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Abstract. Black-box accumulation (BBA) is a cryptographic protocol
that allows users to accumulate and redeem points, e.g. in payment
systems, and offers provable security and privacy guarantees. Loosely
speaking, the transactions of users remain unlinkable, while adversaries
cannot claim a false amount of points or use points from other users.
Attempts to spend the same points multiple times (double spending)
reveal the identity of the misbehaving user and an undeniable proof of
guilt. Known instantiations of BBA rely on classical number-theoretic
assumptions, which are not post-quantum secure. In this work, we propose
the first lattice-based instantiation of BBA, which is plausibly post-
quantum secure. It relies on the hardness of the Learning with Errors
(LWE) and Short Integer Solution (SIS) assumptions and is secure in the
Random Oracle Model (ROM).
Our work shows that a lattice-based instantiation of BBA can be realized
with a communication cost per transaction of about 199MB if built on
the zero-knowledge protocol by Yang et al. (CRYPTO 2019) and the
CL-type signature of Libert et al. (ASIACRYPT 2017). Without any
zero-knowledge overhead, our protocol requires 1.8MB communication.

Keywords: Lattice-based Cryptography · Black-box Accumulation (BBA)
· Electronic Funds Transfer · Security and Privacy · Learning with Er-
rors (LWE) · Short Integer Solution (SIS)

1 Introduction

Black-box accumulation (BBA), introduced in [24], allows the anonymous col-
lection and redemption of points. BBA protocols feature two roles: users and
operators. The users can accumulate and spend points on a cryptographic token
issued by the operators, via the respective interactive protocols. In real-world
scenarios like loyalty programs in shops or prepayment systems for public trans-
port, users can collect incentives or bonus points. For the operators, the secure
transfer of points is of paramount importance, whereas users want to protect their
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privacy. BBA offers a provably secure solution to both concerns. It allows users
to collect and redeem points in an unlinkable manner and it protects operators
from malicious users trying to claim more points than collected.

Several works have extended the framework of BBA. BBA+ [21] added stronger
notions of both security and privacy as well as offline-transactions (in the sense
that no permanent connection to a central database is required). More recently,
[6, 7, 22] improved several aspects of BBA+. However, all of the proposed
instantiations are based on classical cryptographic building blocks whose security
guarantees rely on number-theoretic assumptions which are broken by Shor’s
algorithms [40], rendering them insecure against quantum adversaries.

In contrast, lattice-based hardness assumptions have so-far withstood attempts
to break them with quantum algorithms and allow to construct an extensive
variety of cryptographic primitives, including commitments, public-key encryption
[19, 25, 38, 39] and fully homomorphic encryption (FHE) [18], and are hence
considered an ideal candidate to achieve post-quantum (PQ) security. Moreover,
lattice-based protocols usually feature good asymptotic efficiency, parallelism,
and security under worst-case intractability assumptions. The downside is an
increase in communication costs for certain important building blocks, such as
zero-knowledge (ZK) proofs. As all known BBA constructions are heavily based
on ZK proofs, it gives rise to the difficult question of how to instantiate BBA
from lattice-based assumptions, while remaining relatively efficient.

Contribution. In this work, we propose the first lattice-based instantiation of
BBA, called BABL (Black-Box Accumulation Based on Lattices). It relies on
the LWE and SIS problems, and is proven secure in the ROM. We follow the
security framework of [22], refered to as BBW in the following.

Moreover, we give a concrete instantiation, together with a suitable choice of
lattice parameters, and evaluate the scheme’s communication complexity. Without
any zero-knowledge overhead, our protocol requires 1.8MB communication, which
shows that the efficiency baseline of our general approach/construction is low.
When using the popular ZK proof system by Yang et al. [43], an optimized version
requires 199MB communication, too much to be practically usable. However,
lattice-based ZK proofs are improving rapidly, see e.g. [42] for some performance
comparisons. Thus, it is plausible that the added computation and communication
cost shrinks to an actually practical level in the near future. Our construction is
the most efficient lattice-based payment system (BBA or E-Cash, cf. Section 1)
to date. The closest competitor, E-Cash, needs 262MB per transaction, using the
same ZK protocol. While this does not yet make our protocol fit for practice, it
places lattice-based BBA schemes into the range of practicality, where a further
round of optimizations could likely allow its real-world use.

Our Construction in a Nutshell. On a high level, our construction follows
the approach of BBW [22], but it requires care to translate it to lattices, without
reaching a giga-/terabyte range of communication cost per transaction. In BBW,
the user holds a token which is basically a commitment whose contents are
signed by the operator. This commitment contains a serial number for double-
spending detection, a secret key uniquely identifying the user, and the amount
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of points. (For simplicity, we omit double-spending tags for now.) An update
of the number of points (e.g. in a purchase) works as follows. The user sends a
fresh (rerandomized) commitment to the operator, reveals the serial number, and
proves in zero-knowledge that the commitment’s contents are signed and that the
new balance lies within admitted bounds. Using a property of the commitment
scheme, the operator updates the balance while keeping the committed content
intact. A serial number is chosen by a two-party coin-toss, to ensure it cannot be
used to track users. Finally, the operator provides a signature for the new token.

To implement this strategy, [22] uses group-based commitments, ZK proofs,
and so-called CL-type signatures [10, 11], which have practically efficient ZK
proofs for proving possession of a signature on a commitment or committed
value. To replace Multi-Pedersen commitments, we use the lattice-based multi-
block commitment scheme of [25], called KTX commitment in the following. We
make use of a structural property of these commitments, which allows to “add
blocks” to the committed message later, without knowing the messages in the
other blocks, similar to Multi-Pedersen commitments. Finally, to replace the
group-based CL-type signatures and ZK proofs, we rely on the ZK protocol of
Yang et al. [43] combined with the CL-type signatures of Libert et al. [28]. We
explicitly define the security guarantee offered by the signature-schemes, which
was not explicitly given in [28].

Related Work. The previous BBA protocols by Blömer et al. [6], Bobolz et al.
[7], Hartung et al. [21], Hoffmann et al. [22], and Jager and Rupp [24] are all
based on number-theoretic hardness assumptions. While this allows them to
be much more efficient, it also makes them insecure when quantum computers
become available. We think that future privacy issues regarding payments made
today, and the security of a users’ collected points in the future are reason enough
to switch to post-quantum payment systems in the long term.

The closest relatives to BBA are Electronic Cash (E-Cash) cryptosystems
[14]. The first compact E-Cash scheme was given in [9], where compact means
that the complexity of withdrawal and spending is logarithmic in the size of
an (electronic) wallet. In (compact) E-Cash, there exist three parties, namely a
bank, a user, and a merchant. The bank allows withdrawing a wallet containing
coins and depositing coins. The wallet is signed by the bank, to make it possible
for a user to prove the legitimacy of their wallet. Further, the user can spend
the coins from their withdrawn wallet in a privacy-preserving way at a merchant.
This is achieved by proving in zero-knowledge the legitimacy of the origin of the
coin. The merchant can then deposit the received coin at the bank. The bank
can detect double-spenders and prove their guilt, if and only if they are guilty.

There are two lattice-based versions of compact E-Cash in the literature:
The work of Libert et al. [28] – which propose (implicit) CL-type signatures,
and an abstraction of Stern-type ZK protocols [41] – and Yang et al. [43]’s
system, which applies their ZK argument system and further optimizations to
construct a more efficient system similar to [28]. [8] showed some major issues
with the double-spending in compact E-Cash. [15] solved these problems with
their lattice-based version of E-Cash.
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We stress that E-Cash and BBA are quite different. Most importantly, BBA
allows payments in both directions, i.e., points can be accumulated and spent.
E-Cash does allow to deposit points but only at the bank, which means that
a wallet cannot be “refilled”. Instead, a new wallet with fresh coins has to be
generated. Additionally, E-Cash and BBA have different assumptions on the
involved parties. On the one hand, it is not possible in BBA to separate issuer and
accumulator – such as when the issuer is an E-Cash bank, and the accumulator a
merchant. Issuer and accumulator have the same secret key. On the other hand,
a merchant and bank must not collude in E-Cash, as this can break privacy. A
BBA issuer and an accumulator can collude without breaking privacy. This is
necessary due to an impossibility result, cf. [12]. Further, E-Cash only allows
the transferal of a single coin per transaction. The transaction value in BBA
is an integer in a certain range (e.g. 32-bit integers). Hence, when payments
for products with different prices are made, BBA requires just one transaction,
whereas many E-Cash transactions would be necessary.

Acknowledgements. We thank the anonymous reviewers for their feedback.
The work presented in this paper has been funded by the German Federal
Ministry of Education and Research (BMBF) under the project “PQC4MED”
(ID 16KIS1044) and the topic Engineering Secure Systems of the Helmholtz
Association (HGF) and by KASTEL Security Research Labs.

2 Preliminaries

Notation. We use λ ∈ N as security parameter. Vectors and matrices are in bold.
For n ∈ N we write In for the identity matrix of dimension n. We denote by log
the binary logarithm. ‖·‖ denotes the Euclidean norm and ‖·‖∞ the maximum
norm. For q ∈ N we denote by Zq = {−⌊(q − 1)/2⌋, . . . , ⌈(q − 1)/2⌉} the ring of
congruence classes of integers modulo q. We denote by x←S that x is drawn
uniformly at random from set S and by y ← D that y is drawn according to
distribution D. We denote by ·‖· the concatenation of vectors, i.e., for x,y ∈ Zn

q

we have (x‖y) ∈ Z2n
q . For x ∈ Zm

q , we denote by bin(x) ∈ Zm⌈log q⌉
2 the binary

decomposite of x ∈ Zm
q , i.e. xj =

∑⌈log q⌉−1
i=0 bin(x)⌈log q⌉·j+i · 2i. Inversely, for a

y ∈ Z⌈log q⌉
2 , we denote by toInt(y) :=

∑⌈log q⌉−1
i=0 yi · 2i ∈ Zq the integer (modulo

q) represented by y. For a full-rank matrix M ∈ Zn×m
q , we denote by M̃ the

Gram–Schmidt orthogonalization of M’s columns.

2.1 Black-Box Accumulation

In this section, we give an overview of the BBW framework defined in [22], which
we base this work on. It allows a user to anonymously collect (and redeem) points
from the operators, which cover the following three roles: i) the issuer issues new
tokens to the users of the system, ii) the accumulator adds points to a token, and
iii) the verifier subtracts points from a token and verifies that a user’s balance is
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large enough to perform that transaction. As these roles share the same key pair,
we do not distinguish them within the paper and refer to them as the operator.

The protocols are offline, meaning transactions can be performed without a
permanent connection of the operator to a database. Nonetheless, regular access
to a shared database to store the double-spending tags is needed. We require
a common reference string which is set-up by a Trusted Third Party (TTP).1

Next, let us give the formal definition of a BBW scheme.

Definition 2.1 (BBW Scheme). A black-box wallet scheme BBW = (Setup,
OGen, UGen, Issue, Update, UVer, IdentDS, VerifyGuilt) consists of probabilistic
polynomial time (PPT) algorithms Setup, OGen and UGen, interactive protocols
Issue and Update and deterministic polynomial time algorithms UVer, IdentDS
and VerifyGuilt:

– CRS← Setup(1λ): On input 1λ, returns a common reference string CRS. All
following algorithms always receive CRS (implicitly) as input.

– (pkO, skO)← OGen(CRS): Returns a public and secret key for operator O.
– (pkU , skU )← UGen(CRS): Returns a public and secret key for user U .
– ((T , bU ), bO)← Issue⟨U(pkO, pkU , skU ),O(pkO, skO, pkU )⟩: User U commu-
nicates with operator O, who produces a new token T for U with balance 0.
The user’s input is their key pair (pkU , skU ), and O’s public key pkO, while
O’s input is its key pair (pkO, skO), and the user’s public key pkU . The bits
bO and bU indicate whether O and U “accept” the protocol run, respectively.

– ((T ∗, bU ), (dstag, bO))← Update⟨U(pkO, pkU , skU , T , v), O(pkU , skO, v)⟩: User
U updates the token by interacting with the operator O. Both get as inputs
the public keys pkO and pkU and their respective secret key, and the (possibly
negative) value v to be added to the token’s balance. U additionally gets their
token T (with balance w) as input. In the end, U outputs an updated token
T ∗ with balance w + v, and a bit bU indicating acceptance of the execution.
The operator outputs an acceptance bit bO and a so-called double-spending
tag dstag (which later allows detection of reuses of the same token).2

– b← UVer(pkO, pkU , skU , T , w): User U verifies a token T , given the operator’s
public key pkO, the user’s key pair (pkU , skU ), and a value w, and outputs 1
if T is a valid token of U with balance w, or 0 otherwise.

– (pkU , Π)← IdentDS(pkO, dstag1, dstag2): Takes as input the operator’s public
key pkO and two double-spending tags dstag1, dstag2. If dstag1, dstag2 come
from a transaction with the same token, then IdentDS outputs the public key
pkU of the user U that “double-spent” their token and a proof of guilt Π. (Π
can later be verified by a third party, using the VerifyGuilt algorithm described
next.) Otherwise, it outputs an error symbol ⊥.

1 Our setup only requires a uniform random string (URS), also called transparent setup.
In practice, it can be heuristically chosen, e.g. as a hash image.

2 Note, that [21, 22, 24] distinguish between an Add and a Sub transaction for updating
the token, where the first one hides the user’s balance and the latter one reveals it (or
hides it via expensive range proofs). As we will discuss in Section 3 there is no need
for us to distinguish those cases, as the balance is always hidden in our construction.
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– b ← VerifyGuilt(pkO, pkU , Π): Given a proof of guilt Π, O’s and U ’s public
keys pkO, and pkU , it outputs 1 if U is guilty of double-spending, 0 otherwise.

We say a BBW scheme is correct if the two interactive protocols Issue and Update
and the algorithms UVer, IdentDS, and VerifyGuilt are correct. For Issue this means,
if both parties follow the protocol, Issue outputs a valid token T (as verified by
UVer) and both parties accept the execution. Similarly, Update is correct if both
parties accept the execution and the output is a valid (as above) updated token
(with new balance w + v) if the parties follow the protocol. Correctness of UVer,
IdentDS, and VerifyGuilt are defined in the canonical way.

Privacy and Security Properties. We give an informal description of the
security properties and refer to App. E for the full definitions. On the system
side we formalize security by three properties: i) a scheme is owner-binding if
a token is bound to a unique user, and can only be used by it, ii) a scheme is
balance-binding if no false balance can be claimed, i.e., one can only claim a
certain (overall) balance for a token if this balance equals the exact amount of
points that have been legitimately collected with this token up to this point in
time, and iii) a scheme features double-spending detection if a user that presents
an already used token in a transaction can be (provably) identified.

For the privacy of the user, we demand the following properties: i) the scheme
is privacy preserving, i.e., an adversary is not able to link any transactions of the
user, even with corrupt operators, ii) the scheme offers false-accusation protection,
if no malicious operator can falsely produce a proof of guilt for an honest user, and
iii) a scheme should feature post-compromise security, i.e., that after a temporary
compromise of the user, the unlinkability (but not the false-accusation property)
can be recovered (by introducing new randomness into the token).

A difference in the description of BBW and our framework is that BBW allows
embedding attributes in the token, i.e., the token’s expiration date or data for
age verification. Including such attributes is direct, but omitted for simplicity.

2.2 Lattices

We recall the basics of lattice-based cryptography required for our construction.

Definition 2.2. A lattice L is the group of all integer linear combinations of
k linearly independent vectors B = {b1, . . . ,bk} ⊆ Rn, for k ∈ N: L = L(B) :={∑k

i=1 zi · bi | zi ∈ Z
}
. Let m ≥ n ≥ 1, a prime number q > 2, A ∈ Zn×m

q and

u ∈ Zn
q . We write:

Λ⊥q (A) := {e ∈ Zm | Ae = 0n mod q}, Λu
q (A) := {e ∈ Zm | Ae = u mod q}.

Definition 2.3 (Discrete Gaussian Distribution). For a lattice L, a vector
c ∈ Rm, and a real number σ > 0, define ρσ,c(x) = exp(−π‖x − c‖2/σ2). The
discrete Gaussian distribution of support L, center c and parameter σ is defined
as DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L, where ρσ,c(L) =

∑
x∈L ρσ,c(x).

We denote by DL,σ(y) the distribution centered in c = 0m and exploit the fact
that samples from DL,σ have small maximum norm with high probability.
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Lemma 1 ([5, Lemma 1.5]). For any lattice L ⊂ Rn and positive real number
σ > 0, we have Prb←DL,σ

[‖b‖ ≤
√
nσ] ≥ 1− 2Ω(n).

The following lemmas specify how one can sample an (almost) random lattice
basis of Λ⊥q (A), together with a short trapdoor basis, and how to extend a basis:

Lemma 2 ([4, Theorem 3.2]). There is a PPT algorithm TrapGen, that takes
as input 1n, 1m and an integer q > 2 with m ≥ Ω(n log q), and outputs a matrix
A ∈ Zn×m

q and a basis TA of Λ⊥q (A) such that A is within statistical distance

2−Ω(n) to the uniform distribution over Zn×m
q and ‖T̃A‖ ≤ O(

√
n log q).

Lemma 3 ([13, Lemma 3.2]). For m′ > m, there exists a PPT algorithm
ExtBasis that takes as inputs a matrix B ∈ Zn×m′

q whose first m columns span

Zn
q , and a basis TA of Λ⊥q (A) where A is the left n ×m submatrix of B, and

outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

2.3 Instantiation of Building Blocks

KTX-Commitments. In our construction, we use the commitment scheme of [25].
Let n ∈ O(λ), q ∈ O(n4), m0,m1 ∈ Θ(n log q), 0 < σCom ∈ R, where m0 is the
size of the randomness vector r, m1 is the size of the message vector m and σCom

is the parameter of the Gaussian distribution for the randomness. In the simplest
case, one can commit to one message block m ∈ Zm1

2 by computing:

Gen(1λ) : D0←Zn×m0
q ,D1←Zn×m1

q , output (D0,D1, σCom).

Com(params,m; r) := D0 · r+D1 ·m ∈ Zn
q ,

where params = (D0,D1, σCom) are the public parameters.
The matrices D0,D1 are drawn uniformly at random. For each new com-

mitment the randomness r ← DZm0
q ,σCom

is chosen according to the discrete
Gaussian distribution DZm0

q ,σCom
. Usually, we set m0 = 2m1. A commitment c

can be opened by showing m and r. If it holds that m ∈ Zm1
2 , ‖r‖ ≤ σCom

√
m0

and c = D0 · r+D1 ·m, the commitment is valid. This scheme is statistically
hiding. It is computationally binding, which can be seen by a straightforward
reduction on SISn,q,2σCom

√
m0,m0+m1

. For N ∈ N, the scheme can be extended
to a commitment scheme on N messages by using N matrices. For the security
proof of our construction, we require our commitment scheme to be equivocal.
The scheme presented above can easily be turned into an equivocal commitment
scheme, by using lattice trapdoor gadgets, as discussed in App. B. It is necessary
in the construction of the trapdoor to have m0 > n⌈log q⌉.

Signature Scheme by Libert et al. The scheme for obliviously signing committed
messages by Libert et al. [27] consists of the two algorithms Gen,Vfy, and the
interactive protocol OblSign (described in Fig. 1). It allows the signing of N -block
messages msg = (m1, . . . ,mN ), for N = poly(λ). In our construction we will
use the notation OblSign.S(pk, sk, cU ) → (τ,v, s′′) to denote the part of the
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Gen(1λ, 1N ) :

Choose n := O(λ), q := O(Nn
4
) prime,

m := 2⌈n log q⌉, l := Θ(λ),

σ := Ω(
√

n log q logn)

(A,TA)← TrapGen(1n, 1m, q)

where TA is a short basis of

Λ
⊥
q (A) = {e ∈ Zm

q | A · e = 0 mod q}.
A0,A1, . . . ,Al←Zn×m

q

B←Zn×(m/2)
q ,u←Zn

q

B0←Zn×2m
q ,B1, . . . ,BN ←Zn×m

q ,

params := {n,m, l, q, σ,Bi}Ni=0

sk := TA, pk := (A, {Aj}lj=0,B,u)

return (params, pk, sk)

Verify(params, pk,msg, sig) :

parse: (A, {Aj}lj=0,B,u) := pk

parse: (τ,v, s) := sig

if ¬(‖v‖ < σ
√
2m ∧ ‖s‖ < σ

√
2m)

return ⊥

B̃ = B0 · s +
∑N

k=1
Bk ·msgk

if Aτ · v = u + B · bin(B̃) mod q

return 1

else return 0

OblSign :

U(params, pk,msg) S(params, pk, sk)

s
′ ← DZmq ,σ

cU = B0 · s′ +
∑N

k=1
Bk ·msgk ∈ Zn

q

Choose τ←Zl
2

Aτ := [A|A0 +

l∑
j=1

τ [j]Aj ] ∈ Zn×2m
q

Compute a short delegated basis

Tτ ← ExtBasis(Aτ , sk).

s
′′ ← DZmq ,σ

uU = u + B · bin(cU ) ∈ Zn
q

Use Tτ to sample a short vector

v ← D
Λ
uU
q (Aτ ),σ

Set s := (s
′⊤

, s
′′⊤

)
⊤

and sig := (τ,v, s)

if Verify(params, pk,msg, sig) = 1

return sig

else return ⊥

(cU )

(τ,v, s′′)

Fig. 1: Gen, Verify and OblSign algorithms of the signature scheme.

protocol, which is executed by the signer, where params is derived from the
relevant parts of the implicitly given CRS. The algorithm takes a key pair (pk, sk)
and a commitment cU and outputs the signer’s part of the signature (τ,v, s′′)
on the content of the commitment cU . See App. C for a proof sketch or [28,
Theorem 2] for a full proof of Lemma 4. Additionally, we give in App. C a formal
definition of the security, which was only implicit in [28][27].

Lemma 4 ([28, Theorem 2]). Let β′ := σ2m
√
2m(l + 2) + σm

√
m and

β′′ = σ2m
√
2m+

√
2m+ 4σm

√
2m log q. Then the above scheme is secure if the

SISn,q,β′,m and SISn,q,β′′,m assumptions hold.

3 Our Construction of BABL

We denote by S the signature scheme of [28] (cf. Section 2.3) and by C the
commitment scheme of [25] used in Issue and Update (cf. Section 2.3). The two
zero-knowledge proof systems P1 and P2 are instantiations of the ZK scheme
from [43] and are used in Issue and Update, respectively. (For a general description
of the building blocks and their security notions, see App. A.2).
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OGen(CRS)

Generate (params′, pkS, skS)← S.Gen(1λ, 15)

return (skO := skS, pkO := pkS)

UGen(CRS)

Draw skU←Zmsk
2

return (pkU := F · skU , skU )

Fig. 2: Generation algorithms OGen, UGen for operators and user, respectively

System Setup and Key Generation. We describe the choice of moduli,
(matrix) dimensions, and their relation for the building blocks (as defined in
Section 2.3). The parameter generation for both parties is described in Fig. 2.
Setup(1λ):

– Choose a prime modulus q0 = O(λ4).
– For the signature scheme, set the modulus to q = qe0 for some e > 0. Let

dimensions nS = O(λ) and mS = 2nS⌈log q⌉, and tag length lτ = Θ(λ).
– The Gaussian parameter is set to σ = Ω(

√
nS log q log nS).

– Choose nsk = O(λ), msk = nsk log q0 and draw F←Znsk×msk
q0 (for pkU later).

– For the commitment scheme, let dimension nC = nS. Let mr = 2nC⌈log q⌉
be the size of commitment randomness, let mnr = O(λ) be the size of serial
numbers, and let mb = O(λ) be the size of balance vectors. We require 2mb <
q/4 for the balance space V, and choose V = {0, . . . , 2mb − 1}. Thus, for all
x, y ∈ V, there is no wrap-around for x+ y. Draw D0 = (D0

0,D
1
0)←ZnC×2mr

q ,

D1←ZnC×msk
q , D2←ZnC×mb

q , D3,D4←ZnC×mnr⌈log q0⌉
q , D5←ZnC×msk⌈log q0⌉

q

and set N = 5.3 Choose a Gaussian parameter σCom > 0 and use the same
modulus q, as for the signature scheme.

– LetHFRD : Zmsk
q0 → Zmsk×msk

q0 be a full-rank difference function, (see App. A.2).

– return CRS := (1λ, q0, q, nS,mS, nC,mr, nsk,msk,mb,
mnr, σ, σCom,F, HFRD , {Di}5i=0).

Issuing a New Token. In this protocol, the user U interacts with the operator
O (in the issuer role) to get a fresh token with balance b = 0. The token is
a tuple of the form T = (c, r, skU ,b, sU , sO,uU , sig), where c is a multi-block
commitment to the values skU ,b, sU , sO, and uU with randomness r. Here, skU is
the user’s secret key, and the vectors sU and sO are the two shares of the token’s
serial number, chosen by U and O, respectively. The vector uU is randomly drawn
by the user and is used in the generation of the t-part of the double-spending
tag (to be explained below). Finally, sig is a signature on the commitment c.

The Issue protocol is the only protocol in which the operator sees pkU , the
public key of the user. In subsequent transactions of Update, possession of skU
(and thus, of pkU ) is proven via ZK proof. Fig. 3 (left) shows the Issue protocol
in detail. First, the user U draws their part of the serial number sU←Zmnr

q0 , the
vector uU←Zmsk

q0 for the computation of the double-spending tag, and a random
vector for the commitment r′ ← DZmr

q ,σCom
. The other half of the randomness

vector r ∈ Z2mr
q is set to 0, so the randomness chosen by O can later be added

3 We will use these matrices for the signature, too. We ignore params′, output by S.Gen.
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U(pkO, pkU , skU ) O(pkO, skO, pkU )

sU←Zmnr
q0

uU←Zmsk
q0

r
′ ← DZmr

q ,σCom

r := (r
′⊤

, 0
⊤
)
⊤ ∈ Z2mr

q

cnew = C.Com(skU , 0, bin(sU ), 0, bin(uU ); r)

π := P1.Prove()

if P1.Vfy(π) = 0

return 0

sO←Zmnr
q0

c = cnew + D4 · bin(sO)

(τ,vsig, r
′′
) := OblSign.S(pkO, skO, c)

r := (r
′⊤

, r
′′⊤

)
⊤ ∈ Z2mr

q

sig := (τ,vsig, r)

T = (c, r, skU , 0, sU , sO,uU , sig)

if UVer(pkO, pkU , skU , T , 0) = 1

return (T , 1)

else return (⊥, 0) return 1

(cnew, π)

(c, (τ,vsig, r
′′), sO)

U(pkO, pkU , skU , T , v) O(pkO, skO, v)

parse:

(cold, r, skU ,b, sU , sO,uU , sig) := T
uO←Zmsk

q

s = sU + sO mod q0
t = HFRD (uO) · skU + uU
bnew = bin(toInt(b) + v mod q)

s
′
U←Zmnr

q0

u
′
U←Zmsk

q0

r
′′ ← DZmr

q ,σCom

r
′ := (r

′′⊤
, 0

⊤
)
⊤ ∈ Z2mr

q

cnew = C.Com(skU ,bnew, bin(s′U ), 0, bin(u′
U ); r

′
)

π := P2.Prove()

if P2.Vfy(π) = 0
return (⊥, 0)

dstag = (s, t,uO)
s
′
O←Zmnr

q

c := cnew + D4 · bin(s′O)

(τ,vsig, r
′′′

) := OblSign.S(skO, c)

r
′ := (r

′′⊤
, r

′′′⊤
)
⊤ ∈ Z2mr

q

sig′ := (τ,vsig, r
′
)

T ∗
= (c, r

′
, skU ,bnew, s

′
U , s

′
O,u

′
U , sig′)

if UVer(pkO, pkU , skU , T ∗
,bnew) = 1

return (T ∗
, 1) return (dstag, 1)

uO

(cnew, s, t, π)

(c, (τ,vsig, r
′′′), s′O)

Fig. 3: Protocols for issuing (left) and updating (right) a token T .

(after U received r′′ from O). U then commits (using randomness r′) on a five-
block message, containing the secret key skU , sU and uU , with the second and
fourth message block of the commitment being initialized to 0. This is because
the second block represents the balance of the token, and is supposed to be
0 after issuance of the token, and the fourth block is zero for the operator to
later add their share sO of the serial number to the block. Afterwards, the user
sends the commitment to O, together with a ZK proof π that ensures that the
commitment contains the secret key which belongs to the user’s public key.

After verification of π, O proceeds by adding their share sO of the serial
number (sU , sO) to the commitment. Then, the operator signs the committed
message obliviously and sends the final commitment and the signature back to
the user. The user verifies if the token is correct and accepts if this is the case.

We denote the used ZK proof system by P1. With P1, the user proves the
following relations to the operator:

1. pkU = F · skU mod q0
2. cnew = D0

0 · r′ +D1
0 · 0+D1 · skU +D2 · 0+D3 · s̄U +D4 · 0+D5 · ūU

10



3. ‖r′‖ ≤ σCom
√
mr

4. skU , s̄U , ūU are binary and bin(sU ) = s̄U , bin(uU ) = ūU

In App. D, we show how these equations can be proven via the ZK protocol of [43].
We denote this proof by π := P1.Prove(). We note here, that the “actual” serial
number of the token will be s = sU + sO mod q0 ∈ Zmnr

q0 . Thus, s is uniformly
random in Zmnr

q0 if one of the parties was honest. Hence, the collision probability

is negligible if q−mnr
0 is negligible, which must be ensured by parameter choices.

Updating the Balance of a Token. We start with an overview of the update
protocol, and then a detailed explanation. See Fig. 3 (right). The user starts with
a token from a run of Issue or Update. Showing the token to the operator in the
plain would make transactions linkable – we hence use ZK proofs for this.

First, the operator sends a “challenge” uO. From this, the user generates a
double-spending tag dstag = (s, t,uO), where s is the serial number, computed
as s = sU + sO, and t is a masking of skU , effectively a one-time pad encryption
of skU with uU . Given two values t, t′ with distinct “challenges” uO, u

′
O, one

can easily compute skU . Since the user is bound to s and skU by the token (and
the commitment), this ensures that a double-spending user must reuse a serial
number s, and, since with overwhelming probability uO ̸= u′O, is caught and
deanonymized when doing so. This implements double spending detection. (Note,
that a benign user can not be deanonymized).

The user also sets up a new (partial) token cnew, analogous to the Issue
protocol, but with balance set toInt(b) + v, according to the transaction. Then
it proves that cnew is a valid token (analogous to Issue) with correct balance, its
connection and the validity of the “old” token (and its balance), and also, that
the double spending tag dstag = (s, t,uO) was correctly computed.

As in Issue, the operator first verifies the proof. It then chooses its part s′O of
the new serial number and obliviously signs the adapted commitment c. Also as
in Issue, the user verifies the commitment and signature. After the transaction,
the user has a freshly updated token, and the operator a double-spending tag.

Now, we describe the relevant parts in more detail. Update is defined as an
interactive protocol between user U and operator O. Both parties take as inputs
their key pairs, and the transaction value v ∈ V. Additionally, the user gets as
input the operator’s public key and the old token T containing their current
balance toInt(b) ∈ V. The protocol outputs for U and O consist of a new token
T ∗ and a double-spending tag dstag, respectively, as well as the output bits
bU , bO, respectively, indicating a party accepts the execution of the protocol.

The user’s token is T = (cold, r, skU ,b, sU , sO,uU , sig). As explained above,
the protocol generates a new token, but with a different balance and additional
consistency proofs and double-spending detection. This is reflected by the variables
with an additional prime, corresponding to those of Issue. The updated balance
is bnew := bin(toInt(b) + v mod q). The partial commitment is of the form

cnew = D0
0 · r′ +D1 · skU +D2 · bnew +D3 · bin(s′U ) +D5 · bin(u′U ), (1)

11



which differs from Issue in the term D2 ·bnew, where bnew = 0. As in Issue, the new
serial number is calculated from (s′U , s

′
O) chosen by user and operator, respectively.

Also note the user only adds by D0
0 · r′ the first half of the randomness to the

commitment. The second half will be chosen by the operator. For double-spending
detection,O sends uO←Zmsk

q0 . The user calculates the vector s := sU+sO mod q0,
and t := HFRD(uO) · skU +uU . Recall that HFRD denotes the full-rank difference
function from App. A.2. Also note, that uU perfectly masks HFRD(uO) · skU , as
it is a uniformly random value (chosen when cold was issued). Hence, t reveals
nothing about skU . However, if the user double-spends by reusing an old token,
given uO ̸= u′O in these two executions (which happens with overwhelming
probability), then (HFRD(uO)−HFRD(u′O))

−1(t′−t′′) = skU . Thus, the identity
of the misbehaving user is revealed. We denote by P2 a non-interactive ZK proof
system, and by π := P2.Prove() its output. P2 proves following equations:

1. Vfy(pkO, sig, (skU ,b, s̄U , s̄O, ūU )) = 1
2. s = sU + sO mod q0
3. t = HFRD(uO) · skU + uU mod q0
4. cnew = D0

0 · r′′ +D1
0 · 0+D1 · skU +D2 · bnew +D3 · s̄′U +D5 · ū′U

5. bnew = bin(toInt(b) + v mod q))
6. ‖r′‖ ≤ σCom

√
mr

7. skU , s̄U , s̄O, ūU , ū′U , bnew, s̄′U are binary, bin(sU ) = s̄U , bin(sO) = s̄O,
bin(uU ) = ūU , bin(u

′
U ) = ū′U , and bin(s′U ) = s̄′U

The equations prove that the old token was valid, and its contents were used
to compute bnew, dstag and cnew. Items 2 and 3 are for showing that the serial
number s and tag t were computed correctly (from these values). The remaining
equations prove the well-formedness of the new token, similar to Issue. In App. D,
we show how the equations can be transformed into the generic form A · x = y
mod q, where A is a public matrix, y is a public vector and x is the secret witness.
Once the equations are in this form, the ZK protocol from [43] can be leveraged.

The user sends (cnew, s, t, π) to O, who checks the validity of the proof. The
remainder of the protocol is essentially as in Issue, i.e. O picks their share sO of
the serial number, obliviously signs the extended commitment c, and sends the
respective values to U . The double-spending tag dstag = (s, t,uO) is stored in
a database of the operator, after the transaction ended successfully. If an entry
(s, t′) is already recorded, IdentDS can be used to identify the offending user.

Security of the Construction. We give an intuition on why the protocol is secure
(see App. E.3 for the formal version of the argument): the commitment binds
the user to the values in a token. The ZK property of the proof system protects
the user’s actions from being linked between executions. Its soundness ensures
that the user cannot cheat. Thus, at the end of the protocol, the user has a new
token with an updated balance. The operator only learns that the old and new
token are valid, the value v of the transaction, and the double-spending tag.

Discussion. We point out a difference between our construction of BBA and
previous ones [21, 22, 24]. There, range proofs were expensive and therefore

12



UVer(pkO, pkU , skU , T ,b)

parse: (c, r, skU ,b, sU , sO,uU , sig) := T
parse: (τsig,vsig, r) := sig

msg := skU ,b, bin(sU ), bin(sO), bin(uU )

if c = C.Com(msg; r)

∧ S.Verify(pkO, sig,msg) = 1

return 1

else return 0

IdentDS(pkO, (s, z1), (s
′, z2))

parse: (t,uO) := z1, (t
′
,u

′
O) := z2

if s ̸= s
′ ∨ uO = u

′
O return ⊥

else

skU := (t− t
′
)

· (HFRD (uO)−HFRD (u
′
O))

−1
mod q0

pkU := F · skU
return (pkU , Π = skU )

Fig. 4: UVer for token verification, and IdentDS to handle double-spending.

optional. However, going without range proofs was only possible if the user
revealed the balance when spending points, leaking a lot of information. Due to
the lattice-based setting, our ZK proofs implicitly ensure that the balance is within
the allowed range V. This is because our proofs rely on bit decomposition. That
is, we prove toInt(x) =

∑mb−1
i=0 xi · 2i ∈ {0, . . . , 2mb − 1} = V and x ∈ {0, 1}mb .

Consequently, toInt(x) is a positive integer. (Recall that 2mb < q/4, so the unique
representative of the congruence class in Zq is positive.) More precisely, we prove
that bnew is of the form bnew = bin(toInt(b) + v mod q). Now, if toInt(b) + v
mod q would be negative or bigger than 2mb − 1, the user could not generate a
ZK proof which would be accepted by the operator.

Detecting Double-Spending. To identify a double-spender, in other words,
a user who tries to spend the same token twice, the operator runs the IdentDS
algorithm (see Fig. 4). For double-spending detection, the operator requires access
to the database of double-spending tags. When the user did double-spend, the
operator can calculate the user’s secret-key skU from the double-spending tags.

The VerifyGuilt algorithm takes the users public key pkU and a proof Π of
double-spending. The algorithm outputs 1 if F ·Π = pkU mod q0 ∧ ‖Π‖∞ ≤ 1.
Note, that it is not possible to generate a proof of guilt for benign user, as our
construction offers false-accusation protection.

User-Verify Algorithm. The UVer algorithm (see Fig. 4) checks if the com-
mitment c contained in the token is truly a commitment on the messages
skU ,b, bin(sU ), bin(sO) and bin(uU ) with randomness r. Further the algorithm
checks if sig is a valid signature on the commitment c under the operator’s secret
key. The algorithm outputs 1 if both conditions are fulfilled, otherwise 0.

4 Efficiency Evaluation

In this section, we evaluate the efficiency of our construction. We concentrate
on the communication cost, as this is the main bottleneck for mobile payments.
Therefore, we first analyze the communication cost of an Update transaction.
Next, we briefly explain our choice of parameters and calculate the concrete
communication cost of Update and Issue given those parameters. We also compare
the efficiency of our instantiation to similar protocols.
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Communication Cost. From Fig. 3 (right) we can derive the cost of Update.
We denote the communication cost by CUpdate and we write |vec| for the number
of bits needed to represent a vector vec.

CUpdate = |uO| + |cnew| + |s| + |t| + |π| + |c| + |(τ,vsig, r
′′)| + |s′O|

The biggest part of this sum is |π|. Therefore, we will further analyze the size of
the proof. According to Yang et al. [43] the size of this proof is

|π| = (log(2p+ 1) + κ+ (3l1 + 2l2 + 2mUpdate

+ 2lUpdate) · log q) ·N + (l1 +mUpdate) · log q, (2)

where p, κ, l1, l2, N are parameters of the zero-knowledge protocol, mUpdate is the
length of the witness and lUpdate is the size of the setM.

Using the fast mode (cf. [43, Sec. 1.2]) to prove the norm bounds on r and v
we arrive at the size mUpdate := |τ |+2nS|τ |+2mS+nC log q+2mr+msk+2mb+
3mnr log q0+2msk log q0+mr+bλ(log (10mSβ/b)+1) for the witness and lUpdate :=
|τ |+ nS|τ |+ nC log q + 2mb log q0 + 3mnr log q0 + 2msk + bλ(log (10mSβ/b) + 1)
for M, where b allows for a trade-off between proof size and tightness of the
proven bound.

Next, we look at the signature |sig|. By definition, we have sig = (τ,v, s),
where τ ∈ Zl

2,v ∈ Z2mS
q and s ∈ Z2mS

q . Hence, we get |sig| = l+ 4mS · log(β) bits.

Choice of Parameters. To provide practical parameters for our scheme, we
follow the heuristic approach of setting parameters high enough to withstand
best-known attacks instead of deriving them from a reduction to a hard lattice
problem such as SVP. For the sake of comparison we choose parameters for 80-bit
security. In real-world scenarios, a higher level of security is desirable. To do
so, we examine the root Hermite factor (RHF) [17] of our SIS/LWE problems.
According to [43], to achieve 80-bit security a RHF of at most 1.0048 is required.
We follow [43] and estimate the required RHF as

RHF(SISn,q,β) ≈ 2
log2 β
4n log q resp. RHF(LWEn,q,α) ≈ 2

log2 α
5.31

4n log q

see [26], resp. [3]. BABL relies on the the following assumptions:

– SISnsk,q,
√
msk

so it is infeasible to derive the secret key from the public key.
– SISnC,q,2σCom

√
2mr

mr
b

for the commitment scheme to be binding.
– SISnS,q,β′ mS

b
, SISnS,q,β′′ mS

b
for the signature to be secure.

– SIS l1,q,β1 , SIS l2,q,β2 and LWE l2,q,α for the zero-knowledge protocol [43].

where factors mr

b , mS

b are due to the soundness loss from the fast mode of [43].
From the ZK argument we have the constraints that q0 > p and q > max(β1, β2),
where we repeat the proof ⌈280/p⌉ times to achieve a soundness error of 2−80.

We tested for values of p = 210 up to p = 280 and arrived at the smallest proof
size for p = 280. Then we set q0 such that q = q20 is just big enough. Finally we
set all dimensions n just high enough to achieve the desired RHF of 1.0048. This
resulted in the parameters shown in Table 1. The size of the proof π is 197MB.
Overall, the communication cost for Update is 199MB and for Issue 70MB.
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Param. Value Param. Value Param. Value

p 280 log q0 100 log q 200
l1 7050 nS 880 nC 880
l2 7000 mS 352 000 mr 352 000
σ3 67 lτ 80 σCom 4195.0
σ4 5.96× 1030 σ 671.0 mnr 1
β1 1.75× 1059 β 8055.0 mb 32
β2 8× 1058 β′ 9.6× 1020

α 1.05× 10−58 β′′ 1.29× 1019

b 16 nsk 9
κ 128 msk 900

RHF RHF RHF

SIS l1,q,β1 1.0048 SISnS,q,β
′ 1.0048 SISnC,q,2

√
2mrσCom

mr
b

1.0014

SIS l2,q,β2 1.0048 SISnS,q,β
′′ 1.004 SISnsk,q,

√
msk

1.0046
LWE l2,q,α 1.0047

Table 1: Concrete choices of parameters and resulting values for the underlying
assumptions of the zero-knowledge proof (left), the signature scheme (middle),
the commitment scheme (right) and for the secret keys (bottom right).

Comparison with Similar Protocols. In Table 2, we compare the result for
our instantiation with other protocols. The given values for our construction,
and E-Cash of [43] and of [28] are theoretical estimations, while the values
for BBA+ [24] and BBW [21] are results of empirical experiments on a software
implementation (the benchmarks are described in [21]). Therefore, the comparison
should be taken with a grain of salt. However, it suffices to illustrate the efficiency
gap between the lattice-based constructions and the elliptic curve-based ones.
Note, that our construction is slightly more efficient than the construction of [43].
Even though we used the same zero-knowledge proof, we do not need to prove
statements about the correct evaluation of weak pseudorandom functions.

Protocol Issuance Transaction Token/Wallet Based on

Our work 70MB 199MB 11MB Lattices

E-Cash [28] 33TB 720TB 4MB Lattices

E-Cash [43] 53MB 262MB 4MB Lattices

BBA+ [24] 1 kB 14 kB <1 kB Elliptic Curves

BBW [21] 1 kB 5 kB <1 kB Elliptic Curves

Table 2: Comparison of the efficiency of similar protocols with our work
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5 Future Work

Post-Quantum Security. Despite recent progress in proving Fiat–Shamir trans-
formations of Σ-protocols secure in the quantum random oracle model [16, 32]
none of the results seems to apply to our setting. That is, even if we assume
that the results apply to [43], the resulting notion of security is not sufficient for
our proofs. We essentially require witness-extended emulation (WEE) [20, 29],
i.e., except with negligible probability an accepting proof can be extracted. This
is a stronger notion than the knowledge soundness, which [16, 32] use. In the
classical setting, the difference is small since amplification (via rewinding) can
be used to obtain WEE from knowledge soundness [29]. In the quantum setting,
this is unclear. A possible remedy would be a transformation which allows online
extraction of the witness, e.g. by (additionally) committing to the witness with an
extractable commitment scheme or a dual-mode commitment scheme. Knowledge
of the extraction trapdoor allows to prove “operator soundness”, while the hiding
property still ensures the “privacy notions”. However, this would further increase
proof sizes and introduce a global system trapdoor (which is undesirable).

Efficiency. As seen in Section 4, our construction requires a high amount of
network traffic. For real-world scenarios this cost is still unacceptably high.
Basing a construction on the stronger assumptions of Ring-LWE and Ring-SIS
should allow more efficient schemes. However, while more efficient zero-knowledge
proofs are known in the ring setting, we are not aware of more efficient CL-type
signatures. Thus, this remains the most important open question.
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A Hardness Assumptions and Cryptographic Building
Blocks

A.1 Lattice-based Hardness Assumptions

Definition A.1 (Short Integer Solution). Given a modulus q ∈ N, m ∈ N
uniformly random vectors ai ∈ Zn

q (written as a matrix A ∈ Zn×m
q ), and a

uniformly random vector u ∈ Zn
q , the Inhomogeneous Short Integer Solution

(ISIS) problem is to find a non-zero integer vector z ∈ Zm of norm ‖z‖ ≤ β such
that

Az =

m∑
i=1

ai · zi = u ∈ Zn
q ,

where β ∈ R is a parameter with β < q.

In the case where u is not uniform but fixed to 0, the problem is called
Short Integer Solution (SIS). We write SISn,q,β,m, if we want to emphasize the
respective parameters.

For typical parameter choices, SIS and ISIS are equivalent. Ajtai showed in his
seminal work [2] that the average-case SIS problem can be reduced in polynomial
time to the short integer vector problem (SIVP), a worst-case problem on lattices.

Regev [39] introduced the LWE problem and gave a quantum reduction to
SIVP. We define the decisional variant of the respective hardness assumption.

Definition A.2 (Learning with Errors). LWEn,q,χ,m: For a secret vector
s ∈ Zn

q and a probability distribution χ over Zm
q , sample a matrix A ∈ Zn×m

q

uniformly at random and a vector e← χ. Given (A,b∗) where b∗ is either b0 or
b1, where b⊤0 = s⊤A+ e mod q and b1 is chosen uniformly at random. Decide
whether b∗ = b0 or b∗ = b1.

A.2 Building Blocks

We give a brief overview of the used building blocks. In Section 2.3, we give
instantiations of these building blocks based on the hardness of SIS and LWE.
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Commitments. A commitment scheme allows one to commit to (i.e., fix) a value,
without revealing it immediately. At a later point, the commitment can be opened
and the committed value is revealed. A commitment scheme consists of two
PPT algorithms: The parameter generation Gen(1λ) outputs public parameters
params, and the commitment algorithm Com(params,m; r) → c outputs, for a
given message m, some explicit randomness r and the public parameters params, a
commitment c on that value m. We often omit the input of the public parameters.

To open the commitment c, one can reveal the randomness r, to check, if
Com(params,m; r) = c holds. Informally, we want a commitment scheme to be
hiding, i.e. no (efficient) adversary can learn anything about the message m in a
commitment, prior to opening. Furthermore, a commitment should be binding
which means it should be (computationally) infeasible to open a commitment
on m to any other value than m. A commitment scheme is equivocal, if there
exist an additional trapdoor generation algorithm EqGen(1λ) that outputs the
public parameters params, together with a trapdoor td. With the trapdoor td,
it is possible to open a commitment c on the value m to another value m′ with
m′ ̸= m, by running a second algorithm, called Equiv(td, c,m′) that outputs a
randomness value r′ for opening c to m′. We require the two setups via Gen and
EqGen to be computationally indistinguishable.

Oblivious Signing of Committed Messages. In our construction, we use the
signature scheme of Libert et al. [28]; in particular, their protocol for obliviously
signing a committed message (see Section 2.3). A signature scheme for oblivious
signing of committed messages consists of the following algorithms/protocols:

– A key-generation algorithm Gen(1λ) that outputs (params, pk, sk), namely
public parameters params, and a pair consisting of a public and a secret key.

– OblSign⟨U(params, pk,m),S(params, pk, sk)⟩, an interactive protocol, where a
user U interacts with a signer S to obtain a signature on a message m inside
of a commitment. In this protocol, U sends a commitment c ← Com(m; r)
on m to the signer S and eventually U outputs a valid signature on m.

– a verification algorithm Vfy(params, pk,m, sig) → b that allows to check,
whether sig is a valid signature on message m public key pk.

The signer does not learn anything about m, as the commitment scheme is
hiding. This protocol offers a security notion that is almost identical to common
EUF-CMA security but takes into account that the user sends commitments and
not plain messages. Libert et al. forgo an abstract definition of the signature’s
security as they directly apply the signature scheme to their E-Cash. We give a
formal definition in the next section, App. C.

Zero-Knowledge Proofs. A proof system allows a party, called prover, to prove to
another party, called verifier, that some statement is true. It is a zero-knowledge
(ZK) protocol, if (informally) the verifier gains no additional knowledge, except
for the truth of the statement. More precisely, the prover can convince the verifier
that a word x belongs to a certain NP-language L, while even a malicious verifier
learns nothing about x except for the truth of x ∈ L. The protocol is a proof of
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knowledge (PoK), or extractable, if a convincing prover must know an NP-witness
w. For example, if x = m, w = σ, and the language is “I know a signature σ
on message m”, then a ZK-PoK guarantees that a convincing prover knows a
signature σ, yet, the verifier learns nothing about σ. A ZK-PoK is correct, if
an honest execution with correct statement always accepts. It has soundness
error p ∈ [0, 1], if the probability that the verifier accepts a false statement is at
most p.

Full-Rank Difference Function. We define full-rank differences as introduced by
Agrawal, Boneh, and Boyen [1], and refer to them for a concrete instantiation.
We use this in the calculation of the double-spending tag. Let q ∈ N be a
prime and n ∈ N. A full-rank difference function is an efficiently computable
function HFRD : Zn

q → Zn×n
q satisfying that for all distinct u, v ∈ Zn

q , the matrix
HFRD(u)−HFRD(v) ∈ Zn×n

q is full rank.

B Equivocality of the Commitment Scheme

For the proof that our system is privacy-preserving (cf. Theorem E.6), we need an
equivocal commitment scheme. In the proof, we replace all personal information
of the user with random values and show that an adversary will (with high
probability) not notice the difference. However, as the adversary can adaptively
corrupt parties, we need to be able to open commitments of users to “plausible”
values, once the users are corrupted. We thus extend the commitment scheme
from [25] to get equivocality by using lattice trapdoor gadgets.

Instead of choosing, a uniformly random matrix D0 ∈ Zn×m0
q for the com-

mitment scheme, we use the trapdoor generation algorithm described in [36].
Thus, our matrix D′0 ∈ Zn×m0

q is output alongside with a trapdoor matrix R,
which we will describe later in more detail. This R allows to compute short
(I)SIS solutions. D′0 is close to a uniformly random matrix. We denote this by
(D′0,R)← TrapKeyGen(1n,m, q). This is done as follows: First, we write G for
the “powers-of-two” matrix

G :=

g⊤

. . .

g⊤

 ∈ Zn×nl
q ,

where g = (2l−1, . . . , 4, 2, 1)⊤ ∈ Zl
q and l = ⌈log q⌉. Choose Ā←Zn×m̄

q uniformly
at random for a sufficiently large m̄, such that m̄+ nl = m and a random integer
matrix R̄ ∈ Zm̄×nl

q of small norm, i.e., a matrix having discrete Gaussian entries.

Let D′0 := [Ā | G− ĀR̄] ∈ Zn×m̄+nl
q . Define R =

[
R̄
I

]
∈ Zm̄+nl×nl

q . Then, it is

clear that
D′0R = ĀR̄+G− ĀR̄ = G ∈ Zn×nl

q .

The interesting point is that solving the SIS problem with respect to G is
easy. Let’s say we want to find a short e ∈ Znl

q (i.e., ‖e‖∞ ≤ β, β ∈ R) with
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Ge = v mod q, for some v ∈ Zn
q . One can simply use the binary representation

bin(v) = e ∈ Znl
2 . Next, if one gets our D′0, it is easy to find a short x with

D′0x = v mod q given the trapdoor matrix R. Let x = Re ∈ Zm̄+nl
q and

e = bin(v) ∈ Znl
q , then

D′0x = D′0Re = Ge = v mod q

and x is small, as e consists of zeroes and ones and R has small norm. Note,
that x = Re is not Gaussian-distributed and could leak information about the
trapdoor R. We therefore choose an appropriately distributed perturbation vector
p ∈ Zm̄+nl

q to “correct” the skewed distribution. Then, we sample w← bin(v −
D′0p) and finally set x := p+Rw. This “convolution” technique was introduced
in [37]. Now, the trapdoor parameter generation and the equivocation of a
commitment c ∈ Zn

q work as follows:

EqGen(1λ): Generate a close-to-uniform matrix D′0 ∈ Zn×m0
q alongside with a

trapdoor as described above via (D′0,R)← TrapGen(1λ, n,m0, q) and a uniformly
random matrix D1←Zn×m1

q . Output ((D′0,D1),R).
Equiv(R, c,m′): Let c′ = c−D1 ·m′ ∈ Zn

q . Now use R, to find a short solution
x to D′0 · x = c′ mod q. We get

D′0 · x+D1 ·m′ = c′ +D1 ·m′ = c mod q.

Output the opening information (x,m′) ∈ Zm0
q × Zm1

q .

C Security of the Signatures

In this section we define the security of the signature scheme from [28]. The
precise notion of security for the oblivious signing protocol was not given by [28]
and the security proof is incorporated in the proof of the balance property of
their e-cash system. Therefore we also give a short proof sketch.

Definition C.1. We say a signature scheme for obliviously signing committed
messages Π = (Gen,OblSign,Verify) (formally defined in [28]) is secure, if for
all PPT adversaries A, there is a negligible function negl(λ), s.t.:

Pr
[
ExpOblSign-forge
A,Π (λ) = 1

]
≤ negl(λ).

In the experiment in Fig. 5 the adversary A can execute the OblSign protocol
polynomial many times with an oracle HonSign acting as an honest signer. In these
executions, A sends commitments c1, . . . , cn to HonSign and receives signatures
on the committed messages (n = poly(λ)). Finally, A must output a message
signature pair (m∗, sig∗) and openings (r1,m1), . . . , (rn,mn) to c1, . . . , cn. This
is exactly the notion of security we require for our proofs. Our proofs rely on
the extractability of the zero-knowledge proof, and therefore it will suffice for
the simulator to have commitments on certain messages as the messages can be
extracted from the zero-knowledge proof.
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Experiment ExpOblSign-forge
A,Π (λ)

(pk, sk)← Gen(1λ)
(m∗, sig∗, st)← AHonSign(pk)
(r1,m1), . . . , (rn,mn)← A(st)
The experiment returns 1 iff
– Verify(pk,m∗, sig∗) = 1,
– ∀i ∈ {1, . . . , n} : m∗ ̸= mi,
– (r1,m1), . . . , (rn,mn) are valid openings to c1, . . . , cn.

Fig. 5: Signature experiment

Proof sketch (Proof sketch for Lemma 4). Assume there is an adversary A,
winning the above experiment with non-negligible probability. We sketch the
construction of an adversary B, breaking SISn,q,β′,m or SISn,q,β′′,m, with β′, β′′

like in Section 2.3. In the beginning B guesses the strategy, which A will use to
win the game. There are three strategies and B chooses uniformly at random
between them. In case 1, A outputs sig∗ = (τ∗,v∗, r∗), where τ∗ was never output
by the oracle before. In case 2, A outputs sig∗ = (τ∗,v∗, r∗), where A reused
one of the τi from an interaction with the oracle, but c∗ = D0 · r∗ +D1 ·m∗
was never signed by the oracle. In case 3, A outputs sig∗ = (τ∗,v∗, r∗), where
A reused one of the τi and c∗ = D0 · r∗ +D1 ·m∗ from an interaction with the
oracle.

In case 1, the prefix-guessing technique from [23] is used. Concretely, B
guesses the length of the shortest prefix of τ∗ that differs from the prefixes
of τi, i ∈ {1, . . . , n} of the same length. Then, B uses the trapdoor generation
algorithm from Lemma 2 to hide a trapdoor in the public key. The matrices
A0, . . . ,Al in the public key are crafted, such that the trapdoor can be used
to answer all signing queries, if the prefix guess was right. Further, if the guess
was right, the trapdoor vanishes for τ∗ and m∗, sig∗ yield a direct solution to a
SISn,q,β′,m instance. The probability to guess the prefix correctly is 1/(Q · l),
where Q is the number of OblSign executions and l the length of the tags.

In case 2, B guesses the index î of the execution of OblSign from which τ∗

will be reused. Like before, a trapdoor matrix is hidden in the public key, which
can be used to answer all OblSign queries, where i ̸= î. To answer the î-th query,
B chooses ĉ←Zn

q ,v ← DZm,σCom
and sets u = Aτî

v − B · vdec(ĉ) beforehand.
Again, the matrices A0, . . . ,Al are crafted such that the trapdoor vanishes for
τ∗ and B can calculate a SISn,q,β′,m solution, if the adversary outputs a forgery.

Case 3 is a straightforward reduction on the binding property of the commit-
ment scheme from [25], and therefore on SISn,q,β′′,m.

D Zero-Knowledge Proofs for Issue and Update

This section describes the zero-knowledge arguments for our construction. We
first sketch the general protocol. Then we show in detail how it is used to prove
the necessary statements for proofs P1 and P2 from Section 3.
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We employ the protocol of Yang et al. [43]. Roughly speaking, the protocol
is a so-called Σ-protocol, and uses the Fiat–Shamir with abort techniques [33–
35], to improve efficiency. Let l,m, n ∈ N be positive integers and q ∈ N be a
power-of-prime. The protocol allows to prove the following relation:

R∗ := {((A,y,M),x) ∈ Zm×n
q × Zm

q × ([1, n]3)l × Zn
q |

A · x = y ∧ ∀(h, i, j) ∈M : x[h] = x[i] · x[j]}. (3)

This allows to prove linear equations, which occur naturally in lattice-based
settings. The quadratic constraints allow, e.g., to prove that the vector x is
binary.

Yang et al. [43] show that their proof system for the relation R∗ is complete,
a proof of knowledge under the SISl1,q,β1

and SISl2,q,β2
assumptions, and zero-

knowledge under the LWEl2,q,α assumption, where q is as in R∗. Here, l = |M|
with M from R∗, l1, l2, p ∈ poly(λ) are positive integers, where p is the size
of the challenge space, cf. [43]. Moreover, σ3 and σ4 are parameters for two
discrete Gaussian distributions, where σ3 is an integer with σ3 ≥

√
2l2/π, and

σ4 = 2p
√
2l1 + 2l2 + n+ l · σ3 log l. Finally, β1 = 16p

√
l1 + l2 + n(σ3 + pσ4), and

β2 = 16p
√
l1 + l2 + l(σ3+ pσ4), and α =

√
2πσ3/q are parameters following from

the reductions on SIS/LWE.

Zero-Knowledge for Issue. Recall that in Issue (Section 3), the following
equations have to be proven:

1. pkU = F · skU mod q0
2. cnew = D0

0 · r′ +D1
0 · 0+D1 · skU +D2 · 0+D3 · s̄U +D4 · 0+D5 · ūU

3. ‖r′‖ ≤ σCom
√
mr

4. skU , s̄U , ūU are binary and bin(sU ) = s̄U , bin(uU ) = ūU

Note that all vectors in the witness xIssue := (r′‖skU‖bin(s′U )‖bin(u′U )), except r′,
are binary vectors. Like [43], we prove the norm inequality ‖r′‖ ≤ σCom

√
mr in

the maximum norm instead of the euclidean norm. This simplifies reductions.
Also like [43], we let β := 12σCom be the maximum norm bound for r′. To prove
this norm bound on r′, we resort to a binary decomposition, i.e. we consider
bin(r′). However, since we want positive vectors, we consider r1 := r′+βCom with
βCom := (β, . . . , β)⊤ ∈ Zmr

q instead. The norm bound for r1 is then 2β. More
precisely, using bin only works if β is a power of 2. Hence, we use a different
decomposition technique, described in [28, 30, 31].

We recall it for completeness. For any positive integer B ∈ N this technique can
decompose an integer b ∈ {0, . . . , B} into a binary vector c of size δB := ⌊logB⌋+1.

For that, let Bi = ⌊(B+2i−1)/2i⌋ for i ∈ {1, . . . , δB}, and note that
∑δB

j=1 Bj = B.
Now, we decompose b as follows:

1. Set c′ := b, c := 0
2. For j = 1 to δB :

(a) If c′ ≥ Bj , then c[j] := 1 else c[j] := 0
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(b) c′ := c′ −Bj · c[j]
3. output c.

Now, let m be some integer. By doing this on every component of a vector
x ∈ Zm with ‖x‖∞ ≤ B we get a vector decomposition function vdecm,B : Zm →
ZmδB
2 . This decomposition can be reversed by using the matrix Hm,B := Im ⊗

[B1 · · ·BδB ] ∈ Zm×mδB . By construction, for all x ∈ Zm with ‖x‖∞ ≤ B we have
Hm,B · vdecm,B(x) = x.

We let r̄ := vdecmr,2β(r1) ∈ Zmr⌈log 2β⌉
2 . Consequently, we have Hmr,2β · r̄ = r1.

For efficiency, we prove some equations modulo q0, while our zero-knowledge
proof works modulo q. We use the fact that for a, b ∈ Zq0 , we have a = b
mod q0 ⇔ q

q0
a = q

q0
b mod q, so we can simply multiply both sides of the

equation by q
q0
.

All in all, we set xIssue := (r̄‖skU‖bin(sU )‖bin(uU )) and yIssue := ( q
q0
pkU‖(cnew+

D0βCom)). The vector xIssue hasmr·⌈log 2β⌉+msk+mnr⌈log q⌉+msk⌈log q⌉ =: mM
entries. We can ensure that each entry is either 0 or 1 by settingMIssue := {(i, i, i) |
0 ≤ i < mIssue}. Since q is a power-of-prime we have that ∀x ∈ Zq : x = x2 ⇔
{0, 1}. Finally, we set

AIssue :=

(
0 q

q0
F 0 0

D0Hmr,2β D1 D3 D5

)
∈ Znsk+nC×mIssue

q .

Zero-Knowledge for Update. For Update (see Section 3), the user proves the
following statements to the operator:

1. Vfy(pkO, sig, (skU ,b, s̄U , s̄O, ūU )) = 1
2. s = sU + sO mod q0
3. t = HFRD(uO) · skU + uU mod q0
4. cnew = D0

0 · r′′ +D1
0 · 0+D1 · skU +D2 · bnew +D3 · s̄′U +D5 · ū′U

5. bnew = bin(toInt(b) + v mod q))
6. ‖r′‖ ≤ σCom

√
mr

7. skU , s̄U , s̄O, ūU , ū′U , bnew, s̄′U are binary, bin(sU ) = s̄U , bin(sO) = s̄O,
bin(uU ) = ūU , bin(u

′
U ) = ū′U , and bin(s′U ) = s̄′U

where s, pkO, cnew,D0, . . . ,D5, t,uO, v are known to both parties, either through
the communication in Update or through the CRS and sig, r′,b, bnew, s

′
U , sU , sO,

skU , uU , u
′
U are the witnesses.

The first equation, i.e. signature verification, is by far the most complex.
The other equations are quite similar to the ones from Section 3. The proof of
possession of a valid message-signature pair for the signature scheme is easily
expressed in terms of R∗. Yang et al. [43] give one such translation, we reuse it
here. In the next step, we extend it to a zero-knowledge argument for all the
equations we have to show in Update.

In the signature scheme from [28], the public key is of the form pk =

(A, {Aj}lτj=0,B,u) ∈ ZnS×mS
q × (ZnS×mS

q )lτ × ZnS×(mS/2)
q × ZnS

q and the signa-

ture is of the form sig = (τsig,vsig, ssig) ∈ Zlτ
2 × Z2mS × Z2mS . Let msg :=

(r, skU ,b, bin(sU ), bin(sO), bin(uU )).
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We know that Vfy(pkO, sig,msg) = 1 holds if vsig and ssig have bounded norm
and the verification equation holds. As in Yang et al. [43], we use ‖vsig‖∞ < β
and ‖ssig‖∞ < β, where β := 12σ.

The verification equation is:

u+B · bin(D0 · ssig +
5∑

k=1

Dk ·msgk) = Aτsig · vsig mod q, (4)

where Aτsig = [A|A0 +
∑lτ

j=1 τsig[j]Aj ] ∈ ZnS×2mS
q (cf. Section 2.3). As we want

to describe this verification equation via the relation R∗, we want to circumvent
the bin(·) function. Therefore we split Equation (4) into two equations and we

introduce a new vector w ∈ ZnS⌈log q⌉
2 . We use the powers-of-two matrix to say

that w is the binary composite of D0 · ssig +
∑5

k=1 Dk ·msgk.

For some m ∈ N, let Gm be the “powers-of-two” matrix with m rows:

Gm := Im ⊗ g⊤ ∈ Zm×m⌈log q⌉
q , where g = (2⌈log q⌉−1, . . . , 4, 2, 1)⊤ ∈ Z⌈log q⌉

q .
Then, we get

u+B ·w = Aτsig · vsig mod q, and

GnS
·w = D0 · ssig +

5∑
k=1

Dk ·msgk mod q

Now, if we write vsig = (v1‖v2) ∈ ZmS
q × ZmS

q , we get

u+B ·w = A · v1 + (A0 +

l∑
j=1

τsig[j]Aj) · v2 mod q, (5)

GnS
·w = D0 · ssig +

5∑
k=1

Dk ·msgk mod q, (6)

and ‖v1‖∞ < β, ‖v2‖∞ < β, ‖ssig‖∞ < β. The vectors v1,v2, ssig have bounded
maximum norm. Like we already saw for Issue, we want them to be non-negative.
Thus, we define β1 := (β, . . . , β)⊤ ∈ ZmS

q ,β2 := (β, . . . , β)⊤ ∈ Z2mS
q and set v′1 :=

v1 + β1,v
′
2 := v2 + β1 and s′sig := ssig + β2. The next step is to decompose these

vectors to obtain binary vectors. We let v̄1 := vdecmS,2β(v
′
1) ∈ ZmS⌈log 2β⌉

2 , v̄2 :=

vdecmS,2β(v
′
2) ∈ ZmS⌈log 2β⌉

2 and s̄sig := vdec2mS,2β(s
′
sig) ∈ Z2mS⌈log 2β⌉

2 . Conse-
quently, we have HmS,2β · v̄1 = v′1,HmS,2β · v̄2 = v′2 and H2mS,2β · s̄sig = s′sig.

Next, we deal with the subset-sum-like behavior of the tag τsig ∈ Zlτ
2 . We

define vectors ui := Aiv2 and u′i := τsig[i] · ui for i ∈ {1, . . . , lτ}. Moreover, we
let û := (u1‖ . . . ‖ulτ ) and û′ := (u′1‖ . . . ‖u′lτ ). Finally, we set for convenience

J := (InS
, . . . , InS

) ∈ ZnS×nSlτ
q and Ā := (A1, . . . ,Alτ ).

27



Now we can express Equation (4) as linear equations

−InSlτ · û+ Ā ·HmS,2β · v̄2 = Ā · β1, (7)

J · û′ +A0 ·HmS,2β · v̄2 +A ·HmS,2βv̄1 −B ·w = u+A0 · β1 +A · β1, (8)

−GnS
·w +D0 ·H2mS,2β · s̄sig +

5∑
k=1

Dk ·msgk = D0 · β2, (9)

under the additional constraint that u′i = τsig[i] · ui for i ∈ {1, . . . , lτ}. The
last constraint is ensured by a suitable index setM. Equation (7) ensures that
the vectors ui are calculated correctly, Equation (8) ensures that Equation (5)
holds, and Equation (9) ensures that Equation (6) holds. All in all, we can prove
the possession of a valid message-signature pair. For the balance, we rewrite
bnew = bin(toInt(b) + v mod q)) to toInt(bnew)− toInt(b) = v mod q.

Now it remains to combine the equations we derived above with the other
necessary equations for our zero-knowledge proof. We again multiply both sides
with q

q0
if we want to show equality modulo q0. We set

xUpdate := (τ‖û′‖û‖v̄2‖v̄1‖w‖s̄sig‖skU‖b‖bin(sU )
‖bin(sO)‖bin(uU )‖r′‖bnew‖bin(s′U )‖bin(u′U ))

and

yUpdate := (Ā · β1‖u + A0 · β1 + A · β1‖D0 · β2‖cnew‖
q

q0
s‖v‖ q

q0
t).

Finally, we set AUpdate as in Fig. 6.

AUpdate =

0n −InSlτ Ā ·HmS,2β

... J A0 ·HmS,2β A ·HmS,2β −B
−GnS D0 ·H2mS,2β D1 D2 D3 D4 D5

D1 D0 D2 D3 D5
q
q0
G1

q
q0
G1

−G1 G1
q
q0
HFRD(uO) q

q0
Gm


.

Fig. 6: The matrix AUpdate.

E Security and Privacy Notions

In this section we render the precise definitions of the security and privacy notions
as defined by [22].

Definition E.1 (Correctness of BABL). Similar to [21] the BABL scheme is
called correct if the following holds: If the system is set up by the Setup algorithm,
the keys are generated by UGen and OGen, all parties follow the protocol honestly,
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then, the following properties hold: (1) Correctness of the Issue protocol: Both
parties return as acceptance bit 1. (2) Correctness of the Update protocol: For
all valid tokens and balances, after adding a value the user always returns as
acceptance bit 1.

Definition E.2 (Oracles, from [22, Def. 3.2]). MalIssue lets the adversary
initiate the Issue protocol with an honest issuer O provided that there is no
pending MalIssue call for pkU and pkU has also not been used in a successful call
to MalIssue before. MalUpdate lets the adversary initiate the Update protocol with
an honest operator O for an input value v. We say that a call to an oracle is
successful if the honest party represented by the oracle accepts the run.

E.1 System Security

We denote by T Update
λ,CRS the set of all transcripts of Update transactions, meaning

all exchanged messages from the beginning, until both parties terminate.

Definition E.3. A scheme is called simulation-linkable if it satisfies the follow-
ing conditions:
Completeness: Let n ∈ N,CRS← Setup(1λ) and tr ∈ T Update

λ,CRS be a transcript.
Then there exist inputs pkU , skU , T ,b and random choices for an honest user
U and honest operator O such that a run of the Update protocol between U
and O with those inputs leads to the same transcript tr.

Extractability: There exists a PPT algorithm ExtractUID that, given two related
transcripts tr1, tr2 ∈ T Update

λ,CRS produced by the interaction of a honest user U
with public key pkU with a honest operator O outputs the public key pkU .
Two transcripts tr1, tr2 are called related if they are identical except for the
zero-knowledge challenges, output by the Random Oracle.

Additionally, there exists an expected PPT algorithm GenerateTranscripts
that, given access to a transcript oracle O = ⟨U ,O⟩ which outputs transcripts

between a user and an operator, outputs two related transcripts tr1, tr2 ∈ T Update
λ,CRS

with overwhelming probability. GenerateTranscripts is allowed to rewind O
and reprogram the Random Oracle.

Definition E.4. A simulation-linkable scheme is called owner-binding if for
any PPT adversary A in the experiments Expob-issueBABL,A(λ) and Expob-updateBABL,A (λ) from
Fig. 7 the advantages of A defined by

Advob-issueBABL,A(λ) = Pr
[
Expob-issueBABL,A(λ) = 1

]
Advob-updateBABL,A (λ) = Pr

[
Expob-updateBABL,A (λ) = 1

]
are negligible in λ.

Definition E.5. A simulation-linkable scheme ensures doubles-spending detec-
tion if for any PPT adversary A in the experiments ExpdsdBABL,A(λ) from Fig. 8
the advantage of A defined by

AdvdsdBABL,A(λ) = Pr
[
ExpdsdBABL,A(λ) = 1

]
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Experiment Expob-issueBABL,A(λ)

CRS← Setup(1λ)
(pkO, skO)← OGen(CRS)
(pkU , skU )← UGen(CRS)
b← AMalIssue,MalUpdate(CRS, pkO, pkU )
The experiment outputs 1 iff Amade a successful call to MalIssue(pkU ).

Experiment Expob-updateBABL,A (λ)

CRS← Setup(1λ)
(pkO, skO)← OGen(CRS)
b← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A made a successful call to MalUpdate
such that ExtractUID applied to that call outputs a public key pkU ,
for which MalIssue has never been called before.

Fig. 7: Owner-binding experiment

Experiment ExpdsdBABL,A(λ)

CRS← Setup(1λ)
(pkO, skO)← OGen(CRS)
b← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A did two successful MalUpdate calls
resulting in two double-spending tags dstag1 = (s, z1) and dstag2 =

(s, z2) with extracted public keys pk
(1)
U and pk

(2)
U such that at least

one of the following conditions is satisfied:

– pk
(1)
U ̸= pk

(2)
U or

– IdentDS(pkO, dstag1, dstag2) ̸= (pk
(1)
U , π) or

– IdentDS(pkO, dstag1, dstag2) = (pk
(1)
U , π) but

VerifyGuilt(pkO, pk
(1)
U , π) ̸= 0.

Fig. 8: Double-spending experiment

is negligible in λ.

Definition E.6. A simulation-linkable scheme is called balance-binding if for
any PPT adversary A in the experiments ExpbbBABL,A(λ) from Fig. 9 the advantage
of A defined by

AdvbbBABL,A(λ) = Pr
[
ExpbbBABL,A(λ) = 1

]
is negligible in λ.

E.2 User Security and Privacy

User security is defined using the real/ideal world paradigm. The adversary can
query the HonUser oracle to spawn new users. In the real world, the adversary
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Experiment ExpbbBABL,A(λ)

CRS← Setup(1λ)
(pkO, skO)← OGen(CRS)
b← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A made a successful call to MalUpdate
with extracted user public-key pkU , s.t.

– all successful MalIssue / MalUpdate calls produce unique token
version numbers,

– the claimed balance w ∈ V does not equal the sum of previously
collected accumulation values v for pkU , i.e. w ̸=

∑
v∈VpkU

v where

VpkU is the list of all accumulation values v ∈ V that appeared
in previous successful calls to MalUpdate for which pkU could be
extracted using ExtractUID.

Fig. 9: Balance-binding experiment

interacts with oracles RHonIssue and RHonUpdate implementing the real user
protocols. In the ideal world, the adversary interacts with a simulator. The
simulator has to play the role of the oracles, but without receiving any private
user information. We denote this by SHonIssue,SHonUpdate. In both worlds, the
adversary can query RCorrupt or SCorrupt, respectively, to corrupt a user. By
this, they learn all private information of the respective user.

Definition E.7. A scheme is called privacy-preserving if there exist PPT algo-
rithms SimSetup and SCorrupt as well as PPT protocols SHonIssue,SHonUpdate
that receive no private user information, such that for all PPT adversaries
A = (A1,A2) in the experiment depicted in Fig. 10, the advantage AdvprivBABL,A(λ)
of A defined by ∣∣∣Pr[Exppriv-realBABL,A(λ) = 1

]
− Pr

[
Exppriv-idealBABL,A (λ) = 1

]∣∣∣
is negligible in λ.

Definition E.8. A simulation-linkable scheme ensures false-accusation protec-
tion if for any PPT adversary A = (A1,A2) in the experiments ExpfacpBABL,A(λ)
from Fig. 11 the advantage of A defined by

AdvfacpBABL,A(λ) = Pr
[
ExpfacpBABL,A(λ) = 1

]
is negligible in λ. (Note, that this does not guarantee anything, once the user was
compromised.)

E.3 Security and Privacy

Our construction fulfills the desired security and privacy properties mentioned in
Section Section 2.1. We formulate the theorems and give proof sketches. Note,
that the proofs follow closely the proofs from [22]. Only small changes were
necessary to adopt the proofs to the lattice-setting:
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Experiment Exppriv-realBABL,A(λ)

CRS← Setup(1λ)
(pkO, state)← A1(CRS)
b← AHonUser,RHonIssue,RHonUpdate,RCorrupt

2 (pkO, state)
return b

Experiment Exppriv-idealBABL,A(λ)

(CRS, tdsim)← SimSetup(1λ)
(pkO, state)← A1(CRS)
b← AHonUser,SHonIssue,SHonUpdate,SCorrupt

2 (pkO, state)
return b

Fig. 10: Real/Ideal world privacy experiment

Experiment ExpfacpBABL,A(λ)

CRS← Setup(1λ)
(pkO, skO)← A1(CRS)
(pkU , skU )← UGen(CRS)
π ← ARHonIssue,RHonUpdate

2 (pkO, pkU )
Return 1 iff VerifyGuilt(pkO, pkU , π) = 1.

Fig. 11: False-accusation experiment

Theorem E.1 (Simulation-Linkability). Suppose BABL is correct, S is se-
cure and P1,P2 are sound. Then BABL is simulation-linkable.

Proof sketch (Simulation-Linkability (Theorem E.1)). As by definition, a scheme
is called simulation-linkable when it is complete and extractable, we have to show
that BABL fulfills these properties.

Completeness requires, that for every accepted transcript, there is a choice
of parameters, such that the transcript is the result of an honest protocol run.
This is given in our case, as the sum of the serial number and the t-part of the
double-spending tag are indistinguishable from random values. Further, as the
transcript is accepted, the soundness property of the zero-knowledge protocol
from [43] guarantees that a commitment is well-formed. It remains to show that
the signature is honestly generated, but as the token is accepted by the user and
the signature is secure, this is given.

To prove the extractability property we can rely on the fact that the protocol
from [43] is extractable, because it is a proof of knowledge.

Theorem E.2 (Owner-Binding w.r.t. Issue). Suppose the SISnsk,q,
√
msk

as-
sumption holds and P1 is extractable. Then BABL is owner-binding w.r.t. Issue.

Proof sketch (Owner-Binding wrt. Issue (Theorem E.2)). Proving this property
is a straightforward reduction on SISnsk,q,

√
msk

.
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Theorem E.3 (Owner-Binding w.r.t. Update). Suppose BABL is simulation-
linkable, P2 is extractable and S is secure. Then BABL is owner-binding w.r.t.
Update.

Proof sketch (Owner-Binding wrt. Update (Theorem E.3)). To prove the owner-
binding property for the Update protocol we define a series of games for a hybrid
argument. In these games, we test the required properties for the owner-binding
property step by step. Finally, we show that the advantage of the adversary to
win in the original game differs only negligibly from the other games.

First, we show that it is indeed possible to extract the user’s secret key by
reducing this problem on the already proven simulation-linkability property of our
scheme. Then it is possible to extract witnesses for all occurred zero-knowledge
proofs as the zero-knowledge argument from [43] is extractable. Finally, as there
are extracted witnesses, the only way left for the adversary to win the owner-
binding game is to forge a signature. This is prevented by the security of our
signature. Note here, that the security of the signature is not exactly the usual
EUF-CMA security, as the user sends commitments and the signer signs the
committed messages (and not the commitment itself). However, the notion of
security given in Definition C.1 suffices for our proofs.

Theorem E.4 (Double-Spending Detection). Suppose BABL is simulation-
linkable, the SISnsk,q,

√
msk

assumption holds, P2 is extractable and S is secure.
Then BABL ensures double-spending detection.

Proof sketch (Double-Spending Detection (Theorem E.4)). Similar to the last
theorem, we prove this property with a hybrid argument. In particular, we
consider all ways in which IdentDS (Fig. 4) could be tricked into not recognizing
an actual act of double-spending. We show that an adversary would therefore
either be able to find a collision on the serial number, or they were was able
to manipulate the double-spending tag in a specific way. The former happens
only with negligible probability, as the serial number is chosen in a coin-toss-like
manner. The latter happens only with negligible probability, as the double-
spending certainly includes values that the operators drew at random, and as
the zero-knowledge proof is sound.

Theorem E.5 (Balance-Binding). Suppose P1 and P2 are extractable and
sound and C is statistically hiding, and S is secure Then BABL is balance-binding.

Proof sketch (Balance-Binding (Theorem E.5)). Similar to the proofs for the
previous properties, we prove the balance-binding property by defining several
games, where we show step by step, that the probability for an adversary to
break the balance-binding property of BABL is negligible. More precisely, we
interpret every transaction as a node in a graph. Two nodes are connected if the
output serial number of the first transaction is the input serial number of the last.
We ensure through the game hops, that all nodes have an indegree of exactly one
(except for the issuance of the token) and outdegrees of at most one. If this was
not the case, there would be collisions on the serial number, double-spendings, or
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forged signatures. Additionally, every such chain of transactions must be started
by the issuance of a token and the balance must only change according to the
transaction values of the nodes.

Theorem E.6 (Privacy-Preserving). Suppose P1 and P2 are zero-knowledge
and C is equivocal. Then BABL is privacy-preserving.

Proof sketch (Privacy-Preserving (Theorem E.6)). We prove this property by
defining several games, where the oracles of the real experiment are step-by-step
replaced by oracles that hold no personal information of the user, called the ideal
world. By showing that an adversary is only with negligible probability able to
tell apart the real from the ideal world, we prove that BABL is indeed privacy-
preserving. In more detail, we make use of the fact that the zero-knowledge proof
from [43] is indeed zero-knowledge and the commitment scheme is equivocal. We
use the equivocality property to replace the real values in the token with random
ones, which makes it impossible to extract personal information from the user in
the ideal world.

Theorem E.7 (False-Accusation Protection). Suppose the SISnsk,q,
√
msk

assumption holds and the scheme ensures double-spending detection. Then BABL
ensures false-accusation protection.

Proof sketch (False-Accusation Protection (Theorem E.7)). Just like in the
privacy-preserving proof we use the real/ideal world paradigm. Now, if the
adversary is able to output a false proof of guilt for an honest user, one can
directly construct an adversary breaking the SISnsk,q,

√
msk

assumption. If the
adversary is not able to output a proof of guilt for a guilty user, this can be
leveraged to distinguish the real world from the ideal world.
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