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Abstract. A ring signature is a digital signature scheme that allows
identifying a group of possible signers without revealing the identity of
the actual signer. In this paper, we first present a post-quantum sigma
protocol for a ring that relies on the supersingular isogeny-based inter-
active zero-knowledge identification scheme proposed by De Feo, Jao,
and Plût in 2014. Then, we construct a ring signature from the proposed
sigma protocol for a ring by applying the Fiat-Shamir transform. In or-
der to reduce the size of exchanges, we use Merkle trees and show that
the signature size increases logarithmically in the size of the ring. The
security proofs and complexity analyses of the proposed protocols are
also provided.
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1 Introduction

Rivest, Shamir, and Kalai introduced the ring signatures at ASIACRYPT [24]
in 2001. A ring signature is a digital signature scheme produced by a member
of a ring (a group of people), which does not reveal the signer’s identity. Ring
signatures are very similar to group signatures. However, they differ from group
signatures in some points, such that there are no group managers, coordination,
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setup, and revocation procedures in ring signatures. A signer can select a set of
potential signers, including herself, and sign a message with her secret key and
other signers’ public keys. This scenario does not require the approval of the
other signers.

Besides correctness, two main features must be satisfied in terms of security
by a ring signature: unforgeability and anonymity. A ring signature scheme is
said to have unforgeability if that scheme does not allow anyone to generate
a signature on behalf of an honest ring of signers without knowing the secret
key of at least one member of the ring. For a given ring signature, anonymity
is satisfied if no one can distinguish which member of the ring generated the
signature, even with the information of all secret keys of the ring. Furthermore,
there is no cooperation or group secret among the ring members in ring signature
schemes. Therefore, choosing the ring members can be done in an ad-hoc way.

Whistleblowing was the original motivation of the ring signatures [24], where
the leaking person’s identity can be hidden by choosing a ring of people who
have access to this specific leaked message while convincing the recipient about
the authenticity of the leaked message. Recently, ring signatures have found
many applications such as cryptocurrency technologies for secure and anony-
mous transactions and e-voting [20, 29]. For instance, in cryptocurrencies like
Monero, known as a fungible currency, a user issues a ring signature on the trans-
action using a ring of public keys in the blockchain and generates a confidential
transaction. A signer who generates a ring signature can hide her identity as
an actual signer among the ring of public keys by ensuring that her identity is
indistinguishable from other ring members’ identities.

Since 2001, a huge number of ring signature schemes on various hardness
assumptions such as the integer factorization [6, 11, 24], discrete logarithm [1,
15, 16, 20, 21]. and pairing-based [4, 23, 26, 29] have been proposed. The security
of the pairing-based ring signatures could be proven without using a random
oracle. Furthermore, efficient and short ring signatures that rely on pairing-based
cryptography are introduced in [4, 7, 29]. In [1, 16], the signature size increases
linearly in the size of the ring, and [23] gives a constant size ring signature,
while the signature size in [2, 15] is logarithmic in the number of ring members.
The ring signature sizes in [6, 11] based on RSA accumulators is independent
of the ring size. Most recently, ring signatures that rely on the post-quantum
assumptions like hash-based [10, 18] multivariate [12, 22] and (one-time) lattice-
based [3, 5, 13, 19, 28] are introduced.

Recently, Beullens et al. presented linkable ring signature schemes in [5],
based on logarithmic OR-proof with binary challenges for CSIDH group ac-
tion and MLWE-based group action. The CSIDH group action is adapted from
the Couveignes-Rostovtsev-Stolbunov scheme by substituting supersingular el-
liptic curves over Fp for ordinary elliptic curves to improve the efficiency of
the scheme. The CSIDH group action is commutative since the subring of Fp-
rational endomorphisms is an order in an imaginary quadratic field. The security
of the CSIDH-based linkable ring signature is based on the Group Action In-
verse Problem (GAIP) and Squaring Decisional CSIDH (sdCSIDH) Problem.
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The best-known quantum algorithm to solve GAIP and its variants has subex-
ponential complexity. Nevertheless, there is no ring signature scheme based on
supersingular isogenies to the best of our knowledge. The design of the SIDH
scheme addressed the security weakness of the isogeny-based schemes by us-
ing supersingular elliptic curves defined over Fp2 . The endomorphism rings of
these curves are non-commutative and therefore provide exponential security. It
should be emphasized that SIDH is not similar to CSIDH in security, construc-
tion, key size, and performance. For comparison, SIDH has notable advantages
over CSIDH by providing high security and computational efficiency.

In this paper, we present a post-quantum version of the sigma protocol for
a ring that proves membership in the ring. In our sigma protocol, we apply
the OR-proof with binary challenges for a group action proposed in [5] to the
SIDH identification protocol given in [9], which does not follow the group action
property. We give the proof of the correctness, 2-special soundness, and honest-
verifier zero-knowledge (HVZK) properties of the proposed protocol. Moreover,
the fast-known quantum attacks against these assumptions are still exponential.
Thus, we present a ring signature scheme based on the post-quantum assump-
tions, i.e., supersingular isogeny problems. The construction proposed in this
paper provides a ring signature scheme, where the signature size grows loga-
rithmically in the number of users in the ring. Also, we show that this scheme
is correct, anonymous, and existentially unforgeable under an adaptive chosen
message attack in the random oracle model.

The rest of the paper is organized as follows: In Section 2, we provide back-
ground information required for the proposed schemes in this study. In Section
3, we propose the supersingular isogeny-based sigma protocol, followed by su-
persingular isogeny-based ring signatures in Section 4. We present the efficiency
analyzes in Section 5 and we conclude our paper in Section 6.

2 Background

This section briefly provides some required information related to the elliptic
curve isogenies [8, 9, 27], computational problems of supersingular isogenies [9,
17, 25], ring signatures [2, 4, 20], and supersingular isogeny-based zero-knowledge
proofs [14, 17, 31].

2.1 Elliptic Curve Isogenies

We consider the elliptic curves defined over a finite field Fq of characteristic
p > 3. For an elliptic curve E : y2 = x3 + ax+ b over Fq, the j-invariant of E is
denoted by

j(E) = 1728
4a3

4a3 + 27b2
.

For a given j ∈ Fq with j 6= 0 and j 6= 1728, there is an elliptic curve,

y2 = x3 +
3j

1728− j
x+

2j

1728− j
,
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whose j-invariant is j. Two elliptic curves E and E′ are isomorphic over Fq if
only if they have the same j-invariant. Isomorphism maps between elliptic curves
are invertible algebraic maps over algebraic closure Fq and can be efficiently
computed.

The n-torsion group of E, denoted by E[n], contains the set of all points
P ∈ E(Fq) such that nP = OE , where OE is the identity element. For n, with
p - n, we have E[n] ∼= Z/nZ⊕ Z/nZ.

The elliptic curves defined over a field of characteristic p can be classified
according to the structure of their p-torsion group. The elliptic curves with
E[p] ' Z/pZ are called ordinary while the curves E[p] ' O are called supersin-
gular.

An isogeny ϕ : E → E′ is a non-constant morphism from E to E′ that pre-
serves the identity element. The degree of an isogeny is its degree as a morphism.
If ϕ is separable, then degϕ = #ker(ϕ). The curves E and E′ are isogenous if
there is a separable isogeny between them. Due to Tate’s theorem, E and E′

are isogenous over Fq if and only if #E(Fq) = #E′(Fq). The isogeny ϕ can
be explicitly obtained by using Vélu’s formulae [30]. An isogeny of degree d is
called a d-isogeny. Every isogeny of smooth degree d > 1 can be computed as a
composition of isogenies of prime degree d =

∏m
i=1 `

ei
i over Fq.

An isogeny is a group homomorphism and can be uniquely identified with
its kernel (up to isomorphism). Given G ⊆ E, there exists a unique curve EG
(up to isomorphism) and a unique separable isogeny (up to automorphism of E)
ϕG : E → EG ∼= E/G such that ker(ϕG) = G. For a given prime `, there exists
exactly ` + 1 cyclic subgroups of order ` that each defines different `-isogenies.
Φ`(x, y) ∈ Z[x, y] is a symmetric modular polynomial of degree ` + 1 in both
x and y, and Φ`(j1, j2) = 0 if and only if there is an `-isogeny between two
elliptic curves with j-invariants j1 and j2. Moreover, for a given j, the roots
of the univariate equation Φ`(x, j) = 0 are the j-invariants of curves which are
`-isogenous to j. For each `-isogeny ϕ : E → E′, there exists a unique dual
`-isogeny ϕ̂ : E′ → E such that ϕ̂oϕ = [`] gives the multiplication-by-` map on
E and ϕoϕ̂ = [`] gives the multiplication-by-` map on E′.

An endomorphism is an isogeny from E to itself. The set of all endomorphisms
of the elliptic curve E, including the zero map, is denoted by End(E). Moreover,
it has a ring structure under point-wise addition and composition operations.
The End(E) over the algebraic closure field is isomorphic with an order in a
quadratic imaginary field or a maximal order in a quaternion algebra. An elliptic
curve whose End(E) is an order in a quadratic imaginary field is called ordinary.
The curve with End(E) as a maximal order in a quaternion algebra is called the
supersingular elliptic curve. Up to isomorphism, all supersingular elliptic curves
over the finite field Fq of characteristic p can also be defined over Fp2 . Indeed, the
motivation for using the supersingular isogenies in cryptography is based on the
hardness of computing the endomorphism of a randomly chosen supersingular
elliptic curve. The best quantum algorithm to solve this problem has O(p1/4)
running time with only a quadratic improvement over classical algorithms.
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2.2 Computational Problems of Supersingular Isogenies

The security of supersingular isogeny-based crypto-systems is based on the fol-
lowing computational problems:

Endomorphism Ring Problem. Let p be a prime number, and E be a su-
persingular elliptic curve over Fp2 , chosen uniformly at random. Computing the
endomorphism ring of E is called the endomorphism ring problem.

Let p = `e11 `
e2
2 f ± 1 be a prime number where `1 6= `2 are small primes

and f is an integer cofactor. Let E be a supersingular elliptic curve over Fp2 .
Fix {P1, Q1} and {P2, Q2} as bases of torsion groups E[`e11 ] and E[`e22 ], respec-
tively. We state the following problems that form security assumptions of the
supersingular isogeny-based protocols in [9, 17].

Computational Supersingular Isogeny (CSSI) Problem. Let m1 and m2

are randomly chosen integers modulo `e11 such that not both divisible by `1, and
ϕ : E → E′ be an `e11 -isogeny whose kernel generated by R = [m1]P1 + [m2]Q1.
For given {E′, ϕ(P2), ϕ(Q2)}, CSSI problem is to compute a generator of the
kernel ϕ.

Supersingular Computational Diffie-Hellman (SSCDH) Problem. Let
ϕ : E → E′ and ψ : E → E′′ be secret isogenies whose kernels
are generated by random points R ∈ 〈P1, Q1〉 and S ∈ 〈P2, Q2〉, re-
spectively. SSCDH problem is finding the j-invariant of E/〈R,S〉 for given
{E′, E′′, ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)}.

Supersingular Decision Diffie-Hellman (SSDDH) Problem. Let ϕ : E →
E′ and ψ : E → E′′ be isogenies whose kernels are generated by random points
R ∈ E[`e11 ] = 〈P1, Q1〉 and S ∈ E[`e22 ] = 〈P2, Q2〉, respectively. One of the
following tuples is sampled with probability 1/2:

– (E′, E′′, {ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)}, E/〈R,S〉),
– (E′, E′′, {ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)}, E/〈T 〉) where T ∈ E[`e11 `

e2
2 ] and is

randomly chosen.

The SSDDH problem is to determine from which distribution this tuple is sam-
pled.

Decisional Supersingular Product (DSSP) Problem. Let ϕ : E → E′ be
an isogeny whose kernel is generated by a secret point R ∈ E[`e11 ] = 〈P1, Q1〉.
Suppose that E[`e22 ] = 〈P2, Q2〉 and (E,E′, P2, Q2, ϕ(P2), ϕ(Q2)) are given. Con-
sider the following distributions of (E,E′):

– (E1, E
′
1), where E1 = E/〈S〉 generated by S ∈ E[`e22 ] and E′1 = E′/〈ϕ(S)〉.
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– (E1, E
′
1), where E1 is a random curve and isogenous to E, and E′1 is generated

by a random point R′ ∈ E1[`e11 ].

DSSP problem is to determine from which distribution the tuple (E1, E
′
1) is

sampled.

2.3 Ring Signatures

A ring signature scheme for given public parameters pp(λ) consists of a triple of
PPT (probabilistic polynomial-time) algorithms (Kgen,Sig,Ver), for generating
keys, signing a message, and verifying the ring signature respectively.

– (pk, sk) ← Kgen(pp(λ), rand): Outputs public and secret keys for a given
security parameter (1λ) and a random number rand.

– σ ← Sig(skr, R, pp,m): Let R be a ring containing n signers. Sig takes a
message m, a secret key skr where 1 ≤ r ≤ n and a set of public keys
R = {pk1, . . . , pkn} such that pkr ∈ R, and outputs a signature σ on message
m with respect with the ring R.

– 1/0 ← Ver(σ,R, pp,m): Takes a signature σ, message m, and a ring R =
{pk1, . . . , pkn} as input, outputs 1 for accepting and 0 for rejecting.

A ring signature scheme is required to comply with the properties: correct-
ness, anonymity, and unforgeability.

A ring signature σ is said to satisfy the correctness condition if for every
public information pp(λ), n = poly(λ), message m, R ⊆ {pk1, pk2, . . . , pkn}
where Kgen(pp(λ), randi) = (pki, ski) for every i ∈ {1, 2, . . . , n}, the signature
σ = Sig(skr, R, pp,m) for pkr ∈ R, 1 ≤ r ≤ n always holds Pr[Ver(σ,R, pp,m) =
1] = 1.

A ring signature σ is called anonymous if for every public parameter pp(λ),
message m and n = poly(λ), any PPT adversary A has at most negligible ad-
vantage in the following game against a challenger: The challenger runs the
Kgen(pp(λ), randi) = (pki, ski) for every i ∈ {1, 2, . . . , n} using random coins
randi, and samples a random bit b ∈ {0, 1}. The challenger also provides pp and
a set of random coins {rand1, . . . , randn} to A. A, using these random coins,
has all the secret keys in the ring. The adversary A gives a challenge (pki, R,m)
where pki0 , pki1 ∈ R and pki = pki0 or pki = pki1 . The challenger then runs the
signing algorithm Sig(skib , R, pp,m) and outputs σ∗ to A. A wins the game if
the A’s guess b∗ equals b.

A ring signature σ is called unforgeable under insider corruption if for every
public parameter pp(λ) and n = poly(λ), any PPT adversary A has at most a
negligible advantage in the following game against a challenger: The challenger
runs the Kgen(pp(λ), randi) = (pki, ski) for every i ∈ {1, 2, . . . , n} using random
coins randi, and gives pp and pk = {pk1, pk2, . . . , pkn} to A. A can generate
signatures for a polynomial number of times. The corruption queries as follows:

– Squeri(i, R,m): the challenger verifies that pki ∈ R then gives σ correspond-
ing with (ski, R,m) to A.
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– Cqueri(i): the challenger gives its corresponding random coin randi that
generates (pki, ski) when A reruns the Kgen(pp(λ), randi).

A outputs (σ∗, R∗,m∗) where R∗ ⊆ pk and each pki ∈ R∗ has never requested
as a corruption query, and (., R∗,m∗) has not been in signing query list. A wins
the game if Ver(σ∗, R∗,m∗) = 1. The advantage of A in the unforgeability game
is denoted as ξ = Pr[A wins].

2.4 Supersingular Isogeny-Based Zero-Knowledge Proof

A supersingular isogeny-based zero-knowledge proof of identity is presented in
[17]. In this protocol, Peggy (prover) wants to prove to Victor (verifier) that
she knows the secret kernel 〈S〉 of the isogeny ϕ : E → ES without revealing
it. This protocol is computationally zero-knowledge and works as follows: Let
`p = `e11 , `v = `e22 , f be a small integer, p be a prime such that p = `p`vf ± 1,
{p,E,ES , E[`v] = 〈P,Q〉, ϕ(P ), ϕ(Q)} be publicly known, and S ∈ E[`p] be the
secret information. Peggy selects a random cyclic subgroup V ∈ E[`v], computes
isogenies ψ : E → EV and ψ′ : ES → ESV , whose kernels are generated by V and
ϕ(V ), respectively. Peggy then publishes EV and ESV as commitment. Victor
chooses a random challenge b ∈ {0, 1} and sends it to Peggy. Peggy responds with
{V, ϕ(V )} upon receiving the challenge b = 0, or responds with ψ(S) for challenge
b = 1. Victor accepts if the response generates the isogenies that connect the
corresponding curves. For λ-bit security, this interactive process should be run λ
times, and Peggy successfully proves her knowledge of the secret kernel S if the
verifier accepts the responses of all λ times of interaction. An interactive zero-
knowledge proof protocol can be transformed into a non-interactive signature
scheme as given in [14, 31].

3 Supersingular Isogeny-Based Sigma Protocol for a Ring

In this section, we propose a supersingular isogeny-based sigma protocol for
a ring that forms the basis of the supersingular isogeny-based ring signature
scheme given in Section 4. The proposed sigma protocol is derived from the in-
teractive zero-knowledge proof of identity proposed by De Feo, Jao, and Plût [9].
This section presents the proposed sigma protocol in detail, proves its security,
and provides a Merkle tree application.

3.1 Sigma Protocol for a Ring

Let R be a ring chosen by Peggy with n members and r be an integer with
1 ≤ r ≤ n. Peggy wants to convince Victor that she knows a secret key 〈Sr〉 that
generates one of the public keys (i.e., ESr

) in R, without revealing the secret
key and the certain public key in the ring R. A supersingular isogeny-based
interactive zero-knowledge proof takes over R as follows:
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1. For a security parameter λ, let the public parameters be a prime number
p = `p`vf ± 1 where `p ≈ `v are smooth numbers, a supersingular elliptic
curve E(Fp2), two points P and Q that are the generators of the `v-torsion
group E[`v].

2. Every user in the system has public and secret keys for given security param-
eter λ. For the ith user, Si is the secret key and (ESi , Pi, Qi) is the public key
where Si ∈ E[`p], generating the kernel of a secret `p-isogeny αi : E → ESi ,
and Pi = αi(P ), Qi = αi(Q) as the images of `v-torsion generators 〈P,Q〉.

3. Peggy picks a ring R = {(ESi , Pi, Qi)}ni=1 of n public keys where the in-
dex of her public key in R is r. She chooses a random integer ω ∈ Z/`vZ,
then computes V = P + ωQ ∈ E[`v] and αi(V ) = Pi + ωQi defining
the kernels of the isogenies given in Fig. 1. In this scheme, β : E →
E/〈V 〉 = EV and βi : ESi

→ ESi
/〈αi(V )〉 = ESiV are `v-isogenies de-

fined by V and αi(V ), respectively. Peggy applies a random permutation τ
on
[
j(EV ), j(ES1V ), . . . , j(ESnV )

]
and obtains X = [ji1 , ji2 , . . . , jin+1 ] then

sends the commitment X to Victor.

Fig. 1. Supersingular isogeny-based sigma protocol commitment isogenies.

4. Victor sends a challenge ch ∈ {0, 1} to Peggy.
5. Peggy reveals the response resp, based on the challenge. If ch = 1 then,
resp = (ω, τ). If ch = 0 then resp = (j(EV ), β(Sr)) where 〈β(Sr)〉 is the
kernel of the isogeny α′r : EV → EV /〈β(Sr)〉 = EV Sr

.
6. If ch = 1 and resp = (ω, τ), Victor verifies whether ω generates the elliptic

curve points of order `v that define the kernels of the isogenies (shown in
Fig. 2) E → EV ′ , and ESi

→ ESiV ′ , for 1 ≤ i ≤ n, respectively. Victor sets
X ′ =

[
j(EV ′), j(ES1V ′), . . . , j(ESnV ′)

]
and applies τ on X ′. He accepts if

X ′ = X, otherwise rejects. If ch = 0, Victor checks whether β(Sr) has order
`p and generates the isogeny illustrated in Fig. 3, EV → EV /〈β(Sr)〉 = EV S′

r

and then accepts if j(EV ), j(EV S′
r
) ∈ X. He rejects otherwise. Note that

ESrV ' E/〈Sr, V 〉 ' E/〈Sr〉/〈αr(V )〉 ' E/〈V 〉/〈β(Sr)〉.

The sigma protocol does not leak any information about (ESr , r). The prover
uses a permutation map, which hides the index of the elements in the commit-
ment. Moreover, when the verifier sends ch = 1, the prover’s response allows
the verifier to compute all the commitments, and therefore, there is no leak of
anonymity. When the verifier sends the challenge ch = 0, the prover’s answer is
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Fig. 2. Supersingular isogeny-based sigma protocol verification isogenies for ch = 1.

Fig. 3. Supersingular isogeny-based sigma protocol verification isogeny for ch = 0.

an isogeny between two arbitrary curves (EV , ESiV ) in the commitment. Since
the verifier does not know the isogeny that connects these two curves to public
curves in the ring, the response of this challenge is independent of the knowledge
of (ESr , r).

Theorem 1. The supersingular isogeny-based sigma protocol for a ring is com-
plete, honest-verifier zero-knowledge (HVZK), and it satisfies 2-special sound-
ness if the supersingular isogeny problems — DSSP and CSSI problems — are
computationally hard.

Proof. It is trivial to check the completeness. We shall prove that the scheme is
HVZK, which means that one can simulate a real execution of the identification
protocol for a given public key and a challenge without the knowledge of the
secret key. To see this, consider the algorithm Sim(R, ch)→ (com, ch, resp). For
a given R and a challenge ch, Sim works as follows: If ch = 1, choose a random
integer ω′ ∈ Z/`vZ and compute the corresponding isogeny maps of degree
`v with the public keys in R. X ′ stores the j-invariants of the image curves.
Sim outputs the transcript (com, ch, resp) = (X ′, 1, (ω′, τ ′)). In this case, the
output transcript is simulated correctly. If ch = 0, choose a curve E′ (isogenous
to E) and a random point S′ ∈ E′[`p] where E

′′
= E′/〈S′〉. X ′ holds the j-

invariants of E′, E′′, and n − 1 randomly chosen curves isogenous to E. Sim
outputs the transcript (com, ch, resp) = (X ′, 0, (E′, S′)), however, in this case,
X ′ is not distributed as a real execution. The computational assumption of
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DSSP implies that it is computationally hard to distinguish whether a transcript
is simulated or is a transcript of a real execution. Therefore the scheme has
computational zero-knowledge. 2-Special soundness follows from the following
observation: For given two valid transcripts (com, ch, resp) = (X, 1, (ω, τ)) and
(com, ch′, resp′) = (X, 0, (E′, S′)) with respect to R, it is possible to extract the
secret key. Let β : E → E′ = E/〈V 〉 be the isogeny generated by the kernel
V = P + ωQ and α′ : E′ → E′′ = E′/〈S′〉 be the isogeny generated by S′. With

the knowledge of these two transcripts, one can compute β̂(S′) that generates a
secret kernel for one of the curves in the ring. Suppose that A is an adversary
that can correctly respond both ch = 0 and ch = 1 corresponding with X, then
A can solve an instance of CSSI problem.

Assume that Peggy does not know any Si that generates one of the public keys
in R and tries to cheat Victor that she is a member of R. She can select a random
number ω ∈ Z/`vZ and obtains a commitment X, only with the knowledge of
public parameters. In this scenario, if Victor sends ch = 1, then Peggy can send
a valid response, but if Victor sends ch = 0 since she does not know any of
the secret keys, she cannot compute a valid kernel 〈Si〉 that generates one of
the curves in commitment X. Conversely, Peggy can choose a random number
ω ∈ Z/`vZ, compute V = P + ωQ and EV . Then, she selects random points
on EV to generate a commitment X. If Victor sends ch = 0, Peggy’s response
j(EV ), β(Si) will convince Victor since X includes EV /〈β(Si)〉. If Victor sends
ch = 1, then Peggy has to send ω, which generates the kernels of the curves
in X; however, the commitment does not include the curves generated by the
public keys in R. Therefore, Victor does not accept Peggy’s response. For both
of these scenarios, Peggy can cheat with the probability of 1/2. So, the sigma
protocol should be repeated until Victor is convinced that Peggy is honest.

3.2 Reducing the Size of Commitment Using Merkle Tree

The size of the commitment in Section 3.1 is large. To reduce the size of the
commitment, we apply the Merkle tree to the commitment set X in each it-
eration of the sigma protocol for R. We set a Merkle tree on commitment
X = [ji1 , ji2 , . . . , jin+1

] whose leaf nodes are
[
H(ji1), H(ji2), . . . ,H(jin+1)

]
where

H is a hash function. Internal nodes further up in the tree are hash values of
a concatenation of two hashes (their two children). The root of the Merkle tree
(the top hash) contains the hash of the entire tree. In order to prove that H(ji)
is a leaf node of the Merkle tree for a given Root(X), an ordered path that con-
tains the sibling node of H(ji) and other internal nodes are needed. This path
has a logarithmic size in the number of leaf nodes.

As an example, Fig. 4 illustrates the construction of a Merkle tree where X =
[ji1 , ji2 , . . . , ji8 ] is the permuted j-invariants of the curves EV , ES1V , . . . , ES7V .
One can obtain the path of a single node by following the shortest path from
the root node to the specific node. For instance, Path(ji6) = (H5, H78, H1234).

We slightly modify the sigma protocol for R so that the prover only reveals a
Merkle tree root of X as a commitment. The changes in each step of the sigma
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Fig. 4. A Merkle tree constructed for 8 j-invariants.

protocol are as follows: Peggy applies the step 3 of sigma protocol given in
Section 3.1, and computes a Merkle tree root of X = [ji1 , ji2 , . . . , jin+1

]. Then,
sends Root(X) to Victor. Victor sends a challengel ch ∈ {0, 1} to Peggy. If
ch = 1, Peggy reveals the response resp = (ω, τ). Victor reconstructs the Merkle
tree root X ′ =

[
j(EV ′), j(ES1V ′), . . . , j(ESnV ′)

]
generated by ω, then applies τ

on X ′. He accepts if Root(X ′) = Root(X). If ch = 0, the response is modified
as resp = (j(EV ), β(Sr), Path(j(ESrV ))). Victor first computes EV S′

r
from the

knowledge (j(EV ), β(Sr)). Then, by using the given Path(j(ESrV )), the leaf
node H(j(EV S′

r
)) recovers Root(X ′). Victor accepts it if Root(X ′) = Root(X).

4 Supersingular Isogeny-Based Ring Signature

In this section, we describe a supersingular isogeny-based ring signature which
is obtained by applying Fiat-Shamir transform to the sigma protocol given in
Section 3.1.

Let p = `p`vf ± 1 be a prime number for a given security parameter λ, E be
a supersingular elliptic curve defined over Fp2 , and H be a hash function with
output size q = O(λ). The points P and Q are on the curve E(Fp2) such that
E[`v] = 〈P,Q〉. The set of public parameters is pp = {p,E, P,Q,H}. Supersin-
gular isogeny-based ring signature works as follows:

– Kgen(pp): For the ith user, the point Si ∈ E[`p] which generates the kernel of
the secret isogeny αi : E → ESi is the secret key, (ESi , Pi, Qi) is the public
key where (Pi, Qi) = (αi(P ), αi(Q)). So, secret and public keys of ith user is
(ski, pki) = (Si, (ESi

, Pi, Qi)).
– Sig(sk, pk, pp,m): Let Peggy choose a ring R = {(ESi , Pi, Qi)}ni=1 with n

users. Consider r as Peggy’s public key index in R. Peggy generates the ring
signature by running the sigma protocol for a ring q times. The kth iteration
of the protocol is as follows:

• Select a random integer ωk ∈ Z/`vZ, compute Vk = P + ωkQ and the
corresponding `v-isogeny βk : E → EVk

.
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• By using the public keys pki = (ESi
, Pi, Qi) in R, compute the isogenies

βk1, βk2, . . . , βkn where βki : ESi
→ ESiVk

, generated by αi(Vk) = Pi +
ωkQi of degree `v, for i = 1, 2, . . . , n.

• Compute Xk =
[
j(EVk

), j(ES1Vk
), j(ES2Vk

), . . . , j(ESnVk
)
]
, apply the

permutation τk, and set σk = Root(Xk).

After collecting all σk values for k = 1, . . . , q, Peggy computes h =
H(m,σ1, σ2, . . . , σq) where m ∈ {0, 1}∗ is the message and h ∈ {0, 1}q is
the output of H which holds the challenges of the ring signature. Let z be
the verification key and zk be the kth element of z, for k = 1, . . . , q. If hk = 1,
Peggy sets zk = (ωk, τk), otherwise zk = (j(EVk

), βk(Sr), Path(j(ESrVk
))).

The signature is σ = (z,R).
– Ver(σ, pp,m): Victor can recover each σk by using the information given by
zk, for 1 ≤ k ≤ q. First, he extracts the bits of h = H(m,σ1, σ2, . . . , σq)
according to the size of zk, since the size of zk differs for ch = 1
and ch = 0. If Victor obtains zk = (ωk, τk) and so hk = 1, he
computes V ′k = P + ωkQ, V ′ki = Pi + ωkQi and the isogenies βk :
E → EV ′

k
, βki : E → ESiV ′

k
with the kernels 〈V ′k〉 and 〈V ′ki〉. Finally,

he sets X ′k =
[
j(EV ′

k
), j(ES1V ′

k
), j(ES2V ′

k
), . . . , j(ESnV ′

k
)
]
, applies τk, and

finds σ′k = Root(X ′k). In the case hk = 0, zk contains a kernel βk(Sr)
of an `p-isogeny and j(EVk

), so Victor can compute EVk
→ EVkS′

r
=

EVk
/〈βk(Sr)〉. Path(j(ESrVk

)) is also included in zk, thus Victor obtains
the root of the corresponding Merkle tree (which also equals to σ′k) us-
ing j(EVkS′

r
) and Path(j(ESrVk

)). After collecting each σ′k, he computes
h′ = H(m,σ′1, σ

′
2, . . . , σ

′
q) then, compares h and h′. Victor accepts if h = h′.

Theorem 2. The supersingular isogeny-based ring signature is correct, anony-
mous, and existentially unforgeable under an adaptive chosen message attack in
the random oracle model if the problems CSSI and DSSP are computationally
hard, and the sigma-protocol for a ring given in Section 3 is correct, 2-special
sound, and honest-verifier zero-knowledge.

Proof. The correctness of the ring signature produced by a signer who knows a
secret key in the ring follows from the correctness of the sigma protocol for a
ring since we run it in q parallel times, and the commitments are reconstructed
from the verification keys of the signature. We prove the anonymity by showing
that there exists a simulator Sim that outputs signatures indistinguishable from
signatures generated by a signer. Let the adversary challenge be (m,R, S0, S1)
where the ring R contains two public keys corresponding with the secret keys
S0 and S1. Using the zero-knowledge simulator Sim, the challenger simulates a
signature in the random oracle (where the output challenges are well adjusted
with the responses given by Sim) without the knowledge of secret keys S0 and
S1. Hence, the zero-knowledge property of the ring signature is independent of
the knowledge of the secret keys, which preserves the anonymity of the proposed
scheme even against the full key exposure. The unforgeability of the supersingu-
lar isogeny-based ring signature is shown with the assumption that the adversary
A succeeds in generating a forgery with advantage ξ. Let B be an algorithm that
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runs A for given public keys and public parameters. B uses the Sim to generate
the queried signatures as in the anonymity case. If A outputs a forged signature
(σ∗, R∗,m∗) where (., R∗,m∗) have never been queried before. B rewinds A and
reruns it by refreshing the randomness of random oracle to obtain another proof
for a particular query of the random oracle that before was made by (σ∗, R∗,m∗).
In this case, if A succeeds, then B either will find a collision or two transcripts
(com, ch, resp) and (com, ch′, resp′), which results in a secret key in the ring R.

5 Efficiency

This section provides efficiency analyses of the schemes introduced in Section 3
and 4. Note that the method given in Lemma 2. of [14] is used for the efficiency
analyses.

The best known classical and quantum attacks of supersingular isogeny as-
sumptions of smooth degree `p ≈ `v have roughly O(

√
`p) and O( 3

√
`p) heuristic

running times, respectively. Thus, for a given security parameter λ, we have
log `p = 2λ for the classical security and log `p = 3λ for the quantum security.

We assume that H is a secure hash function with the output {0, 1}q where q =
O(λ) and the ring R consists of n public keys. Each pki = (j(Ei), x(Pi), x(Qi)) ∈
R is the public key of a ring member where j(Ei), x(Pi), x(Qi) ∈ Fp2 . The
secret key of the ith user is an `p-torsion point. Assume that 〈PS , QS〉 = E[`p],
ski ∈ Z/`pZ and ski is relatively prime to the smooth base (i.e., if `p = 2a then
gcd(ski, 2) = 1), then the secret key of the ith user is defined as Si = PS+skiQS .
Therefore, it is enough to represent the secret key with the integer ski.

We present the efficiency analysis of the supersingular isogeny-based sigma
protocol for a ring. R consists of n public keys pki = (j(Ei), x(Pi), x(Qi)), where
one of these public keys corresponds with the prover’s secret key skr. The size
of the ring is |R| = 6n log p, where the size of a public key is |pki| = 6 log p since
j(Ei), x(Pi), x(Qi) ∈ Fp2 , the secret key size is |sk| = 1

2 log p, providing that the
generators of the torsion group E[`p] are given as public information. The prover
sends a commitment com = [ji1 , ji2 , . . . , jin+1

] consists of j-invariants of n + 1
curves that are computed using the `v-isogeny maps from E and the curves in R.
In this case, the size of the commitment is |com| = 2(n+ 1) log p where ji ∈ Fp2 .
By applying the Merkle tree, the size of the commitment can be decreased to a
Merkle tree hash root of size q. The prover’s response is either resp = (ω, τ) or
resp = (j(EV ), x(β(Sr))) based on challenge ch = 1 and ch = 0, respectively.
On average, the size of the response |resp| = 1

2 ( 1
2 log p+log τ +[2 log p+ 1

2 log p])
where |ω| = 1

2 log p, |τ | = log τ , |x(β(Sr))| = 1
2 log p, and |j(EV )| = 2 log p. By

applying the Merkle tree, the size of the prover’s response can be changed to
|resp| = 3 log p + q log n + log τ where q log n is the Merkle tree path size from
a leaf node to root. The computation of the supersingular isogeny map is the
main operation in the proposed sigma protocol. In the commitment phase, the
prover computes n+ 1 isogenies to generate the commitment. In the verification
phase, the verifier computes n+ 1 isogenies if ch = 1 and one isogeny if ch = 0.
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Efficiency analysis of the supersingular isogeny-based ring signature can
be explained as follows: A public key (j(Ei), x(Pi), x(Qi)) ∈ R where
j(Ei), x(Pi), x(Qi) ∈ Fp2 requires |pki| = 6 log p bits. The secret key requires
|sk| = 1

2 log p bits. The signature σ = (z,R) contains the ring R of n public keys
and |R| = 6n log p. A hash function H with output h of size q bits where the
number of hk = 0 and hk = 1 of the output are roughly equal. So, the size of z
is calculated as follows: In the case that hk = 1, |zk| = 1

2 log p+ log τ and in the
case that hk = 0, |zk| = 5

2 log p+ q log n, where |j(EVk
)|+ |x(βk(Sr))| = 5

2 log p
and |Path(j(ESrVk

))| = q log n. Consequently, |z| = q
2

(
1
2 log p+log τ +

(
5
2 log p+

q log n
))
. When we put them all together, we come up with the size of the sig-

nature on average: |σ| = 6n log p + q
2

[
3 log p + q log n + log τ

]
. In the proposed

ring signature, the signer computes q(n+ 1) isogenies to generate the signature,
and the verifier computes q

2 (n+ 1) isogenies on average to verify the signature.
If we have an ordered set of public keys, instead of including a ring of public

keys as a part of the signature, which increases the total size of signature 6n log p,
the signer can provide seed and an integer as part of the signature. The seed
generates n random integers. The signer then finds an integer such that the
addition of the random numbers and integer modulo n will generate the indices
of n public keys, including the signer public key from the ordered public key list.
This optimization saves approximately 6n log p bits in the signature size.

6 Conclusion

In this paper, we have presented a post-quantum sigma protocol for a ring based
on supersingular isogenies. We have proved the correctness, 2-special soundness,
and honest-verifier zero-knowledge properties of this supersingular isogeny-based
sigma protocol for a ring. We have also proposed a supersingular isogeny-based
ring signature obtained by applying Fiat-Shamir transform to the supersingular
isogeny-based sigma protocol for a ring. The correctness, anonymity, and existen-
tial unforgeability properties of this ring signature scheme have been provided.
We have applied the Merkle tree to our constructions to improve the efficiency
of the proposed protocols. Finally, we have provided the efficiency analyses of
the given protocols. In the proposed ring signature, the signature size grows log-
arithmically in the size of the ring where Merkle tree paths or roots have formed
a part of the verification keys.
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