
(Compact) Adaptively Secure FE for Attribute-Weighted

Sums from k-Lin?

Pratish Datta1 and Tapas Pal1,2

1 NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com,

2 IIT Kharagpur, West Bengal, India-721302
tapas.pal@iitkgp.ac.in,

September 28, 2021

Abstract

This paper presents the first adaptively simulation secure functional encryption (FE) schemes for attribute-
weighted sums. In such an FE scheme, encryption takes as input N pairs of attribute {(xi, zi)}i∈[N] for some
N ∈ N where the attributes {xi}i∈[N] are public while the attributes {zi}i∈[N] are private. The indices i ∈ [N] are
referred to as the slots. A secret key corresponds to some weight function f , and decryption recovers the weighted
sum

∑N
i=1 f(xi)zi. This is an important functionality with a wide range of potential real life applications. In the

proposed FE schemes attributes are viewed as vectors and weight functions are arithmetic branching programs
(ABP). We present two schemes with varying parameters and levels of adaptive security.
(a) We first present a one-slot scheme that achieves adaptive security in the simulation-based security model

against a bounded number of ciphertext queries and an arbitrary polynomial number of secret key queries both
before and after the ciphertext queries. This is the best possible level of security one can achieve in the adaptive
simulation-based framework. From the relations between the simulation-based and indistinguishability-based
security frameworks for FE, it follows that the proposed FE scheme also achieves indistinguishability-based
adaptive security against an a-priori unbounded number of ciphertext queries and an arbitrary polynomial
number of secret key queries both before and after the ciphertext queries. Moreover, the scheme enjoys compact
ciphertexts that do not grow with the number of appearances of the attributes within the weight functions.

(b) Next, bootstrapping from the one-slot scheme, we present an unbounded-slot scheme that achieves simulation-
based adaptive security against a bounded number of ciphertext and pre-ciphertext secret key queries while
supporting an a-priori unbounded number of post-ciphertext secret key queries. The scheme achieves public
parameters and secret key sizes independent of the number of slots N and a secret key can decrypt a ciphertext
for any a-priori unbounded N . Further, just like the one-slot scheme, this scheme also has the ciphertext size
independent of the number of appearances of the attributes within the weight functions. However, all the
parameters of the scheme, namely, the master public key, ciphertexts, and secret keys scale linearly with the
bound on the number of pre-ciphertext secret key queries.

Our schemes are built upon asymmetric bilinear groups of prime order and the security is derived under the
standard (bilateral) k-Linear (k-Lin) assumption. Our work resolves an open problem posed by Abdalla, Gong,
and Wee in CRYPTO 2020, where they presented an unbounded-slot FE scheme for attribute-weighted sum
achieving only semi-adaptive simulation security. At a technical level, our work extends the recent adaptive
security framework of Lin and Luo [EUROCRYPT 2020], devised to achieve compact ciphertexts in the context
of indistinguishability-based payload-hiding security, into the setting of simulation-based adaptive attribute-hiding
security.

? This is the full version of an extended abstract that will appear in ASIACRYPT 2021.

Contents

Page
1 Introduction . 3
2 Technical Overview . 8

2.1 Designing Adaptively Simulation Secure One-slot extFE . 9
2.2 Bootstrapping from One-Slot FE to Unbounded-Slot FE . 16

3 Preliminaries . 18
3.1 Notations . 18
3.2 Bilinear Groups and Hardness Assumptions . 19
3.3 Arithmetic Branching Program . 20
3.4 Functional Encryption for Attribute-Weighted Sum. 21
3.5 Function-Hiding Slotted Inner Product Functional Encryption 22
3.6 Arithmetic Key Garbling Scheme . 24

4 1-Key 1-Ciphertext Secure One-Slot FE for Attribute-Weighted Sums 29
4.1 Security Analysis . 31

5 One-Slot FE for Attribute-Weighted Sums . 40
5.1 Security Analysis . 42

6 1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for Bounded-Key
One-Slot Extended FE for Attribute-Weighted Sums . 51
6.1 Security Analysis . 53

7 Bounded-Key One-Slot Extended FE for Attribute-Weighted Sums 62
7.1 Security Analysis . 65

8 Unbounded-Slot FE for Attribute-Weighted Sum . 75
8.1 Security Analysis . 76

A 1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for Unbounded-Key
One-Slot Extended FE for Attribute-Weighted Sums . 91
A.1 Security Analysis . 93

B Unbounded-Key One-Slot Extended FE for Attribute-Weighted Sums 101
B.1 Security Analysis . 103

1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by Boneh et al.
[BSW11] and O’Neill [O’N10], redefines the classical encryption procedure with the motivation
to overcome the limitation of the “all-or-nothing” paradigm of decryption. In a traditional en-
cryption system, there is a single secret key such that a user given a ciphertext can either recover
the whole message or learns nothing about it, depending on the availability of the secret key. FE
in contrast provides fine grained access control over encrypted data by generating artistic secret
keys according to the desired functions of the encrypted data to be disclosed. More specifically, in
a public-key FE scheme for a function class F , there is a setup authority which produces a master
secret key and publishes a master public key. Using the master secret key, the setup authority
can derive secret keys or functional decryption keys SKf associated to functions f ∈ F . Anyone
can encrypt messages msg belonging to a specified message space msg ∈ M using the master
public key to produce a ciphertext CT. The ciphertext CT along with a secret key SKf recovers
the function of the message f(msg) at the time of decryption, while unable to extract any other
information about msg. More specifically, the security of FE requires collusion resistance mean-
ing that any polynomial number of secret keys together cannot gather more information about
an encrypted message except the union of what each of the secret keys can learn individually.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [AGW20] proposed an
FE scheme for a new class of functionalities which they termed as “attribute-weighted sums”.
This is a generalization of the inner product functional encryption (IPFE) [ABDCP15, ALS16].
In such a scheme, a database of N attribute-value pairs (xi, zi)i=1,...,N are encrypted using the
master public key of the scheme, where xi is a public attribute (e.g., demographic data) and zi is
a private attribute containing sensitive information (e.g., salary, medical condition, loans, college
admission outcomes). A recipient having a secret key corresponding to a weight function f can
learn the attribute-weighted sum of the database, i.e.,

∑N
i=1 f(xi)zi. The attribute-weighted sum

functionality appears naturally in several real life applications. For instance, as discussed by
Abdalla et al. [AGW20] if we consider the weight function f as a boolean predicate, then the
attribute-weighted sum functionality

∑N
i=1 f(xi)zi would correspond to the average zi over all

users whose attribute xi satisfies the predicate f . Important practical scenarios include average
salaries of minority groups holding a particular job (zi = salary) and approval ratings of an
election candidate amongst specific demographic groups in a particular state (zi = rating).
Similarly, if zi is boolean, then the attribute-weighted sum becomes

∑
i:zi=1 f(xi). This could

capture for instance the number of and average age of smokers with lung cancer (zi = lung
cancer, f = numbers/age).

The work of [AGW20] considered a more general case of the notion where the domain and
range of the weight functions are vectors over some finite field Zp. In particular, the database
consists of N pairs of public/private attribute vectors (xi, zi)i=1,...,N which is encrypted to a
ciphertext CT. A secret key SKf generated for a weight function f allows a recipient to learn∑N

i=1 f(xi)
>zi from CT without revealing any information about the private attribute vectors

(zi)i=1,...,N . To handle a large database where the number of users are not a-priori bounded,
Abdalla et al. considered the notion of unbounded-slot FE scheme for attribute-weighted sum.
Thus, in their scheme, the number of slots N is not fixed while generating the system parameters
and any secret key SKf can decrypt an encrypted database having an arbitrary number of slots.
Another advantage of unbounded-slot FE is that the same system parameters and secret keys can

3

be reused for different databases with variable lengths, which saves storage space and reduces
communication cost significantly.

The unbounded-slot FE of [AGW20] supports expressive function class of arithmetic branch-
ing programs (ABPs) which is capable of capturing boolean formulas, boolean span programs,
combinatorial computations, and arithmetic span programs. The FE scheme of [AGW20] is built
in asymmetric bilinear groups of prime order and is proven secure in the simulation-based se-
curity model, which is known to be the desirable security model for FE [O’N10,BSW11], under
the k-Linear (k-Lin)/Matrix Diffie-Hellman (MDDH) assumption. Moreover, their scheme enjoys
ciphertext size that grows with the number of slots and the size of the private attribute vec-
tors but is independent of the size of the public attribute vectors. Towards constructing their
unbounded-slot scheme, Abdalla et al. first constructed a one-slot scheme and then bootstrap
to the unbounded-slot scheme via a semi-generic transformation.

However, one significant limitation of the FE scheme of [AGW20] is that the scheme only
achieves semi-adaptive security. While semi-adaptive security, where the adversary is restricted
to making secret key queries only after making the ciphertext queries, may be sufficient for
certain applications, it is much weaker compared to the strongest and most natural notion of
adaptive security which lets the adversary request secret keys both before and after making the
ciphertext queries. Thus it is desirable to have an adaptively secure scheme for this important
functionality that supports unbounded number of slots.

One artifact of the standard techniques for proving adaptive security of FE schemes based
on the so called dual system encryption methodology [Wat09, LW10, LOS+10] is the use of a
core information theoretic transition limiting the appearance of an attribute in the description
of the associated functions at most once (or an a-priori bounded number of times at the expense
of ciphertext and key sizes scaling with that upper bound [OT10, LW11, Wat11]). Recently
Kowalczyk and Wee [KW19] and Lin and Luo [LL20] presented advanced techniques to overcome
the one-use restriction. However, their techniques were designed in the context of attribute-based
encryption (ABE) where attributes are totally public. Currently, it is not known how to remove
the one-use restriction in the context of adaptively secure FE schemes where attributes are not
fully public as is the case for the attribute-weighted sum functionality. This leads us to the
following open problem explicitly posed by Abdalla et al. [AGW20]:

Open Problem Can we construct adaptively simulation-secure one-slot/unbounded-slot FE scheme
for the attribute-weighted sum functionality with the weight functions expressed as arithmetic
branching programs featuring compact ciphertexts, that is, having ciphertexts that do not grow
with the number of appearances of the attributes within the weight functions, from the k-Lin
assumption?

Our Contributions: In this work, we resolve the above open problem. More precisely, we make
the following contributions.

(a) We start by presenting the first one-slot FE scheme for the attribute-weighted sum function-
ality with the weight functions represented as ABPs that achieves adaptive simulation-based
security and compact ciphertexts, that is, the ciphertext size is independent of the number
of appearances of the attributes within the weight functions. The scheme is secure against
an adversary who is allowed to make an a-priori bounded number of ciphertext queries
and an unbounded (polynomial) number of secret key queries both before and after the ci-
phertext queries, which is the best possible level of security one could hope to achieve in

4

adaptive simulation-based framework [BSW11]. Since simulation-based security also implies
indistinguishability-based security and indistinguishability-based security against single and
multiple ciphertexts are equivalent [BSW11, O’N10], the proposed FE scheme is also adap-
tively secure in the indistinguishability-based model against adversaries making unbounded
number of ciphertext and secret key queries in any arbitrary order.

(b) We next bootstrap our one-slot scheme to an unbounded-slot scheme that also achieves
simulation-based adaptive security against a bounded number of ciphertext queries and an
unbounded polynomial number of secret key queries. Just like our one-slot scheme, the ci-
phertexts of our unbounded-slot scheme also do not depend on the number of appearances
of the attributes within the weight functions. However, the caveat here is that the number
of pre-ciphertext secret key queries is a priori bounded and all parameters of the scheme,
namely, the master public key, ciphertexts, and secret keys scale linearly with that upper
bound.

Like Abdalla et al. [AGW20], our FE schemes are build upon asymmetric bilinear groups of
prime order. We prove the security of our FE schemes based on the standard (bilateral) k-Lin/
(bilateral) MDDH assumption(s) [EHK+17]. Thus our results can be summarized as follows.

Theorem 1 (Informal) Under the (bilateral) k-Lin/MDDH assumption(s), there exist adap-
tively simulation secure one-slot/unbounded-slot FE scheme for attribute-weighted sums against
a bounded number of ciphertext and an unbounded number of secret-key queries, and having
compact ciphertexts, that is, without the one-use restriction, in bilinear groups of prime order.

The bilateral MDDH assumption is the plain MDDH assumption except that the elements
are available in the exponents of both source groups of a bilinear group simultaneously. This
assumption has recently been utilized in the context of achieving FE for quadratic functions in the
standard model [AGT20,Wee20] and broadcast encryption scheme with O(N1/3) parameter sizes
from bilinear maps, where N is the total number of users in the system [?]. Unlike [AGW20], our
construction is semi-generic and is built upon two cryptographic building blocks, namely a slotted
inner product functional encryption (IPFE) [LV16,LL20], which is a hybrid of a public-key IPFE
and a private-key function-hiding IPFE, and an information theoretic primitive called arithmetic
key garbling scheme (AKGS) [IW14, LL20]. For bootstrapping from one-slot to unbounded-slot
construction, we make use of the same semi-generic transformation proposed in [AGW20], but
analyze its security in the adaptive simulation-based setting as opposed to the semi-adaptive
setting. Table 1 shows the current state of the art in the development of efficient attribute-hiding3

FE schemes under standard computational assumptions.
On the technical side, our contributions lie in extending the recent framework of Lin and

Luo [LL20]. The techniques of [LL20] are developed to achieve compact ciphertexts, that is,
without the one-use restriction in the context of indistinguishability-based adaptively secure
ABE (that is, for payload-hiding security and not attribute-hiding). In this work, we extend
their techniques to overcome the one-use restriction into the context of adaptive simulation-based
attribute-hiding security for the first time. The high level approach of [LL20] to mitigate the
one-use restriction is to replace the core information theoretic step of the dual system technique
with a computational step. However the application of this strategy in their framework crucially

3 In this paper, by attribute-hiding, we mean the so-called “strong” attribute-hiding, as stipulated by the security
definitions of FE, meaning that private attributes must remain hidden even to decryptors who are able to perform a
successful decryption.

5

rely on the payload hiding security requirement, that is, the adversaries are not allowed to query
secret keys that enable a successful decryption. In contrast, in the setting of attribute-hiding,
adversaries are allowed to request secret keys enabling successful decryption and extending the
technique of [LL20] into this context appears to be non-trivial. We resolve this by developing
a three-slot variant of their framework, integrating the pre-image sampleability of the inner
product functionality [O’N10,DOT18], and carefully exploiting the structures of the underlying
building blocks, namely AKGS and slotted IPFE.

Related Works: Even before it was formally introduced by [BSW11], FE has been stud-
ied for various simplistic functionalities such as equality testing [Sha84, BF01, Coc01], subset
membership [BGW05, SW05, BW07], inner product predicates [KSW08], and NC1 access poli-
cies [GPSW06]. Sahai and Seyalioglu [SS10] and Gorbunov, Vaikuntanathan, and Wee [GVW12]
considered the problem of constructing FE for general functions under standard computational
assumptions. Main drawbacks of these constructions are that the schemes support a-priori
bounded number of functional keys and ciphertext size grows linearly with the number of secret
keys of the system. Moreover, the ciphertext size is non-succinct meaning that the ciphertext
size scales with the worst-case circuit size of the functions in the function class. Goldwasser
et al. [GKP+13] built a succinct FE scheme for general circuits, which enables the authority to
release only one secret decryption key under the LWE assumption. Here, succinctness means that
the ciphertext size depends on the maximum depth of function class supported by the scheme
rather than the size of it. Another line of works [GGH+16, PST14, LV16, LV17, AS17, LT17]
based on multilinear maps [GGH13, CLT13], constructs collusion resistant FE scheme for gen-
eral circuits with succinct ciphertexts. Since multilinear maps are highly inefficient and suf-
fers from many non-trivial attacks [CHL+15, CGH+15, MSZ16], consequently these FE schemes
are not assumed to be secure any more. As it seems hard to achieve efficient FE schemes
for general circuits from standard assumptions since such an FE scheme would directly im-
ply iO for general circuits [AJ15, BV15, AJS15], building efficient FE schemes for specific
practically useful classes of function has drawn special attention in the community, e.g.
attribute-based encryption [BGG+14, GVW15a, Agr17, AY20a, AY20b, DKW20], predicate en-
cryption (PE) [LOS+10, KSW08, GVW15b], partially-hiding PE [Wee17, DOT18], IPFE [AB-
DCP15,ALS16,DDM16,LV16,LT17,JLS19] attribute-based IPFE [ACGU20] and FE for quadratic
functions [BCFG17,Lin17,AGT20,Gay20,Wee20,Wee21].

Paper Organization: We discuss detailed technical overview of our results in Section 2. The
preliminaries, definitions and tools are provided in Section 3. We present our private-key (public-
key) one-slot FE scheme for the attribute-weighted sum functionality that is proven simulation
secure against a single ciphertext query and a single (arbitrary polynomial number of) secret
key queries either (both) before or (and) after the ciphertext query in Sections 4 (Section 5). We
develop a private-key one-slot FE scheme for an extended attribute-weighted sum functionality
(abbreviated as extFE) that is proven simulation secure against a single ciphertext query and
a single secret key query either before or after the ciphertext query in Section 6. This scheme
is designed for the security reduction of our public-key one-slot extFE scheme that is proven
secure against one ciphertext query, an a priori-bounded number of pre-ciphertext secret key
queries, and an arbitrary polynomial number of post-ciphertext secret key queries described in
Section 7. Next, in Section 8, we apply the bootstrapping transformation from [AGW20] on our
public-key one-slot extFE scheme from Section 7 leading to an unbounded-slot FE scheme that is

6

Table 1: Current State of the Art in Attribute-Hiding FE

Scheme Functionality
Number of

Slots
IND Security SIM Security |CT| Assumption

[KSW08]

φy∈Zn
p

: Znp →
{0, 1}, φy(z) =

(z>y
?
= 0)

1 (−, poly, poly)-AD × O(|z|)
2

non-standard
assumptions

[OT12a]

φy∈Zn
p

: Znp →
{0, 1}, φy(z) =

(z>y
?
= 0)

1
(poly, poly, poly)-

AD
× O(|z|) DLIN

[ABDCP15]
φy∈Zn

p
: Znp →

Zp, φy(z) = z>y
1 (−, poly, poly)-Sel × O(|z|) DDH, LWE

[ALS16,
ALMT20]

φy∈Zn
p

: Znp →
Zp, φy(z) = z>y

1
(poly, poly, poly)-

AD
(poly, bdd, poly)-

Sel
O(|z|) DDH, DCR,

LWE

[Agr17]

φ
f∈GC(n,n′) :

Znp × Zn
′
p →

{0, 1}, φf (x,z) =

(f(x)>z
?
= 0)

1
(−, poly, bdd)-S-

AD
(−, 1, bdd)-S-AD O(|x|+ |z|) LWE

[Wee17]

φ
f∈F(n,n′)

ABP

:

Znp × Zn
′
p →

{0, 1}, φf (x,z) =

(f(x)>z
?
= 0)

1
(−, poly, poly)-S-

AD
(−, 1, poly)-S-AD O(|x|+ |z|) k-Lin

[DOT18]

φ
f∈F(n,n′)

ABP

:

Znp × Zn
′
p → {0, 1},

φf (x,z) =

(f(x)>z
?
= 0)

1
(poly, poly, poly)-

AD
(poly, bdd, poly)-

AD
O(|x|+ |z|) SXDLIN

[ACGU20]

φ(f∈(NC1)(n),y∈Zn′
p) :

Znp × Zn
′
p →

Zp, φ(f,y)(x,z) =

(f(x)
?
= 0) · z>y

1
(poly, poly, poly)-

AD
× O(|x|+ |z|) SXDH

[AGW20]

φ
f∈F(n,n′)

ABP

:

Znp × Zn
′
p →

Zp, φf (x,z) =
f(x)>z

unbounded (−, poly, poly)-AD
(−, bdd, poly)-S-

AD
O(|z|) k-Lin

[Wee20]

φ
f∈F(n,n1n2)

ABP

:

Znp × (Zn1
p × Zn2

p)→
Zp, φf (x, (z1,z2)) =
f(x)>(z1 ⊗ z2)

1
(−, poly, poly)-S-

AD
(−, bdd, poly)-S-

AD
O(|z1|+ |z2|)

bilateral k-Lin
and k-Lin

This Work

φ
f∈F(n,n′)

ABP

:

Znp × Zn
′
p →

Zp, φf (x,z) =
f(x)>z

1
(poly, poly, poly)-

AD
(poly, bdd, poly)-

AD
O(|x|+ |z|) k-Lin

This Work

φ
f∈F(n,n′)

ABP

:

Znp × Zn
′
p →

Zp, φf (x,z) =
f(x)>z

unbounded
(bdd, poly, poly)-

AD
(bdd, bdd, poly)-

AD
O(|x|+ |z|+B)

bilateral k-Lin
and k-Lin

The notations used in this table have the following meanings:
– GC: General polynomial-size circuits, ABP: Arithmetic branching programs
– IND: Indistinguishability-based security, SIM: Simulation-based security
– AD: Adaptive security, S-AD: Semi-adaptive security, Sel: Selective security
– poly: Arbitrary polynomial in the security parameter, bdd: A-priori bounded by the public parameters
– |x|: Size of x, B: A bound on the number of pre-ciphertext decryption key queries

In this table, (U, V,W) signifies that the adversary is allowed to make V number of ciphertext queries in the relevant
security experiment, while U and W number of decryption key queries in the pre- and post-ciphertext phases respectively.

proven adaptively simulation secure against one ciphertext query, an a priori-bounded number of
pre-ciphertext secret key queries, and an arbitrary polynomial number of post-ciphertext secret
key queries. We emphasize that our idea of achieving one-slot FE scheme can be employed to
build a public-key one-slot extFE scheme that is proven secure against a single ciphertext query
and an arbitrary polynomial number of secret key queries both before and after the ciphertext
query, however it would not be compatible for the transformation of [AGW20] in the context of
adaptive simulation security. For the sake of completeness, in Appendix A, we provide a private-
key one-slot extFE scheme secure against a single ciphertext query and a single secret key query
which enables in constructing a public-key one-slot extFE scheme secure against an arbitrary
polynomial number of secret key queries both before and after the ciphertext query presented
in Appendix B.

2 Technical Overview

In this section, we present our main technical ideas. Let G = (G1,G2,GT , g1, g2, e) be a bilinear
group of prime order p and [[a]]i denotes gai for any a ∈ Zp and i ∈ {1, 2, T}, which notation
can also be extended in case of vectors and matrices. At the top most level of strategy, we
follow [AGW20] to first design an adaptively simulation-secure one-slot FE scheme and then
apply a compiler to bootstrap to an unbounded-slot scheme. For the later part, we use the
same compiler as the one presented in [AGW20]. However, [AGW20] only showed that the
compiler works in the context of semi-adaptive security, that is, they show that their compiler can
bootstrap a semi-adaptively secure one-slot FE scheme to a semi-adaptively secure unbounded-
slot scheme. In contrast, we analyze the security of the same transformation in the context of the
simulation-based adaptive security framework. We observe that in order to prove the adaptive
security for the compiler, the (bilateral) k-Lin/(bilateral) MDDH assumption is needed whereas
for semi-adaptive security, the plain k-Lin/MDDH was sufficient [AGW20]. Moreover, we are
only able to establish the simulation-based adaptive security for the transformation for settings
where only a bounded number of secret-key queries are allowed prior to making the ciphertext
queries.

The majority of our technical ideas in this paper lies in the design and analysis of our one-
slot scheme which we describe first in this technical overview. Next, we would briefly explain
the modifications to our one-slot scheme leading to our extended one-slot scheme, followed by
explaining our analysis of the one-slot to unbounded-slot bootstrapping compiler from [AGW20]
applied on our one-slot extended FE (extFE) scheme.

Recall that the adaptive simulation security of an FE scheme is proven by showing the
indistinguishability between a real game with all the real algorithms and an ideal game where
a simulator simulates all the ciphertexts and secret keys queried by the adversary. When an
adversary makes a pre-ciphertext query for some function f , the simulator provides the secret
key to the adversary. When the adversary makes a challenge ciphertext query for an attribute
vector pair (x, z), the simulator receives the information of x but not z. Instead it receives the
functional values f(x)>z for all the pre-ciphertext secret keys. Based on this information, the
simulator must simulate the challenge ciphertext. Finally, when an adversary makes a secret-key
query for some function f after making a ciphertext query, the simulator receives f along with
the functional value f(x)>z for that key and simulates the key based on this information.

8

2.1 Designing Adaptively Simulation Secure One-slot extFE

Abdalla et al. [AGW20] built their one-slot FE scheme for attribute-weighted sums by extending
the techniques devised by Wee [Wee17] in the context of partially hiding predicate encryptions for
predicates expressed as ABPs over public attributes followed by inner product evaluations over
private attributes. The proof strategy of [AGW20, Wee17] is designed to achieve selective type
security where during the security reduction, the challenge ciphertext is made completely random
and then the secret keys are simulated using the functional value and the randomness used in
the challenge ciphertext. In particular, its simulated secret key is divided into two parts — the
first part is computed similar to the original key generation algorithm and is used for decrypting
the honestly computed ciphertext whereas the second part contains the functional value and
is used for decrypting the simulated ciphertext correctly. However, in the adaptive setting, we
must embed the correct functional values for the functions associated with the pre-ciphertext
secret keys into the challenge ciphertext and therefore the proof technique of [AGW20, Wee17]
does not seem to extend to the adaptive setting. Datta et al. [DOT20] designed an adaptively
simulation secure predicate encryption scheme for the same class of predicates as [Wee17], but
their ciphertexts do not preserve compactness as they had to impose a read-once restriction
on the attributes due to the usual information theoretic argument required in dual system
encryption.

Overcoming the one-use restriction of the dual system proof techniques for adaptive secu-
rity, Lin and Luo [LL20] developed new techniques to obtain adaptive indistinguishability secure
ABE with compact ciphertexts for the class of predicates expressed as ABPs. [LL20] takes a semi-
generic approach to design their ABE schemes. Their main idea is to replace the core information
theoretic step of the dual system methodology with a computational step and thereby avoid the
one-use restriction. Two main ingredients of [LL20] are arithmetic key garbling scheme (AKGS)
which is the information theoretic component and function-hiding slotted inner product func-
tional encryption (IPFE) which is the computational component. We try to adopt the techniques
of [LL20] into our setting of simulation-based security for FE without the one-use restriction.
However, a straight-forward adaptation of the [LL20] framework into our setting presents sev-
eral challenges which we overcome with new ideas. Before describing those challenges and our
ideas, we first give a high-level overview of the two primitives, namely, AKGS and function-hiding
slotted IPFE.

Arithmetic Key Garbling Schemes: The notion of partial garbling scheme was proposed
in [IW14] and recently it was further refined by [LL20] in the context of arithmetic computations.
The refined notion is called arithmetic key garbling scheme (AKGS) which garbles a function
f : Znp → Zn′p along with two secrets α, β ∈ Zp so that the evaluation with an input x ∈ Znp gives
the value αf(x) + β. Note that the evaluation does not reveal any information about α and β.
In particular, the AKGS has the following algorithms:

• (`1, . . . , `m+1) ← Garble(αf(x) + β; r): The garbling algorithm outputs (m + 1) affine label
functions L1, . . . , Lm+1, described by their coefficient vectors `1, . . . , `m+1 over Zp, using the
randomness r ∈ Zmp where (m+ 1) denotes the size of the function f .
• γ ← Eval(f,x, `1, . . . , `m+1): The linear evaluation procedure recovers γ = αf(x) + β using

the input x and the label function values `j = Lj(x) = `j · (1,x) ∈ Zp.

AKGS is a partial garbling process as it only hides α, β which is captured by the usual sim-
ulation security given by [IW14]. The simulator produces simulated labels (̂̀1, . . . , ̂̀m+1) ←

9

SimGarble(f,x, αf(x) + β) which is the same distribution as the actual label function values
evaluated at input x. Additionally, [LL20] defines piecewise security of AKGS that consists of
two structural properties, namely reverse sampleability and marginal randomness. The partial
garbling scheme for ABPs of Ishai and Wee [IW14] directly implies a piecewise secure AKGS for
ABPs. (See Section 3.6 for further details.)

Function-Hiding Slotted IPFE: A private-key function-hiding inner product functional en-
cryption (IPFE) scheme based on a bilinear group G = (G1,G2,GT , g1, g2, e) generates secret keys
IPFE.SK for vectors [[v]]2 ∈ Gn

2 and produces ciphertexts IPFE.CT for vectors [[u]]1 ∈ Gn
1 using

the master secret key of the system. Both the key generation and encryption algorithm perform
linear operations in the exponent of the source groups G2,G1 respectively. The decryption re-
covers the inner product [[v · u]]T ∈ GT in the exponent of the target group. The sizes of the
secret keys, IPFE.SK, and ciphertexts, IPFE.CT, in such a system grow linearly with the sizes of
the vectors v and u respectively. Roughly, the function-hiding security of an IPFE ensures that
no information about the vectors v,u is revealed from IPFE.SK and IPFE.CT except the inner
product value v ·u which is trivially extracted using the decryption algorithm. A slotted version
of IPFE introduced in [LV16,LL20] is a hybrid between a secret-key function-hiding IPFE and a
public-key IPFE. The index set of the vectors u is divided into two subsets: public slots Spub and
private slot Spriv so that the vector u is written as u = (upub ‖ upriv). With addition to the usual
(secret-key) encryption algorithm, the slotted IPFE has another encryption algorithm that uses
the master public key of the system to encrypt the public slots of u, i.e. vectors with upriv = 0.
The slotted IPFE preserves the function-hiding security with respect to the private slots only as
anyone can encrypt arbitrary vectors into the public slots.

Challenges with Adapting the Framework of [LL20] and Our Ideas. We now briefly
explain at a high level, the main challenges in adapting the [LL20] technique into our setting
and our ideas to overcome those challenges.

1. To handle the pre-challenge secret-key queries, [LL20] formulates new properties of AKGS
such as reverse sampling and marginal randomness. Using such structural properties of AKGS,
their main motivation was to reversely sample the first garbling label using the challenge at-
tribute so that it can be shifted into the ciphertext component and make the remaining labels
uniformly random. This procedure works fine for arguing zero advantage for the adversary
at the end of the hybrid sequence in case of ABE as functions in the queried secret keys
do not vanish on the challenge attribute and hence the challenge ciphertext can never be
decrypted using such secret keys available to the adversary such that the value αf(x) + β
becomes completely random. But, FE permits the adversary to have secret keys that de-
crypts the challenge ciphertext, that is, we cannot afford to have ft(x)z[t] + βt completely
random. In order to handle this, we carefully integrate the techniques of pre-image sam-
pleability [O’N10,DOT20] with the reverse sampling and marginal randomness properties of
AKGS to handle the pre-challenge queries.

2. The security proof of [LL20] implements a version of the dual system encryption methodology
[Wat09,LW10,LOS+10] via the function-hiding slotted IPFE. Since the ABE is only payload
hiding, the usual dual system encryption technique is sufficient for achieving adaptive security
where only one hidden subspace is required. More precisely, the secret keys are made of two
slots, out of which the first public slot contains the honestly computed components which may

10

be used to decrypt any honestly computed ciphertext and the other hidden slot is used to em-
bed its interaction with the challenge ciphertext. This dual system encryption technique has
been used in several prior works [Wat09,LW10,LOS+10,OT10,OT12b,OT13,DOT20,LL20].
Here, a single hidden slot is enough to handle the interaction between all ciphertext and
secret-key queries since by the game restrictions, no secret key queried by the adversary can
decrypt the challenge ciphertext and thus their interactions with the challenge ciphertext
always result in random outputs. For our application, a portion of the attribute must be
kept hidden from an adversary in the context of FE, who is allowed to have polynomially
many secret keys that successfully decrypts the challenge ciphertext. The usual dual system
encryption is not sufficient for our purpose. We need three hidden subspaces for our security
reduction. The first hidden subspace of the challenge ciphertext is kept for handling the in-
teractions with the post-ciphertext secret keys. The second hidden subspace is required to
place the dummy vector (obtained from pre-image sampleability) which helps in simulating
the interactions between the challenge ciphertext and the pre-ciphertext secret keys. The last
hidden subspace is used as a temporary way station to switch each pre-ciphertext secret key
from interacting with the original hidden attribute of the challenge ciphertext to interacting
with the dummy attribute sampled using the pre-image sampleability. We extend the frame-
work of [LL20] to implement a three-slot dual system encryption procedure for building our
one-slot FE scheme.

Our One-Slot FE. We aim to design our decryption algorithm such that given a secret key
for a weight function ABP f : Znp → Zn′p with coordinate functions f1, . . . , fn′ : Znp → Zp and

an encryption of an attribute vector pair (x, z) ∈ Znp × Zn′p , the decryption algorithm would
first recover the value for each coordinate z[t]ft(x) masked with a random scalar βt, that is,
z[t]ft(x) + βt and then sum over all these values to obtain the desired functional value (we take

the scalars {βt}t∈[n′] such that
∑n′

t=1 βt = 0 mod p). Thus we want our key generation algorithm
to use AKGS to garble the functions z[t]ft(x) + βt. Note that here, βt is a constant but z[t] is a
variable. While doing this garbling, we also want the label functions to involve either only the
variables x or the variable z[t]. This is because, in the construction we need to handle x and z[t]
separately since x is public whereas z[t] is private. This is unlike [LL20] which garbles αf(x)+β
where both α, β are known constants and only x is a variable. To solve this issue, we garble an
extended ABP where we extend the original ABP ft by adding a new sink node and connecting
the original sink node of ft to this new sink node with a directed edge labeled with the variable
z[t].

We also make use of a particular instantiation of AKGS given by [IW14] where we ob-
serve that the first m coefficient vectors `1,t, . . . , `m,t are independent of z[t] and the last coef-
ficient vector `m+1,t involves only the variable z[t]. In the setup phase, two pairs of IPFE keys

(IPFE.MSK, IPFE.MPK) and (̂IPFE.MSK, ̂IPFE.MPK) for a slotted IPFE are generated for appro-
priate public and private index sets. The first instance of IPFE is used to handle the public
attributes x, whereas the second instance for the private attributes z. Let f = (f1, . . . , fn′) :
Znp → Zn′p be a given weight function ABP such that ft : Znp → Zp is the t-th coordinate ABP of
f . To produce a secret-key SKf , we proceed as follows:

– Sample vectors α,βt ← Zkp such that
∑

t∈[n′] βt[ι] = 0 mod p ∀ι ∈ [k]
– Suppose we want to base the security of the proposed scheme under the MDDHk assumption.

Generate k instances of the garblings (`
(ι)
1,t, . . . , `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) +βt[ι]; r

(ι)
t) for

11

ι ∈ [k] where r
(ι)
t ← Zmp . Using the instantiation of AKGS given by [IW14], we have that the

(m + 1)-th label functions L
(ι)
m+1,t take the form L

(ι)
m+1,t(z[t]) = α[ι]z[t] − r(ι)t [m] with α[ι] a

constant.
– Compute the IPFE secret keys

IPFE.SK = IPFE.KeyGen(IPFE.MSK, [[α,0kn ‖ 0,0n,0n′ ,0n′]]2)

IPFE.SKj,t = IPFE.KeyGen(IPFE.MSK, [[`
(1)
j,t , . . . , `

(k)
j,t ‖ 0,0n,0n′ ,0n′]]2) for j ∈ [m]

̂IPFE.SKm+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [m], . . . , r

(k)
t [m],α ‖ 0, 0, 0, 0, 0, 0, 0]]2)

– Return SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])

Here, we separate public and private slots by “ ‖ ” and 0 denotes a vector of all zero elements.
Now, to produce a ciphertext CT for some attribute vectors (x, z), we use the following steps:

– Sample s← Zkp and use the slotted encryption of IPFE to compute the ciphertexts

IPFE.CT = IPFE.SlotEnc(IPFE.MSK, [[s, s⊗ x]]1)

̂IPFE.CTt = IPFE.SlotEnc(̂IPFE.MSK, [[−s, s · z[t]]]1) for all t ∈ [n′]

where ⊗ denotes the tensor product.

– return CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′])

Decryption first uses IPFE.Dec to compute

v · u = [[α · s]]T (1)

vj,t · u = [[
∑
ι

s[ι](`
(ι)
j,t · (1,x))]]T = [[`j,t]]T for j ∈ [m], t ∈ [n′] (2)

vm+1,t · ht = [[
∑
ι

s[ι](α[ι]z[t]− r(ι)t [m])]]T = [[`m+1,t]]T for t ∈ [n′] (3)

and then apply the evaluation procedure of AKGS to get

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T) = [[(α · s) · z[t]ft(x) + βt · s]]T . (4)

Finally, multiplying all these evaluated values and utilizing the fact
∑

t∈[n′] βt ·s = 0, we recover

f(x)>z =
∑

t∈[n′] z[t]ft(x).

The Simulator for Our One-Slot FE Scheme: We now describe our simulator of the adaptive
game for our one-slot FE scheme. Note that the private slots on the right side of “ ‖ ” will be
used by the simulator and we program them during the security analysis. For the q-th secret-key
query corresponding to a function fq = (fq,1, . . . , fq,n′), the simulator sets public slots of all the
vectors vq,vq,j,t for j ∈ {1, . . . ,mq + 1} as in the original key generation algorithm. Instead of
using the linear combination of the label vectors, the simulator uses freshly sampled garblings
to set the private slots. The pre-challenge secret key SKfq takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α[ι],0kn ‖ α̃q,0n,0n′ ,0n′]]2)
IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[`

(1)
q,j,t, . . . , `

(k)
q,j,t ‖ ˜̀q,j,t,0n′ ,0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [mq], . . . , r

(k)
t [mq],α ‖ 0, 0, r̃q,t[mq], α̃q, 0, 0, 0]]2)

12

where (˜̀q,1,t, . . . , ˜̀q,mq ,t)← Garble(α̃qz[t]fq,t(x) + β̃q,t; r̃q,t), α̃q, β̃q,t ← Zp such that
∑

t∈[n′] β̃q,t =
0 mod p. We write 0ξ as a vector of length ξ with all zero elements. To simulate the ci-
phertext for the challenge attribute x∗, the simulator uses the set of all functional values
V = {(fq, fq(x∗)>z∗) : q ∈ [Qpre]} to compute a dummy vector d satisfying fq(x

∗)>d =
fq(x

∗)>z∗ for all q ∈ [Qpre]. Since the inner product functionality is pre-image sampleable and
both fq,x

∗ are known to the simulator, a dummy vector d can be efficiently computed via a
polynomial time algorithm given by O’Niell [O’N10]. The simulated ciphertext becomes

IPFE.CT = IPFE.Enc(IPFE.MSK, [[0k,0kn ‖ 1,x∗,0n′ ,0n′]]1)

̂IPFE.CTt = IPFE.Enc(̂IPFE.MSK, [[0k,0k ‖ 1, 0,−1,d[t], 0, 0, 0]]1)

The post-challenge secret-key query for the q-th function fq = (fq,1, . . . , fq,n′) with q > Qpre is
answered using the simulator of AKGS. In particular, we choose βq,t ← Zp satisfying

∑
t∈[n′] βq,t =

0 mod p and compute the simulated labels as follows:

(̂̀q,1,1, . . . , ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · fq(x∗)>z∗ + βq,1) (5)

(̂̀q,1,t, . . . , ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, βq,t) for 1 < t ≤ n′ (6)

Note that, for post-challenge secret keys the functional value fq(x
∗)>z∗ is known and hence the

simulator can directly embed the value into the secret keys. The post-challenge secret key SKfq
takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α,0kn ‖ α̃q,0n,0n′ ,0n′]]2)
IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[`

(1)
j,t , . . . , `

(k)
j,t ‖ `q,j,t,0n,0n′ ,0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [mq], . . . , r

(k)
t [mq],α ‖ `q,mq+1,t, 0, 0, 0, 0, 0, 0]]2)

Security Analysis of Our One-Slot FE Scheme. To show the adaptive simulation-based
security of our FE scheme, we follow a sequence of hybrid experiments to move from the real
game to the ideal game with the simulated algorithms described above. The security analysis
has three steps where in the first step we apply function-hiding IPFE and MDDH assumption to
use freshly sampled garblings instead of linearly combined coefficient vectors. In the second step,
the dummy vector d is utilized in the challenge ciphertext to handle pre-challenge secret-key
queries. Here, we need to extend the framework of [LL20] to implement a three slot encryption
technique using function-hiding IPFE. Finally, in the third step, we use the simulator of AKGS
for simulating the post-challenge secret-key queries.

Step 1

Hybrid H0: This is the real adaptive simulation security game with all the real algorithms
described above.

Hybrid H1: Indistinguishable from H0 by the slot-mode correctness of the IPFE where we
replace the SlotEnc algorithm with the Enc algorithm of slotted IPFE.

u = (s, s⊗ x∗ ‖ 0 , 0n , 0n′ , 0n′),

ht = (−s, s · z∗[t] ‖ 0 , 0 , 0 , 0 , 0 , 0 , 0).

13

Hybrid H2: Indistinguishable from H1 by function-hiding IPFE

vq = (α, 0kn ‖ αq , 0n, 0n′ , 0n′)

vq,j,t = (`
(1)
q,j,t, . . . , `

(k)
q,j,t ‖ `q,j,t , 0n′ , 0n′) for j ∈ [mq]

u = (0k , 0kn ‖ 1 , x∗ , 0n′ , 0n′)

vq,mq+1,t = (r
(1)
t [mq], . . . , r

(k)
t [mq], α ‖ rq,t[mq] , αq , 0, 0, 0, 0, 0)

ht = (0k , 0k ‖ −1 , z∗[t] , 0, 0, 0, 0, 0)

where αq = αq · s, `q,j,t =
∑

ι s[ι]`
(ι)
q,j,t and rq,t[mq] =

∑
ι s[ι]r

(ι)
q,t [mq]. Since the inner product

values between the vectors remain the same, the indistinguishability follows from the function-
hiding property of IPFE.

Hybrid H3: Indistinguishable from H2 by MDDH assumption

vq = (α, 0kn ‖ α̃q , 0n, 0n′ , 0n′)

vq,j,t = (`
(1)
j,t , . . . , `

(k)
j,t ‖ ˜̀

q,j,t 0n′ , 0n′) for j ∈ [mq]

vq,mq+1,t = (r
(1)
t [mq], . . . , r

(k)
t [mq],α ‖ r̃q,t[mq] , α̃q , 0, 0, 0, 0, 0)

where α̃q, β̃q,t ← Zp satisfying
∑

t∈[n′] β̃q,t = 0 mod p and (˜̀q,1,t, . . . , ˜̀q,mq+1,t) ← Garble(α̃qz[t]

fq,t(x) + β̃q,t; r̃q,t). The indistinguishability follows from the MDDH assumption in the source
group G2. This completes the first step of the security analysis. In the next step, we use the
dummy vector d obtained via the pre-image sampling algorithm [O’N10] and execute our three
slot dual system encryption variant devised by extending the framework of [LL20].

Step 2

Hybrid H4: Indistinguishable from H3 by function-hiding security of IPFE

vq,mq+1,t = (· · · ‖ r̃q,t[mq], α̃q, 0, 0, 0, 0, 0)

ht = (· · · ‖ −1, z∗[t], −1 , d[t] , −1 , z∗[t] , 0)

Hybrid H5,q(q ∈ [Qpre]): Indistinguishable from H5,(q−1) via a sequence of sub-hybrids {H5,q,1,
H5,q,2,H5,q,3}. Hybrid H5,0 coincides with H4.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq] , α̃q′ , 0, 0, 0) for q′ ≤ q

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0) for q < q′ < Qpre

Hybrid H5,q,1(q ∈ [Qpre]): Indistinguishable from H5,(q−1) by function-hiding security of IPFE.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (· · · ‖ 0 , 0 , 0, 0, r̃q,t[mq] , α̃q , 0)

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0) for q < q′ < Qpre

14

Hybrid H5,q,2(q ∈ [Qpre]): Indistinguishable from H5,q,1 by piecewise security of AKGS and
function-hiding security of IPFE.

ht = (· · · ‖ − 1, z∗[t],−1,d[t],−1, d[t] , 0)

In order to establish the indistinguishability between H5,q,1 and H5,q,2, we actually rely on a
computational problem, namely the 1-key 1-ciphertext simulation security of a secret-key FE
scheme for attribute-weighted sums where the single key query is made before making the chal-
lenge ciphertext query. This scheme is presented in Section 4. The security of (secret-key) one
FE scheme follows from the piecewise security of AKGS and the function-hiding security of IPFE.
This is the core indistinguishability step that have been information theoretic in all prior ap-
plications of the extended dual system encryption methodology for adaptive attribute-hiding
security [OT12a, DOT18]. Built on the techniques of [LL20], we are able to make this core in-
distinguishability step computational and thus remove the one-use restriction in the context of
adaptive attribute-hiding security for the first time.

Hybrid H5,q,3(q ∈ [Qpre]): Indistinguishable from H5,q,2 by function-hiding security of IPFE.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (· · · ‖ 0, 0, r̃q,t[mq] , α̃q , 0 , 0 , 0)

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0) for q < q′ < Qpre

ht = (· · · ‖ −1, z∗[t], −1, d[t], −1, z∗[t] , 0)

Observe that H5,q,3 coincides with H5,q.

Hybrid H6: Indistinguishable from H5,Qpre by function-hiding security of IPFE

ht = (· · · ‖ − 1, z∗[t],−1,d[t], 0 , 0 , 0)

The second step of the security analysis is now over as all the pre-challenge secret keys decrypt the
challenge ciphertext using dummy vector d, instead of using the private attribute z∗. However,
we still require z∗ to be present in the vector ht for the successful decryption of the challenge
ciphertext by post-challenge secret keys since we have not yet altered the forms of the post-
ciphertext secret keys. The last step of the security analysis is similar to the selective game
of [AGW20] where the simulator of AKGS is employed to remove z∗ from the challenge ciphertext
and functional values are directly plugged into the post-challenge secret keys.

Step 3

Hybrid H7: Indistinguishable from H6 by function-hiding security IPFE.

vq,j,t = (· · · ‖ ˜̀q,j,t , 0n ,0n′ ,0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ ˜̀
q,mq+1,t , 0 , 0, 0, 0, 0, 0) for q > Qpre

ht = (· · · ‖ 1 , 0 , −1, d[t], 0, 0, 0)

15

Hybrid H8: Indistinguishable from H7 by simulation security of AKGS.

vq,j,t = (· · · ‖ ̂̀q,j,t ,0n,0n′ ,0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ ̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre

In hybrid H7, we use the honestly computed value ˜̀q,j,t = L̃q,j,t(x
∗) for j ∈ [mq] and ˜̀q,mq+1,t =

α̃qz
∗[t]−r̃q,t[mq]. After that, in H8, we utilize simulator of AKGS to simulate α̃q ·z∗[t]fq,t(x∗)+β̃q,t

using ˜̀q,j,t.
Hybrid H9: Statistically close to H8.

vq,j,t = (· · · ‖ ̂̀q,j,t ,0n,0n′ ,0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ ̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre

Finally, we change the distribution of {β̃q,t} to embed the value α̃q · fq(x∗)>z∗ + β̃q,1 into ̂̀q,j,1
and the value β̃q,t into ̂̀q,j,1 for 1 < t ≤ n′, as in equations 5 and 6. We observe that hybrid H9

is exactly the same as the simulator of our FE scheme.

From One-Slot FE to One-Slot extFE. We extend our one-slot FE to an extended FE scheme
which is required for applying the compiler of [AGW20] to bootstrap to the unbounded-slot FE
scheme. In an extFE scheme, as opposed to just taking a weight function f as input, the key
generation procedure additionally takes a vector y as input. Similarly, the encryption algorithm
takes an additional vector w in addition to a usual public/private vector pair (x, z) such that

SKf,y ← KeyGen(MSK, (f,y)), CT← Enc(MPK, (x, z ‖ w))

The decryption procedure recovers f(x)>z + y>w instead of f(x)>z like a regular one-slot
scheme. The main idea is to use the linearity of the Eval algorithm of AKGS. We add an extra
term ψt = νt · (α · s)y>w to the first garbling value `1,t so that equation 4 becomes

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T) · [[ψt]]T
= [[(α · s) · (ft(x)z[t] + νty

>w) + βt · s]]T

where νt ← Zp for t ∈ [n′] be such that
∑

t∈[n′] νt = 1 mod p. Therefore, multiplying all the
evaluated terms and using the inner product v · u = α · s, as in our one-slot FE scheme, we get
[[f(x)>z + y>w]]T using the fact that

∑
t∈[n′] βt · s = 0. The security analysis is similar to our

one-slot scheme.

2.2 Bootstrapping from One-Slot FE to Unbounded-Slot FE

Abdalla et al. [AGW20] devised a compiler that upgrades the one-slot FE into an unbounded-slot
FE scheme where the number of slots N can be arbitrarily chosen at the time of encryption. The
transformation also preserves the compactness of ciphertexts of the underlying one-slot scheme.
However, their transformation actually needs a one-slot extFE scheme as defined above.

16

The extFE scheme of [AGW20] is built in a bilinear group G = (G1,G2,GT , g1, g2, e) where
ciphertexts are encoded in the group G1 and secret keys in the group G2. Interestingly, the
structure of the extFE scheme of [AGW20] is such that the key generation procedure can still
be run if the vector y is given in the exponent of G2, that is, [[y]]2. The decryption, given
(SKf,y, (f, [[y]]2)), (CT,x), recovers [[f(x)>z+y>w]]T without leaking any additional information
about the vectors z,w. Now, the unbounded-slot FE (ubdFE) scheme follows a natural masking
procedure over the original one-slot scheme. More specifically, we use N extFE encryptions to
obtain ciphertexts {CTi}i∈[N] where CTi encrypts (xi, zi ‖ wi) with

∑
i∈[N]wi = 0 mod p.

The decryption procedure first computes individual sum [[f(xi)
>zi +y>wi]]T and then multiply

all the sums to learn
∑

i∈[N] f(xi)
>zi via solving a discrete logarithm problem (using brute

force). Abdalla et al. [AGW20] proved the semi-adaptive simulation-based security of the scheme
assuming MDDH assumption in the source group G2. The main idea was to gradually shift the
sum

∑
i∈[2,N] f(xi)

>zi from the last (N − 1) ciphertexts {CTi}i∈[2,N] to the first component of
the ciphertext CT1.

We apply the same high level strategy for proving the adaptive simulation security of the
transformation. However, in order to do so, we face two main obstacles. First, the reduction
must incorporate the decryption results of all the pre-ciphertext secret keys into the challenge
ciphertext. Therefore, for all the pre-ciphertext secret key queries (f,y), the reduction needs
to know [[y]]1 in order to simulate the challenge ciphertext and [[y]]2 to simulate the key. The
reason why y cannot be made available to the reduction in the clear at a high level, is that
the shifting of the sums into the first ciphertext component CT1 from a subsequent ciphertext
component, say CTη, once both CT1 and CTη are in the simulated form is to be done via a
computational transition based on some MDDH-like assumption. In case of [AGW20], there was
no pre-ciphertext key queries and hence the MDDH assumption in G2 was sufficient. However,
in our case, the MDDH assumption only in the source group G2 is not sufficient to shift the
sum

∑
i∈[2,N] f(xi)

>zi to the first ciphertext component without changing the adversary’s view.

Thus, we consider the bilateral MDDH (bMDDH) assumption [EHK+17, AGT20, Wee20] which
allows the vector components to be available in the exponent of both the source groups G1,G2:

{[[y]]1, [[y]]2, [[y
>wi]]1, [[y

>wi]]2}
c
≈ {[[y]]1, [[y]]2, [[u]]1, [[u]]2}

where u is uniform.

The second and more subtle obstacle arises in handling the pre-ciphertext secret key queries
in the simulated game. The simulator algorithm of [AGW20] uses the simulator of the under-
lying one-slot scheme to simulate the ciphertext and secret key components for the first slot
while it generates all other ciphertexts and secret key components normally. Now recall that
in the simulated adaptive security game, the simulator embed the outputs of all the functions
{fq}q∈[Qpre], for which the pre-ciphertext secret key queries are made, on the challenge message
{(xi, zi)}i∈[N], that is, the values {

∑
i∈[N] fq(xi)

>zi}q∈[Qpre] into the challenge ciphertext. Since
the simulator is only generating the ciphertext and secret key components for the first slot in
simulated format, we must embed the functional values {

∑
i∈[N] fq(xi)

>zi}q∈[Qpre] into the cipher-
text component corresponding to the first slot. As for the one-slot scheme, we aim to make use
of the pre-image sampling procedure for this embedding. However, this means we need to solve
the system of equations {fq(x1)

>d1 + y>q d2 =
∑

i∈[N] fq(xi)
>zi}q∈[Qpre] for (d1,d2). Clearly, this

system of equations may not possess a solution since the right-hand side contains the sum of
the functional values for all the slots while the left-hand side only involves entries corresponding
to the first slot. Further, even if solution exists information theoretically, finding it out in poly-

17

nomial time may not be possible given the fact that the simulator does not receive the vectors
{yq}q∈[Qpre] in the clear, rather in the exponent of group elements.

In order to overcome the above problem, rather than solving the above system of equations,
we instead solve the system of equations {fq(x∗)>d1 + y>q d2 + e>q d3 =

∑
i∈[N] fq(xi)

>zi}q∈[Qpre]

for (d1,d2,d3), where eq is the q-th unit vector. Note that this system of equations can be easily
solved by sampling the vectors d1,d2 randomly and then setting the q-th entry of the vector
d3 to be

∑
i∈[N] fq(xi)

>zi − fq(x∗)>d1 − y>q d2 for all q ∈ [Qpre]. However, this strategy would
necessitate the introduction of Qpre many additional subspaces into the ciphertext and secret key
components for the underlying one-slot extFE scheme to accommodate for d3. (Those subspaces
will contain 0s in the real scheme and only become active in the security proof). This, in turn,
requires setting a bound on Qpre, that is, the number of pre-ciphertext secret key queries, for
both the underlying extFE scheme and the resulting ubdFE scheme.

Based on the bMDDH assumption and the above pre-image sampling strategy, we are able to
show that the ubdFE scheme provides adaptive simulation-based security against a bounded num-
ber of pre-ciphertext secret key queries and an arbitrary polynomial number of post-ciphertext
secret key queries if the underlying extFE scheme is adaptive simulation secure against such
many secret key queries.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

3.1 Notations

We denote by λ the security parameter that belongs to the set of natural number N and 1λ

denotes its unary representation. We use the notation s ← S to indicate the fact that s is
sampled uniformly at random from the finite set S. For a distribution X , we write x ← X to
denote that x is sampled at random according to distribution X . A function negl : N → R is
said to be a negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger and an adver-
sary, which always outputs a single bit. We assume that ExptCA is a function of λ and it is
parametrized by an adversary A and a cryptographic protocol C. Let ExptC,0A and ExptC,1A be two
such experiment. The experiments are computationally/statistically indistinguishable if for any
PPT/computationally unbounded adversary A there exists a negligible function negl such that
for all λ ∈ N,

AdvCA(λ) = |Pr[1← ExptC,0A (1λ)]− Pr[1← ExptC,1A (1λ)]| < negl(λ)

We write ExptC,0A
c
≈ ExptC,1A if they are computationally indistinguishable (or simply indistinguish-

able). Similarly, ExptC,0A
s
≈ ExptC,1A means statistically indistinguishable and ExptC,0A ≡ ExptC,1A

means they are identically distributed.
For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with n < m, we denote [n,m]

be the set {n, n+ 1, . . . ,m}. We use lowercase boldface, e.g., v, to denote column vectors in Znp

18

and uppercase boldface, e.g., M, to denote matrices in Zn×mp for p, n,m ∈ N. The i-th component
of a vector v ∈ Znp is written as v[i] and the (i, j)-th element of a matrix M ∈ Zn×mp is denoted

by M[i, j]. The transpose of a matrix M is denoted by M> such that M>[i, j] = M[j, i].To
write a vector of length n with all zero elements, we write 0n or simply 0 when the length is
clear from the context. Let u,v ∈ Znp , then the inner product between the vectors is denoted as
u · v = u>v =

∑
i∈[n] u[i]v[i] ∈ Zp.

Let f : Znp → Zp be an affine function with coefficient vector f = (f [const], f [coef1], . . . , f [coefn]).
Then for any x ∈ Znp , we have f(x) = f [const] +

∑
i∈[n] f [coefi]x[i] ∈ Zp.

3.2 Bilinear Groups and Hardness Assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple G = (G1,G2,GT , g1,
g2, e) where G1,G2,GT are groups of prime order p = p(λ) and gi is a generator of the group Gi

for i ∈ {1, 2}. The map e : G1 ×G2 → GT satisfies the following properties:

– bilinear : e(ga1 , g
b
2) = e(g1, g2)

ab for all a, b ∈ Zp.
– non-degenerate: e(g1, g2) generates GT .

The group operations in Gi for i ∈ {1, 2, T} and the map e are efficiently computable in deter-
ministic polynomial time in the security parameter λ. For a matrix A and each i ∈ {1, 2, T},
we use the notation [[A]]i to denote gAi where the exponentiation is element-wise. The group
operation is written additively while using the bracket notation, i.e. [[Ai + B]]i = [[A]] + [[B]]i for
matrices A and B. Observe that, given A and [[B]]i, we can efficiently compute [[AB]]i = A · [[B]]i.
We write the pairing operation multiplicatively, i.e. e([[A]]1, [[B]]2) = [[A]]1[[B]]2 = [[AB]]T .

Assumption 1 (Matrix Diffie-Hellman Assumption) Let k = k(λ), ` = `(λ), q = q(λ) be
positive integers. We say that the MDDHqk,` assumption holds in Gi (i ∈ {1, 2, T}) if for all PPT
adversary A there exists a negligible function negl such that

Adv
MDDHqk,`
A (λ) = |Pr[1← A(G, [[A]]i, [[S

>A]]i)]− Pr[1← A(G, [[A]]i, [[U]]i)]| < negl(λ)

where G = (G1,G2,GT , g1, g2, e)← G(1λ),A← Zk×`p ,S← Zk×qp and U← Zq×`p .

Escala et al. [EHK+17] showed that the k-Linear (k-Lin) assumption [BBS04] implies MDDH1
k,k+1

and MDDH1
k,k+1 implies MDDHqk,` for all k, q ∈ N and ` > k with a tight security reduction.

Henceforth, we will use MDDHk to denote MDDH1
k,k+1.

We consider bilateral MDDHqk,` assumption which is a strengthening of the MDDHqk,` assumption.
The bilateral MDDHqk,` assumption is defined as follows.

Assumption 2 (Bilateral Matrix Diffie-Hellman Assumption) Let k = k(λ), ` = `(λ), q =
q(λ) be positive integers. We say that the bilateral MDDHqk,` (bMDDHqk,`) assumption holds if for
all PPT adversary A there exists a negligible function negl such that

Adv
bMDDHqk,`
A (λ) = |Pr[1← A(G, {[[A]]i, [[S

>A]]i}i∈{1,2})]−Pr[1← A(G, {[[A]]i, [[U]]i}i∈{1,2})]| < negl(λ)

where G = (G1,G2,GT , g1, g2, e)← G(1λ),A← Zk×`p ,S← Zk×qp and U← Zq×`p .

We consider the following lemma which will be useful in our security proof. This lemma is a
direct adaptation of Lemma 1 of [AGW20] in context of bMDDH.

19

Lemma 1 For any Q ∈ N and {µq}q∈[Q] ∈ Zp, we have

{[[−w>yq]]1, [[−w>yq]]2, [[µq +w>yq]]1, [[µq +w>yq]]2, [[yq]]1, [[yq]]2}q∈[Q],
c
≈{[[µq −w>yq]]1, [[µq −w>yq]]2, [[w>yq]]1, [[w

>yq]]2, [[yq]]1, [[yq]]2}q∈[Q]

where w, {yq}q∈[Q] ← Zkp, under the bMDDH1
k,Q assumption. More specifically, for any adversary

A distinguishing the two distributions, there exists an adversary B against the bMDDH1
k,Q problem

such that the distinguishing advantage of A is bounded by 2 · AdvbMDDH1
k,Q

B (λ).

Proof. The lemma can be proved by three simple hybrids as follows:

{[[−w>yq]]1, [[−w>yq]]2, [[µq +w>yq]]1, [[µq +w>yq]]2, [[yq]]1, [[yq]]2}q∈[Q]

c
≈{[[− uq]]1, [[− uq]]2, [[µq + uq]]1, [[µq + uq]]2, [[yq]]1, [[yq]]2}q∈[Q]

s
≈{ [[µq − uq]]1, [[µq − uq]]2 , [[uq]]1, [[uq]]2 , [[yq]]1, [[yq]]2}q∈[Q]

c
≈{[[µq − w>yq]]1, [[µq − w>yq]]2, [[w>yq]]1, [[w

>yq]]2 , [[yq]]1, [[yq]]2}q∈[Q]

where uq is uniform over Zp. The first computational indistinguishability holds due to bMDDH1
k,Q

assumption. The second indistinguishability is statistical as we have changed the variable uq by
uq−µq where both µq, uq are uniform over Zp. Finally, the last computational indistinguishability
holds again due to bMDDH1

k,Q assumption. ut

3.3 Arithmetic Branching Program

Arithmetic Branching Program (ABP) is a computational model [Nis91] that can be used to
model boolean formula, boolean branching program or arithmetic formula through a linear time
reduction with a constant blow-up in their respective sizes. In this work, we consider ABP over
Zp.

Definition 1 (Arithmetic Branching Program) An arithmetic branching program (ABP)
over Znp is a weighted directed acyclic graph (V,E, φ, v0, v1), where V is the set of all vertices,
E is the set of all edges, φ : E → (Znp → Zp) specifies an affine weight function for each edge,
and v0, v1 ∈ V are two distinguished vertices (called the source and the sink respectively). The
in-degree of v0 and the out-degree of v1 are 0. It computes a function f : Znp → Zp given by

f(x) =
∑
P∈P

∏
e∈P

φ(e)(x)

where P is the set of all v0-v1 path and e ∈ P denotes an edge in the path P ∈ P. The size of
the ABP is |V |, the number of vertices.

We denote by F (n)
ABP the class of ABPs over Znp :

F (n)
ABP = {f |f is an ABP over Znp for some prime p and positive integer n}

The class of ABP can be extended in a coordinate-wise manner to a ABPs f : Znp → Zn′p . More

precisely, an ABP f : Znp → Zn′p has all its weight functions φ = (φ1, . . . , φn′) : E → (Znp → Zn′p)

20

with each coordinate function φt for t ∈ [n′] of φ being an affine function in x having scalar
constants and coefficients. Therefore, such a function f can be viewed as f = (f1, . . . , fn′) with
each coordinate function ft : Znp → Zp being an ABP that has the same underlying graph
structure as that of f and having φt : E → (Znp → Zp) as the weight functions. The class of all
such functions is given by

F (n,n′)
ABP = {f = (f1, . . . , fn′) : Znp → Z(n′)

p |ft ∈ F
(n)
ABP for t ∈ [n′]}

Thus F (n)
ABP can alternatively be viewed as F (n,1)

ABP .

Lemma 2 [IK20] Let f = (V,E, φ, v0, v1) ∈ F (n,1)
ABP be an ABP of size m and v0, v2, . . . , vm−1, v1

be stored topologically. Let M be a square matrix of order (m− 1) defined by

M[i+ 1, j] =

0, i > j;

−1, i = j;

0, i < j, ei,j = (vi, vj) 6∈ E;

φ(ei,j), i < j, ei,j = (vi, vj) ∈ E.

Then the entries of M are affine in x and f(x) = det(M).

3.4 Functional Encryption for Attribute-Weighted Sum

We formally present the syntax of FE for attribute-weighted sum and define adaptive simulation

security of the primitive. We consider the function class F (n,n′)
ABP and message space M = (Znp ×

Zn′p)∗.

Definition 2 (The Attribute-Weighted Sum Functionality) For any n, n′ ∈ N, the class
of attribute-weighted sum functionalities is defined as(x ∈ Znp , z ∈ Zn′p) 7→ f(x)>z =

∑
t∈[n′]

ft(x)z[t] | f = (f1, . . . , fn′) ∈ F (n,n′)
ABP

Definition 3 (Functional Encryption for Attribute-Weighted Sum) An unbounded-slot

FE for attribute-weighted sum associated to the function class F (n,n′)
ABP and the message spaceM

consists of four PPT algorithms defined as follows:

Setup(1λ, 1n, 1n
′
): The setup algorithm takes as input a security parameter λ along with two

positive integers n, n′ representing the lengths of message vectors. It outputs the master secret-
key MSK and the master public-key MPK.

KeyGen(MSK, f): The key generation algorithm takes as input MSK and a function f ∈ F (n,n′)
ABP .

It outputs a secret-key SKf and make f available publicly.

Enc(MPK, (xi, zi)i∈[N]): The encryption algorithm takes as input MPK and a message
(xi, zi)i∈[N] ∈ (Znp × Zn′p)∗. It outputs a ciphertext CT and make (xi)i∈[N] available publicly.

Dec((SKf , f), (CT, (xi)i∈[N])): The decryption algorithm takes as input SKf and CT along
with f and (xi)i∈[N]. It outputs a value in Zp.

21

Correctness: The unbounded-slot FE for attribute-weighted sum is said to be correct if for all

(xi, zi)i∈[N] ∈ (Znp × Zn′p)∗ and f ∈ F (n,n′)
ABP , we get

Pr

Dec((SKf , f), (CT, (xi)i∈[N])) =
∑
i∈[N]

f(xi)
>zi :

(MSK,MPK)← Setup(1λ, 1n, 1n
′
),

SKf ← KeyGen(MSK, f),
CT← Enc(MPK, (xi, zi)i∈[N])

 = 1

We consider adaptively simulation-based security of FE for attribute-weighted sum.

Definition 4 Let (Setup, KeyGen, Enc, Dec) be an unbounded-slot FE for attribute-weighted

sum for function class F (n,n′)
ABP and message spaceM. The scheme is said to be (Qpre, QCT, Qpost)-

adaptively simulation secure if for any PPT adversary A making at most QCT ciphertext queries
and Qpre, Qpost secret key queries before and after the ciphertext queries respectively, we have

ExptReal,ubdFEA (1λ)
c
≈ ExptIdeal,ubdFEA (1λ), where the experiments are defined as follows. Also, an

unbounded-slot FE for attribute-weighted sums is said to be (poly, QCT, poly)-adaptively simu-
lation secure if it is (Qpre, QCT, Qpost)-adaptively simulation secure as well as Qpre and Qpost are
unbounded polynomials in the security parameter λ.

ExptReal,ubdFEA (1λ)

1. 1N ← A(1λ);
2. (MSK,MPK)← Setup(1λ, 1n, 1n

′
);

3. ((x∗i , z
∗
i)i∈[N])← AOKeyGen(MSK,·)(MPK);

4. CT∗ ← Enc(MPK, (x∗i , z
∗
i)i∈[N]);

5. return AOKeyGen(MSK,·)(MPK,CT∗)

ExptIdeal,ubdFEA (1λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK)← Setup∗(1λ, 1n, 1n

′
, 1N);

3. ((x∗i , z
∗
i)i∈[N])← A

OKeyGen∗0(MSK∗,·)(MPK)
4. CT∗ ← Enc∗(MPK,MSK∗, (x∗i)i∈[N],V);

5. return AOKeyGen∗1(MSK∗,(x∗
i
)i∈[N],·,·)(MPK,CT∗)

OKeyGen(MSK,·)

1. input: f
2. output: SKf

OKeyGen∗0(MSK∗,·)

1. input: fq for q ∈ [Qpre]
2. output: SK∗fq

Enc∗(MPK,MSK∗, (x∗i)i∈[N], ·)
1. input:
V = {((fq, SKfq),

∑
i∈[N] fq(x

∗
i)
>z∗i) : q ∈

[Qpre]}
2. output: CT∗

OKeyGen∗1(MSK∗,(x∗i)i∈[N],·,·)

1. input: fq,
∑

i∈[N] fq(x
∗
i)
>z∗i for q > Qpre

2. output: SK∗fq

3.5 Function-Hiding Slotted Inner Product Functional Encryption

A slotted inner product functional encryption (slotted IPFE), as defined by Lin and Luo [LL20], is
a hybrid variant of secret-key and public-key IPFE. More specifically, the index set S of the vectors
is partitioned into two sets Spub containing public slots and Spriv containing the private slots.
While computing secret-keys, the slotted IPFE encodes elements of the vector in public/private
slots using the master secret-key, similar to the case of secret-key IPFE. However, the encryption
procedure is only allowed to encode vector elements in the public slots using master public-key
as is the case for public-key IPFE. Lin and Luo [LL20] demonstrated that slotted IPFE lets us
use the dual system encryption techniques [Wat09,LW10,LOS+10] during the security analysis

22

of the cryptographic constructions built from it.Following Lin and Luo [LL20] we consider the
definition of slotted IPFE with respect to some pairing group , that is, all the vectors and inner
products in the scheme are encoded in the exponent of the underlying pairing group.

We present the formal notion of slotted IPFE almost verbatim from [LL20].

Definition 5 (Slotted Inner Product Functional Encryption, [LL20]) Let G = (G1,G2,
GT , g1, g2, e) be a tuple of pairing groups of prime order p. A slotted inner product functional
encryption (IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1λ, Spub, Spriv): The setup algorithm takes as input a security parameter λ and two
disjoint index sets, the public slot Spub and the private slot Spriv. It outputs the master secret-key
IPFE.MSK and the master public-key IPFE.MPK. Let S = Spub∪Spriv be the whole index set and
|S|, |Spub|, |Spriv| denote the number of indices in S, Spub and Spriv respectively.

IPFE.KeyGen(IPFE.MSK, [[v]]2): The key generation algorithm takes as input IPFE.MSK and

a vector [[v]]2 ∈ G|S|2 . It outputs a secret-key IPFE.SK for v ∈ Z|S|p .

IPFE.Enc(IPFE.MSK, [[u]]1): The encryption algorithm takes as input IPFE.MSK and a vector

[[u]]1 ∈ G|S|1 . It outputs a ciphertext IPFE.CT for u ∈ Z|S|p .

IPFE.Dec(IPFE.SK, IPFE.CT): The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from GT .

IPFE.SlotEnc(IPFE.MPK, [[u]]1): The slot encryption algorithm takes as input IPFE.MPK and

a vector [[u]]1 ∈ G|Spub|
1 . It outputs a ciphertext IPFE.CT for (u||0|Spriv|) ∈ Z|S|p .

Correctness: The correctness of a slotted IPFE scheme requires the following two properties.

– Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for all
u,v ∈ Z|S|p , we have

Pr

Dec(IPFE.SK, IPFE.CT) = [[v·u]]T :
(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.SK← KeyGen(IPFE.MSK, [[v]]2),
IPFE.CT← Enc(IPFE.MSK, [[u]]1)

 = 1

– Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if for all

vectors u ∈ Z|Spub|
p , we have{

(IPFE.MSK, IPFE.MPK, IPFE.CT) :
(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.CT← Enc(IPFE.MSK, [[u||0|Spriv|]]1)

}
,

≡

{
(IPFE.MSK, IPFE.MPK, IPFE.CT) :

(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.CT← SlotEnc(IPFE.MPK, [[u]]1)

}

23

Security: Let (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc) be a slotted IPFE.
The scheme is said to be adaptively function-hiding secure if for all PPT adversary A, we have

ExptFH-IPFE
A (1λ, 0)

c
≈ ExptFH-IPFEA (1λ, 1), where the experiment ExptFH-IPFEA (1λ, b) for b ∈ {0, 1} is

defined as follows:

ExptFH-IPFE
A (1λ, b)

1. (Spub, Spriv)← A(1λ);
2. (IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv);
3. return AOKeyGenb

(·,·),OEncb
(·,·)(IPFE.MPK) if

v0j |Spub
= v1j |Spub

and v0j · u0
i = v1j · u1

i for all
{[[v0j]]2, [[v1j]]2}j, {[[u0

i]]1, [[u
1
i]]1}i queried by A to

OKeyGenb(·, ·) and OEncb(·, ·) respectively.

OKeyGenb(·, ·):
1. input: [[v0j]]2, [[v

1
j]]2 ∈ G|S|2

2. output
IPFE.SKj ← KeyGen(IPFE.MSK, [[vbj]]2)

OEncb(·, ·):
1. input: [[u0

i]]1, [[u
1
i]]1 ∈ G|S|1

2. output
IPFE.CTi ← Enc(IPFE.MSK, [[ubi]]1)

where vj|Spub
represents the elements of vj sitting at the indices in Spub.

Lemma 3 ([Lin17,LL20]) Let G = (G1,G2,GT , g1, g2, e) be a tuple of pairing groups of prime
order p and k ≥ 1 an integer constant. If MDDHk holds in both groups G1,G2, then there is an
adaptively function-hiding secure IPFE scheme based on G.

3.6 Arithmetic Key Garbling Scheme

Lin and Luo [LL20] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [AIK11] and partial
garbling schemes [IW14]. It garbles a function f : Znp → Zp (possibly of size (m+ 1)) along with
two secrets z, β ∈ Zp and produces affine label functions L1, . . . , Lm+1 : Znp → Zp. Given f , an
input x ∈ Znp and the values L1(x), . . . , Lm+1(x), there is an efficient algorithm which computes
zf(x) + β without revealing any information about z and β.

Definition 6 (Arithmetic Key Garbling Scheme (AKGS), [IW14,LL20]) An arithmetic
garbling scheme (AKGS) for a function class F = {f}, where f : Znp → Zp, consists of two efficient
algorithms:

Garble(zf(x) + β): The garbling is a randomized algorithm that takes as input a description
of the function zf(x) + β with f ∈ F and scalars z, β ∈ Zp where z,x are treated as variables.
It outputs (m + 1) affine functions L1, . . . , Lm+1 : Zn+1

p → Zp which are called label functions
that specifies how input is encoded as labels. Pragmatically, it outputs the coefficient vectors
`1, . . . , `m+1.

Eval(f, x, `1, . . . , `m+1): The evaluation is a deterministic algorithm that takes as input a
function f ∈ F , an input vector x ∈ Znp and integers `1, . . . , `m+1 ∈ Zp which are supposed to
be the values of the label functions at (x, z). It outputs a value in Zp.

Correctness: The AKGS is said to be correct if for all f : Znp → Zp ∈ F , z, β ∈ Zp and x ∈ Znp ,
we have

Pr

Eval(f,x, `1, . . . , `m+1) = zf(x) + β :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z) for j ∈ [m+ 1]

 = 1

24

The scheme have deterministic shape, meaning that m is determined solely by f , independent of
z, β and the randomness in Garble. The number of label functions, (m+ 1), is called the garbling
size of f under this scheme.

Linearity: The AKGS is said to be linear if the following conditions hold:

– Garble(zf(x) + β) uses a uniformly random vector r ← Zm′p as its randomness, where m′ is
determined solely by f , independent of z, β.

– The coefficient vectors `1, . . . , `m+1 produced by Garble(zf(x) + β) are linear in (z, β, r).
– Eval(f,x, `1, . . . , `m+1) is linear in `1, . . . , `m+1.

Simulation-Based Security: In this work, we consider linear AKGS for our application. Now,
we state the usual simulation-based security of AKGS, which is similar to the security of partial
garbling scheme [IW14].

An AKGS = (Garble, Eval) for a function class F is secure if there exists an efficient algorithm
SimGarble such that for all f : Znp → Zp, z, β ∈ Zp and x ∈ Znp , the following distributions are
identically distributed:{

(`1, . . . , `m+1) :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z) for j ∈ [m+ 1]

}
,{

(̂̀1, . . . , ̂̀m+1) : (̂̀1, . . . , ̂̀m+1)← SimGarble(f,x, zf(x) + β)

}
The simulation security of AKGS is used to obtain semi-adaptive or selective security of FE for
attribute-weighted sum [AGW20], however it is not sufficient for achieving adaptive security. We
consider the piecewise security of AKGS proposed by Lin and Luo [LL20] where they used it to
get adaptive security for ABE.

Definition 7 (Piecewise Security of AKGS, [LL20]) An AKGS = (Garble, Eval) for a func-
tion class F is piecewise secure if the following conditions hold:

– The first label value is reversely sampleable from the other labels together with f and x.
This reconstruction is perfect even given all the other label functions. Formally, there exists
an efficient algorithm RevSamp such that for all f : Znp → Zp ∈ F , z, β ∈ Zp and x ∈ Znp , the
following distributions are identical:{

(`1, `2, . . . , `m+1) :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`1 ← L1(x, z)

}
,(`1, `2, . . . , `m+1) :

(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z) for j ∈ [2,m+ 1],
`1 ← RevSamp(f,x, zf(x) + β, `2, . . . , `m+1)

– For the other labels, each is marginally random even given all the label functions after it.

Formally, this means for all f : Znp → Zp ∈ F , z, β ∈ Zp,x ∈ Znp and all j ∈ [2,m + 1], the
following distributions are identical:

25

{
(`j, `j+1, . . . , `m+1) :

(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Lj(x, z)

}
,{

(`j, `j+1, . . . , `m+1) :
(`1, . . . , `m+1)← Garble(zf(x) + β),
`j ← Zp

}

Lemma 4 ([LL20]) A piecewise secure AKGS = (Garble, Eval) for a function class F is also
simulation secure.

We now define special structural properties of AKGS as given in [LL20], related to the piecewise
security of it.

Definition 8 (Special Piecewise Security of AKGS, [LL20]) An AKGS = (Garble, Eval)
for a function class F is special piecewise secure if for any f : Znp → Zp ∈ F , z, β ∈ Zp and
x ∈ Znp , it has the following special form:

– The first label value `1 is always non-zero, i.e., Eval(f,x, 1, 0, . . . , 0) 6= 0 where we take `1 = 1
and `j = 0 for 1 < j ≤ (m+ 1).

– Let r ← Zm′p be the randomness used in Garble(zf(x) + β). For all j ∈ [2,m + 1]. the label
function Lj produced by Garble(zf(x) + β; r) can be written as

Lj(x) = kjr[j − 1] + L′j(x; z, β, r[j], r[j + 1], . . . , r[m′])

where kj ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L′j is an affine function
of x whose coefficient vector is linear in (z, β, r[j], r[j+1], . . . , r[m′]). The component r[j−1]
is called the randomizer of Lj and `j.

Lemma 5 ([LL20]) A special piecewise secure AKGS = (Garble, Eval) for a function class F
is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained for
a special piecewise secure AKGS is linear in γ, `2, . . . , `m+1 and perfectly recovers `1 even if the
randomness of Garble is not uniformly sampled. More specifically, we have the following:

Eval(f,x, `1, . . . , `m+1) = `1Eval(f,x, 1, 0, . . . , 0) + Eval(f,x, 0, `2, . . . , `m+1) (7)

RevSamp(f,x, γ, `2, . . . , `m+1) = (Eval(f,x, 1, 0, . . . , 0))−1(γ − Eval(f,x, 0, `2, . . . , `m+1)) (8)

Note that, equation 7 follows from the linearity of Eval and equation 8 ensures that RevSamp
perfectly computes `1 (which can be verified by equation 7 with γ = zf(x) + β).

Lemma 6 ([LL20]) A piecewise secure AKGS = (Garble, Eval) is also special piecewise secure
after an appropriate change of variable for the randomness used by Garble.

Instantiation of AKGS: ([IW14,LL20]). We now discuss an instantiation of AKGS = (Garble,

Eval) for the function class F = F (n,1)
ABP following [IW14,LL20].

Garble(zf(x) +β): It takes input an ABP f : Znp → Zp ∈ F (n,1)
ABP of size (m+ 1) and two secrets

z, β ∈ Zp. The algorithm works as follows:

1. Using Lemma 2, it computes a matrix M ∈ Zm×mp such that det(M) is the output of the
function f .

26

2. Next, it augments M into an (m+ 1)× (m+ 1) matrix M′:

M′ =

∗ ∗ · · · ∗ ∗ β

−1 ∗ · · · ∗ ∗ 0

−1 · · · ∗ ∗ 0
. . .

...
...

...

0 −1 ∗ 0

0 0 · · · 0 −1 z

=

 M m1

m>2 z

3. It samples its randomness r ← Zmp and sets N =

(
Im r
0 1

)
.

4. Finally, it defines the label functions by computing

M̂ = M′N =

 M Mr +m1

m>2 m>2 r + z

 =

L1(x)

L2(x)

M
...

Lm(x)

0 0 · · · 0 −1 Lm+1(z)

and outputs the coefficient vectors `1, . . . , `m+1 of L1, . . . , Lm+1.

Remark 1 We note down some structural properties of Garble as follows:

– The label function Lj for every j ∈ [m] is an affine function of the input x and Lm+1 is an
affine function of z. It follows from the fact that M′ is affine in x, z and N is independent of
x, z. Hence, the last column of the product M′N, which is the label functions L1, . . . , Lm+1,
are affine in x, z.

– The output size of Garble is determined solely by the size of f (as an ABP), hence Garble has
deterministic shape.

– Note that Garble is linear in (z, β, r), i.e., the coefficient vectors `1, . . . , `m+1 are linear in
(z, β, r). It follows from the fact that M,m2 are independent of (z, β, r), and r,m1, z are
linear in (z, β, r). Hence, Mr+m1, which defines the label functions L1, . . . , Lm, andm>2 r+z,
which is the label function Lm+1, are linear in (z, β, r).

– The last label function Lm+1 is in a special form, meaning that it is independent of x, β and
r[j < m]. In particular, it takes the form Lm = m>2 r + z = z − r[m]. Thus, the elements of
the coefficient vector `m+1 are all zero except the constant term, i.e., `m[const] = z − r[m]
and `m[coefi] = 0 for all i ∈ [n].

Eval(f, x, `1, . . . , `m): It takes input an ABP f : Znp → Zp ∈ F (n,1)
ABP of size (m + 1), an input

x ∈ Znp and (m+ 1) labels `1, . . . , `m+1. It proceeds as follows:

1. It computes the matrix M using Lemma 2 after substituting x.

27

2. Next, it augments M to get the matrix

M̂ =

`1

`2

M
...

`m

0 0 · · · 0 −1 `m+1

3. It returns det(M̂).

For correctness of the evaluation procedure, we see that when `j = Lj(x) for all j ∈ [m] and
`m+1 = Lm+1(z), Eval computes

det(M̂) = det(M′N) = det(M′)det(N) = det(M′) = zdet(M) + β = zf(x) + β.

The determinant of M′ is calculated via Laplace expansion in the last column.

Remark 2 Here, we observe some structural properties of Eval which we require for our appli-
cation.

– If we consider the Laplace expansion of det(M̂) in the last column then Eval can be written
as

Eval(f,x, `1, . . . , `m+1) = A1`1 + A2`2 + · · ·+ Am+1`m+1 (9)

where Aj is the (j, (m+1))-cofactor of M̂. This shows that Eval is linear in `1, . . . , `m+1. Due
to this linearity feature, Eval can be computed in the exponent of any bilinear group. More
precisely, suppose G = (G1,G2,GT , g1, g2, e) be a bilinear group then for any i ∈ {1, 2, T},
we have Eval(f,x, [[`1]]i, . . . , [[`m+1]]i) = [[Eval(f,x, `1, . . . , `m+1)]]i.

– Now, in particular, the coefficient of `1 is A1 = (−1)2+m(−1)m = 1. Therefore, for any
non-zero δ ∈ Zp, we can write

δ + Eval(f,x, `1, . . . , `m+1) = Eval(f,x, δ, 0, . . . , 0) + Eval(f,x, `1, . . . , `m+1) (10)

= Eval(f,x, `1 + δ, `2, . . . , `m+1) (11)

where equation 10 holds due to equation 9 and A1 = 1; and equation 11 holds by the linearity
of Eval. We will utilize equation 11 in our extended one slot FE construction.

Now, we describe the simulator of AKGS which simulates the values of label functions by using
f,x and zf(x) + β.

SimGarble(f, x, zf(x) + β): The simulator works as follows:

1. It defines a set H =

{(
Im r
0 1

) ∣∣∣∣∣r ∈ Zmp

}
which forms a matrix subgroup.

28

2. Following Lemma 2, it computes the matrix M using f,x and sets the matrix

M′′ =

zf(x) + β

0

M
...

0

0 0 · · · 0 −1 0

which defines a left coset M′′H = {M′′N|N ∈ H}.

3. It uniformly samples a random matrix from the coset M′′H and returns the last column of
the matrix as simulated values of the label functions.

The simulation security follows from [IW14]. They observed that M′′ belongs to the coset
M′H and hence by the property of cosets M′′H = M′H which proves the security. We omit the
details here and state the security of AKGS in the following lemma.

Lemma 7 ([LL20]) The above construction of AKGS = (Garble, Eval) is secure. Moreover, it
is special piecewise secure as per Definition 8.

4 1-Key 1-Ciphertext Secure One-Slot FE for Attribute-Weighted
Sums

In this section, we first describe a private-key one-slot FE scheme for the attribute-weighted sum
functionality that is proven simulation secure against a single ciphertext query and a single secret
key query either before or after the ciphertext query. This scheme would be crucially embedded
into the hidden slots for our full-fledged public-key one-slot FE scheme for attribute-weighted
sums presented in the next section. We describe the construction for any fixed value of the secu-
rity parameter λ and suppress the appearance of λ for simplicity of notations. Let (Garble,Eval) be

a special piecewise secure AKGS for a function class F (n,n′)
ABP , G = (G1,G2,GT , g1, g2, e) a tuple of

pairing groups of prime order p, and (SK-IPFE.Setup.SK-IPFE.KeyGen, SK-IPFE.Enc, SK-IPFE.Dec)
a secret-key function-hiding SK-IPFE based on G.

Setup(1n, 1n
′
): Define the index sets as follows

S1-FE =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

It generates IPFE.MSK← SK-IPFE.Setup(S1-FE) and ̂IPFE.MSK← SK-IPFE.Setup(Ŝ1-FE). Finally,

it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, f): Let f ∈ F (n,n′)
ABP be a function such that f = (f1, . . . , fn′) : Znp × Zn′p → Zp

where f1, . . . , fn′ : Znp → Zp are ABPs of size (m + 1). Sample βt ← Zp for t ∈ [n′] such that∑
t∈[n′] βt = 0 mod p. Next, sample independent random vectors rt ← Zmp for garbling and

compute the coefficient vectors

(`1,t, . . . , `m,t, `m+1,t)← Garble(z[t]ft(x) + βt; rt)

29

for all t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Section 3.6. From
the description of that AKGS instantiation, we note that the (m + 1)-th label function `m+1,t

would be of the form `m+1,t = z[t]− rt[m]. Also all the label functions `1,t, . . . , `m,t involve only
the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors
vj,t corresponding to the label functions `j,t obtained from the partial garbling:

vector const coefi simτ sim∗τ

vj,t `j,t[const] `j,t[coefi] 0 0

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

It generates the secret-keys as

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SKf = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Enc(MSK, x ∈ Znp , z ∈ Zn′

p): It sets the vectors

vector const coefi simτ sim∗τ

u 1 x[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Dec((SKf , f), (CT, x)): It parses the secret-key SKf = ({IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]) and the ciphertext CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryption
algorithm of SK-IPFE to compute

[[`j,t]]T = SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[`m+1,t]]T = SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T).

Finally, it returns a value ρ by solving a discrete logarithm problem. Similar to [AGW20], we
assume that the desired attribute-weighted sum lies within a specified polynomial-sized domain
so that discrete logarithm can be solved via brute force.

30

Correctness: By the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) = [[`j,t]]T =

[[Lj,t(x)]]T for all j ∈ [m], t ∈ [n′] and SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) = [[`m+1,t]]T =
[[z[t]− rt[m]]]T for all t ∈ [n′]. Next, using the correctness of AKGS and the linearity of the Eval
function, we have

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T) = [[ft(x)z[t] + βt]]T

Therefore, we get by multiplying

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T)

= [[
n′∑
t=1

Eval(ft,x, `1,t, . . . , `m+1,t)]]T

= [[
n′∑
t=1

ft(x)z[t] + βt]]T

= [[f(x)>z]]T

where the last equality holds since
∑

t∈[n′] βt = 0 mod p.

4.1 Security Analysis

Theorem 2 The 1-FE scheme for attribute-weighted sum is 1-key, 1-ciphertext adaptive simu-
lation secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7 and
the IPFE is function hiding as per Definition 5.

We proceeds with the description of the simulator and then security reduction of our 1-key
1-ciphertext secure one-slot FE. Recall that, we have designed the 1-key 1-ciphertext secure
one-slot FE for the purpose of showing the indistinguishability in a particular hybrid required
in the security reduction of the one-slot FE of Section 5. In that particular hybrid, we deal
with a single pre-ciphertext secret key query of the one-slot FE scheme. Thus, while proving
the security of our 1-key 1-ciphertext secure one-slot FE, we assume that the adversary queries
a single secret key before the challenge ciphertext is sent. However, we emphasize that if we
consider the single secret key query after the challenge phase then the security can also be
proved using the techniques involved in the security reduction (in Section 5.1) of our one-slot
FE.

The Simulator We describe the simulator for the 1-FE scheme. Let us assume that f is the
only secret-key query made by the adversary before it sends the challenge ciphertext vectors.

Setup∗(1λ, 1n, 1n
′
): To generate the master secret-key, it executes as follows:

1. Define the index sets as follows

S1-FE =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

2. It then generates IPFE.MSK← SK-IPFE.Setup(S1-FE) and ̂IPFE.MSK← SK-IPFE.Setup(Ŝ1-FE).

3. It outputs MSK∗ = (IPFE.MSK, ̂IPFE.MSK).

31

KeyGen∗0(MSK∗, f): On input MSK∗ and a function f = (f1, . . . fn′) ∈ F (n,n′)
ABP , the simulator

proceeds as in the original scheme:

1. It first samples {βt ← Zp}t∈[n′] and {rt = (rt[1], . . . , rt[m]) ← Zmp }t∈[n′] where it holds that∑
t∈[n′] βt = 0 mod p.

2. Next, it computes the coefficient vectors for the label functions as

(`1,t, . . . , `m,t, `m+1,t)← Garble(z∗[t]ft(x
∗) + βt; rt)

for each t ∈ [n′]. From the description of AKGS, we note that the (m + 1)-th label function
`m+1,t would be of the form `m+1,t = z[t]− rt[m].

3. It sets the following vectors

vector const coefi simτ sim∗τ

vj,t `j,t[const] `j,t[coefi] 0 0

for all j ∈ [m] and t ∈ [n′]. It also sets the following vectors

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

for all t ∈ [n′].
4. It generates the IPFE secret-keys

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

5. Finally, it returns the secret-key SKf = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Enc∗(MSK∗, x∗, (f, f(x∗)>z∗)): On input MSK∗, a vector x∗ ∈ Znp and the tuple (f, f(x∗)>z∗)

for some f ∈ F (n,n′)
ABP and z∗ ∈ Zn′p the simulator executes the following steps:

1. It samples a dummy vector d← D from the set

D = {d ∈ Zn′p : f(x∗)>d = f(x∗)>z∗}.

The simulator does this by finding a random vector d ∈ Zn′p such that
∑

t∈[n′] ft(x
∗)z∗[t] =∑

t∈[n′] ft(x
∗)d[t]. Hence, D is identical to the set DIP = {d ∈ Zn′p : (f1(x

∗), . . . , fn′(x
∗)) ·

(d[1], . . . ,d[n′]) = f(x∗)>z∗}. A vector d from a set of the form DIP can be efficiently sampled
via a polynomial time algorithm given by O’Neill [O’N10] as the inner product functionality is
pre-image-sampleable. Therefore, given x∗ and (f, f(x∗)>z∗), the simulator can find a dummy
vector d such that f(x∗)>d = f(x∗)>z∗.

2. Next, it sets the following vectors

vector const coefi simτ sim∗τ

u 1 x∗[i] 0 0

32

vector ĉonst ĉoef ŝim∗

ht -1 d[t] 0

for all t ∈ [n′].
3. It encrypts the vectors as

IPFE.CT← SK-IPFE.Enc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Hybrids and Reductions

Proof. We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-FEA (1λ) and the ideal experiment ExptIdeal,1-FEA (1λ) with the
simulator described above where A is any PPT adversary. We assume that in each experiment,

A queries the single secret-key query for a function f ∈ F (n,n′)
ABP before submitting the challenge

message (x∗, z∗) ∈ Znp × Zn′p .

Hybrid H0: : This is the real experiment ExptReal,1-FEA (1λ) defined in Section 3.4. The secret-key

SKf = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) is associated with the vectors vj,t given by

vector const coefi simτ sim∗τ

vj,t `j,t[const] `j,t[coefi] 0 0

for j ∈ [m] and t ∈ [n′] and

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

for t ∈ [n′] where
(`1,t, . . . , `m,t, `m+1,t)← Garble(z∗[t]ft(x

∗) + βt; rt)

such that f = (f1, . . . , fn′) ∈ F (n,n′)
ABP , rt ← Zmp and βt ← Zp with

∑
t∈[n′] βt = 0 mod p. The

challenge ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponds to (x∗, z∗) ∈ Znp × Zn′p is
associated with the vectors u and ht given by

vector const coefi simτ sim∗τ

u 1 x∗[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z∗[t] 0

for t ∈ [n′]. In the subsequent hybrids, we’ll omit the names of the indices of the vectors
{vj,t}j∈[m+1],t∈[n′],u, {ht}t∈[n′] and we’ll assume that the entries of those vectors lie in those
indices as in the order mentioned in H0.

33

Hybrid H1: : This hybrid is exactly the same as H0 except that we change the vectors v1,t in
the secret-key and u in the challenge ciphertext as follows.

v1,t = (0 , 0 , δtτ , 0),

vj,t = (`j,t[const], `j,t[coefi], 0, 0) ∀1 < j ≤ m,
vm+1,t = (rt[m], 1, 0, 0),

u = (1, x∗[i], `1,τ , 0),

ht = (−1, z∗[t], 0).

Here δtτ is the Kronecker Delta where δtτ = 1 if t = τ , and 0 otherwise. Thus the difference
between H0 and H1 is that instead of embedding the coefficient vectors `1,t of the label functions
L1,t obtained from Garble(z∗[t]ft(x

∗)+βt; rt), we embed the value of the label functions L1,t(x
∗) =

`1,t within the ciphertext vector u. Note that the inner products v1,t · u = `1,t, for all t ∈
[n′], remain the same as in H0. Therefore, the function hiding security of SK-IPFE ensures the
indistinguishability between the hybrids H0 and H1.

Hybrid H2: : This hybrid is identical to H1 except that we replace the actual garbling values
`1,t with the reverse sampling ˜̀1,t of AKGS computed as

˜̀
1,t ← RevSamp(ft,x

∗, ft(x
∗)z∗[t] + βt, `2,t, . . . , `m,t, `m+1,t)

where `j,t = Lj,t(x
∗) for all j ∈ [2,m] and `m+1,t = z∗[t]−rt[m] obtained by running Garble(z∗[t]

ft(x
∗) + βt; rt) honestly. Therefore, the challenge ciphertext is now associated with the vectors

u = (1, x∗[i], ˜̀1,τ , 0),

ht = (−1, z∗[t], 0).

For each t ∈ [n′], the piecewise security of AKGS guarantees that given (`2,t, . . . , `m,t, `m+1,t),

the actual garbling `1,t and the reversely sampled value ˜̀1,t are identically distributed. Hence,
the hybrids H1 and H2 are indistinguishable by the reverse sampleability of AKGS.

Hybrid H3,j (j ∈ [m]): : This is analogous to H2 except that we change the secret-key as
follows. For all j′ such that 1 < j′ < j, the coefficient vector `j′,t is taken away from vj′,t and a
random value `′j′,t ← Zp is put into vj′,t[const]. The modified secret-key is now associated with
the vectors

v1,t = (0, 0, δtτ , 0),

vj′,t = (`′j′,t , 0 , 0, 0) ∀1 < j′ < j,

vj,t = (`j,t[const], `j,t[coefi], 0, 0),
vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0) ∀j < j′ ≤ m,

vm+1,t = (rt[m], 1, 0)

Note that, in this hybrid ˜̀1,t is reversely sampled using the random values `′2,t, . . . , `
′
j−1,t and

the actual values `j,t, . . . , `m+1,t for each t ∈ [n′]. Observe that H3,1 coincides with H2. We will
show that for all j ∈ [2,m], the hybrids H3,(j−1) and H3,j are indistinguishable via the following
sequence of sub-hybrids, namely, {H3,j,1,H3,j,2,H3,j,3}j∈[2,m].

34

Hybrid H3,j,1 (j ∈ [2,m]): : This is exactly same as H3,(j−1) except that the coefficient
vector `j,t is removed from vj,t and vj,t[sim

∗
τ] is set to δtτ . We hardwire the actual garbling value

`j,τ = Lj,τ (x
∗) into u[sim∗τ] to ensure the inner product vj,τ · u remains the same as in H3,(j−1).

The changes in the vectors associated with the secret-key and the challenge ciphertext are given
below.

v1,t = (0, 0, δtτ , 0),
vj′,t = (`′j′,t, 0, 0 0) ∀1 < j′ < j,

vj,t = (0 , 0 , 0, δtτ),

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0) ∀j < j′ ≤ m,
vm+1,t = (rt[m], 1, 0),

u = (1, x∗[i], ˜̀
1,τ , `j,τ),

ht = (−1, z∗[t], 0).

Therefore, the hybrids H3,(j−1) and H3,j,1 are indistinguishable by the function hiding security of
IPFE.

Hybrid H3,j,2 (j ∈ [2,m]): : It proceeds exactly the same as H3,j,1 except that the label `j,τ
(sitting at u[sim∗τ]) is replaced with a random value `′j,τ ← Zp. The vectors associated to the
challenge ciphertext are given by

u = (1, x∗[i], ˜̀1,τ , `′j,τ),

ht = (−1, z∗[t], 0)

where `′j,τ are randomly sampled from Zp. Now the first label ˜̀1,t is reversely sampled using the
random values `′2,t, . . . , `

′
j,t and the actual labels `j+1,t = Lj+1,t(x

∗), . . . , `m,t = Lm,t(x
∗), `m+1,t =

−rt[m]+z∗[t]. Hence, the marginal randomness property of AKGS ensures that the hybrids H3,j,1

and H3,j,2 are identically distributed.

Hybrid H3,j,3 (j ∈ [2,m]): : This hybrid is exactly the same as H3,j,2 except that the random
value `′j,τ is sifted from u[sim∗τ] to vj,t[const]. Also, the positions u[sim∗τ] and vj,t[sim

∗
τ] are set to

zero. The vectors associated to the secret-key and the challenge ciphertext become

v1,t = (0, 0, δtτ , 0),
vj′,t = (`′j′,t, 0, 0, 0) ∀1 < j′ < j,

vj,t = (`′j,t , 0, 0, 0),

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0) ∀j < j′ ≤ m,
vm+1,t = (rt[m], 1, 0),

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (−1, z∗[t], 0).

Since the inner products vj,t · u for all j ∈ [m], t ∈ [n′] remain the same as in H3,j,2, the
indistinguishability between the hybrids H3,j,2 and H3,j,3 follows from the function hiding security
of IPFE. We observe that the hybrids H3,j,3 is identical to H3,j for all j ∈ [2,m].

35

Hybrid H4: : It proceeds exactly the same as hybrid H3,m except that the the actual garbling
value `m+1,t = z∗[t] − rt[m] for the label function Lm+1,t obtained from the Garble algorithm is

used in ht[ŝim
∗]. The changes are given by

v1,t = (0, 0, δtτ , 0),
vj,t = (`′j,t, 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (0 , 0 , 1),

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (1 , 0 , `m+1,t).

Since the inner products vm+1,t ·ht for all t ∈ [n′] remain the same as in H3,m, the indistinguisha-
bility between the hybrids H3,m and H4 follows from the function hiding security of IPFE.

Hybrid H5: : It is exactly the same as H4 except that the actual label `m+1,t is now replaced
with a random value `′m+1,t ← Zp. The vectors used in the challenge ciphertext are as follows.

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (1, 0, `′m+1,t)

Note that, in this hybrid the labels ˜̀1,t for t ∈ [n′] are now reversely sampled using all random
values `′2,t, . . . , `

′
m+1,t which are randomly picked from Zp. By the marginal randomness property

of AKGS, the hybrids H4 and H5 are identically distributed.

Hybrid H6: : This hybrid proceeds exactly the same as H5 except that the random values `′m+1,t

are shifted from ht[ŝim
∗] to vm+1,t[ĉonst]. The changes are indicated as follows.

v1,t = (0, 0, δtτ , 0),
vj,t = (`′j,t, 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (`′m+1,t , 0, 0),

u = (1, x∗[i], ˜̀1,τ , 0),

ht = (1, 0, 0).

Observe that the inner products vm+1,t · ht for t ∈ [n′] are unchanged as in H5. Hence, the
function hiding security of IPFE ensures the indistinguishability between the hybrids H5 and H6.

Hybrid H7: : It is analogous to H6 except that the values ft(x
∗)z∗[t] is removed from ˜̀

1,t for

all 1 < t ≤ n′ and the value f(x∗)>z∗ is directly encoded into the label ˜̀1,1. For this, we replace
the random elements βt by β′t = βt − ft(x∗)z∗[t] for all 1 < t ≤ n′ and change the element β1
with β′1 = β1 − f1(x∗)z∗[1] + f(x∗)>z∗. Note that, the distributions

{βt ← Zp :
∑
t∈[n′]

βt = 0} and {β′t :
∑
t∈[n′]

βt = 0}

are statistically close since {β′t}t∈[n′] are also uniform over Zp and
∑

t∈[n′] β
′
t = 0. Thus the vectors

of the challenge ciphertext become

u = (1, x∗[i], ˜̀1,τ , 0),

ht = (1, 0, 0).

36

where the labels ˜̀1,τ are given by˜̀
1,1 ← RevSamp(f1,x

∗, f1(x
∗)z∗[1] + β′1, `2,1, . . . , `m+1,1)

= RevSamp(f1,x
∗, f(x∗)>z∗ + β1, `2,1, . . . , `m+1,1)˜̀

1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)z[τ] + βτ , `2,τ , . . . , `m+1,τ) ∀1 < τ ≤ n′

= RevSamp(fτ ,x
∗, βτ , `2,τ , . . . , `m+1,τ)

Thus, H6 and H7 are indistinguishable as they are statistically close.

Hybrid H8: : This hybrid is exactly the same as H7 except that we use a dummy vector d
such that f(x∗)>z∗ = f(x∗)>d while generating ˜̀1,1. After the secret-key query made by A, the
dummy vector d can be sampled via an efficient algorithm which only need f1(x

∗), . . . , fn′(x
∗)

and f(x∗)>z∗. This is due to the pre-image-sampleability property of inner product functionality
demonstrated by [O’N10]. Thus, the vector u associated with the challenge ciphertext is now
defined as

u = (1,

coefi︷ ︸︸ ︷
x∗[1], . . . ,x∗[n],

simτ︷ ︸︸ ︷˜̀
1,1 , ˜̀1,2 . . . , ˜̀1,n′ , sim∗τ︷ ︸︸ ︷

0, . . . , 0)

where the labels {˜̀1,τ}τ∈[n′] are computed as˜̀
1,1 ← RevSamp(f1,x

∗, f(x∗)>d+ β1, `2,1, . . . , `m+1,1)˜̀
1,τ ← RevSamp(fτ ,x

∗, βτ , `2,τ , . . . , `m+1,τ) ∀1 < τ ≤ n′.

Above, we write the full expression of the vector u as opposed to its compressed expression
used so far in order to highlight the change. Since the inner products vj,t · u for j ∈ [m], t ∈
[n′] are unaltered between the two hybrids, the function hiding security of IPFE preserved the
indistinguishability of the hybrids H7 and H8.

Hybrid H9: : The following sequence of hybrids is basically the reverse of the previous hybrids
with z∗ replaced with d. Therefore, in this hybrid the vectors of the challenge ciphertext are
distributed as

u = (1, x∗[i], ˜̀1,τ , 0),

ht = (1, 0, 0).

where ˜̀1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)d[τ] +βτ , `2,τ , . . . , `m+1,τ). This can be done by replacing β1
by β1 − f(x∗)>d + f1(x

∗)d[1] and for τ > 1, βτ is replaced by βτ + fτ (x
∗)d[τ]. Note that, H8

and H9 are statistically close.

Hybrid H10: : In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, δtτ , 0),
vj,t = (`′j,t, 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (0 , 0, 1),

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (1, 0, `′m+1,t).

where `′m+1,t ← Zp. The indistinguishability between the hybrids H9 and H10 follows from the
function hiding security of IPFE.

37

Hybrid H11: : It is exactly the same as H10 except that the random value `′m+1,t ← Zp is
changed to actual `m+1,t = d[t]− rt[m]. Then the vectors in the challenge ciphertext become

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (1, 0, `m+1,t).

The hybrids H10 and H11 are identical due to the marginal randomness property of AKGS.

Hybrid H12: : In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, δtτ , 0),
vj,t = (`′j,t, 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (rt[m] , 1 , 0),

u = (1, x∗[i], ˜̀1,τ , 0),

ht = (−1 , d[t] , 0).

The indistinguishability between the hybrids H11 and H12 follows from the function hiding secu-
rity of IPFE.

Hybrid H13,m+1−j (j ∈ [m − 1]): : It is analogous to H12 except the secret-key is modified
as follows. For all j′ such that m+ 1− j ≤ j′ < m+ 1, the random value `′j′,t ← Zp is discarded
from vj′,t[const] and the coefficient vector `j′,t is used in vj′,t.

v1,t = (0, 0, δtτ , 0),
vj′,t = (`′j′,t, 0, 0, 0) ∀1 < j′ < m+ 1− j,

vm+1−j,t = (`′m+1−j,t, 0, 0, 0),

vj′,t = (`j′,t[const] , `j′,t[coefi] , 0, 0) ∀m+ 1− j ≤ j′ < m+ 1,

vm+1,t = (rt[m], 1, 0).

In this hybrid, the label ˜̀1,t is reversely sampled using the random values `′2,t, . . . , `
′
m+1−j,t

and the actual values `m−j+2,t, . . . , `m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1−j can be shown to be indistinguishable via the following sequence of sub-hybrids, namely,
{H13,m+1−j,1,H13,m+1−j,2,H13,m+1−j,3}.

Hybrid H13,m+1−j,1 (j ∈ [m − 1]): : It proceeds exactly the same as H13,m+1−(j−1) except
that the random values `′m+1−j,t are sifted from vm+1−j,t[const] to u[sim∗τ]. We modify vectors
associated with the secret-key and the challenge ciphertext as follows

v1,t = (0, 0, δtτ , 0),
vj′,t = (`′j′,t, 0, 0, 0) ∀1 < j′ < m+ 1− j,

vm+1−j,t = (0 , 0, 0, δtτ),

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0) ∀m+ 1− j ≤ j′ < m+ 1,
vm+1,t = (rt[m], 1, 0),

u = (1, x∗[i], ˜̀
1,τ , `

′
m+1−j,τ),

ht = (−1, d[t], 0).

The indistinguishability between the hybrids H13,m+1−)j−1) and H13,m+1−j,1 follows from the func-
tion hiding security of IPFE.

38

Hybrid H13,m+1−j,2 (j ∈ [m− 1]): : It is exactly same as H13,m+1−j,1 except that the random
values `′m+1−j,τ at u[sim∗τ] are now replaced with the actual labels `m+1−j,τ = Lm+1−j,τ (x

∗). The
change in the vector u associated to the challenge ciphertext is indicated as below.

u = (1, x∗[i], ˜̀1,τ , `m+1−j,τ),

ht = (−1, d[t], 0, 0).

The indistinguishability between the hybrids H13,m+1−j,1 and H13,m+1−j,2 follows from the marginal
randomness property of AKGS.

Hybrid H13,m+1−j,3 (j ∈ [m−1]): : It proceeds analogously to H13,m+1−j,2 except that instead
of the actual labels `m+1−j,t = Lm+1−j,t(x

∗) we use the coefficient vectors `m+1−j,t to set vm+1−j,t.
Also, the positions u[sim∗τ] are set to zero to keep the inner products vm+1−j,t ·u unaltered as in
H13,m+1−j,2. The changes in vectors associated with the secret-key and the challenge ciphertext
are shown below.

v1,t = (0, 0, δtτ , 0),
vj′,t = (`′j′,t, 0, 0, 0) ∀1 < j′ < m+ 1− j,

vm+1−j,t = (`m+1−j,t[const] , `m+1−j,t[coefi] , 0, 0),

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0) ∀m+ 1− j ≤ j′ < m+ 1,
vm+1,t = (rt[m], 1, 0, 0),

u = (1, x∗[i], ˜̀
1,τ , 0),

ht = (−1, d[t], 0, 0).

The indistinguishability between the hybrids H13,m+1−j,2 and H13,m+1−j,3 follows from the function
hiding security of IPFE. We observe that H13,m+1−j,3 is identical to H13,m+1−j for all j ∈ [m− 1].

Hybrid H14: : This hybrid proceeds exactly the same as H13,2 except that the reversely sampled

labels ˜̀1,τ are replaced with the actual labels `1,τ = L1,τ (x
∗) when setting u[simτ]. The vectors

associated with the challenge ciphertext are given by

u = (1, x∗[i], `1,τ , 0),

ht = (−1, d[t], 0).

The indistinguishability between the hybrids H13,2 and H14 follows from the reversely sampleabil-
ity guaranteed by the piecewise security of AKGS.

Hybrid H15: : It is analogous to H14 except that the actual labels `1,τ = L1,τ (x
∗) are removed

from u[simτ] and the coefficient vectors `1,t are utilized while setting the vectors v1,t for all
t ∈ [n′]. The vectors associated with the secret-key and the challenge ciphertext are shown
below.

v1,t = (`1,t[const] , `1,t[coefi] , 0 , 0),

vj,t = (`j,t[const], `j,t[coefi], 0, 0) ∀1 < j ≤ m,
vm+1,t = (rt[m], 1, 0),

u = (1, x∗[i], 0 , 0),
ht = (−1, d[t], 0).

Since the inner products v1,t · u = `1,t, for all t ∈ [n′], remain the same as in H14, the function
hiding security of IPFE ensures the indistinguishability between the hybrids H14 and H15. Observe
that the hybrid H15 coincides with the ideal experiment ExptIdeal,1-FEA (1λ). ut

39

5 One-Slot FE for Attribute-Weighted Sums

In this section we present our public-key one-slot FE scheme Πone for the attribute-weighted
sum functionality that is proven adaptively simulation secure against a single ciphertext query
and an arbitrary polynomial number of secret key queries both before and after the cipher-
text query. As outlined in Remark 3 below, this scheme can naturally be extended to one
supporting a bounded number of ciphertext queries. We describe the construction for any
fixed value of the security parameter λ and suppress the appearance of λ for simplicity of

notations. Let (Garble,Eval) be a special piecewise secure AKGS for a function class F (n,n′)
ABP ,

G = (G1,G2,GT , g1, g2, e) a tuple of pairing groups of prime order p such that MDDHk holds in
G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We construct
an FE scheme for attribute-weighted sums with the message space M = Znp × Zn′p .

Setup(1n, 1n
′
): Define the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n]

}
, Ŝpub =

{
ĉonst

(ι)
, ĉoef

(ι)}
ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗
}.

It generates (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK) ←
IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK = (IPFE.MPK,

̂IPFE.MPK).

KeyGen(MSK, f): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP . Sample α,βt ← Zkp for t ∈ [n′] such that∑

t∈[n′]

βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Zmp and computes

(`
(ι)
1,t, . . . , `

(ι)
m,t, `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t)

for all ι ∈ [k], t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Section 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function

`
(ι)
m+1,t would be of the form `

(ι)
m+1,t = α[ι]z[t] − r(ι)t [m] where α[ι] is a constant. Also all the

label functions `
(ι)
1,t, . . . , `

(ι)
m,t involve only the variables x and not the variable z[t]. Next, for all

j ∈ [m] and t ∈ [n′], it defines the vectors vj,t corresponding to the label functions `
(ι)
j,t obtained

from the partial garbling above as

vector const(ι) coef
(ι)
i Spriv

v α[ι] 0 0

vj,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

40

It generates the secret-keys as

IPFE.SK← IPFE.KeyGen(IPFE.MSK, [[v]]2)

IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Enc(MPK, x ∈ Znp , z ∈ Zn′

p): It samples s← Zkp and set the vectors

vector const(ι) coef
(ι)
i

u s[ι] s[ι]x[i]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Dec((SKf , f), (CT, x)): It parses the secret-key SKf = (IPFE.MSK, {IPFE.MSKj,t}j∈[m],t∈[n′],

{ ̂IPFE.MSKm+1,t}t∈[n′]) and the ciphertext CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryp-
tion algorithm of IPFE to compute

[[µ]]T = IPFE.Dec(IPFE.SK, IPFE.CT)

[[`j,t]]T = IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[`m+1,t]]T = IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T).

Finally, it returns a value ζ from a polynomially bounded set P such that [[ρ]]T = [[µ]]T · [[ζ]]T ;
otherwise ⊥.

Correctness: By the correctness of IPFE, AKGS and the linearity of the Eval function we have

Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T)

= [[
k∑
ι=1

α[ι]s[ι] · ft(x)z[t] + βt[ι]s[ι]]]T

= [[α · s · ft(x)z[t] + βt · s]]T

Therefore, [[ρ]]T = [[
∑n′

t=1α · s · ft(x)z[t] + βt · s]]T = [[α · sf(x)>z]]T since
∑

t∈[n′] βt[ι] = 0

mod p for all ι ∈ [k]. Also, by the correctness of IPFE we see that [[µ]]T = [[α · s]]T and hence
[[ζ]]T = [[f(x)>z]]T ∈ P .

41

Remark 3 (Multi-Ciphertext Scheme) The one-slot FE scheme Πone described above is se-
cure against adversaries that are restricted to query a single ciphertext. However, we can easily
modify the FE scheme to another FE that is secure for any a-priori bounded number of ciphertext
queries from the adversary’s end. For the extension, we introduce additional (2n′+2)qCT private
slots on each ciphertext and decryption key sides, where qCT denotes the number of ciphertext
queries. More specifically, we add 2n′qCT and 2qCT dimensional hidden slots to Spriv and Ŝpriv
respectively to handle the qCT ciphertext queries during the security reduction. Consequently,
the sizes of system parameters, secret-keys and ciphertext would grow linearly with qCT. A sim-
ilar strategy can be followed to convert our extended one-slot FE scheme (of Section B) that
only supports a single ciphertext query to one that is secure for any a-priori bounded number
of ciphertext queries.

5.1 Security Analysis

Theorem 3 The one slot FE scheme Πone for attribute-weighted sum is adaptively simulation-
secure assuming the AKGS is piecewise secure as per Definition 7, the MDDHk assumption holds
in group G2 as per Assumption 1, and the slotted IPFE is function hiding as per Definition 5.

The Simulator We describe the simulator for the one slot FE scheme Πone.

Setup∗(1λ, 1n, 1n
′
): To generate the master public/secret keys, it executes as follows:

1. Define the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n]

}
,

Ŝpub =
{
ĉonst

(ι)
, ĉoef

(ι)}
ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗
}.

2. It generates (IPFE.MSK, IPFE.MPK)← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK)←
IPFE.Setup(Ŝpub, Ŝpriv).

3. It outputs MSK∗ = (IPFE.MSK, ̂IPFE.MSK) and MPK∗ = (IPFE.MPK, ̂IPFE.MPK).

KeyGen∗0(MSK∗, fq): On input MSK∗, a function fq = (fq,1, . . . fq,n′) for q ∈ [Qpre] the simulator
proceeds as follows:
Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t[1], . . . ,βq,t[k]) ← Zkp and r
(ι)
q,t = (r

(ι)
q,t [1], . . . , r

(ι)
q,t [mq]) ← Zmqp

where it holds that ∑
t∈[n′]

βq,t[ι] = 0 mod p for all ι ∈ [k].

2. Next, it computes the coefficient vectors for the label functions as

(`
(ι)
q,1,t, . . . , `

(ι)
q,mq ,t, `

(ι)
q,mq+1,t)← Garble(αq[ι]z

∗[t]fq,t(x
∗) + βq,t[ι]; r

(ι)
q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function `
(ι)
q,mq+1,t would be of the form `

(ι)
q,mq+1,t = αq[ι]z

∗[t]− r(ι)q,t [mq].

42

3. It picks αq ← Zkp and sets the public positions at the indexes in Spub, Ŝpub of following vectors

vector const(ι) coef
(ι)
i

vq αq[ι] 0

vq,j,t `
(ι)
q,j,t[const] `

(ι)
q,j,t[coefi]

for all j ∈ [mq] and t ∈ [n′]. It also sets the following vectors

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r
(ι)
q,t [mq] αq[ι]

for all t ∈ [n′].

Setting Private Positions:

4. It samples α̃q, β̃q,t ← Zp for t ∈ [n′] satisfying
∑

t∈[n′] β̃q,t = 0.

5. Next, it picks r̃q,t ← Zmqp and computes the coefficient vectors for the label functions as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label function˜̀
q,mq+1,t would be of the form ˜̀

q,mq+1,t = α̃qz
∗[t]− r̃q,t[mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

vector const coefi simτ sim∗τ

vq α̃q 0 0 0

vq,j,t ˜̀
q,j,t[const] ˜̀q,j,t[coefi] 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t 0 0 r̃q,t[mq] α̃q 0 0 0

for all t ∈ [n′].
7. It generates the IPFE secret-keys as

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

8. Finally, it returns SKfq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t}t∈[n′]).

43

Enc∗(MPK∗,MSK∗, x∗,V): On input MSK∗, a vector x∗ ∈ Znp and a set V = {(fq, fq(x∗)>z∗) :
q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector d from the set

D = {d ∈ Zn′p : fq(x
∗)>d = fq(x

∗)>z∗ for all q ∈ [Qpre]}.

The simulator does this by finding a random vector d ∈ Zn′p such that
∑

t∈[n′] fq,t(x
∗)d[t] =∑

t∈[n′] fq,t(x
∗)z∗[t] for all q ∈ [Qpre]. Hence, D is identical to the set DIP = {d ∈ Zn′p :

(fq,1(x
∗), . . . , fq,n′(x

∗)) · (d[1], . . . ,d[n′]) = fq(x
∗)>z∗ for all q ∈ [Qpre]}. A vector d from a

set of the form DIP can be efficiently sampled via a polynomial time algorithm given by
O’Neill [O’N10] as noted earlier. Therefore, given x∗ and V , the simulator can find a dummy
vector d such that fq(x

∗)>d = fq(x
∗)>z∗ holds for every q ∈ [Qpre].

2. Next, it sets the following vectors

vector const(ι) coef
(ι)
i const coefi simτ sim∗τ

u 0 0 1 x∗[i] 0 0

and

vector ĉonst
(ι)

ĉoef
(ι)

ht 0 0

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

ht 1 0 −1 d[t] 0 0 0

for all t ∈ [n′].
3. It encrypts the vectors as

IPFE.CT← IPFE.Enc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

KeyGen∗1(MSK∗, x∗, fq, fq(x∗)>z∗): On input MSK∗, x∗ ∈ Znp , a function fq = (fq,1, . . . fq,n′) ∈
F (n,n′)

ABP for q ∈ [Qpre + 1, Q] and fq(x
∗)>z∗ ∈ Zp the simulator proceeds as follows:

Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and vq,j,t
analogous to KeyGen∗0(MSK∗, fq).

Setting Private Positions:

2. First, it samples a random elements α̃q, β̃q,t ← Zp, for t ∈ [n′], satisfying
∑

t∈[n′] β̃q,t = 0 and
then runs the simulator of the AKGS to obtain

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · fq(x∗)>z∗ + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

44

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi simτ sim∗τ

vq α̃q 0 0 0

vq,j,t ̂̀
q,j,t 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t
̂̀
q,mq+1,t 0 0 0 0 0 0

for all t ∈ [n′].

4. It generates the IPFE secret-keys as

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.MSKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

5. It outputs SKfq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t}t∈[n′]).

Hybrids and Reductions

Proof. We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal, FEA (1λ) and the ideal experiment ExptIdeal, FEA (1λ) with the
simulator described above where A is any PPT adversary. In each experiment, A can query

a polynomial number of secret-key queries for functions fq ∈ F (n,n′)
ABP , both before and after

submitting the challenge message (x∗, z∗) ∈ Znp × Zn′p . Let Q be the total number of secret-
key queries and Qpre (< Q) be the number of secret-keys queried before making the challenge
message. We denote the q-th secret-key by SKfq corresponding to a function fq. For the ease of

presentation, we write the vector elements sitting in the public slots Spub, Ŝpub in blue color and

the vector elements sitting in the private slots Spriv, Ŝpriv in red color. More precisely, we do this
so that while describing the hybrid games, we sometimes omit the public parts of the vectors
and write down only the private parts when the changes occur only in the private parts. Now,
we describe the hybrids as follows:

Hybrid H0: This is the real experiment ExptReal, FEA (1λ) defined in Definition 4 (with single slot,
i.e., N = 1). For any q ∈ [Q], the q-th secret-key SKfq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t}t∈[n′]) is associated with the vectors vq,vq,j,t given by

vq = (αq[ι], 0, 0, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi], 0, 0, 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq], αq[ι], 0, 0, 0, 0, 0, 0, 0).

45

for j ∈ [mq] and t ∈ [n′]. Note that αq and r
(ι)
q,t are random vectors sampled from Zkp and Zmqp

respectively. For all t ∈ [n′], the garblings are computed as

(`q,1,t, . . . , `q,mq ,t, `q,mq+1,t)← Garble(αq[ι]z
∗[t]fq,t(x

∗) + βq,t[ι]; r
(ι)
q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Zkp with
∑

t∈[n′] βq,t[ι] = 0 mod p ∀ι ∈ [k]. The challenge

ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponds to (x∗, z∗) ∈ Znp × Zn′p is associated
with the vectors u and ht given by

u = (s[ι], s[ι]x∗[i],⊥,⊥,⊥,⊥),

ht = (−s[ι], s[ι]z∗[t],⊥,⊥,⊥,⊥,⊥,⊥,⊥),

for t ∈ [n′] and s← Zkp. Note that, in the real experiment, CT∗ is computed using IPFE.SlotEnc
and therefore the elements sitting at the indexes in Spriv are set as ⊥ for the vectors u and ht.

Hybrid H1: It is exactly the same as hybrid H0 except the fact that here the challenge ciphertext

CT∗ is generated using IPFE.Enc using MSK = (IPFE.MSK, ̂IPFE.MSK). As a result the private
positions of u and ht (in CT∗) are changed from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.

Hybrid H2: This hybrid is similar to H1 except that in the private slots of the vectors used to
compute SKfq , we put one single garbling that linearly combines k garblings with weight vector
s ∈ Zkp instead of using k independent garblings associated to each index j ∈ [mq] of the vectors
vq,j,t and a single random element combining the weight vector s in vq instead of using a random
vector αq. Accordingly, we modify the challenge ciphertext CT∗ by omitting the weight vector s
and setting the public slots to zero of the vectors u,ht to ensure the inner products computed
at the time of decryption remains the same in both the hybrids.

In H1, the public slots of the vectors vq,vq,j,t are occupied by a vector αq ∈ Zkp and the

garblings `
(ι)
q,j,t computed using randomness r

(ι)
q,t ∈ Zmqp . In the public slots of the vectors u,ht,

we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore, the IPFE decryption lets us recover
[[µq]]T , [[`q,j,t]]T such that

µq = αq · s = αq (say),

`q,j,t = (`
(1)
q,j,t, . . . , `

(k)
q,j,t) · (s[1](1,x∗), . . . , s[k](1,x∗))

= (s[1]`
(1)
q,j,t, . . . , s[k]`

(k)
q,j,t) · ((1,x∗), . . . , (1,x∗))

= `q,j,t · (1,x∗)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t for all j ∈ [mq] and t ∈ [n′]. Similarly, the (mq + 1)-th garbling

returns

`q,mq+1,t = ((r
(1)
q,t [mq],αq[1]), . . . , (r

(k)
q,t [mq],αq[k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))

= (s[1](r
(1)
q,t [mq],αq[1]), . . . , s[k](r

(k)
q,t [mq],αq[k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))

= (rq,t[mq], αq) · (−1, z∗[t])

46

where rq,t[mq] =
∑

ι∈[k] s[ι]r
(ι)
q,t [mq]. In H2, we use αq, `q,j,t and rq,t[mq] in the private slots of the

vectors associated to SKfq as described below

vq = (αq[ι], 0, αq , 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi], `q,j,t[const] , `q,j,t[coefi] , 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], rq,t[mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit it in
the vectors u and ht. Moreover, the public slots of u and ht are set to zero as the inner product
is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 1 , x∗[i] , 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0),

Finally, we observe that the inner products vq ·u,vq,j,t ·u and vq,mq+1,t ·ht for all j ∈ [mq], t ∈ [n′]
remain the same as in H1. Thus, the function hiding property of IPFE preserves the indistin-
guishability between the hybrids H1 and H2.

Note that, in this hybrid we pick αq,βq,t, s ← Zkp and r
(ι)
q,t ← Zmqp for all t ∈ [n′], ι ∈ [k]

satisfying
∑

t∈[n′] βq,t[ι] = 0 mod p for each ι ∈ [k]. Then, the linearity of the Garble algorithm
allows us to write

(`q,1,t, . . . , `q,mq ,t, `q,mq+1,t)← Garble(αqz
∗[t]fq,t(x

∗) + βq,t; rq,t)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t, rq,t =

∑
ι∈[k] s[ι]r

(ι)
q,t and βq,t = βq,t · s.

Hybrid H3: It is analogous to H2 except the liner combinations αq, `q,j,t, rq,t in the private slots
of the vectors vq,vq,j,t,vq,mq+1,t are replaced with freshly and independently generated random

values and garblings α̃q, ˜̀q,j,t, r̃q,t. More specifically, we sample random elements α̃q, β̃q,t ← Zp
for all t ∈ [n′] such that

∑
t∈[n′] β̃q,t = 0 mod p and a vector r̃q,t ← Zmqp . Then, the garblings

are computed as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t)

for all t ∈ [n′]. The vectors involved in SKfq are modified as follows:

vq = (αq[ι], 0, α̃q , 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

˜̀
q,j,t[const] , ˜̀q,j,t[coefi] , 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], r̃q,t[mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑
ι∈[k]

s[ι]r
(ι)
q,t

47

where a common weight vector s has been used to set vq,vq,j,t. On the other hand, in H3, fresh

and independent random elements α̃q, β̃q,t, r̃q,t are used to compute SKfq . Note that the elements
of the vectors vq,vq,j,t are only used in the exponent of the source group G2 while generating

the IPFE secret-keys. Let us consider the matrix Aq,t = (αq ‖ βq,t ‖ (Rq,t)
>) ∈ Zk×(mq+2)

p where

Rq,t = (r
(1)
q,t ‖ . . . ‖ r

(k)
q,t) ∈ Zmq×kp . Since the matrix Aq,t is uniformly chosen from Zk×(mq+2)

p and
s is uniform over Zkp, by the MDDHk assumption in group G2 we have

([[Aq,t]]2, [[s
>Aq,t]]2︸ ︷︷ ︸

in H2

)
c
≈ ([[Aq,t]]2, [[(α̃q, β̃q,t, r̃q,t)]]2︸ ︷︷ ︸

in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable under
the MDDHk assumption with k < mq + 2.

Hybrid H4: It is exactly the same as hybrid H3 except we change the way the vectors ht for
all t ∈ [n′] are computed while producing the challenge ciphertext. After all the pre-challenge
secret-key queries made by A, a dummy vector d is picked from the set

D = {d ∈ Zn′p : fq(x
∗)>d = fq(x

∗)>z∗ for all q ∈ [Qpre]}

via an efficient algorithm proposed in [O’N10], and then the vectors u,ht associated with the
ciphertext are defined as below.

u = (0, 0, 1,x∗[i], 0, 0),

ht = (0, 0,−1, z∗[t], −1 , d[t] , −1 , z∗[t] , 0),

Note that, these changes in ht have no effect in the final inner product between vq,mq+1,t and ht

since the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) where the changes take place in ht correspond to zero
entries in vq,mq+1,t. Therefore, by the function hiding property of IPFE, the hybrids H3 and H4

remain indistinguishable to the adversary.

From the next hybrid we will modify the pre-challenge secret-key queries and the challenge
ciphertext so that the decryption results become fq(x

∗)>d for all q ∈ [Qpre] for some vector d ∈
Zn′p . Note that, d is a dummy vector which is sampled from Zn′p such that fq(x

∗)>d = fq(x
∗)>z∗

for all q ∈ [Qpre]. This is done through a loop of hybrids described below.

Hybrid H5,q (q ∈ [Qpre]): It proceeds similar to H4 except that for each 1 ≤ q′ ≤ q, we modify
the vector vq,mq+1,t as described below.

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′] , α̃q′ , 0, 0, 0) for q′ ≤ q

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

Note that, the post-challenge secret-key queries are still answered according to H4. Observe that
H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via the following
sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.

48

Hybrid H5,q,1 (q ∈ [Qpre]): It is analogous to H5,(q−1) except that in the qth secret-key query
the vector vq,mq+1,t is modified as follows.

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t[mq] , α̃q , 0),

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

We observe that this change in vq,mq+1,t has no effect in the inner product vq,mq+1,t · ht for all
t ∈ [n′]. Therefore, the function hiding security of IPFE ensures that the hybrids H5,(q−1) and
H5,q,1 are indistinguishable.

In this hybrid, the positions of vq,j,t|Spriv
and vq,mq+1,t[ĉonst],vq,mq+1,t[ĉoef],vq,mq+1,t[ŝim],

vq,mq+1,t[ŝim
∗
] are exactly the same as in the secret-key of our 1-FE scheme. Similarly, in the

case of the challenge ciphertext, the positions of u|Spriv
and ht[ĉonst],ht[ĉoef],ht[ŝim],ht[ŝim

∗
]

are also identical to the ciphertext of our 1-FE scheme.

Hybrid H5,q,2 (q ∈ [Qpre]): It is exactly the same as H5,q,1 except that the position ht[ĉoef] is
changed from z∗[t] to d[t] as shown below.

u = (0, 0, 1,x∗[i], 0, 0),

ht = (0, 0,−1, z∗[t],−1,d[t],−1, d[t] , 0),

All the secret-keys are answered as in the previous hybrid. The indistinguishability follows from
the security of our 1-FE scheme. We note that the security of our 1-FE relies on the function
hiding security of IPFE and the security of AKGS. In particular, we use the security of IPFE and
AKGS to reversely sample the first label and make all the other labels random as shown below˜̀

q,1,1 ← RevSamp(fq,1,x
∗, α̃qfq(x

∗)>z∗ + β̃q,1, `2,1, . . . , `mq+1,1)˜̀
q,1,τ ← RevSamp(fq,τ ,x

∗, β̃q,τ , `2,τ , . . . , `mq+1,τ) for 1 < τ ≤ n′,

where
∑

τ∈[n′] β̃q,τ = 0. Then, the dummy vector d replaces z∗ while computing ˜̀q,1,1 and d[t]

is placed at ht[ĉoef]. Finally, we move in the reverse direction so that the vectors vq,j,t for all
j ∈ [mq] and t ∈ [n′] are back in the form as they were in H5,q,1. Note that, the hybrids involved

in our 1-FE scheme uses the positions simτ , sim
∗
τ , ŝim, ŝim

∗
of the vectors vq,j,t,u and ht, which

does not effect the decryption using any post-challenge secret-key.

Hybrid H5,q,3 (q ∈ [Qpre]): It proceeds analogously to H5,q,2 except that we change vq,mq+1,t

and ht as below.

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (0, 0, r̃q,t[mq] , α̃q , 0 , 0 , 0),

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

u = (1,x∗[i], 0, 0)

ht = (−1, z∗[t],−1,d[t],−1, z∗[t] , 0)

Note that the inner product vq,mq+1,t · ht remains the same as in H5,q,2. Therefore, the hybrids
H5,q,2 and H5,q,3 are indistinguishable due to the function hiding security of IPFE. We observe
that H5,q,3 is identical to H5,q for all q ∈ [Qpre].

49

Hybrid H6: It is exactly the same as H5,Qpre except that the positions ht[ĉonst] and ht[ĉoef] are
set to zero. We describe the vectors associated with the pre-ciphertext secret-key queries and
the challenge ciphertext below. Note that the post-challenge secret-key queries are answered in
the same way as in H4 (or in H5,Qpre).

1 ≤ q < Qpre

vq = (αq[ι], 0, α̃q, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

˜̀
q,j,t[const], ˜̀q,j,t[coefi], 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], 0, 0, r̃q,t[mq], α̃q, 0, 0, 0)

u = (0, 0, 1,x∗[i], 0, 0),

ht = (0, 0,−1, z∗[t],−1,d[t], 0 , 0 , 0)

Qpre < q ≤ Q

vq = (αq[ι], 0, α̃q, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

˜̀
q,j,t[const], ˜̀q,j,t[coefi], 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], r̃q,t[mq], α̃q, 0, 0, 0, 0, 0)

Since the inner product vq,mq+1,t · ht for all q ∈ [Q], t ∈ [n′] is unaltered with this change, the
function hiding security of IPFE ensures indistinguishability between the hybrids H5,Qpre and H6.

Hybrid H7: This hybrid proceeds exactly similar to H6 except that we use the honest levels˜̀
q,j,t = ˜̀

q,j,t(x
∗) for j ∈ [mq] and ˜̀q,mq+1,t = α̃qz

∗[t] − r̃q,t[mq] at the index const of the vectors
vq,j,t in all the post-challenge secret-key queries. Moreover, all the other private positions of vq,j,t
are set to zero for all j ∈ [mq]. We also modify ht of the challenge ciphertext as shown below.

u = (0, 0, 1,x∗[i], 0, 0),

ht = (0, 0, 1 , 0 ,−1,d[t], 0, 0, 0)

Qpre < q ≤ Q

vq = (αq[ι], 0, α̃q, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

˜̀
q,j,t , 0 , 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], ˜̀q,mq+1,t , 0 , 0, 0, 0, 0, 0)

Since the inner products vq,j,t · u,vq,mq+1,t · ht gives the same result as in the previous hybrid,
the function hiding property of IPFE ensures that the hybrids H6 and H7 are indistinguishable.

Hybrid H8: This hybrid proceeds analogous to H7 except that in the post-challenge secret-key
queries we use the simulated garblings instead of the honest garblings. More specifically, we
sample α̃q, β̃q,t ← Zp satisfying

∑
t∈[n′] β̃q,t = 0 and compute the simulated garblings

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, α̃q · z∗[t]fq,t(x∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated using the
vectors given below.

vq = (αq[ι], 0, α̃q, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

̂̀
q,j,t , 0, 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], ̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0)

The simulated levels of AKGS is used in place of actual garblings. The simulation security of
AKGS implies that the hybrids H7 and H8 are indistinguishable.

50

Hybrid H9: This is exactly the same as H8 except that the distribution of {β̃q,t}t∈[n′] is changed.

We replace β̃q,t by β̃′q,t = β̃q,t − α̃q · z∗[t]fq,t(x∗) for all 1 < t ≤ n′ and replace the element β̃q,1

by β̃′q,1 = β̃q,1 − α̃q · z∗[t]fq,1(x∗) + α̃q · fq(x∗)>z∗. Note that, the distributions

{β̃q,t ← Zp :
∑
t∈[n′]

β̃q,t = 0} and {β̃′q,t :
∑
t∈[n′]

β̃q,t = 0}

are statistically close since {β̃′q,t}t∈[n′] are also uniform over Zp and
∑

t∈[n′] β̃
′
q,t = 0. Finally, the

vectors associated to the post-challenge secret-keys are given by

vq = (αq[ι], 0, α̃q, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi],

̂̀
q,j,t , 0, 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq],αq[ι], ̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · fq(x∗)>z∗ + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptFE, IdealA (1λ). This completes the security
analysis. ut

6 1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for
Bounded-Key One-Slot Extended FE for Attribute-Weighted
Sums

In this section, we present a private-key one-slot FE scheme for an extended attribute-weighted
sum functionality that is proven simulation secure against a single ciphertext query and a single
secret key query either before or after the ciphertext query. This scheme will be embedded into
the hidden subspaces of the public-key multi-key FE scheme for the same functionality presented
in the next section in its security proof. We describe the construction for any fixed value of the se-
curity parameter λ and suppress the appearance of λ for simplicity of notations. Let (Garble,Eval)

be a special piecewise secure AKGS for a function class F (n,n′)
ABP , G = (G1,G2,GT , g1, g2, e) a tuple

of pairing groups of prime order p, and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-
key function-hiding SK-IPFE based on G.

Setup(1λ, 1n, 1n
′
): Define the following index sets as follows

S1-extFE =
{
const, {coefi}i∈[n], {extndκ}κ∈[k], query, {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝ1-extFE = {ĉonst, ĉoef, ŝim∗}

It generates two IPFE master secret-keys IPFE.MSK← SK-IPFE.Setup(S1-extFE) and ̂IPFE.MSK←
SK-IPFE.Setup(Ŝ1-extFE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

51

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Zkp. Samples integers νt, βt ← Zp

for t ∈ [n′] such that ∑
t∈[n′]

νt = 1 and
∑
t∈[n′]

βt = 0 modulo p.

Next, samples independent random vectors rt ← Zmp for garbling and computes the coefficient
vectors

(`1,t, . . . , `m,t, `m+1,t)← Garble(z[t]ft(x) + βt; rt)

for each t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Section 3.6.
From the description of that AKGS instantiation, we note that the (m+1)-th label function `m+1,t

would be of the form `m+1,t = z[t]− rt[m]. Also all the label functions `1,t, . . . , `m,t involve only
the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors
vj,t corresponding to the label functions `j,t obtained from the partial garbling above and the
vector y as

vector const coefi extndκ query simτ sim∗τ

v1,t `1,t[const] `1,t[coefi] y[κ]νt 0 0 0

vj,t `j,t[const] `j,t[coefi] 0 0 0 0

It also sets the vectors vm+1,t for t ∈ [n′] corresponding to the (m + 1)-th label function `m+1,t

as

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

Now, it uses the key generation algorithm of IPFE to generate the secret-keys

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Remark. We note that the key-generation process can be performed if the vector y is not given
in the clear, but [[y]]2 ∈ Gk

2 is known. This is because while running the IPFE.KeyGen algorithm
above, the vectors vj,t are not inputted in the clear but in the exponent of the group G2. This
fact will be used in the security analysis of our unbounded FE scheme.

Enc(MSK, (x, z||w) ∈ Znp × Zn′+k
p): It sets the following vectors:

vector const coefi extndκ query simτ sim∗τ

u 1 x[i] w[κ] 0 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

52

for all t ∈ [n′]. Then, it encrypts the vectors using IPFE and obtain the ciphertexts

IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

Finally, it returns the ciphertext as CTx,z||w = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Dec((SKf,y, f), (CTx,z||w, x)): It parses SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])
and CTx,z||w = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryption algorithm of SK-IPFE to
compute

[[`1,t + ψt]]T ← SK-IPFE.Dec(IPFE.SK1,t, IPFE.CT) for t ∈ [n′]

[[`j,t]]T ← SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[`m+1,t]]T ← SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt = νt ·y>w. Next, it utilizes the evaluation procedure of AKGS and returns the combined
value

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T).

Correctness: From the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SK1,t,
IPFE.CT) = [[`1,t + ψt]]T where ψt = νt · y>w. Next, using the correctness of IPFE and AKGS
evaluation, we get

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T) + Eval(ft,x, [[ψt]]T , [[0]]T , . . . , [[0]]T)

= [[z[t]ft(x) + βt + νt · y>w]]T

The first equality follows from the linearity of Eval function. Now, multiplying all the evaluated
values we have

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= [[
n′∑
t=1

(z[t]ft(x) + νt · y>w + βt)]]T

= [[f(x)>z + y>w]]T

The last equality is obtained from the fact that
∑

t∈[n′] νt = 1 and
∑

t∈[n′] βt = 0.

6.1 Security Analysis

Theorem 4 The 1-extFE scheme for attribute-weighted sum is 1-key, 1-ciphertext simulation-
secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7 and the
IPFE is function hiding as per Definition 5.

53

As in the case of our 1-key 1-ciphertext secure one-slot FE, here also we assume that the
adversary queries the single secret key before the challenge ciphertext is sent. This is because we
will use the security of the 1-key 1-ciphertext secure one-slot extFE in a particular hybrid of the
security reduction of our one-slot extFE scheme (presented in Section B) where we deal with a
single pre-ciphertext secret key of the one-slot extFE. However, we emphasize that if we consider
the single secret key query after the challenge phase then the security can also be proved using
the security reduction of our one-slot extFE, provided in Supplementary Material ??.

The Simulator We describe the simulator for the 1-extFE scheme. Let us assume that (f,y) ∈
F (n,n′)

ABP × Zkp is the only secret-key query made by the adversary before it sends challenge

vectors (x∗, z∗||w∗) ∈ Znp × Zn′+kp . The algorithm Setup∗(1λ, 1n, 1n
′
) is exactly the same as

Setup(1λ, 1n, 1n
′
) which outputs a master secret-key MSK∗ = (IPFE.MSK, ̂IPFE.MSK). The key

generation procedure KeyGen∗0(MSK∗, (f,y)) of the simulator is similar to the original algorithm
KeyGen(MSK∗, (f,y)) except the fact that v1,t[query] = νt. We describe the encryption process
of the simulator which uses the information µ = f(x∗)>z∗ + y>w∗.

Enc∗(MSK∗, x∗, ((f, y), µ)): On input MSK∗, a vector x∗ ∈ Znp , the tuple (f,y) ∈ F (n,n′)
ABP ×Zkp

and an integer µ ∈ Zp the simulator executes the following steps:

1. First, it picks two random vectors d1 ← Zn′p ,d2 ← Zkp and sets σ = µ− f(x∗)>d1 − y>d2.

2. Next, it sets the following vectors

vector const coefi extndκ query simτ sim∗τ

u 1 x∗[i] d2[κ] σ 0 0

and

vector ĉonst ĉoef ŝim∗

ht −1 d1[t] 0

for all t ∈ [n′].

3. Finally, it encrypts the vectors as

IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

4. It returns the simulated ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Remark. Observe that Enc∗ is designed in such a way that the simulator is also able to generate
the ciphertext CT∗ even when it gets [[y]]1, [[µ]]1 instead of y, µ in the clear. In such a scenario,
the simulator will obtain [[σ]]1 = [[µ]]1 · [[y>d2]]

−1
1 · [[f(x∗)>d1]]

−1 by sampling d1 ← Zn′p ,d2 ← Zkp.
Hence, it can define [[u]]1 and [[ht]]1 as above before applying the encryption process of IPFE.
This procedure is indeed required for the security analysis of our unbounded FE construction.

54

Hybrids and Reductions

Proof. We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-extFEA (1λ) and the ideal experiment ExptIdeal,1-extFEA (1λ) where
A is any PPT adversary. We assume that in each experiment, A queries the single secret-key

query for a pair (f,y) ∈ F (n,n′)
ABP × Zkp before submitting the challenge message (x∗, z∗||w∗) ∈

Znp × Zn′+kp .

Hybrid H0: This is the real experiment ExptReal,1-extFEA (1λ) where the secret-

key SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) such that IPFE.SKj,t ←
SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′] and ̂IPFE.SKm+1,t ←
SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′] where the vectors vj,t,vm+1,t are given
as follows:

v1,t = (`1,t[const], `1,t[coefi], y[κ]νt, 0, 0, 0)
vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0, 0) for 1 < j ≤ m,

vm+1,t = (rt[m], 1, 0)

for j ∈ [m], t ∈ [n′] and rt ← Zmp . Note that {νt}t∈[n′] ← Zp is such that
∑

t∈[n′] νt = 1 modulo
p. Then, the garblings are computed as

(`1,t, . . . , `m,t, `m+1,t)← Garble(z∗[t]ft(x
∗) + βt; rt)

where βt ← Zp for all t ∈ [n′] with
∑

t∈[n′] βt = 0 modulo p. The challenge ciphertext CT∗ =

(IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponding to the challenge message (x∗, z∗||w∗) ∈ Znp ×Zn′+kp is

given by IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1) and ̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1)
for t ∈ [n′] where

u = (1, x∗[i],w[κ], 0, 0, 0), ht = (−1, z∗[t], 0)

for t ∈ [n′]. Note that the components of the vectors u and vj,t are associated with the indices
in S1-extFE, and the components of the vectors ht and vm+1,t are associated with the indices in

Ŝ1-extFE.

Hybrid H1: This hybrid is exactly the same as H0 except that we directly hardwire the value
`1,τ + ψτ = `1,τ (x

∗) + ντ · y>w into u[simτ] for all τ ∈ [n′] and remove the coefficient vector
`1,t from v1,t for all t ∈ [n′]. We change the vectors v1,t in the secret-key and u in the challenge
ciphertext as follows:

v1,t = (0 , 0 , 0 , 0, δtτ , 0)

vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0, 0) for 1 < j < m,

u = (1, x∗[i], 0 , 0, `1,τ + ψτ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

We denote by δtτ the usual Kronecker delta function such that δtτ = 1 if t = τ , 0 otherwise. Note
that the inner product v1,t · u = `1,t + ψt, for all t ∈ [n′], remain the same as in H0. Therefore,
the function hiding security of IPFE ensures the indistinguishability between the hybrids H0 and
H1.

55

Hybrid H2: This is analogous to H1 except that instead of using the actual garbling value `1,τ
at u[simτ], we now use ˜̀1,τ which is computed via reverse sampling algorithm of AKGS:

˜̀
1,τ ← RevSamp(fτ ,x

∗, fτ (x
∗)z∗[τ] + ντ · y>w + βτ , `2,τ , . . . , `m+1,τ)

where `j,τ = `j,τ (x
∗) for all j ∈ [2,m] and `m+1,τ = −rτ [m] + z∗[τ] for all τ ∈ [n′]. Therefore,

the vectors in the challenge ciphertext becomes

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0), ht = (−1, z∗[t], 0).

For each τ ∈ [n′], the piecewise security of AKGS guarantees that given the label functions

(`2,τ , . . . , `m,τ , `m+1,τ), the actual garbled label `1,τ and the reversely sampled value ˜̀1,τ are
identically distributed. Hence, the hybrids H1 and H2 are indistinguishable by the reverse sam-
pleability of AKGS.

Remark. Suppose in this hybrid instead of the vector y, the challenger only receives [[y]]1 from
the adversary as part of its secret-key query. Then, it can also simulate the game by computing
the vector [[u]]1 using the fact

RevSamp(fτ ,x
∗, [[γτ]]1, [[`2,τ]]1, . . . , [[`m+1,τ]]1)

= [[γτ]]1 · ([[Eval(fτ ,x∗, 0, `2,τ , . . . , `m+1,τ)]]1)
−1

with γτ = fτ (x
∗)z∗[τ] + ντ · y>w + βτ . Although, it is not necessary for this proof, we will need

this formulation of RevSamp during the security analysis of our unbounded FE scheme.

Hybrid H3,j (j ∈ [2,m]): The hybrid proceeds similar to H2 except that we change the
secret-key as follows. For all j′ such that 1 < j′ < j, the coefficient vector `j,t is taken away from
vj′,t and a random value `′j′,t ← Zp is put into vj′,t[const]. We describe the vectors associated
with the secret-key and the ciphertext below.

v1,t = (0, 0, 0, 0, δtτ , 0)

vj′,t = (`′j′,t , 0 , 0, 0, 0, 0) for 1 < j′ ≤ j,

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

Note that, in this hybrid ˜̀1,τ is reversely sampled using the random values `2,τ , . . . , `j−1,τ (which
are randomly chosen from Zp) and the actual values `j,τ , . . . , `m+1,τ for each τ ∈ [n′]. Observe
that H3,1 coincides with H2. We will show that for all j ∈ [2,m], the hybrids H3,(j−1) and H3,j are
indistinguishable via the following sequence of sub-hybrids, namely, {H3,j,1,H3,j,2,H3,j,3}j∈[2,m].

Hybrid H3,j,1 (j ∈ [2,m]): This is exactly the same as H3,(j−1) except that the coefficient
vector `j,t is removed from vj,t and vj,t[sim

∗
τ] is set to δtτ . The actual garbling value `j,τ = `j,τ (x

∗)
is hardwired into u[sim∗τ] to ensure the inner product vj,τ · u remains the same as in H3,(j−1).

56

The changes in the vectors involved while computing secret-key and the challenge ciphertext as
given below.

v1,t = (0, 0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0, 0) for 1 < j′ < j,

vj,t = (0 , 0 , 0, 0, 0, δtτ)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , `j,τ)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

The hybrids H3,(j−1) and H3,j,1 are indistinguishable by the function hiding security of IPFE since
the inner product vj,τ · u for all τ ∈ [n′] remains the same as in H3,(j−1).

Hybrid H3,j,2 (j ∈ [2,m]): It proceeds exactly the same as H3,j,1 except that the actual label
`j,τ (sitting at u[sim∗τ]) is replaced with a random value `′j,τ ← Zp. The vectors associated to the
challenge ciphertext are given by

u = (1, x∗[i], 0, 0, ˜̀1,τ , `′j,τ), ht = (−1, z∗[t], 0)

where `′j,τ is randomly sampled from Zp. Now, the first label ˜̀1,τ is reversely sampled using the
random values `′2,τ , . . . , `

′
j,τ and the actual labels `j+1,τ = `j+1,τ (x

∗), . . . , `m,τ = `m,τ (x
∗), `m+1,τ =

−rτ [m] + z∗[τ]. The marginal randomness property of AKGS implies that the hybrids H3,j,1 and
H3,j,2 are identically distributed.

Hybrid H3,j,3 (j ∈ [2,m]): The hybrid is analogous to H3,j,2 except that the random value
`′j,τ is sifted from the ciphertext component u[sim∗τ] to the secret-key component vj,t[const]. Also,
the positions u[sim∗τ] and vj,t[sim

∗
τ] are set to zero. Thus, the vectors in the secret-key and the

challenge ciphertext become

v1,t = (0, 0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0, 0) for 1 < j′ < j,

vj,t = (`′j,t , 0, 0, 0, 0, 0)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

Since the inner products vj,t · u for all j, t remain the same as in H3,j,2, the indistinguishability
between the hybrids H3,j,2 and H3,j,3 follows from the function hiding security of IPFE. We observe
that the hybrids H3,j,3 is identical to H3,j for all j ∈ [2,m].

Hybrid H4: It proceeds exactly the same as hybrid H3,m except that the actual garbling value

`m+1,t = −rt[m] + z∗[t] is used in ht[ŝim
∗]. Also, ht[ĉoef],

57

vm+1,t[ĉonst],vm+1,t[ĉoef] are set to zero. The changes are indicated below.

v1,t = (0, 0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (0 , 0 , 1)

ht = (1 , 0 , `m+1,t)

Since the inner products vm+1,t ·ht for all t ∈ [n′] are unaltered as in H4, the indistinguishability
between the hybrids H3,m and H4 follows from the function hiding security of IPFE.

Hybrid H5: It is analogous to H4 except that the actual label `m+1,t is now replaced with a
random value `′m+1,t ← Zp. The vectors associated with the challenge ciphertext are modified as
follows.

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0), ht = (1, 0, `′m+1,t)

Note that, in this hybrid the labels ˜̀1,t for t ∈ [n′] are now reversely sampled using all random
values `′2,t, . . . , `

′
m+1,t which are randomly picked from Zp. By the marginal randomness property

of AKGS, the hybrids H4 and H5 are identically distributed.

Hybrid H6: This hybrid proceeds exactly the same as H5 except that the simulated labels `′m+1,t

are shifted from ht[ŝim
∗] to vm+1,t[r̂and]. The positions vm+1,t[ŝim

∗
] and ht[ŝim

∗
] are set to zero.

The changes are indicated as follows.

v1,t = (0, 0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (`′m+1,t , 0, 0)

ht = (1, 0, 0)

Observe that the inner products vm+1,t · ht for all t ∈ [n′] are unchanged as in H5. Hence, the
function-hiding security of IPFE ensures the indistinguishability between the hybrids H5 and H6.

Hybrid H7: It is analogous to H6 except that the value fτ (x
∗)z∗[τ] is removed from ˜̀

1,τ for all

1 < τ ≤ n′ and the value f(x∗)>z∗ + y>w∗ is directly encoded into the label ˜̀1,1. To make this
change, we replace the random elements βτ by β′τ = βτ−fτ (x∗)z∗[τ]−ντ ·y>w∗ for all 1 < τ ≤ n′

and change the element β1 with β′1 = β1 − (f1(x
∗)z∗[1] + ν1 · y>w∗) + f(x∗)>z∗ + y>w∗. Note

that, the distributions

{βτ ← Zp :
∑
τ∈[n′]

βτ = 0 mod p} and {β′τ :
∑
τ∈[n′]

βτ = 0 mod p}

are statistically close since β′τ is also uniform over Zp and
∑

τ∈[n′] β
′
τ = 0 mod p. Thus the

vectors associated to the challenge ciphertext become

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0), ht = (1, 0, 0)

58

where the labels ˜̀1,τ are given by

˜̀
1,1 ← RevSamp(f1,x

∗, f1(x
∗)z∗[1] + ν1 · y>w∗ + β′1, `

′
2,1, . . . , `

′
m+1,1)

= RevSamp(f1,x
∗, f(x∗)>z∗ + y>w∗ + β1, `

′
2,1, . . . , `

′
m+1,1)˜̀

1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)z∗[τ] + ντ · y>w∗ + β′τ , `
′
2,τ , . . . , `

′
m+1,τ)

= RevSamp(fτ ,x
∗, βτ , `

′
2,τ , . . . , `

′
m+1,τ) for 1 < τ ≤ n′

Thus, H6 and H7 are indistinguishable from the adversary’s view as they are statistically close.
As discussed in the remark of H2, the challenger can also simulate this hybrid when [[y]]1 is known
instead of y.

Hybrid H8: This hybrid is exactly the same as H7 except that we use a dummy vector (d1 ‖ d2) ∈
Zn′+kp in place of (z∗ ‖ w∗) while computing ˜̀1,1 where it holds that µ = f(x∗)>z∗ + y>w∗ =

f(x∗)>d1 + y>d2 + σ. In particular, we choose d1 ← Zn′p ,d2 ← Zkp and set σ = µ− f(x∗)>d1 −
y>d2 ∈ Zp. It can be seen that f(x∗)>d1 + y>d2 + σ = µ as required. The vector u is now
defined as

u = (1,

coefi︷ ︸︸ ︷
x∗[1], . . . ,x∗[n],

extndκ︷ ︸︸ ︷
0, . . . , 0, 0,

simτ︷ ︸︸ ︷˜̀
1,1 , ˜̀1,2 . . . , ˜̀1,n′ , sim∗τ︷ ︸︸ ︷

0, . . . , 0)

where the labels are computed as

˜̀
1,1 ← RevSamp(f1,x

∗, f(x∗)>d1 + y>d2 + σ + β1, `
′
2,1, . . . , `

′
m+1,1)˜̀

1,τ ← RevSamp(fτ ,x
∗, βτ , `

′
2,τ , . . . , `

′
m+1,τ) for 1 < τ ≤ n′

Above, we write the full expression of the vector u as opposed to its compressed expression used
so far in order to highlight the change. Since β1 is uniformly distributed and f(x∗)>z∗+y>w∗ =
f(x∗)>d1 + y>d2 + σ, hybrids H7 and H8 are statistically close.

Remark. Suppose, the vector [[y]]1 is known to the challenger instead of y, then it can directly
computes [[σ]]1 = [[µ]]1 · [[f(x∗)>d1]]

−1
1 · [[y>d2]]

−1
1 . To simulate this hybrid the challenger uses

[[f(x∗)>d1 +y>d2 +σ+β1]]1 to obtain [[˜̀1,1]]1 as it has d1 ∈ Zn′p ,d2 ∈ Zkp, [[σ]]1 ∈ G1 and β1 ∈ Zp.

Hybrid H9: The following sequence of hybrids is basically the reverse of the previous hybrids
with (z∗ ‖ w∗) replaced with (d1 ‖ d2). In this hybrid, we change the distribution of βτ similar
to what we did in H7. In particular, βτ is replaced with β′τ = βτ + fτ (x

∗)d1[τ] + ντ · (y>d2 + σ)
and β1 is replaced with β′1 = β1 + f1(x

∗)d1[1] + ν1 · (y>d2 + σ) − (f(x∗)>d1 + y>d2 + σ). So,
the vectors associated with challenge ciphertext are distributed as

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0), ht = (1, 0, 0)

where ˜̀1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)d1[τ] + ντ · (y>d2 + σ) + βτ , `
′
2,τ , . . . , `

′
m+1,τ) Note that, H8

and H9 are statistically close as {βτ : τ ∈ [n′]} and {β′τ : τ ∈ [n′]} are both uniform over Zp with∑
τ∈[n′] βτ =

∑
τ∈[n′] β

′
τ = 0 mod p. Hence, hybrids H8 and H9 are indistinguishable.

59

Hybrid H10: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (0 , 0, 1)

ht = (1, 0, `′m+1,t)

where `′m+1,t ← Zp. The indistinguishability between the hybrids H9 and H10 follows from the
function-hiding security of IPFE.

Hybrid H11: It is exactly the same as H10 except that the random values `′m+1,t ← Zp are
changed to the actual label `m+1,t = d1[t]−rt[m]. Then the vectors associated with the challenge
ciphertext become

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0), ht = (1, 0, `m+1,t)

The hybrids H11 and H12 are identical due to the marginal randomness property of AKGS.

Hybrid H12: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (rt[m] , 1 , 0)

ht = (−1 , d1[t] , 0)

The indistinguishability between the hybrids H10 and H11 follows from the function-hiding secu-
rity of IPFE.

Hybrid H13,m+1−j (j ∈ [m− 1]): It is analogous to H12 except the secret-key is modified as
follows. For all j′ such that m + 1 − j ≤ j′ < m + 1, the random value `′j′,t ← Zp is discarded
from vj′,t[const] and the coefficient vector `j′,t is used in vj′,t.

v1,t = (0, 0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,
vj′,t = (`j′,t[const] , `j′,t[coefi] , 0, 0, 0, 0) for m+ 1− j ≤ j′ < m+ 1,

vm+1,t = (rt[m], 1, 0)

In this hybrid, the label ˜̀1,t is reversely sampled using the random values `′2,t, . . . , `
′
m+1−j,t

and the actual values `m−j+2,t, . . . , `m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1−j can be shown to be indistinguishable via the following sequence of sub-hybrids, namely,
{H13,m+1−j,1,H13,m+1−j,2,H13,m+1−j,3}j∈[m−1].

60

Hybrid H13,m+1−j,1 (j ∈ [m− 1]): It proceeds exactly the same as H13,m+1−(j−1) except that
the random labels `′m+1−j,t are sifted from vm+1−j,t[const] to u[sim∗τ]. We modify the vectors
associated with the secret-key and the challenge ciphertext as follows

v1,t = (0, 0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,

vm+1−j,t = (0 , 0, 0, 0, 0, δtτ)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0, 0) for m+ 1− j < j′ < m+ 1,

u = (1, x∗[i], 0, 0, ˜̀1,τ , `′m+1−j,τ)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−(j−1) and H13,m+1−j,1 follows from the
function-hiding security of IPFE.

Hybrid H13,m+1−j,2 (j ∈ [m− 1]): It is exactly same as H13,m+1−j,1 except that the random
label `′m+1−j,τ ← Zp at u[sim∗τ] are now replaced with the actual labels `m+1−j,τ = `m+1−j,τ (x

∗).
The change in the vector u associated to the challenge ciphertext is indicated below.

u = (1, x∗[i], 0, 0, ˜̀1,τ , `m+1−j,τ), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−j,1 and H13,m+1−j,2 follows from the marginal
randomness property of AKGS.

Hybrid H13,m+1−j,3 (j ∈ [m−1]): It proceeds analogous to H13,m+1−j,2 except that the actual
label `m+1−j,τ = `m+1−j,τ (x

∗) is removed from u[sim∗τ] and the coefficient vector `m+1−j,t is used
to set vm+1−j,t. The inner product vm+1−j,t ·u is unaltered as in H13,m+1−j,2. The changes in the
vectors associated to the secret-key and the challenge ciphertext are shown below.

v1,t = (0, 0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,

vm+1−j,t = (`m+1−j,t[const] , `m+1−j,t[coefi] , 0, 0, 0, 0)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0, 0) for m+ 1− j < j′ < m+ 1,

u = (1, x∗[i], 0, 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−j,2 and H13,m+1−j,3 follows from the function-
hiding security of IPFE. We observe that H13,m+1−j,3 is identical to H13,m+1−j for all j ∈ [m− 1].

Hybrid H14: It proceeds exactly the same as H13,2 except that the reversely sampled labels ˜̀1,τ
are replaced with the actual labels `1,τ + ψτ = `1,τ (x

∗) + ντ · (y>d2 + σ) when setting u[simτ].
The vectors associated with the challenge ciphertext are now written as

u = (1, x∗[i], 0, 0, `1,τ + ψτ , 0), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m and H14 follows from the piecewise security
of AKGS.

61

Hybrid H15: It is analogous to H14 except that the actual label `1,τ = `1,τ (x
∗) + ντ · (y>d2 +σ)

is removed from u[simτ] and the coefficient vectors `1,t are utilized while setting the vectors
v1,t for all t ∈ [n′]. Also, the positions v1,t[extndκ],v1,t[query] and u[extndκ],u[query] are set as
y[κ]νt, νt and d2[κ], σ respectively. The vectors associated with the secret-key and the challenge
ciphertext are shown below.

v1,t = (`1,t[const] , `1,t[coefi] , y[κ]νt , νt , 0, 0)

vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], d2[κ] , σ , 0 , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

Since the inner products v1,t · u = `1,t + ψt, for all t ∈ [n′], remain the same as in H14, the
function-hiding security of IPFE ensures the indistinguishability between the hybrids H14 and
H15. This completes the security analysis as H15 is the ideal experiment ExptIdeal,1−extFEA (1λ). ut

7 Bounded-Key One-Slot Extended FE for Attribute-Weighted
Sums

In this section, we present a public-key one-slot FE scheme Πbdd
extOne for an extended attribute-

weighted sum functionality. This scheme is proven adaptively simulation secure against one
ciphertext query, an a priori bounded number of pre-ciphertext secret key queries, and an ar-
bitrary polynomial number of post-ciphertext secret key queries. We will apply the bootstrap-
ping compiler from [AGW20] onto this FE scheme to obtain our unbounded-slot FE scheme
for attribute-weighted sums in the next section. We describe the construction for any fixed
value of the security parameter λ and suppress the appearance of λ for simplicity of nota-

tions. Let (Garble,Eval) be a special piecewise secure AKGS for a function class F (n,n′)
ABP , G =

(G1,G2,GT , g1, g2, e) a tuple of pairing groups of prime order p such that MDDHk holds in G2,
and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We construct an
FE scheme for attribute-weighted sums with the message space M = Znp × Zn′+kp .

Setup(1λ, 1n, 1n
′
, 1B): Defines the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n], {extnd

(ι)
κ }ι,κ∈[k]

}
, Ŝpub = {ĉonst(ι), ĉoef

(ι)
}ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {extndκ,1, extndκ,2, extndκ}κ∈[k], {queryη}η∈[B], {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗
}

where B denotes a bound on the number of pre-challenge queries. It generates two pair of

IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK) ←
IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master secret-key of the system as MSK = (IPFE.MSK,

̂IPFE.MSK) and master public-key as MPK = (IPFE.MPK, ̂IPFE.MPK).

62

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Zkp. It samples integers νt ← Zp

and vectors α,βt ← Zkp for t ∈ [n′] such that

∑
t∈[n′]

νt = 1 and
∑
t∈[n′]

βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Zmp and computes

(`
(ι)
1,t, . . . , `

(ι)
m,t, `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t)

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS described in Section 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function

`
(ι)
m+1,t would be of the form `

(ι)
m+1,t = α[ι]z[t] − r(ι)t [m] where α[ι] is a constant. Also all the

label functions `
(ι)
1,t, . . . , `

(ι)
m,t involve only the variables x and not the variable z[t]. Next, for all

j ∈ [2,m] and t ∈ [n′], it defines the vectors vj,t corresponding to the label functions `j,t obtained
from the partial garbling above and the vector y as

vector const(ι) coef
(ι)
i extnd(ι)κ Spriv

v α[ι] 0 0 0

v1,t `
(ι)
1,t[const] `

(ι)
1,t[coefi] α[ι]y[κ]νt 0

vj,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK← IPFE.KeyGen(IPFE.MSK, [[v]]2)

IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

Finally, it returns the secret-key as SKf,y = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])
and (f,y).

Remark 4 We note that the vector y is only used to set v1,t[extnd
(ι)
κ] and the IPFE.KeyGen only

requires [[v1,t]]2 ∈ Gk
2 to compute the secret-key IPFE.SK1,t. Therefore, the key generation process

can compute the same secret-key SKf,y if (f, [[y]]2) is supplied as input instead of (f,y) and we
express this by writing KeyGen(MSK, (f, [[y]]2)) = KeyGen(MSK, (f,y)). This fact will be crucial
while describing the unbounded slot FE.

63

Enc(MPK, (x, z||w) ∈ Znp × Zn′+k
p): It samples a random vector s← Zkp and sets the vectors

vector const(ι) coef
(ι)
i extnd(ι)κ

u s[ι] s[ι]x[i] s[ι]w[κ]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) and x.

Dec((SKf,y, f), (CT, x)): It parses the secret-key and ciphertext as SKf,y = (IPFE.SK,

{IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) and CTx,z = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the
decryption algorithm of IPFE to compute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)

[[`1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t, IPFE.CT)

[[`j,t]]T ← IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[`m+1,t]]T ← IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt =
∑k

ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, it utilizes the evaluation procedure
of AKGS and obtain a combined value

[[ζ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T).

Finally, it returns a value [[µ]]T = [[ζ]]T · [[ρ]]−1T ∈ GT .

Correctness: First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t, IPFE.CT) = [[`1,t + ψt]]

where ψt =
∑k

ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, by the correctness of IPFE, AKGS
we have

Eval(ft,x, `1,t + ψt, . . . , `m+1,t)

= Eval(ft,x, `1,t, . . . , `m+1,t) + Eval(ft,x, ψt, 0, . . . , 0)

= Eval(ft,x, `1,t, . . . , `m+1,t) + ψt

=
k∑
ι=1

(α[ι]s[ι] · z[t]ft(x) + βt[ι]s[ι]) +α · s · νt · y>w

= α · s · (z[t]ft(x) + νt · y>w) + βt · s

64

The first equality follows from the linearity of Eval algorithm. Therefore, multiplying all the
evaluated values we have

[[ζ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= [[
n′∑
t=1

α · s · (z[t]ft(x) + νt · y>w) + βt · s]]T = [[α · s · (f(x)>z + y>w)]]T

where the last equality follows from the fact that
∑

t∈n′ νt = 1 mod p and
∑

t∈[n′] βt[ι] = 0 mod p

for all ι ∈ [k]. Also, by the correctness of IPFE we see that [[ρ]]T = [[α · s]]T and hence [[µ]]T =
[[f(x)>z + y>w]]T .

Theorem 5 The extended one slot FE scheme Πbdd
extOne for attribute-weighted sum is adaptively

simulation-secure assuming the AKGS is piecewise-secure as per Definition 7, the MDDHk as-
sumption holds in group G2, and the slotted IPFE is function hiding as per Definition 5.

7.1 Security Analysis

The Simulator We describe the simulator for the extended one-slot FE schemeΠbdd
extOne. The sim-

ulated setup algorithm is the same setup of the original scheme. Let (MSK,MPK)← Setup∗(1λ, 1n,

1n
′
, 1B) = Setup(1λ, 1n, 1n

′
, 1B) where MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK = (IPFE.MPK,

̂IPFE.MPK).

KeyGen∗0(MSK, (fq, yq)): On input MSK, a function fq = (fq,1, . . . fq,n′) ∈ F (n,n′)
ABP and a vector

yq ∈ Zkp the simulator proceeds as follows:

Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t[1], . . . ,βq,t[k])← Zkp, νq,t ← Zp for t ∈ [n′], and r
(ι)
q,t = (r

(ι)
q,t [1], . . . ,

r
(ι)
q,t [mq])← Zmqp where it holds that∑

t∈[n′]

βq,t[ι] = 0 mod p for all ι ∈ [k] and
∑
t∈[n′]

νq,t = 1 mod p

2. Next, it computes the coefficient vectors for the label functions as

(`
(ι)
q,1,t, . . . , `

(ι)
q,mq ,t, `

(ι)
q,mq+1,t)← Garble(αq[ι]z

∗[t]fq,t(x
∗) + βq,t[ι]; r

(ι)
q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function `
(ι)
q,mq+1,t would be of the form `

(ι)
q,mq+1,t = αq[ι]z

∗[t]− r(ι)q,t [mq].

3. It picks αq ← Zkp and sets the public positions at the indexes in Spub, Ŝpub of following vectors

vector const(ι) coef
(ι)
i extnd(ι)κ

vq αq[ι] 0 0

vq,1,t `
(ι)
q,1,t[const] `

(ι)
q,1,t[coefi] αq[ι]yq[κ]νq,t

vq,j,t `
(ι)
q,j,t[const] `

(ι)
q,j,t[coefi] 0

65

for all j ∈ [2,mq] and t ∈ [n′]. It also sets the following vectors for all t ∈ [n′].

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r
(ι)
q,t [mq] αq[ι]

Setting Private Positions: It now fills the private indices as follows.

4. It samples α̃q, β̃q,t ← Zp for t ∈ [n′] satisfying
∑

t∈[n′] β̃q,t = 0.

5. Next, it picks r̃q,t ← Zmqp and computes the coefficient vectors for the label functions as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label function˜̀
q,mq+1,t would be of the form ˜̀

q,mq+1,t = α̃qz
∗[t]− r̃q,t[mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

vector const coefi extndκ,1 extndκ,2 extndκ queryη simτ sim
∗
τ

vq α̃q 0 0 0 0 0 0 0

vq,1,t ˜̀q,1,t[const] ˜̀q,1,t[coefi] 0 α̃qyq[κ]νq,t 0 α̃qeq[η]νq,t0 0

vq,j,t ˜̀q,j,t[const] ˜̀q,j,t[coefi] 0 0 0 0 0 0

for all j ∈ [2,mq] and t ∈ [n′]; and for all t ∈ [n′]

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t 0 0 r̃q,t[mq] α̃q 0 0 0

where eq ∈ {0, 1}B such that eq[η] = 1 if η = q; 0 otherwise.
7. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

8. Finally, it returns the secret-key SKfq ,yq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t}t∈[n′]).

Let Qpre be the total number of secret-key queries made before the challenge query and hence
without loss of generality we take B = Qpre.

Remark. Suppose the simulator only gets [[yq]]2 instead of yq. We observe that the compo-
nents of yq are used to set vq,1,t[extnd

ι
κ] and vq,1,t[extndκ,2]. Since the elements αq[ι], α̃q and

νq,t are sampled by the simulator, it can compute [[vq,1,t[extnd
ι
κ]]]2 = αq[ι]νq,t · [[yq[κ]]]2 and

[[vq,1,t[extndκ,2]]]2 = α̃qνq,t · [[yq[κ]]]2. The simulator only requires to know [[vq,1,t]]2 in order to gen-
erate IPFE.SKq,1,t. In this context, we write KeyGen∗0(MSK, (fq, [[yq]]2)) = KeyGen∗0(MSK, (fq,yq))
for all q ∈ [Qpre]. We emphasize that this fact is crucial for the security analysis of the unbounded
slot scheme.

66

Enc∗(MPK,MSK, x∗,V): On input MPK,MSK, a vector x∗ ∈ Znp and a set V = {(fq, fq(x∗)>z∗+
y>q w

∗) : q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector (d1||d2||d3) ∈ Zn
′+k+Qpre
p from the set

D = {(d1||d2||d3) ∈ Zn′+k+Qpre
p : fq(x

∗)>d1 + y>q d2 + e>q d3 = µq for all q ∈ [Qpre]}

where µq = fq(x
∗)>z∗+y>q w

∗. The sampling procedure works as follows. First, the simulator

selects two random vectors d1 ∈ Zn′p ,d2 ← Zkp and sets σq = µq − fq(x∗)>d1 − y>q d2 ∈ Zp.
Then, it sets d3[η] = ση

4 for all η ∈ [Qpre]. Therefore, one may observe that fq(x
∗)>d1 +

y>q d2 + e>q d3 = µq for all q ∈ [Qpre].
2. Next, it sets the following vectors:

vector const(ι) coef
(ι)
i extnd(ι)κ

u 0 0 0

vector const coefi extndκ,1 extndκ,2 extndκ queryη simτ sim
∗
τ

u 1 x∗[i] 0 d2[κ] 0 d3[η] 0 0

and for all t ∈ [n′]

vector ĉonst
(ι)

ĉoef
(ι)

ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

ht 0 0 1 0 −1 d1[t] 0 0 0

3. It encrypts the vectors as

IPFE.CT← IPFE.Enc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

KeyGen∗1(MSK∗, x∗, (fq, yq), fq(x∗)>z∗ + y>q w
∗): On input MSK∗, x∗ ∈ Znp , a function

fq = (fq,1, . . . , fq,n′) ∈ F (n,n′)
ABP , a vector yq ∈ Zkp for q ∈ [Qpre+1, Q] and (fq(x

∗)>z∗+y>q w
∗) ∈ Zp

the simulator proceeds as follows:
Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and vq,j,t
analogous to KeyGen∗0(MSK∗, (fq,yq)).

Setting Private Positions:

2. First, it samples a random element α̃q, β̃q,t ← Zp, for t ∈ [n′], satisfying
∑

t∈[n′] β̃q,t = 0 and
then runs the simulator of the AKGS to obtain

4 If the number of pre-challenge query Qpre is strictly less than B, then d3 ∈ ZBp and we can simply take d3[η] = 0 for all
Qpre < η ≤ B.

67

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · (fq(x∗)>z∗ + y>q w

∗) + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi extndκ,1extndκ,2 extndκ queryη simτ sim
∗
τ

vq α̃q 0 0 0 0 0 0 0

vq,j,t ̂̀
q,j,t 0 0 0 0 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t
̂̀
q,mq+1,t 0 0 0 0 0 0

for all t ∈ [n′].
4. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

5. It outputs the secret-key SKfq ,yq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t}t∈[n′]).

Remark. Suppose the simulator is provided with (fq, [[yq]]2) as secret-key query and it only knows
[[fq(x

∗)>z∗+y>q w
∗]]2 = [[µq]]2. Then, it can simulate the public positions using [[yq]]2 as described

at the end of the description of KeyGen∗0(·). Now, for private positions, the simulator samples

α̃q, β̃q,t ← Zp (as above) and computes α̃q · [[µq]]2 = [[α̃qµq]]2. Next, it employs the simulator of
AKGS as follows:

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, [[α̃qµq + β̃q,1]]2)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, [[β̃q,t]]2) for 1 < t ≤ n′.

Thus, the vectors vq,j,t for all j ∈ [mq] are available in the exponent of source group G2 and
hence the simulator successfully executes key generation of IPFE with [[vq,j,t]]2. We express it
by writing KeyGen∗1(MSK∗,x∗, (fq, [[yq]]2), [[µq]]2) = KeyGen∗1(MSK∗,x∗, (fq,yq), µq) and note that
this fact is, in particular, useful for the security analysis of our unbounded slot scheme.

Hybrids and Reductions

Proof. We use a sequence of hybrid experiments to establish the indistinguishability between
the real experiment ExptReal,extFEA (1λ) and the ideal experiment ExptIdeal,extFEA (1λ) where A is any
PPT adversary. In each experiment, A can query a polynomial number of secret-key queries for

pairs (f,y) ∈ F (n,n′)
ABP ×Zkp, both before and after submitting the challenge message (x∗, z∗||w∗) ∈

Znp ×Zn′+kp . Let Q be the total number of secret-key queries and B = Qpre (≤ Q) be the number

68

of secret-keys queried before submitting the challenge message. We denote the q-th secret-key by
SKfq ,yq corresponding to a function fq and a vector yq. For the ease of presentation, we write the

vector elements sitting in the public slots Spub, Ŝpub in blue color and the vector elements sitting

in the private slots Spriv, Ŝpriv in red color. More precisely, we do this so that while describing
the hybrid games, we sometimes omit the public parts of the vectors and write down only the
private parts when the changes occur only in the private parts. Now, we describe the hybrids as
follows:

Hybrid H0: : This is the real experiment ExptReal,extFEA (1λ) defined in Definition 4 (with single

slot, i.e.,N = 1). The q-th secret-key SKfq ,yq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t}t∈[n′])
is computed using the vectors vq,vq,j,t given by

vq = (αq [ι], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (`
(ι)
q,1,t[const], `

(ι)
q,1,t[coefi], αq [ι]yq [κ]νq,t, 0, 0, 0, 0, 0, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi], 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,mq+1,t = (r
(ι)
q,t[mq], αq [ι], 0, 0, 0, 0, 0, 0, 0)

for j ∈ [2,mq] and t ∈ [n′]. Note that αq and r
(ι)
q,t are random vectors sampled from Zkp and Zmqp

respectively. The integers νq,t for t ∈ [n′] is picked randomly from Zp such that
∑

t∈[n′] νq,t = 1.

For all t ∈ [n′], the garblings are computed as

(`
(ι)
q,1,t, . . . , `

(ι)
q,mq ,t, `

(ι)
q,mq+1,t)← Garble(αq[ι]z

∗[t]fq,t(x
∗) + βq,t[ι]; r

(ι)
q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Zkp with
∑

t∈[n′] βq,t[ι] = 0 ∀ι ∈ [k]. The challenge

ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponds to the challenge vectors (x∗, z∗||w∗) ∈
Znp × Zn′+kp is computed using the vectors u and ht given by

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥),
ht = (−s[ι], s[ι]z∗[t], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥)

for t ∈ [n′] and s← Zkp. Note that, in real experiment CT∗ is computed using IPFE.SlotEnc and
therefore the elements sitting at the indices in Spriv are set as ⊥ for the vectors u and ht.

Hybrid H1: It is exactly the same as hybrid H0 except the fact that instead of using IPFE.SlotEnc,
here the challenge ciphertext CT∗ is generated applying IPFE.Enc which uses MSK = (IPFE.MSK,

̂IPFE.MSK) to encrypt the vectors. We indicate this change by changing the private positions of
u and ht from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.

Hybrid H2: This hybrid is similar to H1 except that in the private slots of the vectors vq,j,t we
put a garbling that linearly combines k garblings (of the public slots) with weight vector s ∈ Zkp
and in the private slots of the vector vq we use a single random element combining the weight
vector s. Accordingly, we modify the challenge ciphertext CT∗ by omitting the weight vector s
and setting the public slots of the vectors u,ht to zero so that the inner products computed at
the time of decryption remains the same in the previous hybrids.

69

In H1, the public slots of the vectors vq,vq,j,t are occupied by vectors αq ∈ Zkp, νq,t ∈ Zp for

t ∈ [n′] and the garblings `
(ι)
q,j,t computed using randomness r

(ι)
q,t ∈ Zmqp . In the public slots of

the vectors u,ht, we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore, at the time of
decryption we recover [[ρq]]T , [[`q,j,t]]T such that

ρq = αq · s = αq (say),

`q,1,t = (`
(1)
q,1,t, . . . , `

(k)
q,1,t) · (s[1](1,x∗), . . . , s[k](1,x∗)) +α · s · y>w · νq,t

= (s[1]`
(1)
q,1,t, . . . , s[k]`

(k)
q,1,t) · ((1,x∗), . . . , (1,x∗)) + αq · y>w · νq,t

= `q,1,t · (1,x∗) + αq · y>w · νq,t
`q,j,t = (`

(1)
q,j,t, . . . , `

(k)
q,j,t) · (s[1](1,x∗), . . . , s[k](1,x∗))

= `q,j,t · (1,x∗)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t for all j ∈ [2,mq] and t ∈ [n′]. Similarly, the mq + 1-the garbling

returns

`q,mq+1,t = ((r
(1)
q,t [mq],αq[1]), . . . , (r

(k)
q,t [mq],αq[k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))

= (s[1](r
(1)
q,t [mq],αq[1]), . . . , s[k](r

(k)
q,t [mq],αq[k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))

= (rq,t[mq], αq) · (−1, z∗[t])

where rq,t[mq] =
∑

ι∈[k] s[ι]r
(ι)
q,t [mq]. In H2, we use αq, `q,j,t and rq,t[mq] in the private slots of the

vectors vq and vq,j,t as described below

vq = (αq , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (`q,1,t[const] , `q,1,t[coefi] , αqyq [κ]νq,t , 0, 0, 0, 0, 0),

vq,j,t = (`q,j,t[const] , `q,j,t[coefi] , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (rq,t[mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit
using it in the vectors u and ht. Moreover, the public slots of u and ht are set to zero as the
inner product is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 0 , 1 , x∗[i] , w∗[κ] , 0, 0, 0, 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0).

Finally, we observe that the inner products vq ·u,vq,j,t ·u and vq,mq+1,t ·ht remain the same as
in H1. Thus, the function hiding property of IPFE preserves the indistinguishability between the
hybrids H1 and H2.

Note that, in this hybrid we pick αq,βq,t, s ← Zkp, νq,t ← Zp and r
(ι)
q,t ← Zmqp for all t ∈

[n′], ι ∈ [k] satisfying
∑

t∈[n′] βq,t[ι] = 0 for each ι ∈ [k] and
∑

t∈[n′] νq,t = 1. Then, the linearity
of the Garble algorithm allows us to write

(`q,1,t, . . . , `q,mq ,t, `q,mq+1,t)← Garble(αqz
∗[t]fq,t(x

∗) + βq,t; rq,t)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t, rq,t =

∑
ι∈[k] s[ι]r

(ι)
q,t and βq,t = βq,t · s.

From the next hybrid onward the public slots of the vectors vq and vq,j,t are unaltered for all
q ∈ [Q], j ∈ [k] and t ∈ [n′]. Therefore, we only write the components sitting in the private slots
of the vectors vq and vq,j,t assuming that the components of public slots are the same as in the
real experiment. We denote the private slots of the vectors by vq|Spriv

,vq,j,t|Spriv
and vq,mq+1,t|Ŝpriv

.

70

Hybrid H3: It is analogous to H2 except the liner combinations αq, `q,j,t, rq,t in the private slots
of the vectors vq,vq,j,t,vq,mq+1,t are replaced with freshly and independently generated random

values and garblings α̃q, ˜̀q,j,t, r̃q,t. More specifically, we sample random elements α̃q, β̃q,t ← Zp for

all t ∈ [n′] such that
∑

t∈[n′] β̃q,t = 0 and a vector rq,t ← Zmqp . Then, the garblings are computed
as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t)

for all t ∈ [n′]. The vectors involved in the computation of SKfq ,yq are as follows:

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀
q,1,t[const] , ˜̀

q,1,t[coefi] , α̃qyq [κ]νq,t , 0, 0, 0, 0, 0),

vq,j,t = (˜̀
q,j,t[const] , ˜̀

q,j,t[coefi] , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (r̃q,t[mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑
ι∈[k]

s[ι]r
(ι)
q,t

with a common weight vector s has been used to set vq,vq,j,t. On the other hand, in H3 fresh and

independent random elements α̃q, β̃q,t, r̃q,t are used to compute SKfq ,yq . Note that the elements
of the vectors vq,vq,j,t are only used in the exponent of the source group G2 while generating

the IPFE secret-keys. Let us consider the matrix Aq,t = (αq|βq,t|(Rq,t)
>) ∈ Zk×(mq+1)

p where

Rq,t = (r
(1)
q,t | . . . |r

(k)
q,t) ∈ Zm×kp . Since the matrix Aq,t is uniformly chosen from Zk×(mq+1)

p and s is
uniform over Zkp, by the MDDHk assumption in group G2 we have

([[Aq,t]]2, [[A
>
q,ts]]︸ ︷︷ ︸

in H2

) ≈ ([[Aq,t]]2, [[(α̃q, β̃q,t, r̃q,t)]]2︸ ︷︷ ︸
in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable under
the MDDHk assumption.

We have completed the first phase of our security analysis as we see that the private slots of
the vectors associated to secret-keys and the challenge ciphertext are now computed similar to
our extended 1-FE scheme. From the next hybrid, we modify the vectors in such a way that all
the pre-challenge secret-key queries decrypt the challenge ciphertext without using the slots of
u and ht where the challenge massage (x∗, z∗||w∗) are used.

Hybrid H4: It proceeds similar to hybrid H3 except we change the vectors u and ht for all
t ∈ [n′] which are used in the computation of the challenge ciphertext. After all the pre-challenge

secret-key queries made by A, a dummy vector (d1||d2||d3) ∈ Zn
′+k+Qpre
p is picked from the set

D = {(d1||d2||d3) ∈ Zn′+k+Qpre
p : fq(x

∗)>d1 + y>q d2 + e>q d3 = µq for all q ∈ [Qpre]}

where µq = fq(x
∗)>z∗+y>q w

∗. The sampling procedure is as described in the algorithm Enc∗(·).
Then the vectors u,ht are defined as below.

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ] , w
∗[κ] , 0, 0, 0),

ht = (0, 0, −1, z∗[t], −1 , d1[t] , −1 , z∗[t] , 0).

71

Note that, these changes in u and ht have no effect in the final inner product values of
vq · u,vq,j,t · u and vq,mq+1,t · ht. This is because the elements at the slots (extndκ,2, extndκ)

of the vectors vq,vq,j,t ht and the elements at the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) of the vector
vq,mq+1,t (where the changes take place in u,ht) are all zero. Therefore, by the function hiding
property of IPFE the hybrids H3 and H4 remain indistinguishable to the adversary.

Hybrid H5,q (q ∈ [Qpre]): It proceeds similar to H4 except that for each 1 ≤ q′ ≤ q, we modify
the vectors vq,1,t and vq,mq+1,t as described below.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0 , α̃q′yq′ [κ]νq′,t , 0, α̃q′eq′ [η]νq′,t , 0, 0) for 1 ≤ q′ ≤ q,

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′] , α̃q′ , 0, 0, 0) for 1 ≤ q′ ≤ q,

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

Note that, the post-challenge secret-key queries are still answered according to H4. Observe that
H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via the following
sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.

Hybrid H5,q,1 (q ∈ [Qpre]): It is analogous to H5,(q−1) except that in the qth secret-key
query the vectors vq,1,t and vq,mq+1,t are modified as follow. The element α̃qyq[κ]νq,t is
shifted from vq,1,t[extndκ,1] to vq,1,t[extndκ] and the elements r̃q,t[mq], α̃q are shifted from

vq,mq+1,t[ĉonst1],vq,mq+1,t[ĉoef1] to vq,mq+1,t[ĉonst],vq,mq+1,t[ĉoef] respectively.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0, α̃q′yq′ [κ]νq′,t, 0, α̃q′eq′ [η]νq′,t, 0, 0) for 1 ≤ q′ < q,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0 , 0, α̃qyq[κ]νq,t , 0, 0, 0),

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,
vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0) for 1 ≤ q′ < q,

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t[mq] , α̃q , 0) ,

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

We observe that the inner products vq,1,t · u and vq,mq+1,t · ht are unchanged due to the
modification occurred in vq,1,t and vq,mq+1,t. Therefore, the function hiding security of IPFE
ensures that the hybrids H5,(q−1) and H5,q,1 are indistinguishable.

In this hybrid, the components of vq,j,t corresponding to the slots
{const, coefi, extndκ, queryq, simτ , sim

∗
τ} and the components of vq,mq+1,t corresponding to

the slots {ĉonst, ĉoef, ŝim
∗
} are exactly the same as in the secret-key of our extended 1-FE

scheme. Similarly, in case of the challenge ciphertext, the components of u at the po-
sitions {const, coefi, extndκ, queryq, simτ , sim

∗
τ} and the components of ht at the positions

{ĉonst, ĉoef, ŝim
∗
} are also identical to the ciphertext of our extended 1-FE scheme.

Hybrid H5,q,2 (q ∈ [Qpre]): It is exactly the same as H5,q,1 except that the components

u[extndκ],u[queryq] and ht[ĉoef] are changed from z∗[t], 0,w∗[κ] to d1[t], σq,d2[κ] respectively.
Thus, the secret key vectors and the vectors u,ht become

72

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0, α̃q′yq′ [κ]νq′,t, 0, α̃q′eq′ [η]νq′,t, 0, 0) for 1 ≤ q′ < q,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0, 0, α̃qyq[κ]νq,t, α̃qeq[η]νq,t , 0, 0),

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], d2[κ] , d
≤q
3 [η] 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], −1, d1[t] , 0)

where d≤q3 [η] = σq if η ≤ q; 0 otherwise. The indistinguishability follows from the security of
1-extFE scheme. We note that the security of our 1-extFE scheme relies on the function hiding
security of IPFE and the security of AKGS. In particular, we use the security of IPFE and AKGS
to reversely sample the first label and make all the other labels random as shown below

˜̀
q,1,1 ← RevSamp(fq,1,x

∗, α̃qfq(x
∗)>z∗ + y>q w

∗ + β̃q,1, `q,2,1, . . . , `q,mq ,1)˜̀
q,1,τ ← RevSamp(fq,τ ,x

∗, β̃q,τ , `q,2,τ , . . . , `q,mq ,τ) for 1 < τ < n′,

where
∑

τ∈[n′] β̃q,τ = 0 and `q,j,τ is picked randomly for all j ∈ [2,mq]. Then, the dummy

vector (d1||d2) replaces the challenge message (z∗||w∗) and d3[q] = σq is added to the term

α̃qfq(x
∗)>d1 +y>q d2 while computing ˜̀q,1,1. Finally, we move in the reverse direction so that the

vectors vq,j,t for all j ∈ [mq] and t ∈ [n′] are back in form as they were in H5,q,1 and d1[t],d2[κ] are

placed at ht[ĉoef],u[extndκ] respectively. Note that, the hybrids involved in our 1-extFE scheme

uses the positions simτ , sim
∗
τ , ŝim, ŝim

∗
of the vectors vq,j,t,u and ht, which does not affect the

decryption using any post-challenge secret-key.

Hybrid H5,q,3 (q ∈ [Qpre]): It proceeds analogous to H5,q,2 except that we change vq,mq+1,t

and ht as below. The element α̃qyq[κ]νq,t is shifted from vq,1,t[extndκ] to vq,1,t[extndκ,2] and the ele-

ments r̃q,t[mq], α̃q are shifted from vq,mq+1,t[ĉonst],vq,mq+1,t[ĉoef] to vq,mq+1,t[ĉonst2],vq,mq+1,t[ĉoef2]
respectively.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0, α̃q′yq′ [κ]νq′,t, 0, α̃q′eq′ [η]νq′,t, 0, 0) for 1 ≤ q′ < q,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0, α̃qyq[κ]νq,t , 0 , α̃qeq[η]νq,t, 0, 0),

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,
vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0) for 1 ≤ q′ < q,

vq,mq+1,t = (0, 0, r̃q,t[mq] , α̃q , 0 , 0 , 0) ,

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i],w∗[κ], d2[κ], w∗[κ] , d≤q3 [η], 0, 0),

ht = (0, 0,−1, z∗[t], −1, d1[t], −1, z∗[t] , 0)

Note that the inner products vq,1,t ·u and vq,mq+1,t ·ht remains the same as in H5,q,2. Therefore,
the hybrids H5,q,2 and H5,q,3 are indistinguishable due to the function hiding security of IPFE.
We observe that H5,q,3 is identical to H5,q for all q ∈ [Qpre].

Hybrid H6: It is exactly the same as H5,Qpre except that the elements u[extndκ], ht[ĉonst] and

ht[ĉoef] are set to zero. We describe the vectors associated to secret-key queries and the challenge
ciphertext below. Note that the post-challenge secret-key queries are released in the same way
as in H4 (or in H5,Qpre).

73

1 ≤ q ≤ Qpre

vq = (α̃q, 0, 0, 0, 0, 0, 0, 0) ,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0, α̃qyq[κ]νq,t, 0, α̃qeq[η]νq,t, 0, 0) ,

vq,j,t = (˜̀q,j,t[const], ˜̀q,j,t[coefi], 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (0, 0, r̃q,t[mq], α̃q, 0, 0, 0) ,

u = (0, 0, 0, 1, x∗[i],w∗[κ], d2[κ], 0 , d3[η], 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], 0 , 0 , 0)

Qpre < q ≤ Q

vq = (α̃q, 0, 0, 0, 0, 0, 0, 0) ,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], α̃qyq[κ]νq,t, 0, 0, 0, 0, 0) ,

vq,j,t = (˜̀q,j,t[const], ˜̀q,j,t[coefi], 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t[mq], α̃q, 0, 0, 0, 0, 0)

Since the inner products vq,1,t · u and vq,mq+1,t · ht is unaltered due to the modification in this
hybrid, the function hiding security of IPFE ensures indistinguishability between the hybrids
H5,Qpre and H6.

The second part of the proof is completed as all the pre-challenge secret-keys are now able
to decrypt the challenge ciphertext without the components of u,ht that make use of z∗ and
w∗. Note that, u[extndκ,1] = w∗[κ] and ht[ĉoef1] = z∗[t] are only needed for the successful
decryption of the challenge ciphertext by post-challenge secret-keys. From the next hybrid we
change the computation of post-challenge secret-keys so that the challenge ciphertext can be
simulated without using (z∗||w∗).

Hybrid H7: This hybrid proceeds exactly similar to H6 except that we use the honest levels˜̀
q,1,t = ˜̀

q,1,t(x
∗), ˜̀q,j,t = ˜̀

q,j,t(x
∗) for j ∈ [2,mq] and ˜̀q,mq+1,t = −r̃q,t[mq] + α̃qz

∗[t] while
defining the vectors vq,j,t in all the post-challenge secret-key queries. Moreover, all the other
private components vq,j,t[coefi] and vq,j,t[extndκ,1] are zero for all j ∈ [mq]. We also modify u and
ht of the challenge ciphertext as shown below.

u = (0, 0, 0, 1, x∗[i], 0 , d2[κ], 0, d3[η], 0, 0),

ht = (0, 0, 1 , 0 , −1, d1[t], 0, 0, 0),

Qpre < q ≤ Q

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀
q,1,t + α̃qyq [κ]νq,t , 0 , 0 , 0, 0, 0, 0, 0),

vq,j,t = (˜̀
q,j,t , 0 , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (˜̀
q,mq+1,t , 0 , 0, 0, 0, 0, 0)

Since the inner products vq,j,t · u,vq,mq+1,t · ht for all q ∈ [Qpre + 1, Q] are the same as in the
previous hybrid, the function hiding property of IPFE ensures that the hybrids H6 and H7 are
indistinguishable.

Hybrid H8: : This hybrid proceeds analogous to H7 except that the post-challenge secret-key
queries use the simulated garblings instead of the honest garblings. More specifically, we sample

α̃q, β̃q,t, ν̃q,t ← Zp satisfying
∑

t∈[n′] β̃q,t = 0,
∑

t∈[n′] ν̃q,t = 1 and compute the simulated garblings

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, α̃q · (z∗[t]fq,t(x∗) + ν̃q,t · y>q w∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated using the
vectors described below.

Qpre < q ≤ Q

vq |Spriv
= (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t|Spriv
= (̂̀

q,1,t , 0, 0, 0, 0, 0, 0, 0)

vq,j,t|Spriv
= (̂̀

q,j,t , 0, 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t|Ŝpriv
= (̂̀

q,mq+1,t , 0, 0, 0, 0, 0, 0)

74

The simulated levels of AKGS is used in place of actual garblings. The simulation security of
AKGS implies that the hybrids H7 and H8 are indistinguishable.

Hybrid H9: : This proceeds exactly the same as H8 except that the distribution of {β̃q,t}t∈[n′]
is changed. We replace β̃q,t by β̃′q,t = β̃q,t − α̃q · (z∗[t]fq,t(x∗) + ν̃q,t · y>q w∗) for all 1 < t ≤ n′ and

replace the element β̃q,1 by β̃′q,1 = β̃q,1− α̃q ·(z∗[1]fq,1(x
∗)+ ν̃q,1 ·y>q w∗)+ α̃q ·(fq(x∗)>z∗+y>q w∗).

Note that, the distributions

{β̃t,q ← Zp :
∑
t∈[n′]

β̃t,q = 0} and {β̃′t,q :
∑
t∈[n′]

β̃t,q = 0}

are statistically close since {β̃′q,t}t∈[n′] are also uniform over Zp and
∑

t∈[n′] β̃
′
q,t = 0. Finally, the

vectors associated to the post-challenge secret-keys are given by

Qpre < q ≤ Q

vq |Spriv
= (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t|Spriv
= (̂̀

q,1,t , 0, 0, 0, 0, 0, 0, 0)

vq,j,t|Spriv
= (̂̀

q,j,t , 0, 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t|Ŝpriv
= (̂̀

q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · (fq(x∗)>z∗ + y>q w

∗) + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptIdeal,extFEA (1λ). This completes the secu-
rity proof.

Note: Recall that the simulation goes through even if the challenger gets [[yq]]2 (and hence
[[α̃qfq(x

∗)>z∗ + y>q w
∗]]2) as we have already mentioned it while describing KeyGen∗1(·).

8 Unbounded-Slot FE for Attribute-Weighted Sum

In this section, we describe the transformation from extended one-slot FE to unbounded-slot
FE. The conversion is proposed in [AGW20] with semi-adaptive simulation security relying on
MDDHk assumption. We show the same transformation works to achieve adaptive simulation se-
curity against an a priori bounded number of pre-ciphertext secret key queries while an arbitrary
polynomial number of post-ciphertext secret key queries under the bMDDHk assumption.

Let ΠextOne = (SetupextFE,KeyGenextFE,EncextFE,DecextFE) be the extended one-slot FE scheme
described in Section 7. The unbounded-slot FE scheme Πubd = (Setup,KeyGen,Enc,Dec) works
as follows:

Setup(1λ, 1n, 1n
′
, 1B): On input integers λ, n, n′ as unary, the setup algorithm runs

(MSK1,MPK1)← SetupextFE(1λ, 1n, 1n
′
, 1B),

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

and outputs the master secret-key MSK = (MSK1,MSK2) and the master public-key MPK =
(MPK1,MPK2).

75

KeyGen(MSK, f): The key generation algorithm takes input MSK = (MSK1,

MSK2) and a function f ∈ F (n,n′)
ABP . It samples y ← Zkp and computes

SKf,1 ← KeyGenextFE(MSK1, (f, [[y]]2)), SKf,2 ← KeyGenextFE(MSK2, (f, [[y]]2))

Then, It returns the secret-key as SKf = (SKf,1, SKf,2) and f . Here, we use the property of extFE
that KeyGenextFE(MSKj, (f,y)) = KeyGenextFE(MSKj, (f, [[y]]2)) for j ∈ [2].

Enc(MPK, (xi, zi)i∈[N]): The encryption algorithm takes input MPK and message (xi, zi) ∈
Znp × Zn′p for i ∈ [N]. It samples random vectors w2, . . . ,wN ← Zkp and computes

CT1 ← EncextFE(MPK1, (x1, z1|| −
∑
i∈[2,N]

wi))

CTi ← EncextFE(MPK2, (xi, zi||wi)), for i ∈ [2, N]

It returns the ciphertext CT(xi||zi) = (CT1, . . . ,CTN).

Dec((SKf , f), (CT(xi||zi), (xi)i∈[N])): The decryption algorithm parses the secret-key SKf =
(SKf,1, SKf,2) and the ciphertext CT(xi||zi) = (CT1, . . . ,CTN). Then it computes

[[D1]]T ← DecextFE((SKf,1, f), (CT1,x1))

[[Di]]T ← DecextFE((SKf,2, f), (CTi,xi)) for i ∈ [2, N]

and multiply those values to get [[D]]T = [[D1]]T · · · [[DN]]T . Finally, it returns D by solving discrete
log via brute-force.
Correctness. By the correctness of underlying extFE scheme, we get

[[D1]]T = [[f(x1)
>z1 −

∑
i∈[2,N]

y>wi]]T

[[Di]]T = [[f(xi)
>zi + y>wi]]T for i ∈ [2, N]

Therefore, multiplying all [[Di]]T for i ∈ [N], we have [[D]]T = [[
∑

i∈[N] f(xi)
>zi]]T .

8.1 Security Analysis

Theorem 6 The unbounded-slot FE scheme Πubd for attribute weighted sum is adaptively simulation-
secure under bilateral MDDHk assumption if the underlying extended one-slot FE scheme ΠextOne

is adaptively simulation secure.

The Simulator In this section, we describe the simulator of our unbounded slot FE scheme
Πubd. First, we recall the syntax of the simulator of our extended one-slot FE scheme presented
in Section 7.

Simulator of ΠextOne. Let Q be the total number of secret-key queries by the adversary and
B = Qpre be the number of secret-keys asked before the challenge phase. We consider (x∗, z∗||w∗)
as the challenge message.

76

• Setup∗extFE(1λ, 1n, 1n
′
, 1B)→ (MSK∗1,MPK1)

• KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2))→ SKfq ,y
• Enc∗extFE(MPK1,MSK∗1,x

∗,V1) → CT∗ where V1 = {((fq, [[yq]]1), [[fq(x∗)>z∗ + y>q w
∗]]1) : q ∈

[Qpre]}
• KeyGen∗extFE,1(MSK∗1,x

∗, (fq, [[yq]]2), [[fq(x
∗)> + y>q w

∗]]2)→ SKfq ,y

Remark 5 Note that, the simulator is given yq and fq(x
∗)>+y>q w

∗ in the power of the source
groups. The simulator still runs efficiently as we are utilizing the following facts from our ΠextOne:

1. KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)) = KeyGen∗extFE,0(MSK∗1, (fq,yq)) in case of our ΠextOne for all
q ∈ [Qpre]

2. Enc∗extFE(MPK1,MSK∗1,x
∗,V1) = Enc∗extFE(MPK1,MSK∗1,x

∗,V ′1) where V ′1 = {((fq, [[yq]]1), fq(x∗)>z∗+
y>q w

∗) : q ∈ [Qpre]}
3. KeyGen∗extFE,1(MSK∗1,x

∗, (fq, [[yq]]2), [[fq(x
∗)>+y>q w

∗]]2) = KeyGen∗extFE,1(MSK∗1,x
∗, (fq,yq), fq(x

∗)>+
y>q w

∗) for all q ∈ [Qpre + 1, Q]

Now, we present the simulator of Πubd as follows:

Setup∗(1λ, 1n, 1n
′
, 1B, 1N): On input integers λ, n, n′, N and a bound on the pre-challenge

query B as unary, the simulated setup algorithm samples w2, . . . ,wN ← Zkp and generates the
keys

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

It returns MSK∗ = (MSK∗1,MSK2,w2, . . . ,wN) and MPK = (MPK1,MPK2).

KeyGen∗0(MSK∗, fq): This is the pre-challenge key generation algorithm. On input MSK∗ and

a function fq ∈ F (n,n′)
ABP , the algorithm samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (f, [[yq]]2)),

SKfq ,2 ← KeyGenextFE(MSK2, (f, [[yq]]2))

It outputs the simulated key SKfq = (SK∗fq ,1, SKfq ,2).

Let B = Qpre be the total number of pre-challenge keys queried by the adversary and
(x∗i , z

∗
i)i∈[N] be the challenge message.

Enc∗(MPK,MSK∗, (xi)i∈[N],V): On input MPK,MSK∗, a set of vectors (x∗i)i∈[N] and a set
V = {((fq, [[yq]]1), µq =

∑
i∈[N] fq(x

∗
i)
>z∗i) : q ∈ [Qpre]}, the simulated encryption algorithm

defines the set V1 = {((fq, [[yq]]1), [[µq −
∑

i∈[2,N] y
>
q wi]]1) : q ∈ [Qpre]} and computes

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,x
∗
1,V1)

CT∗i ← EncextFE(MPK2, (x
∗
i ,0||wi)) for i ∈ [2, N]

It returns the simulated ciphertext CT∗ = (CT∗1,CT2, . . . ,CTN).

77

KeyGen∗1(MSK∗, (x∗i)i∈[2,N], fq, µq): This is the post-challenge key generation algorithm. On

input MSK∗, a set of vectors (x∗i)i∈[2,N], a function fq ∈ F (n,n′)
ABP and an integer µq =

∑
i∈[N] fq(x

∗
i)
>z∗i ,

the algorithm samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[µq −

∑
i∈[2,N]

y>q wi]]2)

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

It outputs the simulated secret-key SK∗fq = (SK∗fq ,1, SKfq ,2)

Hybrids and Reductions

Proof. We prove the theorem by showing the indistinguishability between the real experiment
ExptReal,ubdFEA (1λ) and the ideal experiment ExptIdeal,ubdFEA (1λ) via a sequence of hybrid games. In
each experiment, the adversary A can query a polynomial number of secret-key queries cor-

responding to functions f ∈ F (n,n′)
ABP , both before and after submitting the challenge message

(xi, zi)i∈[N] ∈ (Znp × Zn′p)N . Let Q be the total number of key queries and without loss of gener-
ality let B = Qpre be the number of keys queried before the challenge phase. We denote the q-th
secret-key by SKfq for a function fq. The sequence of hybrids are described as follows:

Hybrid H0: : This is the real experiment ExptReal,ubdFEA (1λ).

– The master keys are sampled as follows:

(MSK1,MPK1)← SetupextFE(1λ, 1n, 1n
′
, 1B),

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

The challenger sets MSK = (MSK1,MSK2) and MPK = (MPK1,MPK2).

– The q-th secret-key SKfq , for all q ∈ [Q], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SKfq ,1 ← KeyGenextFE(MSK1, (fq, [[yq]]2)),

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

The challenger sends SKfq = (SKfq ,1, SKfq ,2).

– The challenge ciphertext is computed as follows: The challenger samples w2, . . . ,wN ← Zkp
and compute the ciphertexts

CT1 ← EncextFE(MPK1, (x
∗
1, z

∗
1 || −

∑
i∈[2,N]

wi))

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)), for i ∈ [2, N]

The challenger returns CT = (CT1, . . . ,CTN).

78

Hybrid H1: : This is exactly the same H0 except that all the algorithms of the first instant of
ΠextOne is now replaced with their simulated counterpart. The changes are indicated as follows:

– The master keys as sampled as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B) ,

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

The challenger samplesw2, . . . ,wN ← Zkp and sets the master keys as MSK = (MSK∗1,MSK2,w2, . . . ,wN)

and MPK = (MPK1,MPK2).

– The q-th secret-key SKfq , for all q ∈ [Qpre], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)) ,

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

The challenger sends SKfq = (SK∗fq ,1 , SKfq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key queries,
the challenger defines a set

V1 = {((fq, [[yq]]1), [[fq(x∗1)>z∗1 −
∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)), for i ∈ [2, N]

The challenger returns CT = (CT∗1 ,CT2, . . . ,CTN).

– The post-challenge secret-key SKfq for q ∈ [Qpre+1, Q] is computed as follows: The challenger
yq ← Zkp and generates the keys

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[fq(x

∗
1)
>z∗1 −

∑
i∈[2,N]

y>q wi]]2) ,

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

and returns SKfq = (SK∗fq ,1 , SKfq ,2)

In lemma 8, we show that the hybrids H0 and H1 are indistinguishable by the adaptive simulation-
security of ΠextOne scheme.

Hybrid H2,η (η ∈ [2, N]): : It is exactly the same as hybrid H1 except that the changes
indicated below.

79

– The master keys as sampled as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

The challenger samples w2, . . . ,wN ← Zkp and sets MSK = (MSK∗1,MSK2,w2, . . . ,wN) and
MPK = (MPK1,MPK2).

– The q-th secret-key SKfq , for all q ∈ [Qpre], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)),

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

The challenger sends SKfq = (SK∗fq ,1, SKfq ,2).
– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key queries,

the challenger defines a set

V1 = {((fq, [[yq]]1), [[
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)

CTi ← EncextFE(MPK2, (x
∗
i ,0||wi)) for i ∈ [2, η],

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗1,CT2, . . . ,CTη−1,CTη, . . . ,CTN).
– The post-challenge secret-key SKfq for q ∈ [Qpre+1, Q] is computed as follows: The challenger

samples yq ← Zkp and generates the keys

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]2),

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

and returns SKfq = (SK∗fq ,1, SKfq ,2)

Observe that H2,1 coincides with H1. We will show that for all η ∈ [2, N], the hybrids H2,(η−1) and
H2,η are indistinguishable via the following sequence of sub-hybrids, namely, {H2,η,1,H2,η,2,H2,η,3}η∈[2,N].

Hybrid H2,η,1 (η ∈ [2, N]): : It is exactly the same as hybrid H2,(η−1) except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK∗2,MPK2)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

The challenger samples w2, . . . ,wN ← Zkp and sets MSK = (MSK∗1, MSK∗2 ,w2, . . . ,wN) and

MPK = (MPK1,MPK2).

80

– The q-th secret-key SKfq , for all q ∈ [Qpre], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)),

SK∗fq ,2 ← KeyGen∗extFE,0(MSK∗2, (fq, [[yq]]2))

The challenger sends SKfq = (SK∗fq ,1, SK
∗
fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key queries,
the challenger defines the sets

V1 = {((fq, [[yq]]1), [[
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

V2 = {((fq, [[yq]]1), [[fq(x∗η)>z∗η + y>q wη]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)
CTi ← EncextFE(MPK2, (x

∗
i ,0||wi)) for i ∈ [2, η − 1],

CT∗η ← Enc∗extFE(MPK2,MSK∗2,V2) ,

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗1,CT2, . . . ,CTη−1, CT
∗
η ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SKfq for q ∈ [Qpre+1, Q] is computed as follows: The challenger
samples yq ← Zkp and generates the keys

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]2),

SK∗fq ,2 ← KeyGen∗extFE,1(MSK∗2,x
∗
η, (fq, [[yq]]2), [[fq(x

∗
η)
>z∗η + y>q wη]]2)

and returns SKfq = (SK∗fq ,1, SK
∗
fq ,2)

We demonstrate in lemma 9 that H2,(η−1) and H2,η,1 are indistinguishable by the adaptive
simulation-security of ΠextOne.

Hybrid H2,η,2 (η ∈ [2, N]): : It is exactly the same as hybrid H2,η,1 except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK∗2,MPK2)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

The challenger samples w2, . . . ,wN ← Zkp and sets MSK = (MSK∗1,MSK∗2,w2, . . . ,wN) and
MPK = (MPK1,MPK2).

81

– The q-th secret-key SKfq , for all q ∈ [Qpre], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)),

SK∗fq ,2 ← KeyGen∗extFE,0(MSK∗2, (fq, [[yq]]2))

The challenger sends SKfq = (SK∗fq ,1, SK
∗
fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key queries,
the challenger defines the sets

V1 = {((fq, [[yq]]1), [[
∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

V2 = {((fq, [[yq]]1), [[y>q wη]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1, V1)

CTi ← EncextFE(MPK2, (x
∗
i ,0||wi)) for i ∈ [2, η − 1],

CT∗η ← Enc∗extFE(MPK2,MSK∗2, V2),

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗1 ,CT2, . . . ,CTη−1, CT
∗
η ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SKfq for q ∈ [Qpre+1, Q] is computed as follows: The challenger
yq ← Zkp and generates the keys

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]2),

SK∗fq ,2 ← KeyGen∗extFE,1(MSK∗2,x
∗
η, (fq, [[yq]]2), [[y>q wη]]2)

and returns SKfq = (SK∗fq ,1, SK
∗
fq ,2)

Lemma 10 ensures that the hybrids H2,η,1 and H2,η,2 are indistinguishable due to bilateral MDDHk
assumption.

Hybrid H2,η,3 (η ∈ [2, η]): : It is exactly the same as hybrid H2,η,2 except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

The challenger samples w2, . . . ,wN ← Zkp and sets MSK = (MSK∗1, MSK2 ,w2, . . . ,wN) and
MPK = (MPK1,MPK2).

82

– The q-th secret-key SKfq , for all q ∈ [Qpre], is computed as follows: The challenger samples
yq ← Zkp and generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)),

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

The challenger sends SKfq = (SK∗fq ,1, SKfq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key queries,
the challenger defines the sets

V1 = {((fq, [[yq]]1), [[
∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)
CTi ← EncextFE(MPK2, (x

∗
i ,0||wi)) for i ∈ [2, η − 1],

CTη ← EncextFE(MPK2, (x
∗
η,0||wη)) ,

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗1,CT2, . . . ,CTη−1, CTη ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SKfq for q ∈ [Qpre+1, Q] is computed as follows: The challenger
samples yq ← Zkp and generates the keys

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]2),

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

and returns SKfq = (SK∗fq ,1, SKfq ,2)

We show in lemma 11 that the hybrids H2,η,2 and H2,η,3 are indistinguishable by the adaptive
simulation security of ΠextOne.

Now, we observe that the hybrid H2,1 is identical to H1 and H2,η,3 is identical to H2,η for all

η ∈ [2, N]. Finally, we note that H2,N is the ideal experiment ExptIdeal,ubdFEA (1λ).

Lemma 8 The hybrids H0 and H1 are computationally indistinguishable by adaptive simulation-
security of ΠextOne. More specifically, for any PPT adversary A, there exists another PPT ad-
versary B1 such that

|AdvH0
A (λ)− AdvH1

A (λ)| ≤ AdvextFEB1 (λ)

Proof. We establish the indistinguishability by constructing an adversary B1 against the adap-
tive simulation-security of ΠextOne. Let C1 be the challenger of the security experiment of ΠextOne.
The adversary B1 works as follows:

83

– Setup: B1 gets MPK1 from C1 and computes

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
– Key Queries: A asks for a secret-key corresponding to the function fq at the q-th key query

for q ∈ [Q]. First, B1 samples yq ← Zkp and generates

SKfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2))

Next, B1 forwards (fq,yq) to C1 and gets a secret-key S̃Kfq ,1. Finally, B1 returns SKfq =

(S̃Kfq ,1, SKfq ,2) to A.
– Ciphertext Query:A sends the challenge ciphertext (x∗i , z

∗
i)i∈[N]. Now, B1 samplesw2, . . . ,wN ←

Zkp and computes

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)), for i ∈ [2, N]

Next, B1 sends (x∗1, z
∗
1 || −

∑
i∈[2,N]wi) as its challenge ciphertext to C1 and receives a cipher-

text C̃T1. Finally, B1 sends the challenge ciphertext CT = (C̃T1,CT2, . . . ,CTN) to A.

Observe that, if C1 chooses the real algorithms of ΠextOne then

(MSK1,MPK1)← SetupextFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,1 ← KeyGenextFE(MSK1, (fq, [[yq]]2)) ∀q ∈ [Q]

C̃T1 ← EncextFE(MPK1, (x
∗
1, z

∗
1 || −

∑
i∈[2,N]

wi))

and hence B1 simulates H0. If C1 chooses the the simulator of ΠextOne then

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)) ∀q ∈ [Qpre]

C̃T1 ← EncextFE(MPK1, (x
∗
1, z

∗
1 || −

∑
i∈[2,N]

wi))

S̃Kfq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[fq(x

∗
1)
>z∗1 −

∑
i∈[2,N]

y>q wi]]2)

∀q ∈ [Qpre + 1, Q]

and hence B1 simulates H1.

Lemma 9 The hybrids H2,(η−1) and H2,η,1 are computationally indistinguishable by adaptive
simulation-security of ΠextOne. More specifically, for any PPT adversary A, there exists another
PPT adversary B2 such that

|AdvH2,(η−1)

A (λ)− Adv
H2,η,1

A (λ)| ≤ AdvextFEB2 (λ)

Proof. We prove the lemma by constructing an adversary B2 against the adaptive simulation-
security of ΠextOne. Let C2 be the challenger of the security experiment of ΠextOne. The adversary
B2 works as follows:

84

– Setup: B2 gets MPK2 from C2 and computes

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
– Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the

q-th key query for q ∈ [Qpre]. First, B2 samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2))

Next, B2 forwards (fq,yq) to C2 and gets a secret-key S̃Kfq ,2. Finally, B2 returns SKfq =

(SK∗fq ,1, S̃Kfq ,2) to A.
– Ciphertext Query:A sends the challenge ciphertext (x∗i , z

∗
i)i∈[N]. Now, B2 samplesw2, . . . ,wN ←

Zkp and defines the set

V1 = {((fq, [[yq]]1), [[
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

Now, B2 computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)
CTi ← EncextFE(MPK2, (x

∗
i ,0||wi)) for i ∈ [2, η − 1],

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

Next, B2 sends (x∗η, z
∗
η||wη) as its challenge ciphertext to C2 and receives a ciphertext C̃Tη. Fi-

nally, B2 sends the challenge ciphertext CT = (CT∗1,CT2, . . . ,

CTη−1, C̃Tη,CTη+1, . . . ,CTN) to A.
– Post-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the

q-th key query for q ∈ [Qpre + 1, Q]. First, B2 samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η−1] fq(x

∗
i)
>z∗i −

∑
i∈[2,N] y

>
q wi]]2)

Next, B2 forwards (fq,yq) to C2 and gets a secret-key S̃Kfq ,2. Finally, B2 returns SKfq =

(SK∗fq ,1, S̃Kfq ,2) to A.

Observe that, if C2 chooses the real algorithms of ΠextOne then

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2)) ∀q ∈ [Q]

C̃Tη ← EncextFE(MPK2, (x
∗
η, z

∗
η||wη))

and hence B2 simulates H2,(η−1). If C2 chooses the the simulator of ΠextOne then

(MSK∗2,MPK2)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,2 ← KeyGen∗extFE,0(MSK∗2, (fq, [[yq]]2)) ∀q ∈ [Qpre]

C̃Tη ← Enc∗extFE(MPK2,MSK∗2,V2)

S̃Kfq ,2 ← KeyGen∗extFE,1(MSK∗2,x
∗
η, (fq, [[yq]]2), [[fq(x

∗
η)
>z∗η + y>q wη]]2)

∀q ∈ [Qpre + 1, Q]

where V2 = {((fq, [[yq]]1), [[fq(x∗η)>z∗η + y>q wη]]1) : q ∈ [Qpre]} and hence B2 simulates H2,η,1.

85

Lemma 10 The hybrids H2,η,1 and H2,η,2 are computationally indistinguishable by bilateral MDDH1
k,Q

assumption. More specifically, for any PPT adversary A, there exists another PPT adversary
B3 such that

|AdvH2,η,1

A (λ)− Adv
H2,η,2

A (λ)| ≤ AdvB3
bMDDH1

k,Q
(λ)

Proof. We prove the indistinguishability using lemma 1 with w = wη and µq = fq(x
∗
η)
>z∗η . Let

B3 be an adversary of lemma 1, who gets a challenge instance

{[[ρq,1]]1, [[ρq,1]]2, [[ρq,2]]1, [[ρq,2]]2, [[yq]]1, [[yq]]2}q∈[Q]

from its challenger. Now, B3 simulates the game as follows:

– Setup: B3 generates the master keys as follows:

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B),

(MSK∗2,MPK2)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

and sends MPK = (MPK1,MPK2) to A.
– Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the
q-th key query for q ∈ [Qpre]. First, B3 generate the keys

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2)),

SK∗fq ,2 ← KeyGen∗extFE,0(MSK∗2, (fq, [[yq]]2))

Then it sends SKfq = (SK∗fq ,1, SK
∗
fq ,2) to A.

– Ciphertext Query: A sends the challenge ciphertext (x∗i , z
∗
i)i∈[N]. Now, B3 samples wi ← Zkp

for all i ∈ [2, N] \ {η} and defines the set

V1 = {((fq, [[yq]]1), [[
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]\{η}

y>q wi + ρq,1]]1) : q ∈ [Qpre]}

V2 = {((fq, [[yq]]1), [[ρq,2]]1) : q ∈ [Qpre]}

Next, it computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)
CTi ← EncextFE(MPK2, (x

∗
i ,0||wi)) for i ∈ [2, η − 1],

CT∗η ← Enc∗extFE(MPK2,MSK∗2,V2),
CTi ← EncextFE(MPK2, (x

∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

and sends the challenge ciphertext as CT = (CT∗1,CT2, . . . ,CTη−1,CT
∗
η,

CTη+1, . . . ,CTN).
– Post-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the

q-th key query for q ∈ [Qpre + 1, Q]. First, B2 samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2),

[[
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]\{η}

y>q wi + ρq,1]]2),

SK∗fq ,2 ← KeyGen∗extFE,1(MSK∗2,x
∗
η, (fq, [[yq]]2), [[ρq,2]]2)

and sends SKfq = (SK∗fq ,1, SK
∗
fq ,2) to A.

86

Observe that, if B3 gets the challenge instance such that ρq,1 = y>q wη and ρq,2 = fq(x
∗
η)
>z∗η +

y>q wη which corresponds to the first distribution in lemma 1, then we have∑
i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]\{η}

y>q wi + ρq,1 =
∑

i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi

and hence B3 simulates H2,η,1. If B3 gets the challenge instance such that ρq,1 = fq(x
∗
η)
>z∗η−y>q wη

and ρq,2 = y>q wη which corresponds to the second distribution in lemma 1, then we have∑
i∈[η−1]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]\{η}

y>q wi + ρq,1 =
∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi

and hence B3 simulates H2,η,2.

Lemma 11 The hybrids H2,η,2 and H2,η,3 are computationally indistinguishable by adaptive simulation-
security of ΠextOne. More specifically, for any PPT adversary A, there exists another PPT ad-
versary B4 such that

|AdvH2,η,2

A (λ)− Adv
H2,η,3

A (λ)| ≤ AdvextFEB4 (λ)

Proof. The proof is similar to the lemma 9 with a few changes. We construct an adversary B4
against the adaptive simulation-security of ΠextOne depending on the the adversary A. Let C4 be
the challenger of the security experiment of ΠextOne. The adversary B4 works as follows:

– Setup: B4 gets MPK2 from C4 and computes

(MSK∗1,MPK1)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
– Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the

q-th key query for q ∈ [Qpre]. First, B4 samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,0(MSK∗1, (fq, [[yq]]2))

Next, B4 forwards (fq,yq) to C4 and gets a secret-key S̃Kfq ,2. Finally, B4 returns SKfq =

(SK∗fq ,1, S̃Kfq ,2) to A.
– Ciphertext Query:A sends the challenge ciphertext (x∗i , z

∗
i)i∈[N]. Now, B4 samplesw2, . . . ,wN ←

Zkp and defines the set

V1 = {((fq, [[yq]]1), [[
∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]1) : q ∈ [Qpre]}

Now, B4 computes the ciphertexts

CT∗1 ← Enc∗extFE(MPK1,MSK∗1,V1)
CTi ← EncextFE(MPK2, (x

∗
i ,0||wi)) for i ∈ [2, η − 1],

CTi ← EncextFE(MPK2, (x
∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

Next, B4 sends (x∗η,0||wη) as its challenge ciphertext to C4 and receives a ciphertext C̃Tη. Fi-
nally, B4 sends the challenge ciphertext CT = (CT∗1,CT2, . . . ,

CTη−1, C̃Tη,CTη+1, . . . ,CTN) to A.

87

– Post-challenge Key Queries: A asks for a secret-key corresponding to the function fq at the

q-th key query for q ∈ [Qpre + 1, Q]. First, B4 samples yq ← Zkp and computes

SK∗fq ,1 ← KeyGen∗extFE,1(MSK∗1,x
∗
1, (fq, [[yq]]2), [[

∑
i∈[η]

fq(x
∗
i)
>z∗i −

∑
i∈[2,N]

y>q wi]]2)

Next, B4 forwards (fq,yq) to C4 and gets a secret-key S̃Kfq ,2. Finally, B4 returns SKfq =

(SK∗fq ,1, S̃Kfq ,2) to A.

Observe that, if C4 chooses the simulator of ΠextOne then

(MSK∗2,MPK2)← Setup∗extFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,2 ← KeyGen∗extFE,0(MSK∗2, (fq, [[yq]]2)) ∀q ∈ [Qpre]

C̃Tη ← Enc∗extFE(MPK2,MSK∗2,V2)

S̃Kfq ,2 ← KeyGen∗extFE,1(MSK∗2,x
∗
η, (fq, [[yq]]2), [[y

>
q wη]]2) ∀q ∈ [Qpre + 1, Q]

where V2 = {((fq, [[yq]]1), [[y>q wη]]1) : q ∈ [Qpre]} and hence B4 simulates H2,η,2. If C4 chooses the
real algorithms of ΠextOne then

(MSK2,MPK2)← SetupextFE(1λ, 1n, 1n
′
, 1B)

S̃Kfq ,2 ← KeyGenextFE(MSK2, (fq, [[yq]]2)) ∀q ∈ [Q]

C̃Tη ← EncextFE(MPK2, (x
∗
η,0||wη))

and hence B4 simulates H2,η,3.

References

ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. In PKC 2015, pages 733–751. Springer, 2015.

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption with
fine-grained access control. IACR Cryptology ePrint Archive, Report 2020/577, 2020.

Agr17. Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and attacks. In CRYPTO
2017, pages 3–35. Springer, 2017.

AGT20. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. IACR Cryptology ePrint Archive, Report 2020/1285, 2020.

AGW20. Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-weighted sums from
k-Lin. In CRYPTO 2020, pages 685–716. Springer, 2020.

AIK11. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In FOCS 2011,
pages 120–129. IEEE Computer Society, 2011.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption.
In CRYPTO 2015, pages 308–326. Springer, 2015.

AJS15. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from functional en-
cryption for simple functions. 2015.

ALMT20. Shweta Agrawal, Benôıt Libert, Monosij Maitra, and Radu Titiu. Adaptive simulation security for inner
product functional encryption. In PKC 2020, pages 34–64. Springer, 2020.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In CRYPTO 2016, pages 333–362. Springer, 2016.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In EUROCRYPT 2017, pages 152–181. Springer, 2017.

AY20a. Shweta Agrawal and Shota Yamada. CP-ABE for circuits (and more) in the symmetric key setting. In TCC
2020, pages 117–148. Springer, 2020.

88

AY20b. Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In EUROCRYPT
2020, pages 13–43. Springer, 2020.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO 2004, pages 41–55.
Springer, 2004.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional en-
cryption for quadratic functions with applications to predicate encryption. In CRYPTO 2017, pages 67–98.
Springer, 2017.

BF01. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In CRYPTO 2001, pages
213–229. Springer, 2001.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In EUROCRYPT 2014, pages 533–556. Springer, 2014.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO 2005, pages 258–275. Springer, 2005.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In TCC 2011,
pages 253–273. Springer, 2011.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In
FOCS 2015, pages 171–190. IEEE Computer Society, 2015.

BW07. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In TCC 2007,
pages 535–554. Springer, 2007.

CGH+15. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji, Eric Miles, Mariana
Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In CRYPTO 2015, pages 247–266. Springer, 2015.

CHL+15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the
multilinear map over the integers. In EUROCRYPT 2015, pages 3–12. Springer, 2015.

CLT13. Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers.
In CRYPTO 2013, pages 476–493. Springer, 2013.

Coc01. Clifford C. Cocks. An identity based encryption scheme based on quadratic residues. In IMACC 2001, pages
360–363. Springer, 2001.

DDM16. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with full
function privacy. In PKC 2016, pages 164–195. Springer, 2016.

DKW20. Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for dnfs from LWE.
IACR Cryptology ePrint Archive, Report 2020/1386, 2020.

DOT18. Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively simulation-secure attribute-hiding
predicate encryption. In ASIACRYPT 2018, pages 640–672. Springer, 2018.

DOT20. Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively simulation-secure attribute-hiding
predicate encryption. IEICE TRANSACTIONS on Information and Systems, 103(7):1556–1597, 2020.

EHK+17. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An algebraic framework for diffie–
hellman assumptions. Journal of cryptology, 30(1):242–288, 2017.

Gay20. Romain Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In PKC 2020,
pages 95–120. Springer, 2020.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In EURO-
CRYPT 2013, pages 1–17. Springer, 2013.

GGH+16. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016.

GKP+13. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC 2013, pages 555–564. ACM, 2013.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In CCS 2006, pages 89–98. ACM, 2006.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collusions
via multi-party computation. In CRYPTO 2012, pages 162–179. Springer, 2012.

GVW15a. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. Journal
of the ACM JACM, 62(6):1–33, 2015.

GVW15b. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE. In
CRYPTO 2015, pages 503–523. Springer, 2015.

IK20. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing poly-
nomials. In ICALP 2002, pages 244–256. Springer, 2020.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In ICALP 2014, pages 650–662.
Springer, 2014.

89

JLS19. Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assumptions for iO. Technical
report, IACR Cryptology ePrint Archive, Report 2019/1252, 2019.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT 2008, pages 146–162. Springer, 2008.

KW19. Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from k-Lin. Journal of Cryp-
tology, pages 1–49, 2019.

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 prgs. In CRYPTO
2017, pages 599–629. Springer, 2017.

LL20. Huijia Lin and Ji Luo. Compact adaptively secure abe from k-Lin: Beyond NC1 and towards NL. In EURO-
CRYPT 2020, pages 247–277. Springer, 2020.

LOS+10. Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In EUROCRYPT
2010, pages 62–91. Springer, 2010.

LT17. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local
PRGs. In CRYPTO 2017, pages 630–660. Springer, 2017.

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on
constant-degree graded encodings. In FOCS 2016, pages 11–20. IEEE, 2016.

LV17. Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom generators and applica-
tions to indistinguishability obfuscation. In TCC 2017, pages 119–137. Springer, 2017.

LW10. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE with
short ciphertexts. In TCC 2010, pages 455–479. Springer, 2010.

LW11. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EUROCRYPT 2011, pages
568–588. Springer, 2011.

MSZ16. Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over GGH13. In CRYPTO 2016, pages 629–658. Springer, 2016.

Nis91. Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In STOC 1991, pages
410–418. ACM, 1991.

O’N10. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556,
2010.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations from
the decisional linear assumption. In CRYPTO 2010, pages 191–208. Springer, 2010.

OT12a. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product en-
cryption. In EUROCRYPT 2012, pages 591–608. Springer, 2012.

OT12b. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In ASIACRYPT 2012, pages 349–366. Springer, 2012.

OT13. Tatsuaki Okamoto and Katsuyuki Takashima. Efficient (hierarchical) inner-product encryption tightly re-
duced from the decisional linear assumption. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, 96(1):42–52, 2013.

PST14. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-secure mul-
tilinear encodings. In CRYPTO 2014, pages 500–517. Springer, 2014.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 1984, pages 47–53. Springer,
1984.

SS10. Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In CCS
2010, pages 463–472. ACM, 2010.

SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, pages 457–473.
Springer, 2005.

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
CRYPTO 2009, pages 619–636. Springer, 2009.

Wat11. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In PKC 2011, pages 53–70. Springer, 2011.

Wee17. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In TCC 2017, pages 206–
233. Springer, 2017.

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from k-Lin, revisited. In TCC 2020, pages
210–228. Springer, 2020.

Wee21. Hoeteck Wee. Broadcast encryption with size n1/3 and more from k-lin. In Annual International Cryptology
Conference, pages 155–178. Springer, 2021.

90

A 1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for
Unbounded-Key One-Slot Extended FE for Attribute-Weighted
Sums

In this section, we present a private-key one-slot FE scheme for an extended attribute-weighted
sum functionality that is proven simulation secure against a single ciphertext query and a single
secret key query either before or after the ciphertext query. This scheme will be embedded into
the hidden subspaces of the public-key multi-key FE scheme for the same functionality presented
in the next section in its security proof. We describe the construction for any fixed value of the se-
curity parameter λ and suppress the appearance of λ for simplicity of notations. Let (Garble,Eval)

be a special piecewise secure AKGS for a function class F (n,n′)
ABP , G = (G1,G2,GT , g1, g2, e) a tuple

of pairing groups of prime order p, and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-
key function-hiding SK-IPFE based on G.

Setup(1λ, 1n, 1n
′
): Define the following index sets as follows

S1-extFE =
{
const, {coefi}i∈[n], {extndκ}κ∈[k], {simτ , sim

∗
τ}τ∈[n′]

}
, Ŝ1-extFE = {ĉonst, ĉoef, ŝim∗}

It generates two IPFE master secret-keys IPFE.MSK← SK-IPFE.Setup(S1-extFE) and ̂IPFE.MSK←
SK-IPFE.Setup(Ŝ1-extFE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Zkp. Samples integers νt, βt ← Zp

for t ∈ [n′] such that ∑
t∈[n′]

νt = 1 and
∑
t∈[n′]

βt = 0 modulo p.

Next, samples independent random vectors rt ← Zmp for garbling and computes the coefficient
vectors

(`1,t, . . . , `m,t, `m+1,t)← Garble(z[t]ft(x) + βt; rt)

for each t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Section 3.6.
From the description of that AKGS instantiation, we note that the (m+1)-th label function `m+1,t

would be of the form `m+1,t = z[t]− rt[m]. Also all the label functions `1,t, . . . , `m,t involve only
the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors
vj,t corresponding to the label functions `j,t obtained from the partial garbling above and the
vector y as

vector const coefi extndκ simτ sim∗τ

v1,t `1,t[const] `1,t[coefi] y[κ]νt 0 0

vj,t `j,t[const] `j,t[coefi] 0 0 0

It also sets the vectors vm+1,t for t ∈ [n′] corresponding to the (m + 1)-th label function `m+1,t

as

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

91

Now, it uses the key generation algorithm of IPFE to generate the secret-keys

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Enc(MSK, (x, z||w) ∈ Znp × Zn′+k
p): It sets the following vectors:

vector const coefi extndκ simτ sim∗τ

u 1 x[i] w[κ] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. Then, it encrypts the vectors using IPFE and obtain the ciphertexts

IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

Finally, it returns the ciphertext as CTx,z||w = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Dec((SKf,y, f), (CTx,z||w, x)): It parses SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])
and CTx,z||w = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryption algorithm of SK-IPFE to
compute

[[`1,t + ψt]]T ← SK-IPFE.Dec(IPFE.SK1,t, IPFE.CT) for t ∈ [n′]

[[`j,t]]T ← SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[`m+1,t]]T ← SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt = νt ·y>w. Next, it utilizes the evaluation procedure of AKGS and returns the combined
value

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T).

Correctness: From the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SK1,t,
IPFE.CT) = [[`1,t + ψt]]T where ψt = νt · y>w. Next, using the correctness of IPFE and AKGS
evaluation, we get

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= Eval(ft,x, [[`1,t]]T , . . . , [[`m+1,t]]T) + Eval(ft,x, [[ψt]]T , [[0]]T , . . . , [[0]]T)

= [[z[t]ft(x) + βt + νt · y>w]]T

92

The first equality follows from the linearity of Eval function. Now, multiplying all the evaluated
values we have

[[ρ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= [[
n′∑
t=1

(z[t]ft(x) + νt · y>w + βt)]]T

= [[f(x)>z + y>w]]T

The last equality is obtained from the fact that
∑

t∈[n′] νt = 1 and
∑

t∈[n′] βt = 0.

A.1 Security Analysis

Theorem 7 The 1-extFE scheme for attribute-weighted sum is 1-key, 1-ciphertext simulation-
secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7 and the
IPFE is function hiding as per Definition 5.

As in the case of our 1-key 1-ciphertext secure one-slot FE, here also we assume that the adversary
queries the single secret key before the challenge ciphertext is sent. This is because we will use
the security of the 1-key 1-ciphertext secure one-slot extFE in a particular hybrid of the security
reduction of our one-slot extFE scheme (presented in Section B) where we deal with a single
pre-ciphertext secret key of the one-slot extFE. However, we emphasize that if we consider the
single secret key query after the challenge phase then the security can also be proved using the
security reduction of our one-slot extFE, given in Section B.1.

The Simulator We describe the simulator for the 1-extFE scheme. Let us assume that (f,y) ∈
F (n,n′)

ABP × Zkp is the only secret-key query made by the adversary before it sends challenge

vectors (x∗, z∗||w∗) ∈ Znp × Zn′+kp . The algorithm Setup∗(1λ, 1n, 1n
′
) is exactly the same as

Setup(1λ, 1n, 1n
′
) which outputs a master secret-key MSK∗ = (IPFE.MSK, ̂IPFE.MSK). The key

generation procedure KeyGen∗0(MSK∗, (f,y)) of the simulator is also similar to the original al-
gorithm KeyGen(MSK∗, (f,y)). We describe the encryption process of the simulator which uses
the information µ = f(x∗)>z∗ + y>w∗.

Enc∗(MSK∗, x∗, ((f, y), µ)): On input MSK∗, a vector x∗ ∈ Znp , the tuple (f,y) ∈ F (n,n′)
ABP ×Zkp

and an integer µ ∈ Zp the simulator executes the following steps:

1. It finds a dummy vector (d1||d2) ∈ Zn′+kp by solving the linear equation f(x∗)>d1+y>d2 = µ.

Note that by the restriction of the ideal game, there must exist some vector (z∗,w∗) ∈ Zn′p ×Zkp
such that f(x∗)z∗+y>w∗ = µ. Consequently the existence of the vectors (d1,d2) ∈ Zn′p ×Zkp
is guaranteed.

2. Next, it sets the following vectors

vector const coefi extndκ simτ sim∗τ

u 1 x∗[i] d2[κ] 0 0

and

93

vector ĉonst ĉoef ŝim∗

ht −1 d1[t] 0

for all t ∈ [n′].
3. Finally, it encrypts the vectors as

IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

4. It returns the simulated ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Hybrids and Reductions

Proof. We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-extFEA (1λ) and the ideal experiment ExptIdeal,1-extFEA (1λ) where
A is any PPT adversary. We assume that in each experiment, A queries the single secret-key

query for a pair (f,y) ∈ F (n,n′)
ABP × Zkp before submitting the challenge message (x∗, z∗||w∗) ∈

Znp × Zn′+kp .

Hybrid H0: This is the real experiment ExptReal,1-extFEA (1λ) where the secret-

key SKf,y = ({IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) such that IPFE.SKj,t ←
SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′] and ̂IPFE.SKm+1,t ←
SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′] where the vectors vj,t,vm+1,t are given
as follows:

v1,t = (`1,t[const], `1,t[coefi], y[κ]νt, 0, 0)
vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0) for 1 < j ≤ m,

vm+1,t = (rt[m], 1, 0)

for j ∈ [m], t ∈ [n′] and rt ← Zmp . Note that {νt}t∈[n′] ← Zp is such that
∑

t∈[n′] νt = 1 modulo
p. Then, the garblings are computed as

(`1,t, . . . , `m,t, `m+1,t)← Garble(z∗[t]ft(x
∗) + βt; rt)

where βt ← Zp for all t ∈ [n′] with
∑

t∈[n′] βt = 0 modulo p. The challenge ciphertext CT∗ =

(IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponding to the challenge message (x∗, z∗||w∗) ∈ Znp ×Zn′+kp is

given by IPFE.CT← SK-IPFE.Enc(IPFE.MSK, [[u]]1) and ̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1)
for t ∈ [n′] where

u = (1, x∗[i],w[κ], 0, 0), ht = (−1, z∗[t], 0)

for t ∈ [n′]. Note that the components of the vectors u and vj,t are associated with the indices
in S1-extFE, and the components of the vectors ht and vm+1,t are associated with the indices in

Ŝ1-extFE.

94

Hybrid H1: This hybrid is exactly the same as H0 except that we directly hardwire the value
`1,τ + ψτ = `1,τ (x

∗) + ντ · y>w into u[simτ] for all τ ∈ [n′] and remove the coefficient vector
`1,t from v1,t for all t ∈ [n′]. We change the vectors v1,t in the secret-key and u in the challenge
ciphertext as follows:

v1,t = (0 , 0 , 0 , δtτ , 0)

vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0) for 1 < j < m,

u = (1, x∗[i], 0 , `1,τ + ψτ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

We denote by δtτ the usual Kronecker delta function such that δtτ = 1 if t = τ , 0 otherwise. Note
that the inner product v1,t · u = `1,t + ψt, for all t ∈ [n′], remain the same as in H0. Therefore,
the function hiding security of IPFE ensures the indistinguishability between the hybrids H0 and
H1.

Hybrid H2: This is analogous to H1 except that instead of using the actual garbling value `1,τ
at u[simτ], we now use ˜̀1,τ which is computed via reverse sampling algorithm of AKGS:˜̀

1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)z∗[τ] + ντ · y>w + βτ , `2,τ , . . . , `m+1,τ)

where `j,τ = `j,τ (x
∗) for all j ∈ [2,m] and `m+1,τ = −rτ [m] + z∗[τ] for all τ ∈ [n′]. Therefore,

the vectors in the challenge ciphertext becomes

u = (1, x∗[i], 0, ˜̀1,τ , 0), ht = (−1, z∗[t], 0).

For each τ ∈ [n′], the piecewise security of AKGS guarantees that given the label functions

(`2,τ , . . . , `m,τ , `m+1,τ), the actual garbled label `1,τ and the reversely sampled value ˜̀1,τ are
identically distributed. Hence, the hybrids H1 and H2 are indistinguishable by the reverse sam-
pleability of AKGS.

Hybrid H3,j (j ∈ [2,m]): The hybrid proceeds similar to H2 except that we change the
secret-key as follows. For all j′ such that 1 < j′ < j, the coefficient vector `j,t is taken away from
vj′,t and a random value `′j′,t ← Zp is put into vj′,t[const]. We describe the vectors associated
with the secret-key and the ciphertext below.

v1,t = (0, 0, 0, δtτ , 0)

vj′,t = (`′j′,t , 0 , 0, 0, 0) for 1 < j′ ≤ j,

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

Note that, in this hybrid ˜̀1,τ is reversely sampled using the random values `2,τ , . . . , `j−1,τ (which
are randomly chosen from Zp) and the actual values `j,τ , . . . , `m+1,τ for each τ ∈ [n′]. Observe
that H3,1 coincides with H2. We will show that for all j ∈ [2,m], the hybrids H3,(j−1) and H3,j are
indistinguishable via the following sequence of sub-hybrids, namely, {H3,j,1,H3,j,2,H3,j,3}j∈[2,m].

95

Hybrid H3,j,1 (j ∈ [2,m]): This is exactly the same as H3,(j−1) except that the coefficient
vector `j,t is removed from vj,t and vj,t[sim

∗
τ] is set to δtτ . The actual garbling value `j,τ = `j,τ (x

∗)
is hardwired into u[sim∗τ] to ensure the inner product vj,τ · u remains the same as in H3,(j−1).
The changes in the vectors involved while computing secret-key and the challenge ciphertext as
given below.

v1,t = (0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0) for 1 < j′ < j,

vj,t = (0 , 0 , 0, 0, δtτ)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , `j,τ)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

The hybrids H3,(j−1) and H3,j,1 are indistinguishable by the function hiding security of IPFE since
the inner product vj,τ · u for all τ ∈ [n′] remains the same as in H3,(j−1).

Hybrid H3,j,2 (j ∈ [2,m]): It proceeds exactly the same as H3,j,1 except that the actual label
`j,τ (sitting at u[sim∗τ]) is replaced with a random value `′j,τ ← Zp. The vectors associated to the
challenge ciphertext are given by

u = (1, x∗[i], 0, ˜̀1,τ , `′j,τ), ht = (−1, z∗[t], 0)

where `′j,τ is randomly sampled from Zp. Now, the first label ˜̀1,τ is reversely sampled using the
random values `′2,τ , . . . , `

′
j,τ and the actual labels `j+1,τ = `j+1,τ (x

∗), . . . , `m,τ = `m,τ (x
∗), `m+1,τ =

−rτ [m] + z∗[τ]. The marginal randomness property of AKGS implies that the hybrids H3,j,1 and
H3,j,2 are identically distributed.

Hybrid H3,j,3 (j ∈ [2,m]): The hybrid is analogous to H3,j,2 except that the random value
`′j,τ is sifted from the ciphertext component u[sim∗τ] to the secret-key component vj,t[const]. Also,
the positions u[sim∗τ] and vj,t[sim

∗
τ] are set to zero. Thus, the vectors in the secret-key and the

challenge ciphertext become

v1,t = (0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0) for 1 < j′ < j,

vj,t = (`′j,t , 0, 0, 0, 0)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0) for j < j′ ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, z∗[t], 0)

Since the inner products vj,t · u for all j, t remain the same as in H3,j,2, the indistinguishability
between the hybrids H3,j,2 and H3,j,3 follows from the function hiding security of IPFE. We observe
that the hybrids H3,j,3 is identical to H3,j for all j ∈ [2,m].

96

Hybrid H4: It proceeds exactly the same as hybrid H3,m except that the actual garbling value

`m+1,t = −rt[m] + z∗[t] is used in ht[ŝim
∗]. Also, ht[ĉoef],vm+1,t[ĉonst],vm+1,t[ĉoef] are set to

zero. The changes are indicated below.

v1,t = (0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (0 , 0 , 1)

ht = (1 , 0 , `m+1,t)

Since the inner products vm+1,t ·ht for all t ∈ [n′] are unaltered as in H4, the indistinguishability
between the hybrids H3 and H4 follows from the function hiding security of IPFE.

Hybrid H5: It is analogous to H4 except that the actual label `m+1,t is now replaced with a
random value `′m+1,t ← Zp. The vectors associated with the challenge ciphertext are modified as
follows.

u = (1, x∗[i], 0, ˜̀1,τ , 0), ht = (1, 0, `′m+1,t)

Note that, in this hybrid the labels ˜̀1,t for t ∈ [n′] are now reversely sampled using all random
values `′2,t, . . . , `

′
m+1,t which are randomly picked from Zp. By the marginal randomness property

of AKGS, the hybrids H4 and H5 are identically distributed.

Hybrid H6: This hybrid proceeds exactly the same as H5 except that the simulated labels `′m+1,t

are shifted from ht[ŝim
∗] to vm+1,t[r̂and]. The positions vm+1,t[ŝim

∗
] and ht[ŝim

∗
] are set to zero.

The changes are indicated as follows.

v1,t = (0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (`′m+1,t , 0, 0)

ht = (1, 0, 0)

Observe that the inner products vm+1,t · ht for all t ∈ [n′] are unchanged as in H5. Hence, the
function-hiding security of IPFE ensures the indistinguishability between the hybrids H5 and H6.

Hybrid H7: It is analogous to H6 except that the value fτ (x
∗)z∗[τ] is removed from ˜̀

1,τ for all

1 < τ ≤ n′ and the value f(x∗)>z∗ + y>w∗ is directly encoded into the label ˜̀1,1. To make this
change, we replace the random elements βτ by β′τ = βτ−fτ (x∗)z∗[τ]−ντ ·y>w∗ for all 1 < τ ≤ n′

and change the element β1 with β′1 = β1 − (f1(x
∗)z∗[1] + ν1 · y>w∗) + f(x∗)>z∗ + y>w∗. Note

that, the distributions

{βτ ← Zp :
∑
τ∈[n′]

βτ = 0 mod p} and {β′τ :
∑
τ∈[n′]

βτ = 0 mod p}

97

are statistically close since β′τ is also uniform over Zp and
∑

τ∈[n′] β
′
τ = 0 mod p. Thus the

vectors associated to the challenge ciphertext become

u = (1, x∗[i], 0, ˜̀1,τ , 0), ht = (1, 0, 0)

where the labels ˜̀1,τ are given by

˜̀
1,1 ← RevSamp(f1,x

∗, f1(x
∗)z∗[1] + ν1 · y>w∗ + β′1, `

′
2,1, . . . , `

′
m+1,1)

= RevSamp(f1,x
∗, f(x∗)>z∗ + y>w∗ + β1, `

′
2,1, . . . , `

′
m+1,1)˜̀

1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)z∗[τ] + ντ · y>w∗ + β′τ , `
′
2,τ , . . . , `

′
m+1,τ)

= RevSamp(fτ ,x
∗, βτ , `

′
2,τ , . . . , `

′
m+1,τ) for 1 < τ ≤ n′

Thus, H6 and H7 are indistinguishable from the adversary’s view as they are statistically close.
As discussed in the remark of H2, the challenger can also simulate this hybrid when [[y]]1 is known
instead of y.

Hybrid H8: This hybrid is exactly the same as H7 except that we use a dummy vector (d1 ‖ d2) ∈
Zn′+kp in place of (z∗ ‖ w∗) while computing ˜̀1,1 where it holds that µ = f(x∗)>z∗ + y>w∗ =
f(x∗)>d1 + y>d2. The vector u is now defined as

u = (1,

coefi︷ ︸︸ ︷
x∗[1], . . . ,x∗[n],

extndκ︷ ︸︸ ︷
0, . . . , 0,

simτ︷ ︸︸ ︷˜̀
1,1 , ˜̀1,2 . . . , ˜̀1,n′ , sim∗τ︷ ︸︸ ︷

0, . . . , 0)

where the labels are computed as

˜̀
1,1 ← RevSamp(f1,x

∗, f(x∗)>d1 + y>d2 + β1, `
′
2,1, . . . , `

′
m+1,1)˜̀

1,τ ← RevSamp(fτ ,x
∗, βτ , `

′
2,τ , . . . , `

′
m+1,τ) for 1 < τ ≤ n′

Above, we write the full expression of the vector u as opposed to its compressed expression used
so far in order to highlight the change. Since the inner product vj,t · u for each j ∈ [m], t ∈ [n′]
are unaltered between the two hybrids, the function-hiding security of IPFE preserved the indis-
tinguishability of the hybrids H7 and H8.

Hybrid H9: The following sequence of hybrids is basically the reverse of the previous hybrids
with (z∗ ‖ w∗) replaced with (d1 ‖ d2). In this hybrid, we change the distribution of βτ similar
to what we did in H7. In particular, βτ is replaced with β′τ = βτ + fτ (x

∗)d1[τ] + ντ ·y>d2 and β1
is replaced with β′1 = β1 +f1(x

∗)d1[1]+ν1 ·y>d2−(f(x∗)>d1 +y>d2). So, the vectors associated
with challenge ciphertext are distributed as

u = (1, x∗[i], 0, ˜̀1,τ , 0), ht = (1, 0, 0)

where ˜̀1,τ ← RevSamp(fτ ,x
∗, fτ (x

∗)d1[τ] + ντ · y>d2 + βτ , `
′
2,τ , . . . , `

′
m+1,τ) Note that, H8 and

H9 are statistically close as {βτ : τ ∈ [n′]} and {β′τ : τ ∈ [n′]} are both uniform over Zp with∑
τ∈[n′] βτ =

∑
τ∈[n′] β

′
τ = 0 mod p. Hence, hybrids H8 and H9 are indistinguishable.

98

Hybrid H10: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (0 , 0, 1)

ht = (1, 0, `′m+1,t)

where `′m+1,t ← Zp. The indistinguishability between the hybrids H9 and H10 follows from the
function-hiding security of IPFE.

Hybrid H11: It is exactly the same as H10 except that the random values `′m+1,t ← Zp are
changed to the actual label `m+1,t = d1[t]−rt[m]. Then the vectors associated with the challenge
ciphertext become

u = (1, x∗[i], 0, ˜̀1,τ , 0), ht = (1, 0, `m+1,t)

The hybrids H11 and H12 are identical due to the marginal randomness property of AKGS.

Hybrid H12: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, δtτ , 0)
vj,t = (`′j,t, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (rt[m] , 1 , 0)

ht = (−1 , d1[t] , 0)

The indistinguishability between the hybrids H11 and H12 follows from the function-hiding secu-
rity of IPFE.

Hybrid H13,m+1−j (j ∈ [m− 1]): It is analogous to H12 except the secret-key is modified as
follows. For all j′ such that m + 1 − j ≤ j′ < m + 1, the random value `′j′,t ← Zp is discarded
from vj′,t[const] and the coefficient vector `j′,t is used in vj′,t.

v1,t = (0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,
vj′,t = (`j′,t[const] , `j′,t[coefi] , 0, 0, 0) for m+ 1− j ≤ j′ < m+ 1,

vm+1,t = (rt[m], 1, 0)

In this hybrid, the label ˜̀1,t is reversely sampled using the random values `′2,t, . . . , `
′
m+1−j,t

and the actual values `m−j+2,t, . . . , `m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1−j can be shown to be indistinguishable via the following sequence of sub-hybrids, namely,
{H13,m+1−j,1,H13,m+1−j,2,H13,m+1−j,3}j∈[m−1].

99

Hybrid H13,m+1−j,1 (j ∈ [m− 1]): It proceeds exactly the same as H13,m+1−(j−1) except that
the random labels `′m+1−j,t are sifted from vm+1−j,t[const] to u[sim∗τ]. We modify the vectors
associated with the secret-key and the challenge ciphertext as follows

v1,t = (0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,

vm+1−j,t = (0 , 0, 0, 0, δtτ)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0) for m+ 1− j < j′ < m+ 1,

u = (1, x∗[i], 0, ˜̀1,τ , `′m+1−j,τ)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−(j−1) and H13,m+1−j,1 follows from the
function-hiding security of IPFE.

Hybrid H13,m+1−j,2 (j ∈ [m− 1]): It is exactly same as H13,m+1−j,1 except that the random
label `′m+1−j,τ ← Zp at u[sim∗τ] are now replaced with the actual labels `m+1−j,τ = `m+1−j,τ (x

∗).
The change in the vector u associated to the challenge ciphertext is indicated below.

u = (1, x∗[i], 0, ˜̀1,τ , `m+1−j,τ), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−j,1 and H13,m+1−j,2 follows from the marginal
randomness property of AKGS.

Hybrid H13,m+1−j,3 (j ∈ [m−1]): It proceeds analogous to H13,m+1−j,2 except that the actual
label `m+1−j,τ = `m+1−j,τ (x

∗) is removed from u[sim∗τ] and the coefficient vector `m+1−j,t is used
to set vm+1−j,t. The inner product vm+1−j,t ·u is unaltered as in H13,m+1−j,2. The changes in the
vectors associated to the secret-key and the challenge ciphertext are shown below.

v1,t = (0, 0, 0, δtτ , 0)
vj′,t = (`′j′,t, 0, 0, 0, 0) for 1 < j′ < m+ 1− j,

vm+1−j,t = (`m+1−j,t[const] , `m+1−j,t[coefi] , 0, 0, 0)

vj′,t = (`j′,t[const], `j′,t[coefi], 0, 0, 0) for m+ 1− j < j′ < m+ 1,

u = (1, x∗[i], 0, ˜̀1,τ , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−j,2 and H13,m+1−j,3 follows from the function-
hiding security of IPFE. We observe that H13,m+1−j,3 is identical to H13,m+1−j for all j ∈ [m− 1].

Hybrid H14: It proceeds exactly the same as H13,2 except that the reversely sampled labels ˜̀1,τ
are replaced with the actual labels `1,τ + ψτ = `1,τ (x

∗) + ντ · y>d2 when setting u[simτ]. The
vectors associated with the challenge ciphertext are now written as

u = (1, x∗[i], 0, `1,τ + ψτ , 0), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m and H14 follows from the piecewise security
of AKGS.

100

Hybrid H15: It is analogous to H14 except that the actual label `1,τ = `1,τ (x
∗) + ντ · y>d2 is

removed from u[simτ] and the coefficient vectors `1,t are utilized while setting the vectors v1,t for
all t ∈ [n′]. Also, the positions v1,t[extndκ] and u[extndκ] are set as y[κ]νt and d2[κ] respectively.
The vectors associated with the secret-key and the challenge ciphertext are shown below.

v1,t = (`1,t[const] , `1,t[coefi] , y[κ]νt , 0, 0)

vj,t = (`j,t[const], `j,t[coefi], 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], d2[κ] , 0 , 0)

vm+1,t = (rt[m], 1, 0)
ht = (−1, d1[t], 0)

Since the inner products v1,t · u = `1,t + ψt, for all t ∈ [n′], remain the same as in H14, the
function-hiding security of IPFE ensures the indistinguishability between the hybrids H14 and
H15. This completes the security analysis as H15 is the ideal experiment ExptIdeal,1−extFEA (1λ). ut

B Unbounded-Key One-Slot Extended FE for Attribute-Weighted
Sums

In this section, we present a public-key one-slot FE scheme Πubd
extOne for an extended attribute-

weighted sum functionality. This scheme is proven adaptively simulation secure against one
ciphertext query and an arbitrary polynomial number of secret key queries both before and after
the ciphertext query. We describe the construction for any fixed value of the security parameter
λ and suppress the appearance of λ for simplicity of notations. Let (Garble,Eval) be a special

piecewise secure AKGS for a function class F (n,n′)
ABP , G = (G1,G2,GT , g1, g2, e) a tuple of pairing

groups of prime order p such that MDDHk holds in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc,
IPFE.Dec) a slotted IPFE based on G. We construct an FE scheme for attribute-weighted sums
with the message space M = Znp × Zn′+kp .

Setup(1λ, 1n, 1n
′
): Defines the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n], {extnd

(ι)
κ }ι,κ∈[k]

}
, Ŝpub = {ĉonst(ι), ĉoef

(ι)
}ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {extndκ,1, extndκ,2, extndκ}κ∈[k], {simτ , sim

∗
τ}τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗
}

It generates two pair of IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and

(̂IPFE.MSK, ̂IPFE.MPK) ← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master secret-key as

MSK = (IPFE.MSK, ̂IPFE.MSK) and master public-key as MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Zkp. It samples integers νt ← Zp

and vectors α,βt ← Zkp for t ∈ [n′] such that∑
t∈[n′]

νt = 1 and
∑
t∈[n′]

βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Zmp and computes

(`
(ι)
1,t, . . . , `

(ι)
m,t, `

(ι)
m+1,t)← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t)

101

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS described in Section 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function

`
(ι)
m+1,t would be of the form `

(ι)
m+1,t = α[ι]z[t] − r(ι)t [m] where α[ι] is a constant. Also all the

label functions `
(ι)
1,t, . . . , `

(ι)
m,t involve only the variables x and not the variable z[t]. Next, for all

j ∈ [2,m] and t ∈ [n′], it defines the vectors vj,t corresponding to the label functions `j,t obtained
from the partial garbling above and the vector y as

vector const(ι) coef
(ι)
i extnd(ι)κ Spriv

v α[ι] 0 0 0

v1,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] α[ι]y[κ]νt 0

vj,t `
(ι)
j,t [const] `

(ι)
j,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK← IPFE.KeyGen(IPFE.MSK, [[v]]2)

IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

Finally, it returns SKf,y = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) and (f,y).

Enc(MPK, (x, z||w) ∈ Znp × Zn′+k
p): It samples a random vector s← Zkp and sets the vectors

vector const(ι) coef
(ι)
i extnd(ι)κ

u s[ι] s[ι]x[i] s[ι]w[κ]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) and x.

102

Dec((SKf,y, f), (CT, x)): It parses the secret-key as SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]) and the ciphertext as CTx,z = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the de-
cryption algorithm of IPFE to compute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)

[[`1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t, IPFE.CT)

[[`j,t]]T ← IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[`m+1,t]]T ← IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt =
∑k

ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, it utilizes the evaluation procedure
of AKGS and obtain a combined value

[[ζ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T).

Finally, it returns a value [[µ]]T = [[ζ]]T · [[ρ]]−1T ∈ GT .

Correctness: First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t, IPFE.CT) = [[`1,t + ψt]]

where ψt =
∑k

ι=1α[ι]s[ι] · νt · y>w = α · s · νt · y>w. Next, by the correctness of IPFE, AKGS
we have

Eval(ft,x, `1,t + ψt, . . . , `m+1,t)

= Eval(ft,x, `1,t, . . . , `m+1,t) + Eval(ft,x, ψt, 0, . . . , 0)

= Eval(ft,x, `1,t, . . . , `m+1,t) + ψt

=
k∑
ι=1

(α[ι]s[ι] · z[t]ft(x) + βt[ι]s[ι]) +α · s · νt · y>w

= α · s · (z[t]ft(x) + νt · y>w) + βt · s

The first equality follows from the linearity of Eval algorithm. Therefore, multiplying all the
evaluated values we have

[[ζ]]T =
∏
t∈[n′]

Eval(ft,x, [[`1,t + ψt]]T , . . . , [[`m+1,t]]T)

= [[
n′∑
t=1

α · s · (z[t]ft(x) + νt · y>w) + βt · s]]T

= [[α · s · (f(x)>z + y>w)]]T

where the last equality follows from the fact that
∑

t∈n′ νt = 1 and
∑

t∈[n′] βt[ι] = 0 for all ι ∈ [k].

Also, by the correctness of IPFE we see that [[ρ]]T = [[α ·s]]T and hence [[µ]]T = [[f(x)>z+y>w]]T .

B.1 Security Analysis

Theorem 8 The extended one slot FE scheme Πubd
extOne for attribute-weighted sum is adaptively

simulation-secure assuming the AKGS is piecewise-secure as per Definition 7, the MDDHk as-
sumption holds in group G2, and the slotted IPFE is function hiding as per Definition 5.

103

The Simulator We describe the simulator for the extended one slot FE scheme Πubd
extOne.

The simulated setup algorithm is the same setup of the original scheme. Let (MSK,MPK) ←
Setup∗(1λ, 1n, 1n

′
) = Setup(1λ, 1n, 1n

′
) where MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK =

(IPFE.MPK, ̂IPFE.MPK).

KeyGen∗0(MSK, (fq, yq)): On input MSK, a function fq = (fq,1, . . . fq,n′) ∈ F (n,n′)
ABP and a vector

yq ∈ Zkp the simulator proceeds as follows:

Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t[1], . . . ,βq,t[k])← Zkp, νq,t ← Zp for t ∈ [n′], and r
(ι)
q,t = (r

(ι)
q,t [1], . . . ,

r
(ι)
q,t [mq])← Zmqp where it holds that∑

t∈[n′]

βq,t[ι] = 0 for all ι ∈ [k] and
∑
t∈[n′]

νq,t = 1.

2. Next, it computes the coefficient vectors for the label functions as

(`
(ι)
q,1,t, . . . , `

(ι)
q,mq ,t, `

(ι)
q,mq+1,t)← Garble(αq[ι]z

∗[t]fq,t(x
∗) + βq,t[ι]; r

(ι)
q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function `
(ι)
q,mq+1,t would be of the form `

(ι)
q,mq+1,t = αq[ι]z

∗[t]− r(ι)q,t [mq].

3. It picks αq ← Zkp and sets the public positions at the indexes in Spub, Ŝpub of following vectors

vector const(ι) coef
(ι)
i extnd(ι)κ

vq αq[ι] 0 0

vq,1,t `
(ι)
q,1,t[const] `

(ι)
q,1,t[coefi] αq[ι]yq[κ]νq,t

vq,j,t `
(ι)
q,j,t[const] `

(ι)
q,j,t[coefi] 0

for all j ∈ [2,mq] and t ∈ [n′]. It also sets the following vectors for all t ∈ [n′].

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r
(ι)
q,t [mq] αq[ι]

Setting Private Positions: It now fills the private indices as follows.

4. It samples α̃q, β̃q,t ← Zp for t ∈ [n′] satisfying
∑

t∈[n′] β̃q,t = 0.

5. Next, it picks r̃q,t ← Zmqp and computes the coefficient vectors for the label functions as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label function˜̀
q,mq+1,t would be of the form ˜̀

q,mq+1,t = α̃qz
∗[t]− r̃q,t[mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

104

vector const coefi extndκ,1 extndκ,2 extndκ simτ sim∗τ

vq α̃q 0 0 0 0 0 0

vq,1,t ˜̀q,1,t[const] ˜̀
q,1,t[coefi] 0 α̃qyq[κ]νq,t 0 0 0

vq,j,t ˜̀
q,j,t[const] ˜̀

q,j,t[coefi] 0 0 0 0 0

for all j ∈ [2,mq] and t ∈ [n′]; and for all t ∈ [n′]

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t 0 0 r̃q,t[mq] α̃q 0 0 0

7. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

8. Finally, it returns SKfq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t}t∈[n′]).
Let Qpre be the total number of secret-key queries made before the challenge query.

Enc∗(MPK,MSK, x∗,V): On input MPK,MSK, a vector x∗ ∈ Znp and a set V = {(fq, fq(x∗)>z∗+
y>q w

∗) : q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector (d1||d2) ∈ Zn′+kp from the set

D = {(d1||d2) ∈ Zn′+kp : fq(x
∗)>d1 + y>q d2 = µq for all q ∈ [Qpre]}

where µq = fq(x
∗)>z∗ + y>q w

∗. Since the inner product functionality is pre-image sam-
pleable, there exists an efficient algorithm (proposed by O’Neill [O’N10]) which on input
(fq,1(x

∗), . . . , fq,n′(x
∗),yq, µq) samples a vector (d1||d2) ∈ Zn′+kp such that (fq,1(x

∗), . . . , fq,n′(x
∗))·

d1 + yq · d2 = fq(x
∗)>d1 + y>q d2 = µq for all q ∈ [Qpre].

2. Next, it sets the following vectors:

vector const(ι) coef
(ι)
i extnd(ι)κ const coefi extndκ,1 extndκ,2 extndκ simτ sim

∗
τ

u 0 0 0 1 x∗[i] 0 d2[κ] 0 0 0

and for all t ∈ [n′]

vector ĉonst
(ι)

ĉoef
(ι)

ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

ht 0 0 1 0 −1 d1[t] 0 0 0

3. It encrypts the vectors as

IPFE.CT← IPFE.Enc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

105

KeyGen∗1(MSK∗, x∗, (fq, yq), fq(x∗)>z∗ + y>q w
∗): On input MSK∗, x∗ ∈ Znp , a function

fq = (fq,1, . . . , fq,n′) ∈ F (n,n′)
ABP , a vector yq ∈ Zkp for q ∈ [Qpre+1, Q] and (fq(x

∗)>z∗+y>q w
∗) ∈ Zp

the simulator proceeds as follows:
Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and vq,j,t
analogous to KeyGen∗0(MSK∗, (fq,yq)).

Setting Private Positions:

2. First, it samples a random element α̃q, β̃q,t ← Zp, for t ∈ [n′], satisfying
∑

t∈[n′] β̃q,t = 0 and
then runs the simulator of the AKGS to obtain

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · (fq(x∗)>z∗ + y>q w

∗) + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi extndκ,1extndκ,2 extndκ simτ sim
∗
τ

vq α̃q 0 0 0 0 0 0

vq,j,t ̂̀
q,j,t 0 0 0 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim
∗

vq,mq+1,t
̂̀
q,mq+1,t 0 0 0 0 0 0

for all t ∈ [n′].
4. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)

IPFE.SKq,j,t ← IPFE.KeyGen(IPFE.MSK, [[vq,j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

5. It outputs SKfq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t}t∈[n′]).

Hybrids and Reductions

Proof. We use a sequence of hybrid experiments to establish the indistinguishability between
the real experiment ExptReal,extFEA (1λ) and the ideal experiment ExptIdeal,extFEA (1λ) where A is any
PPT adversary. In each experiment, A can query a polynomial number of secret-key queries for

pairs (f,y) ∈ F (n,n′)
ABP ×Zkp, both before and after submitting the challenge message (x∗, z∗||w∗) ∈

Znp × Zn′+kp . Let Q be the total number of secret-key queries and Qpre (≤ Q) be the number of
secret-keys queried before submitting the challenge message. We denote the q-th secret-key by
SKfq ,yq corresponding to a function fq and a vector yq. For the ease of presentation, we write the

vector elements sitting in the public slots Spub, Ŝpub in blue color and the vector elements sitting

in the private slots Spriv, Ŝpriv in red color. More precisely, we do this so that while describing
the hybrid games, we sometimes omit the public parts of the vectors and write down only the
private parts when the changes occur only in the private parts. Now, we describe the hybrids as
follows:

106

Hybrid H0: : This is the real experiment ExptReal,extFEA (1λ) defined in Definition 4 (with single
slot, i.e.,N = 1). For each q ∈ [Q], the q-th secret-key SKfq ,yq = (IPFE.SKq, {IPFE.SKq,j,t}j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t}t∈[n′]) is computed using the vectors vq,vq,j,t given by

vq = (αq[ι], 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (`
(ι)
q,1,t[const], `

(ι)
q,1,t[coefi], αq[ι]yq[κ]νq,t, 0, 0, 0, 0, 0, 0, 0),

vq,j,t = (`
(ι)
q,j,t[const], `

(ι)
q,j,t[coefi], 0, 0, 0, 0, 0, 0, 0, 0),

vq,mq+1,t = (r
(ι)
q,t [mq], αq[ι], 0, 0, 0, 0, 0, 0, 0)

for j ∈ [2,mq] and t ∈ [n′]. Note that αq and r
(ι)
q,t are random vectors sampled from Zkp and Zmqp

respectively. The integers νq,t for t ∈ [n′] is picked randomly from Zp such that
∑

t∈[n′] νq,t = 1.

For all t ∈ [n′], the garblings are computed as

(`
(ι)
q,1,t, . . . , `

(ι)
q,mq ,t, `

(ι)
q,mq+1,t)← Garble(αq[ι]z

∗[t]fq,t(x
∗) + βq,t[ι]; r

(ι)
q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Zkp with
∑

t∈[n′] βq,t[ι] = 0 ∀ι ∈ [k]. The challenge

ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) corresponds to the challenge vectors (x∗, z∗||w∗) ∈
Znp × Zn′p is computed using the vectors u and ht given by

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ],⊥,⊥,⊥,⊥,⊥,⊥,⊥),
ht = (−s[ι], s[ι]z∗[t], ⊥, ⊥,⊥,⊥,⊥,⊥, ⊥)

for t ∈ [n′] and s← Zkp. Note that, in real experiment CT∗ is computed using IPFE.SlotEnc and
therefore the elements sitting at the indices in Spriv are set as ⊥ for the vectors u and ht.

Hybrid H1: It is exactly the same as hybrid H0 except the fact that instead of using IPFE.SlotEnc,
here the challenge ciphertext CT∗ is generated applying IPFE.Enc which uses MSK = (IPFE.MSK,

̂IPFE.MSK) to encrypt the vectors. We indicate this change by changing the private positions of
u and ht from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], 0 , 0 , 0 , 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.

Hybrid H2: This hybrid is similar to H1 except that in the private slots of the vectors vq,j,t we
put a garbling that linearly combines k garblings (of the public slots) with weight vector s ∈ Zkp
and in the private slots of the vector vq we use a single random element combining the weight
vector s. Accordingly, we modify the challenge ciphertext CT∗ by omitting the weight vector s
and setting the public slots of the vectors u,ht to zero so that the inner products computed at
the time of decryption remains the same in the previous hybrids.

In H1, the public slots of the vectors vq,vq,j,t are occupied by vectors αq ∈ Zkp, νq,t ∈ Zp for

t ∈ [n′] and the garblings `
(ι)
q,j,t computed using randomness r

(ι)
q,t ∈ Zmqp . In the public slots of

the vectors u,ht, we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore, at the time of

107

decryption we recover [[ρq]]T , [[`q,j,t]]T such that

ρq = αq · s = αq (say),

`q,1,t = (`
(1)
q,1,t, . . . , `

(k)
q,1,t) · (s[1](1,x∗), . . . , s[k](1,x∗)) +α · s · y>w · νq,t

= (s[1]`
(1)
q,1,t, . . . , s[k]`

(k)
q,1,t) · ((1,x∗), . . . , (1,x∗)) + αq · y>w · νq,t

= `q,1,t · (1,x∗) + αq · y>w · νq,t
`q,j,t = (`

(1)
q,j,t, . . . , `

(k)
q,j,t) · (s[1](1,x∗), . . . , s[k](1,x∗))

= `q,j,t · (1,x∗)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t for all j ∈ [2,mq] and t ∈ [n′]. Similarly, the mq + 1-the garbling

returns

`q,mq+1,t = ((r
(1)
q,t [mq],αq[1]), . . . , (r

(k)
q,t [mq],αq[k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))

= (s[1](r
(1)
q,t [mq],αq[1]), . . . , s[k](r

(k)
q,t [mq],αq[k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))

= (rq,t[mq], αq) · (−1, z∗[t])

where rq,t[mq] =
∑

ι∈[k] s[ι]r
(ι)
q,t [mq]. In H2, we use αq, `q,j,t and rq,t[mq] in the private slots of the

vectors vq and vq,j,t as described below

vq = (αq , 0, 0, 0, 0, 0, 0),

vq,1,t = (`q,j,t[const] , `q,j,t[coefi] , αqyq[κ]νq,t , 0, 0, 0, 0),

vq,j,t = (`q,j,t[const] , `q,j,t[coefi] , 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (rq,t[mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit using
it in the vectors u and ht. Moreover, the public slots of u and ht are set to zero as the inner
product is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 0 , 1 , x∗[i] , w∗[κ] , 0, 0, 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0)

Finally, we observe that the inner products vq · u,vq,j,t · u and vq,mq+1,t · ht remain the same as
in H1. Thus, the function hiding property of IPFE preserves the indistinguishability between the
hybrids H1 and H2.

Note that, in this hybrid we pick αq,βq,t, s ← Zkp, νq,t ← Zp and r
(ι)
q,t ← Zmqp for all t ∈

[n′], ι ∈ [k] satisfying
∑

t∈[n′] βq,t[ι] = 0 for each ι ∈ [k] and
∑

t∈[n′] νq,t = 1. Then, the linearity
of the Garble algorithm allows us to write

(`q,1,t, . . . , `q,mq ,t, `q,mq+1,t)← Garble(αqz
∗[t]fq,t(x

∗) + βq,t; rq,t)

where `q,j,t =
∑

ι∈[k] s[ι]`
(ι)
q,j,t, rq,t =

∑
ι∈[k] s[ι]r

(ι)
q,t and βq,t = βq,t · s.

From the next hybrid onward the public slots of the vectors vq and vq,j,t are unaltered for all
q ∈ [Q], j ∈ [k] and t ∈ [n′]. Therefore, we only write the components sitting in the private slots
of the vectors vq and vq,j,t assuming that the components of public slots are the same as in the
real experiment. We denote the private slots of the vectors by vq|Spriv

,vq,j,t|Spriv
and vq,mq+1,t|Ŝpriv

.

108

Hybrid H3: It is analogous to H2 except the liner combinations αq, `q,j,t, rq,t in the private slots
of the vectors vq,vq,j,t,vq,mq+1,t are replaced with freshly and independently generated random

values and garblings α̃q, ˜̀q,j,t, r̃q,t. More specifically, we sample random elements α̃q, β̃q,t ← Zp for

all t ∈ [n′] such that
∑

t∈[n′] β̃q,t = 0 and a vector rq,t ← Zmqp . Then, the garblings are computed
as

(˜̀q,1,t, . . . , ˜̀q,mq ,t, ˜̀q,mq+1,t)← Garble(α̃qz
∗[t]fq,t(x

∗) + β̃q,t; r̃q,t)

for all t ∈ [n′]. The vectors involved in the computation of SKfq ,yq are as follows:

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀q,j,t[const] , ˜̀q,j,t[coefi] , α̃qyq[κ]νq,t , 0, 0, 0, 0),

vq,j,t = (˜̀q,j,t[const] , ˜̀q,j,t[coefi] , 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (r̃q,t[mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑
ι∈[k]

s[ι]r
(ι)
q,t

with a common weight vector s has been used to set vq,vq,j,t. On the other hand, in H3 fresh and

independent random elements α̃q, β̃q,t, r̃q,t are used to compute SKfq ,yq . Note that the elements
of the vectors vq,vq,j,t are only used in the exponent of the source group G2 while generating

the IPFE secret-keys. Let us consider the matrix Aq,t = (αq|βq,t|(Rq,t)
>) ∈ Zk×(mq+1)

p where

Rq,t = (r
(1)
q,t | . . . |r

(k)
q,t) ∈ Zm×kp . Since the matrix Aq,t is uniformly chosen from Zk×(mq+1)

p and s is
uniform over Zkp, by the MDDHk assumption in group G2 we have

([[Aq,t]]2, [[A
>
q,ts]]︸ ︷︷ ︸

in H2

) ≈ ([[Aq,t]]2, [[(α̃q, β̃q,t, r̃q,t)]]2︸ ︷︷ ︸
in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable under
the MDDHk assumption.

We have completed the first phase of our security analysis as we see that the private slots of
the vectors associated to secret-keys and the challenge ciphertext are now computed similar to
our extended 1-FE scheme. From the next hybrid, we modify the vectors in such a way that all
the pre-challenge secret-key queries decrypt the challenge ciphertext without using the slots of
u and ht where the challenge massage (x∗, z∗||w∗) are used.

Hybrid H4: It proceeds similar to hybrid H3 except we change the vectors u and ht for all
t ∈ [n′] which are used in the computation of the challenge ciphertext. After all the pre-challenge
secret-key queries made by A, a dummy vector (d1||d2) ∈ Zn′+kp is picked from the set

D = {(d1||d2) ∈ Zn′+kp : fq(x
∗)>d1 + y>q d2 = µq for all q ∈ [Qpre]}

where µq = fq(x
∗)>z∗+y>q w

∗. The sampling procedure is as described in the algorithm Enc∗(·).
Then the vectors u,ht are defined as below.

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ] , w∗[κ] , 0, 0),

ht = (0, 0,−1, z∗[t], −1 , d1[t] , −1 , z∗[t] , 0)

109

Note that, these changes in u and ht have no effect in the final inner product values of
vq · u,vq,j,t · u and vq,mq+1,t · ht. This is because the elements at the slots (extndκ,2, extndκ)

of the vectors vq,vq,j,t ht and the elements at the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) of the vector
vq,mq+1,t (where the changes take place in u,ht) are all zero. Therefore, by the function hiding
property of IPFE the hybrids H3 and H4 remain indistinguishable to the adversary.

Hybrid H5,q (q ∈ [Qpre]): It proceeds similar to H4 except that for each 1 ≤ q′ ≤ q, we modify
the vectors vq,1,t and vq,mq+1,t as described below.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0 , α̃q′yq′ [κ]νq′,t , 0, 0, 0) for 1 ≤ q′ < q,

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0) for q < q′ ≤ Qpre,

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′] , α̃q′ , 0, 0, 0) for 1 ≤ q′ < q,

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre

Note that, the post-challenge secret-key queries are still answered according to H4. Observe that
H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via the following
sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.

Hybrid H5,q,1 (q ∈ [Qpre]): It is analogous to H5,(q−1) except that in the qth secret-key query
the vector vq,mq+1,t is modified as follows. The element α̃qyq[κ]νq,t is shifted from vq,1,t[extndκ,1]

to vq,1,t[extndκ] and the elements r̃q,t[mq], α̃q are shifted from vq,mq+1,t[ĉonst1],vq,mq+1,t[ĉoef1] to

vq,mq+1,t[ĉonst],vq,mq+1,t[ĉoef] respectively.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0, α̃q′yq′ [κ]νq′,t, 0, 0, 0)
for 1 ≤ q′ < q,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0 , 0, α̃qyq[κ]νq,t , 0, 0),

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0)
for q < q′ ≤ Qpre,

vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0)

for 1 ≤ q′ < q,

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t[mq] , α̃q , 0),

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0)

for q < q′ ≤ Qpre

We observe that the inner products vq,1,t·u and vq,mq+1,t·ht are unchanged due to the modification
occurred in vq,1,t and vq,mq+1,t. Therefore, the function hiding security of IPFE ensures that the
hybrids H5,(q−1) and H5,q,1 are indistinguishable.

In this hybrid, the components of vq,j,t corresponding to the slots {const, coefi, extndκ, simτ ,

sim∗τ} and the components of vq,mq+1,t corresponding to the slots {ĉonst, ĉoef, ŝim
∗
} are exactly

the same as in the secret-key of our extended 1-FE scheme. Similarly, in case of the challenge

110

ciphertext, the components of u at the positions {const, coefi, extndκ, simτ , sim
∗
τ} and the compo-

nents of ht at the positions {ĉonst, ĉoef, ŝim
∗
} are also identical to the ciphertext of our extended

1-FE scheme.

Hybrid H5,q,2 (q ∈ [Qpre]): It is exactly the same as H5,q,1 except that the components

u[extndκ] and ht[ĉoef] are changed from z∗[t],w∗[κ] to d1[t],d2[κ] respective. Thus, the vectors
u,ht become

u = (0, 0, 0, 1, x∗[i],w∗[κ], d2[κ], d2[κ] , 0, 0),

ht = (0, 0,−1, z∗[t], −1, d1[t], −1, d1[t] , 0)

All the secret-keys are answered as in the previous hybrid. The indistinguishability follows from
the security of our 1-FE scheme. We note that the security of our extended 1-FE scheme which
relies on the function hiding security of IPFE and the security of AKGS. In particular, we use
the security of IPFE and AKGS to reversely sample the first label and make all the other labels
random as shown below˜̀

q,1,1 ← RevSamp(fq,1,x
∗, α̃qfq(x

∗)>z∗ + y>q w
∗ + β̃q,1, `q,2,1, . . . , `q,mq ,1)˜̀

q,1,τ ← RevSamp(fq,τ ,x
∗, β̃q,τ , `q,2,τ , . . . , `q,mq ,τ) for 1 < τ < n′,

where
∑

τ∈[n′] β̃q,τ = 0 and `q,j,τ is picked randomly for all j ∈ [2,mq]. Then, the dummy vector

(d1||d2) replaces the challenge message (z∗||w∗) while computing ˜̀q,1,1. Finally, we move in the
reverse direction so that the vectors vq,j,t for all j ∈ [mq] and t ∈ [n′] are back in form as they

were in H5,q,1 and d1[t],d2[κ] are placed at ht[ĉoef],u[extndκ] respectively. Note that, the hybrids

involved in our extended 1-FE scheme uses the positions simτ , sim
∗
τ , ŝim

∗
of the vectors vq,j,t,u

and ht, which does not effect the decryption using any post-challenge secret-key.

Hybrid H5,q,3 (q ∈ [Qpre]): It proceeds analogous to H5,q,2 except that we change vq,mq+1,t

and ht as below. The element α̃qyq[κ]νq,t is shifted from vq,1,t[extndκ] to vq,1,t[extndκ,2] and the ele-

ments r̃q,t[mq], α̃q are shifted from vq,mq+1,t[ĉonst],vq,mq+1,t[ĉoef] to vq,mq+1,t[ĉonst2],vq,mq+1,t[ĉoef2]
respectively.

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], 0, α̃q′yq′ [κ]νq′,t, 0, 0, 0) for 1 ≤ q′ < q,

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0, α̃qyq[κ]νq,t , 0 , 0, 0),

vq′,1,t = (˜̀q′,1,t[const], ˜̀q′,1,t[coefi], α̃q′yq′ [κ]νq′,t, 0, 0, 0, 0) for q < q′ ≤ Qpre,
vq′,mq′+1,t = (0, 0, r̃q′,t[mq′], α̃q′ , 0, 0, 0) for 1 ≤ q′ < q,

vq,mq+1,t = (0, 0, r̃q,t[mq] , α̃q , 0 , 0 , 0),

vq′,mq′+1,t = (r̃q′,t[mq′], α̃q′ , 0, 0, 0, 0, 0) for q < q′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i],w∗[κ], d2[κ], w∗[κ] , 0, 0),

ht = (0, 0,−1, z∗[t], −1, d1[t], −1, z∗[t] , 0)

Note that the inner products vq,1,t ·u and vq,mq+1,t ·ht remains the same as in H5,q,2. Therefore,
the hybrids H5,q,2 and H5,q,3 are indistinguishable due to the function hiding security of IPFE.
We observe that H5,q,3 is identical to H5,q for all q ∈ [Qpre].

111

Hybrid H6: It is exactly the same as H5,Qpre,4 except that the elements u[extndκ], ht[ĉonst] and

ht[ĉoef] are set to zero. We describe the vectors associated to secret-key queries and the challenge
ciphertext below. Note that the post-challenge secret-key queries are released in the same way
as in H4 (or in H5,Qpre).

1 ≤ q ≤ Qpre

vq = (α̃q, 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], 0, α̃qyq[κ]νq,t, 0, 0, 0),

vq,j,t = (˜̀q,j,t[const], ˜̀q,j,t[coefi], 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (0, 0, r̃q,t[mq], α̃q, 0, 0, 0),

u = (0, 0, 0, 1, x∗[i],w∗[κ], d2[κ], 0 , 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], 0 , 0 , 0)

Qpre < q ≤ Q

vq = (α̃q, 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀q,1,t[const], ˜̀q,1,t[coefi], α̃qyq[κ]νq,t, 0, 0, 0, 0),

vq,j,t = (˜̀q,j,t[const], ˜̀q,j,t[coefi], 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t[mq], α̃q, 0, 0, 0, 0, 0)

Since the inner products vq,1,t · u and vq,mq+1,t · ht is unaltered due to the modification in
this hybrid, the function hiding security of IPFE ensures indistinguishability between the hybrids
H5,Qpre,4 and H6.

The second part of the proof is completed as all the pre-challenge secret-keys are now able
to decrypt the challenge ciphertext without the components of u,ht that make use of z∗ and
w∗. Note that, u[extndκ,1] = w∗[κ] and ht[ĉoef1] = z∗[t] are only needed for the successful
decryption of the challenge ciphertext by post-challenge secret-keys. From the next hybrid we
change the computation of post-challenge secret-keys so that the challenge ciphertext can be
simulated without using (z∗||w∗).

Hybrid H7: This hybrid proceeds exactly similar to H6 except that we use the honest levels˜̀
q,1,t = ˜̀q,1,t(x∗), ˜̀q,j,t = ˜̀q,j,t(x∗) for j ∈ [mq] and ˜̀q,mq+1,t = −r̃q,t[mq] + α̃qz

∗[t] while defining
the vectors vq,j,t in all the post-challenge secret-key queries. Moreover, all the other private
components vq,j,t[coefi] and vq,j,t[extndκ,1] are zero for all j ∈ [mq]. We also modify u and ht of
the challenge ciphertext as shown below.

u = (0, 0, 0, 1, x∗[i], 0 , d2[κ], 0, 0, 0),

ht = (0, 0, 1 , 0 , −1, d1[t], 0, 0, 0),

Qpre < q ≤ Q

vq = (α̃q, 0, 0, 0, 0, 0, 0),

vq,1,t = (˜̀q,1,t + α̃qyq[κ]νq,t , 0 , 0 , 0, 0, 0, 0)

vq,j,t = (˜̀
q,j,t , 0 , 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (˜̀
q,mq+1,t , 0 , 0, 0, 0, 0, 0)

Since the inner products vq,j,t · u,vq,mq+1,t · ht for all q ∈ [Qpre + 1, Q] are the same as in the
previous hybrid, the function hiding property of IPFE ensures that the hybrids H6 and H7 are
indistinguishable.

112

Hybrid H8: : This hybrid proceeds analogous to H7 except that the post-challenge secret-key
queries use the simulated garblings instead of the honest garblings. More specifically, we sample
α̃q, β̃q,t, ν̃q,t ← Zp satisfying

∑
t∈[n′] β̃q,t = 0,

∑
t∈[n′] ν̃q,t = 1 and compute the simulated garblings

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, α̃q · (z∗[t]fq,t(x∗) + ν̃q,t · y>q w∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated using the
vectors described below.

Qpre < q ≤ Q

vq = (α̃q, 0, 0, 0, 0, 0, 0),

vq,1,t = (̂̀
q,1,t , 0, 0, 0, 0, 0, 0)

vq,j,t = (̂̀
q,j,t , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0)

The simulated levels of AKGS is used in place of actual garblings. The simulation security of
AKGS implies that the hybrids H7 and H8 are indistinguishable.

Hybrid H9: : This proceeds exactly the same as H8 except that the distribution of {β̃q,t}t∈[n′]
is changed. We replace β̃q,t by β̃′q,t = β̃q,t − α̃q · (z∗[t]fq,t(x∗) + ν̃q,t · y>q w∗) for all 1 < t ≤ n′ and

replace the element β̃q,1 by β̃′q,1 = β̃q,1− α̃q ·(z∗[1]fq,1(x
∗)+ ν̃q,1 ·y>q w∗)+ α̃q ·(fq(x∗)>z∗+y>q w∗).

Note that, the distributions

{β̃t,q ← Zp :
∑
t∈[n′]

β̃t,q = 0} and {β̃′t,q :
∑
t∈[n′]

β̃t,q = 0}

are statistically close since {β̃′q,t}t∈[n′] are also uniform over Zp and
∑

t∈[n′] β̃
′
q,t = 0. Finally, the

vectors associated to the post-challenge secret-keys are given by

Qpre < q ≤ Q

vq = (α̃q, 0, 0, 0, 0, 0, 0),

vq,1,t = (̂̀
q,1,t , 0, 0, 0, 0, 0, 0)

vq,j,t = (̂̀
q,j,t , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],

vq,mq+1,t = (̂̀q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

(̂̀q,1,1, . . . , ̂̀q,mq ,1, ̂̀q,mq+1,1)← SimGarble(fq,1,x
∗, α̃q · (fq(x∗)>z∗ + y>q w

∗) + β̃q,1)

(̂̀q,1,t, . . . , ̂̀q,mq ,t, ̂̀q,mq+1,t)← SimGarble(fq,t,x
∗, β̃q,t) for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptIdeal,extFEA (1λ). This completes the secu-
rity proof.

ut

113

	Introduction
	Technical Overview
	Designing Adaptively Simulation Secure One-slot extFE
	Bootstrapping from One-Slot FE to Unbounded-Slot FE

	Preliminaries
	Notations
	Bilinear Groups and Hardness Assumptions
	Arithmetic Branching Program
	Functional Encryption for Attribute-Weighted Sum
	Function-Hiding Slotted Inner Product Functional Encryption
	Arithmetic Key Garbling Scheme

	1-Key 1-Ciphertext Secure One-Slot FE for Attribute-Weighted Sums
	Security Analysis

	One-Slot FE for Attribute-Weighted Sums
	Security Analysis

	1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for Bounded-Key One-Slot Extended FE for Attribute-Weighted Sums
	Security Analysis

	Bounded-Key One-Slot Extended FE for Attribute-Weighted Sums
	Security Analysis

	Unbounded-Slot FE for Attribute-Weighted Sum
	Security Analysis

	1-Key 1-Ciphertext Secure One-Slot Extended FE Designed for Unbounded-Key One-Slot Extended FE for Attribute-Weighted Sums
	Security Analysis

	Unbounded-Key One-Slot Extended FE for Attribute-Weighted Sums
	Security Analysis

