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Privacy-Preserving Video Classification with
Convolutional Neural Networks

Sikha Pentyala, Rafael Dowsley and Martine De Cock

Abstract—Many video classification applications require access
to personal data, thereby posing an invasive security risk to the
users’ privacy. We propose a privacy-preserving implementation
of single-frame method based video classification with convolu-
tional neural networks that allows a party to infer a label from
a video without necessitating the video owner to disclose their
video to other entities in an unencrypted manner. Similarly, our
approach removes the requirement of the classifier owner from
revealing their model parameters to outside entities in plaintext.
To this end, we combine existing Secure Multi-Party Computation
(MPC) protocols for private image classification with our novel
MPC protocols for oblivious single-frame selection and secure
label aggregation across frames. The result is an end-to-end
privacy-preserving video classification pipeline. We evaluate our
proposed solution in an application for private human emotion
recognition. Our results across a variety of security settings,
spanning honest and dishonest majority configurations of the
computing parties, and for both passive and active adversaries,
demonstrate that videos can be classified with state-of-the-art
accuracy, and without leaking sensitive user information.

Index Terms—Privacy preserving, Secure multi-party compu-
tation

I. INTRODUCTION

Deep learning based video classification is extensively used
in a growing variety of applications, such as facial recognition,
activity recognition, gesture analysis, behavioral analysis, eye
gaze estimation, and emotion recognition in empathy-based AI
systems [3], [47], [42], [46], [49], [51], [58], [65], [72]. Many
existing and envisioned applications of video classification
rely on personal data, rendering these applications invasive of
privacy. This applies among other tasks to video surveillance
and home monitoring systems. Similarly, empathy-based AI
systems expose personal emotions, which are most private to
a user, to the service provider. Video classification systems
deployed in commercial applications commonly require user
videos to be shared with the service provider or sent to the cloud.
These videos may remain publicly available on the Internet.
Users have no control over the deletion of the videos, and
the data may be available for scraping, as done for instance
by Clearview AI [30]. The need to protect the privacy of
individuals is widely acknowledged [56]. Concerns regarding
privacy of user data are giving rise to new laws and regulations
such as the European GDPR and the California Consumer
Privacy Act (CCPA), as well as a perceived tension between

Sikha Pentyala is with the School of Engineering and Technology, University
of Washington, Tacoma, WA, USA. Email: sikha@uw.edu

Rafael Dowsley is with the Faculty of Information Technology, Monash
University, Clayton, Australia. Email: rafael.dowsley@monash.edu

Martine De Cock is with the School of Engineering and Technology,
University of Washington, Tacoma, WA, USA and Ghent University, Ghent,
Belgium. Email: mdecock@uw.edu

the desire to protect data privacy on one hand, and to promote
an economy based on free-flowing data on the other hand
[37]. The E.U. is for instance considering a three-to-five-year
moratorium on face recognition in public places, given its
significant potential for misuse [17].

A seemingly straightforward technique to keep user videos
private is to deploy the deep learning models of the service
providers at the user-end instead of transferring user data to the
cloud. This is not a viable solution for several reasons. First,
owners of proprietary models are concerned about shielding
their model, especially when it constitutes a competitive
advantage. Second, in security applications such as facial
recognition, or deepfake detection, revealing model details helps
adversaries develop evasion strategies. Furthermore, powerful
deep learning models that memorize their training examples are
well known; one would not want to expose those by revealing
the model. Finally, deployment of large deep learning models
at the user end may be technically difficult or impossible due to
limited computational resources. For these reasons, ML tasks
such as video classification are commonly outsourced to a set
of efficient cloud servers in a Machine-Learning-as-a-Service
(MLaaS) architecture. Protecting the privacy of both the users’
and the service provider’s data while performing outsourced
ML computations is an important challenge.

Privacy-preserving machine learning (PPML) has been
hailed, even by politicians [20], [73], as a potential solution
when handling sensitive information. Substantial technological
progress has been made during the last decade in the area
of Secure Multi-Party Computation (MPC) [21], an umbrella
term for cryptographic approaches that allow two or more
parties to jointly compute a specified output from their private
information in a distributed fashion, without revealing the
private information to each other. Initial applications of MPC
based privacy-preserving inference with deep learning models
have been proposed for image [2], [24], [36], [41], [52],
[62], [61], [63] and audio classification [7]. We build on this
existing work to create the first end-to-end MPC protocol
for private video classification. In our solution, videos are
classified according to the well-known single-frame method,
i.e. by aggregating predictions across single frames/images.
Our main novel contributions are:
• A protocol for selecting frames in an oblivious manner.
• A protocol for secure frame label aggregation.
• An evaluation of our secure video classification pipeline

in an application for human emotion detection from video
on the RAVDESS dataset, demonstrating that MPC based
video classification is feasible today, with state-of-the-art
classification accuracies, and without leaking sensitive user
information.
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Fig. 1. Privacy-preserving video classification as an outsourced computation
problem, illustrated for the 3-party computation setting (3PC) with 3 servers
S1, S2, and S3

Fig. 1 illustrates the flow of our proposed solution at a
high level. The video of end user Alice should be classified
with Bob’s model in such a way that no one other than Alice
sees the video, and no one other than Bob sees the model
parameters. Below we refer to both Alice’s video and Bob’s
model parameters as “data”. In Step 1 of Fig. 1, Alice and Bob
each send secret shares of their data to a set S of untrusted
servers (“parties”). While the secret shared data can be trivially
revealed by combining all shares, nothing about the data is
revealed to any subset of the servers that can be corrupted
by the adversary. This means, in particular, that none of the
servers by themselves learns anything about the actual values
of the data. Next, in Step 2, the servers execute MPC protocols
for oblivious frame selection, image classification, and frame
label aggregation. Throughout this process, none of the servers
learns the values of the data nor the assigned label, as all
computations are done over secret shares. Finally, in Step 3,
the servers can reveal their shares of the computed class label
to Alice, who combines them in Step 4 to learn the output of
the video classification.

Steps 1 and 3-4 are trivial as they follow directly from
the choice of the underlying MPC scheme (see Sec. III).
The focus of this paper is on Step 2, in which the servers
(parties) execute protocols to perform computations over the
secret shared data (see Sec. IV). MPC is concerned with
the protocol execution coming under attack by an adversary
which may corrupt parties to learn private information or
cause the result of the computation to be incorrect. MPC
protocols are designed to prevent such attacks being successful.
There exist a variety of MPC schemes, designed for different
numbers of parties and offering various levels of security that
correspond to different threat models, and coming with different
computational costs. Regarding threat models, we consider
settings with semi-honest as well as with malicious adversaries.
While parties corrupted by semi-honest adversaries follow
the protocol instructions correctly but try to obtain additional

information, parties corrupted by malicious adversaries can
deviate from the protocol instructions. Regarding the number
of parties (servers), some of the most efficient MPC schemes
have been developed for 3 parties, out of which at most one
is corrupted. We evaluate the runtime of our protocols in this
honest-majority 3-party computing setting (3PC), which is
growing in popularity in the PPML literature, e.g. [24], [41],
[62], [67], [57], and we demonstrate how even better runtimes
can be obtained with a recently proposed MPC scheme for 4PC
with one corruption [23]. Our protocols are generic and can be
used in a 2PC, dishonest-majority setting as well, i.e. where
each party can only trust itself. Note that in the 2PC setting,
the computation can be performed directly by Alice and Bob if
they are not very limited in terms of computational resources.
As known from the literature, and apparent from our results,
the higher level of security offered by the 2PC setting comes
with a substantial increase in runtime.

After discussing related work in Sec. II and recalling
preliminaries about MPC in Sec. III, we present our protocols
for privacy-preserving video classification in Sec. IV. The
MPC protocols we present in Sec. IV enable the servers to
perform all these computations without accessing the video V
or the convolutional neural network (ConvNet) model M in
plaintext. In Sec. V we present an experimental evaluation of
our method when applied to emotion recognition from videos
of the RAVDESS dataset. Our ConvNet based secure video
classification approach achieves accuracies at par with those
in the literature for this dataset, while not requiring leakage
of sensitive information. Our prototype classifies videos that
are 3-5 sec in length in under 14 sec on Azure F32 machines,
demonstrating that private video classification based on MPC
is feasible today.

II. RELATED WORK

Privacy-preserving video classification. Given the invasive
nature of video classification applications, it is not surprising
that efforts have been made to protect the privacy of individuals.
Non-cryptography based techniques such as anonymizing
faces in videos [60], pixel randomization to hide the user’s
identity [32], compressing video frames to achieve visual
shielding effect [45], lowering resolution of videos [64], using
autoencoders to maintain privacy of the user’s data [27], and
changes in ways the videos are captured [70] do not provide
any formal privacy guarantees and affect the accuracy of the
inference made. Solutions based on Differential Privacy (DP)
[69] introduce noise, or replace the original data at the user end
by newly generated data, to limit the amount of information
leaked, at the cost of lowering accuracy. The recently proposed
“Visor” system requires secure hardware (trusted execution
environments) for privacy-preserving video analytics [59].

In contrast to the approaches above, in this paper we pursue
the goal of having no leakage of information during the
inference phase, without requiring special secure hardware. To
the best of our knowledge, our approach is the first in the open
literature to achieve this goal for private video classification.
To this end, we leverage prior work on cryptography based
private image classification, as described below, and augment
it with novel cryptographic protocols for private video frame
selection and label aggregation across frames.
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Cryptography based image classification. There are 2
main approaches within cryptography that enable computations
over encrypted data, namely Homomorphic Encryption (HE)
and Secure Multiparty Computation (MPC). Both have been
applied to secure inference with trained neural networks,
including for image classification with ConvNets [10], [29],
[40], [41], [57], [16], [61], [62], [67], [68]. Neither have
been applied to video classification before. While HE has
a lower communication burden than MPC, it has much higher
computational costs, making HE less appealing at present
for use in applications where response time matters. E.g., in
state-of-the-art work on private image classification with HE,
Chillotti et al. ([18]) report a classification time of ∼ 9 sec for
a 28× 28 MNIST image on 96vCPU AWS instances with a
neural network smaller in size (number of parameters) than the
one we use in this paper. As demonstrated in Sec. V, the MPC
based techniques for image classification based on Dalskov et
al. ([24]) that we use, can label images (video frames) an order
of magnitude faster, even when run on less powerful 32vCPU
Azure instances (∼ 0.5 sec for passive 3PC; ∼ 1 sec for active
4PC). We acknowledge that this superior performance stems
from the flexibility of MPC to accommodate honest-majority
3PC/4PC scenarios. HE based private image classification is
by design limited to the dishonest-majority 2PC setting, in
which our MPC approach is too slow for video classification
in (near) real-time as well.

Emotion recognition. A wide variety of applications have
prompted research in emotion recognition, using various
modalities and features [6], [34], [35], [71], including videos
[75], [31], [53], [54], [26]. Emotion recognition from videos
in the RAVDESS benchmark dataset, as we do in the use
case in Sec. V, has been studied by other authors in-the-clear,
i.e. without regards for privacy protection, using a variety of
deep learning architectures, with reported accuracies in the
57%-82% range, depending on the number of emotion classes
included in the study (6 to 8) [5], [50], [9], [1]. The ConvNet
model that we trained for our experimental results in Sec. V is
at par with these state-of-the-art accuracies. Jaiswal and Provost
[33] have studied privacy metrics and leakages when inferring
emotions from data. To the best of our knowledge, there is no
existing work on privacy-preserving emotion detection from
videos using MPC, as we do in Sec. V.

III. PRELIMINARIES

Protocols for Secure Multi-Party Computation (MPC) enable
a set of parties to jointly compute the output of a function
over the private inputs of each party, without requiring any
of the parties to disclose their own private inputs. MPC is
concerned with the protocol execution coming under attack by
an adversary A which may corrupt one or more of the parties to
learn private information or cause the result of the computation
to be incorrect. MPC protocols are designed to prevent such
attacks being successful, and can be mathematically proven
to guarantee privacy and correctness. We follow the standard
definition of the Universal Composability (UC) framework [11],
in which the security of protocols is analyzed by comparing
a real world with an ideal world. For details, see Evans et
al. ([28]).

MPC scheme Reference

passive 2PC OTSemi2k semi-honest adaptation of
[22]

3PC Replicated2k [4]

active
2PC SPDZ2k [22],

[25]

3PC SPDZ-wise
Replicated2k [23]

4PC Rep4-2k [23]
TABLE I

MPC SCHEMES USED IN THE EXPERIMENTAL EVALUATION FOR 2PC
(DISHONEST MAJORITY) AND 3PC/4PC (HONEST MAJORITY)

An adversary A can corrupt any number of parties. In a
dishonest-majority setting at least half of the parties are corrupt,
while in an honest-majority setting, more than half of the parties
are honest (not corrupted). Furthermore, A can have different
levels of adversarial power. In the semi-honest model, even
corrupted parties follow the instructions of the protocol, but
the adversary attempts to learn private information from the
internal state of the corrupted parties and the messages that
they receive. MPC protocols that are secure against semi-honest
or “passive” adversaries prevent such leakage of information.
In the malicious adversarial model, the corrupted parties can
arbitrarily deviate from the protocol specification. Providing
security in the presence of malicious or “active” adversaries,
i.e. ensuring that no such adversarial attack can succeed, comes
at a higher computational cost than in the passive case.

The protocols in Sec. IV are sufficiently generic to be used
in dishonest-majority as well as honest-majority settings, with
passive or active adversaries. This is achieved by changing
the underlying MPC scheme to align with the desired security
setting. Table I contains an overview of the MPC schemes used
in Sec. V. In these MPC schemes, all computations are done
on integers modulo q, i.e., in a ring Zq = {0, 1, . . . , q − 1},
with q a power of 2. The pixel values in Alice’s video and the
model parameters in Bob’s classifier are natively real numbers
represented in a floating point format. As is common in MPC,
they are converted to integers using a fixed-point representation
[15]. When working with fixed-point representations with a
fractional bits, every multiplication generates an extra a bits
of unwanted fractional representation. To securely “chop off”
the extra fractional bits generated by multiplication, we use
the deterministic truncation protocol by Dalskov et al. ([24],
[23]) for computations over Z2k . Below we give a high level
description of the 3PC schemes from Table I. For more details
and a description of the other MPC schemes, we refer to the
papers in Table I.

Replicated sharing (3PC). After Alice and Bob have
converted all their data to integers modulo q, they send secret
shares of these integers to the servers in S (see Fig. 1). In a
replicated secret sharing scheme with 3 servers (3PC), a value
x in Zq is secret shared among servers (parties) S1, S2, and
S3 by picking uniformly random shares x1, x2, x3 ∈ Zq such
that x1 + x2 + x3 = x mod q, and distributing (x1, x2) to
S1, (x2, x3) to S2, and (x3, x1) to S3. Note that no single
server can obtain any information about x given its shares.
We use [[x]] as a shorthand for a secret sharing of x. The
servers subsequently classify Alice’s video with Bob’s model
by computing over the secret sharings.
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Passive security (3PC). The 3 servers can perform the
following operations through carrying out local computations
on their own shares: addition of a constant, addition of secret
shared values, and multiplication by a constant. For multiplying
secret shared values [[x]] and [[y]], we have that x · y = (x1 +
x2+x3)(y1+y2+y3), and so S1 computes z1 = x1 ·y1+x1 ·
y2 + x2 · y1, S2 computes z2 = x2 · y2 + x2 · y3 + x3 · y2
and S3 computes z3 = x3 · y3 + x3 · y1 + x1 · y3. Next,
the servers obtain an additive secret sharing of 0 by picking
uniformly random u1, u2, u3 such that u1 + u2 + u3 = 0,
which can be locally done with computational security by using
pseudorandom functions, and Si locally computes vi = zi+ui.
Finally, S1 sends v1 to S3, S2 sends v2 to S1, and S3 sends v3
to S2, enabling the servers S1, S2 and S3 to get the replicated
secret shares (v1, v2), (v2, v3), and (v3, v1), respectively, of the
value v = x·y. This protocol only requires each server to send a
single ring element to one other server, and no expensive public-
key encryption operations (such as homomorphic encryption
or oblivious transfer) are required. This MPC scheme was
introduced by Araki et al. ([4]).

Active security (3PC). In the case of malicious adversaries,
the servers are prevented from deviating from the protocol
and gain knowledge from another party through the use of
information-theoretic message authentication codes (MACs).
For every secret share, an authentication message is also sent
to authenticate that each share has not been tampered in each
communication between parties. In addition to computations
over secret shares of the data, the servers also need to update
the MACs appropriately, and the operations are more involved
than in the passive security setting. For each multiplication
of secret shared values, the total amount of communication
between the parties is greater than in the passive case. We use
the MPC scheme SPDZ-wiseReplicated2k recently proposed
by Dalskov et al. ([23]), with the option with preprocessing
for generation of the multiplication triples that is available in
MP-SPDZ [39].

a) MPC primitives.: The MPC schemes listed above
provide a mechanism for the servers to perform cryptographic
primitives through the use of secret shares, namely addition
of a constant, multiplication by a constant, and addition
and multiplication of secret shared values. Building on these
cryptographic primitives, MPC protocols for other operations
have been developed in the literature. We use:
• Secure matrix multiplication πDMM: at the start of this

protocol, the parties have secret sharings [[A]] and [[B]] of
matrices A and B; at the end of the protocol, the parties
have a secret sharing [[C]] of the product of the matrices,
C = A × B. πDMM is a direct extension of the secure
multiplication protocol for two integers explained above,
which we will denote as πDM in the remainder.

• Secure comparison protocol πLT [13]: at the start of this
protocol, the parties have secret sharings [[x]] and [[y]] of
integers x and y; at the end of the protocol they have a
secret sharing of 1 if x < y, and a secret sharing of 0
otherwise.

• Secure argmax πARGMAX: this protocol accepts secret shar-
ings of a vector of integers and returns a secret sharing of the
index at which the vector has the maximum value. πARGMAX

is straightforwardly constructed using the above mentioned

Fig. 2. Illustration of oblivious frame selection. The assumption is made that
Alice has 4 frames in total, each of size 2× 2× 1, and Bob needs to select 2
frames, namely Frames 2 and 4. Alice has a tensor A of size 4× 2× 2× 1
and Bob has a 2D-matrix B of size 2 × 4. A is flattened securely to form
Aflat of size 4 × 4. A secure matrix multiplication B × Aflat is performed
resulting in Fflat, a 2× 4 matrix holding the 2 selected frames. This matrix
is then expanded to matrix F of size 2× 2× 2× 1.

secure comparison protocol.
• Secure RELU πRELU [24]: at the start of this protocol,

the parties have a secret sharing of z; at the end of the
protocol, the parties have a secret sharing of the value
max(0, z). πRELU is constructed from πLT, followed by a
secure multiplication to either keep the original value z or
replace it by zero in an oblivious way.

• Secure division πDIV: for secure division, the parties use an
iterative algorithm that is well known in the MPC literature
[14].

IV. METHODOLOGY

The servers perform video classification based on the
single-frame method, i.e. by (1) selecting frames from the
video V (Sec. IV-A); (2) labeling the selected frames with a
ConvNet model M (Sec. IV-B); and (3) aggregating the labels
inferred for the selected frames into a final label for the video
(Sec. IV-C). The video V is owned by Alice and the model
M is owned by Bob. Neither party is willing or able to reveal
their video/model to other parties in an unencrypted manner.

A. Oblivious frame selection

We assume that Alice has prepared her video V as a 4D
array (tensor) A of size N ×h×w× c where N is the number
of frames, h is the height and w is the width of the frame, and
c represents the number of color channels of the frame. As
explained in Sec. III, Alice has converted the pixel values into
integers using a fixed-point representation. The values of the
dimensions N,h,w, c are known to Bob and the set of servers
S. All other properties of the video are kept private, including
the video length, the frames per second (fps), and video capture
details such as the type of camera used. Moreover, Bob and
the servers S do not learn the values of the pixels, i.e. the
actual contents of the frames remain hidden from Bob and S
(and anyone else, for that matter). For an illustration of Alice’s
input, we refer to the top of Fig. 2, where N = 4, h = 2,
w = 2, and c = 1.
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Bob samples a fixed number of frames from Alice’s video,
without revealing to Alice the frames he is selecting, as such
knowledge might allow Alice to insert malicious frames in the
video in the exact positions that Bob is sampling. We assume
that Bob has a vector b of length n, with the indices of the n
frames he wishes to select. These indices can for instance be
1, 1+ d, 1+ 2d, . . . for a fixed window size d that is known to
Bob. In the example in Fig. 2, n = 2, both 2nd and 4th frames
are selected.

The idea behind protocol πFSELECT for oblivious frame
selection, as illustrated in Fig. 2, is to flatten A into a matrix
that contains one row per frame, use a matrix B with one-
hot-encodings of the selected frames, multiply B with A, and
finally expand the product. In more detail: Bob converts each
entry i of list b (which is an index of a frame to be selected)
into a vector of length N that is a one-hot-encoding of i, and
inserts it as a row in matrix B of size n×N . Alice and Bob
then send secret shares of their respective inputs A and B to
the servers S, using a secret sharing scheme as mentioned in
Sec. III. None of the servers can reconstruct the values of A
or B by using only its own secret shares.

Next the parties in S jointly execute protocol πFSELECT for
oblivious frame selection (see Protocol 1). On line 1, the parties
reorganize the shares of tensor A of size N × h× w × c into
a flattened matrix Aflat of size N × (h · w · c). On line 2,
the parties multiply [[B]] and [[Aflat]], using protocol πDMM for
secure matrix multiplication, to select the desired rows from
Aflat. On line 3, these selected rows are expanded again into a
secret-shared tensor F of size n × h × w × c that holds the
selected frames. F [1], F [2], . . . , F [n] are used in the remainder
to denote the individual frames contained in F . Throughout
this process, the servers do not learn the pixel values from A,
nor which frames were selected.

Protocol 1 Protocol πFSELECT for oblivious frame selection
Input: A secret shared 4D-array [[A]] of size N × h×w× c with the frames
of a video; a secret shared frame selection matrix [[B]] of size n×N . The
values N , h, w, c, n are known to all parties.
Output: A secret shared 4D-array F of size n × h × w × c holding the
selected frames
1: [[Aflat]] ←

RESHAPE([[A]], N × h× w × c,N × (h× w × c))
2: [[Fflat]] ← πDMM([[B]], [[Aflat]])
3: [[F ]] ← RESHAPE([[Fflat]], n× (h× w × c), n× h× w × c)
4: return [[F ]]

B. Private frame classification
We assume that Bob has trained an “MPC-friendly” 2D-

ConvNet M for classifying individual video frames (images),
and that Bob secret shares the values of the model parameters
with the servers S, who already have secret shares of the
selected frames from Alice’s video after running Protocol
πFSELECT. By “MPC-friendly” we mean that the operations to
be performed when doing inference with the trained ConvNet
are chosen purposefully among operations for which efficient
MPC protocols exist or can be constructed. Recall that a
standard ConvNet contains one or more blocks that each have
a convolution layer, followed by an activation layer, typically
with RELU, and an optional pooling layer. These blocks are
then followed by fully connected layers which commonly have

RELU as activation function, except for the last fully connected
layer which typically has a Softmax activation for multi-class
classification. The operations needed for all layers, except for
the output layer, boil down to comparisons, multiplicatons,
and summations. All of these cryptographic primitives can
be efficiently performed with state-of-the-art MPC schemes,
as explained in Sec. III. Efficient protocols for convolutional,
RELU activation, average pooling layers, and dense layers are
known in the MPC literature [24]. We do not repeat them in this
paper for conciseness. All these operations are performed by
the servers S using the secret shares of Bob’s model parameters
and of the selected frame from Alice’s video, as obtained using
πFSELECT.

As previously mentioned, Softmax is generally used as the
activation function in the last layer of ConvNets that are trained
to perform classification. Softmax normalizes the logits passed
into it from the previous layer to a probability distribution
over the class labels. Softmax is an expensive operation to
implement using MPC protocols, as this involves division
and exponentiation. Previously proposed workarounds include
disclosing the logits and computing Softmax in an unencrypted
manner [44], which leaks information, or replacing Softmax by
Argmax [7], [24]. The latter works when one is only interested
in retrieving the class label with the highest probability, as
the Softmax operation does not change the ordering among
the logits. In our context of video classification based on the
single-frame method however, the probabilities of all class
labels for each frame are required, to allow probabilities across
the different frames to be aggregated to define a final label
(see Sec. IV-C).

We therefore adopt the solution proposed by Mohassel and
Zhang [55] and replace the Softmax operation by

f(ui) =


RELU(ui)

C∑
j=1

RELU(uj)

, if
C∑

j=1
RELU(uj) > 0

1/C, otherwise

for i = 1, . . . , C, where (u1, u2, . . . , uC) denote the logits
for each of the C class labels, and (f(u1), f(u2), . . . , f(uC))
is the computed probability distribution over the class labels.
Pseudocode for the corresponding MPC protocol is presented
in Protocol 2. At the start of Protocol πSOFT, the servers have
secret shares of a list of logits, on which they apply the secure
RELU protocol in Line 1. Lines 2-5 serve to compute the
sum of the RELU values, while on Line 6 the parties run a
secure comparison protocol to determine if this sum is greater
than 0. If Sumrelu is greater than 0, then after Line 6, [[cn]]
contains a secret sharing of 1; otherwise it contains a secret
sharing of 0. Note that if cn = 1 then the numerator of the
ith probability f(ui) should be Xrelu[i] while the denominator
should be Sumrelu. Likewise, if cn = 0 then the numerator
should be 1 and the denominator C. As is common in MPC
protocols, we use multiplication instead of control flow logic for
such conditional assignments. To this end, a conditional based
branch operation as “if p then q ← r else q ← s” is rephrased
as “q ← p ·r+(1−p) ·s”. In this way, the number and the kind
of operations executed by the parties does not depend on the
actual values of the inputs, so it does not leak information that
could be exploited by side-channel attacks. Such conditional
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Fig. 3. Illustration of label aggregation. Let us assume that n = 4 frames
were selected for secure inference, and that there are C = 7 classes. SMapprox

holds the inferred probability distribution over the class labels for each frame.
Class label 5 is selected as the final label because it has the highest sum of
probabilities across all classified frames.

assignments occur in Line 7 and 10 of Protocol πSOFT, to
assign the correct value of the numerator and the denominator.

Protocol 2 Protocol πSOFT for approximate Softmax
Input: A secret shared list [[logits]] of logits of size C, where C is total
number of class labels
Output: A secret shared list [[SMapprox]] of size C of probabilities for the
class labels
1: [[Xrelu]] ← πRELU ([[logits]])
2: [[Sumrelu]] ← 0
3: for j = 1 to C do
4: [[Sumrelu]] ← [[Sumrelu]] + [[Xrelu[i]]]
5: end for
6: [[cn]] ← πLT (0,[[Sumrelu]])
7: [[denom]] ← πDM ([[cn]], [[Sumrelu]]) + πDM ((1− [[cn]]), C)
8: [[denom inv]] ← πDIV (1, [[denom]])
9: for i = 1 to C do

10: [[numer]] ← πDM ([[cn]], [[Xrelu[i]]]) + (1− [[cn]])
[[SMapprox[i]]] ← πDM ([[numer]], [[denom inv]])

11: end for
12: return [[SMapprox]]

A protocol πFINFER for performing secure inference with
Bob’s model M (which is secret shared among the servers)
over a secret shared frame f from Alice’s video can be
straightforwardly obtained by: (1) using the cryptographic
primitives defined in Sec. III to securely compute all layers
except the output layer; (2) using Protocol πSOFT to compute
the approximation of the Softmax for the last layer. The
execution of this protocol results in the servers obtaining secret
shares of the inferred probability distribution over the class
labels for frame f .

C. Secure label aggregation
As illustrated in Fig. 3, we aggregate the predictions across

the single frames by selecting the class label with the highest
sum of inferred probabilities across the frames. We implement
this securely as Protocol 3. To classify a video V , the servers:
(1) obliviously select the desired frames as shown in Line
2; (2) securely infer the probability distribution SMapprox of
all classes labels generated by the model M on a specific
selected frame, as shown in Line 4; (3) add these probabilities,
index-wise, to the sum of the probabilities corresponding to
each class that is obtained throughout the selected frames (Line
5-6); (4) securely find the index L with maximum value in
the aggregated list (Line 8). L represents the class label for

the video. At the end of Protocol 3, the servers hold a secret
sharing [[L]] of the video label. Each of the servers sends its
secret shares to Alice, who uses them to construct the class
label L for the video.

Protocol 3 Protocol πLABELVIDEO for classifying a video
securely based on the single-frame method
Input: A video V secret shared as a 4D-array [[A]], a frame selection matrix
secret shared as [[B]], the parameters of the ConvNet model M secret shared
as [[M ]]
Output: A secret share [[L]] of the video label
1: Let [[probsum]] be a list of length C that is initialized with zeros in all

indices.
2: [[F ]] ← πFSELECT ([[A]], [[B]])
3: for all [[F [j]]] do
4: [[SMapprox]] ← πFINFER ([[M ]], [[F [j]]])
5: for i = 1 to C do
6: [[probsum[i]]] ← [[probsum[i]]] + [[SMapprox[i]]]
7: end for
8: end for
9: [[L]] ← πARGMAX ([[probsum]])

10: return [[L]]

V. RESULTS

A. Dataset and model architecture

We demonstrate the feasibility of our privacy-preserving
video classification approach for the task of emotion detection
using the database 1 [48]. We use 1,248 video-only files with
speech modality from this dataset, corresponding to 7 different
emotions, namely neutral (96), happy (192), sad (192), angry
(192), fearful (192), disgust (192), and surprised (192). The
videos portray 24 actors who each read two different statements
twice, with different emotions, for a total of 52 video files
per actor. For all emotions except for neutral, the statements
are read with alternating normal and strong intensities; this
accounts for the fact that there are less “neutral” instances in
the dataset than for the other emotion categories. As in [9], we
leave out the calm instances, reducing the original 8 emotion
categories from the RADVESS dataset to the 7 categories
that are available in the FER2013 dataset [12], which we use
for pre-training. The videos in the RAVDESS dataset have a
duration of 3-5 seconds with 30 frames per second, hence the
total number of frames per video is in the range of 120-150.
We split the data into 1,116 videos for training and 132 videos
for testing. To this end, we moved all the video recordings of
the actors 8, 15 (selected randomly) and an additional randomly
selected 28 video recordings to the test set, while keeping the
remaining video recordings in the train set.

We used OpenCV [8] to read the videos into frames. Faces
are detected with a confidence greater than 98% using MTCNN
[74], aligned, cropped, and converted to gray-scale. Each
processed frame is resized to 48× 48, reshaped to a 4D-array,
and normalized by dividing each pixel value by 255.

For Bob’s image classification model, we trained a Conv-
Net with ∼ 1.48 million parameters with an architecture
of [(CONV-RELU)-POOL]-[(CONV-RELU)*2-POOL]*2-[FC-
RELU]*2-[FC-SOFTMAX]. We pre-trained2 the feature layers

1https://zenodo.org/record/1188976
2With early stopping using a batch size of 256 and Adam optimizer with

default parameters in Keras [19].

https://zenodo.org/record/1188976
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Avg. Time (sec) Avg. Comm (GB)

Passive 2PC 511.64 669.35
3PC 13.12 2.49

Active
2PC 8423.81 7782.74
3PC 48.20 10.98
4PC 18.40 4.60

TABLE II
AVERAGE TIME TO PRIVATELY DETECT EMOTION IN A RAVDESS VIDEO OF
DURATION 3-5 SECONDS. THE AVERAGE TIME IS COMPUTED OVER A SET

OF 10 VIDEOS WITH A NUMBER OF FRAMES IN THE 7-10 RANGE, AND WITH
N THREADS=32 IN MP-SPDZ. COMMUNICATION IS MEASURED PER PARTY.

on the FER 2013 data to learn to extract facial features for emo-
tion recognition, and fine-tuned3 the model on the RAVDESS
training data. Our video classifier samples every 15th frame,
classifies it with the above ConvNet, and assigns as the final
class label the label that has the highest average probability
across all frames in the video. The video classification accuracy
on the test set is 56%. For inference with the MPC protocols,
after training, we replace the Softmax function on the last layer
by the approximate function discussed in Section IV-B. After
this replacement, the accuracy of the video classifier is 56.8%.
This is in line with state-of-the-art results in the literature on
emotion recognition from RAVDESS videos, namely 57.5%
with Synchronous Graph Neural Networks (8 emotions) [50];
61% with ConvNet-LSTM (8 emotions) [1]; 59% with an
RNN (7 emotions) [9], and 82.4% with stacked autoencoders
(6 emotions) [5].

B. Runtime experiments

We implemented the protocols from Sec. IV in the MPC
framework MP-SPDZ [39], and ran experiments on co-located
F32s V2 Azure virtual machines. Each of the parties (servers)
ran on separate VM instances (connected with a Gigabit
Ethernet network), which means that the results in Table II
cover communication time in addition to computation time. A
F32s V2 virtual machine contains 32 cores, 64 GiB of memory,
and network bandwidth of upto 14 Gb/s. For the ring Z2k , we
used value k = 64.

Table II presents the average time needed to privately classify
a video. The MPC schemes for 4PC (with one corrupted party)
are faster than 3PC (with one corrupted party), which are in
turn substantially faster than 2PC. Furthermore, as expected,
there is a substantial difference in runtime between the semi-
honest (passive security) and malicious (active security) settings.
These findings are in line with known results from the MPC
literature [23], [24]. In the fastest setting, namely a 3PC
setting with a semi-honest adversary that can only corrupt
one party, videos from the RAVDESS dataset are classified
on average in 13.12 sec, which corresponds to approximately
0.5-0.6 sec per frame, demonstrating that privacy-preserving
video classification with state-of-the-art accuracy is feasible
in practice. While the presented runtime results are still too
slow for video classification in real-time, there is a clear path
to substantial optimization that would enable deployment of
our proposed MPC solution in practical real-time applications.
Indeed, MPC schemes are normally divided in two phases:

3With early-stopping using a batch size of 64 and SGD optimizer with a
learning rate 0.001, decay as 10−6, and momentum as 0.9.

the offline and online phases. The runtime results in Table
II represent the time needed for both. The offline phase only
performs computations that are independent from the specific
inputs of the parties to the protocol (Alice’s video and Bob’s
trained model parameters), and therefore can be executed long
before the inputs are known. By executing the offline phase
of the MPC scheme in advance, it is possible to improve the
responsiveness of the final solution.

VI. CONCLUSION AND FUTURE WORK

We presented the first end-to-end solution for private
video classification based on Secure Multi-Party Computation
(MPC). To achieve state-of-the-art accuracy while keeping our
architecture lean, we used the single-frame method for video
classification with a ConvNet. To keep the videos and the
model parameters hidden, we proposed novel MPC protocols
for oblivious frame selection and secure label aggregation
across frames. We used these in combination with existing
MPC protocols for secure ConvNet based image classification,
and evaluated them for the task of emotion recognition from
videos in the RAVDESS dataset.

Our work provides a baseline for private video classification
based on cryptography. It can be improved and adapted
further to align with state-of-the-art techniques in video
classification in-the-clear, including the use of machine learning
for intelligent frame selection. While our approach considers
only spatial information in the videos, the model architecture
in Sec. IV-B can be replaced by different architectures such as
CONV3D, efficient temporal modeling in video [43], single and
two stream ConvNets [38], [66] to fuse temporal information.
Many such approaches use popular ImageNet models for which
efficient MPC protocols are available in the literature [24], [41],
opening up interesting directions for further research.

REFERENCES

[1] M. Abdullah, M. Ahmad, and D. Han. Facial expression recognition in
videos: An CNN-LSTM based model for video classification. In Inter-
national Conference on Electronics, Information, and Communication,
pages 1–3, 2020. 3, 7

[2] N. Agrawal, A. Shahin Shamsabadi, M.J. Kusner, and A. Gascón.
QUOTIENT: two-party secure neural network training and prediction,
2019. 1

[3] M.R. Ali, J. Hernandez, E.R. Dorsey, E. Hoque, and D. McDuff. Spatio-
temporal attention and magnification for classification of Parkinson’s
disease from videos collected via the Internet. In 15th IEEE International
Conference on Automatic Face and Gesture Recognition, pages 53–60,
2020. 1

[4] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In
ACM SIGSAC Conference on Computer and Communications Security,
pages 805–817, 2016. 3, 4

[5] E. Bagheri, A. Bagheri, P.G. Esteban, and B. Vanderborgth. A novel
model for emotion detection from facial muscles activity. In Iberian
Robotics conference, pages 237–249. Springer, 2019. 3, 7

[6] U. Bhattacharya, T. Mittal, R. Chandra, T. Randhavane, A. Bera, and
D. Manocha. STEP: Spatial temporal graph convolutional networks for
emotion perception from gaits. In 34th AAAI Conference on Artificial
Intelligence, pages 1342–1350, 2020. 3

[7] Kyle Bittner, Martine De Cock, and Rafael Dowsley. Private
speech classification with secure multiparty computation. Available
at https://arxiv.org/pdf/2007.00253.pdf, 2020. 1, 5

[8] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc., 2008. 6

[9] S. Bursic, G. Boccignone, A. Ferrara, A. DAmelio, and R. Lanzarotti.
Improving the accuracy of automatic facial expression recognition in
speaking subjects with deep learning. Applied Sciences, 10(11):4002,
2020. 3, 6, 7



8

[10] M. Byali, H. Chaudhari, A. Patra, and A. Suresh. Flash: fast and robust
framework for privacy-preserving machine learning. Proceedings on
Privacy Enhancing Technologies, 2020(2):459–480, 2020. 3

[11] R. Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000. 3

[12] P.L. Carrier, A. Courville, I.J. Goodfellow, M. Mirza, and Y. Bengio.
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