
Maliciously-Secure MrNISC in the Plain Model

Rex Fernando∗ Aayush Jain† Ilan Komargodski‡

October 27, 2021

Abstract

In this work we study strong versions of round-optimal MPC. A recent work of Benhamouda
and Lin (TCC ’20) identified a version of secure multiparty computation (MPC), termed
Multiparty reusable Non-Interactive Secure Computation (MrNISC), that combines at the same
time several fundamental aspects of secure computation with standard simulation security into
one primitive: round-optimality, succinctness, concurrency, and adaptivity. In more detail,
MrNISC is essentially a two-round MPC protocol where the first round of messages serves as a
reusable commitment to the private inputs of participating parties. Using these commitments,
any subset of parties can later compute any function of their choice on their respective inputs by
broadcasting one message each. Anyone who sees these parties’ commitments and evaluation
messages (even an outside observer) can learn the function output and nothing else. Importantly,
the input commitments can be computed without knowing anything about other participating
parties (neither their identities nor their number) and they are reusable across any number of
computations.

By now, there are several known MrNISC protocols from either (bilinear) group-based
assumptions or from LWE. They all satisfy semi-malicious security (in the plain model) and
require trusted setup assumptions in order to get malicious security. We are interested in
maliciously secure MrNISC protocols in the plain model, without trusted setup. Since the
standard notion of polynomial simulation is un-achievable in less than four rounds, we focus on
MrNISC with super-polynomial -time simulation (SPS).

Our main result is the first maliciously secure SPS MrNISC in the plain model. The result is
obtained by generically compiling any semi-malicious MrNISC and the security of our compiler
relies on several well-founded assumptions, including an indistinguishability obfuscator and a
time-lock puzzle (all of which need to be sub-exponentially hard). As a special case we also obtain
the first 2-round maliciously secure SPS MPC based on well-founded assumptions. This MPC is
also concurrently self-composable and its first message is short (i.e., its size is independent of the
number of the participating parties) and reusable throughout any number of computations.

∗UCLA. Email: rex1fernando@gmail.com. Work done in part while the author was visiting Carnegie Mellon
University. Supported in part by a Simons Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier
Award 1413955, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, and an
Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through Award HR00112020024.
†UCLA. Email: aayushjain1728@gmail.com.
‡Hebrew University and NTT Research. Email: ilank@cs.huji.ac.il. Supported in part by an Alon Young

Faculty Fellowship and by an ISF grant (No. 1774/20).

1

Contents

1 Introduction 3
1.1 Our Results . 5

2 Technical Overview 6
2.1 Definition of Maliciously Secure MrNISC . 6
2.2 The MrNISC Protocol . 7

3 Preliminaries 13
3.1 Witness Encryption . 13
3.2 Time Lock Puzzles . 14
3.3 Indistinguishability Obfuscation . 15
3.4 Correlation Intractable Hash Functions . 15
3.5 Sender Equivocal Oblivious Transfer . 16
3.6 Equivocal Garbled Circuits for NC1 . 17

4 MrNISC Syntax and Security 17

5 Main Building Blocks 19
5.1 Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness 19
5.2 Receiver-Assisted One-Round CCA-Secure Commitments 21

6 Malicious-Secure MrNISC 23
6.1 Proof of Security . 27

7 Our Receiver-Assisted One-Round CCA Commitments 45
7.1 Overview . 45
7.2 Our Tag-Amplification Transformation . 48
7.3 Removing One-Tag Restriction . 59

8 Primitives used for Constructing Our Zero-Knowledge Protocol 60
8.1 Non-Interactive Distributional Indistinguishability 60
8.2 Sometimes Extractable Equivocal Commitments . 62
8.3 Construction of NIDI . 64
8.4 Construction of Sometimes Extractable Equivocal Commitments 68

9 Construction of Reusable Statistical ZK arguments with Sometimes Statistical
Soundness 72
9.1 Overview . 72
9.2 Construction . 76
9.3 Soundness . 80
9.4 Zero-Knowledge . 81

2

1 Introduction

In this work, we study secure multiparty computation (MPC), a fundamental primitive in cryptogra-
phy which allows mutually distrusting parties to securely compute any function on their respective
inputs without revealing anything besides the output, even if some of the parties are acting mali-
ciously. While feasibility results were discovered already in the late 80s [GMW87, BGW88, CCD88],
there has been significant effort in obtaining constructions that are better in some aspect. One
important criterion, which has received much study in the past decade, is round complexity. Other
interesting criteria include achieving security under concurrent executions, and achieving reusability
of some messages of the protocol across sessions.

A recent work by Benhamouda and Lin [BL20] identified a strong version of MPC, termed
Multiparty reusable Non-Interactive Secure Computation (MrNISC), that combines at the same
time several aspects of secure computation. Specifically, an MrNISC is a round-optimal MPC
that satisfies the standard notion of simulation security and further satisfies natural and desirable
properties, like succinctness, concurrency, adaptivity, and reusability. Each one of these
criteria is by itself a fundamental aspect of secure computation that has received significant attention
over the years. MrNISC captures all of these features at the same time by requiring the following
general structure:

1. Round 1 : each party broadcasts an encoding of their private input xi. This is done inde-
pendently of the function going to be computed, and independently of the total number of
parties.

Parties can join the system at any time by broadcasting their first round message.

2. Round 2 : any subset I of parties can jointly compute a function f on their inputs xI = {xi}i∈I
by broadcasting (each) a single public message. Any party who sees both rounds (even an
outside observer) can learn f(xI) and nothing else.

Importantly, the second round can be repeated arbitrarily many times with different functions
and different sets of parties.

We briefly explain how an MrNISC is round-optimal, concurrent, adaptive-secure and reusable.
It is well-known that completely non-interactive MPC cannot satisfy the standard simulation
security notion, due to the so called “residual-function” attack [BGI+14]. Therefore, MrNISC is
round-optimal. The round 1 message of each party is independent of the number of parties in the
system, and so MrNISC is succinct. A single party can participate in multiple concurrent evaluation
sessions and round 1 messages can appear at any point in time, therefore MrNISC is concurrent
and adaptive. Indeed, security must hold even if adversary can adaptively add new parties to the
game, either corrupt or honest, and can adaptively choose their inputs and new function evaluations.
Finally, the round 1 message can be used for multiple evaluations, and so MrNISC is reusable.

There has been exciting progress with respect to building MrNISC protocols from standard
assumptions. Benhamouda and Lin [BL20] constructed such a protocol for all efficiently computable
functionalities relying on the SXDH assumption in asymmetric bilinear groups. In two concurrent
follow-up works, Ananth et al. [AJJM21] and Benhamouda et al. [BJKL21] obtained MrNISC
protocols relying on Learning With Errors (LWE). All three papers achieve protocols with semi-
malicious security, a slight strengthening of semi-honest security wherein the adversary is allowed
to choose its random tape arbitrarily, but otherwise must follow the prescribed protocol. The work
of [BL20] also showed how to achieve malicious security, where the protocol must be private and
resilient even in the presence of parties which deviate arbitrarily from the protocol specification.

3

They do this using a trusted setup (i.e., a common random string), using standard techniques for
transforming semi-malicious protocols into malicious ones.

Given this state of affairs, a very natural question is the following:

Is there a maliciously secure MrNISC in the plain model (without trusted setup)?

At first glance, it seems that a positive answer to this question would contradict known lower
bounds. The work of [KO04] showed that four rounds of communication are necessary even for
secure two-party computation, assuming a black-box simulator. Furthermore, even non-black-box
simulation is impossible in two rounds if the simulator runs in polynomial time [GO94].

We would like to avoid these lower bounds, and so we turn to the notion of super-polynomial
time simulation. Super-polynomial time simulation (SPS) [Pas03, PS04] is the widely accepted
standard relaxation to get around the above impossibility results for round-efficient protocols. In
the SPS setting, we say that for any polynomial-time adversary there should exist an ideal-world
simulator that runs in super-polynomial time, such that the two worlds are indistinguishable. What
this means is that no polynomial-time adversary in the real world can learn any more than what a
super-polynomial-time machine could learn in the ideal world.

Several recent works explore the round complexity of MPC in the SPS setting. To put the question
of SPS MrNISC in context, we discuss them here. The works of Badrinarayanan et al. [BGI+17] and
Jain et al. [JKKR17] construct two-round two-party computation protocols satisfying malicious SPS
security in the plain model. Badrinarayanan et al. [BGJ+17] constructed a three-round maliciously
secure SPS MPC. Morgan et al. [MPP20] built a succinct two-round two-party maliciously-secure
SPS protocol with only one party getting the output with the same security as above. However, the
question of two-round MPC in the SPS setting has remained open for several years.

Up until a few weeks ago, we did not have a general two-round MPC in the plain model, from
any assumption. This changed with the very recent exciting work1 of Agarwal, Bartusek, Goyal,
Khurana, and Malavolta [ABG+21] giving the first two-round maliciously secure SPS MPC (in the
plain model). Their construction relies on a host of (sub-exponentially strong) standard assumptions
plus a special type of non-interactive non-malleable commitment. Unfortunately, the only known
instantiations of the latter rely on strong and non-standard assumptions. One instantiation relies
on factoring-based adaptive one-way functions [PPV08],2 a highly non-standard and non-falsifiable
assumption which incorporates a strong non-malleability flavor. Another instantiation relies on
keyless multi-collision resistant hash functions [BKP18] and an exponential variant of the “hardness
amplifiability” assumption of [BL18]. While both of these assumptions are (sub-exponentially)
falsifiable, they are still highly non-standard:

1. A keyless multi-collision resistant hash function is a single publicly known function for which
(roughly) collisions are “incompressible”, namely, it is impossible to encode significantly more
than k collisions using only k bits of information. While keyless hash functions are formally
a plain-model assumption, there is no known plain-model instantiation based on standard
assumptions. The only known instantiation is either in the random oracle model, or by
heuristically assuming that some cryptographic hash function, like SHA-256, is such.

1The paper was accepted to TCC 2021 but it only became publicly available on ePrint on September 20, 2021.
Our work was done independently of theirs.

2An adaptive one-way function is a non-falsifiable hardness assumption postulating the existence of a one-way
function f that is hard to invert on a random point y = f(x) even if you get access to an inversion oracle that inverts
it on every other point y′ 6= y.

4

2. Hardness amplification assumptions postulate (roughly) that the XOR of independently
committed random bits cannot be predicted with sufficiently large advantage. There are
concrete (contrived) counter examples for this type of assumptions showing that they are
generically false [DJMW12], although they certainly might hold for specific constructions.

The specific variant used by Agarwal et al. is novel to their work. It assumes exponential
hardness amplification against PPT adversaries, i.e., that there exists a constant δ > 0 such
that for large enough `, the XOR of ` independently committed random bits cannot be
predicted by a PPT adversary with advantage better than 2−`δ. This assumption (similarly
to [PPV08]’s adaptive one-way functions) also incorporates a non-malleability flavor.

This state of affairs leaves us with a large gap in our understanding: there is no known plain-model
two-round maliciously secure SPS MPC (let alone MrNISC!) based on well-founded assumptions.

1.1 Our Results

In this work we give the first affirmative answer to the above question and close the gap in
our understanding. Specifically, relying on well-founded assumptions, we obtain a maliciously
secure SPS MrNISC in the plain model without any trusted setup. Our construction is a generic
transformation from any semi-malicious secure MrNISC, and it further relies on the quantum
hardness of Learning With Errors (LWE) and the classical hardness of SXDH, as well as on the
existence of an indistinguishability obfuscator iO for polynomial-size circuits, and a time-lock puzzle.

Theorem 1 (Main Result). There exists a generic compiler that starts off with any semi-maliciously
secure MrNISC and turns it into a maliciously secure SPS MrNISC in the plain model. Security of
the construction relies on the quantum hardness of LWE, classical hardness of SXDH, the existence
of a (classically hard) indistinguishability obfuscation scheme, and a (classically hard but quantum
broken) time-lock puzzle. All of the assumptions need to be sub-exponentially secure.

Indistinguishability obfuscation is a method for “scrambling” programs in such a way that the
implementation details are “hidden” in some (mathematically precise) sense. While this concept
was suggested more than two decades ago by Barak et al. [BGI+01, BGI+12], it gained popularity
only in the past 8 years after the works of Garg et al. [GGH+16] and Sahai and Waters [SW21]
who paved the way for a remarkable variety of applications in cryptography and complexity theory.
Very recently the existence of such an obfuscator was established either based on well-founded
assumptions [JLS21a, JLS21b] (i.e., LPN, SXDH, and PRFs in NC0, all sub-exponentially hard) or
based on new yet concrete assumptions related to LWE [BDGM20, GP21, WW21, DQV+21].

Time-lock puzzles are, roughly speaking, puzzles that can be generated very efficiently and
solved by running a highly sequential procedure. The security guarantee of such a puzzle is that
any algorithm, even ones that use significant parallel processing power, cannot solve it much faster
than the naive sequential procedure. They were proposed by Rivest, Shamir, and Wagner [RSW96]
more than 25 years ago, and have since been extensively used in cryptography (for example,
[BN00, Pin03, GMPY11, LPS20, KLX20, BDD+20, RS20, EFKP20, DKP21, BDD+21]). This
construction is quantum broken since it relies on a hidden order (RSA) group. Apart from the most
well-known construction based on the repeated-squaring assumption (proposed in [RSW96]), there is
also a construction (due to Bitansky et al. [BGJ+16]) from indistinguishability obfuscation together
with the worst-case assumption that non-parallelizing languages exist (a natural generalization of
the assumption that P 6⊆ NC).

5

Implications for (Classical) MPC. We note that it is possible to view our result via several
different lenses in terms of classical MPC:

• Our MrNISC implies the first 2-round maliciously secure SPS MPC based on well-founded
falsifiable assumptions. The only such previous known MrNISC was based on strong and
non-standard assumptions [ABG+21].

• Our MrNISC implies the first 2-round maliciously secure SPS MPC with a short and
reusable first message, based on any assumption. Namely, the first round message is not
only independent of the function to be computed (which is necessary for reusability), but it
is actually generated independently of the number of participating parties. All prior MPC
protocols with this property only satisfy semi-malicious security in the plain model and require
a trusted CRS to get malicious security [BGMM20, BL20, AJJM21, BGSZ21, BJKL21].

• Our MrNISC implies the first concurrent two-round maliciously secure SPS MPC. Indeed,
at any point in time parties can join the protocol by publishing their input encodings, andeven
start evaluation phases. This could happen even after some of the other parties have already
published their input encodings and even participated in several evaluation phases. The only
previously known malicious (SPS) concurrent MPC required three rounds [BGJ+17].

2 Technical Overview

In this section we give an overview of our constructions and the main ideas that are needed to prove
its security.

2.1 Definition of Maliciously Secure MrNISC

Let us start by reviewing the syntax of MrNISC, as defined by Benhamouda and Lin [BL20].

Model and syntax. An MrNISC is a general purpose secure computation protocol with minimal
communication pattern and maximum flexibility. Specifically, it consists of an input encoding phase
which is done without any coordination with other parties in the system (i.e., without even knowing
they exist), and an evaluation phase in which only relevant parties participate by publishing exactly
one message each. In other words, MrNISC is a strict generalization of 2-round MPC with the
following properties:

- there is no bound on the number of parties;

- multiple evaluation phases can take place with the same input encodings;

- parties can join at any point in time and publish their input encoding, even after multiple
evaluation phases occurred.

We assume all parties have access to a broadcast channel which parties use to transmit message
to all other parties. The formal syntax of an MrNISC consists of three polynomial-time algorithms
(Encode,Eval,Output), where Encode and Eval are probabilistic, and Output is deterministic. The
allowed operations for a party Pi are:

• Input Encoding phase: each party Pi computes mi,1, σi,1 ← Encode(1λ, xi), where xi is
Pi’s private input, mi,1 is Pi’s round 1 message, and σi,1 is Pi’s round 1 private state. It
broadcasts mi,1 to all other parties.

6

• Function Evaluation phase: any set of parties I can compute an arity-|I| function f on their
respective inputs as follows. Each party Pi for i ∈ I computes mi,2 ← Eval(f, σi,1, I, {mj,1}j∈I),
where f is the function to compute, xi is Pi’s private input, σi,1 is the private state of Pi’s
input encoding, {mj,1}j∈I are the input encodings of all parties in I, and the output mi,2 is
Pi’s round 2 message. It broadcasts mi,2 to all parties in I

• Output phase: upon completion of the evaluation phase by each of the participating parties,
anyone can compute y ← Output({mi,1,mi,2}i∈I) which should be equal to f({xj}j∈I).

Security. For security we require that an attacker does not learn any information beyond what
is absolutely necessary, which is the outputs of the computations. Formally, for every “real-world”
adversary that corrupts the evaluator and a subset of parties, we design an “ideal world” adversary
(called a simulator) that can simulate the view of the real-world adversary using just the outputs of
the computations. As in all previous works on MrNISC (including [BL20, AJJM21, BJKL21]), we
assume static corruptions, namely that the adversary commits on the corrupted set of parties at
the very beginning of the game. However, all previous works only achieved semi-malicious security
(unless trusted setup assumptions are introduced). This notion of security, introduced by Asharov et
al. [AJL+12], only considers corrupted parties that follow the protocol specification, except letting
them choose their inputs and randomness arbitrarily. In contrast, we consider the much stronger
and more standard notion of malicious security which allows the attacker to arbitrarily deviate
from the specification of the protocol.

More precisely, in malicious security the adversary can behave arbitrarily in the name of the
corrupted parties. Specifically, after the adversary commits on the corrupted set of parties, it
can send an arbitrary round 1 message for a corrupted party, ask for a round 1 message of any
honest party (with associated private input), ask an honest party to send the round 2 message
corresponding to an evaluation of an arbitrary function on the round 1 message of an arbitrary set of
parties, and send an arbitrary round 2 message of a malicious party corresponding to an evaluation
of an arbitrary function on the round 1 message of an arbitrary set of parties. The simulator needs
to simulate the adversary’s view with the assistance of an ideal functionality that can provide only
the outputs of the computations that are being performed throughout the adversary’s interaction.

Typically, protocols are called maliciously secure if for every polynomial time adversary there is
a polynomial time simulator for which the real-world experiment and the ideal-world experiment
from above are indistinguishable. However, as mentioned, it is impossible to achieve such notion
of malicious security for MPC (let alone MrNISC) in merely two rounds unless trusted setup
assumptions are introduced. Therefore, we settle for super-polynomial simulation (SPS) which
means that the simulator can run in super-polynomial time whereas the adversary is still assumed
to run in polynomial time.

We refer to Section 4 for the precise definition.

Terminology. For the sake of brevity, we will sometimes refer to the input encoding phase as
round 1, and the function evaluation phase as round 2.

2.2 The MrNISC Protocol

Recall that semi-malicious security only guarantees security when the adversary follows the honest
protocol specification exactly (except that it can choose corrupted parties’ randomness from arbitrary
distributions). To achieve malicious security, we would like to use the following high-level approach,
which is used by many classical MPC works.We require each party to commit to its input and

7

randomness as part of the input encoding phase, and then to prove using zero knowledge that all
of its semi-malicious MrNISC messages were generated by following the prescribed protocol using
that committed input and randomness. However, a problem arises when using this strategy with
2-round protocols. (Note that MrNISC requires that evaluation can be carried out in two rounds;
in this way it is a strict generalization of 2-round MPC.) This problem comes from the fact that
zero-knowledge in the plain model requires at least two rounds. Assuming we use such a 2-round ZK
scheme, then honest parties would need to send their second-round MrNISC messages before finding
out whether the first-round MrNISC messages were honest. This completely breaks security—if
any party publishes semi-malicious messages based on a non-honest transcript, the semi-malicious
protocol can make no security guarantees about these messages.

We need some way of overcoming this problem. That is, we need a way to publish second-round
messages in such a way that they are only revealed if the first round is honest. To this end, we
are going to attempt to use witness encryption as a locking mechanism: we “lock” the round 2
message of the underlying (semi-malicious) MrNISC and make sure that it can be unlocked only if
all involved parties’ proofs verify.

More precisely, party i does:

1. Round 1 message: Commit to its input and randomness and publish a round 1 message
using the underlying MrNISC with the committed input/randomness pair. At the same time,
generate a verifier’s first-round ZK message for the other parties.

2. Round 2 message: Compute a round 2 message using the underlying MrNISC with randomness
derived from the secret state. Generate a zero-knowledge proof that this was done correctly.
Publish a witness encryption hiding the aforementioned round 2 message that could be
recovered by supplying valid proofs that all other parties’ first-round messages were created
correctly.

With this template in mind, even before starting to think about how a security proof will look
like, it is already evident that there are significant challenges is realizing the building blocks. Here
are the three main challenges.

Challenge 1: The ZK argument system. The first challenge arises from trying to use ZK
arguments as witnesses for the witness encryption scheme. Recall that witness encryption allows
an encryptor to encrypt a message with respect to some statement Φ, and only if Φ is false then
the message is hidden. Witness encryption (WE) crucially only can provide security when Φ is
false; in particular, if Φ is true, even if it is computationally hard to find a witness for Φ, no
guarantees are made about the encrypted message being hidden. Thus, it seems like we would need
a statistically-sound ZK argument, i.e. a ZK proof: if the verifier’s first round message is honest,
with high probability there should not exist an accepting second-round ZK message.

It is well-known that to achieve ZK in two rounds, it is necessary to have a simulator which runs
in super-polynomial time (i.e., a SPS simulator). In every such known two-round ZK, the simulator
works by brute-forcing some trapdoor which was provided in round 1, and giving a proof that “either
the statement is true or I found the trapdoor.” Because of the existence of this trapdoor, it would
be impossible to make any such ZK argument statistically sound: an unbounded-time machine can
always find the trapdoor and prove false statements. So it seems like the ZK scheme needs to satisfy
two contradictory requirements: be statistically sound, and be a two-round scheme (which seems to
preclude statistical soundness).

8

Challenge 2: Non-malleability attacks. Since security of the underlying semi-malicious Mr-
NISC holds only if the adversary knows some randomness for its messages, we need all parties to
prove that they know the input and randomness corresponding to their messages. We are aiming
for a protocol that can be evaluated in two rounds, so this necessitates using a non-malleable
commitment (in order to prevent an attacker from say copying the round 1 message of some other
party). Unfortunately, non-interactive non-malleable commitments without setup are only known
from very strong non-standard assumptions, such as adaptive one-way functions [PPV08], hardness
amplifiability [BL18, ABG+21], and/or keyless hash functions [BKP18, LPS20, BL18]. These are
very strong and non-standard assumptions for some of which we have no plain-model instantiation,
except heuristic ones. Thus, we want achieve a secure MrNISC protocol (in the plain model) without
such strong assumptions.

Challenge 3: Adaptive reusability of the primitives. We emphasize that we are building a
MrNISC protocol, which is a significant strengthening of standalone two-round MPC. Because of
this, our ZK argument and commitment schemes must satisfy strong forms of reusability. There are
several challenges in ensuring both the ZK argument and non-malleable commitment scheme satisfy
the types of reusability that we need, and we introduce several new ideas in solving these challenges.
We will elaborate on this challenge below, after we describe our ideas for solving challenges 1 and 2.

2.2.1 Solving Challenge 1: How do we get a “statistically-sound” SPS ZK?

We now discuss how to achieve the seemingly-contradictory requirements of getting a 2-round SPS
ZK argument which has a statistical soundness property that would allow it to be a witness for the
WE scheme. Our key idea is to relax the notion of statistical soundness to one that is obtainable in
two rounds but still is sufficient to use with WE.

Imagine we have a WE scheme where the distinguishing advantage of an adversary is extremely
small (say, subexponential in λ). It would then suffice to have a ZK protocol which is statistically
sound a negligible fraction of the time, as long as it is quite a bit larger than the distinguishing
advantage of the WE. We elaborate below.

Consider a hypothetical zero-knowledge protocol with the following properties:

• The first round between a polynomial time verifier and a prover fully specifies one of the two
possible “modes”: a statistical ZK mode and a perfectly sound mode.

• The perfectly sound mode occurs with some negligible probability ε, and in this mode no
accepting round 2 message exists for any false statement

• In the statistical ZK mode (which occurs with overwhelming probability 1 − ε), the sec-
ond message is simulatable by an SPS machine, and a simulated transcript is statistically
indistinguishable from a normal transcript.

• Furthermore, it is computationally difficult for an adversarial prover to distinguish between
the two modes.

If we had such a ZK protocol, it would enable us to argue hiding of the witness encryption scheme
whenever the first round of the protocol is not honest. The idea of this argument is as follows. If an
adversary could learn something about the second-round messages from their witness encryptions
in some world where the first round was not honest, then it should also be able to do so even in
the perfectly sound mode (otherwise it would distinguish the modes). But in this mode, proofs for
false statements do not exist, and thus the witness encryption provides full security. Even though

9

this mode happens with negligible probability, it is still enough to contradict witness encryption
security, whose advantage is much smaller.

To construct this new ZK scheme, we use ideas which are inspired by the extractable commitment
scheme of Kalai, Khurana, and Sahai [KKS18]. This commitment scheme has the property that
it is extractable with some negligible tunable probability, but is also statistically hiding. This
commitment was used in the works of [BFJ+20] to get a two-round statistical zero knowledge
argument with super-polynomial simulation. To instantiate our new “sometimes perfectly-sound”
ZK argument, we use the protocol of [BFJ+20] as a starting point, but we will need to make
significant modifications. Namely, in order to force a well-defined perfect soundness mode, we will
make the first round of this protocol a “simultaneous-message” round, where both the prover and the
verifier send a message. We elaborate further on this and other key ideas used in our construction
in Section 9.1.

We note there is an important subtlety in this new definition and our construction. Namely, the
statistical ZK and perfect soundness properties only hold with respect to the second round. If the
verifier is unbounded-time, then after seeing a first-round prover’s message it can send a first-round
verifier’s message that forces perfect soundness all the time, and thus disallows any prover from
giving a simulated proof. On the other hand, if the prover is unbounded-time, then after seeing a
first-round verifier’s message it can send a first-round prover’s message which causes the probability
ε of the perfect soundness mode to be 0. Thus the frequency of perfect soundness mode and the
ability of the simulator to give a simulated proof depend on the first round being generated by
computationally bounded machines.

2.2.2 Solving Challenge 2: How do we avoid non-interactive non-malleability?

To solve challenge two, we must somehow get a non-malleable commitment (NMC) scheme which
can be executed in the first round, without using strong assumptions such as keyless hash functions,
hardness amlifiability, or adaptive one-way functions. Recall that unfortunately all known instantia-
tions of non-interactive NMCs (for a super-polynomial number of tags) currently require the use of
(some combination of) these strong assumptions, so it seems at first glance that avoiding them would
require making substantial progress on the difficult and well-studied question of non-interactive
NMCs.

Our approach to solving this problem is inspired by the exciting work of Khurana [Khu21], which
builds a new type of commitment which works as follows. The commitment phase is similar to a
non-interactive commitment in that the only communication from the committer is a first-round
message C. The role of the receiver is slightly different: The receiver chooses a random string τ
internally, and it is both C and τ together that truly defines the commitment (and, correspondingly,
the underlying value being committed to). Consequently, in order to compute an opening, the
committer must receive a τ from the receiver. Non-malleability (and binding) hinges upon the fact
that the τ chosen by the receiver is chosen after seeing the commitment. (See the left diagram below
for an illustration of this scheme.) Crucially, this commitment can be constructed from well-founded
assumptions (indistinguishability obfuscation, time-lock puzzles, and OWPs), bypassing the need
for the strong assumptions discussed earlier.

We would like to use this commitment scheme in our protocol. There are two main issues which
arise.

• First, in order to use this scheme, we would need the commitment phase to happen entirely in
the first round. Namely, the receiver must publish τ simultaneously while the committer is

10

Sender Receiver

C
τ

openingτ

Sender Receiver

τ

C

openingτ

Figure 1: The diagram on the left depicts the communication pattern of Khurana’s [Khu21]
commitment scheme, whereas the diagram on the right depicts ours. The key difference is that in
our scheme, the receiver’s message and the sender’s messages can be sent simultaneously, while
in [Khu21] the receiver’s message must be sent after the sender’s message.

publishing C. (See the right-hand diagram above.) In particular, in the security proof, we
need to handle the case of malicious committers which publish C after seeing the round-1 τ .

• Second, our goal is to have every party use this commitment to commit to their input and
randomness for the protocol. Recall that in the scheme of [Khu21], a well-defined commitment
(Cj , τi) consists of both the committer’s message Cj and the receiver’s random string τi.
Although honest parties Pj will always provide commitments Cj which are consistent across
all τi, it is perfectly plausible for a corrupted party to publish some Cj where different τi yield
commitments (Cj , τi) to different values.

Solving the first issue involves identifying some technical challenges in the security proof
of [Khu21], and making changes to the protocol to avoid these issues. Roughly, we replace an
encryption given in the first round with a time-lock puzzle-based commitment scheme. This allows
us to carefully set the complexity hierarchy w.r.t. size and depth and thereby get security even if the
τ ’s are chosen before C. For the second issue, by adding a standard (malleable) perfectly binding
commitment (e.g., Blum’s commitment) at the MrNISC protocol level, we are able to use this NMC
scheme even though it does not satisfy the standard notion of binding.

We call this new primitive a receiver-assisted one-round CCA-secure commitment. We give more
details and overview of the construction in Section 7.1.

2.2.3 Solving Challenge 3: How do we get reusability?

We now describe the challenges which arise when trying to get the type of reusability required by
MrNISC. The main problem is to ensure that all of building blocks we use (i.e., the ZK scheme
and the NMC scheme) support reuse of their first-round message. It turns out that the non-
malleable commitment we described in the previous section can be adapted to this reusable setting
without much modification. However, several challenges arise when trying to adapt the sometimes-
statistically-sound ZK scheme which we discussed earlier to the reusable setting. We focus on these
challenges here.

Recall that the ZK scheme is a simultaneous message protocol, so a transcript consists of three
message of the form (zk1,P , zk1,V , zk2,P), a round-1 message of the prover and the verifier, and a
round-2 message of the prover. What we need is for any prover to be able to publish a single
zk1,P in round 1 which can be used in many different sessions with respect to many different zk1,V

messages. In addition, we require a very strong form of reusability: even if a malicious verifier sees
an entire transcript (zk1,P , zk1,V , zk2,P), and then chooses a new verifier’s first-round message zk′1,V ,
zero knowledge should still hold when the prover publishes a proof with respect to zk′1,V and the
prover’s original message zk1,P . In a similar manner, a verifier should be able to publish a single

11

zk1,V which can be used in many different sessions with respect to many different zk1,P messages,
and the soundness properties of the ZK scheme should still hold.

Note that it is not immediately clear whether these reusability for ZK arguments are implied
by corresponding non-reusable version of ZK arguments. In fact, this turns out not to be the case.
In order to satisfy reusability, we end up having to make several changes to our (non-reusable)
sometimes-perfectly-sound ZK scheme. We describe this in more detail in Section 9.

2.2.4 Putting things together

We now have the main pieces that we will use to construct a malicious-secure MrNISC: the two-round
sometimes-statistically-sound ZK, receiver-assisted one-round CCA-secure commitment, and the
underlying semi-malicious MrNISC. There are still significant challenges that arise when attempting
to combine these pieces in the way described earlier to get a malicious MrNISC protocol. To see
this, it will be convenient to briefly mention the approach we take for the security proof.

A simplified version of the sequence of hybrids we use is as follows. First, we extract the value
underlying the commitments and check if anyone acted dishonestly. If so, we switch the honest
parties’ witness encryptions to encrypt 0 rather than the true round 2 message (this is hybrid 1).
Second, we simulate the ZK proof (this is hybrid 2). Third, we switch the underlying value in the
commitment to 0 (this is hybrid 3). Once the commitments are independent of the true input, we
can use the simulator of the underlying MrNISC (this is hybrid 4). The last hybrid is identical to
our simulator.

To make the transitions between the hybrids possible, we need to carefully set the hardness of
every primitive. Each hybrid indistinguishability induces some hardness inequality for the involved
primitives. Unfortunately, the inequalities seem to be in contradiction to each other. Observe that
the first indistinguishability (between hybrid 0 and hybrid 1), we need that our ZK argument’s
soundness properties hold against adversaries who can run the CCA extractor. That is,

Textractor � Tsound.

For the transition between hybrid 2 to 3, we need to guarantee that security of the commitment
scheme holds even against an adversary that can run the ZK simulator. That is,

TZKSim � Textractor.

Together, the above two inequalities imply that it is necessary to have TZKSim � Tsound. But
this is impossible, at least using the techniques we use in constructing the ZK argument. Our
simulator works by brute forcing the verifier’s zk1,V message to obtain some secret, and produces
proofs with this knowledge. In other words, whoever has the secret can produce accepting proofs
without knowing a witness—this is essentially an upper bound on the soundness of the scheme, i.e.,
Tsound � TZKSim, which means that our inequalities cannot be satisfied at the same time.

To solve this problem, we introduce another axis of hardness, namely, circuit depth. In particular,
assume that it is possible to run the ZK simulator in some super-polynomial depth d. To do this,
we would have to construct a ZK argument where the secret embedded in zk1,V is extractable in
depth d. Further, assume that in polynomial depth, it is extremely hard to extract the secret from
zk1,V (much harder than size d). We can use such a ZK argument to solve the problem above.
Namely, we can restrict the reduction for hybrids 0 and 1 to run in polynomial depth, and in this
complexity class it holds that Textractor � Tsound. For the reduction for hybrids 2 and 3, we will
allow the depth to be d, in which case the inequality TZKSim � Textractor is satisfied.

So we have reduced this problem to constructing a ZK argument which is simulateable in some
super-polynomial depth d and whose soundness holds against size much larger than d as long as

12

the depth is restricted to be polynomial. It turns out that it is possible to modify our original ZK
argument to satisfy this property; we describe this in Section 9, where we explain the ZK argument
in detail.

There are several smaller technical issues that arise when putting things together. One such
issue is that of “simulation soundness,” that is, we need to guarantee that the adversary cannot
give valid ZK arguments for false statements even if it sees simulated arguments from the honest
parties. We solve this issue using techniques from the work of [BGJ+17]. At a very high level, if we
use a ZK argument where the simulated proofs are indistinguishable from normal proofs even to an
adversary which is powerful enough to run the simulator itself, and if we commit to the witnesses
using a non-malleable commitment, it is possible to design a sequence of hybrids which guarantees
simulation soundness.

This and other small technical details result in a construction and sequence of hybrids which is
slightly more involved than the simplified version presented in this overview. We refer the reader
to Section 6 for details.

3 Preliminaries

For any distribution X , we denote by x← X the process of sampling a value x from the distribution
X . For a set X we denote by x← X the process of sampling x from the uniform distribution over X.
For an integer n ∈ N we denote by [n] the set {1, .., n}. A function negl : N→ R is negligible if for
every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc. Throughout,
when we refer to polynomials in security parameter, we mean constant degree polynomials that take
positive value on non-negative inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying
the above requirements of non-negativity.

Throughout this paper, all machines are assumed to be non-uniform. We will use λ to denote
the security. We will use PPT as an acronym for “probabilistic (non-uniform) polynomial-time”.
In addition, we use the notation T1 � T2 (or T2 � T1) if for all polynomials p, p(T1) < T2

asymptotically.
The statistical distance between two distributions X and Y over a discrete domain Ω is defined

as ∆(X,Y) = (1/2) ·
∑

ω∈Ω |Pr[X = ω]− Pr[Y = ω]|.

(C, ε)-indistinguishability. By C we denote an abstract class of adversaries, where each adversary
A ∈ C grows in some complexity measure (i.e. size, depth, etc) based on the security parameter λ.
Security definitions will always hold with respect to some class of adversaries which we will specify.

Definition 1 ((C, ε)-Indistinguishability). Let ε : N → (0, 1) be a function. We say that two
distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (C, ε)-indistinguishable if for any
adversary A ∈ C, for any polynomial poly, and any λ ∈ N,∣∣∣∣ Pr

x←Xλ

[
A
(

1λ, x
)]
− Pr
y←Yλ

[
A
(

1λ, y
)]∣∣∣∣ ≤ ε(λ).

We use the shorthand X ≈(C,ε) Y to denote this. If A is unbounded time then we say that Y and
X are statistically indistinguishable and we write X ≈(∞,ε) Y, or alternately ∆(X ,Y) ≤ ε. (This
corresponds to the standard definition of statistical distance.)

3.1 Witness Encryption

Here, we recall the definition of witness encryption, originally due to Garg et al. [GGSW13].

13

Definition 2. A witness encryption scheme for an NP language L (with corresponding relation R)
consists of the following two polynomial-time algorithms:

WE.Enc(1λ, x,M): The encryption algorithm takes as input the security parameter λ, a string
x ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. It outputs a ciphertext CT. This procedure is
probabilistic.

WE.Dec(CT, w): The decryption algorithm takes as input a ciphertext CT along with a witness
w ∈ {0, 1}∗. It outputs a string M ∈ {0, 1}∗ or the symbol ⊥. This procedure is deterministic.

These algorithms satisfy the following properties:

Correctness: For any security parameter λ, for any message M ∈ {0, 1}∗, any x ∈ {0, 1}∗ such
that R(x,w) = 1 for w ∈ {0, 1}∗, we have that:

Pr[WE.Dec(WE.Enc(1λ, x,M), w) = M] = 1.

(C, ε)-Security: Fix any ensemble Xλ of polynomial length strings such that every x ∈ Xλ satisfies
x /∈ L, and any ensemble of messages Mλ of polynomial length. For every λ ∈ N, x ∈ Xλ, and
M ∈Mλ, it holds that

WE.Enc(1λ, x,M) ≈(C,ε) WE.Enc(1λ, x, 0|M |).

It is well known that witness encryption can be obtained directly from indistinguishability
obfuscation by ofuscating a circuit that has the instance x and the message M hardwired, gets as
input a witness, and outputs M if the instance-witness pair verify.

Theorem 2. Assuming a (C, ε)-indistinguishability obfuscator for all polynomial-size circuits, then
there is a (C, ε)-witness encryption scheme for all NP.

3.2 Time Lock Puzzles

We recall the notion of a time-lock puzzle scheme, originally due to [RSW96]. We adapt the
definition from [BGJ+16].

Definition 3. A D-secure time lock puzzle TLP is a tuple of two algorithms (PGen,Solve) that
satisfies the following properties.

Syntax:

• PGen(1λ, 1t, x) : The puzzle generation algorithm is a randomized polynomial time algorithm
takes as input a security parameter λ and a hardness parameter t. It also takes as input a
solution x ∈ {0, 1}λ. It outputs a puzzle Z.

• Solve(Z) The puzzle solving algorithm takes as input a puzzle Z. It outputs x ∈ ⊥ ∪ {0, 1}∗.

Completeness: For every λ, t ∈ N and every x ∈ {0, 1}λ, Pr[Solve(PGen(1λ, 1t, x)) = x] = 1.

Efficiency: PGen is a polynomial time algorithm in its input length, and Solve(Z) runs in time

poly(2t, λ) for every Z in support of PGen(1λ, 1t, ·).

D-security: Let λ ∈ N, t = t(λ) ∈ λΩ(1/ log log λ) ∩ λO(1) and x ∈ {0, 1}λΘ(1)
. Then, it holds that for

every Boolean circuit A with depth D(t) and total size bounded by any polynomial in 2λ it holds that:∣∣∣∣Pr[A(PGen(1λ, 1t, x)) = 1]− Pr[A(PGen(1λ, 1t, 0|x|)) = 1]

∣∣∣∣ ≤ 2−λ.

14

Note that we require security against sub-exponential size attackers and with sub-exponential
distinguishing advantage. Specifically, we require that sub-exponential-size attackers (that are in
depth at most D(t)) will not have advantage better than inverse sub-exponential. Sub-exponential
size assumptions on the repeated squaring assumption were already made before, e.g., in [LPS20,
DKP21, EFKP20]).

The first and most popular instantiation of time-lock puzzles was proposed by Rivest, Shamir,
and Wagner [RSW96]. It is based on the “inherently sequential” nature of exponentiation modulo
an RSA integer. That is, that t repeated squarings mod N , where N = pq is a product of two secret
primes, require “roughly” t depth. More than twenty years after their proposal, there still does not
exist a (parallelizable) strategy that can solve such puzzles of difficulty parameter t in depth D(t)
which is significantly less than 2t, with any non-trivial advantage. This is true even for the decision
problem variant, rather than the search problem. (Note that the decision version is the one that is
typically defined and assumed in constructions, e.g., [BN00, BGJ+16, LPS20, DKP21, EFKP20]).

Another construction of time-lock puzzles, due to Bitansky et al. [BGJ+16], based on indistin-
guishability obfuscation and (worst-case) non-parallelizing languages, is also an instantiation of the
above definition, as long as the underlying are assumed to be sub-exponentially hard.

3.3 Indistinguishability Obfuscation

In this section, we define the notion of an indistinguishability Obfuscation.

Definition 4 (Indistinguishability Obfuscator (iO) for Circuits [BGI+01, BGI+12]). A probabilistic
polynomial-time algorithm iO is called a secure indistinguishability obfuscator for polynomial-sized
circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n,
we have that

Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1 .

• (C, ε)-Indistinguishability: For every two ensembles {C0,λ}λ∈Z+ and {C1,λ}λ∈Z+ of polynomial-
sized circuits that have the same size, input length, and output length, and are functionally
equivalent, that is, ∀λ ∈ Z+, C0,λ(x) = C1,λ(x) for every input x, the distributions iO(1λ, C0,λ)
and iO(1λ, C1,λ) are (C, ε) indistinguishable.

In this work, we require that iO is actually subexponentially secure against adversaries of
subexponential size. As shown in [JLS21a, JLS21b] this can be instantiated assuming subexponential
security of well studied hardness assumptions.

3.4 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [PS19, CCH+19].

Definition 5. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let Fλ,s(λ) denote the class

of NC1 circuits of size s(λ) that on input k(λ) bits output λ bits. Namely, f : {0, 1}k(λ) → {0, 1}λ is
in Fλ,s if it has size s(λ) and depth bounded by O(log λ).

We require the following property from such a function.

Definition 6 ((C, ε)-Somewhere-Statistical Correlation Intractable Hash Function Family). A hash
function family H = (FakeGen,Eval) is (C, ε)-somewhere-statistically correlation intractable (CI)
with respect to F = {Fλ,s(λ)}λ∈N as defined in Definition 5, if the following two properties hold:

15

• Perfect Correlation Intractability: For every f ∈ Fλ,s and every polynomial s,

Pr
K←H.FakeGen(1λ,f)

[
∃x such that (x,H.Eval(K,x)) = (x, f(x))

]
= 0.

• Computational Indistinguishability of Hash Keys: Moreover, for every f ∈ Fλ,s, for
every A ∈ C, and every large enough λ ∈ N,∣∣∣ Pr

K←H.FakeGen(1λ,f)
[A(K) = 1]− Pr

K←{0,1}`
[A(K) = 1]

∣∣∣ < ε(λ),

where ` denotes the size of the output of H.Setup(1λ, f).

The work of [PS19] gives a construction of correlation intractable hash functions with respect
to F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with polynomial approximation factors. We
observe that their construction also satisfies Definition 6, assuming LWE with an explicit efficiently
computable advantage upper bound.

3.5 Sender Equivocal Oblivious Transfer

Definition 7 (Oblivious Transfer). An Sender-Equivocal Oblivious Transfer (OT) protocol consists
of three randomized polynomial time algorithms:

• OT1(1λ, b; r1) → ot1 : The OT1 algorithm takes as input a bit b ∈ {0, 1} and randomness r,
and outputs the “receiver” message ot1.

• OT2(ot1,m0,m1; r2) → ot2 : The OT2 algorithm takes as input a receiver message ot1, two
messages m0,m1, and randomness r2, and it outputs the sender message ot2.

• OT3(ot2, b, r1)→ z : The OT3 algorithm takes as input the sender message along with a bit
b ∈ {0, 1} and randomness r1. It outputs z ∈ ⊥ ∪ {0, 1}∗.

We require a number of basic properties.
Correctness: Let λ ∈ N, b ∈ {0, 1} and (m0,m1) ∈ {0, 1}∗ with |m0| = |m1|. Then, it holds that:

Pr[OT3(ot2, b, r1) = mb] = 1,

where ot2 = OT2(ot1,m0,m1; r2), ot1 = OT1(1λ, b; r1) and probability is taken over the coins of r1, r2.

(C, ε)-Receiver Security: Let λ ∈ N be the security parameter. Then, it holds that:

OT1(1λ, 0) ≈(C,ε) OT1(1λ, 1).

Equivocation: There exist a polynomial time algorithm Equiv such that the following property is
satisfied. For every λ ∈ N b ∈ {0, 1}, m0,m1 ∈ {0, 1}∗ with length `, with probability 1 over the coins
r1 of ot1 ← OT1(1λ, b; r1), the following two distributions are identically distributed. Let v = (v0, v1)
where vb = mb and v1−b = 0`.

• Distribution 1: Compute ot2 ← OT2(ot1,m0,m1; r2). Output (b, r1, ot2,m0,m1, r2).

• Distribution 2: Compute ot2 ← OT2(ot1, v0, v1; r′2) and r2 ← Equiv(b, r1, ot2, r
′
2,m0,m1).

Output (b, r1, ot2,m0,m1, r2).

16

3.6 Equivocal Garbled Circuits for NC1

Another primitive that we use is a an information theoretic variant of Yao’s Garbled Circuits [Yao86a]
for NC1 circuits. This variant allows one to to efficiently “invert” the randomness used for garbling.

Definition 8 (Syntax). An information theoretic garbling scheme Gb = (Garble,Eval) for circuit
class F = {Fλ}λ (looking ahead, we will work with poly(λ) sized circuits with λ input bits, and depth
O(log λ)) consists of the following algorithm.

• Garble(1λ, C; r) → (Γ, {Labb,i}b∈{0,1},i∈[λ]) : The garbling algorithm takes as input a circuit
C ∈ F , and it outputs a garbled circuit Γ and input labels {Labb,i}b∈{0,1},i∈[λ].

For any input x, we denote by Labx the shorthand for {Labxi,i}i∈[λ] and Lab as the shorthand
for {Labb,i}b∈{0,1}.

• Eval(Γ, {Labxi,i}i∈[λ])→ z : The evaluation algorithm takes as input a garbled circuit Γ, and

labels {Labxi,i}i∈[λ] for some input x ∈ {0, 1}λ. It outputs z ∈ {0, 1}∗ ∪ ⊥.

We require that such a scheme satisfies the following properties:
Correctness: Let λ ∈ N, C ∈ F and x ∈ {0, 1}λ, then it holds that:

Pr
Garble(1λ,C)→Γ,{Labb,i}b∈{0,1},i∈[λ]

[Eval(Γ, {Labxi,i}i∈[λ]) = C(~x)] = 1

Equivocation: Let λ ∈ N, C0, C1 ∈ F and x ∈ {0, 1}λ such that C0(x) = C1(x), then the following
two distributions are identical.

• Distribution 1: Compute (Γ, Lab)← Garble(1λ, C1; r). Output (C1,Γ, Lab, r).

• Distribution 2: Compute (Γ, Lab) ← Garble(1λ, C0; r). Compute GbEquiv(Γ, Labx, C1,x) →
Lab′, r′ such that Lab′xi,i = Labxi,i for i ∈ [λ]. Output (C1,Γ, Lab

′, r′).

Instantiation: To instantiate this, one can rely on the folklore instantiation of information-
theoretic version of Yao’s garbling scheme [Yao86b] for NC1 circuits, and in particular the point-of-
permute formulation of the scheme [Yao86b, BMR90].

4 MrNISC Syntax and Security

We define the syntax of MrNISC and formalize security notions for malicious adversaries as well as
semi-malicious adversaries, following the general framework given by Benhamouda and Lin [BL20].

We assume all parties have access to a broadcast channel, which any party can use to transmit
a message to all other parties. We consider protocols given in the form of three polynomial-
time algorithms (Encode,Eval,Output), where Encode and Eval are probabilistic and Output is
deterministic, for which we define the syntax as follows:

• Input Encoding phase: each party Pi computes mi,1 ← Encode(1λ, xi; ri,1), where xi is Pi’s
private input, and the output mi,1 is Pi’s round 1 message.

• Function Evaluation phase: any set of parties I can compute an arity-|I| function f on their
respective inputs as follows. Each party Pi for i ∈ I computesmi,2 ← Eval(f, xi, ri,1, I, {mi,1}i∈I ; ri,2),
where f is the function to compute, xi is Pi’s private input, ri,1 is the randomness which Pi
used to generate its input encoding, {mi,1}i∈I are the input encodings of all parties in I, and
the output mi,2 is Pi’s round 2 message.

• Output phase: Anyone can compute y ← Output({mi,1,mi,2}i∈I).

17

Malicious security. We follow the standard real/ideal paradigm in the following definition. An
MrNISC scheme is malicious-secure for every PPT adversary A in the real world there exists an
ideal-world adversary S (the “simulator”) such that the outputs of the following two experiments
ExptRealA (λ) and ExptIdealS (λ) are indistinguishable.

Real experiment ExptRealA (λ, z). The experiment initializes the adversary A with input auxiliary
input z. In addition, the experiment initializes empty lists functions learned and honest outputs. A
chooses the number of parties M and the set of honest parties H ⊆ [M]. A then submits queries to
the experiment in an arbitrary number of iterations until it terminates. In every iteration k, it can
submit one query of one of the following four types.

• Corrupt Input Encoding: The adversary A can corrupt a party i /∈ H and send an
arbitrary first message m∗i,1 on its behalf.

• Honest Input Encoding: The adversary A can ask a party i ∈ H to send its first message by
running m∗i,1 ← Encode(1λ, xi; ri,1), where xi is its input and ri,1 is freshly chosen randomness.

• Honest Computation Encoding: The adversary A can ask an honest party i ∈ H to
evaluate a function f on the inputs of parties I. If all first messages of parties in I are already
published, party i computes and publishes m∗i,2 ← Eval(f, xi, I, ri,1, {m∗i,1}i∈I ; ri,2). Otherwise,
the party outputs ⊥. If A has received Eval messages with respect to f and I from all honest
parties in I, the experiment adds the pair (f, I) to the list functions learned.

• Corrupt Computation Encoding: The adversary can send an arbitrary function evaluation
encoding to the honest parties on behalf of some corrupted party i /∈ H with respect to some
function f and set I. If all parties in I have sent their Eval messages for (f, I), the experiment
adds the honest parties’ output (f, I,Output({m∗i,1,m∗i,2}i∈I)) to the list honest outputs.

The output of the real experiment is defined to be (viewA, functions learned, honest outputs), where
viewA is the view of A at the end of the computation, and functions learned and honest outputs are
the two lists defined above.

Ideal experiment ExptIdealA,S (λ, z). The ideal experiment initializes S with auxiliary input z. In
addition, the experiment initializes empty lists functions learned and honest outputs. S chooses the
number of parties M and the set of honest parties H ⊆ [M]. It then attempts to simulate the view
of A. To this end, it is allowed three types of queries to the ideal functionality U :

• Declaring a corrupted party’s input: S can send a pair (i, x∗i) to U , for i /∈ H, which U
uses as party i’s input for all function evaluations.

• Learning a function evaluation: S can send a pair (f, I) to U . If for all i ∈ I \H S has
declared party i’s input, U computes the evaluation y of f over the inputs of all parties in I,
and returns it to S. U then adds (f, I) to the list functions learned.

• Delivering output to honest parties: For any (f, I) ∈ functions learned, S can ask U to
deliver the corresponding output y to the honest parties. In that case, U adds (f, I, y) to the
list honest outputs.

The output of the ideal experiment is defined to be (v̂iew, functions learned, honest outputs), where

v̂iew is the simulated view of A which is output by S at the end of the computation, and
functions learned and honest outputs are the two lists defined above.

18

Definition 9 ((Cadv, Csim, ε)-Maliciously Secure MPC). We say that an MPC protocol Π is (Cadv, Csim, ε)-
maliciously secure if for every Cadv adversary (A,D) there exists a Csim ideal-world adversary S (i.e.,
the simulator) such that for every string z,∣∣∣Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

The standard notion of security requires for every polynomial p(·) the existence of a polynomial
q(·) for which the protocol is (p, q, ε)-maliciously secure, where ε(·) is a negligible function. However,
since we are interested in two-round MPC protocols, it is known that the standard polynomial notion
of security is impossible. Therefore, we focus on the relaxed notion of super-polynomial security
(SPS): there is a sub-exponential function q(·) such that for all polynomials p(·), the protocol is
(p, q, ε)-maliciously secure.

The semi-malicious case. We define a variant of the above security definition which closely
mirrors the definition of semi-malicious secure multiparty computation [AJW11]. A semi-malicious
MrNISC adversary is modeled as an algorithm which, whenever it sends a corrupted input or
computation encoding on behalf of some party Pj , must also output some pair (x, r) which explains
its behavior. More specifically, all of the protocol messages sent by the adversary on behalf of
Pj up to that point, including the message just sent, must exactly match the honest protocol
specification for Pj when executed with input x and randomness r. Note that the witnesses given in
different rounds need not be consistent. We allow the adversary to send a special “abort” Corrupt
Computation Encoding message, where it instructs all parties in some evaluation (f, I) to set
their outputs to ⊥. In this sense, the adversary may abort any individual function evaluation. The
adversary may also choose to abort the entire execution in any step of the interaction.

Definition 10 ((Cadv, Csim, ε)-Semi-Malicious Secure MPC). We say that an MPC protocol Π is
(Cadv, Csim, ε)-semi-malicious secure if for every Cadv semi-malicious adversary (A,D) there exists
Csim ideal-world adversary S (i.e., the simulator) such that for every string z,∣∣∣Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

5 Main Building Blocks

5.1 Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness

We define statistical zero-knowledge arguments with a specific communication pattern. The particular
protocol that we need has a “simultaneous message” first round, where both prover and verifier will
send a message at the same time. The syntax is the following:

1. The (honest) prover P = (ZKProve1,ZKProve2) and verifier V = (ZKVerify1,ZKVerify2) are
each composed of two uniform PPT algorithms.

2. ZKProve1 and ZKVerify1 get as input only the security parameter λ. ZKProve1 outputs a
message zk1,P and a state σP . ZKVerify1 outputs a message zk1,V and a state σV . The first
round transcript is denoted τ1 = (zk1,P , zk1,V).

3. ZKProve2 gets σP , zk1,V , the instance x, and a witness w. It outputs a message zk2,P .

4. ZKVerify2 gets the instance x and τ = (τ1, zk2,P), and outputs 0/1.

19

Looking ahead, we shall consider two-round ZK protocols as above with super-polynomial
simulation (SPS), i.e., the simulator can run longer than the soundness bound. Further, we will
also require that for a given prover and a verifier, the first message is reusable for proving multiple
statements. We denote 〈P (w), V 〉(1λ, x) the output of the interaction between P and V , where P
gets as input the witness w, and both P and V receive the instance x as a common input.

Definition 11 (Statistical Zero-Knowledge Arguments). Let L be a language in NP with a
polynomial-time computable relation RL. A protocol between P and V is a (Csound, CS , Czk, εS ,
εsound)-statistical zero-knowledge argument for L if it satisfies the following properties:

• Perfect Completeness. For every security parameter 1λ and (x,w) ∈ RL, it holds that

Pr
[
〈P (w), V 〉(1λ, x) = 1

]
= 1,

where the probability is over the random coins of P and V .

• (Csound, εsound)-Soundness. For every polynomial p(λ) and every prover P ∗ ∈ Csound that
given 1λ, chooses an input length 1p for some polynomial p ∈ poly(λ), and then chooses
x ∈ {0, 1}p \ L, it holds that

Pr
[
〈P ∗, V 〉(1λ, x) = 1

]
≤ εsound(λ),

where the probability is over the random coins of V .

• (CS , Czk, εS,1, εS,2)-Statistical Zero-Knowledge. There exists a (uniform) simulator S ∈ CS
which takes as input the round-one transcript τ1, the honest prover’s state σP , and a statement
x such that the following holds. Consider an adversary V ∗ ∈ Czk that takes as input 1λ and
an honestly generated prover’s first round message zk1,P and outputs a verifier’s first round
message zk∗1,V . Then, for all (x,w) ∈ RL,

Pr [∆(S(σp, τ1, x),ZKProve2(σp, τ1, x, w)) ≥ εS,1] < εS,2,

where τ1 = (zk1,P , zk
∗
1,V) and ∆(X,Y) is the statistical distance between two distributions X

and Y .

In particular, if we define expt0V ∗,zk to be the output of the experiment above where the simulator

is used to generate zk2,P , and expt1V ∗,zk such that the honest prover is used instead, this implies
that

expt0V ∗,zk ≈(∞,εS,1+εS,2) expt
1
V ∗,zk.

Additionally, we need a refined soundness property, defined next.

Definition 12 ((Csound, εsound,1, εsound,2)-statistical soundness). Consider any prover P ∗ ∈ Csound and
a polynomial p(·), where on input the security parameter 1λ, P ∗ outputs an instance x ∈ {0, 1}p \ L.
We require that there exists a “soundness mode indicator” machine E that on input (τ1, stateV)
outputs either 0 or 1 such that the following properties hold.

• Frequency of Soundness Mode. For every prover P ∗ ∈ Csound,

Pr [E(τ1, stateV) = 1] ≥ εsound,1(λ),

where the probability is over the coins of the prover and the verifier in round 1.

20

• Perfect Soundness Holds During Soundness Mode. For every prover P ∗ ∈ Csound
and every round-1 state (τ1, stateP ∗ , stateV) of the protocol, if E(τ1, stateV) = 1 then for all
second-round messages zk2,P sent by the prover corresponding to some false statement x 6∈ L,
the verifier rejects on input (x, τ1, zk2,P , stateV).

• Indistinguishability of Soundness Mode. For every prover P ∗ ∈ Csound, it holds that

{(τ1, stateP ∗) | E(τ1, stateV) = 1} ≈(Csound,εsound,2) {(τ1, stateP ∗) | E(τ1, stateV) = 0}.

The full MrNISC protocol needs a powerful version of zero knowledge, as follows:

Definition 13 ((CS , Czk, εS)-Adaptive Reusable Statistical Zero-Knowledge). We say a zero knowl-
edge scheme satisfies (CS , Czk, εS,1, εS,2)-adaptive reusable statistical zero-Knowledge if there exists a
(uniform) simulator S ∈ CS which takes as input the round-one transcript τ1, the honest prover’s
state σP , and a statement x such that the following holds. Consider an adversary V ∗ ∈ Czk that takes
as input 1λ and an honestly generated prover’s first round message zk1,P , and plays the following
game exptbV ∗,zk:

1. V ∗ may adaptively issue queries of the form (x,w, zk∗1,V). The challenger responds as follows:

• f (x,w) /∈ RL, the challenger responds with ⊥.

• If (x,w) ∈ RL and b = 0, the challenger responds with the honest prover’s second message
ZKProve2(σp, zk

∗
1,V , x, w).

• If (x,w) ∈ RL and b = 1, the challenger responds with the simulated prover’s message
S(σp, zk

∗
1,V , x).

2. At the end of the game, V ∗ outputs an arbitrary function of its view, which is used as the
output of the experiment.

It must hold that
expt0V ∗,zk ≈(∞,εS) expt

1
V ∗,zk.

An overview and full details of our construction of the reusable SZK argument with sometimes-
statistical soundness can be found in Section 9.

5.2 Receiver-Assisted One-Round CCA-Secure Commitments

We define the notion of receiver-assisted one-round CCA-secure commitments, denoted by aCCA.
This section will largely follow the terminology Khurana [Khu21]. Let T = {Tλ}λ∈N be the tag
space which is [T (λ)], where T = 2poly(λ). Let the message space be M = {Mλ}λ∈N. We will have
M be {0, 1}`m(λ) for some polynomial `m(·).

Definition 14 (Syntax of aCCA). A receiver-assisted one-round CCA-secure commitment scheme
aCCA for the message space M, and tag space T , consists of the following algorithms.

CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment algorithm takes as input
the security parameter λ, a tag tag ∈ Tλ, a message m ∈Mλ and it outputs a commitment P.

Opening(τ, tag,P,m, r) : The polynomial time deterministic algorithm Opening takes as input a
string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment P, a message m ∈ Mλ, and randomness
r. It outputs an opening σ ∈ {0, 1}∗. Above `t = `t(λ, n) is a polynomial associated with the
scheme.

21

Open(τ, tag,P,m, σ) : The polynomial time deterministic algorithm Open takes a string τ ∈ {0, 1}`t ,
a tag tag ∈ Tλ, a commitment P, a message m ∈Mλ, and an opening σ. It outputs a value in
{0, 1}.

Such a scheme satisfies following properties:

Definition 15 (Correctness of Opening). Let λ ∈ N be the security parameter, and consider any
tag ∈ Tλ, any message m ∈Mλ, any τ ∈ {0, 1}`t, any P← CCACommit(1λ, tag,m; r). Then,

Pr[Open(τ, tag,P,m, σ) = 1] = 1,

where σ = Opening(τ, tag,P,m, r)

Definition 16 (Extraction). There exists an (inefficient) algorithm CCAVal with the following
properties. For any λ ∈ N and any message m ∈ Mλ, tag tag ∈ Tλ, commitment P, and τ ∈
{0, 1}`t(λ), it holds that

∃σ′;Open(τ, tag,P,m, σ′) = 1⇐⇒ CCAVal(τ, tag,P) = m = 1.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now define the CCA security property associated with the scheme:

Definition 17 ((C, ε)-CCA security). We define the following security game played between the
adversary A ∈ C and the challenger. We denote it by exptA,CCA(1λ):

1. The challenger manages a list L that is initially empty. The contents of the list are visible to
the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -query. Challenger samples τ ′ ←
{0, 1}`t and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-query for any τ ∈ L,
any tag 6= tag∗, and any commitment P. The challenger computes CCAVal(τ, tag,P) and
sends the result to the adversary.

4. The adversary submits two messages m0,m1 ∈Mλ. The challenger samples b← {0, 1}, and
computes P∗ ← CCACommit(1λ, tag∗,mb). The adversary gets P∗ from the challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b and 0
otherwise.

The receiver-assisted one-round CCA-secure commitment scheme aCCA scheme satisfies (C, ε)-CCA
security if for all adversaries A ∈ C:∣∣∣∣∣Pr[exptA,CCA(1λ) = 1]− 1

2

∣∣∣∣∣ ≤ ε.
22

Remark 1. The construction in [Khu21], although not specified exactly using these properties,
satisfies a weaker notion of security than the one definition above. In this weaker notion, the adversary
is restricted to output all commitments Ci for which it asks a query of the form CCAVal(?, ?, Ci)
before asking τ/ oracle queries. Our construction, which is a minor modification of [Khu21]’s satisfy
the stronger notion defined above.

Remark 2. We also consider a weaker notion of security where the adversary queries CCAVal
oracle at at most one tag 6= tag∗. We call this as the CCA security with one-tag restriction. There
are general method to convert a scheme satisfying CCA security with the one tag restriction to one
which satisfies the stronger security definition above (e.g., [Khu21]).

Our construction of a receiver-assisted CCA secure commitment is largely based on ideas of
Khurana [Khu21]. We make few crucial modifications to their construction in order to satisfy the
above definition. We refer to Section 7 for an overview and full details.

6 Malicious-Secure MrNISC

In this section, we prove Theorem 1.

Required Primitives and Parameters. We make use of the following primitives in our con-
struction.

• Commitment: A non-interactive perfectly binding commitment (NICommit).

• Pseudo-Random Function A pseudo-random function (PRF).

• Witness Encryption: We use witness encryption as in Definition 2. We use circuit SAT as
our NP language.

• statistical ZK arguments with SPS simulation: We use the SPS ZK argument (ZKProve1,
ZKVerify1,ZKProve2,ZKVerify2) satisfying Definitions 11 to 13 for circuit SAT constructed
in Section 9.

• Receiver-assisted CCA commitments: We use receiver-assisted CCA commitments as
in Definitions 14 to 17.

• Semi-malicious MrNISC: We use an underlying semi-malicious MrNISC protocol (SM.Encode,
SM.Eval, SM.Output), satisfying the security notion given in Definition 10. We assume that
the simulator has the following syntax:

– SMSim1(1λ, C)→ ({m̂i,1}i/∈C , σS) takes as input the set C of corrupted parties, and outputs
a list {m̂i,1}i/∈C of simulated honest parties’ input encodings along with a simulator’s
state σS .

– SMSim2(σS , I, f, {x̃j , r̃j , m̂j,1}j∈C , y)→ {m̂i,2}i∈I\C takes as input a simulator’s state σS
along with a function f and a set I of parties who are participating in the evaluation of
f , a list {x̃j , r̃j , m̂j,1}j∈C of each corrupted party Pj ’s input, the randomness Pj used to
generate its input encoding, and the input encoding itself, and a function evaluation y,
and outputs a list {m̂i,2}i∈I\C of simulated honest parties’ function evaluation encodings.

23

• Complexity hierarchy.

In order to argue security, we require that the primitives we use are secure against adversaries
of varying complexities. In particular, we require the following complexity hierarchy to hold
with respect to the primitives. Let T1, T2, T3, T4, T5 be functions over λ, such that

T1 � T2 � T3 � T4 � T5,

where T � T ′ means that p(T) < T ′ asymptotically for all polynomials p. We require the
following:

– The ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical zero knowledge
(Definition 13) where CS is the class of circuits of size poly(T1) and depth T1 (i.e. the
simulator runs in size poly(T1) and depth T1), and Czk is the class of circuits of size p(T3)
for all polynomials p, and εS is any negligible function (i.e. statistical zero knowledge
holds as long as the verifier’s first-round message is generated by a machine in Czk.

– The CCA non-malleable commitment scheme satisfies (C, ε)-CCA security, where C is
the class of circuits of size p(T1) for all polynomials p, and ε is any negligible function.

– The CCA non-malleable commitment scheme’s extractor CCAVal is a circuit of size T2

and polynomial depth.

– The perfectly-binding commitment scheme is hiding against adversaries of size p(T2) for
all polynomials p, and is extractable by a circuit of size T3.

– The ZK argument scheme satisfies (Csound, εsound,1, εsound,2)-statistical soundness, where
Csound is the class of circuits of size p(T5) and polynomial depth for all polynomials p
(refer to Definition 12 for details on the meaning of Csound), and εsound,1 = 1/T4, and
εsound,2 is any negligible function.

– The witness encryption scheme satisfies (C, ε)-security, where C is the class of circuits of
size p(T5) for all polynomials p, and ε = 1/T5.

– The pseudo-random function is secure against adversaries of size p(T5) for all polynomials
p.

– The semi-malicious MrNISC protocol is secure against adversaries of size p(T5) for all
polynomials p.

Protocol. We give the protocol below, described in terms of the behavior of party Pi during the
input encoding phase, the evaluation phase, and the output computation phase. In particular, we
give this behavior by implementing the Encode, Eval and Output algorithms defined in Section 4.
Assume that each party Pi has input xi and a public identity denoted by tagi ∈ Tλ. Note that the
Output algorithm is public and can be performed without Pi’s private input or state. Throughout
the protocol description, we deal with PPT algorithms as follows. If a PPT algorithm P is invoked
on some input x without any randomness explicitly given (i.e., we write P (x)), we implicitly
assume that it is supplied with freshly chosen randomness. In some cases we will need to explicitly
manipulate the randomness of algorithms, in which case we will write P (x; r).

• Input Encoding Encode(1λ, tagi, xi): The input encoding algorithm takes as input 1λ, where
λ is the security parameter, along with Pi’s tag tagi and private input xi, and does the
following.

24

The Relation Φzk,i,j

Hardwired: The function f and the set I, Pi’s tag tagi, Pi’s CCA non-malleable commitment nmci,
Pi’s perfectly binding commitment comi, Pi’s first round semi-malicious MPC message m̂i,1, Pj ’s string
τj , Pi’s commitment comi,m̂i,2 to its semimalicious evaluation encoding m̂i,2, and the transcript ρsm,1 of
the semi-malicious input encodings of all parties from I.

Input/Witness: Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2).

Computation: Verify the following steps.

1. Open(τj , tagi, nmci, (xi, ri,SM,1,Ki, ri,com), σi,j,CCA) = 1

2. comi = NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

3. m̂i,1 = SM.Encode(1λ, xi, ri,SM,1)

4. m̂i,2 = SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi
(f, I, 1))

5. comi,m̂i,2
= NICommit(1λ, m̂i,2;PRFKi

(f, I, 2))

Output 1 if all the above checks succeed, otherwise output 0.

Figure 2: The Circuit Φzk,i,j

The Relation ΦWE,i

Hardwired: The function f , the set I, the set of tags of all parties, Pi’s first-round verifier zk
messsage zk1,i,V , Pi’s string τi, the first-round prover zk messages, commitments and semi-malicious
encodings {zk1,j,P , m̂j,1, comj , nmcj}j∈I\{i} included in the input encodings of all other parties in I.

Witness:
WWE,i = ({zk2,j→i,P , comj,m̂j,2

}j 6=i).

Computation: For every j ∈ I \ {i},

1. Let
Φzk,j = Φzk,j [f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

be the circuit described in Figure 2, with the values

[f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2
, ρsm,1]

hardcoded.

2. Compute ZKVerify2(Φzk,j , zk1,i,V , zk1,j,P , zk2,j→i,P).

Output 1 if all the above checks succeed, otherwise output 0.

Figure 3: The Relation ΦWE,i

25

1. Compute the semi-malicious input encoding m̂i,1 ← SM.Encode(1λ, xi; ri,SM,1), where

ri,SM,1
$←− {0, 1}∗ is freshly chosen randomness.

2. Choose a PRF key Ki.

3. Compute a perfectly binding commitment comi ← NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

of the input and the semi-malicious encoding randomness, where ri,com
$←− {0, 1}∗ is

freshly chosen randomness.

4. Compute a CCA-non-malleable commitment

nmci ← CCACommit(1λ, tagi, (xi, ri,SM,Ki, ri,com); ri,CCA)

of the same values committed to in the perfectly binding commitment, along with the

randomness used for generating the perfectly binding commitment, where ri,CCA
$←− {0, 1}∗

is freshly chosen randomness.

5. Compute a random string τi
$←− {0, 1}`.

6. Compute the first round verifier’s message and state (σzk,1,i,V , zk1,i,V)← ZKVerify1(1λ)
and the first round prover message and state (σzk,1,i,P , zk1,i,P)← ZKProve1(1λ).

7. Output mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,V , zk1,i,P).

• Function Evaluation Eval(f, tagi, xi, ri,1, I, ρ1): The function evaluation algorithm takes as
input the function f to be evaluated, the set I of participating parties, Pi’s private input xi,
the randomness ri,1 which Pi used to generate its input encoding, and the input encoding
transcript ρ1, and does the following:

1. Parse ρ1 = {m̂k,1, comk, nmck, τk, zk1,k,V , zk1,k,P }k∈[n] and obtain (ri,SM,1, ri,com, ri,CCA,

σzk,1,i,V , σzk,1,i,P) from ri,1.

2. Compute the semi-malicious function evaluation encoding

m̂i,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi(f, I, 1))

of the underlying semi-malicious protocol, using the transcript ρsm,1 = {m̂k,1}k∈I of the
semi-malicious input encodings of all parties from I, where the randomness is chosen
using the PRF key committed to during the input encoding phase.

3. Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2;PRFKi(f, I, 2)) of the encoding
m̂i,2 using randomness derived from the PRF key committed to during the input encoding
phase.

4. For each Pj , j ∈ I \ {i}:
– Compute an opening σi,j,CCA ← Opening(τj , tagi, nmci, (xi, ri,SM,1,Ki, ri,com), ri,CCA)

for the non-malleable-commitment nmci with respect to τj .

– Compute a round two ZK prover’s message zk2,i→j,P ← ZKProve2(Φzk,i,j ,Wzk,i,
σzk,1,i,P , zk1,j,V), where Φzk,i,j is the circuit SAT instance defined in Figure 2. Here
Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2) is the witness for generating this prover
message.

5. Compute a witness encryption WEi ←WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2) where the circuit
ΦWE,i is described in Figure 3, and the plaintext rcom,i,m̂i,2 = PRFKi(f, I, 2) is the
opening for comi,m̂i,2 .

26

6. Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

• Output Computation Output({mj,1,mj,2}j∈I): The output computation algorithm takes
as input the input encoding mj,1 and the function evaluation encoding mj,2 of every party Pj
for j ∈ I and does the following:

1. Parse
mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

and
mj,2 = (comj,m̂j,2 , {zk2,j→k,P }k∈I\{j},WEj)

for each j ∈ I.

2. For each j, k ∈ I, j 6= k:

– Run ZKVerify2(Φzk,j,k, zk1,k,v, zk1,j,p, zk2,j→k,p), where Φzk,j,k is described in Figure 2.
If the verification fails, abort and output ⊥.

3. For each j ∈ I:

– Compute the decryption rcom,j,m̂j,2 ← WE.Decrypt(WEj ,WWE,j) of the opening
rcom,j,m̂j,2 to the commitment comj,m̂j,2 , using the witness

WWE,j = ({zk2,k→j,P , comj,m̂j,2}k 6=j).

If the decryption fails, abort and output ⊥.

– Open comj,m̂j,2 to Pj ’s semi-malicious function evaluation encoding m̂j,2 using
rcom,j,m̂j,2 .

4. Compute the output y ← Output({m̂j,1, m̂j,2}j∈I) using the values m̂j,2 obtained from
decrypting the witness encryptions along with the semi-malicious input encodings m̂j,2.

5. Output y.

Correctness. Correctness of the protocol follows directly from correctness of the underlying
primitives.

6.1 Proof of Security

In this section we prove that the MrNISC protocol given above satisfies the definition of SPS
malicious security from Section 4. Assume that there exists a real-world PPT adversary A for the
MrNISC security game. That is, A takes as input 1λ and some auxiliary input z, chooses the number
of parties M and the set of honest parties H ⊆ [M], and then interacts with the honest parties in
an execution of the protocol by submitting queries of the four types described in Section 4 (i.e.,
Corrupt Input Encoding, Honest Input Encoding, Honest Computation Encoding, and
Corrupt Computation Encoding). We prove security by exhibiting an ideal world adversary S
(referred to as the simulator) which runs in time TS = 2λ

ε
, and interacts with the ideal functionality

U as described in Section 4, such that the outputs of the corresponding experiments ExptRealA (λ) and
ExptIdealS (λ) are indistinguishable.

27

6.1.1 The Simulator

The simulator S initializesA, and invokes the semi-malicious simulator SMSim1(1λ, C)→ ({m̂i,1}i/∈C , σS)
to obtain the honest parties simulated semi-malicious input encodings and the simulator’s state. It
then responds to A’s queries in the following manner:

• Corrupt Input Encoding: Upon receiving a corrupt input encoding

mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

on behalf of Pj , j ∈ C, the simulator S extracts comj to obtain (x̃j , r̃j,SM,1, K̃j), and submits
(j, x̃j) to the ideal functionality U if m̂j,1 is honest.

• Honest Input Encoding: Upon receiving this query from A asking for Pi’s input encoding,
S does the following:

1. Compute a perfectly binding commitment

comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|).

2. Compute a CCA-non-malleable commitment

nmci = CCACommit(1λ, tagi, 0
|xi|+|ri,SM,1,|+|Ki|+|ri,com|).

3. Compute a random string τi
$←− {0, 1}`.

4. Compute the first round verifier’s message and state (σzk,1,i,V , zk1,i,V)← ZKVerify1(1λ)
and the first round prover message and state (σzk,1,i,P , zk1,i,P)← ZKProve1(1λ).

5. Send mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,v, zk1,i,p) to A.

• Honest Computation Encoding: Upon receiving an honest computation encoding query
asking for honest party Pi’s encoding w.r.t f and I, the simulator does the following.

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

– If both equalities hold for all j ∈ I ∩ C, then the simulator does the following.

(a) If the simulator has not queried the ideal functionality U on (f, I) before, then
the simulator sends the query (f, I) to U . Upon receiving the function eval-
uation y, the simulator invokes the semi-malicious simulator SMSim2(σS , I, f,
{x̃j , r̃j,SM,1, m̂j,1}j∈C , y) → {m̂i,2}i∈I\C to obtain the simulated honest parties’
semi-malicious function evaluation encodings. It then stores {m̂i,2}i∈I\C for use
in all future queries. If the simulator has already queried U on (f, I), then it
uses the value m̂i,2 which was previously computed.

28

(b) Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2; rcom,i,m̂i,2) obtained in the
previous step, where rcom,i,m̂i,2 is freshly chosen randomness.

(c) For each Pj , j ∈ I \ {i}:
∗ Compute a simulated prover’s second-round ZK message

zk2,i→j,P ← ZKSim(Φzk, σzk,1,i,P , zk1,j,V)

.

(d) Compute a witness encryption WEi ← WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2) where
the circuit ΦWE,i is described in Figure 3, and the plaintext rcom,i,m̂i,2 is the
opening for comi,m̂i,2 .

(e) Send mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi) to A.

– If the equalities do not hold for some j ∈ I ∩ C, then the simulator instead does the
following:

(a) Compute a commitment comi,m̂i,2 ← NICommit(0|m̂i,2|).

(b) For each Pj , j ∈ I \ {i}:
∗ Compute a simulated prover’s second-round ZK message zk2,i→j,P ← ZKSim(Φzk,
σP , zk1,j,V).

(c) Compute a witness encryption WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0
|ri,com|).

(d) Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

• Corrupt Computation Encoding: Whenever A submits a corrupt computation encoding
on behalf of corrupted party Pj w.r.t. f and I, the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, halt the experiment and output a special abort symbol ⊥∗.
4. Otherwise, if all parties in I have submitted function evaluation encodings for f , and

if all parties’ ZK messages have verified correctly the simulator instructs U to deliver
the output y to the honest parties. If any ZK messages verify incorrectly, the simulator
instructs U to deliver the output ⊥ to the honest parties.

6.1.2 The Hybrids

We prove the indistinguishability between the real and ideal worlds via a sequence of hybrids listed
below. We argue indistinguishability between each successive pair of hybrids. The first hybrid
Hybrid0 corresponds to the real world experiment, and the last hybrid Hybrid8 corresponds to
the ideal world experiment.

• Hybrid0: In this hybrid, the simulator performs the real-world experiment ExptRealA (λ) with A.
That is, the simulator responds to the queries of A as described in the real world experiment
defined in Section 4. At the end of the execution, the output of the hybrid is defined to be
(viewA, functions learned, honest outputs).

29

• Hybrid1: In this hybrid, the simulator behaves identically to the previous hybrid, except for
the following difference. Whenever A submits a Honest Computation Encoding query
asking for honest party Pi’s encoding w.r.t f and I, the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

– If both equalities hold for all j ∈ I ∩ C, then the simulator generates WE.CTi in the
same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I ∩ C, then the simulator instead computes
WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0

|ri,com|).

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid2: In this hybrid, the simulator behaves identically to the previous hybrid, except
for the following difference. Whenever A submits a Corrupt Computation Encoding on
behalf of corrupted party Pj w.r.t. f and I, the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, halt and output a special abort symbol ⊥∗.

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid3: In this hybrid, the simulator behaves identically to the previous hybrid, except for
the following difference. Whenever A submits a Honest Computation Encoding query
asking for honest party Pi’s encoding w.r.t f and I, the simulator computes Pi’s ZK prover’s
messages zk2,i→j,P ← ZKSim(Φzk, σP , zk1,j,V) using the simulator instead of generating the
message using the honest prover. This hybrid runs in size poly(T1 + T2) = poly(T2) and depth
T1 as we run the ZK Simulator and CCAVal.

• Hybrid4: In this hybrid, the simulator behaves identically to the previous hybrid, except
for the following difference. Whenever A submits a Honest Input Encoding query asking
for honest party Pi’s first message, the simulator generates nmci = CCACommit(1λ, tagi,
0|xi|+|ri,SM,1,|+|Ki|+|ri,com|). This hybrid runs in the same size and depth as the previous hybrid.

30

• Hybrid5: In this hybrid, the simulator behaves identically to the previous hybrid, except for
the following difference. Whenever A submits a Honest Input Encoding query asking for
honest party Pi’s first message, the simulator generates comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|).
This hybrid runs in the same size and depth as the previous hybrid.

• Hybrid6: In this hybrid, the simulator behaves identically to the previous hybrid, except
for the following difference. Whenever A submits a Honest Computation Encoding
query asking for honest party Pi’s encoding w.r.t f and I, the simulator uses true ran-
dom strings when computing the semi-honest function evaluation and the perfectly binding
commitment, instead of using PRF evaluations. In other words, the simulator computes
mi,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1; r) and comi,m̂i,2 ← NICommit(m̂i,2; r′), where r and r′

are freshly chosen randomness.

• Hybrid7: In this hybrid, the simulator behaves identically to the previous hybrid, except for
the following difference. Whenever A submits a Honest Computation Encoding query
asking for honest party Pi’s encoding w.r.t f and I, the simulator computes comi,m̂i,2 ←
NICommit(0|m̂i,2|) whenever the equalities checked in the steps for Hybrid1 do not hold. This
hybrid runs in the same size and depth as the previous hybrid.

• Hybrid8: In this hybrid, the simulator behaves identically to the previous hybrid, except
for the following differences. During the beginning of the protocol, the simulator invokes
the semi-malicious simulator SMSim1(1λ, C) → ({m̂i,1}i/∈C , σS) to obtain the honest parties
simulated semi-malicious input encodings and the simulator’s state.

– Whenever A submits an Honest Input Encoding query asking for honest party Pi’s
input encoding, the simulator uses the simulated encoding m̂i,1 generated at the beginning
of the protocol as Pi’s semi-malicious input encoding.

– Whenever A submits a Corrupt Input Encoding query on behalf of Pj , j ∈ C, the
simulator extracts comj to obtain (x̃j , r̃j,SM,1, K̃j). If Pj ’s m̂j,1 is honestly generated, the
simulator submits (j, x̃j) to the ideal functionality U .

– Whenever A submits an Honest Computation Encoding query asking for honest party
Pi’s encoding w.r.t f and I, if the equalities checked in Hybrid1 hold and the simulator
has not queried the ideal functionality U on (f, I) before, then the simulator sends
the query (f, I) to U . Upon receiving the function evaluation y, the simulator invokes
the semi-malicious simulator SMSim2(σS , I, f, {x̃j , r̃j,SM,1, m̂j,1}j∈C , y)→ {m̂i,2}i∈I\C to
obtain the simulated honest parties’ semi-malicious function evaluation encodings. It
then stores {m̂i,2}i∈I\C and uses m̂i,2 when constructing Pi’s response to A’s query. If
the simulator has already queried U on (f, I), then it uses the value m̂i,2 which was
previously computed. Note that if the equalities checked in Hybrid1 do not hold, the
simulator does not need to have a m̂i,2 message from Pi to respond to A, since it sends a
WE of 0.

– Whenever A submits a Corrupt Computation Encoding on behalf of corrupted party
Pj w.r.t. f and I, if all parties in I have submitted function evaluation encodings for f ,
and if all parties’ ZK messages have verified correctly and the special abort condition
has not occurred, the simulator instructs U to deliver the output y to the honest parties.
If any ZK messages verify incorrectly, the simulator instructs U to deliver the output ⊥
to the honest parties.

31

This hybrid is identical to the behavior of the ideal-world simulator, and runs in size poly(T3)
and depth T1.

We now describe indistinguishability between each hybrids. The indistinguishability between
Hybrid0 and Hybrid1 follows from the soundness properties of the SPS ZK protocol and the
security of the Witness Encryption scheme. Because proving this indistinguishability is the most
involved, we dedicate a separate section to the proof.

6.1.3 Indistinguishability Between Hybrid0 and Hybrid1

Claim 1. Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits of size
p(T5) for all polynomials p and ε = 1/T5,

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0 is computationally indistinguishable from Hybrid1.

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ) be a
polynomial upper bound on the number of Honest Computation Encoding queries made by A.

• Hybrid0,0,0 is the same as Hybrid0.

• Hybrid0,k,r is the same as Hybrid0,k,r−1, except for the following differences. Whenever
A submits its `-th Honest Computation Encoding query asking for honest party Pi’s
encoding w.r.t f and I, the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

– If both equalities hold for all j ∈ I ∩ C, then the simulator generates WE.CTi in the
same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I ∩ C, then if i ≤ k ∈ [n] \ C and if ` ≤ r,
the simulator instead computes WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0

|ri,com|).

• Hybrid0,n,q is the same as Hybrid1.

32

In the following, we denote with expt0,k,rA the output of the simulator during Hybrid0,k,r. Note
that for all k ∈ [n], Hybrid0,k,q = Hybrid0,k+1,0. Thus, to prove Claim 1, it is then sufficient to
prove the following claim.

Claim 2. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits of size
p(T5) for all polynomials p and ε = 1/T5,

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0,k,r is computationally indistinguishable from Hybrid0,k,r−1.

We will rely on several subclaims in order to prove Claim 2. First we introduce some notation.
Assume for the sake of contradiction that there exists an adversary (A,D) and an index (k, r)

such that A distinguishes between Hybrid0,k,r−1 and Hybrid0,k,r with non-negligible probability.
That is, assume that∣∣∣Pr

[
D(expt0,k,rA) = 1

]
− Pr

[
D(expt0,k,r−1

A) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid0,k,r−1 or
Hybrid0,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either m̂j,1 6= SM.Encode(1λ, x̃j ; r̃j,SM,1)
or comj 6= NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com), and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some (f, I)
such that j∗ ∈ I.

Define êxpt
0,k,r
A and êxpt

0,k,r−1
A to be the same as expt0,k,rA and expt0,k,r−1

A , except that whenever the
event above does not occur, the simulator outputs a “dummy evaluation”, where all parties behave
according to the honest input specification, have input 0, and evaluate the constant f(x1, . . . , xn) = 0
with I = [n]. Fixing the j∗ that maximizes the probability of A distinguishing these two experiments,
we then have that ∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1

]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).
Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance with

prover Pj∗ and verifier Pk which takes place during Hybrid0,k,η for η ∈ {r − 1, r}. Note that since
both hybrids are identical up to the r-th Honest Computation Encoding query, this event is
well-defined even if η is unspecified.

33

With this event defined, we can rewrite the probability

Pr
[
D(êxpt

0,k,r
A) = 1

]
as the following:

Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
.

Claim 3. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 2, it holds that

Pr
[
PSk,j∗] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode
frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does the
following:

1. Receive zk1,V from the challenger.

2. Run expt0,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is requested
from A.

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P message
which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1 with
probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero knowledge
protocol.

Claim 4. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 2, and the extractor CCAVal for the CCA-non-malleable
commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣ ≤ εsound,2.
Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge protocol.
Assume for the sake of contradiction that∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
0,k
A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where a is the

output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣,
and thus R contradicts indistinguishability of soundness mode.

34

Claim 5. Assuming the existence of a distinguishing A as before, the zero knowledge protocol is
(Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 2, and the extractor
CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds that for all k
and r, ∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 3 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

]∣∣∣ ≥ 1/p(λ)

for some polynomial p(λ).
Recall that by assumption we have∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1

]∣∣∣ ≥ 1/poly(λ). (1)

We can lower-bound the left-hand side of (1) as∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 4 is

≤
∣∣∣ (Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

(i.e., substitute out Pr
[
D(êxpt

0,k,r

A) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

0,k,r−1

A) = 1 | PSk,j∗
]

for Pr
[
D(êxpt

0,k,r

A) = 1 |
PSk,j∗

]
+ εsound,2 and Pr

[
D(êxpt

0,k,r−1

A) = 1 | PSk,j∗
]

+ εsound,2, respectively.)

Thus,∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 6. Assuming the “perfect soundness holds during soundness mode” property of the zero
knowledge argument, and (CWE, ε)-security for the witness encryption scheme, where CWE is the class
of circuits of size p(T5) for all polynomials p and ε = 1/T5, and T5 � T2, the size of the extraction
procedure CCAVal for the CCA commitment, it holds that for all k,∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ < εWE.

35

Proof. Fix a state state of the experiment just before the r-th Honest Computation Encoding.
We show that given such a state where PSk,j∗ holds,∣∣∣Pr

[
D(êxpt

0,k,r
A (state)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state)) = 1

]∣∣∣ < εWE.

We consider two cases. First is the case in which the “dummy evaluation” is triggered. In this

case, the output of both êxpt
0,k,r
A (state) and êxpt

0,k,r−1
A (state) are both drawn from exactly the same

distribution, and thus∣∣∣Pr
[
D(êxpt

0,k,r
A (state1)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state1)) = 1

]∣∣∣ = 0.

The second case is where the “dummy evaluation” is not triggered, i.e. where the following three
conditions are satisfied:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either m̂j,1 6= SM.Encode(1λ, x̃j ; r̃j,SM,1)
or comj 6= NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com), and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some (f, I)
such that j∗ ∈ I.

In this case, the difference between the two experiments is that when responding to the

r-th Honest Computation Encoding in êxpt
0,k,r−1
A (state), the simulator sends WE.CTk ←

WE.Encrypt(1λ,ΦWE,k, rk,com) to A on behalf of Pk, whereas in êxpt
0,k,r
A (state), the simulator sends

WE.CTk ←WE.Encrypt(1λ,ΦWE,k, 0
|rk,com|). Here ΦWE,k is the statement in Figure 3.

Assume for the sake of contradiction that∣∣∣Pr
[
D(êxpt

0,k,r
A (state1)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state1)) = 1

]∣∣∣ ≥ εWE.

WLOG fix the randomness of A which maximizes this probability. Note that if A is deterministic
this means that state fully determines the statement ΦWE,k.

We build a reduction R which is of size T2 and contradicts security of the witness encryption
scheme. R has state hardcoded and does the following:

1. Receive WE.CTk ← WE.Encrypt(ΦWE,k,m) from the challenger, where m is either rk,com or
0|rk,com|, and ΦWE,k is the statement fixed by state and the randomness of A.

2. Run b ← D(ẽxpt
0,k,r−1
A (state1)), where ẽxpt

0,k,r−1
A (state1) is computed in the same way as

êxpt
0,k,r−1
A (state1), except using WE.CTk as Pk’s witness encryption during the r-th Honest

Computation Encoding.

If the challenger chooses m = rk,com then the experiment run by R is exactly the same as

êxpt
0,k,r−1
A (state); if the challenger chooses m = 0|rk,com| then the experiment is exactly the same

as êxpt
0,k,r
A (state). Note that the statement ΦWE,k is false because of perfect soundness of the zero

knowledge scheme. Thus R is a size-T2 machine which distinguishes between two different witness
encryptions for the same false statement, thus contradicting security of the witness encryption
scheme.

We now finish the proof of Claim 2 using the three claims proven above.

Proof of Claim 2. We directly achieve a contradiction by applying Claim 5 and Claim 6, along with
the fact that εsound,1 � εWE.

36

6.1.4 Proving Indistinguishability of the Remaining Hybrids

The proof of indistinguishability between Hybrid1 and Hybrid2 is very similar to the previous
proof. We include it for the sake of completeness.

Claim 7. Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid1 is computationally indistinguishable from Hybrid2.

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ) be a
polynomial upper bound on the number of Corrupt Computation Encoding queries made by
A.

• Hybrid1,0,0 is the same as Hybrid1.

• Hybrid1,k,r is the same as Hybrid1,k,r−1, except for the following differences. Whenever A
submits its `-th Corrupt Computation Encoding, on behalf of some corrupted party Pj
w.r.t. f and I, then the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, i ≤ k, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, then if either i < k, or if i = k and ` ≤ r, halt and output a
special abort symbol ⊥∗.

• Hybrid1,n,q is the same as Hybrid2.

Note that for all k ∈ [n], Hybrid1,k,q = Hybrid1,k+1,0. Thus, to prove Claim 7, it is then
sufficient to prove the following claim.

Claim 8. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

37

• T2 � T4 � T5,

Hybrid1,k,r is computationally indistinguishable from Hybrid1,k,r−1.

We will rely on several subclaims in order to prove Claim 8. First we introduce some notation.
In the following, we denote with expt1,k,rA the output of the simulator during Hybrid1,k,r.

Assume for the sake of contradiction that there exists an adversary (A,D) and an index (k, r)
such that A distinguishes between Hybrid1,k,r−1 and Hybrid1,k,r with non-negligible probability.
That is, assume that∣∣∣Pr

[
D(expt1,k,rA) = 1

]
− Pr

[
D(expt1,k,r−1

A) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid1,k,r−1 or
Hybrid1,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, and

• A’s r-th Corrupt Computation Encoding query sends Pj∗ ’s computation encoding w.r.t.
some (f, I) such that k ∈ I,and the conditions for special abort hold with respect to this
encoding.

Define êxpt
1,k,r
A and êxpt

1,k,r−1
A to be the same as expt1,k,rA and expt1,k,r−1

A , except that whenever the
event above does not occur, the simulator outputs a “dummy evaluation”, where all parties behave
according to the honest input specification, have input 0, and evaluate the constant f(x1, . . . , xn) = 0
with I = [n]. Fixing the j∗ that maximizes the probability of A distinguishing these two experiments,
we then have that ∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1

]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).
Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance with

prover Pj∗ and verifier Pk which takes place during Hybrid1,k,η for η ∈ {r − 1, r}. Note that since
both hybrids are identical up to the r-th Corrupt Computation Encoding query, this event is
well-defined even if η is unspecified.

With this event defined, we can rewrite the probability

Pr
[
D(êxpt

1,k,r
A) = 1

]
as the following:

Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
.

Claim 9. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 8, it holds that

Pr
[
PSk,j∗] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode
frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does the
following:

38

1. Receive zk1,V from the challenger.

2. Run expt1,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is requested
from A.

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P message
which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1 with
probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero knowledge
protocol.

Claim 10. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 8, and the extractor CCAVal for the CCA-non-malleable
commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣ ≤ εsound,2.
Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge protocol.
Assume for the sake of contradiction that∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
1,k,r
A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where a is

the output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣,
and thus R contradicts indistinguishability of soundness mode.

Claim 11. Assuming the existence of a distinguishing A as before, the zero knowledge protocol is
(Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 8, and the extractor
CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds that for all k
and r, ∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 9 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

]∣∣∣ ≥ 1/p(λ)

39

for some polynomial p(λ).
Recall that by assumption we have∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1

]∣∣∣ ≥ 1/poly(λ). (2)

We can lower-bound the left-hand side of (2) as∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 10 is

≤
∣∣∣ (Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

(i.e., substitute out Pr
[
D(êxpt

1,k,r

A) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

1,k,r−1

A) = 1 | PSk,j∗
]

for Pr
[
D(êxpt

1,k,r

A) = 1 |
PSk,j∗

]
+ εsound,2 and Pr

[
D(êxpt

1,k,r−1

A) = 1 | PSk,j∗
]

+ εsound,2, respectively.)

Thus,∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 12. Assuming the “perfect soundness holds during soundness mode” property of the zero
knowledge argument, , it holds that for all k,∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ = 0.

Proof. This follows directly from the perfect soundness mode of the ZK argument scheme.

We now finish the proof of Claim 8 using the three claims proven above.

Proof of Claim 8. We directly achieve a contradiction by applying Claim 11 and Claim 12.

Claim 13. Assuming the ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical
zero knowledge, where CS is the class of circuits of size poly(T1) and depth T1 (i.e. the simulator
runs in size poly(T1) and depth T1), and Czk is the class of circuits of size p(T3) for all polynomials
p, and εS is any negligible function, and the CCA extractor CCAVal is a circuit of size T2, where
T2 � T3, then for any polynomial time MPC adversary A and unbounded distinguisher D, we have

|Pr[D(Hybrid2) = 1]− Pr[D(Hybrid3) = 1]| < negl(λ)

for some negligible negl.

40

Proof. This can be done by introducing |[n] \ C| · n intermediate hybrids. We index them as
Hybrid2,i,j,r for i ∈ [n] \ C, j ∈ [n], and r ∈ [q], where q = q(λ) is a polynomial upper bound on
the number of Honest Computation Encoding queries made by A. Hybrid2,i2,j2,r2 comes after
Hybrid2,i1,j1,r1 if i1 > i2, and otherwise if i1 = i2, j1 > j2, and otherwise if i1 = i2, j1 = j2, r1 > r2.
Hybrid2,i,j,r is exactly the same as the same as the previous hybrid except that if i ∈ [n] \ C,
zk2,i→j,P in the r-th Honest Computation Encoding query for Pi is now generated by running
ZKSim(Φzk,i, zk1,i,P , zk1,j,V). Note that the final hybrid in the series is exactly the same as Hybrid3.
To prove the claim, it suffices to show indistinguishability between each successive pair of subhybrids.

Assume for the sake of contradiction that (A,D) distinguishes between two successive subhybrids
Hybrid2,i2,j2,r2 and Hybrid2,i1,j1,r1 . We then construct a reduction (R,D) which breaks the
statistical ZK property of the zero knowledge protocol. R is a circuit of size poly(T2) and depth T1

and does the following:

1. Receive zk1,P from the challenger.

2. Run Hybrid2,i1,j1 with A, using zk1,i2,P = zk1,P (i.e. use the challenger’s round-one zk
prover’s message as the round-one prover’s message for Pi2 as part of its input encoding.

3. When A asks for the r-th honest computation encoding from Pi, send the message zk1,j2,V

along with the statement Φzk,i2,j2 and the witness Wzk,i2 to the challenger.

4. Receive zk2,P from the challenger.

5. Generate Pi2 ’s honest computation encoding in the same way as in Hybrid2,i1,j1,r1 except
using zk2,i2→j2,P = zk2,P (i.e. use the challenger’s round-two zk prover’s message as the
round-two prover’s message for Pi2 in the protocol between Pi2 and Pj2 .

6. Output the result of the experiment.

If the challenger sends an honest proof of Φzk,i2,j2 to R, then the output of R is identical to
Hybrid2,i1,j1,r1 ; otherwise, if the challenger simulates the proof, then the output of R is identical
to Hybrid2,i2,j2,r2 . Note that R has size � T3; thus by assumption (R,D) contradicts (CS , Czk, εS)-
statistical zero knowledge of the zero knowledge protocol.

Claim 14. Assuming that the CCA non-malleable commitment scheme satisfies (C, ε)-CCA security
(Definition 17), where C contains all circuits of size poly(T1) where T1 is the size of the ZK simulator,
and ε is any negligible function, we have that for any polynomial time MPC adversary (A,D):

|Pr[D[Hybrid3] = 1]− Pr[D[Hybrid4] = 1]| ≤ negl(λ),

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid3,i for i ∈ [n]. We define
Hybrid3,i to be identical to the previous hybrid except that if Pi is honest, nmci is generated as a
non-malleable commitment of all zero string with tag tagi during the Honest Input Encoding
query. Note that Hybrid3,0 is identical to Hybrid3 and Hybrid3,n is identical to Hybrid4. We
show that for any two intermediate hybrids Hybrid3,i−1 and Hybrid3,i, it holds that for any
polynomial time distingusher D:

|Pr[D[Hybrid3,i−1] = 1]− Pr[D[Hybrid3,i] = 1]| ≤ negl(λ)

The only difference is how nmci is generated. If the advantage in distinguishing between the two is
more than 1

poly(λ) for some polynomial poly, then, we can create a reduction R that runs in time

41

poly(T1) and breaks the security of the receiver-assisted CCA commitment scheme with the same
advantage. Here is how the reduction works:

• R submits tag∗ = tagi to the CCA challenger.

• It runs the adversary (A,D) as in Hybrid3,i−1.

• R generates nmci′ for all i′ ∈ [n] \ C and i′ 6= i as in Hybrid3,i−1.

• For all Pi′ , i
′ ∈ [n] \ C, R sends a τ -query to the CCA challenger, and uses the response as the

string τi′ given the input encoding for Pi′ .

• WhenR receives the Honest Input Encoding query for Pi, it sends α0 = (xi, ri,SM,Ki, ri,com)
and α1 = 0|xi,ri,SM,Ki,ri,com| to the challenger of the non-malleable commitment. It gets a re-
sponse nmc∗ which is a commitment with respect to the tag tagi. It it either a commitment
of α0 or α1. The reduction uses this as nmci when constructing Pi’s input encoding.

• Whenever Hybrid3,i−1 needs to extract a CCA commitment nmcj w.r.t. tagj and some honest
τi′ , R sends a query (τi′ , tagj , nmcj), and uses the response as the extracted value.

• Finally it outputs whatever D outputs.

Note that if nmc∗ is a commitment of α0, then the view is identical as in Hybrid3,i, otherwise it is
as in Hybrid3,i−1. The reduction runs in time polynomial in T1, since excluding the simulation for
ZK rest of the steps are polynomial time. Further, the CCAVal algorithm is never invoked for the
challenge tag tagi. Thus if D distinguishes between the two cases with probability 1

poly(λ) , then, it
must win in the CCA non-malleable commitment security game with the same advantage.

This proves the claim.

Claim 15. Assume that the perfectly binding commitment scheme is hiding against adversaries of
size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid4] = 1]− Pr[D[Hybrid5] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid4,i for i ∈ [n]. We define
Hybrid4,i to be identical to the previous hybrid except that if Pi is honest, comi is generated as a
non-malleable commitment of all zero string during the Honest Input Encoding query. Note
that Hybrid4,0 is identical to Hybrid4 and Hybrid4,n is identical to Hybrid5. We show that for
any two intermediate hybrids Hybrid4,i−1 and Hybrid4,i, it holds that for any polynomial time
distingusher D:

|Pr[D[Hybrid4,i−1] = 1]− Pr[D[Hybrid4,i] = 1]| ≤ negl(λ)

The only difference is how comi is generated. Assume there is an (A,D) where the distinguishing
advantage between the two is more than 1

poly(λ) for some polynomial poly. Then we can create a

reduction R that runs in time poly(T2), and contradicts hiding of the commitment scheme. The
reduction works as follows:

• It runs the adversary (A,D) as in Hybrid4,i−1.

• The reduction generates comj for all j ∈ [n] \ C and j 6= i as in Hybrid4,i−1.

42

• It sends α0 = (xi, ri,SM,Ki) and α1 = 0|xi,ri,SM,Ki| to the challenger of the perfectly binding
commitment. It gets a response com∗. It it either a commitment of α0 or α1. The reduction
uses this in constructing Pi’s input encoding

• The reduction runs the rest of the experiment exactly the same as Hybrid4,i−1.

Note that if com∗ is a commitment of α0, then the view is identical as in Hybrid4,i, otherwise
it is as in Hybrid4,i−1. The reduction runs in time polynomial in T2. Thus if D distinguishes

between the two cases with probability 1
poly(λ) , then, it contradicts hiding of the perfectly binding

commitment scheme against adversaries of size poly(T2).
This proves the claim.

Claim 16. Assume that the PRF is secure against adversaries of size poly(T2), where T2 is the size
of the CCAVal circuit. Then we have that

|Pr[D[Hybrid5] = 1]− Pr[D[Hybrid6] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid5,i for i ∈ [n]. We define
Hybrid5,i to be identical to the previous hybrid except that if Pi is honest, then during any the
Honest Computation Encoding query for Pi the hybrid generates m̂i,2 and comi,m̂i,2 using true
randomness instead of the PRF evaluations. Note that Hybrid5,0 is identical to Hybrid5 and
Hybrid5,n is identical to Hybrid6. We show that for any two intermediate hybrids Hybrid5,i−1

and Hybrid5,i, it holds that for any polynomial time distinguisher D:

|Pr[D[Hybrid5,i−1] = 1]− Pr[D[Hybrid5,i] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more than 1
poly(λ)

for some polynomial poly. Then we can create a reduction R that runs in time poly(T2), and
contradicts security of the PRF. The reduction works as follows:

• It runs the adversary (A,D) as in Hybrid5,i−1.

• The reduction generates computation encodings for all j ∈ [n] \ C and j 6= i as in Hybrid5,i−1.

• Whenever a Honest Computation Encoding query is made requesting Pi’s encoding, R
makes two queries to the PRF oracle at indices (f, I, 1) and (f, I, 2), receiving strings r1 and
r2. It then uses r1 as the randomness when computing m̂i,2, and uses r2 as the randomness
when computing comi,m̂i,2 .

• The reduction runs the rest of the experiment exactly the same as Hybrid5,i−1.

Note that if the oracle is supplying PRF values, then the view is identical as in Hybrid5,i. If the
oracle is supplying true random values, the view is as in Hybrid5,i−1. The reduction runs in time

polynomial in T2. Thus if D distinguishes between the two cases with probability 1
poly(λ) , then, it

contradicts security of the PRF against adversaries of size poly(T2).
This proves the claim.

43

Claim 17. Assume that the perfectly binding commitment scheme is secure against adversaries of
size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid6] = 1]− Pr[D[Hybrid7] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid6,i,r for i ∈ [n], r ∈ [q], where q
is a (polynomial) upper bound on the total number of Honest Computation Encoding queries
that A makes. We define Hybrid6,i,r to be identical to the previous hybrid except that if Pi is
honest, then during the r-th Honest Computation Encoding query for Pi, the hybrid computes
comi,m̂i,2 ← NICommit(0|m̂i,2|) whenever the equalities checked in the steps for Hybrid1 do not hold.
Note that Hybrid6,i,q = Hybrid6,i+1,0, Hybrid6,1,0 = Hybrid6, and Hybrid6,n,q = Hybrid7.
We show that for any two intermediate hybrids Hybrid6,i,r−1 and Hybrid6,i,r, it holds that for
any polynomial time distinguisher D:

|Pr[D[Hybrid6,i,r−1] = 1]− Pr[D[Hybrid6,i,r] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more than
1

poly(λ) for some polynomial poly. Then we can create a reduction R that runs in time poly(T2),
and contradicts security of the PRF. First, fix the randomness used in all rounds before the r-th
Honest Computation Encoding made to Pi. Let (f, I) be this r-th query. In particular, this
fixes whether or not the equalities check in the steps for Hybrid1 hold w.r.t. Pi, f and I. It also
fixes Pi’s semi-honest MrNISC message m̂i,2 which it computes when computing its r-th honest
computation encoding. If we fix the randomness such that the distinguishing advantage is maximized,
then the distinguishing advantage must still be polynomial in λ. This means that the equalities
must not hold, otherwise the two hybrids are identical.

The reduction R then works as follows. It plays a game with a commitment challenger, which
either gives a commitment to m̂i,2 or 0|m̂i,2| R does the following:

• It runs the adversary (A,D) as in Hybrid6,i,r−1, with the randomness fixed as described
above.

• When A submits the r-th Honest Computation Encoding, R queries the challenger to get com,
which it then uses as comi,m̂i,2 when generating its response on behalf of Pi.

• R runs the rest of the experiment in the same way as Hybrid6,i,r−1.

Note that if the challenger sends R a commitment to m̂i,2, then the view is identical to that
in Hybrid6,i,r−1. If the challenger sends a commitment to 0|m̂i,2|, the view is as in Hybrid6,i,r.
The reduction runs in time polynomial in T2. Thus if D distinguishes between the two cases with
probability 1

poly(λ) , then, it contradicts the hiding of the perfectly binding commitment scheme

against adversaries of size poly(T2).
This proves the claim.

Claim 18. Assuming semi-malicious security of the underlying semi-malicious protocol holds against
poly(T3)-time adversaries, where T3 is the size of the NICommit commitment scheme extractor,

|Pr[D[Hybrid5] = 1]− Pr[D[Hybrid6] = 1]| ≤ negl(λ).

44

Proof. Assume for the sake of contradiction that there exists an adversary (A,D) which distinguishes
between the two hybrids with non-negligible probability. We build a reduction (R,D) to the semi-
malicious security of the underlying semi-malicious protocol. R runs in time T3, and behaves as
follows:

1. Whenever A submits an Honest Input Encoding query asking for honest party Pi’s input
encoding, R sends the same Honest Input Encoding query for Pi to the semimalicious
challenger. It then uses the responds m̂i,1 when computing Pi’s input encoding for A.

2. Whenever A submits a Corrupt Input Encoding query on behalf of Pj , j ∈ C, R extracts
comj to obtain (x̃j , r̃j,SM,1, K̃j). If Pj ’s m̂j,1 is honestly generated, the R submits m̂j,1 to the
challenger as Pj ’s message, along with the explanation (j, x̃j , rj,SM,1).

3. Whenever A submits an Honest Computation Encoding query asking for honest party
Pi’s encoding w.r.t f and I, if the equalities checked in Hybrid1 hold, R sends the same
Honest Computation Encoding to the challenger. It uses the (semi-malicious) response
m̂i,2 when constructing Pi’s (malicious) response to A’s query. If the checks do not hold, R
responds to A without querying the challenger.

4. Whenever A submits a Corrupt Computation Encoding on behalf of corrupted party Pj
w.r.t. f and I, if all parties in I have submitted function evaluation encodings for f , and if all
parties’ ZK messages have verified correctly and the special abort condition has not occurred,
R sends the underlying semi-honest message m̂j,2 to the challenger. If any ZK messages verify
incorrectly, R sends the “abort encoding” to the challenger instead.

5. At the end of the experiment, output the view of A.

If the challenger enacts the real-world semi-malicious game, then the output of R along with
the honest parties’ outputs are identical to the output of Hybrid7. If the challenger enacts the
ideal-world game, then the outputs are identical to the output of Hybrid8. Thus by assumption,
(R,D) distinguishes between the real and the ideal world, contradicting semi-malicious security of
the underlying semi-malicious MrNISC against time-T3 adversaries.

7 Our Receiver-Assisted One-Round CCA Commitments

7.1 Overview

Our construction relies on a recent work of Khurana [Khu21] which we explain next. The main
technical contribution of [Khu21] is a tag-amplification procedure. Starting from a one-round CCA
commitment scheme (without any receiver-assisted randomness) for small tags (say tags lie in [T ′]
where T ′ = log log λ), they build a receiver-assisted scheme with a much larger tag space (say
supporting tags in [T] where T = T ′Ω(T ′)). This transformation can be applied once again on top of
the resulting receiver-assisted one-round CCA scheme to get a receiver-assisted scheme supporting
a super-polynomial number of tags. Thus, a constant number of applications suffice to construct
a scheme for 2Ω(λ) tags. At the base level, schemes supporting log log λ tags are known3 from
well-studied assumptions, such as time-lock puzzles and one-way permutations [LPS20, BL18] or
quantum hardness of LWE and classical hardness of DDH [KK19].

3Although, these base schemes satisfy security with one-tag restriction, [Khu21] give a method, which is used first
to boost it to security for a same number of tags, but without this restriction. We will follow the same approach.

45

In more detail, the tag-amplification procedure makes use of a base commitment scheme
nmc = (CCACommit,CCAVal) for small tags in [T ′] where T ′ = log log λ, an indistinguishability
obfuscator iO, a public-key encryption scheme PKE with dense public keys, a non-interactive
witness indistinguishable proofs NIWI, a puncturable PRF PPRF, and a one-way permutation
OWP : {0, 1}`OWP → {0, 1}`OWP (actually a one-way function with verifiable range suffices, but we
describe using a permutation for simplicity).

In the scheme, the tag space of the resulting scheme consists of subsets of [T ′] of size exactly

T ′/2. Thus, T =
(
T ′

T ′/2

)
. The idea is the following: to commit to a message m with respect to

tag ∈ [T], parse tag as (t1, . . . , tT ′/2) where each ti ∈ [T ′]. Then, the commitment simply consists
of an iO obfuscation of the program described in Figure 4, where pk and the PPRF key KPPRF are
freshly sampled by the committer and hardwired into the program.

The Circuit G[t1, . . . , tT ′/2,m,KPPRF, pk]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF, public key pk,

Input: ρ ∈ {0, 1}`OWP

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = PKE.Enc(pk, 0`OWP ; r1),

• For i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG for the language LG defined below.

2. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1
∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}`OWP s.t. c0 = Enc(pk, x) ∧ OWP(x) = ρ
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = aCCA′.CCACommit(ti,m)
}

Figure 4: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]

The scheme builds on the intuition (borrowed from [Khu21]) that such a tag amplification can
be done non-interactively without receiver’s assistance if one-message zero-knowledge existed (in
the plain model, without a crs). The idea is that one can generate a non-malleable commitment of
message m with respect to tag by computing c1, . . . , cT ′/2 where each ci = nmc.CCACommit(ti,m),
as also done in the description of the circuit in Figure 4, and simply computing a ZK proof π to the
fact that all ci’s were generated by committing a consistent message m. The resulting commitment
consists of (c1, . . . , cT ′/2, π). This argument can be made formal if such a ZK existed. Roughly,
since we use a ZK, the soundness property ensures that the CCAVal oracle is queried on well-formed
commitments, all committed to same value m, and therefore in the reduction nmc.CCAVal(?) is only
needed to run for some tags, and not all. At the same time the zero knowledge property along with
the hiding property of nmc can be used to argue indistinguishability of the challenge commitments.

Since one-message zero-knowledge does not exist, the hope is that generating commitments this
way can be useful to revive this approach. A receiver can evaluate the program on a randomly

46

chosen input ρ to compute (c0, c1, . . . , cT ′/2, π). The point is that if π verifies, then this means that

unless c0 is an encryption of OWP−1(ρ), c1, . . . , cT ′/2 must be well formed nmc commitments of the
same message m. This ensures that the CCAVal oracle is invoked on only well formed commitments,
which was important in the previous proof. Secondly, to argue security one can go “input-by-input”.
For α ∈ [0, 2`OWP − 1], we switch the obfuscated circuit to commit to m1 as opposed to m0 when the
input ρ ≤ α. To do so, we need to hardwire non-uniformly β = OWP−1(α) into the reduction at
each hybrid, so that the reduction can generate c0 by encrypting β and use it to prove NIWI. For
the security arguments to go through it requires that the public-key encryption, NIWI and the base
commitments are more secure with advantage at least 2−`OWP .

This yields the following contradiction. On one hand, public-key encryption needs to be more
secure than the OWP to argue security. On the other hand, we need OWP to be secure against
the time it takes to break c0 to extract a pre-image of ρ chosen by the challenger to show that the
adversary does not query the CCAVal algorithm on non-well formed commitments.

Nevertheless, [Khu21] observed that if the receiver randomness ρ’s are chosen after declaring the
set of commitments that would be queried to the CCAVal oracle, this issue can be handled via the
following clever idea: the reduction can guess the secret-keys {ski} associated with the public keys
{pki} used in the commitment programs {Pi} chosen by the adversary. If a program Pi produces
“bad” outputs (c0, c1, . . . , cT ′/2, π) on a large fraction of points ρ, then one can recover inverses of

OWP−1(ρ) using a non-uniformly fixed secret key sk. This gives a non-uniform reduction to the
security of OWP.

There is another reason why the construction of [Khu21] only provides security if the receiver
randomness is chosen only after all commitments Pi for which CCAVal(?) may be queried are
displayed the adversary. The reason is that on one hand nmc needs to be more secure than OWP
to argue indistinguishability, on the other hand, OWP needs to be secure against the circuit that
can run nmc.CCAVal(?) to handle CCAVal queries in the reduction which can be done in any order.
This problem does not arise if adversary outputs commitments Pi for which CCAVal is queried, up
front: the reduction never really has to actually run CCAVal to recover inverses to OWP challenge
as the commitments Pi are already revealed.

In summary, the above idea only works in the setting where receiver randomness is chosen after
the adversary displays all commitments for which CCAVal may be queried, but unfortunately it fails
in our setting, where receiver randomness can be sampled uniformly, at any point, any number
of times the adversary demands. Our main idea is to introduce a new axis of hardness. We use
quantum-classical tradeoffs. We replace the public key encryption with a perfectly binding quantum
polynomial-time breakable commitment scheme and rely on an nmc schemes where nmc.CCAVal
runs in quantum polynomial time.

How does this help? Consider that the OWP is quantum secure, then if the adversary submits
a commitment P and a query CCAVal(ρ, tag, P) such that P [ρ] = (c0, c1, . . . , cT ′/2, π) where π
verifies, and c1, . . . , cT ′/2 are not consistent and well formed, then one can form an efficient quantum
adversary that runs in time polynomial in the time of the adversary that breaks the OWP security.
The idea is that for this to happen c0 must be a commitment of OWP−1(ρ) due to perfect soundness
of NIWI. And, then, c0 can be simply inverted by running a quantum polynomial time extractor of
the commitment. Note that the reduction also needs to respond to CCAVal queries while interacting
with the adversary, but those can also be run in quantum polynomial time.

In the classical world, commitments to compute c0 and nmc, NIWI and other primitives can be
made to be more secure than OWP to go input by input and argue security of the commitment
scheme. This brings us to one last issue. Except we are not aware of a quantum secure one-way
permutation, from well-studied assumptions. To deal with this issue, we observe that we could

47

have also used a quantum secure collision resistant hash function, where the keys are randomly
chosen (such as known via the small-integer soultion/LWE problems). In this case c0 will be used
to commit to a collision for the hash function.

Technical Remarks. Before we describe our construction, we mention a technical issue. The
underlying non-malleable commitments such as [BL18, KK19] have to issues that we have to deal
with:

• They satisfy security with one-tag restriction, and,

• To support Ω(log log λ), assuming subexponential security of the underlying assumptions,
these schemes are only quasi-polynomially secure. Thus, our transfomation should work with
those parameters.

Our transformation below actually works with a quasi-polynomially secure base commitment. For
the first problem, we follow as in [Khu21], and take an nmc with one-tag restriction and convert
it to a receiver assisted scheme for a same number of tags, but without this restriction. This
transformation is extremely similar to our tag-amplification and we sketch this in Section 7.3. We
now describe our construction.

7.2 Our Tag-Amplification Transformation

Our construction is essentially identical to the construction provided by [Khu21] except for a few
important changes, which helps us to address the shortcomings in the scheme of [Khu21], mentioned
above.

Used Primitives. We make use of the following primitives and instantiated with the follow-
ing parameters. These instantiated parameters for the primitives we use are loose for what we require.

Receiver-assisted one-round CCA commitments: As a starting point, we make use of a
receiver-assisted one-round CCA commitment aCCA′ with security parameter λaCCA′ for small tag
space T ′(λaCCA′). The tag-space T ′(λaCCA′) is at least log . . . log(λaCCA′)︸ ︷︷ ︸

O(1) times

and at most λO(1). We now

describe the circuit class against which security holds and other properties involved:

• The scheme satisfies (CaCCA′ , εaCCA′)-security where CaCCA′ consists of all circuits of size

polynomial in 1
εaCCA′

where εacc′ = 2λ
c1(log log λaCCA′)

−1

where c1 > 0 is some constant.

• aCCA′.CCAVal(?) runs in quantum polynomial time.

• Let `aCCA′(λaCCA′) be the length of the string τ chosen by the receiver,

Resulting Primitive. At the end of a single step of this transformation, we will build the scheme
aCCA scheme with security parameter λ. We set λaCCA′ = λ. After a single step transformation, the

resulting scheme will be secure against adversaries of size polynomial in saCCA = 2λ
c2(log log λ)−1

with

advantage bounded by εaCCA = 2−λ
c2(log log λ)−1

for some other constant c2 > 0. aCCA.CCAVal(?)
will also be quantum polynomial time implementable. The resulting tag space will be T (λ) where
T = T ′Ω(T ′/2). As a result of applying the procedure constant number of times, we get a super-
polynomial number of tags. At the base level, this can be instantiated by taking the scheme

48

of [LPS20, BL18], which satisfies CCA security with one-tag restriction, and then applying the
transformation as given in Section 7.3 to give a receiver assisted scheme aCCA′ without this restric-
tion. The scheme in [LPS20, BL18] can be instantiated using iterated squaring assumption and the
DDH (or SXDH over bilinear maps) assumptions both of which are polynomial time quantum broken.

Perfectly-Binding Quantum Extractable Commitment: We require a perfectly biding com-
mitment scheme NICom, which is extractable in quantum polynomial time. Further, it takes as
input λNICom, and guarantees 2−λNICom indistinguishability against adversaries of size polynomial in
2λNICom . Such commitments can be built using subexponential hardness of DDH

Quantum-Secure Collision Resistant Hash Functions with random keys: We require a
sub-exponentially secure family of hash functions {Hλh : K × X → Y}λh∈N, where the key space

is K = {0, 1}`hkey , input space is X = {0, 1}`hinp , and the output space is Y = {0, 1}`hout . Above
`hinp , `hout , `hkey are polynomials in λh. We require the following additional properties:

• For every key K ∈ K there exists unequal x, x′ ∈ X such that H(K,x) = H(K,x′).

• When K ← K, then for any quantum algorithm running in time polynomial in 2λh , the
advantage in finding the collisions is bounded by 2−λh

We set λh as follows. Let λh be such that `hkey = λc3(log log λ)−1
where c3 = c1/100. This means

that λh = λc
′
3(log log λ)−1

for some c′3 < c3. In the resulting scheme, c2 can be arbitrary constant less
than c′3.

Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. This
scheme uses λiO as the security parameter and is secure against adversaries of size 2λiO with advantage
2−λiO . Such a primitive can be built using well-studied assumptions as shown in [JLS21a, JLS21b].

Puncturable PRF: We require a puncturable PRF, PPRF = (Puncture,Eval). Assume the
length of the key is randomly chosen of length `PPRF(λPPRF) where λPPRF is its security param-
eter. The length of the output is some polynomial implicit in the scheme. We assume that the
PPRF is secure against adversaries of size polynomial in 2λPPRF with a maximum advantage of 2−λPPRF .

NIWI: We require a non-interactive witness indistinguishable proof NIWI for NP, that is secure
against adversaries of size polynomial in 2λNIWI with advantage bounded by 2−λNIWI . This primitive
can be built assuming subexponentially hard SXDH over Bilinear Maps.

We set λiO = λNIWI = λPPRF = λNICom as a large enough polynomial. In particular, setting
2λiO � Time(aCCA′.CCAVal(?)) · 2λ suffices.

Our final observation is that all the primitives described above exist from the following primitives
listed under our theorem statement.

Theorem 3. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A quantum polynomial time breakable time lock puzzle as in Definition 3 exist,

• LWE is subexponentially secure against quantum adversaries of subexponential size,

• SXDH is subexponentially secure against adversaries of subexponential size,

49

then, there exist a receiver assisted one round CCA commitment scheme (as in Definition 14)
supporting a super-polynomial number of tags. The scheme is secure against adversaries of size

polynomial in 2λ
c(log log λ)−1

for some c > 0.

Construction. We now give our construction. We first define the tag space T . As in [Khu21], we

will set T =
(
T ′

T ′/2

)
which is precisely equal to the number of unique subsets of [T ′] of size [T ′/2].

Let φ be a polynomial time computable bijective map that takes as input tag ∈ [T], and outputs a
unique subset {t1, . . . , tT ′/2} of [T ′] of size T ′/2. These subsets are unique upto permutation. We
assume that they are sorted in ascending order.

aCCA.CCACommit(tag,m; r): Compute the following steps.

• Compute φ(tag) = (t1, . . . , tT ′/2). Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute G̃ ← iO(G[t1, . . . , tT ′/2,m,KPPRF]) by obfuscating the circuit described in

Figure 5. Output G̃.

aCCA.Opening(τ, tag, G̃,m, r): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,
• Compute φ(tag) = (t1, . . . , tT ′/2),

• Check if G̃ = aCCA.CCACommit(tag,m; r). Abort if its not the case. Derive the PPRF
key KPPRF used in code of G described in Figure 5.

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π),

• From the code of Figure 5, use the PPRF key kPPRF to derive r′i as in the code such that ci =
aCCA′.CCACommit(ti,m; r′i). Compute and output σi = aCCA′.Opening(ρ′, ti, ci,m, r

′
i)

for i ∈ [T ′/2].

aCCA.Open(τ, tag, G̃,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,
• Compute φ(tag) = (t1, . . . , tT ′/2) and σ = (σ1, . . . , σT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language de-
scribed in Figure 5. Abort if the proof does not verify,

• Output 1 if for every i ∈ [T ′/2], aCCA′.Open(ρ′, ti, ci,m, σi). Output ⊥ otherwise.

We now argue various properties involved. The correctness of opening is immediate due to
the correctness of opening of the underlying commitment scheme aCCA′ and correctness and com-
pleteness of other primitives involved. To argue the extraction property, we now describe the
aCCA.CCAVal algorithm.

aCCA.CCAVal(τ, tag, G̃) : Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
5. Abort if the proof does not verify,

50

The Circuit G[t1, . . . , tT ′/2,m,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`hkey

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = NICom(0`hinp ; r1),

• For i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG for the language LG defined below.

2. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1
∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = aCCA′.CCACommit(ti,m)
}

Figure 5: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]

• Otherwise output m if m = aCCA′.CCAVal(ρ′, t1, c1) = . . . = aCCA′.CCAVal(ρ′, tT ′/2, cT ′/2).

The extraction property then follows immediately from the extraction property of the underly-
ing aCCA′ scheme. The idea is that in the last step, if m = aCCA′.CCAVal(ρ′, t1, c1) = . . . =
aCCA′.CCAVal(ρ′, tT ′/2, cT ′/2), then, there exists openings σ1, . . . , σT ′/2, that opens (c1, . . . , cT ′/2) to
m due to the extraction property of aCCA′. Similarly, the reverse is also true.

We now move onto the security proof.

7.2.1 Security Proof

The security proof can be structured by giving indistinguishable hybrids. The first one corresponds
to the game where the challenger computes aCCA.CCACommit(tag∗,mb) for a random b, where as
the last hybrid is independent of b. We describe the first hybrid elaborately, where as in the later
hybrids, we just describe the change.

Hybrid0 : In this hybrid,

1. The challenger manages a list L that is initially empty. The contents of the list are visible to
the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -query. Challenger samples τ ′ ←
{0, 1}`aCCA and appends τ ′ to L.

51

(b) Adversary can ask for an abitrary polynomially many (τ, tag,P)-query for any τ ∈ L,
any tag 6= tag∗, and any commitment P. The challenger computes CCAVal(τ, tag,P) and
sends the result to the adversary.

4. The adversary submits two messages m0,m1 of equal length. The challenger samples b← {0, 1},
and computes P∗ ← aCCA.CCACommit(tag∗,mb). The adversary gets P∗ from the challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b and 0
otherwise.

Hybrid1,j∈[0,Q] : This hybrid is the same as the previous hybrid, except that we modify how the

CCAVal queries corresponding to jth τ query is responded. Recall that the challenger maintains
a list L, and every time adversary makes a τ query, a randomly sampled τ is added to this list.
In this hybrid, let τj be the sampled τ the jth τ−query made by the adversary. In this hybrid we
replace how CCAVal query is responded for CCAVal(τj , tag,P) for tag 6= tag∗ and τj ∈ L. The new
code is defined as follows.

aCCA.CCAVal∗(τj , tag,P) : Compute the following steps.

• Parse τj = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and φ(tag∗) = (t∗1, . . . , t
∗
T ′/2),

• Since tag 6= tag′, there must exist a first index i ∈ [T ′/2] such that ti 6= {t∗1, . . . , t∗T ′/2}.

• Compute P[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
Figure 5. Abort if the proof does not verify,

• Otherwise output m where m = aCCA′.CCAVal(ρ′, ti, ci).

Note that Hybrid1,0 is the same as Hybrid0. We now show that Hybrid1,j is indistinguishable to

Hybrid1,j+1. We show that if there is an adversary with size polynomial in 2λh that distinguishes these
hybrids with probability p, then there exists a (quantum) reduction that is runs in time polynomial
in poly(2λh), and wins in the collision resistant hash function security game with probability p.
Thus, showing that p < 2−λh . We show our reduction.

• Reduction proceeds by maintaining a list L honestly,

• It generates all τ queries honestly, except that it for the (j + 1)th query, it sets τj+1 = (ρ, ρ′)
where ρ is received from the challenger of the hash function and ρ′ is sampled randomly by
the challenger.

• It answers CCAVal queries for every τi for i ≤ j using CCAVal∗ (this is well defined because
adversary does not use tag∗). It can be answered in quantum polynomial time as aCCA′.CCAVal
can be implemented in quantum polynomial time.

• It answers CCAVal queries for every τi for i > j + 1 using CCAVal. These queries can be
answered in quantum polynomial time.

• For τj+1 it does the following. Assume that the query is for CCAVal(τj+1, tag,P) for tag 6= tag∗.
Then, do the following:

52

– Run P[ρ] = (c0, c1, . . . , cT ′/2, π).

– Output ⊥ if π does not verify. If it does, break open c0 in quantum polynomial time to
recover x, x′. Check if H(ρ, x) = H(ρ, x′) for x 6= x′. If this is true, output x, x′ as the
answer to the hash function challenger.

– Otherwise, output aCCA′.CCAVal(ρ′, t1, c1) to the adversary.

Observe that because aCCA′.CCAVal runs in quantum polynomial time, the reduction runs in
quantum time polynomial in saCCA. Further observe, if A observes a difference between Hybrid1,j

and Hybrid1,j+1, then there must be a query of the form CCAVal(τj+1, tag,P) that produces different
outputs. Parsing τj+1 = (ρ, ρ′), and P[ρ] = (c0, c1, . . . , cT ′/2, π), this means that π verifies, but in the
least there exists two indices i1, i2 such that aCCA′.CCAVal(ρ′, ti1 , ci1) 6= aCCA′.CCAVal(ρ′, ti2 , ci2).
By soundness of NIWI, it means that c0 must be a commitment of a collision for the hash key ρ.
Thus, the reduction will succeed at that point.

Thus, we have the following claim.

Lemma 1. Assuming that H is a secure against poly(2λh) sized quantum circuits, NIWI is sound,
and aCCA′ satisfies perfect correctness/extraction properties, we have that for any adversary of size
poly(saCCA):

|Pr[A(Hybrid1,j) = 1]− Pr[A(Hybrid1,j+1) = 1]| ≤ 2−λh

for j ∈ [0, Q− 1].

We now describe a series of hybrids. For α ∈ [0, 2
`hkey].

Hybrid2,α : This hybrid is the same as the previous hybrid, except that in order to generate
P∗, we obfuscate the circuit in Figure 6. Namely, compute φ(tag∗) = (t∗1, . . . , t

∗
T ′/2). Output

P∗ = iO(G1) where G1 = G1[t∗1, . . . , t
∗
T ′/2,mb,m0, α,KPPRF].

Note that the only difference between Hybrid1,Q and Hybrid2,0 is how P∗ is generated. In
Hybrid1,Q, it is generated by obfuscating program G[t∗1, . . . , t

∗
T ′/2,mb,KPPRF], where is Hybrid2,0 it it

generated by obfuscating program G1[t∗1, . . . , t
∗
T ′/2,mb,m0, 0,KPPRF]. These programs have identical

input output behavior. Thus if there exists an adversary A that distinguishes these hybrids with
probability p, then, we can build a reduction that distinguishes iO with probability p. The reduction
needs to invoke the code of A, and answer polynomially many CCAVal queries. Therefore, its time
is polynomial in time of A and the time of CCAVal. We set λiO large enough to ensure the following
claim.

Lemma 2. Assuming that iO is secure against circuits that run in time poly(2λiO), then, for any
adversary A of size polynomial in poly(saCCA), it holds that:

|Pr[A(Hybrid1,Q) = 1]− |Pr[A(Hybrid2,α) = 1]| ≤ 2−λiO

Hybrid3 : This hybrid is the same as the previous hybrid except to generate P∗, we obfuscate the
circuit in Figure 5 by committing to m0.

Note that the only difference between Hybrid
2,2

`hkey
and Hybrid3 is how P∗ is generated. In

Hybrid
2,2

`hkey
, it is generated by obfuscating program G1[t∗1, . . . , t

∗
T ′/2,mb,m0, α = 2

`hkey ,KPPRF],

where as in Hybrid3 it it generated by obfuscating program G[t∗1, . . . , t
∗
T ′/2,m0,KPPRF]. These

programs have identical input output behavior. Thus if there exists an adversary A that distinguishes
these hybrids with probability p, then, we can build a reduction that distinguishes iO with probability

53

The Circuit G1[t1, . . . , tT ′/2,mb,m0, α,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, and α ∈

[0, 2`hkey].

Input: ρ ∈ {0, 1}`hkey

Computation: The computation can be divided into two cases.
Case: ρ < α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0`hinp ; r1) and for i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ ≥ α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0`hinp ; r1) and for i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1
∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = aCCA′.CCACommit(ti,m)
}

Figure 6: The Circuit G1[t1, . . . , tT ′/2,mb,m0, α, kPPRF]

54

p. The reduction needs to invoke the code of A, and answer polynomially many CCAVal queries.
Therefore, its time is polynomial in time of A and the time of CCAVal. We set λiO large enough to
ensure the following claim.

Lemma 3. Assuming that iO is secure against circuits that run in time poly(2λiO), then, for any
adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid3) = 1]− |Pr[A(Hybrid
2,2

`hkey
) = 1]| ≤ 2−λiO

Indistinguishability between Hybrid2,α and Hybrid2,α+1 To prove indistinguishability between
Hybrid2,α and Hybrid2,α+1 we introduce indistinguishable intermediate hybrids.
Hybrid′0 : This hybrid is the same as Hybrid2,α.

Hybrid′1 : This hybrid is the same as Hybrid2,α except that we generate P∗ differently. We puncture
the PPRF key KPPRF at α, and hardwire the response at ρ = α. Namely, compute the punctured
key k∗PPRF at α. We compute a value v as follows. Compute (r1, r2, r3) ← PPRF.Eval(KPPRF, α).
Then:

• Compute c0 = NICom(0
`hinp ; r1) and for i ∈ [T ′/2], compute ci = aCCA′.CCACommit(t∗i ,mb; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG.

• Set v = (c0, c1, . . . , cT ′/2, π).

Output P∗ = iO(G2) where G2 = G2[t∗1, . . . , t
∗
T ′/2,mb,m0, α,K

∗
PPRF, v] as described in Figure 7.

Note that the only difference between Hybrid′0 and Hybrid′1 is how P∗ is generated. In Hybrid′0,
it is generated by obfuscating program G1[t∗1, . . . , t

∗
T ′/2,mb,m0, α,KPPRF], where as in Hybrid′1 it is

generated by obfuscating G2[t∗1, . . . , t
∗
T ′/2,mb,m0, α,K

∗
PPRF, v] where the key K∗PPRF is punctured

at α. Note that if PPRF key is correct at unpunctured points, these circuits have identical
behavior on all inputs ρ 6= α. On input ρ = α, the outputs are made to be identical by setting
v = (c0, c1, . . . , cT ′/2, π) which is computed as described in the Hybrid′1 description. Thus, the
security follows from the security of iO. We have that:

Lemma 4. Assuming that iO is secure against circuits that run in time poly(2λiO) and PPRF is
correct at unpunctured points, then, for any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid3) = 1]− |Pr[A(Hybrid
2,2

`hkey
) = 1]| ≤ 2−λiO

Hybrid′2 : This hybrid is the same as the previous hybrid except while computing the hardwired
value v, we replace r1, r2, r3 ← PPRF.Eval(KPPRF, α) to a truly random string.

Thus if there exists an adversary A that distinguishes these hybrids with probability p, then,
we can build a reduction that breaks the pseudorandomness at the punctured points property of
PPRF with probability p. The reduction needs to invoke the code of A, and answer polynomially
many CCAVal queries. Therefore, its time is polynomial in time of A and the time of CCAVal. We
set λPPRF large enough to ensure the following claim.

Note that the only difference between Hybrid′1 and Hybrid′2 is how r = (r1, r2, r3) is generated.
In Hybrid′1 it is generated by computing PPRF(KPPRF, α) where as in Hybrid′2 it is generated r is
sampled randomly. Note the in both the hybrids, the key appears in a punctured form K∗PPRF,

55

The Circuit G2[t1, . . . , tT ′/2,mb,m0, α,KPPRF, v]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, α ∈ [0, 2`hkey]

and a value v.

Input: ρ ∈ {0, 1}`hkey

Computation: The computation can be divided into two cases.
Case: ρ < α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0`hinp ; r1) and for i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ > α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0`hinp ; r1) and for i ∈ [T ′/2], compute ci = aCCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ = α Output v.
Language LG = LG1

∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = aCCA′.CCACommit(ti,m)
}

Figure 7: The Circuit G2[t1, . . . , tT ′/2,mb,m0, α, kPPRF, v]

56

punctured at α. Thus if there exists an adversary A that distinguishes these hybrids with probability
p, then, we can build a reduction that breaks the pseudorandomness at the punctured points
property of PPRF with probability p. The reduction needs to invoke the code of A, and answer
polynomially many CCAVal queries. Therefore, its time is polynomial in time of A and the time of
CCAVal. We set λPPRF large enough to ensure the following claim.

Lemma 5. Assuming that PPRF is secure against circuits that run in time poly(2λPPRF), then, for
any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′1) = 1]− |Pr[A(Hybrid′2) = 1]| ≤ 2−λPPRF

Hybrid′3 : This hybrid is the same as the previous hybrid except that while we compute the hard-
wired value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment as c0 = NICom(xα, x

′
α) where

(xα, x
′
α) ∈ ({0, 1}`hin)2, xα 6= x′α and H(α, xα) = H(α, xα).

Note that the only difference between Hybrid′2 and Hybrid′3 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how c0 is generated. In Hybrid′2 it is generated by computing
c0 as an honest commitment of 02`hin where as in Hybrid′3 it is generated by committing to a collision
xα, x

′
α for the hash key α. The openings for these commitments are not used to compute π. Thus if

there exists an adversary A that distinguishes these hybrids with probability p, then, we can build
a reduction that breaks the security of the commitment with probability p. The reduction is non
uniform and must know a collision for hash key α. The reduction also needs to answer polynomially
many CCAVal queries. Therefore, its time is polynomial in time of A and the time of CCAVal. We
set λNICom large enough to ensure the following claim.

Lemma 6. Assuming that NICom is secure against circuits that run in time poly(2λNICom), then, for
any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′2) = 1]− |Pr[A(Hybrid′3) = 1]| ≤ 2−λNICom

Hybrid′4 : This hybrid is the same as the previous hybrid except that while we compute the hardwired
value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W) where X = (c0, . . . , cT ′/2) and W
is consists of opening of c0 = NICom(xα, x

′
α).

Note that the only difference between Hybrid′3 and Hybrid′4 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how π is generated. In Hybrid′3 it is generated by using
openings of c1, . . . , cT ′/2 where as in Hybrid′4 it is generated by using opening of c0 as the witness.
Thus if there exists an adversary A that distinguishes these hybrids with probability p, then, we
can build a reduction that breaks the security of the NIWI with probability p. The reduction also
needs to answer polynomially many CCAVal queries. Therefore, its time is polynomial in time of A
and the time of CCAVal. We set λNIWI large enough to ensure the following claim.

Lemma 7. Assuming that NIWI is secure against circuits that run in time poly(2λNIWI), then, for
any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′3) = 1]− |Pr[A(Hybrid′4) = 1]| ≤ 2−λNIWI

Hybrid′5 : This hybrid is the same as the previous hybrid except that while we compute the hardwired
value v = (c0, c1, . . . , cT ′/2, π), we replace for i ∈ [T ′/2], ci = aCCA′.CCACommit(t∗i ,m0).

57

Note that the only difference between Hybrid′4 and Hybrid′5 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how c1, . . . , cT ′/2 is generated. In Hybrid′4 it is generated
by computing each ci = aCCA′.CCACommit(t∗i ,mb) for i ∈ [T ∗], where as in Hybrid′4 it is generated
by computing each ci = aCCA′.CCACommit(t∗i ,m0) for i ∈ [T ∗]. The openings of these commit-
ments are not used in generating π. Note that in these hybrids, the adversary gets an oracle to
aCCA′.CCAVal() oracle but it does not query it on (t∗1, . . . , t

∗
T ′/2). Thus if there exists an adversary

A that distinguishes these hybrids with probability p, then, we can build a reduction that breaks
the security of the aCCA′ with probability p.

Lemma 8. Assuming that aCCA′ is secure against circuits in CaCCA′ , then, for any adversary A of
size poly(saCCA′), it holds that:

|Pr[A(Hybrid′4) = 1]− |Pr[A(Hybrid′5) = 1]| ≤ T ′ · εaCCA′

Hybrid′6 : This hybrid is the same as the previous hybrid except that while we compute the hardwired
value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W) where X = (c0, . . . , cT ′/2) and W
is consists of opening of c1, . . . , cT ′/2 committing to m0.

Hybrid′5 and Hybrid′6 are indistinguishable due to the security of NIWI, and follow similarly as
in the indistinguishability between Hybrid′3 and Hybrid′4. Thus we have:

Lemma 9. Assuming that NIWI is secure against circuits that run in time poly(2λNIWI), then, for
any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′5) = 1]− |Pr[A(Hybrid′6) = 1]| ≤ 2−λNIWI

Hybrid′7 : This hybrid is the same as the previous hybrid except that while we compute the hardwired
value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment c0 as c0 = NICom(02`hin).

Hybrid′6 and Hybrid′7 are indistinguishable due to the security of NICom, and follow similarly as in
the indistinguishability between Hybrid′2 and Hybrid′3. Thus we have:

Lemma 10. Assuming that NICom is secure against circuits that run in time poly(2λNICom), then,
for any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′6) = 1]− |Pr[A(Hybrid′7) = 1]| ≤ 2−λNICom

Hybrid′8 : This hybrid is the same as the previous hybrid except while computing the hardwired value v,
we replace r1, r2, r3 from being truly random to be generated by (r1, r2, r3)← PPRF.Eval(KPPRF, α).

Hybrid′7 and Hybrid′8 are indistinguishable due to the security of PPRF, and follow similarly as in
the indistinguishability between Hybrid′1 and Hybrid′2. Thus we have:

Lemma 11. Assuming that PPRF is secure against circuits that run in time poly(2λPPRF), then, for
any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′7) = 1]− |Pr[A(Hybrid′8) = 1]| ≤ 2−λPPRF

58

Hybrid′9 : This hybrid is the same as Hybrid2,α+1.

Hybrid′8 and Hybrid′9 are indistinguishable due to the security of iO, and follow similarly as in
the indistinguishability between Hybrid′0 and Hybrid′1. Thus we have:

Lemma 12. Assuming that iO is secure against circuits that run in time poly(2λiO) and PPRF is
correct at unpunctured points, then, for any adversary A of size poly(saCCA), it holds that:

|Pr[A(Hybrid′8) = 1]− |Pr[A(Hybrid′9) = 1]| ≤ 2−λPPRF

Final Advantage. Summing up the advantage, we have that the total advantage is bounded by:

2
`hkeyO(2−λiO + 2−λNIWI + 2−λNICom + 2−λPPRF) + 2

`hkeyO(T ′ · εaCCA′) +O(2−λh) (3)

≤ εaCCA (4)

The last inequality follows from the parameters we set.

7.3 Removing One-Tag Restriction

To remove one tag restriction, [Khu21] suggested the following approach. We explain the idea with
the help of an ideal one-message zero-knowledge and standard one-round CCA commitments. Let
nmc′ be a commitment with tag space T ′(λ) = log . . . log λ︸ ︷︷ ︸

O(1) times

with one-tag restriction. We can build

a CCA scheme without this restriction as follows. Suppose we want to commit to a message m
with respect to a tag t ∈ [T ′], then we can output the new commitment nmc.CCACommit(t,m) as:
(c1, . . . , cT ′ , π) where:

• For i 6= t, ci = nmc.CCACommit(i,m) is a commitment of m with tag i,

• ct = ⊥,

• π is proof that the commitment is generated in the way described above.

The reason this gets around the issue of one-tag restriction is because for any tag t 6= t′, we can run
nmc.CCAVal(t′, ?), by accessing just nmc′.CCAVal(t, ?). This is because in the new commitment to the
message m, nmc.CCACommit(t,m) does not invoke nmc′.CCACommit() with respect to tag t (but uses
every other tag), where as nmc.CCACommit(t′, ?) will always have a component generated by using
nmc′.CCACommit(t, ?) as t′ 6= t. Further, the soundness of π will ensure that all commitments that
are queried are consistently generated as in the procedure so that extraction using nmc′.CCAVal(t, ?)
is correct. The security can then be proven by first simulating π and then switching the commitments
one by one.

While this is the idea relying on a one-message zero-knowledge, the above idea can be formalized
without such a zero-knowledge relying on receiver assistance. Let aCCA′ be the underlying receiver
assisted CCA scheme for tag space [T ′] above. We build our scheme aCCA without one-tag restriction
for the same tag [T ′] following the same approach as our tag amplification transformation, except
that the obfuscation corresponds to a slightly different program. The only change is that now, on
input the receiver string τ it will produce c0, c1, . . . , cT ′ , π where c1, . . . , cT ′ are generated in the
way described above.

We now describe this transformation below. We use the same primitives, notation and parameters
as in our tag amplification transformation, the only change being that aCCA′ suffers from one-tag
restriction and that T = T ′. The proof of security is essentially is essentially the same as in our tag
amplification construction. We defer it to the full version.

59

aCCA.CCACommit(tag,m; r): Compute the following steps.

• Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute F̃ ← iO(F [tag,m,KPPRF]) by obfuscating the circuit described in Figure 8.
Output F̃ .

aCCA.Opening(τ, tag, G̃,m, r): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,
• Check if F̃ = aCCA.CCACommit(tag,m; r). Abort if its not the case. Derive the PPRF

key KPPRF used in code of F described in Figure 8.

• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π),

• From the code of Figure 8, use the PPRF key kPPRF to derive r′t as in the code so
that ct = aCCA′.CCACommit(t,m; r′i) for t ∈ [T ′] \ tag. Compute and output σt =
aCCA′.Opening(ρ′, t, ct,m, r

′
t) for i ∈ [T ′] \ t.

aCCA.Open(τ, tag, F̃ ,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`aCCA′ ,
• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π) and verify π using NIWI.Vf for the language described

in 8. Abort if the proof does not verify,

• Output 1 if for every t ∈ [T ′] \ tag, aCCA′.Open(ρ′, t, ct,m, σt). Output ⊥ otherwise.

Remark 3 (Opening algrorithm for base scheme with T ′ tags). For base commitments as in
[BL18, LPS20], the aCCA′.Opening simply outputs the randomness to commit the message.

8 Primitives used for Constructing Our Zero-Knowledge Protocol

In this section, we define and construct two tools that we will use to build our reusable statistical
ZK arguments with sometimes statistical soundness. We first discuss their definitions and then show
how to construct them. The first notion is that of Non-interactive Distributional Indistinguishability
NIDI [Khu21]. Unfortunately, we can’t directly use their construction and therefore we provide the
construction that satisfies our requirements. The second notion is that of a sometimes extractable
equivocal commitments SEE, which is a contribution of this work. A reader may skip this section
and proceed onto Section 2.2.1 for an overview of our zero-knowledge argument construction, and
then come back here for formal details about these ingredients.

8.1 Non-Interactive Distributional Indistinguishability

In this section, we define the notion of Non-Interactive Distributional Indistinguishability arguments
(NIDI for short). The definitions below are strengthenings of analogous definitions given by Khu-
rana [Khu21], where the difference is that their definitions assume that the verifier’s message comes
after the prover’s message; see Remark 5 for details.

Definition 18 (Syntax of NIDI). A NIDI for an NP language L and its relation RL consists of the
following algorithms.

60

The Circuit F [tag,m,KPPRF]

Hardwired: Tag tag ∈ [T ′], Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`hkey

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′ , r3). Compute:

• c0 = NICom(0`hinp ; r1),

• For t ∈ [T ′], and t 6= tag, compute ct = aCCA′.CCACommit(t,m; r2,i),

• Set ctag = ⊥,

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′) and W = (m, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LF for the language LF defined below.

2. Output (c0, c1, . . . , cT ′ , π).

Language LG = LF1
∨ LF,2:

LF,1 =
{

(c0, c1, . . . , cT ′) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LF,2 =
{

(c0, c1, . . . , cT ′) |∃m s.t. ∀t ∈ [T ′] \ tag, ct = aCCA′.CCACommit(t,m) ∧ ctag = ⊥
}

Figure 8: The Circuit F [tag,m, kPPRF]

• P(1λS , 1λD ,D) : The prove algorithm takes as input two security parameters 1λS and 1λD

(one for the soundness property, and one for the distribution indistinguishability property), a
polynomial time sampler D(·) that on input λD samples from (X ,W) consisting of tuples that
are in RL. It outputs a proof string π.

• V(τ, π) : The verification algorithm is a deterministic polynomial time algorithm that takes as
input a string τ ∈ {0, 1}`NIDI(λS) for some polynomial `NIDI, a proof π, and it outputs a string
in x ∈ ⊥ ∪ {0, 1}∗.

A NIDI scheme satisfies a number of different properties: completeness, soundness and distribu-
tional indistinguishability.

Definition 19 (Completeness). We require that for any poly-time samplable distribution D = (X ,W)
supported over instance-witness pairs in RL, we have that for every λS , λD ∈ N:

Pr
τ,π

[x ∈ L | V(τ, π) = x] = 1,

where π ← P(1λS , 1λD ,D) and τ ← {0, 1}`NIDI(λS).

Definition 20 ((CD, CDI , εD, εDI)- Distributional Indistinguishability). Let D0 = (X0,W0) and
D1 = (X1,W1) be two polynomial-time distribution samplers supported over tuples in RL. Further,
assume that X0 and X1 are (CD, εD) indistinguishable. Then, we require that:

P(1λS , 1λD ,D0) ≈CDI ,εDI P(1λS , 1λD ,D1).

61

Definition 21 (Completeness, Extraction). There exist a (possibly inefficient) algorithm E :
{0, 1}∗ → {0, 1} with the following properties. Let λS , λD ∈ N, τ ∈ {0, 1}`NIDI(λS) and π be any proof
string such that V(τ, π)→ x where x 6= ⊥. Then:

• E(τ, π) = 1 =⇒ x ∈ L.

• For any polynomial time samplable distribution D = (X ,W) supported over tuples in RL, it
holds that:

Pr

[
E(τ, π) = 1

∣∣∣∣∣ τ $←− {0, 1}`NIDI(λS)

π ← P(1λS , 1λD ,D)

]
= 1.

Definition 22 ((CS , εS)-Soundness). We define the following security game played between the
adversary A ∈ CS and the challenger. We denote it by exptA,NIDI,sound(1

λS , 1λD):

1. A is given 1λS , 1λD as the input.

2. The challenger manages a list List that is initially empty. The contents of the list are visible
to the adversary at all stages.

3. Adversary can ask adaptively a polynomial number of τ -query. If that happens, sample
τ ′ ← {0, 1}`NIDI(λS) and append τ ′ to List.

4. Adversary outputs a proof string π and a τ ∈ List. The adversary wins if V(τ, π) = x where
x 6= ⊥ and E(τ, π) = 0.

The NIDI scheme satisfies (CS , εS)-soundness if for all adversaries A ∈ CS:

Pr[exptA,NIDI,sound(1
λS , 1λD) = 1] ≤ εS

Remark 4. Observe that the last two properties gives rise to a meaningful soundness property. The
extraction property (Definition 21) ensures that whenever x /∈ L, if V(τ, π) = x then E(τ, π) 6= 1.
The Soundness property (Definition 22) then says that for a computationally bounded adversary it
is hard to come up with a proof string π such that V(τ, π) = x and E(τ, π) 6= 1. This rules out a
computationally bounded adversary producing false instances.

Remark 5 (weaker soundness requirement). One could ask for a weaker soundness requirement
where the proof string is required to be published before making any τ query. Such a NIDI will not be
sufficient for us. The protocol in [Khu21] satisfies this weaker property.

8.2 Sometimes Extractable Equivocal Commitments

In this section we define the notion of sometimes extractable equivocal commitments SEE that we
use. These commitments are inspired by the ones used to build statistical ZAP arguments [BFJ+20,
GJJM20].

Definition 23. An SEE is a tuple of three p.p.t. algorithms Com1,R,Com1,C ,Com2,C with the
following syntax:

• Com1,R(1λ, 1t, 1µ,bR; r)→ com1,R. The Com1,R denotes the first receiver message. It takes
as input three security parameters λ, t, µ along with a string bR ∈ {0, 1}` for some polynomial
` = `(µ). It outputs com1,R.

62

• Com1,C(1λ, 1t, 1µ,bC)→ com1,C . The Com1,C denotes the first committer message. It takes
as input three security parameters λ, t, µ along with a string bC ∈ {0, 1}`. It deterministically
outputs com1,C .

• Com2,C(com1,R, com1,C ,m; r′)→ com2,C . The Com2,C denotes the second committer message.
It takes as input first committer and receiver messages com1,R, com1,C along with a message
m and outputs com2,C which is referred to as the commitment.

Such a scheme satisfies the following properties.

(CD, εD)-Indistinguishability of Com1,R. Let λ ∈ N and µ ∈ λO(1), t ∈ λΩ(1)(log log λ)−1 ∩ λO(1)

and b ∈ {0, 1}`. Then, it holds that:

Com1,R(1λ, 1µ, 1t,b) ≈CD,εD Com1,R(1λ, 1µ, 1t, 0`).

Verifiability of Com1,C . There exists a deterministic polynomial time algorithm Vf that takes
as input 1λ, 1t, 1µ and com1,C and outputs 1 if and only if com1,C = Com1,C(1λ, 1t, 1µ,b) for some
b ∈ {0, 1}`.

Extraction when bR = bC There exist a deterministic polynomial time algorithm Dec such that
the following holds. Let λ ∈ N, µ = λO(1), t ∈ λΩ(1)(log log λ)−1 ∩ λO(1). Then, for any b ← {0, 1}`
and any message m ∈ {0, 1}∗

Pr
r,r′

[Dec(b, r, com1,C , com1,R, com2,C) = m] = 1,

where, com1,C = Com1,C(1λ, 1µ, 1t,b), com1,R = Com1,R(1λ, 1µ, 1t,b; r) and com2,C = Com2,C(
com1,R, com1,C ,m; r′).

Equivocation when bR 6= bC . We require that these exist an algorithm S such that the
following holds. Let λ ∈ N, µ = λΘ(1) and t = λΩ(1)(log log λ)−1 ∩ λO(1). Let b1 6= b2 be both in
{0, 1}`. Then, for any m ∈ {0, 1}∗, with probability 1 over the coins of Com1,R = Com1(1λ, 1µ, 1t,b1)
and Com1,C(1λ, 1µ, 1t,b2), the following distributions are identical:

• Distribution 1: com2,C = Com2,C(com1,R, com1,C ,m; r). Output (com1,R, com1,C , com2,C ,m,
r).

• Distribution 2: com2,C = Com2,C(com1,R, com1,C , 0
|m|; r′). Compute S(com1,R, com1,C , r

′,m)→
r. Output (com1,R, com1,C , com2,C ,m, r).

Additionally, S(com1,R, com1,C , r
′,m) runs in time 2t · poly(λ, |m|).

Hard to force bR = bC by adversaries in CA. Let λ ∈ N, µ = λΘ(1) and t = λΩ(1)(log log λ)−1 ∩
λO(1). Then, for any adversary A in class CA, the advantage of any adversary in the following
experiment is 2−µ.

• The challenger samples bC ← {0, 1}` and sends com1,C = Com1,C(1λ, 1µ, 1t,bC).

• Adversary sends out com1,R. Adversary wins if it outputs com1,R = Com1,R(1λ, 1µ, 1t,bC ; r)
for some r ∈ {0, 1}∗.

63

8.3 Construction of NIDI

We now describe our construction of the NIDI scheme (for any NP language L with its relation
verifier R) satisfying all the properties described in Section 8.1. The scheme is almost identical to
the construction of [Khu21] except for one change. We will highlight the change in the construction
below in red. Before we proceed we describe the complexity classes involved.

Complexity Classes. We have the following:

• Initial Distribution Properties. We will consider distributions that are εD(λD) = 2−λD

indistinguishable against adversaries in the class CD which consists of all circuits of depth
poly(λD) and size 2λD .

• Properties of the resulting NIDI Proofs. We will guarantee that the NIDI proofs for such
distributions are indistinguishable for CDI = CD described above (same circuit class). The
advantage of adversaries in the security game will be bounded by εDI = O(εD · 2`NIDI(λS)).

• Soundness properties. We will ensure that the soundness holds against adversaries in CS
which consists of all adversaries of size 2λS . The advantage will be bounded by εS = 2−λS .

Used Primitives. We make use of the following primitives and instantiated with the following
parameters. These instantiated parameters for the primitives we use are loose for what we require.

OWP: We require a one way permutation OWP. We assume that OWP is secure against adversaries
of size 2λOWP , with advantage bounded by 2−λOWP , where λOWP is the security parameter of the
one-way permutation. Let the function be described as OWP : {0, 1}`OWP → {0, 1}`OWP where
`OWP = `OWP(λOWP) is some polynomial in λOWP. We set λOWP = λS and ` = `OWP(λS). Such
a function can be constructed assuming the subexponential time and advantage hardness of
DDH/SXDH assumption.

Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. This
scheme uses λiO as the security parameter and is secure against adversaries of size 2λiO with advantage
2−λiO . Such a primitive can be built using well-studied assumptions as shown in [JLS21a, JLS21b].
We set λiO as a large enough polynomial. In particular, setting λiO = `OWPλD suffices.

Time-Lock Puzzles: We require a time lock puzzle as in Definition 3. The TLP satisfies the
following parameters.

• λTLP = λD`OWP,

• tTLP = λρS for a small constant ρ > 0,

• The function D(t) = 2t
ε
TLP for some constant ε > 0.

Therefore, TLP with these parameters ensures the security against adversary of size 2λTLP and depth
bounded by 2t

ε
TLP with the advantage bounded by 2λTLP . Further, Solve can be run by a circuit of

depth poly(2tTLP).

Puncturable PRF: We require a puncturable PRF, PPRF = (Puncture,Eval). Assume the length
of the key is randomly chosen of length `PPRF(λPPRF) where λPPRF is its security parameter. The
length of the output is some polynomial implicit in the scheme. We assume that the PPRF is secure
against adversaries of size 2λPPRF with a maximum advantage of 2−λPPRF . We set λPPRF = λD · `.

64

NIWI: We require a non-interactive witness indistinguishable proof NIWI for NP, that is secure
against adversaries of size 2λNIWI with advantage bounded by 2−λNIWI . We set λNIWI = ` · λD.
NIWIs can be instantiated assuming the subexponential time and advantage security of the SXDH
assumption over bilinear maps.

Theorem 4. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle as in Definition 3 exist,

• SXDH is subexponentially secure against adversaries of subexponential size,

then, there exist a NIDI scheme that satisfies security definitions in Definitions 19, 22, 20, 21, and
is secure against adversaries of subexponential size.

The only difference from the primitives used in the construction by [Khu21] is the usage of a
TLP as opposed to a public-key encryption scheme. This is the key component that helps us argue
security in presence of adaptive τ queries.

Construction. We now describe the construction.

NIDI.P(1λS , 1λD ,D) : Sample a PPRF key K ← {0, 1}`PPRF .

The proving algorithm outputs C̃ = iO(C[D,K]) where the program C[D,K] is described in Figure
9.

NIDI.V(τ, C̃) : Run C̃(τ). If this evaluation outputs ⊥, output ⊥. Otherwise, parse the output as
(x, c, π). Run NIWI.V(x, c, π) for the language L′. If the verification fails output ⊥. Otherwise,
output x.

E(τ, C̃) : Run C̃(τ). Output 0 if this yields ⊥. Otherwise parse the output as (x, c, π). Run
NIWI.V(x, c, π). If the proof does not verify, output 0. Otherwise, check if c = TLP.PGen(α)
for some α. If this is not the case or OWP(α) 6= τ , then output 1. Otherwise output 0.

Observe that the completeness property is immediate. Similarly the distributional indistinguisha-
bility property argument is also identical to the proof in [Khu21] because the public key encryption
is replaced with a time-lock puzzle. All we need for the proof is for the component c to satisfy
indistinguishability property. We still give a sketch of the proof in [Khu21] for completeness.

Sketch of Indistinguishability: The idea for indistinguishability is to go input by input as
common in applications of iO. Consider two distributions D0 and D1 which yields instances that
are (CD, εD) indistinguishable. The proof will follow the following strategy. We will define 2`

hybrids where a typical hybrid (Hybridτ ′) is indexed by τ ′ ∈ [2`]. In Hybridτ ′ , we will generate an
obfuscation C̃ of program C[D0,D1,K, τ

′] described in Figure 10. Now to prove indistinguishability,
we need to prove that Hybridτ ′ and Hybridτ ′ are O(2−λD) indistinguishable for circuits in CD.
This will yield a total advantage of O(2−λD`2`). We can do this again by using standard tricks.
Observe that the only change in the C[D0,D1,K, τ

′] and C[D0,D1,K, τ
′ + 1] is its behavior at the

input τ ′ + 1. In this case, we take the following hybrids. The indistinguishability between the
hybrids are immediate and follow similarly to [Khu21].

• Hybrid′0 : This is the same as Hybridτ ′ .

65

The Circuit C[D,K]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• (x,w) = D(r1),

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ = {(x′, c′) |∃w′ : R (x′, w′) = 1 ∨ ∃α : (c′ = TLP.PGen(α) ∧ OWP(α) = τ)}

4. Output (x, c, π).

The code highlighted in red is the only difference from the construction proposed by [Khu21]. In their
scheme, they generate c = Enc(pk, 0`) where pk is a public key for a dense cryptosystem, which is
sampled and hardwired in the program. Any adversary breaking the soundness must commit/encrypt
to an element in OWP−1(τ), and the reduction breaks open the encryption to win in the OWP game.
This breaking is done by non-uniformly choosing the secret key for the public key pk. This only allows τ
queries to come after the prover outputs a NIDI proof. A TLP helps us to bypass this issue.

Figure 9: The Circuit C[D,K]

66

• Hybrid′1 : In this hybrid the only is change is that, we puncture the PRF key K∗ at τ ′+1 and
use it to generate the circuit we obfuscate. To do so, we hardwire the output (x, c, π) generated
from D0 as before using (r1, r2, r3) = PPRF.Eval(K, τ ′+ 1). This hybrid is indistinguishable to
the previous hybrid against adversaries in CD with advantage O(2−λiO) due to the correctness
property of the PPRF and the security of iO.

• Hybrid′2 : In this hybrid the only change from the previous hybrid is that we generate (x, c, π)
from D0 but now using true randomness (r1, r2, r3). This hybrid is indistinguishable to the
previous hybrid against adversaries in CD with advantage O(2−λPPRF) due to the security
property of the PPRF.

• Hybrid′3 : In this hybrid the only change is that we generate (x, c, π), where c is computed as
TLP.PGen(α) where OWP(α) = τ ′ + 1. This hybrid is indistinguishable to the previous hybrid
against adversaries in CD with advantage O(2−λTLP) due to the security property of the TLP.

• Hybrid′4 : In this hybrid, the only change is that we generate (x, c, π), by using opening of c
as a witness to generate π. This hybrid is indistinguishable to the previous hybrid against
adversaries in CD with advantage O(2−λNIWI) due to the security property of the NIWI.

• Hybrid′5 : In this hybrid the only change is that, we generate (x, c, π), by switching x to be
sampled from D1. This hybrid is indistinguishable to the previous hybrid against adversaries
in CD with advantage O(2−λD) due to the indistinguishability property of D0 and D1.

• Hybrid′6 : In this hybrid the only change is that we generate (x, c, π), by using a witness of x
to generate π. This hybrid is indistinguishable to the previous hybrid against adversaries in
CD with advantage O(2−λNIWI) due to the security property of NIWI.

• Hybrid′7 : In this hybrid the only change is that we generate (x, c, π) where c is computed as
TLP.PGen(0`). This hybrid is indistinguishable to the previous hybrid against adversaries in
CD with advantage O(2−λTLP) due to the security property of TLP.

• Hybrid′8 : In this hybrid the only change is that, we generate (x, c, π) by using (r1, r2, r3) =
PPRF.Eval(K, τ ′+1). This hybrid is indistinguishable to the previous hybrid against adversaries
in CD with advantage O(2−λPPRF) due to the security property of the PPRF.

• Hybrid′9 : This hybrid is the same as Hybridτ ′+1. This hybrid is indistinguishable to the
previous hybrid against adversaries in CD with advantage O(2−λiO) due to the correctness
property of the PPRF and the security of iO.

Observe that the parameters λiO, λNIWI, λPPRF are set to be larger than λD`. Thus, the total
advantage is bounded by O(2−λD + 2−`λD) = O(2−λD). This finishes the overview.

We now focus on the soundness argument:

Sketch of Soundness. Consider a circuit A of size 2λS in the soundness security game. Assume
that the adversary wins in the soundness experiment with probability ε, then we will show that we
can build a reduction of size O(2λS) winning in the OWP inversion game with the ε/Q for some
polynomial. Remember in the soundness game adversary is given a list τ1, . . . , τQ of randomly

chosen elements for some polynomial Q and it outputs C̃ and an index i ∈ [Q]. For this C̃, it holds
that C̃[τi] = (xi, ci, πi) such that πi verifies and E(τi, C̃) = 0. This means that ci must be of the
form TLP.PGen(αi) where OWP(αi) = τi. The reduction simply runs TLP.Solve(ci) and outputs αi
as a preimage of τi. This means that the reduction succeeds with advantage at least ε/Q. Reduction

67

The Circuit C[D0,D1,K, τ
′]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• If τ ≤ τ ′, then (x,w) = D1(r1) otherwise (x,w) = D0(r1).

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ = {(x′, c′) |∃w′ : R (x′, w′) = 1 ∨ ∃α : (c′ = TLP.PGen(α) ∧ OWP(α) = τ)}

4. Output (x, c, π).

Figure 10: The Circuit C[D0,D1,K, τ
′]

needs to run A and then run TLP.Solve, which runs in time polynomial in 2λ
ρ

for some small
constant ρ. Thus, this takes O(2λS) time as λS = λ.

8.4 Construction of Sometimes Extractable Equivocal Commitments

In this section, we present our construction of a sometimes extractable equivocal commitments. But
first we specify the various class of adversary that we will handle in this scheme. Refer Definition
23 for these notations. Let λ, µ, t be three parameters involved where λ ∈ N, µ = λΘ(1) and
t ∈ λΩ(1)(log log λ)−1

.

Definition 24 (Complexity Parameters for SEE). Consider the following complexity classes as a
function of λ, µ, t:

• CD : consists of all circuits of any polynomial depth and size polynomial in 2λ.

• εD : is set to 2−λ.

• CA will be set to all circuits of size 2µ.

In order to build this primitive we make use of the following primitives:

Used Primitives. We make use of the following primitives and instantiated with the following
parameters. These instantiated parameters for the primitives we use are loose for what we require.

One-Way Permutation: We require a one way permutation OWP. We assume that OWP is
secure against adversaries of size polynomial in 2λOWP , with advantage bounded by 2−λOWP , where
λOWP is the security parameter of the one-way permutation. Let the function be described as
OWP : {0, 1}` → {0, 1}` where ` = `(λOWP) is some polynomial in λOWP. We set λOWP = 2µ and
` = `(µ). We additionally require that this function is computable in NC1. Such a function can be
constructed assuming the subexponential time hardness discrete log assumption over Z∗p.

68

Sender Equivocal Oblivious Transfer: We require a sender equivocal oblivious transfer OT =
(OT1,OT2,OT3) satisfying the properties in Definition 7. We will set λot = 2λ, and assume that the
receiver security holds against adversaries of size polynomial in 2λot and with maximum advantage
of 2−λot . Such an OT can be built assuming subexponential time and advantage hardness of DDH.

Time Lock Puzzle: We require a time lock puzzle as in Definition 3. The TLP satisfies the
following parameters.

• λTLP = 2λ,

• tTLP = min(t,
√
µ). Looking ahead, for our MrNISC, we use t = λΘ(1)(log log λ)−1

, in which case
tTLP = t.

• The function D(tTLP) = 2t
ε
TLP for some constant ε > 0.

Therefore, TLP with these parameters ensures the security against adversary of size polynomial in
2λTLP and depth bounded by 2t

ε
TLP with the advantage bounded by 2−λTLP . Further, Solve can be run

by a circuit of depth poly(2tTLP , λTLP).

Equivocal Garbled Circuits: We require a garbling scheme Gb = (Garble,Eval,GbEquiv) as
described in Definition 8 for NC1 satisfying the properties of correctness and equivocation. The
security parameter will be set as ` defined above.

Theorem 5. Assume that the following assumptions hold:

• A time lock puzzle as in Definition 3 exist,

• DDH over Z∗p is subexponentially secure against adversaries of subexponential size,

then, there exist a SEE with the properties listed in Definition 23 as per parameters described in
Definition 24.

Construction. We describe the construction next. In the construction, we omit the security
parameters. We also exhibit how by building a bit commitment. To commit to longer messages,
Com2,C described below is repeated in parallel.

Com1,R(bR ∈ {0, 1}`) : Parse bR = (b1, . . . , b`). Compute the following:

• Compute ot1,i ← OT1(bi; ri) for i ∈ [`] using independent randomness ri,

• Compute Z ← TLP.PGen(bR, r), where r = (r1, . . . , r`) used for generating ot1 messages
above,

• Output com1,R = (ot1,1, . . . , ot1,`, Z).

Com1,C(bC ∈ {0, 1}`) : Compute and output com1,C = OWP(bC).

Com2,C(com1,R, com1,C ,m ∈ {0, 1}; r′, {r′i}i∈[`]) : Parse com1,R = (ot1,1, . . . , ot1,`, Z). Let H =

H[com1,C ,m] : {0, 1}` → {0, 1} be the circuit that takes as input b ∈ {0, 1}`. It checks that
OWP(b) = com1,C and if so, it outputs m and 0 otherwise. Run the following steps.

• Run Garble(H; r′)→ Γ, Lab,

• Compute ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`].

• Output com2,C = Γ, {ot2,i}i∈[`].

Remark 6. The opening of com2,C consist of (m, r′, r′1, . . . , r
′
`).

We now argue properties of the scheme.

69

Indistinguishability of com1,R: The indistinguishability property follows from the security of
TLP and OT. We show this by indistinguishable hybrids. The first hybrid corresponds to the
case when com1,R is generated using bR, whereas the last hybrid corresponds to the case com1,R is
generated using 0`.
Hybrid0 : In this hybrid, we compute com1,R = (ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(bi; ri) for
i ∈ [`] and Z = PGen((bR, r)).

Hybrid1 : This hybrid is the same as the previous one except that we compute com1,R =
(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(bi; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is in-
dependently sampled.

Claim 19. For any adversary A, of size polynomial in 2λ and depth bounded by any polynomial
poly(λ), it holds that:

|Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1]| ≤ 2−(λTLP=2λ)

This claim follows from the security of TLP. TLP is secure against adversaries of size polynomial
in 2λTLP , and depth D(tTLP) ≥ 2t

ε
TLP ∈ λω(1). Thus one can form a reduction, distinguishing these

two hybrids to breaking the security of TLP. Since λTLP = 2λ, the claim holds.

Hybrid2 : This hybrid is the same as the previous one except that we compute com1,R =
(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is inde-
pendently sampled.

Claim 20. For any adversary A, of size polynomial in 2λot, it holds that:

|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| ≤ ` · ` · 2−2λ

This claim follows from the security of OT. OT is secure against adversaries of size polynomial
in 2λot with an advantage 2−λot . We make ` intermediate hybrids in which we switch one by one
ot1,i to be computed using 0 instead of bi. Each intermediate hybrid is indistinguishable with an
advantage 2−λot . Since λot = 2λ, the claim holds.

Hybrid3 : This hybrid is the same as the previous one except that we compute com1,R =
(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r)) where r is the
randomness to compute {ot1,i}i∈[`].

Claim 21. For any adversary A, of size polynomial in 22λ and depth bounded by any polynomial
poly(λ), it holds that:

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−2λ

This claim follows from the security of TLP. TLP is secure against adversaries of size 2λTLP , and
depth D(tTLP) ∈ λω(1). Thus one can form a reduction, distinguishing these two hybrids to breaking
the security of TLP. Since λTLP = 2λ, the claim holds.

Summing up, these three hybrids prove the required claim.

Verifiability of com1,C : This property is straightforward to observe. Observe that Com1,C(b) =
OWP(b). Since OWP has verifiable range of {0, 1}`, therefore com1,C is verifiable.

70

Extraction when bR = bC : This property is also straightforward to observe and follows from
the perfect correctness of OT, and the garbling scheme Gb. We define the Dec function. Dec(bR,
r, com1,C , com1,R, com2,C) : This algorithm parses bR = (b1, . . . , b`), com1,R = (ot1,1, . . . , ot1,`, Z),
r = (r1, . . . , r`) and com2,C = (Γ, ot2,1, . . . , ot2,`). It does the following:

• Run Lab′bi,i ← OT3(ot2,i, bi, ri) for i ∈ [`],

• Output m̂← Eval(Γ, {Lab′bR}).

The correctness is straightforward to observe. Parse r′ = (r′, r′1, . . . , r
′
`). Let Γ, Lab = Garble(H; r′)

where H[Com1,C(bR),m] for some message m. Let com1,R = (ot1,1, . . . , ot1,`, Z) where ot1,i =
OT1(bi, ri) and ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r

′
i) for i ∈ [`]. Our first observation is that Lab′bi,i =

Labbi,i for all i ∈ [`] due to perfect correctness of OT. Therefore m̂ = Eval(Γ, {LabbR}). Due to
perfect correctness of garbled circuit we have that Eval(Γ, {LabbR}) = H[Com1,C(bR),m](bR). This
is equal to m, by definition of H.

Hard to force bR = bC by adversaries in CA. This follows from the reduction to the security
of OWP, and the fact that Solve runs in time polynomial in 2tTLP . Let A be an adversary that wins
in the security game for this property and is of the size polynomial in 2µ with advantage more than
2−µ. Then, we show how to build a reduction that runs in size polynomial in 2λOWP and wins in the
breaking the security of OWP with the same advantage.

• The reduction receives as input com1,C = OWP(b) for a randomly chosen b← {0, 1}`.

• The reduction sends to the adversaryA com1,C and receives com1,R formatted as ot1,1(b′1, r
′
1), . . . , ot1,`(b

′
`, r
′
`), Z =

PGen(b′, r′).

• The reduction solves Z using a circuit size polynomial in poly(2tTLP) ≤ 2
µ
2 and recovers b′, r′.

• It outputs b′ if com1,C = OWP(b′).

Note that the view of A is identical to the view in the required security property of Com. If A
produces com1,R using b′ that equals to the random challenge b, then the reduction successfully
recovers it by breaking TLP in time 2µ/2. If the size of the adversary A is polynomial in 2µ, the size
of the reduction is also polynomial in 2 · 2µ which is a contradiction as λOWP = 2µ.

Equivocation with bR 6= bC . We describe our algorithm S and then prove that it runs in time
polynomial 2tTLP and satisfies the equivocation property.

S(com1,R, com1,C , r
′,m) : Parse com1,R = (ot1,1, . . . , ot1,`, Z), com1,C = Com1,C(bC) and com2,C =

Γ, {ot2,i}i∈[`]. Recall, how are each of the strings generated in the equivocation game. com1,R is gen-
erated by computing: For i ∈ [`], ot1,i = OT1(bR,i; ri) using some randomness ri and Z is generated
by computing PGen(bR, r = (r1, . . . , r`)). Receiver’s randomness may be arbitrarily chosen. For the
committer, com2,C is generated honestly by committing to 0 using honestly generated randomness
r′. Parse r′ = (r′, r′1, . . . , r

′
`). Γ, Lab is computed as Garble(H[com1,C , 0]; r′). Then we compute

ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`]. Finally com2,C = (Γ, {ot2,i}i∈[`]). Thus to equivocate,

compute the following steps:

• Run Solve(Z) = (bR, r).

• Equivocate Garbled Circuit: Run GbEquiv(Γ, LabbR , H[com1,C ,m],bR) → Lab′, s where Lab′

is the new set of labels and s is the randomness that explains Garble(H[com1,C ,m]; s)→ Γ, Lab′.
Further Lab′bR = LabbR .

71

• Equivocate ot2: For i ∈ [`], compute si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

• Output (m, com1,R, com1,C , com2,C , s = (s, s1, . . . , s`)).

The run time of the simulator above is polynomial in 2tTLP which is polynomial in 2t as per the setting
of the parameters. The proof of security is immediate and follows from the equivocability property
of the garbled circuit and OT. We show this by identical hybrids. The first hybrid corresponds
to the case when m is committed, and the last hybrid corresponds to the simulator, where 0 is
committed first and then equivocated to m.

Hybrid0 : In this hybrid, compute com2,C(com1,R, com1,C ,m; r′). Output (m, com1,R, com1,C ,
com2,C , r

′).

Hybrid1 : In this hybrid, we use the equivocation of the garbled circuit property. First generate
Γ, Lab← Garble(H[com1,C , 0]; r′). Observe that H[com1,C , 0](bR) = H[com1,C ,m](bR) = 0. There-
fore, due to the equivocation property of the garbled circuits, we can compute GbEquiv(Γ, LabbR , H[com1,C ,m],bR)→
Lab′, s. We set com2,C = Γ and {ot2,i = OT2(ot1,i, Lab

′
0,i, Lab

′
1,i; r

′
i)}i∈[`]. Output (m, com1,R,

com1,C , com2,C , (s, r
′
1, . . . , r

′
`)).

The two distributions above are identical due to the equivocation property of the garbled circuits.

Hybrid2 : In this hybrid, we use the equivocation property of OT. We first generate ot2,i =
OT2(ot1,i, Lab0,i, Lab1,i; r

′
i) for i ∈ [`]. Then, since com1,R consists of OT1 messages corresponding to

bR 6= bC , we can equivocate ot2,i as follows. We run si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

This can be done because Lab′bR,i,i = LabbR,i,i. Thus at the end of this we have randomness si
such that ot2,i = OT2(ot1,i, Lab

′
0,i, Lab

′
1,i; si) = OT2(ot1,i, Lab0,i, Lab1,i; r

′
i). Output of this hybrid is

(m, com1,R, com1,C , com2,C , s) where s = (s, s1, . . . , s`).
This hybrid is identical to the previous hybrid due to the security of OT.

9 Construction of Reusable Statistical ZK arguments with Some-
times Statistical Soundness

In this section, we construct our zk protocol. Before we do that we give an overview of this
construction.

9.1 Overview

In this section, we give a brief overview of the zk construction. Recall that we want to construct a
two round (delayed instance) zk with SPS simulation, while still being perfectly sound with some
probability. Further, the first round should be reusable across sessions.

Our starting point is the SPS ZK protocol/statistical ZAP arguments of [BFJ+20, GJJM20].
The protocol rely’s on the following primitives:

• A correlation intractable hash function H(K, ?)→ {0, 1}` [CCH+19, PS19],

• A two-round statistically hiding sometimes extractable commitment Com = (Com1,R,Com2,C)
[KK19],

A (somewhere) statistically correlation intractable function is associated with an algorithm FakeGen
that takes as input a polynomial time computable function f : {0, 1}`in → {0, 1}`, and outputs a
key Kf , for which there does not exist in input x ∈ {0, 1}`in such that H(Kf , x) = f(x). These

72

functions can be built from LWE. Further, FakeGen produces pseudorandom outputs, and thus key
Kf hides f computationally.

A two-round statistically hiding sometimes extractable commitment scheme on the other hand,
has the following structure.

• In the first round, the receiver samples a bR ∈ {0, 1}µ and computes and outputs com1,R =
Com1,R(bR; rR).

• In the second round, the committer samples bC ∈ {0, 1}µ randomly, and outputs any number
of commitments bC , {com2,C,i = Com2,C(bC , com1,R,mi)}i∈[T].

The protocol has the following property. If bR 6= bC (or if com1,R is not well formed as per
the protocol), then, the honestly generated commitments com2,C , statistically hide the messages
{mi}i∈[T]. On the other hand, if, bR = bC , then there exists an efficient algorithm Dec such
that: Dec(bR, rR, com2,C,i) = mi for i ∈ [T]. Further, an honest receiver can ensure that bC = bR
with probability at least Ω(2−µ), and to an adversarial polynomial time committer the view
is indistinguishable from the view when bC 6= bR. The works of [KKS18] showed that such
commitments can be built from assumptions such as LWE or DDH.

Once we have these primitives, then the SPS ZK protocol of [BFJ+20], follows the following
template. Let (x,w) be the isntance witness pair.

• In the first round, the verifier chooses bV ← {0, 1}µ, and outputs zk1,P = (com1,R,K) where
com1,R = Com1,R(bV) and K ← H.FakeGen(f) for some function f described later,

• In the second round, the prover samples bP ← {0, 1}µ, and then computes com2,C,i =
Com2,C(bP , com1,R, ai; r

′
i) for i ∈ [N] where (a1, . . . , aN) are the values committed to during

a special Σ protocol4 for proving x. Then,

– The prover runs H(K, (x,bP , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

The statistical WI property follows from the fact that when bP 6= bC , then com2,C are
statistically hiding. One needs more work to prove that it is actually SPS ZK by using an
inefficient equivocator of com2,C with a simulator of the Σ protocol. For the soundness property,
observe that when bV = bP , then the commitments are binding to the value computed by
Dec(bV , rR, ?). We exploit this to set f as follows. We set f to be the function that computes
e∗ = BadChallenge(x, a1, . . . , aN) where (a1, . . . , aN) is recovered by running Dec(bV , rR, ?).

Perfect Soundness Mode. The protocol above does not have a perfect soundness mode. However
it turns out that in the simultaneous message model, there is a very simple modification of the
protocol above that gives us a perfect soundness mode. The modification is described as follows.

• In the first round, the verifier outputs zk1,V = (com1,R,K) as before, but the prover outputs
zk1,P = bP in the clear.

• In the second round, the prover outputs as before, but using bP displayed in the first round
itself.

4As an example, think of it as the Blum’s Hamiltonicity Protocol. As in the construction of NIZK from
LWE[CCH+19, PS19], it suffices to use a parallel repetion of a sigma protocol for NP with i) 1/2-special soundness,
ii) efficient BadChallenge computation.

73

The reason why this protocol has a perfect soundness mode is because, bP is displayed in the first
round itself, and so the the first round already determines the if the prover can cheat in the second
round or not. Unfortunately, the problem with this naive approach is that it fails in our setting where
the same prover/verifier first message can be used over and over with multiple verifiers/receivers. In
fact, it even fails when an honest prover interacts with a rushing malicious verifier. If such a verifier
sees bP , then it can choose bV = bP , which will put the prover in the perfect soundness mode, and
its proofs will no longer be simulatable.

Our First Idea: A different criteria for soundness Imagine, if we could modify the criteria
for the soundness mode as follows. In this model, zk1,P is α = OWP(bP) for a one-way permutation
as opposed to bP in the clear, and zk1,V is as before, com1,R = Com1,R(bV). As before the perfect
soundness must hold if bV = bP and perfect zero-knowledge otherwise. This high-level approach
appears to make sense, as intuitively a verifier must compute com1,R = Com1,R(OWP−1(α)) to
violate soundness.

To work this idea in the reusable setting, we have to tackle one-more issue. We need to make
sure that zk2,P must not reveal information about bP as in the reusable setting, one can choose
zk′1,V after seeing a second message zk2,P used in some other session. We make this intuition formal
by this abstraction called “Sometimes Extractable Equivocal Commitments” or SEE.

Sometimes Extractable Equivocal Commitments. A SEE scheme consists of three algror-
ithms (Com1,R,Com1,C ,Com2,C) and is a commitment scheme that captures the issues pointed above
in the simultaneous message model. In the first round,

• The receiver chooses bR and computes and outputs com1,R = Com1,R(bR; r),

• The committer chooses bC and computes and outputs com1,C = Com1,C(bR) deterministically.
Further, com1,C is essentially a one-way permutation.

In the second round, the committer outputs Com2,C(com1,R, com1,C ,m; r′) which does not depend
on the private state of the committer. We want similar properties as before: If bR = bC , then
the commitment is fully extractable, wheras when bR 6= bC , then com2,C is statistically hiding
(and infact equivocable). Other than that, we will ensure that it is computationally hard for an
adversarial receiver to create com1,R = Com1,R(bC) for bC chosen by the committer even, after
seeing com1,C . Plugging in this commitment scheme with a correlation intractable hash function
gives rise to the following zk protocol.

• In the first round, the verifier outputs zk1,V = (Com1,R(bV ; r),K) as before and the prover
outputs zk1,P = Com1,C(bP).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for i ∈ [N]

where (a1, . . . , aN) are the values committed to during a special Σ protocol. Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

Observe that now, the protocol has a perfect soundness mode, namely when bP = bV . Further, the
verifier message is reusable across multiple prover sessions as the soundness holds with same proba-
bility across multiple sessions. On the other hand, the prover’s first message zk1,V = Com1,C(bV) is
also reusable with different verifiers, as it is computationally hard to produce com1,R = Com1,R(bV)
with the bP = bV .

74

Issue with Complexity Hierarchy wrt MrNISC. Although if we have a committment scheme
like this the approach almost works, we must identify how this fits in the bigger scheme of things
with other primitives in the MrNISC scheme. Our main observation is the following. In the protocol,
we are also using a receiver assisted one-round CCA commitment (aCCA), and that protocol is
intimately tied with the zk we are trying to build. As pointed out in Section 2.2.4, on one hand
we need the zk to be sound against circuits that can perform CCAVal, on the other hand, aCCA
commitments need to be secure against circuits that are capable of running zk SPS simulator. This
might feel like a deadlock, nevertheless, we introduce a new-axis of hardness.

We will use commitments aCCA which are secure against circuits of some quasipolynomial size
such that aCCA.CCAVal runs in polynomial depth but size 2λ

c
for c > 0. In the zk we build:

• Soundness holds against adversaries of poly(λ) depth and size 2λ
c2 .

• The zk simulator can be implemented by a circuit of size/and depth Tzk,S against which CCA
security holds.

We do this by incorporating time-lock puzzle like properties in our commitment scheme and hence
the zk protocol.

Summing up. Summing up, as a first step we build an SEE scheme described above with a
few additional properties. Below we list all the properties. The only new addition to what was
described before is that com2,C can be equivocated in polynomial time given the opening bR, r of
com1,R = Com1,R(bR; r).

• Extractability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bR), then com2,C =
Com2,C(com1,R, com1,C ,m) is polynomial time extractable using Dec algorithm. This property
is identical to the one described before.

• Equivocability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bC) where bC 6= bR,
then there exists a polynomial time algorithm SEE.S that takes as input bR, r, com2,C ,m, r

′

where com2,C = Com2,C(com1,R, com1,C , 0, r
′) and outputs an opening s′ such that com2,C =

Com2,C(com1,R, com1,C ,m; s′). Further, com2,C , s
′,m generated this way is identical to the

case when com2,C was a commitment of m and s′ was its opening. This is stronger than
statistical indistinguishability.

• Indistinguishability of bR: We require that an com1,R = Com1,R(bR) hides bR. Further,
for any computationally bounded committer bC = bR with a probability of 2−Ω(µ). We also
require that the distribution of transcripts when this event happens are indistinguishable to
when this event does not happen.

• Hard to force bR = bC : We require that a computationally bounded adversarial receiver
given com1,C = Com1,C(bC) for a randomly chosen bC cannot come up with com1,R =
Com1,R(bC) with all but negligible probability.

We build such an SEE scheme relying on DDH assumption over Z∗p in Section 8.4.
Once we have such a commitment scheme, we can solve all problems, except we need to control

the size of the circuit that runs zk.S by a quasi-polynomial sized circuit. Our main idea to get
around this is to use a time-lock puzzle. We add Z = TLP(bV , r) to zk1,V . The TLP parameters
are set so that it is broken by a quasipolynomial sized circuit, but it is secure against all circuits of
poly depth of size 2λ

c
.

Therefore in our modified protocol:

75

• In the first round, the verifier outputs zk1,V = (Z = TLP(bV , r),Com1,R(bV ; r),K) and the
prover outputs zk1,P = Com1,C(bP).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for i ∈ [N]

where (a1, . . . , aN) are the values committed to during a special Σ protocol. Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

This is really useful, and in particular, we can now simulate zk by first breaking Z to learn bV , r
and then using the equivocator of the commitments and the simulator of the Σ protocol to simulate
the second message.

In our construction, to make the construction mode modular, we incorporate the TLP aspect
in the SEE scheme (see Section 8.4) and not in our zk protocol. In our commitment scheme, the
equivocation property is required to hold only against a receiver which generates com1,R using the
honest algorithm (although with adversarial randomness). This brings us to our last issue.

One Last Issue. This solves all the issues, except that the simulator fails completely if a verifier
does not generate com1,R as per the specification of the protocol. Indeed, Z may not be a time lock
puzzle and give the randomness needed by the simulator to equivocate com2,C . To fix this issue,
the verifier now supplies a simultaneous message non-interactive distributional indistinguishability
proof NIDI (see Section 8.1 for details about NIDI) proving that the verifier messages are well
formed as in the protocol described above. This soundness property of this proof system guarantees
that the verifier messages are well-formed, which is useful for the simulator, and the distibutional
indistinguishability guarantees that zk1,V generated using bV is computationally indistinguishable
to zk1,V generated using 0µ. The analysis of the protocol and setting up parameters requires some
care, and we describe it formally next.

9.2 Construction

In this section, we construct a reusable statistical ZK arguments with sometimes statistical soundness
(henceforth denoted by zk = (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2)) as defined in Section 5.1.
We now give the parameters associated the various adversary classes that we will guarantee security
for. We will then follow it up with the parameters for the underlying primitives we use. Let λ be
the security parameter for zk.

Definition 25 (Parameters of zk). We achieve zk for the following parameters.

• For the soundness property the parameters (Csound, εsound,1, εsound,2) we achieve will be as
follows. Csound consists of circuits with any poly(λ) depth Boolean circuits of size bounded by
any polynomial in 2λ. We will set εsound,1 = 2−` = Ω(2−`µ) for some polynomial `(λ) and
εsound,2 = 2−λ. `µ is defined when we define the parameters for SEE scheme.

• For the zero knowledge, CS , Czk, εS are set as follows. CS is the complexity class of the simulator.
CS consists of circuits of size 2λ

ρ
for some parameter ρ ∈ Θ(1) log log λ−1, which can be chosen

as a parameter to the scheme. We will also set Czk, which is the class of the zero-knowledge
verifier to be the same as Csound of poly(λ) depth circuits of size polynomial in 2λ. εS will be
set as 2−λ.

76

Used Primitives. We make use of the following primitives and instantiated with the following
parameters. These instantiated parameters for the primitives we use are loose for what we require.

NIDI Arguments: We require a NIDI scheme (Definition 18) as per the following specifications.
Such a NIDI uses two security parameters λNIDI,S and λNIDI,D. We set λNIDI,S = λ. We set CNIDI,S to
consist of all adversaries of size polynomial in 2λNIDI,S . We set εNIDI,S = 2−λNIDI,S . For this choice of
λNIDI,S = λ, let `NIDI(λ) be the length of τ ’s used in the scheme. We set λNIDI,D as a polynomial in
λ. This polynomial will ensure that the distributions we use, on input λNIDI,D satisfy the following
parameters:

• CNIDI,D consists of all circuits of depth poly(λ) and size polynomial in 2λ.

• εNIDI,D = 2−`NIDI·`µλ. (`µ is defined along with the instantiation for the sometimes extractable
equivocal scheme).

Further, this setting will ensure that:

• CNIDI,DI = CNIDI,D.

• εNIDI,DI = O(εNIDI,D2`NIDI).

As shown in Theorem 4, this can be constructed assuming subexponential security of iO, a time
lock puzzle scheme (Definition 3), and subexponential time and advantage security of the SXDH
assumption.
Sometimes Extractable Equivocal Commitments: We use three parameters λcom, µcom, and

tcom, as follows.

• We set µcom = λ. This ensures that CA,com consists of all circuits of size polynomial in 2λ. Let
`µ(λ) be the length of the challenges bR to support this.

• We set tcom = λρ. This ensures the commitments are extractable in size polynomial in 2tcom .

• We set λcom = `NIDI(λ)`µ(λ)λ. This choice ensures that Ccom,D consists of all circuits of size
polynomial in 2λcom and depth polynomial in λcom. This ensures εcom,D = 2−λcom .

As shown in Theorem 5, can be constructed assuming subexponential security of iO, a time lock
puzzle scheme (Definition 3), and subexponential time and advantage security of the DDH over Z∗p.

Σ-protocol: We use a statistically sound Σ protocol for NP, which is a parallel repetition of the
following basic protocol. Assume that the length of the instance is a fixed polynomial in λ. We will
build our zk protocol for the same length instances.

• The first message Σ1(x,w) by the prover consists of non-interactive commitments of some
messages a1, . . . , aN ∈ {0, 1}N(λ). We define Σ.SampFirst to mean the algorithm that outputs
a1, . . . , aN .

• In the second round, the verifier outputs a bit e ∈ {0, 1}.

• In the third round, the prover outputs z which consists of opening of some subset of the
commitments based on the challenge bit e. Verifier accepts or rejects based on the transcript.

The protocol satisfies a number of different properties. The first property is related to the soundness
and the second property to the zero-Knowledge property of the protocol.

77

• When x is unsatisfiable, then, given any a1 . . . , aN an accepting proof of at most one out of two
choice of e ∈ {0, 1} can exist. We call this as the BadChallenge. We assume that computing
BadChallenge can be done by an NC1 function Bad that takes x and a1, . . . , aN as the input.

• The protocol satisfies honest-verifier zero knowledge property. That is, given e ∈ {0, 1}, for
any x, one can efficiently sample Σ.S(e, x)→ z′ = Set, {a′i}i∈Set. The protocol ensures that
the distribution of {a′i}i∈Set, e is identical to the case when a1, . . . , aN were committed to using
an honest proof and then the prover gives out (z = Set, {ai}i∈Set, e).

Looking ahead, we will compile such a protocol to a zk. The commitment we will use will be a
sometimes extractable equivocal commitments.

Correlation Intractability Hash Function: We require a CI hash functionH = (FakeGen,Eval)
(see Definition 6). We set λci = `NIDI · `µλ. This ensures that the hash keys corresponding to two
functions are distinguishable to circuits of size polynomial in Cci = 2λci with advantage at most
εci = 2−λci . Finally, for this choice of parameters, there exists a polynomial `ci(λci) such that the
security holds for functions of bounded depth (say λci) with `ci(λci) output bits. We use this as the
parallel repetition parameter for the Σ protocol.

This can be constructed assuming subexponential time and advantage hardness of LWE [PS19].

Distribution DbR : For bR ∈ {0, 1}`µ , we define the distribution DbR as follows.

• Sample com1,R ← Com1,R(bR; r).

• Sample K ← H.FakeGen(f [bR, r]), where f : {0, 1}∗ → {0, 1}`ci is a function described below.

Observe that for any two b1 and b2 in {0, 1}`µ , Db1 and Db2 are O(`µ · (2−λci + 2−λcom)) =
O(2−`µ·`NIDI·λ) indistinguishable to circuits of depth polynomial in λ but size 2λcom . Let LNIDI denote
the language supporting these distributions Db for all b.

Function f : {0, 1}∗ → {0, 1}`ci : takes as input (x, com1,C , com1,R, com2,C = (com2,C,1, . . . , com2,C,N ·`ci)).

• It partitions com2,C into `ci chunks. Each chunk is (com2,C,j·N+1, . . . , com2,C,(j+1)N) for
j ∈ [0, `ci − 1].

• It decrypts each chunk using Com.Dec using its private state bR, r. Let us say that each chunk
decrypts to ajN+1, . . . a(j+1)N .

• Then it computes Bad(x, ajN+1, . . . a(j+1)N) = ej+1.

• Finally it outputs e = (e1, . . . , e`ci).

Thus, we have the following theorem:

Theorem 6. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle as in Definition 3 exist,

• SXDH is subexponentially secure against adversaries of subexponential size,

• DDH over Z∗p is subexponentially secure against adversaries of subexponential size,

• Subexponential time and advantage security of LWE.

then, there exist a reusable statistical ZK argument with sometimes statistical soundness as Defined
in Section 13. For this scheme, the complexity parameters are defined in Definition 25.

We now describe our construction.

78

Construction.

ZKProve1(1λ) : Compute the following steps.

• Sample τ ← {0, 1}`NIDI and bP ← {0, 1}`µ .

• Compute com1,C = Com1,C(bP).

• Output zk1,P = (τ, com1,C).

ZKVerify1(1λ) : Compute the following steps.

• Sample bV ← {0, 1}`µ .

• Compute Π← NIDI.P(DbV).

• Output zk1,V = Π.

ZKProve2(zk1,V , zk1,P , x, w) : Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R,K) = NIDI.V(τ,Π). If the verification fails, output ⊥ and stop proceeding.
Otherwise, follow the next steps.

• Depending on x,w sample `ci repetitions of Σ.SampFirst. Namely, for j ∈ [`ci], compute
(a(j−1)N+1, . . . , ajN)← Σ.SampFirst.

• For k ∈ [N`ci], compute com2,C,k = Com2,C(com1,R, com1,C , ak; sk) for a freshly chosen
sk. Let com2,C = {com2,C,k}k∈[N`ci].

• Run e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

• For j ∈ [`ci] determine Setj , the set of commitments to be opened for jth repetition, as
per challenge bit ej . Let Set be the union of these sets.

• Output com2,C along with e and openings z = {ak, sk}k∈Set.

ZKVerify2(zk1,V , zk1,P , zk2,P , x) : Compute the following steps.

• Parse zk1,V = Π, zk1,P = (τ, com1,C) and zk2,P = (com2,C , e, z = {ak, sk}k∈Set).
• Compute (com1,R,K) = NIDI.V(τ,Π) and check if e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

• Check if z = {ak, sk}k∈Set are valid openings of {com2,C,k}k∈Set.
• Finally verify that {ak}k∈Set as a valid third message of `ci parallel repetition of Σ

protocol according to e and instance x.

• Output 1 if every verification above succeeds, else output 0.

Remark 7. We assume that the prover always outputs a valid first message zk1,P . This can
be ensured as follows. If the first message is either not given out, or if one of τ and com1,C is
not valid, then we interpret τ = 0`NIDI and com1,C = Com1,C(0`µ).

We now argue various properties involved.

Completeness. Completeness is straightforward to argue and follows from perfect completeness
of NIDI, perfect correctness of the SEE and perfect completeness of the Σ protocol.

79

9.3 Soundness

We now argue soundness. We first define the “soundness mode”, and then argue all three properties.

Perfect Soundness Mode. Note that in order for a proof to verify zk1,P = (τ, com1,C) needs
to be verifiable. In particular, there must exist bP such that com1,C = Com1,C(bP) (where bP is
as chosen by the prover, or 0`µ if the prover aborts, or outputs a non-well formed message). In
the soundness game on the other hand, the verifier is honest and chooses bV ← {0, 1}`µ and sets
Π = NIDI.P(DbV). We define the Perfect soundness mode to be the mode when bP = bV .

Lemma 13. When bP = bV , then there does not exist an accepting proof of any x /∈ L.

Proof. When bP = bV , then consider any accepting proof say (com2,C , e, {ak, sk}Set). Observe that
e = H.Eval(K,x, com1,C , com1,R, com2,C). Note that K is generated by using FakeGen algorithm
with input the function f , which uses bV and randomness r to decrypt all the commitments
{com2,C,k}k∈[`ciN]. Let us say that this decryption results in {a′k}k∈[`ciN]. Due to the correctness
of the decryption/extraction of SEE, ak = a′k for every k ∈ Set as the adversary opens it in the
proof. Now, when x /∈ L, the Σ protocol ensures that there is atmost one ebad such that {a′k}k∈[`ciN]

can lead to a valid proof. This ebad is computed by the function f . The perfect CI property of H
ensures that e 6= ebad. On the other hand, if the adversary gives a valid proof for e, then e = ebad.
This is a contradiction.

We now analyze the frequency of the perfect soundness mode.

Lemma 14. For any honest polynomial time verifier V , and a cheating prover P ∗ in Csound, the
soundness mode holds with probability at least Ω(2−`µ).

Proof. We prove this by a simple reduction to the security of distributional indistinguishability of
NIDI.P(DbV). We show this using a hybrid argument.

Hybrid0 : In this hybrid, the challenger samples randomly bV and outputs zk1,V as NIDI.P(DbV).
Then, the prover outputs zk1,P = τ, com1,C . The challenger outputs 1 if com1,C = Com1,C(bV).

Hybrid1 : In this hybrid, the challenger samples randomly bV . It also samples randomly b′

and outputs zk1,V as NIDI.P(Db′). Then, the prover outputs zk1,P = τ, com1,C . The challenger
outputs 1 if com1,C = Com1,C(bV).

In order to prove the claim, our first observation is that soundness mode holds when Hybrid0

outputs 1. Second, observe that the probability that Hybrid1 outputs 1 is exactly 2−`µ . Our claim
follows from the fact that for any adversary A ∈ Csound, it holds that the these to hybrids are
indistinguishable with advantage bounded by εNIDI,DI . This is due to the security of NIDI and the
indistinguishability property of the distribution Db′ for a random b′ from DbV . Thus, the claim
holds.

We now argue indistinguishability of the soundness mode property.

Lemma 15. The construction of zk satisfies (Csound, εsound,2) indistinguishability of soundness
property with εsound,2 = O(εNIDI,DI2

`µ).

Proof. Let P ∗ be a cheating prover in Csound, and V be an honest verifier in the soundness experiment.
Let E be the distribution of the transcript. Let E1 denote the distribution of transcript when the

80

soundness mode holds and E0 denote the distribution of transcript when the soundness mode does
not hold. Let A be any adversary in Csound. Then, we want to bound the following probability.

p =

∣∣∣∣∣Pr[A(e) = 1|e← E0]− Pr[A(e) = 1|e← E1]

∣∣∣∣∣
Every instance of e consists of zk1,V and zk1,P output by the cheating prover. Let S denote the
set of elements in the range of Com1,C(?). There are exactly 2`µ elements in this set. For every
s ∈ S, we define E0,s to be the collection of transcripts in E0 where the verifier submits s as com1,C .
Likewise, we define E1,s to be the collection of transcripts in E1 where the verifier submits s as
com1,C . Thus, due to triangle inequality we have that:

p <
∑
s∈S

∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣.
We will prove that for every s ∈ S,∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣ < O(εNIDI,DI).

This will prove the claim. We show this as follows. Assume towards contradiction that there exist
s∗ such that.∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s∗|e← E0,s∗]− Pr[A(e) = 1 ∧ zk1,P = s∗|e← E1,s∗]

∣∣∣∣∣ = ε1.

We will use this to attack the indistinguishability of NIDI with the probability ε1. We will show
that if this happens, then we can build a reduction using A that is also in Csound, that distinguishes
NIDI.P(Db0) from NIDI.P(Db1) with an advantage ε1 where b1 = Com−1

1,C(s∗) and b0 is uniformly

sampled from {0, 1}`µ \ Com−1
1,C(s∗). The reduction works as follows.

• Obtain the challenge NIDI proof Π.

• Send Π to the prover P ∗. Prover outputs τ, s. If s = s∗, then output A(Π, τ, s), otherwise
output ⊥.

If Π is generated using b0, then, the transcript is not in the soundenss mode when P ∗ outputs
s∗, where as if Π is generated using b1, then the transcript is in soundness mode when P ∗ outputs
s∗. Observe that the advantage of the reduction is exactly equal to ε1. Therefore, ε1 ≤ εNIDI,DI as
per the parameters set, which is a contradiction.

9.4 Zero-Knowledge

We now argue the zero-knowledge properties of the protocol. We begin by describing our simulator,
zk.S and then argue why the security holds. The simulator will run in time polynomial in 2λ

ρ
.

zk.S(zk1,V , zk1,P , x): Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R,K)← NIDI.V(τ,Π). If the verification fails, output ⊥. Else, continue.

81

• Compute com2,C by setting com2,C,k = Com2,C(com1,R, com1,C , 0; r′k) for k ∈ [N · `ci]. Then
set com2,C = {com2,C,k}.

• Run e← H.Eval(K, (x, com1,C , com1,R, com2,C)).

• Run the simulator of Σ protocol on input x and e, and receive {ak}k∈Set.

• Equivocate com2,C,k for k ∈ Set. That is, compute SEE.S(com1,R, com1,C , r
′
k, ak) → sk for

k ∈ Set. Output ⊥ if the equivocation fails.

• Set z = {ak, sk}k∈Set and output zk2,P = (com2,C , e, z).

We now argue why the security property holds. Our first observation is that there is a simple
criteria when the distribution zk.S(zk1,V , zk1,P , x) is identical to ZKProve2(zk1,V , zk1,P , x, w). In
the zero-knowledge game zk1,P is generated honestly containing (τ, com1,C = Com1,C(bP)) for a
randomly chosen bP . Now consider zk1,V consisting of a NIDI proof Π. Let (com1,R,K)NIDI.V(τ,Π).
Since the cheating verifier is of depth poly(λ) and size polynomial in 2λ and NIDI is sound against
such adversaries, it holds that one of the scenarios must happen:

• Either NIDI.V outputs ⊥,

• Or, if NIDI.V outputs com1,R,K, it must happen that com1,R = Com1,R(bV) for some bV , or
else the verifier violates soundness which is computationally hard.

We will show first that when Com1,C(bV) 6= Com1,C(bP) of if V outputs ⊥, then the simulator above
produces an identical distribution to the honest proving algorithm. When, this does not happen,
the verifier must either:

• Break soundness of NIDI, or,

• Force zk1,P = Com1,C(bV) which is hard due to the security of SEE.

This will finish the analysis.

Lemma 16. Let (x,w) be a valid instance-witness pair. Let zk1,P = (τ, com1,C = Com1,C(bP)).
Let zk1,V = Π such that either:

• NIDI.V(τ,Π) = ⊥, or,

• NIDI.V(τ,Π) = com1,R,K, where com1,R = Com1,R(bV). for bV 6= bP .

Then, (zk1,V , zk1,P , zk2,P = zk.S(zk1,V , zk1,V , x)) is identically distributed to (zk1,V , zk1,P , zk2,P =
ZKProve2(zk1,V , zk1,V , x, w)) where the randomness is only over the generation of proof zk2,P .

The proof of this immediate. If NIDI.V(τ,Π) = ⊥ then, both algorithms output ⊥, which is
identically distributed. In case of the second criteria, the proof is also immediate. It follows from
equivocation property of the commitment scheme and honest verifier zero-knowledge of SEE. We
show it by three hybrids where the first hybrid corresponds to the actual proof, and the last hybrid
corresponds to the simulator.
Hybrid0: In this hybrid, run as in the honest algorithm to compute zk2,P : sample {ak}k∈[N`ci] as
in the Σ protocol and then commit them to compute com2,C . Apply H on com2,C to derive e, and
then open the commitments to {ak}k∈Set honestly.
Hybrid1: In this hybrid, we make the following change to generate zk2,P : we sample {ak}k∈[N`ci]

as in the Σ protocol but then commit 0′s instead of {ak} to compute com2,C . Then, we apply H on

82

com2,C to derive e. At the opening time, we open these commitments by using SEE.S to equivocate
these commitments to open to {ak}k∈Set.

Note that since com1,C 6= com1,R, the distribution of these two hybrids are identical due to
equivocation property of SEE.

Hybrid2: In this hybrid, we make the following change to generate zk2,P : we generate com2,C by
committing to 0′s. Then, we apply H on com2,C to derive e. At the opening time, we first sample
{ak}k∈Set using the honest verifier simulator of Σ protocol, and then open the commitments of 0 by
using SEE.S to {ak}k∈Set.

These hybrid corresponds to zk.S. Note that due to the security of the Σ protocol, the last two
hybrids are identical.

The lemma above solves our problems completely, except that we must ensure that the conditions
for when the distributions are not identical outlined above does not happen in the zero knowledge
security game.

We show this using hybrids. The first hybrid corresponds to the case of honest experiment. The
last hybrid corresponds to the simulated experiment.

Hybrid0 : This hybrid corresponds to the experiment where the responses are done using the honest
ZKProve2 algorithm. Throughout, parse zk1,P = (τ, com1,C).

Hybrid1 : This hybrid is the same as before, except that we abort if the cheating verifier queries
(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = com1,R,i,Ki where com1,R,i = Com1,R(bV,i) such that
Com1,C(bV,i) = com1,C .

Note that the above two hybrids are statistically close. This is because V ∗ is an adversary of
polynomially bounded depth and size polynomial in 2λ. The commitment scheme SEE ensures
that any adversary of polynomial depth, and size bounded by 2λcom � 2λ cannot produce com1,R

with this property with advantage more than 2−λcom � 2−λ. Thus, probability of abort is less than
2−λcom . We also make a note that the challenger for this hybrid can be run in time polynomial in
2tcom = 2λ

ρ
. This is to break open com1,R.

Hybrid2 : This hybrid is the same as before, except that we abort if the cheating verifier queries
(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = (com1,R,i,Ki) where com1,R,i 6= Com1,R(bV,i; ri) or
Ki = H.FakeGen(f [com1,R,i,bVi , ri]).

Note that the above two hybrids are statistically close. This is because, if there is a cheating
verifier V ∗ of depth poly(λ) and size polynomial in 2λ that produces distinguishable hybrids, then
we can build a reduction of size polynomial in 2λ that violates soundness of NIDI. The reduction
responds to the queries as in Hybrid1. It also needs to run to respond to the queries to figure out
aborting conditions as in Hybrid1. It can do so, by brute-force opening of com1,R,i, which can
be done by a circuit of size 2tcom=λρ . Since NIDI is sound against adversaries of size polynomial
2λNIDI � 2λ with advantage less than 2−λ, these two hybrids are statistically close (unless the
reduction wins in the soundness game).

Hybrid3 : This hybrid is the same as before, except that we simulate zk2,P responses.
These hybrids are identical due to Lemma 16.

83

References

[ABG+21] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and Giulio Malavolta.
Two-round maliciously secure computation with super-polynomial simulation. IACR
Cryptol. ePrint Arch., page 1230, 2021. To appear in TCC 2021.

[AJJM21] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Unbounded
multi-party computation from learning with errors. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
754–781. Springer, Heidelberg, October 2021.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April
2012.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. Cryptology ePrint
Archive, Report 2011/613, 2011. https://eprint.iacr.org/2011/613.

[BDD+20] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. CRAFT: composable randomness and almost fairness from time. IACR
Cryptol. ePrint Arch., page 784, 2020.

[BDD+21] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. TARDIS: A foundation of time-lock puzzles in UC. In Advances in Cryptology
- EUROCRYPT, pages 429–459, 2021.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io from
homomorphic encryption schemes. In Advances in Cryptology - EUROCRYPT, pages
79–109, 2020.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit
Sahai. Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 642–667. Springer, Heidelberg,
May 2020.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, 2012.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Advances
in Cryptology - CRYPTO, pages 387–404, 2014.

84

https://eprint.iacr.org/2011/613

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model
from new assumptions. In Advances in Cryptology - ASIACRYPT, pages 275–303, 2017.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS, pages
345–356, 2016.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent MPC via strong simulation. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 743–775. Springer,
Heidelberg, November 2017.

[BGMM20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable two-
round MPC from DDH. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 320–348. Springer, Heidelberg, November 2020.

[BGSZ21] James Bartusek, Sanjam Garg, Akshayaram Srinivasan, and Yinuo Zhang. Reusable
two-round MPC from LPN. IACR Cryptol. ePrint Arch., page 316, 2021.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, May 1988.

[BJKL21] Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty
reusable non-interactive secure computation from LWE. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
724–753. Springer, Heidelberg, October 2021.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 671–684. ACM, 2018.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable com-
mitments. In Theory of Cryptography - 16th International Conference, TCC, pages
209–234, 2018.

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive
secure computation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 349–378. Springer, Heidelberg, November 2020.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 503–513. ACM, 1990.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology - CRYPTO,
pages 236–254, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May
1988.

85

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1082–1090. ACM, 2019.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexamples to
hardness amplification beyond negligible. In Theory of Cryptography - 9th Theory of
Cryptography Conference, TCC, pages 476–493. Springer, 2012.

[DKP21] Dana Dachman-Soled, Ilan Komargodski, and Rafael Pass. Non-malleable codes for
bounded parallel-time tampering. In Advances in Cryptology - CRYPTO, pages 535–565,
2021.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs.
Succinct lwe sampling, random polynomials, and obfuscation. IACR Cryptol. ePrint
Arch., page 1226, 2021.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Non-malleable
time-lock puzzles and applications. IACR Cryptol. ePrint Arch., page 779, 2020.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM J. Comput., 45(3):882–929, 2016.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Symposium on Theory of Computing Conference, STOC, pages
467–476, 2013.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical zaps
and new oblivious transfer protocols. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 668–699. Springer, Heidelberg,
May 2020.

[GMPY11] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource
fairness and composability of cryptographic protocols. J. Cryptol., 24(4):615–658, 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, December 1994.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages
736–749, 2021.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Advances in
Cryptology - CRYPTO, pages 158–189, 2017.

86

[JLS21a] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, pages 60–73, 2021.

[JLS21b] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation without
lattices, 2021. Unpublished manuscript.

[Khu21] Dakshita Khurana. Non-interactive distributional indistinguishability (NIDI) and
non-malleable commitments. In Anne Canteaut and François-Xavier Standaert, edi-
tors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 186–215. Springer,
Heidelberg, October 2021.

[KK19] Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability from
quantum supremacy. In Advances in Cryptology - CRYPTO, pages 552–582, 2019.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistin-
guishability (and more) in two messages. In Advances in Cryptology - EUROCRYPT,
pages 34–65, 2018.

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles
and timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of
Cryptography - 18th International Conference, TCC, pages 390–413, 2020.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354.
Springer, Heidelberg, August 2004.

[LPS20] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. SIAM J. Comput., 49(4), 2020.

[MPP20] Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou. Succinct non-interactive
secure computation. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 216–245. Springer, Heidelberg, May 2020.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
160–176. Springer, Heidelberg, May 2003.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Advances in Cryptology -
EUROCRYPT, pages 87–105, 2003.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions
and applications. In Advances in Cryptology - CRYPTO, pages 57–74, 2008.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, STOC, pages 242–251. ACM, 2004.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO
2019, 2019.

[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent
to factoring: Sharp thresholds for all generic-ring delay functions. In Advances in
Cryptology - CRYPTO, pages 481–509, 2020.

87

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto,
1996. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA.

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. SIAM J. Comput., 50(3):857–908, 2021.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In Advances in Cryptology - EUROCRYPT, pages 127–156, 2021.

[Yao86a] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[Yao86b] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167. IEEE Computer Society, 1986.

88

	Introduction
	Our Results

	Technical Overview
	Definition of Maliciously Secure MrNISC
	The MrNISC Protocol

	Preliminaries
	Witness Encryption
	Time Lock Puzzles
	Indistinguishability Obfuscation
	Correlation Intractable Hash Functions
	Sender Equivocal Oblivious Transfer
	Equivocal Garbled Circuits for NC1

	MrNISC Syntax and Security
	Main Building Blocks
	Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness
	Receiver-Assisted One-Round CCA-Secure Commitments

	Malicious-Secure MrNISC
	Proof of Security

	Our Receiver-Assisted One-Round CCA Commitments
	Overview
	Our Tag-Amplification Transformation
	Removing One-Tag Restriction

	Primitives used for Constructing Our Zero-Knowledge Protocol
	Non-Interactive Distributional Indistinguishability
	Sometimes Extractable Equivocal Commitments
	Construction of NIDI
	Construction of Sometimes Extractable Equivocal Commitments

	Construction of Reusable Statistical ZK arguments with Sometimes Statistical Soundness
	Overview
	Construction
	Soundness
	Zero-Knowledge

