probability. Therefore,
if A can output a valid report and trace, A can be used to construct an adversary
against the knowledge soundness property of the NIZK scheme.

Otherwise, A must output a valid signature on behalf of an honest ring
member. However, by unforgeability of our construction (Theorem 3), e.g., one-
wayness of function f and extractability of the SOK, A can do this with negligible
probability. Then, by contraction, A succeeds in the non-frameability experiment
with negligible probability.

Soundness: Let A be an adversary in the soundness experiment and assume
that the construction does not satisfy soundness. Then, A can output a tuple
(pkT,m,R, σ, pki, Tri, ρti , pkj , Trj , ρtj ) such that algorithm VerTrace(pp, pkT,m,
R, σ, pkk, Trk, ρt,k) = 1 for k ∈ {0, 1} and pki 6= pkj . Without loss of generality,
we assume that tuple (pki, Tri, ρti) identifies the signer (which A can generate
as all potential signers are corruptible).
A must output proofs ρrj and ρtj such that algorithm NIZK.Verify returns 1.

However, if the public-key encryption scheme is correct, by knowledge soundness
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of NIZK, an adversary can create valid proofs without a valid witness with
negligible probability. Therefore, if A can output two valid proofs, A can be
used to construct an adversary against NIZK knowledge soundness. Therefore, by
contradiction, A succeeds in the soundness experiment with negligible probability.

Lemma 5. Our construction satisfies reporter anonymity if non-interactive zero-
knowledge proof system NIZK satisfies zero-knowledge and knowledge soundness.

Proof. Let A be an adversary in the reporter anonymity experiment. We proceed
through a series of game hops that we show are indistinguishable to the adversary.
In the final game, the view of A is identical for b = 0 and b = 1. We define
Game 0 as the reporter anonymity experiment with b chosen randomly and let
Si denote the event that A correctly guesses b after Game i.

Game 1 is identical to Game 0 except that, we replace algorithm NIZK.Setup
with algorithm SimNIZK.Setup and, for queries to Oreport and the report output
toA, we replace algorithm NIZK.Prove with algorithm SimNIZK.Prove. In this way,
generating a reporter proof of correct decryption does not require a witness skPKE.
By the zero-knowledge property of the NIZK scheme, |Pr[S0 ]− Pr[S1 ]| ≤ negl(λ).

Game 2 is identical to Game 1 except that, for queries to Oreport and
the report output to A, we run algorithm NIZK.Extract to output the witness
(r1,1, . . . , r1,|R|, skSign) from proof of correct encryption ρ, rather than decrypting
a ciphertext from c1. By the knowledge soundness property of the NIZK scheme,
|Pr[S1 ]− Pr[S2 ]| ≤ negl(λ).

Now, the view of A is identical for b = 0 and b = 1. In fact, the reporter token
is generated without the secret key of the reporter. Therefore, Pr[S2 ] = 1/2 and
the result holds.

B Security of Our Instantiation

Here we provide sketch proofs of the security of our instantiation, demonstrating
that our choices of cryptographic primitives meet the requirements for security,
that is, the proofs in Appendix A hold. We restrict ourselves to sketch proofs
noting that details of the proofs are very similar to the proofs presented in [6],
and we refer the reader to [6] for more details.

Lemma 6. Function f , where f(x) = gx for some x ∈ Zq and group (G, g, q),
is a one-way function if the discrete logarithm assumption holds with respect to
group (G, g, q).

Proof (Sketch). Recall that the discrete log assumption holds relative to group
(G, g, q) if an adversary, on input of (G, g, q) and a group element y, cannot
output a discrete log x such that y = gx, except with negligible probability. Let
A be an adversary in the hard to invert property of one-way function f that
outputs an element x′ such that f(x′) = y. Then we can use A to construct an
adversary B against the discrete logarithm assumption. Trivially, B can output
x′ and the result holds.
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Lemma 7. The double-layer of encryption that defines ciphertext c3 is correct
and satisfies IND-CPA security.

Proof (Sketch). Correctness holds by direct verification. Moreover, if there exists
an adversary A against the IND-CPA security of ciphertext c3, then we can use
A to construct an adversary B against the IND-CPA property of the underlying
standard ElGamal encryption scheme. By assumption, ElGamal satisfies IND-CPA
security so, by contradiction, ciphertext c3 is IND-CPA secure.

Lemma 8. The Σ-protocol in Figure 4 satisfies completeness, special honest
verifier zero-knowledge, 2-special soundness and has quasi-unique responses. More-
over, applying the Fiat-Shamir transform to the Σ-protocol leads to an SOK in
the ROM that is correct, simulatable and extractable.

Proof (Sketch). This result follows directly from the security of the Σ-protocol
of [6], including the security of the two additional Σ-protocols upon which
it is based. We refer the reader to [6] for full details of the proofs. Briefly,
completeness follows from direct verification, and correctness of the SOK follows
from completeness of the Σ-protocol. For special honest verifier zero-knowledge,
we define algorithm Sim to choose responses zw1, zE , zD1, zD2←$Zq and choose
C ←$G2. Ciphertexts D2 and E can be obtained from the verification equations.
Then, by the DDH assumption, C output by Sim is indistinguishable from C when
generated according to the Σ protocol if the DDH assumption holds with respect
to group (G, g, q). Moreover, zw1, zE , zD1, zD2 are uniform and uniquely define
D2 and E when generated by P or Sim and the result holds. Simulatability of the
SOK scheme follows. For 2-special soundness, we define two challenges x, x′ and
responses zw1, zE , zD1, zD2 and z′w1, z

′
E , z

′
D1, z

′
D2, such that the verifier returns 1

for each challenge/response pair. Then by computing r2, r3 and skRS from the

first verification equation c
(x−x′)
3 = PKE.Enc(ppPKE, (pkT, pkSign), gzw1−z′w1 ; zD1−

z′D1, zD2 − z′D2) and replacing in the second verification equation, it is clear that
c3 encrypts pk as required. Extractability of the SOK scheme follows.

Lemma 9. The Σ-protocol in Figure 3 satisfies completeness, special honest
verifier zero-knowledge and 2-special soundness. Moreover, applying the Fiat-
Shamir transform to the Σ-protocol leads to an NIZK proof in the ROM that
satisfies completeness, zero-knowledge, soundness and knowledge extractability.

Proof (Sketch). This result is similar to the proof of Lemma 8. In fact, complete-
ness follows from direct verification and completeness of the NIZK proof follows.
Special honest verifier zero knowledge holds because Sim can choose responses
z1, . . . , zn←$Zq and selects challenges th and tg1 , . . . , tgn based on the random
responses and x. As such, the result holds and simulatability of the NIZK proof
follows. Finally, special soundness holds as two challenges x, x′ and responses
z1, . . . , zn and z′1, . . . , z

′
n ensure that c1 encrypts a discrete log as required. As

before, soundness and knowledge extractability of the NIZK proof follows.

Lemma 10. The Σ-protocol in Figure 5 satisfies completeness, special honest
verifier zero-knowledge, 2-special soundness and has unique responses. Moreover,
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applying the Fiat-Shamir transform to the Σ-protocol leads to an NIZK proof in
the ROM that satisfies completeness, zero-knowledge, soundness and knowledge
extractability.

Proof (Sketch). The proof of this result follows is identical to the proof presented
in [6], which presents a Σ-protocol for the same relation. Moreover, completeness
of the NIZK proof follows from completeness of the Σ-protocol, zero-knowledge
follows from special honest verifier zero-knowledge and soundness and knowledge
extractability follows from special soundness.
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