Anonymity of NIST PQC Round-3 KEMs

Keita Xagawa ${ }^{1}$
NTT Social Informatics Laboratories, keita.xagawa.zv@hco.ntt.co.jp

Abstract

This paper investigates anonymity of all NIST PQC Round 3 KEMs: Classic McEliece, Kyber, NTRU, Saber, BIKE, FrodoKEM, HQC, NTRU Prime (Streamlined NTRU Prime and NTRU LPRime), and SIKE. We show the following results: - NTRU is anonymous in the quantum random oracle model (QROM) if the underlying deterministic PKE is strongly disjoint-simulatable. NTRU is collision-free in the QROM. A hybrid PKE scheme constructed from NTRU as KEM and appropriate DEM is anonymous and robust. Similar results hold for BIKE, FrodoKEM, HQC, NTRU LPRime, and SIKE. - Classic McEliece is anonymous in the QROM if the underlying PKE is strongly disjoint-simulatable and a hybrid PKE scheme constructed from it as KEM and appropriate DEM is anonymous. - Streamlined NTRU Prime has an obstacle for the IND-CCA security proof as Grubbs, Maram, and Paterson pointed out that Kyber and Saber has a gap in the current IND-CCA security proof (Cryptography ePrint Archive 2021/708). Those answer the open problem to investigate the anonymity and robustness of NIST PQC Round 3 KEMs posed by Grubbs, Maram, and Paterson (Cryptography ePrint Archive 2021/708). We use strong disjoint-simulatability of the underlying PKE of KEM and strong pseudorandomness and smoothness of KEMs, which will be of independent interest.

Keywords: anonymity, robustness, post-quantum cryptography, NIST PQC standardization, KEM, PKE

1 Introduction

Public-Key Encryption (PKE) allows us to send a message confidentially to a receiver if the receiver's public key is available. However, a ciphertext may reveal the receiver's public key. Roughly speaking, PKE is anonymous [BBDP01] if a ciphertext hides the receiver's information. Anonymous primitive is often used in the context of privacy-enhancing technologies.
If we use anonymous PKE, then a ciphertext indicates (computationally) no information of a receiver. Thus, once the receiver receives a ciphertext, it should decrypt it and check the message. In this situation, a ciphertext maybe has two (or more) recipients. Intuitively speaking, PKE is robust [ABN10] if only the intended receiver can obtain a meaningful plaintext from a ciphertext.
Both anonymity and robustness are important and useful properties beyond the standard IND-CCA security. Anonymous PKE is an important building primitive for anonymous credential systems [CL01], auction protocols [Sak00], (weakly) anonymous AKE [BCGNP09, FSXY13, FSXY15, SSW20], and so on. Robust PKE has an application for searchable encryption $\left[\mathrm{ABC}^{+} 05\right]$ and auction [Sak00].

Previous works: Mohassel [Moh10] studied anonymity and robustness of a special KEM/DEM framework, where KEM is implemented by PKE with random plaintext. He observed that even if anonymous KEM and DEM sometimes fail to lead to an anonyous hybrid PKE.
Grubbs, Maram, and Paterson [GMP21] discussed anonymity and robustness of post-quantum KEM schemes and KEM/DEM framework in the quantum random oracle model (QROM). They also studied anonymity and robustness of the hybrid PKE based on KEM with implicit rejection. On the variants of the Fujisaki-Okamoto transformation [FO99, FO13], they showed that anonymity and collision-freeness of KEMs obtained by $\mathrm{FO}^{\not ㇒}$ and $\mathrm{FO}^{\perp \prime \prime 1}$ and they lead to anonymous, robust hybrid PKEs from appropriate assumptions. They also show anonymity and robustness of KEM obtained by $\mathrm{HFO}^{\perp / 2}$ and it lead to anonymous, robust hybrid PKE form appropriate assumptions. They then examined NIST PQC Standardization finalists (Classic McEliece [$\mathrm{ABC}^{+} 20$], Kyber [$\mathrm{SAB}^{+} 20$], NTRU [CDH $\left.{ }^{+} 20\right]$, and Saber [$\left.\mathrm{DKR}^{+} 20\right]$). They showed the following results:

[^0]- Classic McEliece: They found that Classic McEliece is not collision-free. Since their anonymity proof in [GMP21, Theorem 5] strongly depends on the collision-freeness of the underlying PKE, we cannot apply their anonymity proof to Classic McEliece. They also show that the hybrid PKE fails to achieve robustness since Classic McEliece is not collision-free.
- Kyber: They found that Kyber's anonymity (and even IND-CCA security) has two technical barriers ('pre-key' and 'nested random oracles') in the QROM.
- NTRU: NTRU's anonymity has another technical barrier: A key is computed as $\mathrm{H}(\mu)$ instead of $\mathrm{H}(\mu, c)$, where μ is a plaintext and c is a ciphertext. The robustness of the hybrid PKE with NTRU is unclear.
- Saber: They insisted they show Saber's anonymity and IND-CCA security and the robustness of the hybrid PKE with Saber. Unfortunately, Saber in [DKR $\left.{ }^{+} 20\right]$ also uses both 'pre-key' and 'nested random oracles' as Kyber and their proofs cannot be applied to Saber. ${ }^{3}$
Grubbs et al. left several open problems: One of them is the anonymity and robustness of NTRU; the other important one is the anonymity of Classic McEliece.
Summarizing above, unfortunately, we do not know whether all four finalists are anonymous or not, although the much effort of Grubbs et al. and their clean and modular framework.

1.1 Our Contribution

Anonymity through pseudorandomness and smoothness: Our starting point is strong pseudorandomness instead of anonymity: We say $\mathrm{PKE} / \mathrm{KEM} / \mathrm{DEM}$ is strongly pseudorandom if its ciphertext is indistinguishable from a random string chosen by a simulator on input the security parameter. ${ }^{4}$ It is easy to show strong pseudorandomness implies anonymity.
Using this notion, we attempt to follow the IND-CCA security proof of the KEM/DEM framework [CS02], that is, we try to show the hybrid PKE from strongly pseudorandom KEM/DEM is also strongly pseudorandom, which implies that the hybrid PKE is anonymous. If we directly try to prove the ANON-CCA security of the hybrid PKE, then we will need to simulate two decryption oracles. Considering pseudorandomness allows us to treat a single key and oracle and simplifies the security proof. Unfortunately, we face another obstacle in the security proof when we consider KEM.
To resolve the obstacle, we define sparseness of KEM with explicit rejection and smoothness of KEM with implicit rejection: We say KEM with explicit rejection is sparse if a ciphertext c chosen by a simulator is decapsulated into \perp with overwhelming probability. We say KEM with implicit rejection is smooth if, given a ciphertext c chosen by a simulator, any efficient adversary cannot distinguish a random key from a decapsulated key. This definition imitates the smoothness of hash proof system [CS02]. Those notions help us to prove the pseudorandomness of the hybrid PKE. We believe that sparseness and smoothness will play important role in another place.

Pseudorandomness, smoothness, and collision-freeness of the FO variants: In order to treat the case for Classic McEliece and NTRU, in which the underlying PKE is deterministic, we treat SXY [SXY18], variants of U [HHK17], and variants of HU [JZM19]. Modifying the security proofs of them, we show that the obtained KEM is strongly pseudorandom and smooth if the underlying PKE is strongly disjoint-simulatable [SXY18]. We also show that the obtained KEM is collision-free if the underlying deterministic PKE (DPKE) is collision-free. We finally note that our reductions enjoy tightness.
Grubbs et al. [GMP21] discussed the barrier to show anonymity of NTRU, which stems from the design choice $K=\mathrm{H}(\mu)$ instead of $K=\mathrm{H}(\mu, c)$. The former choice makes their simulation difficult. In addition, their proof technique requires the underlying PKE to be collision-free. Since the underlying PKE of Classic McEliece lacks collision freeness, they left the proof of anonymity of Classic McEliece as an open problem. Both barriers stem from the fact that we need to simulate two decapsulation oracles in the proof of ANON-CCA-security. We avoid those technical barriers by using a stronger notion, SPR-CCA security; in the proof of SPR-CCA-security, we only need to simulate a single decapsulation oracle.

Application to NIST PQC Round-3 KEMs: By using the above techniques, we solve open problems posed by Grubbs et al. and extend the study of finalists and alternative candidates of NIST PQC Round 3 KEMs.
We found the following (We omit the detail of the assumptions):

- Classic McEliece is anonymous, but not collision-free. The hybrid PKE is anonymous.

[^1]- NTRU is anonymous and collision-free. The hybrid PKE is anonymous and robust. Similar results hold for BIKE, HQC (HQC-128 and HQC-196) ${ }^{5}$, NTRU LPRime, and SIKE.
- FrodoKEM uses $\mathrm{FO}^{\perp \prime \prime}$. We can use the results of Grubbs et al.and FrodoKEM is anonymous and collision-free. The hybrid PKE is anonymous and robust.
- Grubbs et al.reported that Kyber and Saber have similar obstacles for anonymity (and IND-CCA security). We found that Streamlined NTRU Prime has also a similar obstacle.
See the summary in Table 1.
Open Problems: We leave showing anonymity of Kyber, Saber, and Streamlined NTRU Prime as an important open problem as Gurbbs et al. posed.

Table 1. Summary of NIST PQC Round 3 KEM Candidates (finalists and alternate candidates) and the hybrid PKEs using them. In the first row, SPR $=$ Strong Pseudorandomness, ANO = Anonymity, $\mathrm{CF}=$ Collision Freeness, and ROB $=$ Robustness.

		KEM				PKE		
Name	Trans.	SPR	ANO		ROB	ANO	ROB	
Classic McEliece [$\mathrm{ABC}^{+} 20$]	HU ${ }^{\perp}$, prf	Y	Y	N	N	Y	N	section L
Kyber [$\mathrm{SAB}^{+}{ }^{20}$]	$\mathrm{FO}^{+\prime}$?	?	?	N	?	?	section M
NTRU [$\left.\mathrm{CDH}^{+} 20\right]$	SXY	Y	Y	Y	N	Y	Y	section 6
Saber [DKR $\left.{ }^{+} 20\right]$	FO^{+1}	?	?	?	N	?	?	section N
BIKE [$\mathrm{ABB}^{+} 20$]	FO^{+}	Y	Y	Y	N	Y	Y	section O
FrodoKEM $\left[\mathrm{NAB}^{+}{ }^{20}\right]$	$\mathrm{FO}^{+\prime \prime}$	Y	Y	Y	N	Y	Y	section P
$\mathrm{HQC}\left[\mathrm{AAB}^{+} 20\right]^{\text {a }}$	HFO^{\perp}	Y	Y	Y	Y	Y	Y	section Q
Streamlined NTRU Prime [$\left.\mathrm{BBC}^{+} 20\right]$	HU ${ }^{\text {, prf }}$?	?	?	N	?	?	section R
NTRU LPRime [$\mathrm{BBC}^{+} 20$]	HFO^{\perp},prf	Y	Y	Y	N	Y	Y	section S
SIKE [JAC $\left.{ }^{+} 20\right]$	FO^{+}	Y	Y	Y	N	Y	Y	section T

${ }^{\text {a }}$ We only consider HQC-128 and HQC-192. HQC-256 is not anonymous.
Organization: section 2 reviews quantum random oracle models, definitions of primitives, and results of Grubbs et al. [GMP21]. section 3 shows that strong pseudorandomness implies anonymity. ?? studies strong pseudorandomness of KEM/DEM framework. section 5 studies SXY's security properties. section 6 examines anonymity and robustness of NTRU. For contents of appendices, see table of contents.

2 Preliminaries

Notations: A security parameter is denoted by κ. We use the standard O-notations. DPT, PPT, and QPT stand for deterministic polynomial time, probabilistic polynomial time, and quantum polynomial time, respectively. A function $f(\kappa)$ is said to be negligible if $f(\kappa)=\kappa^{-\omega(1)}$. We denote a set of negligible functions by negl(κ). For a distribution χ, we often write " $x \leftarrow \chi$," which indicates that we take a sample x according to χ. For a finite set $S, U(S)$ denotes the uniform distribution over S. We often write " $x \leftarrow S$ " instead of " $x \leftarrow U(S)$." For a set S and a deterministic algorithm $\mathrm{A}, \mathrm{A}(S)$ denotes the set $\{\mathrm{A}(x) \mid x \in S\}$. If inp is a string, then "out $\leftarrow \mathrm{A}($ inp $)$ " denotes the output of algorithm A when run on input inp. If A is deterministic, then out is a fixed value and we write "out := A(inp)." We also use the notation "out := $\mathrm{A}(\mathrm{inp} ; r)$ " to make the randomness r explicit.
For a statement P (e.g., $r \in[0,1]$), we define boole $(P)=1$ if P is satisfied and 0 otherwise.
For two finite sets \mathcal{X} and $\boldsymbol{y}, \mathcal{F}(\mathcal{X}, \boldsymbol{y})$ denotes a set of all mapping from \mathcal{X} to \boldsymbol{Y}.
Lemma 2.1 (Generic distinguishing problem with bounded probabilities [HKSU20, Lemma 2.9], adapted). Let \mathcal{X} be a finite set. Let $\delta \in[0,1]$. Let $\mathrm{F}: \mathcal{X} \rightarrow\{0,1\}$ be the following function: for each $x \in \mathcal{X}, \mathrm{~F}_{1}(x)=1$ with probability $\delta_{x} \leq \delta$ and $\mathrm{F}_{1}(x)=0$ else. Let $\mathrm{Z}: \mathcal{X} \rightarrow\{0,1\}$ be the zero function, that is, $\mathrm{Z}(x)=0$ for all x. If an unbounded time quantum adversary \mathcal{A} makes a query to F or Z at most Q times, then we have

$$
\left|\operatorname{Pr}\left[\mathcal{A}^{\mathrm{F}(\cdot)}() \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{Z(\cdot)}() \rightarrow 1\right]\right| \leq 8(Q+1)^{2} \delta
$$

where all oracle accesses of \mathcal{A} can be quantum.

[^2]Quantum Random Oracle Model: Roughly speaking, the quantum random oracle model (QROM) is an idealized model where a hash function is modeled as a publicly and quantumly accessible random oracle. In this paper, we model a quantum oracle O as a mapping $|x\rangle|y\rangle \mapsto|x\rangle|y \oplus O(x)\rangle$, where $x \in\{0,1\}^{n}, y \in\{0,1\}^{m}$, and $O:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. See $\left[\mathrm{BDF}^{+} 11\right]$ for a more detailed description of the model.

Lemma 2.2 (QRO is PRF). Let ℓ be a positive integer. Let \mathcal{X} and \mathcal{Y} be finite sets. Let $\mathrm{H}_{\mathrm{prf}}: \mathcal{M} \times \mathcal{X} \rightarrow \mathcal{Y}$ and $\mathrm{H}_{q}: \mathcal{X} \rightarrow \boldsymbol{y}$ be two independent random oracles. If an unbounded time quantum adversary \mathcal{A} makes a query to H at most Q times, then we have

$$
\left|\operatorname{Pr}\left[s \leftarrow \mathcal{M}: \mathcal{A}^{\mathrm{H}_{\mathrm{prf}}, \mathrm{H}_{\mathrm{prf}}(s, \cdot)}() \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\mathrm{H}_{\mathrm{prf}}, \mathrm{H}_{q}}() \rightarrow 1\right]\right| \leq 2 Q / \sqrt{|\mathcal{M}|},
$$

where all oracle accesses of \mathcal{A} can be quantum.
See [SXY18] and $\left[\mathrm{JZC}^{+} 18\right]$ for the proof.
Lemma 2.3 (QRO is collision-resistant [Zha15, Theorem 3.1]). There is a universal constant C such that the following holds: Let \mathcal{X} and \mathcal{Y} be finite sets. Let $\mathrm{H}: \mathcal{X} \rightarrow \boldsymbol{\mathcal { Y }}$ be a random oracle. If an unbounded time quantum adversary \mathcal{A} makes a query to H at most Q times, then we have

$$
\operatorname{Pr}_{\mathrm{H}, \mathscr{A}}\left[\left(x, x^{\prime}\right) \leftarrow \mathcal{A}^{\mathrm{H}}: x \neq x^{\prime} \wedge \mathrm{H}(x)=\mathrm{H}\left(x^{\prime}\right)\right] \leq C(Q+1)^{3} /|\mathcal{Y}|,
$$

where all oracle accesses of \mathcal{A} can be quantum.
Remark 2.1. We implicitly assume that $|\mathcal{X}|=\Omega(|\mathcal{Y}|)$, because of the birthday bound.
Lemma 2.4 (QRO is claw-free). There is a universal constant C such that the following holds: Let \mathcal{X}_{0} and \mathcal{X}_{1} and \boldsymbol{y} be finite sets. Let $N_{0}=\left|X_{0}\right|$ and $N_{1}=\left|\mathcal{X}_{1}\right|$. Without loss of generality, we assume $N_{0} \leq N_{1}$. Let $\mathrm{H}_{0}: \mathcal{X}_{0} \rightarrow \mathcal{Y}$ and $\mathrm{H}_{1}: \mathcal{X}_{1} \rightarrow \boldsymbol{Y}$ be two random oracles.
If an unbounded time quantum adversary \mathcal{A} makes a query to H_{0} and H_{1} at most Q_{0} and Q_{1} times, then we have

$$
\operatorname{Pr}\left[\left(x_{0}, x_{1}\right) \leftarrow \mathcal{A}^{\mathrm{H}_{0}, \mathrm{H}_{1}}: \mathrm{H}_{0}\left(x_{0}\right)=\mathrm{H}_{1}\left(x_{1}\right)\right] \leq C\left(Q_{0}+Q_{1}+1\right)^{3} /|\mathcal{Y}|,
$$

where all oracle accesses of \mathcal{A} can be quantum.
The following proof is due to Hosoyamada [Hos20].
Proof. Let us reduce the problem to collision-finding problem as follows: We assume that \mathcal{X}_{0} and \mathcal{X}_{1} are enumerable. Given $\mathrm{H}:\left[N_{0}+N_{1}\right] \rightarrow \mathcal{Y}$, we define $\mathrm{H}_{0}: \mathcal{X}_{0} \rightarrow \mathcal{Y}$ and $\mathrm{H}_{1}: \mathcal{X}_{1} \rightarrow \mathcal{Y}$ by $\mathrm{H}_{0}(x)=\mathrm{H}\left(\operatorname{index}_{0}(x)\right)$ and $\mathrm{H}_{1}(x)=\mathrm{H}\left(\operatorname{index}_{1}(x)+N_{0}\right)$, where index ${ }_{i}: \mathcal{X}_{i} \rightarrow\left[N_{i}\right]$ is an index function which returns the index of x in \mathcal{X}_{i}. H_{0} and H_{1} are random since H is a randomly chosen. If \mathcal{A} finds the claw $\left(x_{0}, x_{1}\right)$ for H_{0} and H_{1} with Q_{0} and Q_{1} queries, then we can find a collision (index ${ }_{0}\left(x_{0}\right)$, index $\left.\left(x_{1}\right)+N_{0}\right)$ for H with $Q_{0}+Q_{1}$ queries. Using Lemma 2.4, we obtain the bound as we wanted.

2.1 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:
Definition 2.1. A PKE scheme PKE consists of the following triple of PPT algorithms (Gen, Enc, Dec).

- Gen $\left(1^{\kappa} ; r_{g}\right) \rightarrow(e k, d k):$ a key-generation algorithm that on input 1^{κ}, where κ is the security parameter, and randomness $r_{g} \in \mathcal{R}_{\mathrm{Gen}}$, outputs a pair of keys (ek, $d k$). ek and dk are called the encryption key and decryption key, respectively.
- Enc $\left(e k, \mu ; r_{e}\right) \rightarrow c:$ an encryption algorithm that takes as input encryption key ek, message $\mu \in \mathcal{M}$, and randomness $r_{e} \in \mathcal{R}_{\text {Enc }}$, and outputs ciphertext $c \in C$.
- $\operatorname{Dec}(d k, c) \rightarrow \mu / \perp:$ a decryption algorithm that takes as input decryption key $d k$ and ciphertext c and outputs message $\mu \in \mathcal{M}$ or a rejection symbol $\perp \notin \mathcal{M}$.

We review δ-correctness in Hofheinz, Hövelmanns, and Kiltz [HHK17].

Definition 2.2 (δ-Correctness). Let $\delta=\delta(\kappa)$. We say PKE $=($ Gen, Enc, Dec) is δ-correct if

$$
\operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}\left[\max _{\mu \in \mathcal{M}} \operatorname{Pr}[c \leftarrow \operatorname{Enc}(e k, \mu): \operatorname{Dec}(d k, c) \neq \mu]\right] \leq \delta .
$$

In particular, we say that PKE is perfectly correct if $\delta=0$.
We also define a key pair's accuracy.
Definition 2.3 (Accuracy [XY19]). We say that a key pair ($e k, d k$) is accurate iffor any $\mu \in \mathcal{M}$,

$$
\operatorname{Pr}_{c \leftarrow \operatorname{Enc}(e k, \mu)}[\operatorname{Dec}(d k, c)=\mu]=1 .
$$

If a key pair is not accurate, then we call it inaccurate.
Security Notions: We review onewayness under chosen-plaintext attacks (OW-CPA), indistinguishability under chosen-plaintext attacks (IND-CPA), indistinguishability under chosen-ciphertext attacks (IND-CCA) [RS92, BDPR98], pseudorandom under chosen-ciphertext attacks (PR-CCA), and its strong version (SPR-CCA) for PKE. We define PR-CCA with simulator \mathcal{S} as a generalization of IND\$-CCA-security in [vH04, Hop05]. We also review anonymity (ANON-CCA) [BBDP01], robustness (WROB-CCA and SROB-CCA) [Moh10], and collision-freeness (WCFR-CCA and SCFR-CCA) [Moh10]. We additionally define extended collision-freeness (XCFR), in which any efficient adversary cannot find a colliding ciphertext even if the adversary is given two decryption keys.
Definition 2.4 (Security notions for PKE). Let PKE $=(\mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec})$ be a PKE scheme. Let $\mathcal{D}_{\mathcal{M}}$ be a distribution over the message space \mathcal{M}.
For any \mathcal{A} and goal-atk \in \{ind-cca, pr-cca, anon-cca\}, we define its goal-atk advantage against PKE as follows:

$$
\operatorname{Adv}_{\operatorname{PKE}[, \mathcal{S}], \mathcal{A}}^{\text {goal-atk }}(\kappa):=\left|2 \operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{PKE}[, \mathcal{S}], \mathcal{A}}^{\text {goal-atk }}(\kappa)=1\right]-1\right|,
$$

where $\mathrm{Expt}_{\mathrm{PKE}[, \mathcal{S}], \mathcal{H}}^{\text {goal-atk }}(\kappa)$ is an experiment described in Figure 1.
For any \mathcal{A} and goal-atk \in \{ow-cca, srob-cca, scfr-cca, wrob-cca, wcfr-cca, xcfr\}, we define its goal-atk advantage against PKE as follows:

$$
\operatorname{Adv}_{\operatorname{PKE}\left[, \mathcal{D}_{\mathcal{M}}\right], \mathcal{A}}^{\text {goal-atk }}(\kappa):=\operatorname{Pr}\left[\operatorname{Expt}_{\text {PKE }\left[, \mathcal{D}_{\mathcal{M}}\right], \mathcal{A}}^{\text {goal-atk }}(\kappa)=1\right],
$$

where Expt $_{\text {PKE }}^{\text {goal-atk }}{ }_{\mathcal{D}}^{\mathcal{M}], \mathcal{A}}(\kappa)$ is an experiment described in Figure 1.
For GOAL-ATK $\in\{O W-C C A, ~ I N D-C C A, ~ P R-C C A, ~ A N O N-C C A, ~ S R O B-C C A, ~ S C F R-C C A, ~ W R O B-C C A, ~ W C F R-C C A, ~$ XCFR $\}$, we say that PKE is GOAL-ATK-secure if $\operatorname{Adv}_{\text {PKE }\left[, \mathcal{D}_{\mathcal{M}}, \mathcal{S}\right], \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is negligible for any QPT adversary \mathcal{A}. We also say that PKE is SPR-CCA-secure if it is PR-CCA-secure and its simulator ignores ek. We also say that PKE is GOAL-CPA-secure if it is GOAL-CCA-secure even without the decryption oracle.

Disjoint simulatability: We review disjoint simulatability defined in [SXY18].
Definition 2.5 (Disjoint simulatability [SXY18]). Let $\mathcal{D}_{\mathcal{M}}$ denote an efficiently sampleable distribution on a set \mathcal{M}. A deterministic PKE scheme $\mathrm{PKE}=(\mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec})$ with plaintext and ciphertext spaces \mathcal{M} and C is $\mathcal{D}_{\mathcal{M}^{-}}$ disjoint-simulatable if there exists a PPT algorithm \mathcal{S} that satisfies the followings:

- (Statistical disjointness:)

$$
\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa):=\max _{(e k, d k) \in \operatorname{Gen}\left(1^{\kappa} ; \mathcal{R}_{\mathrm{Gen}}\right)} \operatorname{Pr}\left[c \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right): c \in \operatorname{Enc}(e k, \mathcal{M})\right]
$$

is negligible.

- (Ciphertext-indistinguishability:) For any QPT adversary \mathcal{A},

$$
\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}}^{\mathrm{ds} \text { ind }}(\kappa):=\left|\begin{array}{c}
\operatorname{Pr}\left[(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), \mu^{*} \leftarrow \mathcal{D}_{\mathcal{M}}, c^{*}:=\operatorname{Enc}\left(e k, \mu^{*}\right): \mathcal{A}\left(e k, c^{*}\right) \rightarrow 1\right] \\
-\operatorname{Pr}\left[(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right): \mathcal{A}\left(e k, c^{*}\right) \rightarrow 1\right]
\end{array}\right|
$$

Liu and Wang gave a slightly modified version of statistical disjointness in [LW21]. As they noted, their definition below is enough to show the security proof.

$$
\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa):=\operatorname{Pr}\left[(e k, d k) \in \operatorname{Gen}\left(1^{\kappa}\right), c \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right): c \in \operatorname{Enc}(e k, \mathcal{M})\right]
$$

Definition 2.6 (strong disjoint-simulatability). We call PKE has strong disjoint-simulatability if \mathcal{S} ignores ek.
Remark 2.2. We note that a deterministic PKE scheme produced by TPunc [SXY18] or Punc [HKSU20] is not strongly disjoint-simulatable, because their simulator will output a random ciphertext Enc $(e k, \hat{\mu})$ of a special plaintext $\hat{\mu}$, which depends on $e k$.

$\operatorname{Expt}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}}^{\text {ow-cca }}$	$\underline{\mathrm{DEC}_{a}(c)} \quad \mathrm{D}$	$\underline{\mathrm{Dec}_{a}(\mathrm{id}, c)}$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\begin{array}{ll} \hline \text { if } c=a, \text { return } \perp & \text { if } c=a, \text { return } \perp \\ \mu:=\operatorname{Dec}(d k, c) & \mu:=\operatorname{Dec}\left(d k_{i d}, c\right) \\ \text { return } \mu & \text { return } \mu \end{array}$	
$\mu^{*} \leftarrow \mathcal{D}_{\mathcal{M}}$		
$c^{*} \leftarrow \operatorname{Enc}\left(e k, \mu^{*}\right)$		
$\mu^{\prime} \leftarrow \mathcal{A}^{\mathrm{DEc}_{c^{*}}}\left(e k, c^{*}\right)$		
return boole ($\mu^{\prime} \stackrel{?}{=} \operatorname{Dec}\left(d k, c^{*}\right)$)		
$\operatorname{Expt}_{\mathrm{PKE}, \mathcal{A}}^{\text {ind-ca }}(\kappa)$	$\operatorname{Expt}_{\mathrm{PKE}, \mathcal{S}, \mathcal{A}}^{\mathrm{pr}-\mathrm{A}}(\kappa)$	$\operatorname{Expt}_{\mathrm{PKE}, \mathcal{A}}^{\text {anon-ca }}(\kappa)$
$b \leftarrow\{0,1\}$	$b \leftarrow\{0,1\}$	$b \leftarrow\{0,1\}$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
$\left(\mu_{0}, \mu_{1}\right.$, state $) \leftarrow \mathcal{A}_{1}^{\mathrm{DEc}_{\perp}(\cdot)}(e k)$	$(\mu$, state $) \leftarrow \mathcal{F}_{1}^{\mathrm{DEc}_{\perp}(\cdot)}(e k)$	$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
$c^{*} \leftarrow \operatorname{Enc}\left(e k, \mu_{b}\right)$	$c_{0}^{*} \leftarrow \operatorname{Enc}(e k, \mu)$	$(\mu, \text { state }) \leftarrow \mathcal{A}_{1}^{\operatorname{Dec}_{\perp}(\cdot, \cdot)}\left(e k_{0}, e k_{1}\right)$
$b^{\prime} \leftarrow \mathcal{A}_{2}^{\operatorname{DEc}_{c^{*}}(\cdot)}\left(c^{*}\right.$, state $)$	$c_{1}^{*} \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right)$	$c^{*} \leftarrow \operatorname{Enc}\left(e k_{b}, \mu\right)$
return boole ($b=b^{\prime}$)	$b^{\prime} \leftarrow \mathcal{A}_{2}^{\operatorname{DEc}_{c_{b}^{*}}(\cdot)}\left(c_{b}^{*}, \text { state }\right)$	$b^{\prime} \leftarrow \mathcal{A}_{2}^{\operatorname{DEc}_{c^{*}}(\cdot, \cdot)}\left(c^{*}, \text { state }\right)$
$\operatorname{Expt}_{\text {PKE, }}^{\text {whfr }}$ (${ }^{\text {wfra }}(\kappa)$	$\underline{\operatorname{Expt}_{\mathrm{PKE}, \mathcal{A}}^{\text {scfr-cca }}(\kappa)}$	$\underline{\operatorname{Expt}_{\text {PKE, }}{ }^{\text {xcfr }}}$ (κ)
$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{K}\right)$	$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
$(\mu, b) \leftarrow \mathcal{A}^{\text {DEc }}(\cdot \cdot, \cdot)\left(e k_{0}, e k_{1}\right)$	$c \leftarrow \mathcal{A}^{\mathrm{DEc}_{\perp}(\cdot, \cdot)}\left(e k_{0}, e k_{1}\right)$	$c \leftarrow \mathcal{A}\left(e k_{0}, d k_{0}, e k_{1}, d k_{1}\right)$
$c \leftarrow \operatorname{Enc}\left(e k_{b}, \mu\right)$	$\mu_{0} \leftarrow \operatorname{Dec}\left(d k_{0}, c\right)$	$\mu_{0} \leftarrow \operatorname{Dec}\left(d k_{0}, c\right)$
$\mu^{\prime} \leftarrow \operatorname{Dec}\left(d k_{1-b}, c\right)$	$\mu_{1} \leftarrow \operatorname{Dec}\left(d k_{1}, c\right)$	$\mu_{1} \leftarrow \operatorname{Dec}\left(d k_{1}, c\right)$
return boole ($\mu=\mu^{\prime} \neq \perp$)	return boole ($\mu_{0}=\mu_{1} \neq \perp$)	return boole ($\mu_{0}=\mu_{1} \neq \perp$)
$\operatorname{Expt}_{\text {PKE, } \mathcal{A}}^{\mathrm{wrob}-\mathrm{ca}}(\kappa)$	$\operatorname{Expt}_{\mathrm{PKE}, \mathfrak{A}}^{\text {srob-cca }}(\kappa)$	
$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	
$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	
$(\mu, b) \leftarrow \mathcal{A}^{\mathrm{DEC}_{\perp}(\cdot, \cdot)}\left(e k_{0}, e k_{1}\right)$	$c \leftarrow \mathcal{A}^{\operatorname{DEc}_{\perp}(\cdot, \cdot)}\left(e k_{0}, e k_{1}\right)$	
$c \leftarrow \operatorname{Enc}\left(e k_{b}, \mu\right)$	$\mu_{0} \leftarrow \operatorname{Dec}\left(d k_{0}, c\right)$	
$\mu^{\prime} \leftarrow \operatorname{Dec}\left(d k_{1-b}, c\right)$	$\mu_{1} \leftarrow \operatorname{Dec}\left(d k_{1}, c\right)$	
return boole ($\mu^{\prime} \neq \perp$)	$\text { return boole }\left(\mu_{0} \neq \perp \wedge \mu_{1} \neq \perp\right)$	

Fig. 1. Games for PKE schemes

2.2 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:
Definition 2.7. A KEM scheme KEM consists of the following triple of polynomial-time algorithms ($\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$:

- $\overline{\operatorname{Gen}}\left(1^{\kappa}\right) \rightarrow(e k, d k)$: a key-generation algorithm that on input 1^{κ}, where κ is the security parameter, outputs a pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.
- $\overline{\operatorname{Enc}}(e k) \rightarrow(c, K)$: an encapsulation algorithm that takes as input encapsulation key ek and outputs ciphertext $c \in \mathcal{C}$ and key $K \in \mathcal{K}$.
- $\overline{\operatorname{Dec}}(d k, c) \rightarrow K / \perp:$ a decapsulation algorithm that takes as input decapsulation key $d k$ and ciphertext c and outputs key K or a rejection symbol $\perp \notin \mathcal{K}$.

Definition 2.8 (δ-Correctness). Let $\delta=\delta(\kappa)$. We say that KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ is δ-correct if

$$
\operatorname{Pr}\left[(e k, d k) \leftarrow \overline{\operatorname{Gen}}\left(1^{\kappa}\right),(c, K) \leftarrow \overline{\operatorname{Enc}}(e k): \overline{\operatorname{Dec}}(d k, c) \neq K\right] \leq \delta(\kappa)
$$

In particular, we say that KEM is perfectly correct if $\delta=0$.

Security: We review indistinguishability under chosen-plaintext attacks (IND-CPA), indistinguishability under chosen-ciphertext attacks (IND-CCA) [RS92, BDPR98], pseudorandomness under chosen-ciphertext attacks (PR-CCA), and its strong version (SPR-CCA) for KEM. We define PRCCA with simulator \mathcal{S} as a generalization of IND\$-CCA-security in [vH04, Hop05]. We also review anonymity (ANON-CCA), robustness (WROB-CCA and SROB-CCA), and collision-freeness (WCFR-CCA and SCFR-CCA) [GMP21].
We also define smoothness under chosen-ciphertext attacks (denoted by SMT-CCA) by following smoothness of hash proof system [CS02]: Roughly speaking, we say a KEM scheme is SMT-CCA-secure if, given a random ciphertext c^{*} chosen by the simulator, any efficient adversary cannot distinguish random key K_{0}^{*} and decapsulated key $K_{1}^{*}=\operatorname{Dec}\left(d k, c^{*}\right)$.

Definition 2.9 (Security notions for KEM). Let KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ be a KEM scheme.
For any \mathcal{A} and goal-atk $\in\{$ ind-cca, pr-cca, smt-cca, anon-cca, srob-cca, scfr-cca\}, we define its goal-atk advantage against KEM as follows:

$$
\operatorname{Adv}_{\mathrm{KEM}[, \mathcal{S}], \mathcal{A}}^{\text {goal-atk }}(\kappa):=\left|2 \operatorname{Pr}\left[\operatorname{Expt} \mathrm{EEM}[, \mathcal{S}], \mathcal{A}_{\text {goal-atk }}^{\text {gol }}(\kappa)=1\right]-1\right|,
$$

where $\operatorname{Expt}_{\operatorname{KEM}[, \mathcal{S}], \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is an experiment described in Figure 1.
For any \mathcal{A} and goal-atk $\in\{$ srob-cca, scfr-cca, wrob-cca, wcfr-cca\}, we define its goal-atk advantage against KEM as follows:

$$
\operatorname{Adv} v_{\mathrm{KEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa):=\operatorname{Pr}[\operatorname{Expt} \underset{\mathrm{KEM}, \mathscr{A}}{\text { goal-atk }}(\kappa)=1],
$$

where $\mathrm{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is an experiment described in Figure 1.
For GOAL-ATK $\in\{$ IND-CCA, PR-CCA, SMT-CCA, ANON-CCA, SROB-CCA, SCFR-CCA, WROB-CCA, WCFR-CCA $\}$, we say that KEM is GOAL-ATK-secure if $\operatorname{Adv}_{\text {KEM }[, \mathcal{S}], \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is negligible for any QPT adversary \mathcal{A}. We say that KEM is SPR-CCA-secure (or SSMT-CCA-secure) if it is PR-CCA-secure (or SMT-CCA-secure) and its simulator ignores ek, respectively. We say that KEM is WANON-CCA-secure if it is ANON-CCA-secure where we modify the input ($e k_{0}, e k_{1}, c^{*}, K^{*}$) into ($e k_{0}, e k_{1}, c^{*}$). We also say that KEM is GOAL-CPA-secure if it is GOAL-CCA-secure even without the decapsulation oracle.

We additionally define ϵ-sparseness.
Definition 2.10. Let \mathcal{S} be a simulator for the PR-CCA security. We say that KEM is ϵ-sparse if

$$
\operatorname{Pr}\left[(e k, d k) \leftarrow \overline{\operatorname{Gen}}\left(1^{\kappa}\right), c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right): \overline{\operatorname{Dec}}(d k, c) \neq \perp\right] \leq \epsilon .
$$

Fig. 2. Games for KEM schemes

2.3 Data Encapsulation

The model for DEM schemes is summarized as follows:
Definition 2.11. A DEM scheme DEM consists of the following triple of polynomial-time algorithms (E, D) with key space \mathcal{K} and message space \mathcal{M} :

- $\mathrm{E}(K, \mu) \rightarrow d$: an encapsulation algorithm that takes as input key K and data μ and outputs ciphertext d.
- $\mathrm{D}(K, d) \rightarrow m / \perp:$ a decapsulation algorithm that takes as input key K and ciphertext d and outputs data μ or a rejection symbol $\perp \notin \mathcal{M}$.

Definition 2.12 (Correctness). We say $\mathrm{DEM}=(\mathrm{E}, \mathrm{D})$ has perfect correctness if for any $K \in \mathcal{K}$ and any $\mu \in \mathcal{M}$, we have

$$
\operatorname{Pr}[\mathrm{D}(K, d)=\mu: d \leftarrow \mathrm{E}(K, \mu)]=1 .
$$

We review indistinguishability under chosen-ciphertext attacks (IND-CCA), pseudorandomness under chosenciphertext attacks (PR-CCA), and pseudorandomness under one-time chosen-ciphertext attacks (PR-otCCA). Robustness of DEM (FROB and XROB) are taken from Farshim, Orlandi, and Roşi [FOR17].

Definition 2.13 (Security notions for DEM). Let $\mathrm{DEM}=(\mathrm{E}, \mathrm{D})$ be a $D E M$ scheme whose key space is \mathcal{K}. For $\mu \in \mathcal{M}$, let $C_{|\mu|}$ be a ciphertext space defined by the length of message μ.
For any \mathcal{A} and goal-atk $\in\{$ ind-cca, pr-cca, pr-otcca $\}$, we define its goal-atk advantage against DEM as follows:

$$
\operatorname{Adv}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa):=\left|2 \operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa)=1\right]-1\right|,
$$

where $\operatorname{Expt}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is an experiment described in Figure 1.
For any \mathcal{A} and goal-atk $\in\{$ frob, xrob $\}$, we define its goal-atk advantage against DEM as follows:

$$
\operatorname{Adv}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa):=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa)=1\right],
$$

where $\operatorname{Expt}_{\mathrm{DEM}, \mathcal{A}}^{\text {goal-atk }}(\kappa)$ is an experiment described in Figure 1.
For GOAL-ATK $\in\{$ IND-CCA, PR-CCA, PR-otCCA, FROB, XROB $\}$, we say that DEM is GOAL-ATK-secure if Adv ${ }_{\text {DEM, }}^{\text {goal-atk }}(\kappa)$ is negligible for any QPT adversary \mathcal{A}.

2.4 Review of Grubbs, Maram, and Paterson [GMP21]

Grubbs et al. studied KEM's anonymity and hybrid PKE's anonymity and robustness, which is an extension of Mohassel [Moh10]. We use KEM ${ }^{\perp}$ and KEM ${ }^{\perp}$ to indicated KEM with explicit rejection and implicit rejection. For KEM with eplicit rejection, they showed the following theorem which generalizes Mohassel's theorem [Moh10]:

Theorem 2.1 ([GMP21, Theorem 1]). Let $\mathrm{PKE}_{\text {hy }}=\mathrm{Hyb}\left[\mathrm{KEM}^{\perp}, \mathrm{DEM}\right]$, a hybrid PKE scheme obtained by composing KEM and DEM. (See Figure 4.)

1. If $K_{E M}{ }^{\perp}$ is WANON-CPA-secure, IND-CCA-secure, WROB-CCA-secure, and δ-correct and DEM is INT-CTXTsecure, then $\mathrm{PKE}_{\text {hy }}$ is ANON-CCA-secure.
2. If KEM^{\perp} is SROB-CCA-secure (and WROB-CCA-secure), then PKE $_{\text {hy }}$ is SROB-CCA-secure (and WROB-CCAsecure), respectively.

Grubbs et al. [GMP21] then treat KEM with implicit rejection, which is used in all NIST PQC Round 3 KEM candidates except HQC. Roughly speaking, they showed that the following two theorems on robustness and anonymity of hybrid PKE from KEM with implicit rejection:
Theorem 2.2 (Robustness of PKE $_{\text {hy }}$ [GMP21, Theorem 2]). Let $\mathrm{PKE}_{\text {hy }}=$ Hyb $^{\text {KEM }}{ }^{\perp}$, DEM].IfKEM ${ }^{\perp}$ is SCFR-CCAsecure (and WCFR-CCA-secure) and DEM is FROB-secure (and XROB-secure), then $\mathrm{PKE}_{\text {hy }}$ is SROB-CCA-secure (and WROB-CCA-secure), respectively.

Theorem 2.3 (Anonymity of $\mathrm{PKE}_{\text {hy }}$ using FO ${ }^{\perp}$ [GMP21, Theorem 7]). Let $\mathrm{PKE}_{\text {hy }}=\mathrm{Hyb}\left[K E M^{\perp}\right.$, DEM]. If PKE is δ-correct, and γ-spreading, $\mathrm{PKE}_{1}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is WCFR-CPA-secure, $\mathrm{KEM}^{\perp}=\mathrm{FO}^{\perp}[\mathrm{PKE}, \mathrm{G}, \mathrm{H}]$ is ANON-CCAsecure and IND-CCA-secure, DEM is INT-CTXT-secure, then PKE $_{\text {hy }}$ is ANON-CCA-secure.

Fig. 3. Games for DEM schemes

They also showed that the following theorem:
Theorem 2.4 (Anonymity of KEM ${ }^{\perp}$ using FO ${ }^{\perp}$ [GMP21, Theorem 5]). IfPKE is wANON-CPA-secure, OW-CPAsecure, and δ-correct, and $\mathrm{PKE}_{1}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is $\mathrm{SCFR}-\mathrm{CPA}$-secure, then a KEM scheme $\mathrm{KEM}=\mathrm{FO}^{\perp}[\mathrm{PKE}, \mathrm{G}, \mathrm{H}]$ is ANON-CCA-secure.

In their security proof, they need to simulate both decapsulation oracles without secrets when they reduce from wANON-CPA-security. Jiang et al. [JZC $\left.{ }^{+} 18\right]$ used the simulation trick that replaces $\mathrm{H}(\mu, c)$ with $\mathrm{H}_{q}(\operatorname{Enc}(e k, \mu))$ if $c=\operatorname{Enc}(e k, \mu)$ and $\mathrm{H}_{q}^{\prime}(m, c)$ else, which helps the simulation of the decapsulation oracle without secrets. Grubbs et al. extended this trick to simulate two decapsulation oracles by replacing $\mathrm{H}(\mu, c)$ with $\mathrm{H}_{q, i}\left(\operatorname{Enc}\left(e k_{i}, \mu\right)\right)$ if $c=\operatorname{Enc}\left(e k_{i}, \mu\right)$ and $\mathrm{H}_{q}^{\prime}(\mu, c)$ else. Notice that this extended simulation heavily depends on the fact that H takes μ and c. If the random oracle takes μ only, their trick fails the simulation.

3 Strong Pseudorandomness Implies Anonymity

We observe that strong pseudorandomness of PKE/KEM immediately implies anonymity of PKE/KEM, which may be folklore. For completeness, we include the proof for PKE in subsection B.1.

Theorem 3.1. If PKE is SPR-CCA-secure, then it is ANON-CCA-secure. IfKEM is SPR-CCA-secure, then it is ANON-CCAsecure.
Formally speaking, for any \mathcal{A} against the ANON-CCA security of $\mathrm{PKE} / \mathrm{KEM}$, there exist \mathcal{A}_{10} and \mathcal{A}_{11} against the SPR-CCA security of PKE/KEM such that

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{PKE}, \mathcal{A}}^{\text {anon-cca }}(\kappa) \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{S}, \mathcal{A}_{10}}^{\text {spr-ca }}(\kappa)+\operatorname{Adv}_{\mathrm{PKE}, \mathcal{S}, \mathcal{A}_{11}}^{\text {spr-cc }}(\kappa), \\
& \operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\text {anon-cca }}(\kappa) \leq \operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}_{10}}^{\text {spr-cca }}(\kappa)+\operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}_{11}}^{\text {spr-cca }}(\kappa) .
\end{aligned}
$$

4 Strong Pseudorandomness of Hybrid PKE

The hybrid PKE PKE ${ }_{\text {hy }}=\left(\right.$ Gen $_{\text {hy }}$, Enc $_{\text {hy }}$, Dec $\left._{\text {hy }}\right)$ constructed from KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ and DEM $=(E, \mathrm{D})$ is summarized as in Figure 4

$\frac{\operatorname{Gen}_{\mathrm{hy}}\left(1^{\kappa}\right)}{}$	$\frac{\mathrm{Enc}_{\mathrm{hy}}(e k, \mu)}{(e k, d k) \leftarrow \overline{\operatorname{Gen}}\left(1^{K}\right)}$	$\frac{\operatorname{Dec}_{\mathrm{hy}}(d k, c t=(c, d))}{(c, K) \leftarrow \overline{\operatorname{Enc}}(e k)}$
		$K^{\prime} \leftarrow \overline{\operatorname{Dec}}(d k, c)$
return $(e k, d k)$	$d \leftarrow \mathrm{E}(K, \mu)$	if $K^{\prime}=\perp$ then return \perp
	return $c t:=(c, d)$	$\mu^{\prime} \leftarrow \mathrm{D}\left(K^{\prime}, d\right)$
		if $\mu^{\prime}=\perp$ then return \perp
		return μ^{\prime}

Fig. 4. $\mathrm{PKE}_{\text {hy }}=\mathrm{Hyb}[\mathrm{KEM}, \mathrm{DEM}]$

We show the following two theorems on SPR-CCA security of a hybrid PKE:
Theorem 4.1. Let $\mathrm{PKE}_{h y}=\left(\mathrm{Gen}_{\mathrm{hy}}\right.$, $\left.\mathrm{Enc}_{\text {hy }}, \mathrm{Dec}_{\text {hy }}\right)$ be a hybrid encryption scheme obtained by composing a KEM scheme $\mathrm{KEM}^{\perp}=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ and a DEM scheme $\mathrm{DEM}=(\mathrm{E}, \mathrm{D})$ that share key space \mathcal{K}. If KEM^{\perp} is $\mathrm{SPR}-\mathrm{CCA}-$ secure, δ-correct with negligible δ, and ϵ-sparse and DEM is PR-otCCA-secure and INT-CTXT-secure, then PKE $_{\text {hy }}$ is SPR-CCA-secure.
Formally speaking, for any \mathcal{A} against the $\mathrm{SPR}-\mathrm{CCA}$ security of $\mathrm{PKE}_{\text {hy }}$, there exist \mathcal{A}_{23} against the SPR-CCA security of $\mathrm{KEM}^{\perp}, \mathcal{A}_{34}$ against the SPR-otCCA security of DEM, and \mathcal{A}_{45} against the INT-CTXT security of DEM such that

$$
\operatorname{Adv}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\text {spr-cca }}(\kappa) \leq \operatorname{Adv}_{\mathrm{KEM}^{\perp}, \mathcal{S}, \mathcal{A}_{23}}^{\text {spr-cca }}(\kappa)+\operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{34}}^{\text {spr-otcca }}(\kappa)+\operatorname{Adv}_{\mathrm{DEM}, \mathcal{A}_{45}}^{\text {int-ctxt }}(\kappa)+\epsilon+\delta .
$$

Table 2. Summary of Games for the Proof of Theorem 4.1

Game	c^{*} and K^{*}	d^{*}	Decryption oracle	justification
Game ${ }_{0}$	$\overline{\mathrm{Enc}}(e k)$	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	
Game ${ }_{1}$	$\overline{\operatorname{Enc}}(e k)$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	conceptual change
Game 2	$\overline{\text { Enc }}(e k)$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	δ-correctness of KEM ${ }^{\perp}$
Game3	$\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	SPR-CCA security of KEM ${ }^{\perp}$
Game_{4}	$\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	SPR-otCCA security of DEM
Game ${ }_{5}$	$\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use \perp^{*} if $c=c^{*}$	INT-CTXT security of DEM
Game_{6}	$\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	ϵ-sparseness of KEM ${ }^{\perp}$
Game_{7}	$\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	conceptual change

Theorem 4.2. Let $\mathrm{PKE}_{\mathrm{hy}}=\left(\mathrm{Gen}_{\mathrm{hy}}, \mathrm{Enc}_{\mathrm{hy}}, \mathrm{Dec}_{\mathrm{hy}}\right)$ be a hybrid encryption scheme obtained by composing a KEM scheme $\mathrm{KEM}^{\perp}=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})$ and a DEM scheme $\mathrm{DEM}=(\mathrm{E}, \mathrm{D})$ that share key space \mathcal{K}. If KEM is SPR-CCAsecure, SSMT-CCA-secure, and δ-correct with negligible δ and DEM is PR-otCCA-secure, then PKE hy is SPR-CCAsecure.
Formally speaking, for any \mathcal{A} against the SPR -CCA security of $\mathrm{PKE}_{\text {hy }}$, there exist \mathcal{A}_{23} against the SPR-CCA security of $\mathrm{KEM}^{\not \perp}, \mathcal{A}_{34}$ against the SPR-OTCCA security of DEM, and \mathcal{A}_{45} against the SSMT-CCA security of KEM ${ }^{\not ㇒}$ such that

$$
\operatorname{Adv}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\mathrm{hy}}, \mathcal{A}}^{\text {spr-cca }}(\kappa) \leq \operatorname{Adv}_{\mathrm{KEM}^{\perp}, \mathcal{S}, \mathcal{A}_{23}}^{\text {spr-cca }}(\kappa)+\operatorname{Adv}_{\mathrm{DEM}, \mathcal{A}_{34}}^{\text {spr-otcca }}(\kappa)+\operatorname{Adv}_{\mathrm{KEM}^{\perp}, \mathcal{S}, \mathcal{A}_{45}}^{\text {ssmt-ca }}(\kappa)+\delta
$$

4.1 Proof of Theorem 4.1

Let us consider Game ${ }_{i}$ for $i=0, \ldots, 6$. We summarize the games in Table 3. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in Game ${ }_{i}$.
Let \mathcal{S} be the simulator for the SPR-CCA security of KEM ${ }^{\not ㇒}$. We define $\mathcal{S}_{\text {hy }}\left(1^{\kappa},\left|\mu^{*}\right|\right):=\mathcal{S}\left(1^{\kappa}\right) \times U\left(C_{\left|\mu^{*}\right|}\right)$ be the simulator for the SPR-CCA security of PKE hy.
The security proof is similar to the security proof of the IND-CCA security of KEM/DEM [CS03] for Game ${ }_{0}, \ldots$, Game $_{4}$. We need to take care of pseudorandom ciphertexts when moving from Game ${ }_{4}$ to Game_{7} and require the INT-CTXT security of DEM and the ϵ-sparseness of KEM ${ }^{\perp}$.
Game_{0} : This is the original game $\operatorname{Expt}_{\mathrm{PKE}_{\mathrm{hy}}, \mathcal{S}_{\mathrm{hy}}, \mathcal{A}}^{\mathrm{spr}-\mathrm{A}}(\kappa)$ with $b=0$. Given μ^{*}, the target ciphertext is computed as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \overline{\operatorname{Enc}}(e k) ; d^{*} \leftarrow \mathrm{E}\left(K^{*}, \mu^{*}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{*}\right)
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{PKE}_{\mathrm{hy}}, \mathcal{S}_{\mathrm{hy}}, \mathcal{A}}^{\text {spr-cca }}(\kappa)=1 \mid b=0\right]
$$

Game $_{1}$: In this game, c_{0}^{*} and K_{0}^{*} are generated before invoking \mathcal{A} with $e k$. This change is just conceptual and we have

$$
\operatorname{Pr}\left[S_{0}\right]=\operatorname{Pr}\left[S_{1}\right] .
$$

Game $_{2}$: In this game, the decryption oracle uses K^{*} if $c=c^{*}$ instead of $K=\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$. Game ${ }_{1}$ and Game ${ }_{2}$ differ if correctly generated ciphertext c^{*} with K^{*} is decapsulated into different $K \neq K^{*}$ or \perp, which violates the correctness and occurs with probability at most δ. Hence, the difference of Game ${ }_{1}$ and Game ${ }_{2}$ is bounded by δ and we have

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq \delta
$$

This is corresponding to the event BadKeyPair in [CS03].
Game $_{3}$: In this game, the challenger uses random $\left(c^{*}, K^{*}\right)$ and uses K^{*} in DEM. The challenge ciphertext is generated as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K}) ; d^{+} \leftarrow \mathrm{E}\left(K^{*}, \mu^{*}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{+}\right)
$$

The difference is bounded by SPR-CCA security of KEM ${ }^{\not ㇒}$: There is an adversary \mathcal{A}_{23} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{2}\right]-\operatorname{Pr}\left[S_{3}\right]\right| \leq \operatorname{Adv}_{K_{K E M}}, \mathcal{S}, \mathcal{A}_{23}(\kappa)
$$

We omit the detail of \mathcal{A}_{23}, since it is straightforward.

Game $_{4}$: In this game, the challenger uses random d^{*}. The challenge ciphertext is generated as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times \mathcal{K} ; d^{*} \leftarrow U\left(C_{\left|\mu^{*}\right|}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{*}\right)
$$

The difference is bounded by SPR-otCCA security of DEM: There is an adversary \mathcal{A}_{34} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq \operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{34}}^{\text {spr-otca }}(\kappa) .
$$

We omit the detail of \mathcal{A}_{34} since it is straightforward.
Game $_{5}$: We replace the decryption oracle. If given $c t=\left(c^{*}, d\right)$, the decryption oracle always return \perp.
Let Forge be an event that the adversary queries $d \neq d^{*}$ decrypted into some $\mu \neq \perp$ under K^{*}. Game ${ }_{4}$ and Game 5 are equivalent until the event Forge occurs in Game 4 . There is an adversary \mathcal{A}_{45} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{4}\right]-\operatorname{Pr}\left[S_{5}\right]\right| \leq \operatorname{Pr}[\text { Forge }] \leq \operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{45}}^{\text {int-cttt }}(\kappa)
$$

We omit the detail of \mathcal{A}_{45} since it is straightforward.

Game $_{6}$: We replace the decryption oracle in Game 5 with the original one.
Let D be an event that a randomly chosen $c^{*} \leftarrow \mathcal{S}\left(1^{K}\right)$ is decapsulated into a key $K \neq \perp$. Game ${ }_{5}$ and Game ${ }_{6}$ are equivalent unless the event D occurs. Since $K E M^{\perp}$ is ϵ-sparse, we have

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \operatorname{Pr}[\mathrm{D}] \leq \epsilon .
$$

Game $_{7}$: We change the timing of the generation of $\left(c^{*}, K^{*}\right)$ as the original. This change is just conceptual and we have

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[S_{7}\right] .
$$

Notice that this is the original game $\operatorname{Expt}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)$ with $b=1$, thus, we have

$$
\operatorname{Pr}\left[S_{7}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\text {PKE.chy }^{\text {Sph }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\text {spr-ca }}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain the bound in the statement as follows:

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }} \mathcal{A}}^{\text {spr-cca }}(\kappa)=\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{7}\right]\right| \leq \sum_{i}\left|\operatorname{Pr}\left[S_{i}\right]-\operatorname{Pr}\left[S_{i+1}\right]\right| \\
& \leq \delta+\operatorname{Adv}_{K_{K M}, \mathcal{S}, \mathcal{A}_{23}}^{\text {spr-cca }}(\kappa)+\operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{34}}^{\text {spr-otcca }}(\kappa)+\operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{45}}^{\text {int-ctxt }}(\kappa)+\delta+\epsilon .
\end{aligned}
$$

4.2 Proof of Theorem 4.2

Let us consider Game_{i} for $i=0, \ldots, 6$. We summarize the games in Table 3. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in Game ${ }_{i}$.
Let \mathcal{S} be the simulator for the SPR-CCA security of KEM ${ }^{\not ㇒}$. We define $\mathcal{S}_{\text {hy }}\left(1^{\kappa},\left|\mu^{*}\right|\right):=\mathcal{S}\left(1^{\kappa}\right) \times U\left(\mathcal{C}_{\left|\mu^{*}\right|}\right)$ be the simulator for the SPR-CCA security of PKE ${ }_{\text {hy }}$.
The security proof is similar to the security proof of the IND-CCA security of KEM/DEM [CS03] for Game ${ }_{0}, \ldots$, Game $_{4}$. We need to take care of pseudorandom ciphertexts when moving from Game 4_{4} to Game ${ }_{5}$ and require the SSMT-CCA security of KEM ${ }^{\perp}$.

Game $_{0}$: This is the original game $\operatorname{Expt}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\mathrm{spr}-\mathrm{A}}(\kappa)$ with $b=0$. Given μ^{*}, the target ciphertext is computed as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \overline{\operatorname{Enc}}(e k) ; d^{*} \leftarrow \mathrm{E}\left(K^{*}, \mu^{*}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{*}\right)
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{PKE}_{\mathrm{hy}}, \mathcal{S}_{\mathrm{hy}}, \mathcal{A}}^{\mathrm{spr}-\mathrm{Aca}}(\kappa)=1 \mid b=0\right] .
$$

Table 3. Summary of Games for the Proof of Theorem 4.2

Game c^{*} and K^{*}	d^{*}	Decryption oracle	justification
$\mathrm{Game}_{0} \overline{\mathrm{Enc}}(e k)$	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	
$\mathrm{Game}_{1} \overline{\mathrm{Enc}}(e k)$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	conceptual change
$\mathrm{Game}_{2} \overline{\mathrm{Enc}}(e k)$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	δ-correctness of KEM ${ }^{\perp}$
$\mathrm{Game}_{3} \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$\mathrm{E}\left(K^{*}, \mu^{*}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	SPR-CCA security of KEM ${ }^{\nrightarrow}$
Game $_{4} \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$; use K^{*} if $c=c^{*}$	SPR-otCCA security of DEM
Game $_{5} \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$ at the beginning	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	SSMT-CCA security of KEM ${ }^{\perp}$
$\mathrm{Game}_{6} \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K})$	$U\left(C_{\left\|\mu^{*}\right\|}\right)$	reject if $(c, d)=\left(c^{*}, d^{*}\right)$	conceptual change

Game $_{1}$: In this game, c_{0}^{*} and K_{0}^{*} are generated before invoking \mathcal{A} with $e k$. This change is just conceptual and we have

$$
\operatorname{Pr}\left[S_{0}\right]=\operatorname{Pr}\left[S_{1}\right] .
$$

Game $_{2}$: In this game, the decryption oracle uses K^{*} if $c=c^{*}$ instead of $K=\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$. Game ${ }_{1}$ and Game ${ }_{2}$ differ if correctly generated ciphertext c^{*} with K^{*} is decapsulated into different $K \neq K^{*}$ or \perp, which violates the correctness and occurs with probability at most δ. Hence, the difference of Game ${ }_{1}$ and Game ${ }_{2}$ is bounded by δ and we have

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq \delta
$$

This is corresponding to the event BadKeyPair in [CS03].

Game $_{3}$: In this game, the challenger uses random $\left(c^{*}, K^{*}\right)$ and uses K^{*} in DEM. The challenge ciphertext is generated as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{K}) ; d^{+} \leftarrow \mathrm{E}\left(K^{*}, \mu^{*}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{+}\right) .
$$

The difference is bounded by SPR-CCA security of KEM ${ }^{\perp}$: There is an adversary \mathcal{A}_{23} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{2}\right]-\operatorname{Pr}\left[S_{3}\right]\right| \leq \operatorname{Adv}_{K_{E E M}}^{\text {spr-cca }, \mathcal{S}, \mathcal{A}_{23}}(\kappa) .
$$

We omit the detail of \mathcal{A}_{23}, since it is straightforward.

Game $_{4}$: In this game, the challenger uses random d^{*}. The challenge ciphertext is generated as follows:

$$
\left(c^{*}, K^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times \mathcal{K} ; d^{*} \leftarrow U\left(\mathcal{C}_{\left|\mu^{*}\right|}\right) ; \text { return } c t^{*}=\left(c^{*}, d^{*}\right)
$$

The difference is bounded by SPR-otCCA security of DEM: There is an adversary \mathcal{A}_{34} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq \operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{34}}^{\text {spr-otca }}(\kappa) .
$$

We omit the detail of \mathcal{A}_{34} since it is straightforward.

Game $_{5}$: We replace the decryption oracle. If given $c t=\left(c^{*}, d\right)$, the decryption oracle uses $K=\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$ instead of K^{*}.
The difference is bounded by SSMT-CCA security of KEM ${ }^{\not}$: There is an adversary \mathcal{A}_{45} whose running time is approximately the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{4}\right]-\operatorname{Pr}\left[S_{5}\right]\right| \leq \operatorname{Adv}_{\text {KEM }^{\perp}, \mathcal{S}, \mathcal{A}_{45}}^{\text {ssmt-cca }}(\kappa)
$$

We omit the detail of \mathcal{A}_{45} since it is straightforward.

Game $_{6}$: We change the timing of the generation of $\left(c^{*}, K^{*}\right)$. This change is just conceptual and we have

$$
\operatorname{Pr}\left[S_{5}\right]=\operatorname{Pr}\left[S_{6}\right] .
$$

Notice that this is the original game $\operatorname{Expt}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)$ with $b=1$, thus, we have

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }}, \mathcal{A}}^{\mathrm{spr}-\mathrm{ca}}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain the bound in the statement as follows:

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{PKE}_{\text {hy }}, \mathcal{S}_{\text {hy }} \mathcal{A}}^{\text {spr-ca }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \sum_{i}\left|\operatorname{Pr}\left[S_{i}\right]-\operatorname{Pr}\left[S_{i+1}\right]\right| \\
& \leq \delta+\operatorname{Adv}_{\operatorname{KEM}^{\perp}, \mathcal{S}, \mathcal{A}_{23}}^{\text {spr-cca }}(\kappa)+\operatorname{Adv}_{\operatorname{DEM}, \mathcal{A}_{34}}^{\text {spr-otcca }}(\kappa)+\operatorname{Adv}_{\operatorname{KEM}^{\perp}, \mathcal{S}, \mathcal{A}_{45}}^{\text {ssmt-ca }}(\kappa)+\delta .
\end{aligned}
$$

5 Properties of SXY

Let us review SXY [SXY18] as known as \cup_{m}^{\perp} with explicit re-encryption check [HHK17].
Let PKE $=($ Gen, Enc, Dec) be a deterministic PKE scheme. Let \mathcal{M}, C, and \mathcal{K} be a plaintext, ciphertext, and key space of PKE, respectively. Let $\mathrm{H}: \mathcal{M} \rightarrow \mathcal{K}$ and $\mathrm{H}_{\text {prf }}:\{0,1\}^{\ell} \times C \rightarrow \mathcal{K}$ be hash functions modeled by random oracles. $\mathrm{KEM}=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{SXY}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$ is defined as in Figure 5.

$\overline{\mathrm{Gen}}\left(1^{K}\right)$	$\overline{\mathrm{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, s)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow \mathcal{D}_{\mathcal{M}}$	$\mu^{\prime} \leftarrow \operatorname{Dec}(d k, c)$
$s \leftarrow\{0,1\}^{\ell}$	$c:=\operatorname{Enc}(e k, \mu)$	if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$
$\overline{d k}:=(d k, e k, s)$	$K:=\mathrm{H}(\mu)$	then return $K:=\mathrm{H}_{\text {prf }}(s, c)$
return ($e k, \overline{d k}$)	return (c, K)	else return $K:=\mathrm{H}\left(\mu^{\prime}\right)$

Fig. 5. $\mathrm{KEM}=\mathrm{SXY}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$

5.1 SPR-CCA Security

We first show KEM is strongly pseudorandom if the underlying PKE is strongly disjoint-simulatable.
Theorem 5.1. Let $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable and δ-correct with negligible δ, then $\mathrm{KEM}=\mathrm{SXY}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$ is SPR-CCA-secure.
Formally speaking, for any \mathcal{A} against the SPR-CCA security of KEM issuing at most $q_{\text {Dec }}$ queries to the decapsulation oracle and $q_{\mathrm{G}}, q_{\mathrm{H}}$, and $q_{\mathrm{H}_{\text {prf }}}$ queries to G, H, and $\mathrm{H}_{\text {prf }}$, respectively, there exist \mathcal{A}_{34} against ciphertextindistinguishability of PKE such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa) \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\text {-ind }} & (\kappa)+\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+4 \delta \\
& +16\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}+1\right)^{2} \delta+16\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2}
\end{aligned}
$$

Theorem 5.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable and δ-correct with negligible δ, then $\mathrm{KEM}=\mathrm{SXY}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$ is SPR-CCA-secure.
Formally speaking, for any \mathcal{A} against the SPR-CCA security of KEM issuing at most $q_{\text {Dec }}$ queries to the decapsulation oracle and $q_{\mathrm{G}}, q_{\mathrm{H}}$, and $q_{\mathrm{H}_{\text {prf }}}$ queries to G, H, and $\mathrm{H}_{\text {prf }}$, respectively, there exist \mathcal{A}_{34} against ciphertextindistinguishability of PKE such that

$$
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}, \mathcal{S}}^{\mathrm{spr}-\mathrm{cca}}(\kappa) \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\mathrm{ind}}(\kappa)+\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{Hprf}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2}+4 \delta
$$

We here prove Theorem 5.1 because the proof of Theorem 5.2 is a special case of Theorem 5.1.

Table 4. Summary of Games for the Proof of Theorem 5.1. We define $g(\mu)=\operatorname{Enc}(e k, \mu)=\operatorname{Enc}_{0}(e k, \mu ; \mathrm{G}(\mu))$.

Game	H	G	c^{*}	K^{*}	Decryp valid c	tion invalid c	\|justification
Game_{0}	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}(s, c)$	
Game ${ }_{1}$	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	Lemma 2.2
Game $_{1.1}$	H	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(\mathrm{c})$	Lemma $2.1+$ correctness
Game $_{1.2}$	$\mathrm{H}_{q}^{\prime} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	if key is not bad
Game_{2}	$\mathrm{H}_{q} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	Enc ($e k, \mu^{*}$)	$\mathrm{H}\left(\mu^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	if key is not bad
Game_{3}	$\mathrm{H}_{q} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}($ c $)$	$\mathrm{H}_{q}(c)$	conceptual
$\mathrm{Game}_{3.1}$	$\mathrm{H}_{q} \circ g$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}(c)$	$\mathrm{H}_{q}(c)$	Lemma 2.1 + correctnes
Game_{4}	$\mathrm{H}_{q} \circ g$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}(c)$	$\mathrm{H}_{q}(c)$	DS-IND
Game_{5}	$\mathrm{H}_{q} \circ \underline{g}$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}_{q}(c)$	$\mathrm{H}_{q}(c)$	statistical disjointness
Game 5.1	$\mathrm{H}_{q} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}_{q}(c)$	$\mathrm{H}_{q}(c)$	Lemma $2.1+$ correctness
Game_{6}	$\mathrm{H}_{q} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	conceptual
Game $_{6.1}$	$\mathrm{H}_{q}^{\prime} \circ g$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	if key is not bad
$\mathrm{Game}_{6.2}$	H	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	if key is not bad
Game_{7}	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}(c)$	Lemma $2.1+$ correctness
Game_{8}	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}(s, c)$	Lemma 2.2

Proof of Theorem 5.1: We use the game-hopping proof. We consider Game ${ }_{i}$ for $i=0, \ldots, 8$. We summarize the games in Table 4. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in game Game ${ }_{i}$. We extend the security proof for SXY in [LW21], which extends the security proof for SXY [SXY18, XY19] to the case that the underlying PKE is derandomized by $\mathrm{KC} \circ \mathrm{T}$.

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\text {KEM }, \mathcal{A}}^{\text {spr-ca }}(\kappa)$ with $b=0$. Thus, we have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)=1 \mid b=0\right] .
$$

Game ${ }_{1}$: This game is the same as Game $_{0}$ except that $\mathrm{H}_{\text {prf }}(s, c)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}(c)$ where $\mathrm{H}_{q}: \mathcal{C} \rightarrow \mathcal{K}$ is another random oracle. We remark that \mathcal{A} is not given direct access to H_{q}. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{Dec}}\right) \cdot 2^{-\ell / 2}
$$

Definition of $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$: We next consider a set of good random oracles G. This definition follows [HHK17, $\mathrm{JZC}^{+} 18$, HKSU20, LW21].
For $(e k, d k) \in \operatorname{Gen}_{0}()$ and $\mu \in \mathcal{M}$, we define a set of good randomness $\mathcal{R}_{e k, d k, \mu}^{\text {good }}:=\left\{r \in \mathcal{R}: \operatorname{Dec}_{0}\left(d k, \operatorname{Enc}_{0}(e k, \mu ; r)\right)=\right.$ $\mu\}$, which could be empty. Let $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ be a set of functions $G: \mathcal{M} \rightarrow \mathcal{R}$ satisfying $G(\mu) \in \mathcal{R}_{e k, d k, \mu}^{\text {good }}$ for all $\mu \in \mathcal{M}$. Define $\delta_{e k, d k, \mu}=\left|\mathcal{R} \backslash \mathcal{R}_{e k, d k, \mu}^{\text {good }}\right| /|\mathcal{R}|$, which is the fraction of the bad randomness. Define $\delta_{e k, d k}:=\max _{\mu \in \mathcal{M}} \delta_{e k, d k, \mu}$. We note that $\delta=\operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right]$.

Game $_{1.1}$: This game is the same as Game $_{1}$ except that the random oracle G is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}(\mathcal{M}, \mathcal{R})$.
If we fix $(e k, d k)$, then we have $\left|\operatorname{Pr}\left[S_{1} \mid(e k, d k)\right]-\operatorname{Pr}\left[S_{1.1} \mid(e k, d k)\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \delta_{e k, d k}$. (See [HKSU20, Theorem 3.2] and [LW21, Claim 1] for the analysis using Lemma 2.1.) Taking the average over (ek, $d k$) \leftarrow $\operatorname{Gen}_{0}\left(1^{K}\right)$, we obtain

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{1.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right]=8\left(q_{\mathrm{G}}+q_{\mathrm{DeC}}+1\right)^{2} \delta
$$

Definition of Bad: We next define a bad event for key pairs. This definition follows [LW21]. Let us define an event Bad that there exists $\mu \in \mathcal{M}$ such that any $r \in \mathcal{R}$ is bad randomness, that is,

$$
\operatorname{Bad}:=\operatorname{boole}\left(\exists \mu \in \mathcal{M}: \mathcal{R}_{e k, d k, \mu}^{\text {good }}=\emptyset\right),
$$

where randomness is taken over $(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)$.
We have $\operatorname{Pr}[\mathrm{Bad}] \leq \delta$ ([LW21, Claim 3]). According to Lemma A.1, for any p, we also have

$$
\left|\operatorname{Pr}\left[S_{1.1}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{1.1} \wedge \neg \mathrm{Bad}\right]-p\right|+\delta
$$

Game $_{1.2}$: This game is the same as Game $_{1.1}$ except that the random oracle $\mathrm{H}(\cdot)$ is simulated by $\mathrm{H}_{q}^{\prime}(\operatorname{Enc}(e k, \cdot))$ where $\mathrm{H}_{q}^{\prime}: C \rightarrow \mathcal{K}$ is yet another random oracle. We remark that the decapsulation oracle and the generation of K^{*} also use $\mathrm{H}_{q}^{\prime}(\operatorname{Enc}(e k, \cdot))$ as $\mathrm{H}(\cdot)$.
If $\neg \mathrm{Bad}$ occurs, then $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$ is perfectly correct from the definition of G and $g(\mu):=\operatorname{Enc}(e k, \mu ; \mathrm{G}(\mu))$ is injective. Thus, $\mathrm{H}_{q}^{\prime} \circ g: \mathcal{M} \rightarrow \mathcal{K}$ is a random function and the two games Game ${ }_{1.1}$ and $\mathrm{Game}_{1.2}$ are equivalent if \neg Bad occurs. We have

$$
\operatorname{Pr}\left[S_{1.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{1.2} \wedge \neg \mathrm{Bad}\right] .
$$

See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.
Game $_{2}$: This game is the same as Game ${ }_{1.2}$ except that the random oracle H is simulated by $\mathrm{H}_{q} \circ g$ instead of $\mathrm{H}_{q}^{\prime} \circ g$.
If \neg Bad occurs, then $\mathrm{PKE}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is perfectly correct from the definition of G . Hence, the two games Game ${ }_{1.2}$ and Game_{2} are equivalent, because a value of $\mathrm{H}_{q}^{\prime}(c)$ for an invalid c is not used in Game ${ }_{1.2}$: that is, we have

$$
\operatorname{Pr}\left[S_{1.2} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right] .
$$

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.
Game $_{3}$: This game is the same as Game except that K^{*} is set as $\mathrm{H}_{q}\left(c^{*}\right)$ and the decapsulation oracle always returns $\mathrm{H}_{q}^{\prime}(c)$ as long as $c \neq c^{*}$. This decapsulation oracle will denoted by Dec'.
If \neg Bad occurs, then PKE $=T[P K E, G]$ is perfectly correct from the definition of G. Thus, the two games Game 2 and Game_{3} are equivalent and we have

$$
\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right] .
$$

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any p, we have

$$
\left|\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{3}\right]-p\right|+\delta .
$$

Game $_{3.1}$: This game is the same as Game $_{3}$ except that G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$. We have

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{3.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right]=8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta
$$

(We note that H and the challenge ciphertext also query to G internally.)
Game $_{4}$: This game is the same as Game ${ }_{3}$ except that c^{*} is generated by $\mathcal{S}\left(1^{\kappa}\right)$.
The difference between two games Game_{3} and Game_{4} is bounded by the advantage of ciphertext indistinguishability in disjoint simulatability as in [XY19, Lemma 4.7]. We have

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\text {ds-ind }}(\kappa) .
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*} \leftarrow \mathcal{K}$ instead of $K^{*} \leftarrow \mathrm{H}_{q}\left(c^{*}\right)$.
In Game ${ }_{4}$, if $c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right)$ is not in $\operatorname{Enc}(e k, \mathcal{M})$, then the adversary has no information about $K^{*}=\mathrm{H}_{q}\left(c^{*}\right)$ and thus, K^{*} looks uniformly at random. Hence, the difference between two games Game ${ }_{4}$ and Game ${ }_{5}$ is bounded by the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8]. We have

$$
\left|\operatorname{Pr}\left[S_{4}\right]-\operatorname{Pr}\left[S_{5}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game $_{5.1}$: This game is the same as Game $_{5}$ except that G is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}(\mathcal{M}, \mathcal{R})$. We have

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{5.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right] \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta
$$

(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any p, we have

$$
\left|\operatorname{Pr}\left[S_{5.1} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{5.1}\right]-p\right|+\delta
$$

Game $_{6}$: This game is the same as Game ${ }_{5}$ except that the decapsulation oracle is reset as Dec. Similar to the case for Game ${ }_{2}$ and Game 3 , if a key pair is accurate, the two games Game ${ }_{5}$ and Game ${ }_{6}$ are equivalent as in the proof of [XY19, Lemma 4.5]. We have

$$
\operatorname{Pr}\left[S_{5.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{6.1}$: This game is the same as $G_{a m e}{ }_{6}$ except that the random oracle H is simulated by $\mathrm{H}_{q}^{\prime} \circ g$ where $\mathrm{H}_{q}^{\prime}: C \rightarrow \mathcal{K}$ is yet another random oracle as in Game ${ }_{1.2}$. If a key pair is not bad, the two games Game ${ }_{6}$ and Game $_{6.1}$ are equivalent as in the proof of [XY19, Lemma 4.4]. We have

$$
\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6.1} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{6.2}$: This game is the same as Game ${ }_{6.1}$ except that the random oracle $H(\cdot)$ is set as the original. If a key pair is not bad, the two games Game 6.1 and Game $_{6.2}$ are equivalent as in the proof of [XY19, Lemma 4.4]. We have

$$
\operatorname{Pr}\left[S_{6.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6.2} \wedge \neg \mathrm{Bad}\right] .
$$

We have, for any p,

$$
\left|\operatorname{Pr}\left[S_{6.2} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{6.2}\right]-p\right|+\delta
$$

from Lemma A.1.

Game $_{7}$: This game is the same as $G^{-2 m e} 6.2$ except that the random oracle G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$. We have,

$$
\left|\operatorname{Pr}\left[S_{6.2}\right]-\operatorname{Pr}\left[S_{7}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}\right)^{2} \delta . \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DeC}}+1\right)^{2} \delta .
$$

Game ${ }_{8}$: This game is the same as Game $_{7}$ except that $\mathrm{H}_{q}(c)$ in the decapsulation is replaced by $\mathrm{H}_{\text {prf }}(s, c)$.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{7}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{Dec}}\right) \cdot 2^{-\ell / 2}
$$

We note that This game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)$ with $b=1$. Thus, we have

$$
\operatorname{Pr}\left[S_{8}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\text {spr-cca }}(\kappa)=1 \mid b=1\right] .
$$

Summarizing those (in)equalities, we obtain the following bound:

$$
\begin{aligned}
& \operatorname{Adv}_{\text {KEM }, \mathcal{A}}^{\text {spr-cca }}(\kappa)=\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \\
& \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\text {-ind }}(\kappa)+\operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa) \\
& +4 \delta+16\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \delta+16\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{Dec}}\right) \cdot 2^{-\ell / 2} .
\end{aligned}
$$

Proof of Theorem 5.2: The proof of Theorem 5.2 is a simplified version of that of Theorem 5.1, since it does not require to consider G. Ignoring the transition between real G with good G, we obtain the bound as follows:

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \\
& \leq 4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2}+4 \delta+\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}_{34}, \mathcal{S}}^{\mathrm{ds} \text {-ind }}(\kappa)+\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
\end{aligned}
$$

5.2 SSMT-CCA Security

Theorem 5.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then KEM $=$ SXY[PKE, $\left.\mathrm{H}, \mathrm{H}_{\text {prf }}\right]$ is SSMT-CCA-secure.
Formally speaking, for any adversary \mathcal{A} against SSMT-CCA security of KEM issuing at most $q_{\mathrm{H}_{\mathrm{prf}}}$ and q_{Dec} queries to $\mathrm{H}_{\text {prf }}$ and Dec, we have

$$
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa) \leq 2 \mathrm{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}}^{\mathrm{prf}}, q_{\mathrm{DEc}}\right) \cdot 2^{-\ell / 2}
$$

We note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T .

Table 5. Summary of Games for the Proof of Theorem 5.3: ' $\mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$ ' implies that the challenger generates $c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right)$ and returns \perp if $c^{*} \in \operatorname{Enc}(e k, \mathcal{M})$.

Proof Sketch: We use the game-hopping proof. We consider Game_{i} for $i=0, \ldots, 6$. We summarize the games in Table 5. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in game Game ${ }_{i}$.

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\text {KEM, } \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa)$ with $b=0$. The challenge is generated as

$$
\left(c^{*}, K_{0}^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times \mathcal{K} .
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa)=1 \mid b=0\right] .
$$

Game $_{1}$: In this game, the ciphertext is set as \perp if c^{*} is in $\operatorname{Enc}(e k, \mathcal{M})$. The difference between two games Game ${ }_{0}$ and Game ${ }_{1}$ is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa) .
$$

Game 2 : This game is the same as Game ${ }_{1}$ except that $\mathrm{H}_{\mathrm{prf}}(s, c)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}(c)$ where $\mathrm{H}_{q}: \mathcal{C} \rightarrow \mathcal{K}$ is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2}
$$

Game $_{3}$: This game is the same as Game_{2} except that $K^{*}:=\mathrm{H}_{q}\left(c^{*}\right)$ instead of chosen random. Since c^{*} is always outside of $\operatorname{Enc}(e k, \mathcal{M}), \mathcal{A}$ cannot obtain any information about $\mathrm{H}_{q}\left(c^{*}\right)$. Hence, the two games Game_{2} and Game ${ }_{3}$ are equivalent and we have

$$
\operatorname{Pr}\left[S_{2}\right]=\operatorname{Pr}\left[S_{3}\right] .
$$

Game ${ }_{4}$: This game is the same as Game ${ }_{3}$ except that $\mathrm{H}_{q}(\cdot)$ is replaced by $\mathrm{H}_{\text {prf }}(s, \cdot)$. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{Dec}}\right) \cdot 2^{-\ell / 2}
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*}:=\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$ instead of $\mathrm{H}_{\text {prf }}\left(s, c^{*}\right)$. Recall that c^{*} is always in outside of $\operatorname{Enc}(e k, \mathcal{M})$. Thus, we always have $\operatorname{Dec}\left(c^{*}\right)=\perp$ or $\operatorname{Enc}\left(e k, \operatorname{Dec}\left(c^{*}\right)\right) \neq c^{*}$ and, thus, $K^{*}=\mathrm{H}_{\mathrm{prf}}\left(s, c^{*}\right)$. Hence, the two games are equivalent. We have

$$
\operatorname{Pr}\left[S_{4}\right]=\operatorname{Pr}\left[S_{5}\right] .
$$

Game $_{6}$: We finally replace how to compute c^{*}. In this game, the ciphertext is chosen by $\mathcal{S}\left(1^{\kappa}\right)$ as in Game ${ }_{0}$. The difference between two games Game5 and Game_{6} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Moreover, this game Game $_{6}$ is the original game $\operatorname{Expt}_{\text {KEM, } \mathcal{S}, \mathcal{A}}^{\text {ssmt }}(\kappa)$ with $b=1$.

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[\operatorname{Expt} \mathrm{KEM}, \mathcal{S}, \mathcal{A}_{\text {ssmt-cca }}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain Theorem 5.3:

$$
\begin{aligned}
\operatorname{Adv}_{\text {KEM }, \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \\
& \leq 2 \operatorname{Disj} j_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEc}}\right) \cdot 2^{-\ell / 2}
\end{aligned}
$$

5.3 SCFR-CCA Security

Theorem 5.4. If PKE is XCFR-secure or SCFR-CCA-secure, then $\mathrm{KEM}=\mathrm{SXY}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$ is SCFR-CCA-secure in the quantum random oracle model.

Proof. Suppose that an adversary outputs a ciphertext c which is decapsulated into $K \neq \perp$ by both $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left({\overline{d k_{1}}}_{1}, c\right) \neq \perp$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}:=\mu_{i}^{\prime}$ if $c=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and \perp otherwise.
We have five cases defined as follows:

1. Case $1\left(\mu_{0}=\mu_{1} \neq \perp\right)$: This violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is easy to make a reduction.
2. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}\left(\mu_{1}\right)$. Thus, we succeed to find a collision for H , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}_{\mathrm{prf}}\left(s_{0}, c\right)=\mathrm{H}\left(\mu_{1}\right)$ and we find a claw $\left(\left(s_{0}, c\right), \mu_{1}\right)$ of $\mathrm{H}_{\text {prf }}$ and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
4. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}_{\text {prf }}\left(s_{1}, c\right)$ and In this case, we find a claw $\left(\mu_{0},\left(s_{1}, c\right)\right)$ of H and $\mathrm{H}_{\text {prf }}$. The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
5. Case 5 (The other cases): In this case, we find a collision $\left(\left(s_{0}, c\right),\left(s_{1}, c\right)\right)$ of $\mathrm{H}_{\text {prf }}$, which is indeed collision if $s_{0} \neq s_{1}$ which occurs with probability at lease $1-1 / 2^{\ell}$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

6 NTRU

We briefly review NTRU $\left[\mathrm{CDH}^{+} 20\right]$ and discuss its security properties.

6.1 Review of NTRU

Preliminaries: Φ_{1} denotes the polynomial $x-1$ and Φ_{n} denotes $\left(x^{n}-1\right) /(x-1)=x^{n-1}+x^{n-2}+\cdots+1$. We have $x^{n}-1=\Phi_{1} \Phi_{n} . R, R / 3$, and R / q denotes $\mathbb{Z}[x] /\left(\Phi_{1} \Phi_{n}\right), \mathbb{Z}[x] /\left(3, \Phi_{1} \Phi_{n}\right)$, and $\mathbb{Z}[x] /\left(q, \Phi_{1} \Phi_{n}\right)$, respectively. $S, S / 3$, and S / q denotes $\mathbb{Z}[x] /\left(\Phi_{n}\right), \mathbb{Z}[x] /\left(3, \Phi_{n}\right)$, and $\mathbb{Z}[x] /\left(q, \Phi_{n}\right)$, respectively.
We say a polynomial ternary if its coefficients are in $\{-1,0,+1\}$. $\underline{\mathrm{S} 3}(a)$ returns a canonical $S / 3$-representative of $z \in \mathbb{Z}[x]$, that is, $b \in \mathbb{Z}[x]$ of degree at most $n-2$ with ternary coefficients in $\{-1,0,+1\}$ such that $a \equiv b$ $\left(\bmod \left(3, \Phi_{n}\right)\right)$. Let \mathcal{T} be a set of non-zero ternary polynomials of degree at most $n-2$, that is, $\mathcal{T}=\left\{a=\sum_{i=0}^{n-2} a_{i} x^{i}\right.$: $\left.a \neq 0 \wedge a_{i} \in\{-1,0,+1\}\right\}$. We say a ternary polynomial $v=\sum_{i} v_{i} x^{i}$ has the non-negative correlation property if $\sum_{i} v_{i} v_{i+1} \geq 0 . \mathcal{T}_{+}$is a set of non-zero ternary polynomials of degree at most $n-2$ with non-negative correlation property. $\mathcal{T}(d)$ is a set of non-zero balanced ternary polynomials of degree at most $n-2$ with Hamming weight d, that is, $\left\{a \in \mathcal{T}:\left|\left\{a_{i}: a_{i}=1\right\}\right|=\left|\left\{a_{i}: a_{i}=-1\right\}\right|=d / 2\right\}$.
The following lemma is due to Schanck [Sch20]. (See, e.g., [CDH $\left.{ }^{+} 20\right]$ for this design choice.)
Lemma 6.1. Suppose that $(n, q)=(509,2048),(677,2048),(821,4096)$, and $(701,8192)$. If $r \in \mathcal{T}$, then r has an inverse in S / q.

Proof. Φ_{n} is irreducible over \mathbb{F}_{2} if and only if n is prime and 2 is primitive element in \mathbb{F}_{n}^{\times}(See e.g., Cohen et al. [CFA05]). The conditions are satisfied by all $n=509,677,701$, and 821 . Hence, $\mathbb{Z}[x] /\left(2, \Phi_{n}\right)$ is a finite field and every polynomial r in \mathcal{T} has an inverse in $\mathbb{Z}[x] /\left(2, \Phi_{n}\right)$. Such r is also invertible in $S / q=\mathbb{Z}[x] /\left(q, \Phi_{n}\right)$ with $q=2^{k}$ for some k. One can find it using the Newton method/the Hensel lifting.

NTRU: NTRU has two types of parameter sets, NTRU-HPS and NTRU-HRSS. The underlying DPKE of NTRU, which we call NTRU-DPKE, is define as Figure 6. It involves four subsets $\mathcal{L}_{f}, \mathcal{L}_{g}, \mathcal{L}_{r}, \mathcal{L}_{m}$ of R. It uses Lift $(m): \mathcal{L}_{m} \rightarrow$ R.

- NTRU-HPS: The parameters are defined as follows: $\mathcal{L}_{f}=\mathcal{T}, \mathcal{L}_{g}=\mathcal{T}(q / 8-2), \mathcal{L}_{r}=\mathcal{T}, \mathcal{L}_{m}=\mathcal{T}(q / 8-2)$, and $\operatorname{Lift}(m)=m$.

Gen(1^{κ})	$\operatorname{Enc}\left(h,(r, m) \in \mathcal{L}_{r} \times \mathcal{L}_{m}\right)$	$\operatorname{Dec}\left(\left(f, f_{p}, h_{q}\right), c\right)$
$(f, g) \leftarrow$ Sample_fg ()	$\mu^{\prime} \leftarrow \operatorname{Lift}(m)$	if $c \not \equiv 0 \bmod \left(q, \Phi_{1}\right)$ then return $(0,0,1)$
$f_{q} \leftarrow(1 / f) \bmod \left(q, \Phi_{n}\right)$	$c \leftarrow\left(h \cdot r+\mu^{\prime}\right) \bmod \left(q, \Phi_{1} \Phi_{n}\right)$	$a \leftarrow(c \cdot f) \bmod \left(q, \Phi_{1} \Phi_{n}\right)$
$h \leftarrow\left(3 \cdot g \cdot f_{q}\right) \bmod \left(q, \Phi_{1} \Phi_{n}\right)$	return c	$m \leftarrow\left(a \cdot f_{p}\right) \bmod \left(3, \Phi_{n}\right)$
$h_{q} \leftarrow(1 / h) \bmod \left(q, \Phi_{n}\right)$		$\mu^{\prime} \leftarrow \operatorname{Lift}(m)$
$f_{p} \leftarrow(1 / f) \bmod \left(3, \Phi_{n}\right)$		$r \leftarrow\left(\left(c-\mu^{\prime}\right) \cdot h_{q}\right) \bmod \left(q, \Phi_{n}\right)$
$e k:=h, d k:=\left(f, f_{p}, h_{q}\right)$		if $(r, m) \in \mathcal{L}_{r} \times \mathcal{L}_{m}$ then return $(r, m, 0)$
return ($e k, d k$)		else return ($0,0,1$)

Fig. 6. NTRU-DPKE

- NTRU-HRSS: The parameters are defined as follows: $\mathcal{L}_{f}=\mathcal{T}_{+}, \mathcal{L}_{g}=\left\{\Phi_{1} \cdot v \mid v \in \mathcal{T}_{+}\right\}, \mathcal{L}_{r}=\mathcal{T}, \mathcal{L}_{m}=\mathcal{T}$, and $\operatorname{Lift}(m)=\Phi_{1} \cdot \underline{\mathrm{~S} 3}\left(m / \Phi_{1}\right)$.
It uses Sample_fg() to sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}. NTRU also uses Sample_rm() to sample r and m from \mathcal{L}_{r} and \mathcal{L}_{m}.
We note that $h \equiv 0\left(\bmod \left(q, \Phi_{1}\right)\right), h$ is invertible in S / q, and $h r+m \equiv 0\left(\bmod \left(q, \Phi_{1}\right)\right)$. (See [CDH ${ }^{+} 20$, Section2.3].)
NTRU then uses SXY for IND-CCA-secure KEM as in Figure 7, where $H=$ SHA3-256 and $H_{\text {prf }}=$ SHA3-256. Since the lengths of their input space differ, we can treat them as different random oracles.

$\overline{\operatorname{Gen}}\left(1^{\kappa}\right)$	$\overline{\operatorname{Enc}}(e k=h)$	$\overline{\operatorname{Dec}}(\overline{d k}=(d k, s), c)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	coins $\leftarrow\{0,1\}^{256}$	$(r, m, \mathrm{fail}):=\operatorname{Dec}(d k, c)$
$s \leftarrow\{0,1\}^{256}$	$(r, m) \leftarrow$ Sample_rm(coins)	$k_{1}:=\mathrm{H}(r, m)$
$\overline{d k}:=(d k, s)$	$c:=\operatorname{Enc}(h,(r, m))$	$k_{2}:=\mathrm{H}_{\mathrm{prf}}(s, c)$
$\text { return }(e k, \overline{d k})$	$\begin{aligned} & K:=\mathrm{H}(r, m) \\ & \text { return }(c, K) \end{aligned}$	if fail $=0$ then return k_{1} else return k_{2}

Fig. 7. NTRU

Rigidity: NTRU uses SXY, while its KEM version seems lack of re-encryption check. We note that NTRU implicitly checks $h r+\operatorname{Lift}(m)=c$ by checking if $(r, m) \in \mathcal{L}_{r} \times \mathcal{L}_{r}$ in the DPKE. See [CDH 20$]$ for the details.

6.2 NTRU is Strongly Pseudorandom, Smooth, and Collision-Free

We have known that the generalized NTRU PKE is pseudorandom [SS10] and disjointly simulatable [SXY18] if the decisional small polynomial ratio (DSPR) assumption [LTV12] and the polynomial learning with errors (PLWE) assumption [SSTX09, LPR10] hold. See [SXY18, Section 3.3 of the ePrint version.].
Let us adapt their arguments to NTRU. We modify the DSPR and the PLWE assumptions as follows:
Definition 6.1. Fix the parameter set. Define $R^{\prime}:=\left\{c \in R / q: c \equiv 0\left(\bmod \left(q, \Phi_{1}\right)\right)\right\}$, which is efficiently sampleable.

- The modified DSPR assumption: It is hard to distinguish $h:=3 \cdot g \cdot f_{q}\left(\bmod q, \Phi_{1} \Phi_{n}\right)$ from u, where $(f, g) \leftarrow$ Sample_fg() and $u \leftarrow R^{\prime}$.
- The modified PLWE assumption: It is hard to distinguish $\left(h, h r+\operatorname{Lift}(m)\left(\bmod q, \Phi_{1} \Phi_{n}\right)\right)$ from (h, c) with $h, c \leftarrow R^{\prime}$ and $(r, m) \leftarrow$ Sample_rm () .

Lemma 6.2. Suppose that the modified DSPR and PLWE assumptions hold. Then, NTRU-DPKE is strongly disjointsimulatable with a simulator \mathcal{S} that outputs a random polynomial chosen from R^{\prime}.

Proof (Proof Sketch). The proof for ciphertext-indistinguishability is obtained by modifying the proof in [SXY18], Statistical disjointness follows from the fact that $\left|R^{\prime}\right|=q^{n-1} \gg 3^{2 n}=|\mathcal{T} \times \mathcal{T}| \geq\left|\mathcal{L}_{m} \times \mathcal{L}_{r}\right| \geq\left|\operatorname{Enc}\left(h, \mathcal{L}_{m} \times \mathcal{L}_{r}\right)\right|$.

Combining this strong disjoint-simulatability with previous theorems, we obtain the following theorem.
Theorem 6.1. Suppose that the modified DSPR and PLWE assumptions hold. Then, NTRU is SPR-CCA-secure and SSMT-CCA-secure in the QROM.

Theorem 6.2. NTRU is SCFR-CCA-secure in the QROM.
Proof. We first show XCFR security of NTRU-DPKE.
Suppose that the adversary outputs c on input $e k_{0}=h_{0}, d k_{0}, e k_{1}=h_{1}, d k_{1}$. Let us define $\mu_{0}=\operatorname{Dec}\left(d k_{0}, c\right)$ and $\mu_{1}=\operatorname{Dec}\left(d k_{1}, c\right)$. Let $\mu_{0}=\mu_{1}=(r, m, 0) \in \mathcal{L}_{r} \times \mathcal{L}_{m} \times\{0,1\}$. Otherwise, that is, if $\mu_{0}=\mu_{1}=(0,0,1)$, the output is treated as \perp and the adversary loses.
We have $h_{0} \cdot r+\operatorname{Lift}(m) \equiv h_{1} \cdot r+\operatorname{Lift}(m)\left(\bmod q, \Phi_{1} \Phi_{n}\right)$, which implies $r\left(h_{0}-h_{1}\right) \equiv 0\left(\bmod \left(q, \Phi_{n}\right)\right)$. On the other hand, according to Lemma 6.1, for any $r \in \mathcal{L}_{r}=\mathcal{T}$, we have $r \neq 0 \in S / q$ In addition, we have $h_{0} \equiv h_{1} \in S / q$ with negligible probability. Thus, the probability that the adversary wins is negligible.
Applying Theorem 5.4, we conclude that NTRU is SCFR-CCA-secure in the QROM.

6.3 Summary

We show that NTRU-DPKE is strongly disjoint-simulatable under the modified DSPR and PLWE assumptions and it is XCFR-secure (subsection 6.2). Those imply that NTRU is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCAsecure in the QROM. Thus, NTRU is ANON-CCA-secure (Theorem 3.1) and NTRU leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE (Theorem 4.2, Theorem 3.1, and Theorem 2.2).

References

AAB^{+}20. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions. 3, 31, 34, 59, 60
ABB^{+}20. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh Ghosh. BIKE. Technical report, National Institute of Standards and Technology, 2020. available at https: //csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 29, 34, 55, 56, 57
$\mathrm{ABC}^{+} 05$. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 205-222. Springer, Heidelberg, August 2005. 1
ABC^{+}20. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic McEliece. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/ round-3-submissions. 1, 3, 31, 33, 34, 52
Abe10. Masayuki Abe, editor. ASIACRYPT 2010, volume 6477 of LNCS. Springer, Heidelberg, December 2010. 24, 25
ABN10. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 480-497. Springer, Heidelberg, February 2010. 1
BBC^{+}20. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Technical report, National Institute of Standards and Technology, 2020. available at https: //csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 31, 34, 62, 63

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566-582. Springer, Heidelberg, December 2001. 1, 5
BCGNP09. Colin Boyd, Yvonne Cliff, Juan Manuel González Nieto, and Kenneth G. Paterson. One-round key exchange in the standard model. Int. F. Appl. Cryptogr., 1(3):181-199, 2009. 1
BDF^{+}11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41-69. Springer, Heidelberg, December 2011. 4
BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO'98, volume 1462 of LNCS, pages 26-45. Springer, Heidelberg, August 1998. 5, 7
BHH^{+}19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 61-90. Springer, Heidelberg, December 2019. 28, 29, 31, 35, 44, 45, 48, 49
CDH^{+}20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 1, 3, 20, 21, 31, 34
CFA05. Handbook of Elliptic and Hyperelliptic Curve Cryptography. 2005. 20
CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93-118. Springer, Heidelberg, May 2001. 1
CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45-64. Springer, Heidelberg, April / May 2002. 2, 7
CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM fournal on Computing, 33(1):167-226, 2003. 12, 13, 14
DKR^{+}20. Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions. 1, 2, 3, 30, 34, 55
FNP14. Nelly Fazio, Antonio Nicolosi, and Irippuge Milinda Perera. Broadcast steganography. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 64-84. Springer, Heidelberg, February 2014. 65
FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages 537-554. Springer, Heidelberg, August 1999. 1
FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. fournal of Cryptology, 26(1):80-101, January 2013. 1
FOR17. Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of symmetric primitives under incorrect usage of keys. IACR Trans. Symm. Cryptol., 2017(1):449-473, 2017. 9
FSXY13. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages 83-94. ACM Press, May 2013. 1
FSXY15. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure authenticated key exchange from factoring, codes, and lattices. Des. Codes Cryptogr., 76(3):469-504, 2015. 1
GMP21. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum public key encryption. Cryptology ePrint Archive, Report 2021/708, 2021. https://eprint.iacr.org/2021/708. 1, 2, $3,7,9,11,30,52,53,54,55,56,59,62,63$
HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341-371. Springer, Heidelberg, November 2017. 2, 4, 15, 16, 27, 28, 31, 54
HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 389-422. Springer, Heidelberg, May 2020. 3, 5, 16
Hop05. Nicholas Hopper. On steganographic chosen covertext security. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 311-323. Springer, Heidelberg, July 2005. 5, 7
Hos20. Akinori Hosoyamada. personal communication, June 2020. 4
IZ89. Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th FOCS, pages 248-253. IEEE Computer Society Press, October / November 1989. 65
JAC^{+}20. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/ projects/post-quantum-cryptography/round-3-submissions. 3, 29, 34, 64
JD11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011, pages 19-34. Springer, Heidelberg, November / December 2011. 64, 65
JZC^{+}18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96-125. Springer, Heidelberg, August 2018. 4, 11, 16, 27, 31, 50
JZM19. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejection in the quantum random oracle model. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 618-645. Springer, Heidelberg, April 2019. 2, 28, 31, 41, 43
KSS $^{+}$20. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-rewindmeasure: Tighter quantum random oracle model proofs for one-way to hiding and CCA security. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 703728. Springer, Heidelberg, May 2020. 29, 31

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1-23. Springer, Heidelberg, May / June 2010. 21
LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219-1234. ACM Press, May 2012. 21
LW21. Xu Liu and Mingqiang Wang. QCCA-secure generic key encapsulation mechanism with tighter security in the quantum random oracle model. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 3-26. Springer, Heidelberg, May 2021. 5, 16, 17, 37, 41
Moh10. Payman Mohassel. A closer look at anonymity and robustness in encryption schemes. In Abe [Abe10], pages 501-518. 1, 5, 9
MTSB13. Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In Proceedings of the 2013 IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, Fuly 7-12, 2013, pages 20692073. IEEE, 2013. 55
NAB^{+}20. Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 30, 34, 58
RS92. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO'91, volume 576 of LNCS, pages 433-444. Springer, Heidelberg, August 1992. 5, 7
SAB^{+}20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions. 1, 3, 30, 34, 54
Sak00. Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages 422-432. Springer, Heidelberg, January 2000. 1
Sch20. John Schanck. personal communication, June 2020. 20

SS10. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Abe [Abe10], pages 377394. 21

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617635. Springer, Heidelberg, December 2009. 21

SSW20. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1461-1480. ACM Press, November 2020. 1
SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520-551. Springer, Heidelberg, April / May 2018. 2, 4, 5, 15, 16, 21, 22, 27, 28, 31, 57

TU16. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 192-216. Springer, Heidelberg, October / November 2016. 31, 54
Unr14. Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129-146. Springer, Heidelberg, May 2014. 27
vH04. Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323-341. Springer, Heidelberg, May 2004. 5, 7

XY19. Keita Xagawa and Takashi Yamakawa. (Tightly) QCCA-secure key-encapsulation mechanism in the quantum random oracle model. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019, pages 249-268. Springer, Heidelberg, 2019. 5, $16,17,18,19,36,37,38,39,40,41,46,50$
Zha15. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Info. Comput., 15(7-8):557-567, May 2015. 4

Table of Contents

Anonymity of NIST PQC Round-3 KEMs 1
Keita Xagawa
1 Introduction 1
2 Preliminaries 3
Strong Pseudorandomness Implies Anonymity 11
Strong Pseudorandomness of Hybrid PKE 11
5 Properties of SXY 15
6 NTRU 20
A Missing Lemmas 26
B Missing Proofs 27
C Variants of the Fujisaki-Okamoto Transformation 27
D Transformation in NIST PQC KEM Candidates 29
E Property of T 34
F Property of U^{\perp} 35
G Property of HU_{m}^{\perp} 41
H Property of HU^{\perp} 44
I Property of HU_{m}^{\perp} 45
J Property of $\mathrm{HU}^{\perp,}$,prf 48
K Property of $\mathrm{HU}^{\nrightarrow}$ 49
L Classic McEliece 52
M Kyber 54
N Saber 55
O BIKE 55
P FrodoKEM 58
Q HQC 59
R Streamlined NTRU Prime 62
S NTRU LPRime 63
T SIKE 64

A Missing Lemmas

Lemma A.1. Let A and B denote events. Suppose that we have $\operatorname{Pr}[\mathrm{A}] \leq \delta$. For any $p \geq 0$, we have

$$
|\operatorname{Pr}[\mathrm{B}]-p| \leq|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p|+\delta \quad \text { and } \quad|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p| \leq|\operatorname{Pr}[\mathrm{B}]-p|+\delta .
$$

Proof. We have

$$
\begin{aligned}
|\operatorname{Pr}[\mathrm{B}]-p| & =|\operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}]+\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p| \\
& \leq \operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}]+|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p| \\
& \leq \operatorname{Pr}[\mathrm{A}]+|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p| \\
& \leq|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p|+\delta .
\end{aligned}
$$

We also have

$$
\begin{aligned}
|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]-p| & =|\operatorname{Pr}[\mathrm{B} \wedge \neg \mathrm{~A}]+\operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}]-\operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}]-p| \\
& =|\operatorname{Pr}[\mathrm{B}]-p-\operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}]| \\
& \leq|\operatorname{Pr}[\mathrm{B}]-p|+\operatorname{Pr}[\mathrm{B} \wedge \mathrm{~A}] \\
& \leq|\operatorname{Pr}[\mathrm{B}]-p|+\operatorname{Pr}[\mathrm{A}] \\
& \leq|\operatorname{Pr}[\mathrm{B}]-p|+\delta
\end{aligned}
$$

Those complete the proof.

The lemma of the following form is a slightly generalized version of the O2H lemma taken from [SXY18, Lemma 2.1]. While there are improvements of the O2H lemma, this basic O2H lemma is enough for our cases.

Lemma A. 2 (The Oneway-to-Hiding (O2H) Lemma [Unr14, HHK17, JZC ${ }^{+}$18, SXY18]). Let $\mathrm{H}: \mathcal{X} \rightarrow \mathcal{y}$ be a quantum random oracle, and let \mathcal{A} be an adversary issuing at most q queries to H that on input $(x, y) \in \mathcal{X} \times \mathcal{Y}$ outputs either $0 / 1$. Let $\mathcal{D}_{\mathcal{X}}$ be a some distribution over \mathcal{X}. For all (probabilistic) algorithms F whose input space is $\mathcal{X} \times \mathcal{Y}$ and which do not make any hash queries to H , we have

$$
\begin{aligned}
& \left|\begin{array}{l}
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{H}}(\mathrm{inp}) \rightarrow 1 \mid x \leftarrow \mathcal{D}_{\mathcal{X}} ; y \leftarrow \mathrm{H}(x) ; \text { inp } \leftarrow \mathrm{F}(x, y)\right] \\
\\
\quad-\operatorname{Pr}\left[\mathcal{A}^{\mathrm{H}}(\mathrm{inp}) \rightarrow 1 \mid x \leftarrow \mathcal{D}_{\mathcal{X}} ; y \leftarrow \mathcal{y} ; \text { inp } \leftarrow \mathrm{F}(x, y)\right]
\end{array}\right| \\
& \leq 2 q \cdot \sqrt{\operatorname{Pr}\left[\operatorname{EXT}^{\mathcal{A}, \mathrm{H}}(\mathrm{inp}) \rightarrow x \mid x \leftarrow \mathcal{D}_{\mathcal{X}} ; y \leftarrow \mathcal{Y} ; \operatorname{inp} \leftarrow \mathrm{F}(x, y)\right]},
\end{aligned}
$$

where EXT picks $i \leftarrow\{1, \ldots, q\}$, runs $\mathcal{A}^{\mathrm{H}}(\mathrm{inp})$ until i-th query $|\hat{x}\rangle$ to H , and returns $x^{\prime}:=$ Measure $(|\hat{x}\rangle)$ (when \mathcal{A} makes fewer than i queries, EXT outputs $\perp \notin \mathcal{X})$.

B Missing Proofs

B. 1 Proof of Theorem 3.1

Proof (Proof of Theorem 3.1). Let us define four games Game ${ }_{i, b}$ for $i, b \in\{0,1\}$. Let $S_{i, b}$ be the event that the adversary outputs 1 in $\mathrm{Game}_{i, b}$.

- $\operatorname{Game}_{0, b}$ for $b \in\{0,1\}$: This is the original game $\operatorname{Expt}_{\mathrm{PKE}, \mathcal{A}}^{\text {anoca }}(\kappa)$ with $b=0$ and 1 .
- Game ${ }_{1, b}$ for $b \in\{0,1\}$: This game is the same as Game ${ }_{0, b}$ except that the target ciphertext is randomly taken from $\mathcal{S}\left(1^{K}\right) \times C_{\text {DEM, }}|m|$.

It is easy to see that there exist two adversaries \mathcal{A}_{10} and \mathcal{A}_{11} whose running times are the same as that of \mathcal{A} satisfying

$$
\left|\operatorname{Pr}\left[S_{0, b}\right]-\operatorname{Pr}\left[S_{1, b}\right]\right| \leq \operatorname{Adv} v_{\mathrm{PKE}, \mathcal{S}, \mathcal{A}_{1 b}}^{\mathrm{spr}-\mathrm{ca}}(\kappa) \text { and } \operatorname{Pr}\left[S_{1,0}\right]=\operatorname{Pr}\left[S_{1,1}\right] .
$$

Hence, we have

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{PKE}, \mathcal{A}}^{\operatorname{anon}-c c a}(\kappa) & =\left|\operatorname{Pr}\left[S_{0,0}\right]-\operatorname{Pr}\left[S_{0,1}\right]\right| \\
& \leq\left|\operatorname{Pr}\left[S_{0,0}\right]-\operatorname{Pr}\left[S_{1,0}\right]\right|+\left|\operatorname{Pr}\left[S_{1,0}\right]-\operatorname{Pr}\left[S_{1,1}\right]\right|+\left|\operatorname{Pr}\left[S_{1,1}\right]-\operatorname{Pr}\left[S_{0,1}\right]\right| \\
& \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{S}, \mathcal{A} \mathcal{A}_{10}}^{\text {spreca }}(\kappa)+\operatorname{Adv}{ }_{\mathrm{PKE}, \mathcal{S}, \mathcal{A}_{11}}^{\text {spr-ca }}(\kappa) .
\end{aligned}
$$

This completes the proof.

C Variants of the Fujisaki-Okamoto Transformation

We review the variants of the FO transformations: Let PKE = (Gen, Enc, Dec) be a PKE, whose ciphertext space is $C_{\text {PKE }}$ and message space is \mathcal{M}. If PKE is probabilistic, then $\mathcal{R}_{\text {Enc }}$ denotes the randomness space of Enc. Let $\{0,1\}^{k(\kappa)}$ be the key space of KEM.

C. 1 Transformation T

Hofheinz et al. [HHK17] decomposed the Fujisaki-Okamoto transformation FO into two transformations T and U. In the original T in [HHK17, Section 3.1], the decryption algorithm checks the validity of c by re-encryption check. We omit this re-encryption check. Our version is summarized in Figure 8.

$\mathrm{Gen}^{\prime}\left(1^{\kappa}\right)$	$\mathrm{Enc}^{\prime}(e k, \mu)$	$\operatorname{Dec}^{\prime}(d k, c)$
$\begin{aligned} & (e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) \\ & \text { return }(e k, \overline{d k}) \end{aligned}$	$\begin{aligned} & \mu \leftarrow \mathcal{M} \\ & c:=\operatorname{Enc}(e k, \mu ; \mathrm{G}(\mu)) \\ & \text { return } c \end{aligned}$	$\begin{aligned} & \mu^{\prime} \leftarrow \operatorname{Dec}(d k, c) \\ & \text { return } \mu^{\prime} \end{aligned}$

Fig. 8. $\mathrm{PKE}^{\prime}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$

C. 2 Variants of \mathbf{U}

Hofheinz et al. defined U^{\prime} s variants, $U^{\not}, U^{\perp}, U_{m}^{\perp}$, and U_{m}^{\perp} [HHK17], where the superscript " \not " and " \perp " implies implicit rejection and explicit rejection, respectively, and the subscript " m " implies the computation of key K involves a plaintext μ only, while if there is no subscript, then it involves μ and ciphertext c.
Saito et al. define SXY, which is essentially the same as U_{m}^{\not} [SXY18]. Bindel et al. discussed the relations of IND-CCA-security of KEM schemes obtained by them via indifferentiable reductions [$\mathrm{BHH}^{+} 19$]. In their discussion, they modify $\mathrm{U}^{\not 又}$, which we write $\mathrm{U}^{\mathfrak{A}}$,prf. They use $K:=\mathrm{H}_{\text {prf }}(s, c)$ for invalid ciphertext c instead of $K:=\mathrm{H}(s, c)$ as in [HHK17].
Let us review the definitions.

- $U^{\mathscr{1}}[P K E, H]$: This is defined in Figure 9.
- $\mathrm{U}^{\not 又, \text { prf }}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$: The decapsulation returns $K:=\mathrm{H}_{\text {prf }}(s, c)$ if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$.
- U^{\perp} [PKE, H] : The decapsulation returns $K:=\perp$ if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$. This variants does not require s in $\frac{1}{d k}$.
- $\mathrm{U}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{H}_{\text {prf }}\right]$: The encapsulation defines $K:=\mathrm{H}(\mu, c)$. The decapsulation returns $K:=\mathrm{H}(\mu, c)$ if $\mu^{\prime} \neq \perp$ and $c=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$.
- $\mathrm{U}_{m}^{\perp}[\mathrm{PKE}, \mathrm{H}]$: The encapsulation defines $K:=\mathrm{H}(\mu, c)$. The decapsulation returns $K:=\mathrm{H}(\mu, c)$ if $\mu^{\prime} \neq \perp$ and $c=\underline{\operatorname{Enc}}\left(e k, \mu^{\prime}\right)$. The decapsulation returns $K:=\perp$ if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$. This variants does not require s in $\overline{d k}$.

$\overline{\mathrm{Gen}}\left(1^{\kappa}\right)$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, s)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow \mathcal{M}$	$\mu^{\prime} \leftarrow \operatorname{Dec}(d k, c)$
$s \leftarrow \mathcal{M}$	$c:=\operatorname{Enc}(e k, \mu)$	if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$
$\overline{d k}:=(d k, e k, s)$	$K:=\mathrm{H}(\mu, c)$	then return $K:=\mathrm{H}(s, c)$
return ($e k, \overline{d k}$)	return (c, K)	else return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$

Fig. 9. KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=U^{\mathscr{A}}[\mathrm{PKE}, \mathrm{H}]$

We adapt the discussions of Bindel et al. to SPR-CCA-security of KEM schemes obtained by the variants of U. See the left hand side of Figure 10.

C. 3 Variants of HU

Hofheinz et al. defined QU 's variants, QU_{m}^{\perp} and QU_{m}^{\perp} [HHK17]. In those variants a ciphertext includes 'keyconfirmation' hash $d:=\mathrm{F}(\mu)$, where $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{M}$. (For the proof, We will require \mathcal{M} to be a subset of a finite field.) Jiang et al. [JZM19] defined HU_{m}^{\perp} as a variant of QU_{m}^{\perp}, where $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ with arbitrary \mathcal{M} and \mathcal{H}. This allows us to make a ciphertext shorter. We define its variants $\mathrm{HU}_{m}^{\perp}, \mathrm{HU}_{m}^{\perp}, \mathrm{HU}^{\perp}, \mathrm{H} U_{m}^{\perp}$, and $\mathrm{HU} \mathrm{U}^{\perp}$, prf as the variants of U . In the definition, we allow F to take $e k$ optional.
Let us review the definitions.
$-\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]:$ This is defined in Figure 11.

Fig. 10. The relation between IND-CCA and SPR-CCA security of KEMs using the variants of U and $H U$. Dashed arrow implies the implications in $\left[\mathrm{BHH}^{+} 19\right]$.

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\overline{\operatorname{Enc}}(e k)}$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$	
$\overline{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}$	$\overline{\mu \leftarrow \mathcal{M}}$		$\overline{\mu^{\prime} \leftarrow \operatorname{Dec}\left(d k, c_{0}\right)}$
$s \leftarrow \mathcal{M}$	$c_{0}:=\operatorname{Enc}(e k, \mu)$		if $\mu^{\prime}=\perp$ or $c_{0} \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or $c_{1} \neq \mathrm{F}\left(\mu^{\prime}[, e k]\right)$
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu[, e k])$		then return $K:=\mathrm{H}\left(s, c_{0}, c_{1}\right)$
$\operatorname{return}(e k, \overline{d k})$	$K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	else return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$	
	return $\left(\left(c_{0}, c_{1}\right), K\right)$		

Fig. 11. KEM $=(\overline{\text { Gen, }}, \overline{\text { Enc }}, \overline{\mathrm{Dec}})=H \cup^{\not}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$

- $\mathrm{HU}^{\not \perp, \text { prf }}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]:$ The decapsulation returns $K:=\mathrm{H}_{\mathrm{prf}}\left(s, c_{0}, c_{1}\right)$ if $\mu^{\prime}=\perp$ or $c_{0} \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or $c_{1} \neq \mathrm{F}\left(\mu^{\prime}[, e k]\right)$.
- $\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$: The decapsulation returns $K:=\perp$ if $\mu^{\prime}=\perp$ or $c_{0} \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or $c_{1} \neq \mathrm{F}\left(\mu^{\prime}[, e k]\right)$. This variants does not require s in $\overline{d k}$.
- $\mathrm{HU}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$: The encapsulation defines $K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$. The decapsulation returns $K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$ if $\mu^{\prime} \neq \perp$ and $c_{0}=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu^{\prime}[, e k]\right)$.
- $\mathrm{HU}_{m}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]:$ The encapsulation defines $K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$. The decapsulation returns $K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$ if $\mu^{\prime} \neq \perp$ and $c_{0}=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu^{\prime}[, e k]\right)$. The decapsulation returns $K:=\perp$ if $\mu^{\prime}=\perp$ or $c_{0} \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or $c_{1} \neq \mathrm{F}\left(\mu^{\prime}[, e k]\right)$. This variants does not require s in $\overline{d k}$.
We will adapt the discussions of Bindel et al.to SPR-CCA-security of KEM schemes obtained by the variants of U. See the right hand side of Figure 10.

C. 4 Variants of FO

Combining T and the variants of U or HU , we obtain several variants of FO as follows: Let PKE = (Gen, Enc, Dec) be a probabilistic PKE scheme: If we combine T and U_{x}^{y}, then we obtain FO_{x}^{y}. If we combine T and $\mathrm{HU} \mathrm{U}_{x}^{y}$, then we obtain HFO_{x}^{y}.

D Transformation in NIST PQC KEM Candidates

In this section, we review the transformations used in NIST PQC Round 3 KEM Candidates.

D. 1 FO with implicit rejection

FO \mathcal{A}^{\perp} transforms a weakly-secure probabilistic PKE into IND-CCA-secure KEM. This variant can be considered the composition of T and U^{\perp}, that is, KEM $=\mathrm{FO}^{\perp}[P K E, G, H]=U^{\perp}[T[P K E, G], H]$. This variant is used by BIKE $\left[\mathrm{ABB}^{+} 20\right]$ and SIKE [JAC $\left.{ }^{+} 20\right]$.
Let $\{0,1\}^{\ell(\kappa)}$ be the plaintext space of PKE. Let G: $\{0,1\}^{*} \rightarrow \mathcal{R}_{\text {Enc }}$ and $\mathrm{H}:\{0,1\}^{\ell(\kappa)} \times \mathcal{C}_{\text {PKE }} \rightarrow\{0,1\}^{k(\kappa)}$ be hash functions modeled by the random oracles. The FO^{\perp} is summarized as Figure 12. Assuming the IND-CPA security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM (see e.g., [KSS $\left.{ }^{+} 20\right]$).

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\overline{\operatorname{Dec}}(\overline{d k}, c), \text { where } \overline{d k}=(d k, e k, s)}$
${\left(1^{\kappa}\right)} }$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$r:=\mathrm{G}(\mu) / /$ for BIKE	
$\overline{\mu^{\prime}}:=\mathrm{Cec}(d k, c)$		
$\overline{d k}:=(d k, e k, s)$	$r:=\mathrm{G}(\mu, e k) / /$ for SIKE	$r^{\prime}:=\mathrm{GIKE}\left(\mu^{\prime}, e k\right) / /$ for SIKE
return $(e k, \overline{d k})$	$c:=\operatorname{Enc}(e k, \mu ; r)$	$c^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
	$K:=\mathrm{H}(\mu, c)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$
	return (K, c)	else return $K:=\mathrm{H}(s, c)$

Fig. 12. KEM := $\mathrm{FO}^{\perp}[\mathrm{PKE}, \mathrm{G}, \mathrm{H}]$ for BIKE and SIKE.

Remark D.1. BIKE and SIKE do not test whole re-encryption check. Roughly speaking, their encryption algorithm Enc is separable into two algorithms Enc 1_{1} and Enc ${ }_{2}$. Enc c_{1} takes $e k$ and randomness r and outputs c_{1} and $k \in$ $\{0,1\}^{\ell(\kappa)}$. Enc c_{2} takes μ and k and outputs $c_{2}:=k \oplus \mu$.
Using this property, BIKE omits the re-encryption check. Concretely speaking, k in BIKE's Enc c_{1} is computed as $k:=\mathrm{H}(r)$, where H is a hash function modeled by the random oracle. BIKE's Dec internally obtains r^{\prime} and checks the validity of c_{1}. It then retrieves $\mu^{\prime}:=c_{2} \oplus \mathrm{H}\left(r^{\prime}\right)$ and checks the validity of the ciphertext by checking $r^{\prime}=\mathrm{G}\left(\mu^{\prime}\right)$ or not.
SIKE's $\overline{\operatorname{Dec}}$ performs the test $c_{1}^{\prime}=c_{1}$ but omits the test $c_{2}^{\prime}=c_{2}$. Since Dec retrieves $\mu^{\prime}:=c_{2} \oplus k$ deterministically, we do not need to check the equality of c_{2} and c_{2}^{\prime}.

D. 2 Other FO with implicit rejection and pre-key

$\mathrm{FO}^{\not{ }^{\prime}}$ is a modified version of FO^{\perp}, which is used by Kyber $\left[\mathrm{SAB}^{+} 20\right.$, Section 1] and Saber [DKR^{+}20, Section 8]. $\mathrm{FO}^{\perp \prime \prime}$ is another modified versions of FO^{\perp}, which are used by FrodoKEM [$\mathrm{NAB}^{+} 20$, Section 2]. The differences
 compute key $K:=\mathrm{H}\left(\bar{K}, \mathrm{H}^{\prime}(c)\right)$ in $\mathrm{FO}^{\perp \prime}$ or $\mathrm{H}(\bar{K}, c)$ in $\mathrm{FO}^{\perp^{\prime \prime}}$.
Let $\{0,1\}^{\ell(\kappa)}$ be the plaintext space of PKE. Let G: $\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(\kappa)} \times \mathcal{R}_{\text {Enc }}, H^{\prime}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(\kappa)}$, and $\mathrm{H}:\{0,1\}^{\ell(\kappa)} \times\{0,1\}^{\ell(\kappa)} \rightarrow\{0,1\}^{k(\kappa)}$ be hash functions modeled by the random oracles. $\mathrm{FO}^{\mathcal{L}^{\prime}}$ and $\mathrm{FO}^{\mathcal{L}^{\prime \prime}}$ are summarized as Figure 13 and Figure 14, respectively.
One might consider assuming the IND-CPA security of PKE, the obtained KEM schemes are IND-CCA-secure in the QROM. Unfortunately, Grubbs, Maram, and Paterson [GMP21] pointed out that we cannot directly apply the existing security proof in the QROM to those variants, because computing K requires nested applications of random oracles G and H to m. Grubbs et al. overcome this barrier for the case of $\mathrm{FO}^{\not \prime \prime \prime}$ in [GMP21, Section 5.2]. Thus, FrodoKEM using FO ${ }^{\perp \prime \prime}$ can be shown IND-CCA-secure in the QROM. However, they failed to apply their technique to the case of $\mathrm{FO}^{\not \prime \prime}$ which computes $K=\mathrm{H}\left(\bar{K}, \mathrm{H}^{\prime}(c)\right)$ instead of $K=\mathrm{H}(\bar{K}, c)$. They left the IND-CCA security of $\mathrm{FO}^{\perp \prime}$ in the QROM as an open problem [GMP21, Section 5.3].

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}(\overline{d k}, c), \text { where } \overline{d k}=(d k, e k, h, s)}$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	
$h \leftarrow \mathrm{H}^{\prime}(e k)$	$\mu:=\operatorname{Dec}(d k, c)$	
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$(\bar{K}, r):=\mathrm{G}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$	
$\overline{\mu^{\prime}}, c^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$		
$\overline{d k}:=(d k, e k, h, s)$	$c:=\operatorname{Enc}(e k, \mu ; r)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\bar{K}^{\prime}, \mathrm{H}^{\prime}(c)\right)$
return $(e k, \overline{d k})$	$K:=\mathrm{H}\left(\bar{K}, \mathrm{H}^{\prime}(c)\right)$	else return $K:=\mathrm{H}\left(s, \mathrm{H}^{\prime}(c)\right)$
	return (K, c)	

Fig. 13. KEM := $\mathrm{FO}^{\perp \prime}\left[\mathrm{PKE}, \mathrm{G}, \mathrm{H}^{\prime}, \mathrm{H}\right]$ in Kyber and Saber.

$\operatorname{Gen}\left(1^{\kappa}\right)$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, h, s)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{K}\right)$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	$\mu^{\prime}:=\operatorname{Dec}(d k, c)$
$h \leftarrow H^{\prime}(e k)$	$(\bar{K}, r):=\mathrm{G}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$	$\left(\bar{K}^{\prime}, r^{\prime}\right):=\mathrm{G}\left(\mu^{\prime}, h\right)$
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$c:=\operatorname{Enc}(e k, \mu ; r)$	$c^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
$\overline{d k}:=(d k, e k, h, s)$	$K:=\mathrm{H}(\bar{K}, c)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\bar{K}^{\prime}, c\right)$
return ($e k, \overline{d k}$)	return (K, c)	else return $K:=\mathrm{H}(s, c)$

Fig. 14. $\mathrm{KEM}:=\mathrm{FO}^{\perp \prime \prime}\left[\mathrm{PKE}, \mathrm{G}, \mathrm{H}^{\prime}, \mathrm{H}\right]$ in FrodoKEM.

D. 3 FO with additional hash

HFO^{\perp} and $\mathrm{HFO}^{\perp \perp}$ (as known as QFO^{\perp} and QFO^{\perp}) [TU16, HHK17, $\mathrm{JZC}^{+} 18$, JZM19] transform a weakly-secure probabilistic PKE into IND-CCA-secure KEM like FO and add hash value of the message. HQC [AAB $\left.{ }^{+} 20\right]$ uses HFO^{\perp}. NTRU LPRime of NTRU Prime $\left[\mathrm{BBC}^{+} 20\right]$ uses a variant of $\mathrm{HFO}^{\not \perp}$, prf.
Let $\{0,1\}^{\ell(\kappa)}$ be the plaintext space of PKE. Let $G:\{0,1\}^{*} \rightarrow \mathcal{R}_{\text {Enc }}, F:\{0,1\}^{\ell(\kappa)} \times\{0,1\}^{*} \rightarrow\{0,1\}^{\ell^{\prime}(\kappa)}$, $\mathrm{H}:\{0,1\}^{\ell(\kappa)} \times\left(C_{\text {PKE }} \times\{0,1\}^{\ell^{\prime}(\kappa)}\right) \rightarrow\{0,1\}^{k(\kappa)}$, and $\mathrm{H}_{\mathrm{prf}}:\{0,1\}^{\ell(\kappa)} \times\left(C_{\mathrm{PKE}} \times\{0,1\}^{\ell^{\prime}(\kappa)}\right) \rightarrow\{0,1\}^{k(\kappa)}$ be hash functions modeled by the random oracles. HFO^{\perp} and HFO^{\perp} is summarized as Figure 15 and Figure 16, respectively. Assuming the IND-CPA security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM. See e.g., $\left[\mathrm{KSS}^{+} 20\right]$. For the case of explicit rejection HFO^{\perp}, we need to invoke $\left[\mathrm{BHH}^{+} 19\right.$, Theorem 4].

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}$	$\frac{\overline{\operatorname{Enc}}(e k)}{\mu \leftarrow\{0,1\}^{\ell(\kappa)}}$	
$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k)$		
$\overline{\mu^{\prime}}:=\operatorname{Dec}(d k, c)$		
return $(e k, \overline{d k})$	$c_{0}:=\operatorname{Enc}(e k, \mu ; r)$	$c_{0}^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
	$c_{1}:=\mathrm{F}(\mu)$	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}\right)$
	$c:=\left(c_{0}, c_{1}\right)$	$c^{\prime}:=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$
	$K:=\mathrm{H}(\mu, c)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$
	return (K, c)	else return $K:=\perp$

Fig. 15. $\mathrm{KEM}:=\mathrm{HFO}^{\perp}[\mathrm{PKE}, \mathrm{G}, \mathrm{F}, \mathrm{H}]$ for HQC .
D. 4 SXY

SXY transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM. This variant is employed by NTRU (NTRU-HPS and NTRU-HRSS) [CDH ${ }^{+}$20]. See Figure 5 for the summary. Assuming disjoint-simulatability of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM [SXY18].

D. 5 HU with implicit rejection

The final one is a transformation that transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM, employed by Classic McEliece [$\mathrm{ABC}^{+} 20$] and Streamlined NTRU Prime of NTRU Prime [$\mathrm{BBC}^{+} 20$]. We interpret the transformation as HU^{\downarrow}, prf [JZM19].
Let \mathcal{M} be the plaintext space of PKE. Let $\mathrm{F}: \mathcal{M} \rightarrow\{0,1\}^{\ell^{\prime}(\kappa)}, \mathrm{H}: \mathcal{M} \times\left(C_{\text {PKE }} \times\{0,1\}^{\ell^{\prime}(\kappa)}\right) \rightarrow\{0,1\}^{k(\kappa)}$, and $\mathrm{H}_{\text {prf }}:\{0,1\}^{\ell(\kappa)} \times\left(C_{\text {PKE }} \times\{0,1\}^{\ell^{\prime}(\kappa)}\right) \rightarrow\{0,1\}^{k(\kappa)}$ be hash functions modeled by the random oracle. The HU^{\not} is summarized as Figure 17. Assuming disjoint-simulatability of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM [SXY18, ABC $\left.{ }^{+} 20\right]$. We note that the implementation of F, H, and $\mathrm{H}_{\text {prf }}$ of Streamlined NTRU Prime has a problem of nested random oracles and we cannot show it is IND-CCA-secure. See section R for the detail.

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{K}\right)}$	$\frac{\overline{\operatorname{Enc}}(e k)}{\mu \leftarrow\{0,1\}^{\ell(\kappa)}}$		$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, s)$
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$r:=\mathrm{Dec}(d k, c)$		
$\overline{d k}:=(d k, e k, s)$	$c_{0}:=\operatorname{Enc}(e k, \mu ; r)$	$c_{0}^{\prime}:=\mathrm{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$	
$\operatorname{return}(e k, \overline{d k})$	$c_{1}:=\mathrm{F}(\mu, e k)$	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}, e k\right)$	
	$c:=\left(c_{0}, c_{1}\right)$		$c^{\prime}:=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$
	$K:=\mathrm{H}(\mu, c)$		if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$
	return (K, c)	else return $K:=\mathrm{H}_{\operatorname{prf}}(s, c)$	

Fig. 16. KEM := HFO^{\perp}, prf $\left[\mathrm{PKE}, \mathrm{G}, \mathrm{F}, \mathrm{H}, \mathrm{H}_{\mathrm{prf}}\right]$ for NTRU LPRime of NTRU Prime.

$\operatorname{Gen}\left(1^{\kappa}\right)$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, s)$ and $c=\left(c_{0}, c_{1}\right)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow \mathcal{M}$	$\mu^{\prime}:=\operatorname{Dec}\left(d k, c_{0}\right)$
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$c_{0}:=\operatorname{Enc}(e k, \mu)$	if $\mu^{\prime}=\perp$, then return $K:=\mathrm{H}_{\text {prf }}(s, c)$
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu) / / \mathrm{CM}$	$c_{0}^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$
return ($e k, \overline{d k}$)	$c_{1}:=\mathrm{F}(\mu, e k) / /$ sntrupr	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}\right) / / \mathrm{CM}$
	$c:=\left(c_{0}, c_{1}\right)$	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}, e k\right) / /$ sntrupr
	$K:=\mathrm{H}(\mu, c)$	$c:=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$
	return (K, c)	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$
		else return $K:=\mathrm{H}_{\text {prf }}(s, c)$

Fig. 17. KEM := $\mathrm{HU}^{\not \subset, \text { prf }}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ in Classic McEliece (CM) and Streamlined NTRU Prime (sntrupr) of NTRU Prime.

Remark D.2. One might wonder $\overline{\mathrm{Dec}}$ in Classic McEliece has no explicit re-encryption check ([ABC ${ }^{+} 20$, Sec.2.3.3]). In their specification, Dec in Classic McEliece internally checks $c_{0}^{\prime}=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or not ([ABC $\left.\left.{ }^{+} 20, \operatorname{Sec} .2 .2 .4\right]\right)$.

D. 6 Hashes in the wild

Finally, we summarize how KEMs implement G, F, H, and $\mathrm{H}_{\text {prf }}$.
Table 6. Summary of variants of FOs in NIST PQC Round 3 KEM Candidates (finalists and alternates): Before version 4.2, BIKE's G uses SHA384 and AES256-CTR. SHAKE256 ℓ_{ℓ} will outputs the first ℓ bits of SHAKE256. SHA3-512 2_{r} and SHA3-512 ${ }_{l}$ outputs the first and second 256 bits of SHA3-512. BIKE and SIKE use L in the underlying PKE to mask a message with masking value computed from the shared random value L (shared). BIKE uses SHA3-384 256 (r) and SIKE uses SHAKE $256_{n}(j)$ as L. In FrodoKEM, SHAKE is SHAKE128 or SHAKE256 depending on the parameter sets.

E Property of T

In this section, we show that T preserves ciphertext indistinguishability of disjoint simulatability.
Theorem E.1. Suppose that a probabilistic PKE PKE is ciphertext indistinguishable and OW-CPA-secure. Then, $\mathrm{PKE}^{\prime}:=$ $\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is also ciphertext indistinguishable in the QROM.
 quantum adversaries \mathcal{A}_{01} against OW-CPA security of PKE and \mathcal{A}_{12} against ciphertext indistinguishability of PKE such that

$$
\operatorname{Adv}_{\mathrm{PKE}^{\prime}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}}^{\mathrm{ds} \text {-ind }}(\kappa) \leq 2 q_{\mathrm{G}} \sqrt{\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}_{01}}^{\mathrm{ow}-\mathrm{cpa}}(\kappa)}+\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{12}}^{\mathrm{ds}-\mathrm{ind}^{2}}(\kappa) .
$$

Proof: Let us consider the following sequence of games, Game ${ }_{0}, \mathrm{Game}_{1}$, and Game 2 . Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in Game ${ }_{i}$.
$G^{-2 m e} e_{0}$: This game is defined as follows:

$$
(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) ; m^{*} \leftarrow \mathcal{D}_{\mathcal{M}} ; r^{*} \leftarrow \mathrm{G}\left(m^{*}\right) ; c^{*}:=\operatorname{Enc}\left(e k, m^{*} ; r^{*}\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathrm{G}(\cdot)}\left(e k, c^{*}\right) ; \text { return } b^{\prime} .
$$

Game_{1} : This game is the same as Game_{0} except that a randomness to generate a challenge ciphertext is freshly generated:

$$
(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) ; m^{*} \leftarrow \mathcal{D}_{\mathcal{M}} ; r^{*} \leftarrow \mathcal{R} ; c^{*}:=\operatorname{Enc}\left(e k, m^{*} ; r^{*}\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathrm{G}(\cdot)}\left(e k, c^{*}\right) ; \text { return } b^{\prime} .
$$

$\mathrm{F}\left(m^{*}, r^{*}\right)$	$\mathcal{A}_{01}^{\mathrm{G}}\left(e k, c^{*}\right):$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{K}\right)$	inp : $=\left(e k, c^{*}\right)$
$c^{*}:=\operatorname{Enc}\left(e k, m^{*} ; r^{*}\right)$	$i \leftarrow\left[q_{\mathrm{H}}\right]$
inp := (ek, $\left.c^{*}\right)$	Run \mathcal{A}^{G} (inp) until i-th query $\|\hat{x}\rangle$ to G
return inp	if $i>$ number of queries to G , return \perp
	else return $x^{\prime}:=$ Measure ($\|\hat{x}\rangle$)

Fig. 18. Algorithm F and adversary \mathcal{A}_{01}

Game $_{2}$: This game is the same as Game ${ }_{1}$ except that a challenge ciphertext is generated by the simulator $\mathcal{S}\left(1^{\kappa}, e k\right)$:

$$
(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) ; c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}, e k\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathrm{G}(\cdot)}\left(e k, c^{*}\right) ; \text { return } b^{\prime}
$$

This completes the descriptions of games. It is easy to see that we have

$$
\operatorname{Adv}_{\mathrm{PKE}^{\prime}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}}^{\mathrm{d} s-\mathrm{ind}}(\kappa)=\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{2}\right]\right| .
$$

We give an upperbound for this by the following lemmas.
Lemma E.1. There exists an adversary \mathcal{A}_{01} such that

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq 2 q_{\mathrm{G}} \sqrt{\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}_{01}}^{\mathrm{ow-cha}}(\kappa)} .
$$

Proof (Proof of Lemma E.1). Let F be an algorithm described in Figure 18. It is easy to see that Game e_{0} can be restated as

$$
m^{*} \leftarrow \mathcal{D}_{\mathcal{M}} ; r^{*} \leftarrow \mathrm{G}\left(m^{*}\right) ; \text { inp }:=\mathrm{F}\left(e k, m^{*} ; r^{*}\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathrm{G}(\cdot)}(\text { inp }) ; \text { return } b^{\prime}
$$

and Game_{1} can be restated as

$$
m^{*} \leftarrow \mathcal{D}_{\mathcal{M}} ; r^{*} \leftarrow \mathcal{R} ; \text { inp }:=\mathrm{F}\left(e k, m^{*} ; r^{*}\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathrm{G}(\cdot)}(\text { inp }) ; \text { return } b^{\prime}
$$

Applying the O2H lemma (Lemma A.2) with $\mathcal{X}=\mathcal{M}^{\prime}, \boldsymbol{y}=\mathcal{R}, \mathcal{D}_{\mathcal{X}}=\mathcal{D}_{\mathcal{M}}, x=m^{*}, y=r^{*}$, and algorithms \mathcal{A} and F, we have

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq 2 q_{\mathrm{G}} \sqrt{\operatorname{Pr}\left[m^{*} \leftarrow \mathcal{A}_{01}^{\mathrm{G}}\left(e k, c^{*}\right)\right]} .
$$

where $\mathcal{A}_{01}^{\mathrm{G}}$ is an algorithm described in Figure 18 , $(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), m^{*} \leftarrow \mathcal{D}_{\mathcal{M}}, r^{*} \leftarrow \mathcal{R}$, and $c^{*}:=$ $\operatorname{Enc}\left(e k, m^{*}, r^{*}\right)$.
We have $\operatorname{Pr}\left[m^{*} \leftarrow \mathcal{A}_{01}^{\mathrm{G}}\left(e k, c^{*}\right)\right] \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}_{01}}^{\mathrm{ow}-\mathrm{cpa}}(\kappa)$. By combining these inequalities, the lemma is proven.
Lemma E.2. There exists an adversary \mathcal{A}_{12} such that

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{12}}^{\mathrm{ds} s \text { ind }}(\kappa) .
$$

The proof is very clear and we omit it.
Combining the above two lemmas, we obtain the wanted result.

F Property of U^{\perp}

As we seen in Figure $10, U^{\perp}$ and $S X Y=U_{m}^{\perp}$ are not connected. Indeed, we face a subtle problem to apply indifferentiable reduction in Bindel et al. [BHH ${ }^{+}$19]: Suppose that we have \mathcal{A} against SPR-CCA security of KEM obtained by U^{\not}. In their indifferentiable reduction, they construct \mathcal{A}_{m} against SPR-CCA security of KEM obtained by U_{m}^{\perp}. \mathcal{A}_{m} given $\mathrm{H}_{m}: \mathcal{M} \rightarrow \mathcal{K}$ simulates $\mathrm{H}: \mathcal{M} \times \mathcal{C} \rightarrow \mathcal{K}$ by

$$
\mathrm{H}(\mu, c)= \begin{cases}\mathrm{H}_{m}(\mu) & \text { if } c=\operatorname{Enc}(e k, \mu) \\ \mathrm{H}^{\prime}(\mu, c) & \text { otherwise } .\end{cases}
$$

Unfortunately, this simulation makes $\mathrm{H}(s, c)$ different from $\mathrm{H}_{\text {prf }}(s, c)$ at the point (s, c) with $c=\operatorname{Enc}(e k, s)$. Hence, we directly prove the security properties.

Table 7. Summary of Games for the Proof of Theorem F.1. We define $g(\mu)=\operatorname{Enc}(e k, \mu)=\operatorname{Enc}_{0}(e k, \mu ; G(\mu))$.

Game	H	G	c^{*}	K^{*}	$\left\lvert\, \begin{aligned} & \text { Decryption } \\ & \text { valid } c \text { invalid } c\end{aligned}\right.$	justification
Game_{0}	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	Enc ($e k, \mu^{*}$)	$\mathrm{H}\left(\mu^{*}, c^{*}\right)$	$\|\mathrm{H}(\mu, c) \mathrm{H}(s, c)\|$	
Game ${ }_{1}$	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	Enc ($e k, \mu^{*}$)	$\mathrm{H}\left(\mu^{*}, c^{*}\right)$	$\mathrm{H}(\mu, c) \quad \mathrm{H}_{q}(c)$	Lemma 2.2
Game ${ }_{1.1}$	H	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}, c^{*}\right)$	$\begin{array}{lll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	Lemma $2.1+$ correctness
Game 1.2	$\mathrm{H}_{q}^{\prime} \circ \mathrm{g} / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}, c^{*}\right)$	$\begin{array}{llll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	if key is not bad
Game ${ }_{2}$	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}\left(\mu^{*}, c^{*}\right)$	$\begin{array}{lll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	if key is not bad
Game_{3}	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}(c) \quad \mathrm{H}_{q}(c)$	conceptual
$\mathrm{Game}_{3.1}$	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\operatorname{Enc}\left(e k, \mu^{*}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}(c) \quad \mathrm{H}_{q}(c)$	Lemma 2.1 + correctness
Game_{4}	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\mathrm{H}_{q}(c) \quad \mathrm{H}_{q}(c)$	DS-IND
Game5	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}_{q}(c) \quad \mathrm{H}_{q}(c)$	statistical disjointness
Game 5.1	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}_{q}(c) \quad \mathrm{H}_{q}(c)$	Lemma $2.1+$ correctness
Game ${ }_{6}$	$\mathrm{H}_{q} \circ \mathrm{~g} / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\begin{array}{ll}\mathrm{H}(\mu) & \mathrm{H}_{q}(c)\end{array}$	conceptual
$\mathrm{Game}_{6.1}$	$\mathrm{H}_{q}^{\prime} \circ g / \mathrm{H}^{\prime}$	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\begin{array}{lll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	if key is not bad
$\mathrm{Game}_{6.2}$	H	$\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\begin{array}{llll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	if key is not bad
Game_{7}	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\begin{array}{lll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	Lemma $2.1+$ correctness
Game ${ }_{8}$	H	$\mathcal{F}(\mathcal{M}, \mathcal{R})$	$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{K})$	$\mathrm{H}(\mu, c) \mathrm{H}(s, c)$	Lemma 2.2

F. 1 SPR-CCA Security

We need to show U^{\perp} 's SPR-CCA-security directly. Fortunately, we can use the security proofs for SXY $=U_{m}^{\not}$ with slight modifications. Roughly speaking, we replace $\mathrm{H}(s, c)$ with $\mathrm{H}_{q}(c)$ and, then, apply the above indifferentiable reduction. Doing so, we can find the situation is essentially equivalent to Game ${ }_{1}$ (or Game ${ }_{7}$) of Table 4.

Theorem F.1. Let $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable and δ-correct with negligible δ, then $K E M=U^{\mathscr{L}}[\mathrm{PKE}, \mathrm{H}]$ is SPR-CCA-secure. Formally speaking, for any \mathcal{A} against the SPR-CCA security of KEM issuing at most $q_{\text {Dec }} q$ queries to the decapsulation oracle and q_{G} and q_{H} queries to G and H respectively, there exist \mathcal{A}_{34} against ciphertext-indistinguishability of PKE such that

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa) \leq \operatorname{Adv} \\
&+16\left(q_{\mathrm{GKE}}+q_{\mathrm{DeC}}+1\right)^{2} \delta+16\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta+4\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|} .
\end{aligned}
$$

Theorem F.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable and δ-correct with negligible δ, then $\mathrm{KEM}=\mathrm{U}^{\perp}$ [PKE, H] is SPR-CCA-secure.
 oracle and q_{G} and q_{H} queries to G and H , respectively, there exist \mathcal{A}_{34} against ciphertext-indistinguishability of PKE such that

Proof of Theorem F.1: We use the game-hopping proof. We consider Game ${ }_{i}$ for $i=0, \ldots, 8$. We summarize the games in Table 7. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in game Game ${ }_{i}$. Let Acc and $\overline{\text { Acc }}$ denote the event that the key pair $(e k, d k)$ is accurate and inaccurate, respectively.

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\text {KEM, }}^{\text {spr-cca }}(\kappa)$ with $b=0$. Thus, we have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}[\operatorname{Expt} \underset{\mathrm{KEM}, \mathcal{A}}{\mathrm{spr}-\mathrm{ca}}(\kappa)=1 \mid b=0] .
$$

Game ${ }_{1}$: This game is the same as Game except that $\mathrm{H}(s, c)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}(c)$ where $\mathrm{H}_{q}: \mathcal{C} \rightarrow \mathcal{K}$ is another random oracle. We remark that \mathcal{A} is not given direct access to H_{q}. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|},
$$

where q_{H} and $q_{\text {Dec }}$ denote the number of queries to H and DEC the adversary makes, respectively.

Game $_{1.1}$: This game is the same as Game $_{1}$ except that the random oracle $G(\cdot)$ is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}(\mathcal{M}, \mathcal{R})$.
Fix $(e k, d k)$. Then, we have $\left|\operatorname{Pr}\left[S_{1} \mid(e k, d k)\right]-\operatorname{Pr}\left[S_{1.1} \mid(e k, d k)\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \delta_{e k, d k}$. Taking average over $(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)$, we obtain

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{1.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}+1\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right]=8\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}+1\right)^{2} \delta .
$$

We have $\operatorname{Pr}[\mathrm{Bad}] \leq \delta$ ([LW21, Claim 3]). According to Lemma A.1, for any p, we also have

$$
\left|\operatorname{Pr}\left[S_{1.1}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{1.1} \wedge \neg \mathrm{Bad}\right]-p\right|+\delta
$$

Game $_{1.2}$: This game is the same as Game 1.1 except that the random oracle $\mathrm{H}(\cdot, \cdot)$ is simulated as follows: Let $\mathrm{H}_{q}^{\prime}: C \rightarrow \mathcal{K}$ and $\mathrm{H}^{\prime}: \mathcal{M} \times C \rightarrow \mathcal{K}$ be random oracles. Define

$$
\mathrm{H}(\mu, c)= \begin{cases}\mathrm{H}_{q}^{\prime}(\operatorname{Enc}(e k, \mu)) & \text { if } c=\operatorname{Enc}(e k, \mu), \\ \mathrm{H}^{\prime}(\mu, c) & \text { otherwise } .\end{cases}
$$

We remark that the decapsulation oracle and the generation of K^{*} also use this simulation.
If $\neg \operatorname{Bad}$ occurs, then $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$ is perfectly correct from the definition of G and $g(\mu):=\operatorname{Enc}(e k, \mu ; \mathrm{G}(\mu))$ is injective. Thus, $\mathrm{H}_{q}^{\prime} \circ g: \mathcal{M} \rightarrow \mathcal{K}$ is a random function and the two games Game ${ }_{1.1}$ and Game ${ }_{1.2}$ are equivalent if Bad does not occurs. We have

$$
\operatorname{Pr}\left[S_{1.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{1.2} \wedge \neg \mathrm{Bad}\right] .
$$

See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.
Game $_{2}$: This game is the same as Game ${ }_{1.2}$ except that the random oracle H is simulated by $\mathrm{H}_{q} \circ g$ and H^{\prime} instead of $\mathrm{H}_{q}^{\prime} \circ g$ and H^{\prime}.
If \neg Bad occurs, then PKE $=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is perfectly correct from the definition of G. Hence, the two games Game ${ }_{1.2}$ and Game_{2} are equivalent, because a value of $\mathrm{H}_{q}^{\prime}(c)$ for an invalid c is not used in Game ${ }_{1.2}$: that is, we have

$$
\operatorname{Pr}\left[S_{1.2} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right]
$$

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.
Game ${ }_{3}$: This game is the same as Game except that K^{*} is set as $\mathrm{H}_{q}\left(c^{*}\right)$ and the decapsulation oracle always returns $\mathrm{H}_{q}(c)$ as long as $c \neq c^{*}$. This decapsulation oracle will denoted by Dec'.
If \neg Bad occurs, then PKE $=T[$ PKE, G$]$ is perfectly correct from the definition of G . , the two games Game ${ }_{2}$ and Game $_{3}$ are equivalent: that is, we have

$$
\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right] .
$$

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any p, we have

$$
\left|\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{3}\right]-p\right|+\delta .
$$

Game $_{3.1}$: This game is the same as Game $_{3}$ except that G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$.

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{3.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right]=8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta
$$

(We note that H and the challenge ciphertext also query to G internally.)
Game $4^{\text {: This game is the same as Game }} 3$ except that c^{*} is generated by $\mathcal{S}\left(1^{\kappa}\right)$.
The difference between two games Game_{3} and Game_{4} is bounded by the advantage of ciphertext indistinguishability in disjoint simulatability as in [XY19, Lemma 4.7]. We have

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\text {-ind }}(\kappa) .
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*} \leftarrow \mathcal{K}$ instead of $K^{*} \leftarrow \mathrm{H}_{q}\left(c^{*}\right)$.
In Game_{4}, if $c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right)$ is not in $\operatorname{Enc}(e k, \mathcal{M})$, then the adversary has no information about $K^{*}=\mathrm{H}_{q}\left(c^{*}\right)$ and thus, K^{*} looks uniformly at random. Hence, the difference between two games Game ${ }_{4}$ and Game_{5} is bounded by the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8].
We have

$$
\left|\operatorname{Pr}\left[S_{4}\right]-\operatorname{Pr}\left[S_{5}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game $_{5.1}$: This game is the same as Games except that G is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}(\mathcal{M}, \mathcal{R})$.

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{5.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}\right)^{2} \operatorname{Exp}_{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}\left[\delta_{e k, d k}\right] \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta .
$$

(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any p, we have

$$
\left|\operatorname{Pr}\left[S_{5.1} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{5.1}\right]-p\right|+\delta
$$

Game $_{6}$: This game is the same as Game except that the decapsulation oracle is reset as Dec. Similar to the case for Game_{2} and Game_{3}, if a key pair is accurate, the two games Game ${ }_{5}$ and Game_{6} are equivalent as in the proof of [XY19, Lemma 4.5]. We have

$$
\operatorname{Pr}\left[S_{5.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{6.1}$: This game is the same as $G_{a m e}$ except that the random oracle H is simulated by $\mathrm{H}_{q}^{\prime} \circ g$ and H^{\prime} as in Game 1.2 . If a key pair is not bad, the two games $G^{2} e_{6}$ and $G^{2} e_{6.1}$ are equivalent as in the proof of [XY19, Lemma 4.4]. We have

$$
\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6.1} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{6.2}$: This game is the same as Game $_{6.1}$ except that the random oracle $H(\cdot)$ is set as the original. If a key pair is not bad, the two games Game 6.1 and Game $_{6.2}$ are equivalent as in the proof of [XY19, Lemma 4.4]. We have

$$
\operatorname{Pr}\left[S_{6.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{6.2} \wedge \neg \mathrm{Bad}\right] .
$$

We have, for any p,

$$
\left|\operatorname{Pr}\left[S_{6.2} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{6.2}\right]-p\right|+\delta
$$

from Lemma A.1.

Game $_{7}$: This game is the same as $\mathrm{Game}_{6.2}$ except that the random oracle G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$. We have,

$$
\left|\operatorname{Pr}\left[S_{6.2}\right]-\operatorname{Pr}\left[S_{7}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}\right)^{2} \delta . \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DeC}}+1\right)^{2} \delta .
$$

Game ${ }_{8}$: This game is the same as Game except that $\mathrm{H}_{q}(c)$ in the decapsulation is replaced by $\mathrm{H}(s, c)$. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{7}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{DEC}}\right) / \sqrt{|\mathcal{M}|} .
$$

We note that This game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)$ with $b=1$. Thus, we have

$$
\operatorname{Pr}\left[S_{8}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)=1 \mid b=1\right] .
$$

Summarizing those (in)equalities, we obtain the following bound:

$$
\begin{aligned}
\operatorname{Adv}_{\text {KEM }, \mathcal{A}}^{\text {spr-cca }}(\kappa)= & \left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \\
\leq & \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\text { ind }}(\kappa)+\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+4 \delta \\
& +16\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}+1\right)^{2} \delta+16\left(q_{\mathrm{G}}+q_{\mathrm{H}}+1\right)^{2} \delta+4\left(q_{\mathrm{H}}+q_{\mathrm{DEc}}\right) / \sqrt{|\mathcal{M}|} .
\end{aligned}
$$

Table 8. Summary of Games for the Proof of Theorem F.3: ' $\mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$ ' implies that the challenger generates $c^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right)$ and returns \perp if $c^{*} \in \operatorname{Enc}(e k, \mathcal{M})$.

Game	$\mathrm{H} \quad c^{*}$	K^{*}	$\left\lvert\, \begin{aligned} & \text { Decryption } \\ & \text { valid } c \text { invalid } c \mid \text { justification } \end{aligned}\right.$	
Game ${ }_{0}$	$\mathrm{H} \quad \mathcal{S}\left(1^{\kappa}\right)$	random	$\|\mathrm{H}(\mu, c) \mathrm{H}(s, c)\|$	
Game_{1}	H $\mathcal{S}\left(1^{\kappa}\right) \backslash$ Enc $(e k, \mathcal{M})$	random	$\mathrm{H}(\mu, c) \mathrm{H}(s, c)$	statistical disjointness
Game_{2}	H $\mathcal{S}\left(1^{\kappa}\right) \backslash \mathrm{Enc}(e k, \mathcal{M})$	random	$\mathrm{H}(\mu, c) \quad \mathrm{H}_{q}(c)$	Lemma 2.2
Game_{3}	$\mathrm{H} \mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$	$\mathrm{H}_{q}\left(c^{*}\right)$	$\begin{array}{llll}\mathrm{H}(\mu, c) & \mathrm{H}_{q}(c)\end{array}$	$\mathrm{H}_{q}\left(c^{*}\right)$ is hidden
Game_{4}	$\mathrm{H} \mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$	$\mathrm{H}\left(s, c^{*}\right)$	$\mathrm{H}(\mu, c) \mathrm{H}(s, c)$	Lemma 2.2
Game ${ }_{5}$	H $\mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$	$\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$	$\mathrm{H}(\mu, c) \mathrm{H}(s, c)$	re-encryption check
Game_{6}	$\mathrm{H} \quad \mathcal{S}\left(1^{\kappa}\right)$	$\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$	$\mathrm{H}(\mu, c) \mathrm{H}(s, c)$	statistical disjointness

Proof of Theorem F.2: The proof of Theorem F.2 is a simplified version of that of Theorem F.1, since it does not require to consider G . Ignoring the transition between real G with good G , we obtain the bound as follows:

$$
\begin{aligned}
\operatorname{Adv}_{\text {KEM }, \mathcal{S}, \mathcal{A}}^{\text {spr-cca }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \\
& \leq 4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEc}}\right) / \sqrt{|\mathcal{M}|}+4 \delta+\operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{A}_{34}, \mathcal{S}}^{\mathrm{ds}-\mathrm{ind}}(\kappa)+\operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
\end{aligned}
$$

F. 2 SSMT-CCA Security

We can show SSMT-CCA security of $U^{\not 又}$ by using the essentially same proof of that for SXY.
Theorem F.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then KEM $=\mathrm{U}^{\mathscr{A}}[\mathrm{PKE}, \mathrm{H}]$ is SSMT-CCA-secure.
Formally speaking, for any adversary \mathcal{A} against SSMT-CCA security of KEM, we have

$$
\operatorname{Adv}_{\text {KEM }, \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa) \leq 2 \operatorname{Disj} \mathrm{PKE}, \mathcal{S}(\kappa)+4\left(q_{\mathrm{H}}+q_{\mathrm{DEC}}\right) / \sqrt{|\mathcal{M}|} .
$$

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof Sketch: We use the game-hopping proof. We consider Game ${ }_{i}$ for $i=0, \ldots, 6$. We summarize the games in Table 8. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in game Game ${ }_{i}$. Let Acc and Acc denote the event that the key pair ($e k, d k$) is accurate and inaccurate, respectively.

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\text {KEM, } \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa)$ with $b=0$. The challenge is generated as

$$
\left(c^{*}, K_{0}^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times \mathcal{K} .
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt} \mathrm{KEM}, \mathcal{S}, \mathcal{A}_{\text {ssmt-ca }}(\kappa)=1 \mid b=0\right] .
$$

Game $_{1}$: In this game, the ciphertext is set as \perp if c^{*} is in $\operatorname{Enc}(e k, \mathcal{M})$. The difference between two games Game ${ }_{0}$ and Game ${ }_{1}$ is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game ${ }_{2}$: This game is the same as Game ${ }_{1}$ except that $\mathrm{H}(s, c)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}(c)$ where $\mathrm{H}_{q}: C \rightarrow \mathcal{K}$ is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|},
$$

where q_{H} denote the number of queries to $\mathrm{H}_{\mathrm{prf}}$ the adversary makes.

Game $_{3}$: This game is the same as Game 2 except that $K^{*}:=\mathrm{H}_{q}\left(c^{*}\right)$ instead of chosen random. Since c^{*} is always outside of $\operatorname{Enc}(e k, \mathcal{M}), \mathcal{A}$ cannot obtain any information about $\mathrm{H}_{q}\left(c^{*}\right)$. Hence, the two games Game_{2} and Game_{3} are equivalent and we have

$$
\operatorname{Pr}\left[S_{2}\right]=\operatorname{Pr}\left[S_{3}\right] .
$$

Game $_{4}$: This game is the same as Game ${ }_{3}$ except that $\mathrm{H}_{q}(\cdot)$ is replaced by $\mathrm{H}(s, \cdot)$. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|} .
$$

Game $_{5}$: This game is the same as Game_{4} except that $K^{*}:=\overline{\operatorname{Dec}}\left(d k, c^{*}\right)$ instead of $\mathrm{H}\left(s, c^{*}\right)$. Recall that c^{*} is always in outside of $\operatorname{Enc}(e k, \mathcal{M})$. Thus, we always have $\operatorname{Dec}\left(c^{*}\right)=\perp$ or $\operatorname{Enc}\left(e k, \operatorname{Dec}\left(c^{*}\right)\right) \neq c^{*}$ and, thus, $K^{*}=\mathrm{H}\left(s, c^{*}\right)$. Hence, the two games are equivalent and we have

$$
\operatorname{Pr}\left[S_{4}\right]=\operatorname{Pr}\left[S_{5}\right] .
$$

Game $_{6}$: We finally replace how to compute c^{*}. In this game, the ciphertext is chosen by $\mathcal{S}\left(1^{\kappa}\right)$ as in Game ${ }_{0}$. The difference between two games Game 5 and Game_{6} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Moreover, this game Game $_{6}$ is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\mathrm{ssmt}-\mathrm{ca}}(\kappa)$ with $b=1$.

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{S}, \mathcal{A}}^{\mathrm{ssmt}-\mathrm{Aca}}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain Theorem F.3:

$$
\begin{aligned}
\operatorname{Adv}_{\text {KEM }, \mathcal{S}, \mathcal{A}}^{\text {ssmt-ca }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \\
& \leq 2 \operatorname{Disj} j_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}}+q_{\mathrm{DEc}}\right) / \sqrt{|\mathcal{M}|} .
\end{aligned}
$$

F. 3 SCFR-CCA Security

Theorem F.4. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM $=U^{\perp}[\mathrm{PKE}, \mathrm{H}]$ is SCFR-CCA-secure in the QROM.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.
Proof. Suppose that an adversary outputs a ciphertext c which is decapsulated into $K \neq \perp$ by both $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}:=\mu_{i}^{\prime}$ if $c=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and \perp otherwise.
We have five cases defined as follows:

1. Case $1\left(\mu_{0}=\mu_{1} \neq \perp\right)$: This violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is easy to make a reduction.
2. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}, c\right)=\mathrm{H}\left(\mu_{1}, c\right)$. Thus, we succeed to find a collision for H , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(s_{0}, c\right)=\mathrm{H}\left(\mu_{1}, c\right)$. Notice that we can replace $\mathrm{H}\left(s_{0}, \cdot\right)$ with $\mathrm{H}_{q}(\cdot)$ by introducing negligible error (Lemma 2.2). After that, we find a claw $\left(c,\left(\mu_{1}, c\right)\right)$ between H_{q} and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
4. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}, c\right)=\mathrm{H}\left(s_{1}, c\right)$. Again, we can replace $\mathrm{H}\left(s_{1}, \cdot\right)$ with $\mathrm{H}_{q}(\cdot)$ by introducing negligible error (Lemma 2.2). After that, we find a claw $\left(\left(\mu_{0}, c\right), c\right)$ between H and H_{q}. The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
5. Case 5 (The other cases): In this case, we find a collision $\left(\left(s_{0}, c\right),\left(s_{1}, c\right)\right)$ of H , which is indeed collision if $s_{0} \neq s_{1}$ which occurs with probability at lease $1-1 / 2^{\ell}$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

Table 9. Summary of Games for the Proof of Theorem G.1. We define $g(\mu)=\operatorname{Enc}(e k, \mu)=\operatorname{Enc}_{0}(e k, \mu ; \mathrm{G}(\mu))$.

G Property of $\mathrm{HU}_{\boldsymbol{m}}^{\perp}$

Let us consider $\mathrm{HU} \stackrel{\perp}{\perp}$ [JZM19]: Let PKE $=($ Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is \mathcal{M}. Let \mathcal{C} and \mathcal{K} be a ciphertext and key space. Let \mathcal{H} be a some finite space. Let $\mathrm{H}: \mathcal{M} \rightarrow \mathcal{K}$ and $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ be hash functions modeled by random oracles. Let KEM $\left.=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{HU} \stackrel{\perp}{m}^{\mathrm{L}} \mathrm{PKE}, \mathrm{H}, \mathrm{F}\right]$ is a KEM scheme obtained by using $\mathrm{HU} \stackrel{\perp}{m}$.

$\overline{\mathrm{Gen}}\left(1^{\kappa}\right)$	$\overline{\mathrm{Enc}}(e k)$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right)$, where $\overline{d k}=(d k, e k)$
$\begin{aligned} & (e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) \\ & \overline{d k}:=(d k, e k) \\ & \text { return }(e k, \overline{d k}) \end{aligned}$	$\begin{aligned} & m \leftarrow \mathcal{M} \\ & c_{0}:=\operatorname{Enc}(e k, \mu) \\ & c_{1}:=\mathrm{F}(\mu[, e k]) \\ & K:=\mathrm{H}(\mu) \\ & \text { return }\left(\left(c_{0}, c_{1}\right), K\right) \end{aligned}$	```\mu if \mp@subsup{\mu}{}{\prime}=\perp\mathrm{ or }\mp@subsup{c}{0}{}\not=\operatorname{Enc}(ek,\mp@subsup{\mu}{}{\prime})\mathrm{ or }\mp@subsup{c}{1}{}\not=\textrm{F}(\mp@subsup{\mu}{}{\prime}[,ek]) then return }K:= else return K:= H(}\mp@subsup{\mu}{}{\prime}```

G. 1 SPR-CCA security:

Theorem G.1. Let PKE $=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable with simulator \mathcal{S} and δ-correct with negligible δ, then KEM $=$ $\mathrm{HU}_{m}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SPR-CCA-secure, where we use a new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$.
 oracle and $q_{\mathrm{F}}, q_{\mathrm{G}}$, and q_{H} queries to F, G, and H , respectively, there exist \mathcal{A}_{34} against ciphertext-indistinguishability of PKE such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{S}^{\prime}, \mathcal{A}}^{\text {spr-cca }}(\kappa) \leq & \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}(\kappa)+2 \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+16\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \delta+4 \delta \\
& +8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}\right)^{2} \delta+8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}+q_{\mathrm{Dec}}+1\right)^{2} \delta \\
& +\left(2 q_{\mathrm{DeC}}+1\right) /|\mathcal{H}|+q_{\mathrm{Dec}} /(|\mathcal{H}|-1)
\end{aligned}
$$

Theorem G.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable and δ-correct with negligible δ, then $\mathrm{KEM}=\mathrm{HU}_{m}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SPR-CCA-secure.

Proof Sketch of Theorem G.1: We use the game-hopping proof. We consider Game ${ }_{i}$ for $i=0, \ldots, 8$. We summarize the games in Table 9. Let S_{i} denote the event that the adversary outputs $b^{\prime}=1$ in game Game ${ }_{i}$. We mainly follow the security proof in [JZM19, XY19, LW21], while we use a new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$ instead of $\mathcal{S}^{\prime}=\operatorname{Enc}(e k, \mathcal{M}) \times U(\mathcal{H})$.

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{ssmt}}(\kappa)$ with $b=0$. The challenge is generated as

$$
\mu^{*} \leftarrow \mathcal{M} ; c_{0}^{*}:=\operatorname{Enc}\left(e k, \mu^{*} ; \mathrm{G}\left(\mu^{*}\right)\right) ; c_{1}^{*}:=\mathrm{F}\left(\mu^{*}\right) .
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{ssmmt}} \mathbf{- c a}(\kappa)=1 \mid b=0\right] .
$$

Game $_{0.1}$: This game is the same as Game $_{0}$ except that the random oracle G is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$ instead of $\mathcal{F}(\mathcal{M}, \mathcal{R})$. As in the proof of Theorem 5.1, we have

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{0.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}+1\right)^{2} \delta .
$$

In addition, we have $\operatorname{Pr}[\mathrm{Bad}] \leq \delta$ and $\left|\operatorname{Pr}\left[S_{0.1}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{0.1} \wedge \neg \mathrm{Bad}\right]-p\right|+\delta$ for any $p \in[0,1]$.
Game $_{1}$: This game is the same as $G^{\text {Game }}{ }_{0.1}$ except that the random oracles H and F are simulated by $\mathrm{H}_{q} \circ g$ and $\mathrm{F}_{q} \circ g$, respectively, where $\mathrm{H}_{q}: C \rightarrow \mathcal{K}$ and $\mathrm{F}_{q}: C \rightarrow \mathcal{H}$ are random oracles and $g(\mu):=\operatorname{Enc}(e k, \mu)$. If key is not bad, then those games are equivalent and we have

$$
\operatorname{Pr}\left[S_{0.1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{1} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{2}$: This game is the same as Game ${ }_{1}$ except that the decapsulation oracle internally computes K as $\mathrm{H}_{q}\left(c_{0}\right)$ and c_{1} as $\mathrm{F}_{q}\left(c_{0}\right)$. If key is not bad, then those games are equivalent and we have

$$
\operatorname{Pr}\left[S_{1} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{3}$: In this game the decapsulation oracle ignores whether $c_{0}=\operatorname{Enc}(e k, \mu)$ or not. That is, when $\left(c_{0}, c_{1}\right) \neq$ $\left(c_{0}^{*}, c_{1}^{*}\right)$, the oracle returns $K=\mathrm{H}_{q}\left(c_{0}\right)$ if $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$.
Let us consider the following cases:

- If $c_{0}=\operatorname{Enc}(e k, \mu)$ for some μ, then the results are equal.
- If $c_{0} \notin \operatorname{Enc}(e k, \mathcal{M})$ and $c_{1} \neq \mathrm{F}_{q}\left(c_{0}\right)$, then the results are equal.
- If $c_{0} \notin \operatorname{Enc}(e k, \mathcal{M})$ and $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$, then the results differ (\perp in Game_{2} but $K=\mathrm{H}_{q}(c)$ in Game 3).

The difference occurs when c_{0} is outside of $\operatorname{Enc}(e k, \mathcal{M})$ and $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$. Notice that the adversary cannot access such hash values directly, since it is given F instead of F_{q}. Therefore, any c_{1} hits the value $\mathrm{F}_{q}\left(c_{0}\right)$ with probability at most $1 /|\mathcal{H}|$ and we obtain the bound $q_{\mathrm{Dec}} /|\mathcal{H}|$. (If a decapsulation query is quantum, we will get another bound $2 q_{\text {Dec }}(|\mathcal{H}|)^{-1 / 2}$.) We have

$$
\left|\operatorname{Pr}\left[S_{2} \wedge \neg \mathrm{Bad}\right]-\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right]\right| \leq q_{\mathrm{Dec}} /|\mathcal{H}| .
$$

We also have for any p,

$$
\left|\operatorname{Pr}\left[S_{3} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{3}\right]-p\right|+\delta .
$$

Game $_{3.1}$: This game is the same as Game $_{3}$ except that G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$. We have

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{3.1}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}+q_{\mathrm{DeC}}+1\right)^{2} \delta .
$$

(We note that $\mathrm{H}, \mathrm{F}, \mathrm{Dec}$, and the challenge ciphertext also query to G internally.)
Game $_{4}$: We replace $c_{0}^{*}:=\operatorname{Enc}\left(e k, \mu^{*} ; \mathrm{G}\left(\mu^{*}\right)\right)$ with $c_{0}^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right)$. The difference is bounded by the advantage of ciphertext indistinguishability. We have

$$
\left|\operatorname{Pr}\left[S_{3.1}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds}-\mathrm{ind}}(\kappa)
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*} \leftarrow \mathcal{K}$ instead of $K^{*} \leftarrow \mathrm{H}_{q}\left(c_{0}^{*}\right)$.
Suppose that c_{0}^{*} is outside of $\operatorname{Enc}(e k, \mathcal{M})$ in both games: If so, the adversary cannot access to $K^{*}=\mathrm{H}_{q}\left(c_{0}^{*}\right)$ via H . Suppose that the adversary queries $\left(c_{0}, c_{1}\right)$ to Dec. If $c_{0}=c_{0}^{*}$ and $c_{1}=c_{1}^{*}$, then it receives \perp in both games. If $c_{0}=c_{0}^{*}$ and $c_{1} \neq c_{1}^{*}$, then $c_{1} \neq \mathrm{F}_{q}\left(c_{0}^{*}\right)=c_{1}^{*}$ holds and it receives \perp in both games. Thus, the two games are equal if c_{0}^{*} is outside of $\operatorname{Enc}(e k, \mathcal{M})$.
Hence, the difference is bounded by the statistical disjointness in disjoint simulatability. We have

$$
\left|\operatorname{Pr}\left[S_{4}\right]-\operatorname{Pr}\left[S_{5}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game $_{5.1}:$ Here, our proof leaves the proof in [JZM19]. This game is the same as Game ${ }_{5.1}$ except that $c_{1}^{*} \leftarrow U(\mathcal{H})$ instead of $c_{1}^{*}:=\mathrm{F}_{q}\left(c_{0}^{*}\right)$.
Recall that the adversary cannot access the real hash value $c_{1}^{*}=\mathrm{F}_{q}\left(c_{0}^{*}\right)$ directly if c_{0}^{*} is the outside of $\operatorname{Enc}(e k, \mathcal{M})$. When the adversary queries $\left(c_{0}, c_{1}\right)$ for $c_{0} \neq c_{0}^{*}$, there is no leak on $\mathrm{F}_{q}\left(c_{0}^{*}\right)$. Suppose that the adversary queries $\left(c_{0}^{*}, c_{1}\right)$ for Dec.

- In Game ${ }_{5}$, we have $c_{1}^{*}=\mathrm{F}_{q}\left(c_{0}^{*}\right)$. If $c_{1}=c_{1}^{*}$, then it receives \perp; otherwise, that is, if $c_{1} \neq c_{1}^{*}$, it also receives \perp.
- In Game ${ }_{5.1}$, we have $c_{1}^{*} \leftarrow U(\mathcal{H})$.
- If $c_{1}^{*}=\mathrm{F}_{q}\left(c_{0}^{*}\right)$, then this game is the same as Game ${ }_{5}$.
- Suppose that $c_{1}^{*} \neq \mathrm{F}_{q}\left(c_{0}^{*}\right)$. If $c_{1}=c_{1}^{*}$, then it receives \perp; otherwise, it receives \perp if and only if $c_{1} \neq \mathrm{F}_{q}\left(c_{0}^{*}\right)$; it receives $K=\mathrm{H}_{q}\left(c_{0}^{*}\right)$ if $c_{1}=\mathrm{F}_{q}\left(c_{0}^{*}\right)$.
Thus, assuming that c_{0}^{*} is the outside of $\operatorname{Enc}(e k, \mathcal{M})$ and $c_{1}^{*} \neq \mathrm{F}_{q}\left(c_{0}^{*}\right)$, a value c_{1} hits $\mathrm{F}_{q}\left(c_{0}^{*}\right)$ with probability at most $1 /(|\mathcal{H}|-1)$. We have

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{5.1}\right]\right| \leq \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa)+1 /|\mathcal{H}|+q_{\mathrm{DEc}} /(|\mathcal{H}|-1) .
$$

Game $_{5.2}$: This game is the same as Game 5.1 except that G is chosen from $\mathcal{F}_{\text {good }}(\mathcal{M}, \mathcal{R})$. We have

$$
\left|\operatorname{Pr}\left[S_{5.1}\right]-\operatorname{Pr}\left[S_{5.2}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}\right)^{2} \delta
$$

We also have, for any p,

$$
\left|\operatorname{Pr}\left[S_{5.2}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{5.2} \wedge \neg \mathrm{Bad}\right]-p\right|+\delta
$$

Game $_{6}$: This game is the same as Game ${ }_{5.2}$ except that the decapsulation algorithm checks if $c_{0}=\operatorname{Enc}(e k, \mu)$ and $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$.
Let us consider the following cases for a decapsulation query $\left(c_{0}, c_{1}\right)$:

- If $c_{0}=\operatorname{Enc}(e k, \mu)$ for some μ, then the results are equal since the key is not bad.
- If $c_{0} \notin \operatorname{Enc}(e k, \mathcal{M})$ and $c_{1} \neq \mathrm{F}_{q}\left(c_{0}\right)$, then the results are equal.
- If $c_{0} \notin \operatorname{Enc}(e k, \mathcal{M})$ and $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$, then the results differ (\perp in Game_{6} but $K=\mathrm{H}_{q}(c)$ in Game ${ }_{5.2}$).

The difference occurs when c_{0} is outside of $\operatorname{Enc}(e k, \mathcal{M})$ and $c_{1}=\mathrm{F}_{q}\left(c_{0}\right)$. Notice that the adversary cannot access such hash values directly, since it is given F instead of F_{q}. Therefore, any c_{1} hits the value $\mathrm{F}_{q}\left(c_{0}\right)$ with probability at most $1 /|\mathcal{H}|$ and we obtain the bound $q_{\mathrm{Dec}} /|\mathcal{H}|$. (If the query is quantum, we will get another bound $2 q_{\text {Dec }}(|\mathcal{H}|)^{-1 / 2}$.) We have

$$
\left|\operatorname{Pr}\left[S_{5.2} \wedge \neg \mathrm{Bad}\right]-\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right]\right| \leq q_{\mathrm{Dec}} /|\mathcal{H}|
$$

Game $_{7}$: This game is the same as Game $_{6}$ except that the decapsulation oracle use H and F instead of H_{q} and F_{q}, respectively. If the key is not bad, then this is the conceptual change and we have

$$
\operatorname{Pr}\left[S_{6} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{7} \wedge \neg \mathrm{Bad}\right] .
$$

Game $_{7.1}$: This game is the same as Game ${ }_{7}$ except that H and F are modified as the original. If the key is not bad, then this is the conceptual change and we have

$$
\operatorname{Pr}\left[S_{7} \wedge \neg \mathrm{Bad}\right]=\operatorname{Pr}\left[S_{7.1} \wedge \neg \mathrm{Bad}\right] .
$$

We also have, for any p,

$$
\left|\operatorname{Pr}\left[S_{7.1} \wedge \neg \mathrm{Bad}\right]-p\right| \leq\left|\operatorname{Pr}\left[S_{7.1}\right]-p\right|+\delta
$$

Game $_{8}$: This game is the same as Game $_{7.1}$ except that the random oracle G is chosen from $\mathcal{F}(\mathcal{M}, \mathcal{R})$. We have

$$
\left|\operatorname{Pr}\left[S_{7.1}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \leq 8\left(q_{\mathrm{G}}+q_{\mathrm{DEC}}\right)^{2} \delta .
$$

We note that this game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{cca}}(\kappa)$ with $b=1$. We have

$$
\operatorname{Pr}\left[S_{8}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{Aca}}(\kappa)=1 \mid b=1\right] .
$$

Summary: Summarizing those (in)equalities, we obtain the following bound:

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{spr}-\mathrm{ca}}(\kappa)= & \left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{8}\right]\right| \\
\leq & \operatorname{Adv}_{\mathrm{PKE}, \mathcal{D}_{\mathcal{M}}, \mathcal{S}, \mathcal{A}_{34}}^{\mathrm{ds} \text {-in }}(\kappa)+2 \mathrm{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+16\left(q_{\mathrm{G}}+q_{\mathrm{Dec}}+1\right)^{2} \delta+4 \delta \\
& +8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}\right)^{2} \delta+8\left(q_{\mathrm{G}}+q_{\mathrm{H}}+q_{\mathrm{F}}+q_{\mathrm{Dec}}+1\right)^{2} \delta \\
& +\left(2 q_{\mathrm{Dec}}+1\right) /|\mathcal{H}|+q_{\mathrm{Dec}} /(|\mathcal{H}|-1)
\end{aligned}
$$

G. 2 Sparseness

Theorem G.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. Let $\mathrm{KEM}=\mathrm{HU} \stackrel{\perp}{m}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$. Let $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$ be the simulator for SPR-CCA security of KEM. Then, KEM is $1 /|\mathcal{H}|$-sparse.
Proof. Let us consider $\left(c_{0}, c_{1}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H})$. If c_{0} is decrypted into $\mu^{\prime} \neq \perp$, then $c_{1}=\mathrm{F}\left(\mu^{\prime}\right)$ with probability at most $1 /|\mathcal{H}|$. Thus, KEM is $1 /|\mathcal{H}|$-sparse.

H Property of HU ${ }^{\perp}$

In this section, we consider a variant of HU with explicit rejection, HU^{\perp}. Let $\mathrm{PKE}=(\mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec})$ be a deterministic PKE scheme whose plaintext space is \mathcal{M}. Let \mathcal{C} and \mathcal{K} be a ciphertext and key space. Let \mathcal{H} be a some finite space. Let $\mathrm{H}: \mathcal{M} \times \mathcal{C} \times \mathcal{H} \rightarrow \mathcal{K}$ and $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ be hash functions modeled by random oracles. KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{HU}{ }^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is defined as follows:

$\overline{\mathrm{Gen}}\left(1^{\kappa}\right)$	$\overline{\mathrm{Enc}}(e k)$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right)$, where $\overline{d k}=(d k, e k)$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{K}\right)$	$m \leftarrow \mathcal{M}$	$\mu^{\prime} \leftarrow \operatorname{Dec}\left(d k, c_{0}\right)$
$\begin{aligned} & \overline{d k}:=(d k, e k) \\ & \text { return }(e k, \overline{d k}) \end{aligned}$	$\begin{aligned} & c_{0}:=\operatorname{Enc}(e k, \mu) \\ & c_{1}:=\mathrm{F}(\mu[, e k]) \\ & K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right) \\ & \text { return }\left(\left(c_{0}, c_{1}\right), K\right) \end{aligned}$	```if }\mp@subsup{\mu}{}{\prime}=\perp\mathrm{ or }\mp@subsup{c}{0}{}\not=\operatorname{Enc}(ek,\mp@subsup{\mu}{}{\prime})\mathrm{ or }\mp@subsup{c}{1}{}\not=\textrm{F}(\mp@subsup{\mu}{}{\prime}[,ek] then return K:= \perp else return K:= H(}\mp@subsup{\mu}{}{\prime},\mp@subsup{c}{0}{},\mp@subsup{c}{1}{}```

H. 1 SPR-CCA security:

Theorem H.1. Let $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable with simulator \mathcal{S}, then $\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SPR-CCA-secure, where we use the new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$.

Theorem H.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SPR-CCA-secure.

In order to show those proof, we consider the following theorem for indifferentiable reduction, which is obtained by mimicking that for $\mathrm{U}_{m}^{x} \leftrightarrow \mathrm{U}^{x}$ in [$\mathrm{BHH}^{+} 19$, Theorem 5].
Theorem H. 3 ($\mathrm{HU}_{m}^{\perp} \leftrightarrow \mathrm{HU}^{\perp}$:). Let PKE be a deterministic PKE. Let $\mathrm{KEM}_{m}=\mathrm{HU}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}_{m}, \mathrm{~F}\right]$ and $\mathrm{KEM}=$ HU^{\perp} [PKE, H, F].

1. If KEM_{m} is SPR-CCA-secure, then KEM is SPR-CCA-secure also.
2. If KEM is SPR-CCA-secure, then KEM_{m} is SPR-CCA-secure also.

Proof (The first part). Suppose that we have an adversary \mathcal{A} against SPR-CCA-security of KEM. We construct an adversary \mathcal{A}_{m} against SPR-CCA-security of KEM ${ }_{m}$ with random oracle $\mathrm{H}_{m}: \mathcal{M} \rightarrow \mathcal{K}$ as follows: \mathcal{A}_{m} samples a fresh random oracle $\mathrm{H}^{\prime} \leftarrow \operatorname{Func}(\mathcal{M} \times \mathcal{C} \times \mathcal{H}, \mathcal{K})$ and set

$$
\mathrm{H}\left(\mu, c_{0}, c_{1}\right)= \begin{cases}\mathrm{H}_{m}(\mu) & \text { if } c_{0}=\operatorname{Enc}(e k, \mu) \text { and } c_{1}=\mathrm{F}(\mu) \\ \mathrm{H}^{\prime}\left(\mu, c_{0}, c_{1}\right) & \text { otherwise. }\end{cases}
$$

The simulation is perfect.

Proof (The second part). Suppose that we have an adversary \mathcal{A}_{m} against SPR-CCA-security of KEM_{m}. We construct an adversary \mathcal{A} against SPR-CCA-security of KEM with random oracle $\mathrm{H}: \mathcal{M} \times(C \times \mathcal{H}) \rightarrow \mathcal{K}$ as follows: \mathcal{A} define

$$
\mathrm{H}_{m}(\mu):=\mathrm{H}(\mu, \operatorname{Enc}(e k, \mu), \mathrm{F}(\mu)) .
$$

This simulation is perfect.

H. 2 Sparseness

$\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is $1 /|\mathcal{H}|$-sparse as HU_{m}^{\perp}.
Theorem H.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. Let $\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$. Let $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$ be the simulator for SPR-CCA security of KEM. Then, KEM is $1 /|\mathcal{H}|$-sparse.
Proof. Let us consider $\left(c_{0}, c_{1}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H})$. If c_{0} is decrypted into $\mu^{\prime} \neq \perp$, then $c_{1}=\mathrm{F}\left(\mu^{\prime}\right)$ with probability at most $1 /|\mathcal{H}|$. Thus, KEM is $1 /|\mathcal{H}|$-sparse.

I Property of $\mathbf{H U}_{\boldsymbol{m}}^{\boldsymbol{f}}$

Let us review HU_{m}^{\not}. Let $\mathrm{PKE}=($ Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is \mathcal{M}. Let \mathcal{C} and \mathcal{K} be a ciphertext and key space. Let \mathcal{H} be a some finite space. Let $\mathrm{H}: \mathcal{M} \rightarrow \mathcal{K}, \mathrm{H}_{\text {prf }}:\{0,1\}^{\ell} \times C \times \mathcal{H} \rightarrow \mathcal{K}$, and $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ be hash functions modeled by random oracles. KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{HU} \mathrm{U}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is defined as follows:

$\overline{\operatorname{Gen}\left(1^{\kappa}\right)}$	$\overline{\overline{\operatorname{Enc}}(e k)}$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$	
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$		$\overline{m \leftarrow \mathcal{M}}$	
$s \leftarrow\{0,1\}^{\ell}$	$c_{0}:=\operatorname{Enc}(e k, m)$		if $\mu^{\prime}=\perp$ or $c_{0} \neq \operatorname{Enc}\left(d k, c_{0}\right)$
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu[, e k])$		then return $K:=\mathrm{H}_{\operatorname{prf}}\left(s,\left(c_{0}, c_{1}\right)\right)$
$\operatorname{return}(e k, \overline{d k})$	$K:=\mathrm{H}(\mu)$	else return $K:=\mathrm{H}\left(\mu^{\prime}\right)$	
	$\operatorname{return}\left(\left(c_{0}, c_{1}\right), K\right)$		

I. 1 SPR-CCA Security

Bindel et al. showed that if $K E M^{\perp}=U_{m}^{\perp}[P K E, H]$ is IND-CCA-secure then $K E M^{\perp}=\cup_{m}^{\perp}\left[P K E, H, H_{p r f}\right]$ is also IND-CCA-secure $\left[\mathrm{BHH}^{+} 19\right.$, Theorem 3] by overwriting \perp from the decapsulation query c with the PRF value $\mathrm{H}_{\text {prf }}(s, c)$. The same indifferentiable reduction can be applied to SPR-CCAsecurity and the case for HU_{m}^{\perp} and HU_{m}^{\perp} and obtain the following theorem.
Theorem I. $1\left(\mathrm{HU}_{m}^{\perp} \rightarrow \mathrm{HU}_{m}^{\perp}\right)$. Let PKE be a deterministic PKE. Let $\mathrm{KEM}^{\perp}=\mathrm{HU}_{m}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ and $\mathrm{KEM}^{\perp}=$ $\mathrm{HU}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\mathrm{prf}}\right]$. If KEM^{\perp} is SPR-CCA-secure, then KEM^{\perp} is also SPR-CCA-secure.
Proof. Suppose that we have an adversary \mathcal{A} against SPR-CCA-security of KEM ${ }^{\perp}$. We construct an adversary \mathcal{A}^{\prime} against SPR-CCA-security of KEM ${ }^{\perp}$ as follows: Given an encapsulation key $e k$, a target ciphertext $\left(c_{0}^{*}, c_{1}^{*}\right)$, and a key $K_{b}^{*}, \mathcal{A}^{\prime}$ samples a fresh seed $s \leftarrow \mathcal{M}$. It runs \mathcal{A} on input $e k,\left(c_{0}^{*}, c_{1}^{*}\right)$, and K_{b}^{*}. If \mathcal{A} queries a ciphertext $\left(c_{0}, c_{1}\right)$ to the decapsulation oracle, then \mathcal{A}^{\prime} queries the ciphertext $\left(c_{0}, c_{1}\right)$ and receives K. If $K \neq \perp$, then it returns K to \mathcal{A}; Otherwise, it queries $\left(s,\left(c_{0}, c_{1}\right)\right)$ to the random oracle $\mathrm{H}_{\text {prf }}$, receives \tilde{K}, and returns \tilde{K} to \mathcal{A}. If \mathcal{A} outputs b^{\prime} and halts, then \mathcal{A}^{\prime} also outputs b^{\prime} and halts.
This simulation is clearly perfect and the theorem follows.
Apply the above indifferentiable reduction with Theorem I. 2 and Theorem I.3, we obtain the following theorems:
Theorem I.2. Let $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable with simulator \mathcal{S}, then $\mathrm{KEM}=\mathrm{HU} \mathrm{U}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SPR-CCAsecure, where we use the new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$.
Theorem I.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}_{m}^{\not}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SPR -CCA-secure, where we use the new simulator $\mathcal{S}^{\prime}=$ $\mathcal{S} \times U(\mathcal{H})$.

Table 10. Summary of Games for the Proof of Theorem I.4: $\operatorname{Enc}^{\prime}(e k, \mathcal{M})=\left\{\left(c_{0}, c_{1}\right)=(\operatorname{Enc}(e k, m), \mathrm{F}(\mu) \mid m \in \mathcal{M}\}\right.$. $\mathcal{S}\left(1^{\kappa}\right) \times$ $U(\mathcal{H}) \backslash \operatorname{Enc}^{\prime}(e k, \mathcal{M})^{\prime}$ implies that the challenger generates $c_{0}^{*} \leftarrow \mathcal{S}\left(1^{\kappa}\right), c_{1}^{*} \leftarrow \mathcal{H}$ and returns \perp if $\left(c_{0}^{*}, c_{1}^{*}\right) \in \operatorname{Enc}^{\prime}(e k, \mathcal{M})$.

Game	H F		c_{0}^{*}	c_{1}^{*}	K^{*}	Decryption $\operatorname{valid}\left(c_{0}, c_{1}\right)$	$\text { invalid }\left(c_{0}, c\right.$	\|justification
Game	H F		$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$	
Game ${ }_{1}$	H F	$\mathcal{S}\left(1^{\kappa}\right)$	\backslash Enc($U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$	statistical disjointness
Game 2	H F	$\mathcal{S}\left(1^{\kappa}\right)$	$\backslash \mathrm{Enc}$	$U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$	Lemma 2.2
Game_{3}	H F	$\mathcal{S}\left(1^{\kappa}\right)$	\backslash Enc	$U(\mathcal{H})$	$\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$	$\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ is hidden
Game ${ }_{4}$	H F	S $\left(1^{\kappa}\right)$	$\backslash \mathrm{Enc}($	$U(\mathcal{H})$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}^{*}, c_{1}^{*}\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$	Lemma 2.2
Game ${ }_{5}$	H F	$\mathcal{S}\left(1^{\kappa}\right)$	\backslash Enc	$U(\mathcal{H})$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$	re-encryption check
Game_{6}			$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{H})$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$	$\mathrm{H}(\mu)$	$\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$	statistical disjointness

I. 2 SSMT-CCA Security

Theorem I.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SSMT-CCA-secure.
Formally speaking, for any \mathcal{A}, we have

$$
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmmt-ca }}(\kappa) \leq 2 \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2} .
$$

The security proof is essentially same as that for SXY (Theorem 5.3). Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T .

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{ssmt}}(\kappa)$ with $b=0$. The challenge is generated as

$$
\left(c_{0}^{*}, c_{1}^{*}, K_{0}^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H}) \times \mathcal{K} .
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\operatorname{ssmt}}(\kappa)=1 \mid b=0\right] .
$$

Game $_{1}$: In this game, the ciphertext is set as \perp if c_{0}^{*} is in $\operatorname{Enc}(e k, \mathcal{M})$.
The difference between two games Game_{0} and Game_{1} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game $_{2}$: This game is the same as Game except that $\mathrm{H}_{\text {prf }}(s, c, d)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$ where $\mathrm{H}_{q}: C \times \mathcal{H} \rightarrow \mathcal{K}$ is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{Dec}}\right) \cdot 2^{-\ell / 2},
$$

where $q_{\mathrm{H}_{\text {prf }}}$ denote the number of queries to $\mathrm{H}_{\text {prf }}$ the adversary makes.
Game $_{3}$: This game is the same as Game ${ }_{2}$ except that $K^{*}:=\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ instead of chosen random. Since c_{0}^{*} is always outside of $\operatorname{Enc}(e k, \mathcal{M}), \mathcal{A}$ cannot obtain any information about $\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ via the decapsulation oracle. Hence, the two games Game_{2} and Game_{3} are equivalent and we have

$$
\operatorname{Pr}\left[S_{2}\right]=\operatorname{Pr}\left[S_{3}\right] .
$$

Game ${ }_{4}$: This game is the same as Game ${ }_{3}$ except that $\mathrm{H}_{q}(\cdot, \cdot)$ is replaced by $\mathrm{H}_{\text {prf }}(s, \cdot, \cdot)$. As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq 2\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2}
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*}:=\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$ instead of $\mathrm{H}_{\text {prf }}\left(s, c_{0}^{*}, c_{1}^{*}\right)$. Recall that c_{0}^{*} is always in outside of $\operatorname{Enc}(e k, \mathcal{M})$. Thus, we always have $\operatorname{Dec}\left(c_{0}^{*}\right)=\perp \operatorname{or} \operatorname{Enc}\left(e k, \operatorname{Dec}\left(c_{0}^{*}\right)\right) \neq c_{0}^{*}$ and, thus, $K^{*}=\mathrm{H}_{\mathrm{prf}}\left(s, c_{0}^{*}, c_{1}^{*}\right)$. Hence, the two games are equivalent. We have

$$
\operatorname{Pr}\left[S_{4}\right]=\operatorname{Pr}\left[S_{5}\right] .
$$

Game $_{6}$: We finally replace how to compute $\left(c_{0}^{*}, c_{1}^{*}\right)$. In this game, the ciphertext is chosen by $\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H})$ as in Game ${ }_{0}$.
The difference between two games Game 5 and Game_{6} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Moreover, this game Game_{6} is the original game $\operatorname{Expt}{ }_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{ssmt}}(\kappa)$ with $b=1$.

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmt-cca }}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain Theorem I.4:

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmt-cca }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \\
& \leq 2 \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2} .
\end{aligned}
$$

I. 3 SCFR-CCA Security

Theorem I.5. If PKE is XCFR-secure or SCFR-CCA-secure, then $\mathrm{KEM}=\mathrm{HU}_{m}^{\not}\left[\right.$ PKE, $\left.\mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.
Proof. Suppose that an adversary outputs a ciphertext $c=\left(c_{0}, c_{1}\right)$ which is decapsulated into $K \neq \perp$ by $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c_{0}\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}=\mu_{i}^{\prime}$ if $c_{0}=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu_{i}^{\prime}\right)$, and \perp otherwise.
We have five cases defined as follows:

1. Case $1\left(\mu_{0}=\mu_{1} \neq \perp\right)$: This violates XCFR-security or SCFR-CCA-security of the underlying PKE.
2. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}\left(\mu_{1}\right)$ and we succeed to find a collision for H and F , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}_{\text {prf }}\left(s_{0}, c_{0}, c_{1}\right)$ and $\mathrm{H}\left(\mu_{1}\right)$ and we find a claw $\left(\left(s_{0}, c_{0}, c_{1}\right), \mu_{1}\right)$ of $\mathrm{H}_{\text {prf }}$ and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
4. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}_{\text {prf }}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a claw $\left(\mu_{0},\left(s_{1}, c_{0}, c_{1}\right)\right)$ of H and $\mathrm{H}_{\text {prf }}$. The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
5. Case 5 (The other cases): In this case, the decapsulation algorithms output $K=\mathrm{H}_{\mathrm{prf}}\left(s_{0}, c_{0}, c_{1}\right)=\mathrm{H}_{\mathrm{prf}}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a collision $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of $\mathrm{H}_{\text {prf }}$ if $s_{0} \neq s_{1}$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.
If we add $e k$ to F's input, we can reduce the assumption on PKE.
Theorem I.6. Let $\operatorname{Col}_{G e n}$ be the event that when generating two keys $\left(e k_{i}, d k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$ for $i \in\{0,1\}$, they collides, that is, ek $k_{0}=e k_{1}$. If $\operatorname{Pr}\left[\mathrm{Col}_{G e n}\right]$ is negligible, then $\mathrm{KEM}=\mathrm{H} \cup_{m}^{\perp}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ with $c_{1}=\mathrm{F}(\mu, e k)$ is SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.
Proof. Suppose that an adversary outputs a ciphertext $c=\left(c_{0}, c_{1}\right)$ which is decapsulated into $K \neq \perp$ by $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c_{0}\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}=\mu_{i}^{\prime}$ if $c_{0}=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu_{i}^{\prime}, e k_{i}\right)$, and \perp otherwise.
We consider six cases defined as follows:

1. Case 1-1 $\left(\mu_{0}=\mu_{1} \neq \perp\right.$ and $\left.e k_{0}=e k_{1}\right)$: This case rarely occurs since $\operatorname{Pr}\left[\right.$ Col $\left._{\text {Gen }}\right]$ is negligible.
2. Case 1-2 $\left(\mu_{0}=\mu_{1} \neq \perp\right.$ and $\left.e k_{0} \neq e k_{1}\right)$: In this case, we have $d=\mathrm{F}\left(\mu_{0}^{\prime}, e k_{0}\right)=\mathrm{F}\left(\mu_{1}^{\prime}, e k_{1}\right)$ with $\left(\mu_{0}^{\prime}, e k_{0}\right) \neq$ ($\mu_{1}^{\prime}, e k_{1}$) and we succeed to find a collision for F , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}\left(\mu_{1}\right)$ and we succeed to find a collision for H and F , which is negligible for any QPT adversary (Lemma 2.3).
4. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}_{\text {prf }}\left(s_{0}, c_{0}, c_{1}\right)$ and $\mathrm{H}\left(\mu_{1}\right)$ and we find a claw $\left(\left(s_{0}, c_{0}, c_{1}\right), \mu_{1}\right)$ of $\mathrm{H}_{\text {prf }}$ and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
5. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(\mu_{0}\right)=\mathrm{H}_{\mathrm{prf}}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a claw ($\mu_{0},\left(s_{1}, c_{0}, c_{1}\right)$) of H and $\mathrm{H}_{\text {prf }}$. The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
6. Case 5 (The other cases): In this case, the decapsulation algorithms output $K=\mathrm{H}_{\mathrm{prf}}\left(s_{0}, c_{0}, c_{1}\right)=\mathrm{H}_{\mathrm{prf}}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a collision $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of $\mathrm{H}_{\text {prf }}$ if $s_{0} \neq s_{1}$, which occurs with probability at least $1-1 / 2^{\ell}$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

J Property of HU ${ }^{\not 又 \text {,prf }}$

Next, we consider a variant of HU with implicit rejection, $\mathrm{HU}{ }^{\not 又}$, prf , which is used in Classic McEliece. Let PKE = (Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is \mathcal{M}. Let \mathcal{C} and \mathcal{K} be a ciphertext and key space. Let \mathcal{H} be a some finite space. Let $\mathrm{H}, \mathrm{H}_{\text {prf }}: \mathcal{M} \times C \times \mathcal{H} \rightarrow \mathcal{K}$ and $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ be hash functions modeled by random oracles. KEM $=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{HU}^{\notin, \text { prf }}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is defined as follows:

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\overline{\operatorname{Enc}}(e k)}$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$	
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow \mathcal{M}$		$\mu^{\prime} \leftarrow \operatorname{Dec}\left(d k, c_{0}\right)$
$s \leftarrow \mathcal{M}$	$c_{0}:=\operatorname{Enc}(e k, \mu)$		if $\mu^{\prime}=\perp$ or $c \neq \operatorname{Enc}\left(e k, \mu^{\prime}\right)$ or $c_{1} \neq \mathrm{F}\left(\mu^{\prime}[, e k]\right)$
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu[, e k])$		then return $K:=\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$
return $(e k, \overline{d k})$	$K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	else return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$	
	return $\left(\left(c_{0}, c_{1}\right), K\right)$		

J. 1 SPR-CCA Security

Theorem J.1. Let PKE $=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable with simulator \mathcal{S}, then $\mathrm{KEM}=\mathrm{HU} \not \mathrm{Z}^{\text {, prf }}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SPR-CCA-secure, where we use the new simulator $\mathcal{S}^{\prime}=S \times U(\mathcal{H})$.

Theorem J.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}{ }^{\not,}$,prf $\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SPR-CCA-secure, where we use the new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$.

In order to show those theorems, we want to invoke the following theorem for indifferentiable reduction, which is obtained by mimicking that for $\mathrm{U}_{m}^{\perp} \leftrightarrow \mathrm{U}^{\perp}$, prf in $\left[\mathrm{BHH}^{+} 19\right.$, Theorem 5], and apply it to Theorem I. 2 and Theorem I. 3 .
Theorem J. 3 ($\mathrm{HU}_{m}^{\notin} \leftrightarrow \mathrm{HU}^{\perp}$, prf:). Let PKE be a deterministic PKE. Let $\mathrm{KEM}_{m}=\mathrm{HU}_{m}^{\not}\left[\mathrm{PKE}, \mathrm{H}_{m}, \mathrm{~F}, \mathrm{H}_{\mathrm{prf}}\right]$ and $K E M=H U^{\perp}$,prf $\left[P K E, H, F, H_{\text {prf }}\right]$.

1. If KEM_{m} is SPR-CCA-secure, then KEM is SPR-CCA-secure also.
2. If KEM is SPR-CCA-secure, then KEM_{m} is SPR-CCA-secure also.

The proof is the same as that of Theorem H. 3 and we omit it.

J. 2 SSMT-CCA Security

Theorem J.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}^{\not,}$, $\mathrm{prf}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ is SSMT-CCA-secure.
Formally speaking, for any \mathcal{A}, we have

$$
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmmt-ca }}(\kappa) \leq 2 \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}_{\mathrm{prf}}}+q_{\mathrm{DEC}}\right) \cdot 2^{-\ell / 2} .
$$

The security proof is the same as that for HU_{m}^{\perp} (Theorem I.4) and we omit it.

J. 3 SCFR-CCA Security

Theorem J.5. If PKE is XCFR-secure or $\mathrm{SCFR}-\mathrm{CCA}$-secure, then $\mathrm{KEM}=\mathrm{H} \mathrm{U}^{\perp}$, prf $\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\mathrm{prf}}\right]$ is SCFR-CCAsecure in the quantum random oracle model.

Theorem J.6. Let $\operatorname{Col}_{G e n}$ be the event that when generating two keys $\left(e k_{i}, d k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$ for $i \in\{0,1\}$, they collides, that is, ek $k_{0}=e k_{1}$. If $\operatorname{Pr}\left[\mathrm{Col}_{\mathrm{Gen}}\right]$ is negligible, then $\mathrm{KEM}=\mathrm{HU} \mathrm{L}^{\perp,} \mathrm{prf}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\mathrm{prf}}\right]$ with $c_{1}=\mathrm{F}(\mu, e k)$ is SCFR-CCA-secure in the quantum random oracle model.
The security proofs are the same as those for $\mathrm{H} U^{\perp}$, prf (Theorem I. 5 and Theorem I.6) and we omit them.

K Property of $\mathbf{H U}^{+}$

Next, we consider another variant of HU with implicit rejection, $\mathrm{HU}^{\nrightarrow}$. Let PKE $=$ (Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is \mathcal{M}. Let \mathcal{C} and \mathcal{K} be a ciphertext and key space. Let \mathcal{H} be a some finite space. Let $\mathrm{H}: \mathcal{M} \times \mathcal{C} \times \mathcal{H} \rightarrow \mathcal{K}$ and $\mathrm{F}: \mathcal{M} \rightarrow \mathcal{H}$ be hash functions modeled by random oracles. $\mathrm{KEM}=(\overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}})=\mathrm{HU} \cup^{\mathscr{A}}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is defined as follows:

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$
$\overline{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}$	$\mu \leftarrow \mathcal{M}$	
$s \leftarrow \mathcal{M}$	$c_{0}:=\operatorname{Enc}(e k, \mu)$	
$\overline{\mu^{\prime} \leftarrow \operatorname{Dec}(d k, c)}$		
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu[, e k])$	\quad then return $K:=\mathrm{H}\left(s, c_{0}^{\prime}, c_{1}\right)$
$\operatorname{return}(e k, \overline{d k})$	$K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	else return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$
	$\operatorname{return}\left(\left(c_{0}, c_{1}\right), K\right)$	

K. 1 SPR-CCA security:

Theorem K.1. Let $\mathrm{PKE}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable with simulator \mathcal{S}, then $\mathrm{KEM}=\mathrm{HU}^{\wedge}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is $\mathrm{SPR}-\mathrm{CCA}$-secure, where we use the new simulator $\mathcal{S}^{\prime}=\mathcal{S} \times U(\mathcal{H})$.

Theorem K.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is $\mathrm{SPR}-\mathrm{CCA}$-secure.

Hence, we use $\left[\mathrm{BHH}^{+} 19\right.$, Theorem 3] here.
Theorem K. $3\left(\mathrm{HU}^{\perp} \rightarrow \mathrm{HU}^{\perp}\right.$). Let PKE be a deterministic PKE. Let $\mathrm{KEM}^{\perp}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ and $\mathrm{KEM}^{\perp}=$ $\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$. If KEM ${ }^{\perp}$ is SPR-CCA-secure, then KEM^{\perp} is also SPR-CCA-secure.
Proof. Suppose that we have an adversary \mathcal{A} against SPR-CCA-security of KEM ${ }^{\not \perp}$. We construct an adversary \mathcal{A}^{\prime} against SPR-CCA-security of KEM ${ }^{\perp}$ as follows: Given an encapsulation key $e k$, a target ciphertext $\left(c_{0}^{*}, c_{1}^{*}\right)$, and a key $K_{b}^{*}, \mathcal{A}^{\prime}$ samples a fresh seed $s \leftarrow \mathcal{M}$. It runs \mathcal{A} on input $e k,\left(c_{0}^{*}, c_{1}^{*}\right)$, and K_{b}^{*}. If \mathcal{A} queries a ciphertext $\left(c_{0}, c_{1}\right)$ to the decapsulation oracle, then \mathcal{A}^{\prime} queries the ciphertext $\left(c_{0}, c_{1}\right)$ and receives K. If $K \neq \perp$, then it returns K to \mathcal{A}; Otherwise, it queries $\left(s, c_{0}, c_{1}\right)$ to the random oracle H , receives \tilde{K}, and returns \tilde{K} to \mathcal{A}. If \mathcal{A} outputs b^{\prime} and halts, then \mathcal{A}^{\prime} also outputs b^{\prime} and halts.
This simulation is clearly perfect and the theorem follows.

K. 2 SSMT-CCA Security

Theorem K.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly disjoint-simulatable, then $\mathrm{KEM}=\mathrm{HU}^{\perp}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SSMT-CCA-secure.
Formally speaking, for any \mathcal{A}, we have

$$
\operatorname{Adv}_{\mathrm{KEM}, \mathcal{A}}^{\mathrm{ssmt}-\mathrm{cca}}(\kappa) \leq 2 \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}}+q_{\mathrm{DEC}}\right) / \sqrt{|\mathcal{M}|}
$$

The security proof is essentially same as that for SXY (Theorem 5.3). Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Table 11. Summary of Games for the Proof of Theorem K.4: ' $\mathcal{S}\left(1^{\kappa}\right) \backslash \operatorname{Enc}(e k, \mathcal{M})$ ' implies that the challenger generates $c_{0}^{*} \leftarrow$ $\mathcal{S}\left(1^{\kappa}\right), c_{1}^{*} \leftarrow \mathcal{H}$ and returns \perp if $c_{0}^{*} \in \operatorname{Enc}(e k, \mathcal{M})$.

Game	H F		c_{0}^{*}	c_{1}^{*}	K^{*}	Decryption $\operatorname{valid}\left(c_{0}, c_{1}\right)$	invalid $\left(c_{0}, c_{1}\right) \mid$ justification	
Game ${ }_{0}$	H F		$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}\left(s, c_{0}, c_{1}\right)$	
Game ${ }_{1}$	H F		$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$	Lemma 2.2
Game 2	H F	$\mathcal{S}\left(1^{\kappa}\right)$	\backslash Enc	$U(\mathcal{H})$	$U(\mathcal{K})$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$	statistical disjointness
Game3	H F	$\mathcal{S}\left(1^{\kappa}\right.$	\backslash Enc	$U(\mathcal{H})$	$\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$	$\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ is hidden
Game_{4}	H F	$\mathcal{S}\left(1^{\kappa}\right)$	$\backslash \mathrm{Enc}($	$U(\mathcal{H})$	$\mathrm{H}\left(\underline{\left.s, c_{0}^{*}, c_{1}^{*}\right)}\right.$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}\left(s, c_{0}, c_{1}\right)$	Lemma 2.2
Game5		$\mathcal{S}\left(1^{\kappa}\right)$	$\backslash \operatorname{Enc}($	$U(\mathcal{H})$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}\left(s, c_{0}, c_{1}\right)$	re-encryption check
$\underline{\text { Game }}$	H F		$\mathcal{S}\left(1^{\kappa}\right)$	$U(\mathcal{H})$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$	$\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$\mathrm{H}\left(s, c_{0}, c_{1}\right)$	statistical disjointness

Game $_{0}$: This game is the original game $\operatorname{Expt}_{\mathrm{KEM}, \nrightarrow}^{\mathrm{ssmt}}(\kappa)$ with $b=0$. The challenge is generated as

$$
\left(c_{0}^{*}, c_{1}^{*}, K_{0}^{*}\right) \leftarrow \mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H}) \times \mathcal{K} .
$$

We have

$$
\operatorname{Pr}\left[S_{0}\right]=1-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmmt-ca }}(\kappa)=1 \mid b=0\right] .
$$

Game $_{1}$: This game is the same as Game_{0} except that $\mathrm{H}\left(s, c_{0}, c_{1}\right)$ in the decapsulation oracle is replace with $\mathrm{H}_{q}\left(c_{0}, c_{1}\right)$ where $\mathrm{H}_{q}: \mathcal{C} \times \mathcal{H} \rightarrow \mathcal{K}$ is another random oracle. As in[JZC ${ }^{+}$18, Theorem 1] and [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|},
$$

where q_{H} denote the number of queries to H the adversary makes.
Game $_{2}$: In this game, the ciphertext is set as \perp if c_{0}^{*} is in $\operatorname{Enc}(e k, \mathcal{M})$.
The difference between two games Game ${ }_{1}$ and Game_{2} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{1}\right]-\operatorname{Pr}\left[S_{2}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Game $_{3}$: This game is the same as Game 2 except that $K^{*}:=\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ instead of chosen random. Since c_{0}^{*} is always outside of $\operatorname{Enc}(e k, \mathcal{M}), \mathcal{A}$ cannot obtain any information about $\mathrm{H}_{q}\left(c_{0}^{*}, c_{1}^{*}\right)$ via the decapsulation oracle. Hence, the two games Game_{2} and Game_{3} are equivalent and we have

$$
\operatorname{Pr}\left[S_{2}\right]=\operatorname{Pr}\left[S_{3}\right] .
$$

Game ${ }_{4}$: This game is the same as Game3 except that $\mathrm{H}_{q}(\cdot, \cdot)$ is replaced by $\mathrm{H}_{\text {prf }}(s, \cdot, \cdot)$. As in [JZC ${ }^{+}$18, Theorem 1] and [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

$$
\left|\operatorname{Pr}\left[S_{3}\right]-\operatorname{Pr}\left[S_{4}\right]\right| \leq 2\left(q_{\mathrm{H}}+q_{\mathrm{Dec}}\right) / \sqrt{|\mathcal{M}|},
$$

Game $_{5}$: This game is the same as Game ${ }_{4}$ except that $K^{*}:=\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}^{*}, c_{1}^{*}\right)\right)$ instead of $\mathrm{H}\left(s, c_{0}^{*}, c_{1}^{*}\right)$. Recall that c_{0}^{*} is always in outside of $\operatorname{Enc}(e k, \mathcal{M})$. Thus, we always have $\operatorname{Dec}\left(c_{0}^{*}\right)=\perp$ or $\operatorname{Enc}\left(e k, \operatorname{Dec}\left(c_{0}^{*}\right)\right) \neq c_{0}^{*}$ and, thus, $K^{*}=\mathrm{H}\left(s, c_{0}^{*}, c_{1}^{*}\right)$. Hence, the two games are equivalent. We have

$$
\operatorname{Pr}\left[S_{4}\right]=\operatorname{Pr}\left[S_{5}\right] .
$$

Game $_{6}$: We finally replace how to compute $\left(c_{0}^{*}, c_{1}^{*}\right)$. In this game, the ciphertext is chosen by $\mathcal{S}\left(1^{\kappa}\right) \times U(\mathcal{H})$ as in Game.
The difference between two games Game_{5} and Game_{6} is bounded by statistical disjointness.

$$
\left|\operatorname{Pr}\left[S_{5}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \leq \operatorname{Disj}_{\mathrm{PKE}, \mathcal{S}}(\kappa) .
$$

Moreover, this game Game_{6} is the original game $\operatorname{Expt} \mathrm{KEM}, \mathcal{A}_{\text {ssmt-ca }}^{\text {(}}$) with $b=1$.

$$
\operatorname{Pr}\left[S_{6}\right]=\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{KEM}, \mathcal{A}}^{\text {ssmt-cca }}(\kappa)=1 \mid b=1\right] .
$$

Summarizing the (in)equalities, we obtain Theorem K.4:

$$
\begin{aligned}
\operatorname{Adv}_{\text {KEM }, \mathcal{A}}^{\text {ssmt-caa }}(\kappa) & =\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{6}\right]\right| \\
& \leq 2 \operatorname{Disj}_{\text {PKE }, \mathcal{S}}(\kappa)+4\left(q_{\mathrm{H}}+q_{\mathrm{DEC}}\right) / \sqrt{|\mathcal{M}|} .
\end{aligned}
$$

K. 3 SCFR-CCA Security

Theorem K.5. If PKE is XCFR-secure or SCFR-CCA-secure, then $\mathrm{KEM}=\mathrm{HU}_{m}^{\not}[\mathrm{PKE}, \mathrm{H}, \mathrm{F}]$ is SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext $c=\left(c_{0}, c_{1}\right)$ which is decapsulated into $K \neq \perp$ by $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c_{0}\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}=\mu_{i}^{\prime}$ if $c_{0}=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu_{i}^{\prime}\right)$, and \perp otherwise.
We have five cases defined as follows:

1. Case $1\left(\mu_{0}=\mu_{1} \neq \perp\right)$: This violates XCFR-security or SCFR-CCA-security of the underlying PKE.
2. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}, c_{0}, c_{1}\right)=\mathrm{H}\left(\mu_{1}, c_{0}, c_{1}\right)$ and we succeed to find a collision for H and F , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(s_{0}, c_{0}, c_{1}\right)$ and $\mathrm{H}\left(\mu_{1}, c_{0}, c_{1}\right)$. As in the proof of Theorem F.3, we can replace $\mathrm{H}\left(s_{0}, \cdot, \cdot\right)$ with $\mathrm{H}_{q}(\cdot, \cdot)$ by introducing negligible error (Lemma 2.2). After that, we find a claw $\left(\left(c_{0}, c_{1}\right),\left(\mu_{1}, c_{0}, c_{1}\right)\right)$ between H_{q} and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
4. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithms output $K=\mathbf{H}\left(\mu_{0}, c_{0}, c_{1}\right)=$ $\mathrm{H}\left(s_{1}, c_{0}, c_{1}\right)$. This follows as Case 3.
5. Case 5 (The other cases): In this case, the decapsulation algorithms output $K=\mathrm{H}\left(s_{0}, c_{0}, c_{1}\right)=\mathrm{H}_{\mathrm{prf}}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a collision $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of H if $s_{0} \neq s_{1}$, which occurs with overwhelming probability $1-1 /|\mathcal{M}|$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

If we add $e k$ to F's input, we can reduce the assumption on PKE.
Theorem K.6. Let $\operatorname{Col}_{G e n}$ be the event that when generating two keys $\left(e k_{i}, d k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$ for $i \in\{0,1\}$, they collides, that is, ek $k_{0}=e k_{1}$. If $\operatorname{Pr}\left[\mathrm{Col}_{G e n}\right]$ is negligible, then $\mathrm{KEM}=\mathrm{H} \cup^{\mathscr{\perp}}\left[\mathrm{PKE}, \mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}\right]$ with $c_{1}=\mathrm{F}(\mu, e k)$ is SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext $c=\left(c_{0}, c_{1}\right)$ which is decapsulated into $K \neq \perp$ by $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $\mu_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c_{0}\right)$ for $i \in\{0,1\}$. We also define $\mu_{i}=\mu_{i}^{\prime}$ if $c_{0}=\operatorname{Enc}\left(e k_{i}, \mu_{i}^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(\mu_{i}^{\prime}, e k_{i}\right)$, and \perp otherwise.
We consider six cases defined as follows:

1. Case 1-1 $\left(\mu_{0}=\mu_{1} \neq \perp\right.$ and $\left.e k_{0}=e k_{1}\right)$: This case rarely occurs since $\operatorname{Pr}\left[\right.$ Col $\left._{\text {Gen }}\right]$ is negligible.
2. Case 1-2 $\left(\mu_{0}=\mu_{1} \neq \perp\right.$ and $\left.e k_{0} \neq e k_{1}\right)$: In this case, we have $d=\mathrm{F}\left(\mu_{0}^{\prime}, e k_{0}\right)=\mathrm{F}\left(\mu_{1}^{\prime}, e k_{1}\right)$ with $\left(\mu_{0}^{\prime}, e k_{0}\right) \neq$ ($\mu_{1}^{\prime}, e k_{1}$) and we succeed to find a collision for F , which is negligible for any QPT adversary (Lemma 2.3).
3. Case $2\left(\perp \neq \mu_{0} \neq \mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(\mu_{0}, c_{0}, c_{1}\right)=\mathrm{H}\left(\mu_{1}, c_{0}, c_{1}\right)$ and we succeed to find a collision for H and F , which is negligible for any QPT adversary (Lemma 2.3).
4. Case $3\left(\mu_{0}=\perp\right.$ and $\left.\mu_{1} \neq \perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(s_{0}, c_{0}, c_{1}\right)$ and $\mathrm{H}\left(\mu_{1}, c_{0}, c_{1}\right)$. As in the proof of Theorem F.3, we can replace $\mathrm{H}\left(s_{0}, \cdot, \cdot\right)$ with $\mathrm{H}_{q}(\cdot, \cdot)$ by introducing negligible error (Lemma 2.2). After that, we find a claw $\left(\left(c_{0}, c_{1}\right),\left(\mu_{1}, c_{0}, c_{1}\right)\right)$ between H_{q} and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
5. Case $4\left(\mu_{0} \neq \perp\right.$ and $\left.\mu_{1}=\perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(\mu_{0}, c_{0}, c_{1}\right)=$ $\mathrm{H}\left(s_{1}, c_{0}, c_{1}\right)$. This follows as Case 3.
6. Case 5 (The other cases): In this case, the decapsulation algorithms output $K=\mathrm{H}\left(s_{0}, c_{0}, c_{1}\right)=\mathrm{H}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a collision $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of H if $s_{0} \neq s_{1}$, which occurs with overwhelming probability $1-1 /|\mathcal{M}|$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

Table 12. Parameter sets of Classic McEliece in Round 3. Note that $q=2^{m}$ and $k=n-m t$. (We omit the semi-systematic forms.)

parameter sets	m	n	t	k
kem/mceliece348864	123488	64	2720	
kem/mceliece460896	13	4608	96	3360
kem/mceliece6688128	13	6688	128	5024
kem/mceliece6960119	13	6960	119	5413
kem/mceliece8192128	13	8192	128	6528

L Classic McEliece

Review of Classic McEliece: Classic McEliece $\left[\mathrm{ABC}^{+} 20\right]$ is based on the Niederreiter PKE, in which a public key is a scrambled parity-check matrix, a plaintext is an error vector, and a ciphertext is a syndrome. See Table 12 for concrete parameter values (we omit semi-systematic ones).
Define $\mathcal{S}=\left\{e \in \mathbb{F}_{2}^{n}: \mathrm{HW}(e)=t\right\}$, which is a plaintext space. Let I_{n-k} be an identity matrix of dimension $n-k$. The underlying PKE of Classic McEliece, which we call CM-DPKE, is summarized as follows, where we only consider the systematic form and omit the details for the semi-systematic form:

- Gen $\left(1^{\kappa}\right)$: Choose a monic irreducible polynomial g in $\mathbb{F}_{q}[x]$ of degree t and distinct $\alpha_{1}, \ldots, \alpha_{n} \leftarrow \mathbb{F}_{q}$. Compute a parity-check matrix $\hat{H} \in \mathbb{F}_{2}^{n \times k}$ of the Goppa code generated by g and $\alpha_{1}, \ldots, \alpha_{n}$. Reduce \hat{H} to systematic form $\left[I_{n-k} \mid T\right]$. (If this fails, return \perp). Output $e k:=T \in \mathbb{F}_{2}^{(n-k) \times k}$ and $d k:=(T, \Gamma)$, where $\Gamma:=\left(g, \alpha_{1}, \ldots, \alpha_{n}\right)$. We note that using Γ, one can correct an error of the codeword up to t, because the minimum distance of the Goppa code is at least $2 t+1$ by design.
- Enc $(e k, e \in \mathcal{S})$: Define $H:=\left[I_{n-k} \mid T\right] \in \mathbb{F}_{2}^{(n-k) \times n}$. Compute $c:=H e \in \mathbb{F}_{2}^{n-k}$. Output c.
- $\operatorname{Dec}(d k, c)$: Extend c to $v:=(c, 0, \ldots, 0) \in \mathbb{F}_{2}^{n}$. Find the unique codeword \tilde{c} in the Goppa code defined by Γ that satisfies $\operatorname{HW}(\tilde{c}-v) \leq t$. Set $e:=v+\tilde{c}$. If $\mathrm{HW}(e)=t$ and $c=H e$, then return e. Otherwise, return \perp.
Classic McEliece applies HU $\mathcal{A}^{\mathcal{L}}$,prf to CM-DPKE, where $\mathrm{H}\left(\mu, c_{0}, c_{1}\right)=\operatorname{SHAKE256} 256\left(0 \times 01, \mu\left\|c_{0}\right\| c_{1}\right) \mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)=$ SHAKE256 $256\left(0 \times 00, s\left\|c_{0}\right\| c_{1}\right) \mathrm{F}(e)=\operatorname{SHAKE} 256_{256}(0 \times 02, e)$:

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\overline{\operatorname{Enc}}(e k)}$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k}=(d k, s),\left(c_{0}, c_{1}\right)\right)}$
$\overline{(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}$	$e \leftarrow \operatorname{FixedWeight}()$	$e:=\operatorname{Dec}\left(d k, c_{0}\right)$
$s \leftarrow \mathbb{F}_{2}^{n}$	$c_{0}:=\operatorname{Enc}(e k, e)$	if $e=\perp$ then return $K:=\mathrm{H}_{\mathrm{prf}}\left(s, c_{0}, c_{1}\right)$
$e k:=T, \overline{d k}:=(d k, s)$	$c_{1}:=\mathrm{F}(e)$	if $c_{1} \neq \mathrm{F}(e)$ then return $K:=\mathrm{H}_{\mathrm{prf}}\left(s, c_{0}, c_{1}\right)$
return $(e k, \overline{d k})$	$\left.K:=\mathrm{H}\left(e, c_{0}, c_{1}\right)\right)$	else return $K:=\mathrm{H}\left(e, c_{0}, c_{1}\right)$
	return $\left(\left(c_{0}, c_{1}\right), K\right)$	

L. 1 Classic McEliece is not collision-free

Let $e_{\text {fixed }}:=\left(1^{t}, 0^{n-t}\right)$ and $c_{\text {fixed }}:=\left(1^{t}, 0^{n-k-t}\right)$. We have $t \leq m t=n-k$ for all parameter sets of Classic McEliece. Grubbs et al. observed that for any public key $T, c_{\text {fixed }}:=\left(1^{t}, 0^{n-k-t}\right)$ is a valid ciphertext of plaintext $e_{\text {fixed }}:=\left(1^{t}, 0^{n-t}\right)$, because $H \cdot e_{\text {fixed }}=\left[I_{n-k} \mid T\right] \cdot e_{\text {fixed }}=e_{\text {fixed }}=c_{\text {fixed }}$. Hence, Classic McEliece is not collision free.

Salvaging Collision-Freeness of Classic McEliece: Let us consider Grubbs et al. [GMP21, Section 5.1] suggested a variant of HU with implicit rejection, in which F takes μ and $e k$ as input, but they did not recommend it since $e k=T$ of Classic McEliece is relatively large. (We can show its security as Theorem K.6.) Instead, we can use a variant of HU with implicit rejection, in which F takes μ and $\operatorname{Hash}(e k)$ as input. We can show its strong collisionfreeness assuming that the probability that two independent encryption keys collide is negligible.

Theorem L. 1 (SCFR-CCA-security of modified Classic McEliece). The modified Classic McEliece is SCFR-CCAsecure in the QROM.

Theorem L.2. Let $\operatorname{Col}_{\text {Gen }}$ be the event that when generating two keys $\left(e k_{i}, d k_{i}\right) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$ for $i \in\{0,1\}$, they collides, that is, ek $k_{0}=e k_{1}$. If $\operatorname{Pr}\left[\mathrm{Col}_{\text {Gen }}\right]$ is negligible, then the modified Classic McEliece is SCFR-CCA-secure in the QROM.

Proof. Suppose that an adversary outputs a ciphertext $c=\left(c_{0}, c_{1}\right)$ which is decapsulated into $K \neq \perp$ by $\overline{d k}_{0}$ and $\overline{d k}_{1}$, that is, $\overline{\operatorname{Dec}}\left(\overline{d k}_{0}, c\right)=\overline{\operatorname{Dec}}\left(\overline{d k}_{1}, c\right)$. Let us define $e_{i}^{\prime}=\operatorname{Dec}\left(d k_{i}, c_{0}\right)$ for $i \in\{0,1\}$. We also define $e_{i}=e_{i}^{\prime}$ if $c_{0}=\operatorname{Enc}\left(e k_{i}, e_{i}^{\prime}\right)$ and $c_{1}=\mathrm{F}\left(e_{i}^{\prime}, \operatorname{Hash}\left(e k_{i}\right)\right)$, and \perp otherwise.
We consider seven cases defined as follows:

1. Case 1-1 $\left(e_{0}=e_{1} \neq \perp\right.$ and $\left.e k_{0}=e k_{1}\right)$: This case rarely occurs since $\operatorname{Pr}\left[\mathrm{Col}_{\text {Gen }}\right]$ is negligible.
2. Case 1-2 $\left(e_{0}=e_{1} \neq \perp, e k_{0} \neq e k_{1}\right.$, and $\left.\operatorname{Hash}\left(e k_{0}\right)=\operatorname{Hash}\left(e k_{1}\right)\right)$: In this case, we have $\operatorname{Hash}\left(e k_{0}\right)=\operatorname{Hash}\left(e k_{1}\right)$ with $e k_{0} \neq e k_{1}$ and we succeed to find a collision for Hash, which is negligible for any QPT adversary (Lemma 2.3).
3. Case 1-3 $\left(e_{0}=e_{1} \neq \perp, e k_{0} \neq e k_{1}\right.$, and $\left.\operatorname{Hash}\left(e k_{0}\right) \neq \operatorname{Hash}\left(e k_{1}\right)\right)$: In this case, we have $d=\mathrm{F}\left(e_{0}, \operatorname{Hash}\left(e k_{0}\right)\right)=$ $\mathrm{F}\left(e_{1}, \operatorname{Hash}\left(e k_{1}\right)\right)$ with $\left(e_{0}, \operatorname{Hash}\left(e k_{0}\right)\right) \neq\left(e_{1}, \operatorname{Hash}\left(e k_{1}\right)\right)$ and we succeed to find a collision for F , which is negligible for any QPT adversary (Lemma 2.3).
4. Case $2\left(\perp \neq e_{0} \neq e_{1} \neq \perp\right)$: In this case, the decapsulation algorithm outputs $K=\mathrm{H}\left(e_{0}\right)=\mathrm{H}\left(e_{1}\right)$ and we succeed to find a collision for H or F , which is negligible for any QPT adversary (Lemma 2.3).
5. Case $3\left(e_{0}=\perp\right.$ and $\left.e_{1} \neq \perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}_{\text {prf }}\left(s_{0}, c_{0}, c_{1}\right)$ and $\mathrm{H}\left(e_{1}, c_{0}, c_{1}\right)$ and we find a claw $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(e_{1}, c_{0}, c_{1}\right)\right)$ of $\mathrm{H}_{\text {prf }}$ and H . The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
6. Case $4\left(e_{0} \neq \perp\right.$ and $\left.e_{1}=\perp\right)$: In this case, the decapsulation algorithms output $K=\mathrm{H}\left(e_{0}, c_{0}, c_{1}\right)=$ $\mathrm{H}_{\text {prf }}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a claw $\left(\left(e_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of H and $\mathrm{H}_{\text {prf }}$. The probability that we find such claw is negligible for any QPT adversary (Lemma 2.4).
7. Case 5 (The other cases): In this case, the decapsulation algorithms output $K=\mathrm{H}_{\mathrm{prf}}\left(s_{0}, c_{0}, c_{1}\right)=\mathrm{H}_{\mathrm{prf}}\left(s_{1}, c_{0}, c_{1}\right)$ and we find a collision $\left(\left(s_{0}, c_{0}, c_{1}\right),\left(s_{1}, c_{0}, c_{1}\right)\right)$ of $\mathrm{H}_{\text {prf }}$ if $s_{0} \neq s_{1}$, which occurs with probability at least $1-1 / 2^{n}$. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases.

L. 2 Security

Assumption:

Definition L.1. Fix the parameter set. We define a random key-generation algorithm RandGen (pp) as follows: Choose $\hat{H} \leftarrow U\left(\mathbb{F}_{2}^{n \times k}\right)$, reduce \hat{H} to systematic form $\left[I_{n-k} \mid T\right]$ (if this fails, resample), outputs $\hat{T} \in \mathbb{F}_{2}^{(n-k) \times k}$

- The modified PR-Key assumption: It is hard to distinguish T and \hat{T}, where $(T, s k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$ and $\hat{T} \leftarrow$ RandGen ($p p$).
- The modified Decisional Syndrome Decoding assumption: It is hard to distinguish $\left(\hat{T},\left[I_{n-k} \mid \hat{T}\right] \cdot e\right)$ from (\hat{T}, u) with $\hat{T} \leftarrow \operatorname{RandGen}(p p), e \leftarrow$ FixedWeight () , and $u \leftarrow U\left(\mathbb{F}_{2}^{n-k}\right)$.

Security: Assuming the modified PR-Key assumption and the modified Decisional Syndrome Decoding assumption, it is easy to show that CM-DPKE is ciphertext-indistinguishable in the sense of disjoint simulatability. Since $2^{n}=\left|\mathbb{F}_{2}^{n}\right| \gg\binom{n}{t}=|\mathcal{S}| \geq|\operatorname{Enc}(e k, \mathcal{M})|$, it has statistical disjoitness. Thus, CM-DPKE is strongly disjointsimulatable. Applying our theorem for $\mathrm{HU}^{\mathcal{A}}$, prf, we can conclude that Classic McEliece is strongly pseudorandom and smooth under those assumptions.

L. 3 Summary

We show that

- CM-DPKE is strongly disjoint-simulatable under the modified PR-Key assumption and the modified Decisional Syndrome Decoding assumption.
- Thus, Classic McEliece is SPR-CCA-secure and SSMT-CCA-secure in the QROM. (Theorem K.2, Theorem K.4)
- Classic McEliece is ANON-CCA-secure. (Theorem 3.1)
- Classic McEliece leads to ANON-CCA-secure hybrid PKE. (Theorem 4.2, Theorem 3.1)

If we use modified Classic McEliece, then it is SCFR-CCA-secure in the QROM. This implies that the modified Classic McEliece leads to SROB-CCA-secure PKE (Theorem 2.2).
Grubbs et al. [GMP21] discussed the barrier to show anonymity of hybrid encryption based on Classic McEliece, since Classic McEliece is not collision free. We avoid this barrier by using SPR-CCAsecurity.

M Kyber

Review of Kyber in Round 3: Kyber [$\left.\mathrm{SAB}^{+} 20\right]$ is a KEM scheme based on the Module LWE problem. We briefly review the underlying PKE scheme of Kyber. See Table 13 for concrete parameter sets.

Table 13. Parameter sets of Kyber in Round 3.

parameter sets	n	k	q					
η_{1}	η_{2}	d_{U}	d_{V}					
Kyber512	256	2	3329	3	2	10	4	
Kyber768	256	3	3329	2	2	10	4	
Kyber1024	256	4	3329	2	2	11	5	

Define $\mathcal{R}=\mathbb{Z}[x] /\left(x^{n}+1\right)$ and $\mathcal{R}_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$. For a positive integer η, we define a central-binomial distribution Ψ_{η} as $\left(a_{1}, b_{1}, \ldots, a_{\eta}, b_{\eta}\right) \leftarrow\{0,1\}^{2 \eta}$ and return $\sum_{i=1}^{\eta}\left(a_{i}-b_{i}\right)$. For a polynomial $P \in \mathcal{R}, P \leftarrow \Psi_{\eta}$ implies each coefficient of the polynomial is chosen from Ψ_{η} independently.
For $x \in \mathbb{Z}$, we define two functions: $\operatorname{comp}_{q}(x, d):=\left\lceil\left(2^{d} / q\right) \cdot x\right\rfloor \bmod ^{ \pm} 2^{d}$ and $\operatorname{decomp}_{q}(x, d):=\left\lceil\left(q / 2^{d}\right) \cdot x\right\rfloor$. For $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ with some k, we define $\operatorname{comp}_{q}(x, d):=\left(\operatorname{comp}_{q}\left(x_{1}, d\right), \ldots, \operatorname{comp}_{q}\left(x_{k}, d\right)\right)$ and $\operatorname{decomp}_{q}(x, d):=\left(\operatorname{decomp}_{q}\left(x_{1}, d\right), \ldots, \operatorname{decomp}_{q}\left(x_{k}, d\right)\right)$
We have $\left|\left(x-\operatorname{decomp}_{q}\left(\operatorname{comp}_{q}(x, d), d\right)\right) \bmod ^{ \pm} q\right| \leq\left\lceil q / 2^{d+1}\right\rfloor$. We also note that $\operatorname{comp}_{q}(x, 1)=1$ if $\mid x \bmod ^{ \pm}$ $q \mid \leq\lceil q / 4\rfloor$ and 0 otherwise.
The underlying PKE scheme of Kyber, Kyber-PKE, is summarized as follows:

- Gen $(p p): A \leftarrow \mathcal{R}_{q}^{k \times k}$ and $(d k, d) \leftarrow\left(\Psi_{\eta_{1}}\right)^{2}$. Compute $B:=A \cdot d k+d$. Output $e k:=(A, B)$ and $d k$.
- Enc $(e k, \mu):$ Sample $t \leftarrow \Psi_{\eta_{1}}^{k}, e \leftarrow \Psi_{\eta_{2}}^{k}$, and $f \leftarrow \Psi_{\eta_{2}}$. Compute $(U, V):=(t A+e, t B+f+\lceil q / 2\rfloor \cdot \mu) \in \mathcal{R}_{q}^{k} \times \mathcal{R}_{q}$. Output $\left(U^{\prime}, V^{\prime}\right):=\left(\operatorname{comp}_{q}\left(U, d_{U}\right), \operatorname{comp}_{q}\left(V, d_{V}\right)\right)$.
- $\operatorname{Dec}\left(d k,\left(U^{\prime}, V^{\prime}\right)\right):$ Compute $(U, V):=\left(\operatorname{decomp}_{q}\left(U^{\prime}, d_{U}\right), \operatorname{decomp}_{q}\left(V^{\prime}, d_{V}\right)\right)$. Output $\mu^{\prime}:=\operatorname{comp}_{q}(V-U$. $d k, 1$).
We next consider an intermediate PKE scheme $\mathrm{PKE}_{0}=\left(\mathrm{Gen}_{0}, \mathrm{Enc}_{0}, \mathrm{Dec}_{0}\right)$ where the encryption algorithm uses pseudorandomness, which we call Kyber-PKE-PRG:
- $\operatorname{Gen}_{0}(p p)=\operatorname{Gen}(p p)$:
- $\operatorname{Enc}_{0}(e k, \mu ; r)$: Use $\rho_{i}=\operatorname{SHAKE} 25_{X}(r, i)$ for $i=0,1, \ldots$, to sample $t \leftarrow \Psi_{\eta_{1}}^{k}, e \leftarrow \Psi_{\eta_{2}}^{k}$, and $f \leftarrow \Psi_{\eta_{2}}$, where $X=2 \eta_{1}$ or $2 \eta_{2}$. Compute $(U, V):=(t A+e, t B+f+\lceil q / 2\rfloor \cdot \mu) \in \mathcal{R}_{q}^{k} \times \mathcal{R}_{q}$. Output $\left(U^{\prime}, V^{\prime}\right):=$ $\left(\operatorname{comp}_{q}\left(U, d_{U}\right), \operatorname{comp}_{q}\left(V, d_{V}\right)\right)$.
$-\operatorname{Dec}_{0}(d k,(U, V))=\operatorname{Dec}(d k,(U, V)):$
Kyber applies FO ${ }^{\not \perp \prime}$ to Kyber-PKE-PRG, where $H^{\prime}=\operatorname{SHA} 3-256, \mathrm{G}(\mu, h)=$ SHA3-512, and $\mathrm{H}=$ SHAKE256 ${ }_{X}$ with unspecified output bits X :

$\overline{\mathrm{Gen}}\left(1^{K}\right)$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, h, s)$
$(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	$\mu^{\prime}:=\operatorname{Dec}_{0}(d k, c)$
$h \leftarrow H^{\prime}(e k)$	$\mu:=\mathrm{H}^{\prime}(\mu)$	$\left(\bar{K}^{\prime}, r^{\prime}\right):=\mathrm{G}\left(\mu^{\prime}, h\right)$
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$(\bar{K}, r):=\mathrm{G}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$	$c^{\prime}:=\operatorname{Enc}_{0}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
$\overline{d k}:=(d k, e k, h, s)$	$c:=\operatorname{Enc}_{0}(e k, \mu ; r)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\bar{K}^{\prime}, \mathrm{H}^{\prime}(c)\right)$
return ($e k, \overline{d k}$)	$\begin{aligned} & K:=\mathrm{H}\left(\bar{K}, \mathrm{H}^{\prime}(c)\right) \\ & \text { return }(c, K) \end{aligned}$	else return $K:=\mathrm{H}\left(s, \mathrm{H}^{\prime}(c)\right)$

Security: Grubbs et al. [GMP21] pointed out there are technical barriers. At first, a pre-key \bar{K} and a randomness r is generated by $\mathrm{G}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$. We can treat is as $\bar{K}=\mathrm{G}_{0}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$ and $r=\mathrm{G}_{1}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$, where $\mathrm{G}_{0}(x)$ and $\mathrm{G}_{1}(x)$ are defined as the first and last 256-bits of GSHA3-512. Using this notion, we compute $K=$ $\mathrm{H}\left(\mathrm{G}_{0}\left(\mu, \mathrm{H}^{\prime}(e k)\right), \mathrm{H}^{\prime}(c)\right)$. See Table 6 . Grubbs et al. solved the problem on nested random oracles on μ by letting $\mathrm{G}_{r}(\mu):=\mathrm{G}_{0}\left(\mu, \mathrm{H}^{\prime}(e k)\right):\{0,1\}^{256} \rightarrow\{0,1\}^{256}$ and simulating G_{r} by a random polynomial over $\mathrm{GF}\left(2^{256}\right)$ of degree $2 q_{\mathrm{G}}+1$ as in [TU16, HHK17]. Grubbs et al. succeeded to show its IND-CCA-security if K was computed as $\mathrm{H}\left(\mathrm{G}_{r}(\mu), c\right)$ as in $\mathrm{FO}^{\not \prime \prime \prime}$. Unfortunately, they left showing $\mathrm{FO}^{\not \prime \prime}$'s IND-CCA-security as open problem. We also left it here.

N Saber

Review of Saber: Saber [DKR ${ }^{+} 20$] is a KEM scheme based on the Module LWR problem. Saber has three parameter sets LightSaber (lv.1), Saber (lv.3), and FireSaber (lv.5). See Table 14 for concrete parameter values.

Table 14. Parameter sets of Saber in Round 3.

parameter sets	$n k$	q	p	T	μ	
LightSaber	256	2	8192	1024	8	10
Saber	256	3	8192	1024	16	8
FireSaber	256	4	8192	1024	64	6

Define $\mathcal{R}=\mathbb{Z}[x] /\left(x^{n}+1\right)$ and $\mathcal{R}_{a}=\mathbb{Z}_{a}[x] /\left(x^{n}+1\right)$ for $a=q, p, T$, 2. Let $\epsilon_{q}=\lg (q), \epsilon_{p}=\lg (p)$, and $\epsilon_{T}=\lg (T)$. For an even positive integer μ, we define a central-binomial distribution β_{η} as $\left(a_{1}, b_{1}, \ldots, a_{\mu / 2}, b_{\mu_{2}}\right) \leftarrow\{0,1\}^{\mu}$ and return $\sum_{i=1}^{\mu / 2}\left(a_{i}-b_{i}\right) \in[-\mu / 2, \mu / 2]$. For a polynomial $P \in \mathcal{R}, P \leftarrow \beta_{\mu}$ implies each coefficient of the polynomial is chosen from β_{μ} independently. For a positive integer x, we define $\operatorname{shiftright}(x, d)$ as $\left\lfloor x / 2^{d}\right\rfloor$, the result of d bit shift of x to right. We define $h_{1}:=\sum_{i=0}^{n-1} 2^{\epsilon_{q}-\epsilon_{p}-1} x^{i} \in \mathcal{R}_{q}, h_{2}:=\sum_{i=0}^{n-1}\left(2^{\epsilon_{p}-2}-2^{\epsilon_{p}-\epsilon_{T}-1}+\right.$ $\left.2^{\epsilon_{q}-\epsilon_{p}-1}\right) x^{i} \in \mathcal{R}_{q}$, and $h:=\left(h_{1}, \ldots, h_{1}\right) \in \mathcal{R}_{q}^{k}$.
The underlying PKE scheme of Saber, which we call Saber-PKE, is summarized as follows:

- Gen $(p p): A \leftarrow \mathcal{R}_{q}^{k \times k}$ and $d k \leftarrow \beta_{\mu}^{k}$. Compute $B:=\operatorname{shiftright}\left(A \cdot d k+h, \epsilon_{q}-\epsilon_{p}\right)$ Output $e k:=(A, B)$ and $d k$.
- Enc $(e k, \mu):$ Sample $t \leftarrow \beta_{\mu}^{k}$. Output $(U, V):=\left(\operatorname{shiftright}\left(t A+h, \epsilon_{q}-\epsilon_{p}\right)\right.$, shiftright $\left(t \cdot B+h_{1}-2^{\epsilon_{p}-1} \mu \bmod \right.$ $\left.\left.p, \epsilon_{p}-\epsilon_{T}\right)\right) \in \mathcal{R}_{p}^{k} \times \mathcal{R}_{T}$.
- $\operatorname{Dec}(d k,(U, V)):$ Return $\mu^{\prime}:=\operatorname{shiftright}\left(U \cdot d k-2^{\epsilon_{p}-\epsilon_{T}} \cdot V+h_{2} \bmod p, \epsilon_{p}-1\right) \in \mathcal{R}_{2}$.

We next consider an intermediate PKE scheme $\mathrm{PKE}_{0}=\left(\mathrm{Gen}_{0}, \mathrm{Enc}_{0}, \mathrm{Dec}_{0}\right)$ where the encryption algorithm uses pseudorandomness, which we call Saber-PKE-PRG:

- $\operatorname{Gen}_{0}(p p)=\operatorname{Gen}(p p)$:
- $\operatorname{Enc}_{0}(e k, \mu ; r):$ Use $\rho=\operatorname{SHAKE} 128_{X}(r)$ to sample $t \leftarrow \beta_{\mu}^{k}$. Output $(U, V):=\left(\operatorname{shiftright}\left(t A+h, \epsilon_{q}-\right.\right.$ $\left.\epsilon_{p}\right)$, shiftright $\left.\left(t \cdot B+h_{1}-2^{\epsilon_{p}-1} \mu \bmod p, \epsilon_{p}-\epsilon_{T}\right)\right) \in \mathcal{R}_{p}^{k} \times \mathcal{R}_{T}$.
$-\operatorname{Dec}_{0}\left(d k,\left(U^{\prime}, V^{\prime}\right)\right)=\operatorname{Dec}(d k,(U, V))$:
Saber applies $\mathrm{FO}^{\perp^{\prime}}$ to Saber-PKE-PRG, where $\mathrm{H}^{\prime}=$ SHA3-256, $\mathrm{G}(\mu, h)=$ SHA3-512, and $\mathrm{H}=$ SHA3-256.

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\overline{\operatorname{Dec}}(\overline{d k}, c), \text { where } \overline{d k}=(d k, e k, h, s)}$
$\overline{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{K}\right)}$		$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$

Security: Grubbs et al. [GMP21] wrote Saber uses $\mathrm{FO}^{\not \prime \prime \prime}$ as defined in [DKR ${ }^{+}$20, Section 2.5]. However, the specification uses $\mathrm{FO}^{\not \prime \prime}$ [DKR ${ }^{+} 20$, Section 8.5]. Thus, Saber lacks IND-CCA-security proof as Kyber.

O BIKE

Review of BIKE: BIKE in round 3 [$\mathrm{ABB}^{+} 20$] is a KEM scheme based on QC-MDPC [MTSB13], which is a variant of the McEliece PKE upon a code with quasi-cyclic (QC) moderate density parity-check (MDPC) matrix. BIKE can be considered as the Niederreiter PKE scheme upon a code with the QC-MDPC matrix. Let $\mathcal{R}:=\mathbb{F}[x] /\left(x^{r}-1\right)$. Let $\mathcal{H}_{w}:=\left\{\left(h_{0}, h_{1}\right) \in \mathcal{R}^{2} \mid \operatorname{HW}\left(h_{0}\right)=\operatorname{HW}\left(e_{1}\right)=w / 2\right\}$. Let $\mathcal{E}_{t}:=\left\{\left(e_{0}, e_{1}\right) \in \mathcal{R}^{2} \mid \operatorname{HW}\left(e_{0}, e_{1}\right)=t\right\}$. For concrete values of r, w, and t, see Table 15.
The underlying CPA-secure PKE scheme of BIKE, which we call BIKE-PKE, is summarized as follows:

Table 15. Parameter sets of BIKE in Round 3.

parameter sets	r	w	t
BIKE-1	12,323	142	134
BIKE-3	24,659	206	199
BIKE-5	40,973	274	264

- $\operatorname{Gen}(p p): d k:=\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$. Output $e k=h:=h_{1} \cdot h_{0}^{-1} \in \mathcal{R}$ and $d k$.
$-\operatorname{Enc}\left(e k, \mu \in\{0,1\}^{256} ; r\right):$ Sample $\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}(r)$. Compute $u:=e_{0}+e_{1} h \in \mathcal{R}$ and $v:=\mu \oplus \mathrm{L}\left(e_{0}, e_{1}\right)$ and output $c:=(u, v)$.
- $\operatorname{Dec}(d k,(u, v))$: Compute $\left(e_{0}, e_{1}\right) \leftarrow \operatorname{decode}\left(u h_{0},\left(h_{0}, h_{1}\right)\right)$. Output $\mu^{\prime}:=v \oplus \mathrm{~L}\left(e_{0}, e_{1}\right)$.

Notice that $u h_{0}=e_{0} h_{0}+e_{1} h_{1}$, which is the syndrome of $\left(e_{0}, e_{1}\right)$ with the parity-check matrix spanned by h_{0} and h_{1}. They also define $\mathrm{L}=$ SHA3-384256.
BIKE applies FO^{\perp} to BIKE-PKE PKE, where $\mathrm{G}=$ SHAKE256 and $\mathrm{H}=$ SHA3-384 256 .

$\overline{\operatorname{Gen}\left(1^{\kappa}\right)}$	$\overline{\overline{\operatorname{Enc}}(e k)}$	$\overline{\overline{\operatorname{Dec}}(\overline{d k}, c), \text { where } \overline{d k}=(d k, e k, s)}$
${\left(1^{K}\right)} }$	$\overline{\mu \leftarrow\{0,1\}^{\ell(\kappa)}}$	
$\mu^{\prime}:=\operatorname{Dec}(d k, c)$		
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$r:=\mathrm{G}(\mu)$	$r^{\prime}:=\mathrm{G}\left(\mu^{\prime}\right)$
$\overline{d k}:=(d k, e k, s)$	$c:=\operatorname{Enc}(e k, \mu ; r)$	$c^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
return $(e k, \overline{d k})$	$K:=\mathrm{H}(\mu, c)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c\right)$
	return (c, K)	else return $K:=\mathrm{H}(s, c)$

Assumption: For $b \in\{0,1\}$, define the finite set $\mathcal{F}_{b}:=\{h \in \mathcal{R}: \operatorname{HW}(h) \equiv b(\bmod 2)\}$, that is, a set of all binary vectors of length r and parity b. We suppose that w is even and $w / 2$ is odd, which hold for all parameter sets of BIKE.

Definition 0.1 (The 2-Decisional Quasi-Cyclic Code-Finding (2-DQCCF) assumption [ABB ${ }^{+}$20]). For any (Q)PPT adversary, it is hard to distinguish the following two distributions:

- $h:=h_{1} \cdot h_{0}^{-1}$, where $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$.
- $h \leftarrow \mathcal{F}_{1}$.

Definition O .2 (The 2-Computational Quasi-Cyclic Syndrome Decoding (2-CQCSD) assumption [ABB ${ }^{+}$20]). For any (Q) PPT adversary, given $\left(h, u:=h e_{1}+e_{0}\right)$, where $h \leftarrow \mathcal{F}_{1}$ and $\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$, it is hard to find $\left(e_{0}^{\prime}, e_{1}^{\prime}\right) \in \mathcal{E}_{t}$ with $u=h e_{1}^{\prime}+e_{0}^{\prime}$.

Definition O. 3 (The 2-Decisional Quasi-Cyclic Syndrome Decoding (2-DQCSD) assumption [ABB ${ }^{+}$20]). For any $(Q) P P T$ adversary, it is hard to distinguish the following two distributions:

- $\left(h, u:=h e_{1}+e_{0}\right)$, where $h \leftarrow \mathcal{F}_{1}$ and $\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$.
- (h, u), where $h \leftarrow \mathcal{F}_{1}$ and $u \leftarrow \mathcal{F}_{t \bmod 2}$.

Security: Although we can invoke theorems on FO^{\perp} by Grubbs et al. [GMP21] to show BIKE's anonymity and collision-freeness, we can show BIKE's anonymity through another pass.
Before showing the security, we consider the following deterministic PKE scheme, which we call BIKE-Simple:

- Gen $(p p): d k:=\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$. Output $e k=h:=h_{1} \cdot h_{0}^{-1} \in \mathcal{R}$ and $d k$.
- $\operatorname{Enc}\left(e k,\left(e_{0}, e_{1}\right) \in \mathcal{E}_{t}\right)$: Compute $u:=e_{0}+e_{1} h \in \mathcal{R}$ and output u.
$-\operatorname{Dec}(d k, u):$ Output $\left(e_{0}, e_{1}\right) \leftarrow \operatorname{decode}\left(u h_{0},\left(h_{0}, h_{1}\right)\right)$.
The proposers showed that this scheme is OW-CPA-secure using appropriate assumptions as follows:
Lemma O. 1 ([ABB ${ }^{+}$20, Theorem 1]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-Simple is OW-CPAsecure.

Remark O.1. It is easy to show BIKE-Simple's disjoint simulatability: Let \mathcal{F}_{1} be a ciphertext space. We define the simulator as sampling $u \leftarrow U\left(\mathcal{F}_{1}\right)$. Statistical disjointness follows from the fact that $\left|\mathcal{F}_{1}\right| \approx 2^{r} / 2 \gg\binom{2 r}{t}=\left|\mathcal{E}_{t}\right| \geq$ $\left|\operatorname{Enc}\left(e k, \mathcal{E}_{t}\right)\right|$. We can show ciphertext indistinguishability by using the 2-DQCCF and 2-DQCSD assumptions. Applying SXY, we can obtain a tightly CCA-secure KEM scheme with shorter ciphertext, which leads to anonymous, robust hybrid PKE.

We next show that BIKE-PKE is ciphertext-indistinguishable in the QROM with a simulator that outputs $u \leftarrow$ $\mathcal{F}_{t \bmod 2}$ and $v \leftarrow \mathbb{F}_{2}^{256}$.

Lemma O.2. Assume that the 2-DQCCF and 2-DQCSD assumptions hold. Then, BIKE-PKE PKE is ciphertext-indistinguishable in the QROM.

Proof (Proof Sketch). We consider four games Game ${ }_{0}$, Game $_{1}$, Game $_{2}$, and Game ${ }_{3}$:

- Game ${ }_{0}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$ and $h:=h_{1} \cdot h_{0}^{-1}$.
- Encryption: $\mu \leftarrow \mathbb{F}_{2}^{256},\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1}$ and $v:=\mu \oplus \mathrm{L}\left(e_{0}, e_{1}\right)$; return $c=(u, v)$.
- Game ${ }_{1}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$ and $h:=h_{1} \cdot h_{0}^{-1}$.
- Encryption: $\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1} ; v \leftarrow \mathbb{F}_{2}^{256}$; return $c=(u, v)$.
- Game 2 : In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h \leftarrow \mathcal{F}_{1}$.
- Encryption: $\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1} ; v \leftarrow \mathbb{F}_{2}^{256} ;$ return $c=(u, v)$.
- Game : In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h \leftarrow \mathcal{F}_{1}$.
- Encryption: $u \leftarrow \mathcal{F}_{t \bmod 2} ; v \leftarrow \mathbb{F}_{2}^{256} ;$ return $c=(u, v)$.
- Game ${ }_{4}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$ and $h:=h_{1} \cdot h_{0}^{-1}$.
- Encryption: $u \leftarrow \mathcal{F}_{t \bmod 2} ; v \leftarrow \mathbb{F}_{2}^{256} ;$ return $c=(u, v)$.
Game_{0} and Game ${ }_{1}$ are equivalent, since μ in Game ${ }_{0}$ and v in Game ${ }_{1}$ is chosen uniformly at random. Game ${ }_{1}$ and Game_{2} are computationally indistinguishable because of the 2-DQCCF assumption. Game ${ }_{2}$ and Game ${ }_{3}$ are computationally indistinguishable because of the 2-DQCSD assumption. Game ${ }_{3}$ and Game_{4} are computationally indistinguishable because of the 2-DQCCF assumption.

We next consider BIKE-PKE is IND-CPA-secure in the QROM. The proposers showed the security in the ROM as follows:

Lemma O. 3 ([ABB^{+}20, Theorem 2]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-PKE is IND-CPAsecure in the ROM.

Unfortunately, applying their idea directly to the QROM setting, the security proof becomes loose since it will involve the O2H lemma (Lemma A.2). We here show the IND-CPA security of BIKE-PKE in the QROM tightly using the idea of [SXY18].

Lemma O.4. Assume that the 2-DQCCF and 2-DQCSD assumptions hold and PKE is δ-correct. Then, BIKE-PKE PKE is IND-CPA-secure (and OW-CPA-secure) in the QROM.

Proof (Proof Sketch). We consider Game ${ }_{i, b}$ for $b \in\{0,1\}$ and $i=0, \ldots, 4$ defined as follows:

- Game ${ }_{0, b}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$ and $h:=h_{1} \cdot h_{0}^{-1}$.
- Encryption given μ_{0} and $\mu_{1}:\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1}, k:=\mathrm{L}\left(e_{0}, e_{1}\right)$, and $v:=\mu_{b} \oplus k$; return $c=(u, v)$.
- Game ${ }_{1, b}$: In this game, we use $\mathrm{L}_{q}: \mathcal{R} \rightarrow\{0,1\}^{256}$ and define $\mathrm{L}\left(e_{0}, e_{1}\right)=\mathrm{L}_{q}\left(h e_{0}+e_{1}\right)$. a public key and a target ciphertext is computed as follows:
- Key generation: $\left(h_{0}, h_{1}\right) \leftarrow \mathcal{H}_{w}$ and $h:=h_{1} \cdot h_{0}^{-1}$.
- Encryption given μ_{0} and $\mu_{1}:\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1}, k:=\mathrm{L}_{q}(u)$, and $v:=\mu_{b} \oplus k$; return $c=(u, v)$.
- Game ${ }_{2, b}$: In this game, we use random h. A public key and a target ciphertext is computed as follows:
- Key generation: $h \leftarrow \mathcal{F}_{1}$.
- Encryption given μ_{0} and $\mu_{1}:\left(e_{0}, e_{1}\right) \leftarrow \mathcal{E}_{t}$; compute $u:=e_{0}+h e_{1}, k:=\mathrm{L}_{q}(u)$, and $v:=\mu_{b} \oplus k$; return $c=(u, v)$.
- Game ${ }_{3, b}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h \leftarrow \mathcal{F}_{1}$.
- Encryption given μ_{0} and $\mu_{1}: u \leftarrow \mathcal{F}_{t \bmod 2}$; compute $k:=\mathrm{L}_{q}(u)$, and $v:=\mu_{b} \oplus k$; return $c=(u, v)$.
- Game ${ }_{4, b}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h \leftarrow \mathcal{F}_{1}$.
- Encryption given μ_{0} and $\mu_{1}: u \leftarrow \mathcal{F}_{t \bmod 2}, k \leftarrow\{0,1\}^{256}$; compute $v:=\mu_{b} \oplus k$; return $c=(u, v)$.

Game $_{0, b}$ and Game $_{1, b}$ are equivalent if the mapping $\left(e_{0}, e_{1}\right) \mapsto h e_{0}+e_{1}$ is injective, which is satisfied if a key pair of PKE is correct. Game $1, b$ and $\mathrm{Game}_{2, b}$ are computationally indistinguishable because of the 2-DQCCF assumption. $\mathrm{Game}_{2, b}$ and $\mathrm{Game}_{3, b}$ are computationally indistinguishable because of the 2-DQCSD assumption. $\mathrm{Game}_{3, b}$ and $\mathrm{Game}_{4, b}$ are equivalent if u is in outside of the image of the mapping $\left(e_{0}, e_{1}\right) \mapsto e_{0}+e_{1} h$, which occurs with overwhelming probability. Game 4,0 and Game ${ }_{4,1}$ are equivalent since k is uniformly at random.

Remark O.2. We can replace the term δ with the probability that the mapping $\left(e_{0}, e_{1}\right) \mapsto e_{0}+e_{1} h$ is injective for random $h \leftarrow \mathcal{F}_{1}$.

We then consider $\mathrm{PKE}^{\prime}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$, which we call BIKE-DPKE.
Lemma O.5. Assume that the 2-DQCCF and 2-DQCSD assumptions hold. Then, BIKE-DPKE PKE' $:=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that $\left|\mathcal{S}\left(1^{\kappa}\right)\right| \approx 2^{r} / 2 \cdot 2^{n_{1} n_{2}}$ and $\left|\operatorname{Enc}^{\prime}(e k, \mathcal{M})\right| \leq 2^{k}$. Ciphertext indistinguishability follows from Theorem E. 1 that states that T preserves the ciphertext indistinguishability (Lemma O.2) and onewayness (Lemma O.4) loosely.

We next consider BIKE-DPKE's XCFR-security:
Lemma O.6. Let ϵ_{u} be a probability that $h_{0}-h_{1} \notin \mathcal{R}^{*}$ holds for two randomly generated keys h_{0} and h_{1}. Let ϵ_{0} be a probability that an efficient adversary finds μ such that $e_{1}=0$ where $\left(e_{0}, e_{1}\right):=\mathcal{E}_{t}(\mathrm{G}(\mu))$. Suppose that and $\epsilon:=\epsilon_{u}+\epsilon_{0}$ is negligible. Then, $\mathrm{PKE}^{\prime}:=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$ is XCFR-secure.

Proof (Proof sketch:). Let us consider $e k_{i}=h_{i}$ and $d k_{i}=\left(h_{0}, h_{1}\right)$ for $i \in z o$. If the adversary outputs $c=(u, v)$, it should be decrypted into μ by using $d k_{0}$ and $d k_{1}$, respectively. Let $\left(e_{0}, e_{1}\right)=\mathcal{E}_{t}(\mathrm{G}(\mu))$. We have $u=e_{0}+e_{1} h_{0}=$ $e_{0}+e_{1} h_{1}$ in the re-encryption check. This implies $\left(h_{0}-h_{1}\right) \cdot e_{1}=0 \in \mathcal{R}$. If $e_{1} \neq 0$ and $h_{0}-h_{1} \in \mathcal{R}^{*}$, then this leads a contradiction. Thus, the lemma holds.

Recall that FO^{\neq}is $\mathrm{U}^{\not \perp} \circ \mathrm{T}$. Applying U^{\neq}to $\mathrm{PKE}^{\prime}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$, we obtain $K E M=\mathrm{U}^{\neq}[\mathrm{PKE}, \mathrm{H}]$. After applying our theorems, we summarize the security properties of BIKE as follows:

- BIKE-DPKE PKE' is strongly disjointly-simulatable if the 2-DQCCF and 2-DQCSD assumptions hold (Lemma O.5). It is XCFR-secure if ϵ is negligible (Lemma O.6).
- Thus, BIKE is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCA-secure in the QROM.
- BIKE is ANON-CCA-secure.
- BIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

P FrodoKEM

Review of FrodoKEM: FrodoKEM [$\mathrm{NAB}^{+} 20$] is an LWE-based KEM scheme in the alternates, Let $q=2^{D}$ for some $D \leq 16$. For a positive integer $B<D, \bar{m}$, and \bar{n}, they use encode: $\{0,1\}^{B \bar{m} \bar{n}} \rightarrow \mathbb{Z}_{q}^{\bar{m} \times \bar{n}}$ and decode : $\{0,1\}^{B \bar{m} \bar{n}} \rightarrow\{0,1\}^{B \bar{m} \bar{n}}$. (Roughly speaking, they compute ec: $k \in\left[0,2^{B}\right) \mapsto k \cdot q / 2^{B} \in \mathbb{Z}_{q}$ and dc: $K \in \mathbb{Z}_{q} \mapsto\left\lceil K 2^{B} / q\right\rfloor \bmod 2^{B}$ and arrange the result.) Let $\ell=B \bar{m} \bar{n}$ be a message length. They use a distribution χ_{s} that is a centered symmetric distribution whose support is $\{-s,-(s-1), \ldots, s-1, s\}$. (See $\left[\mathrm{NAB}^{+} 20\right.$, Sect.2.2.4 and Table 3] for the concrete distribution.) For concrete values, see Table 16.
The underlying PKE scheme of FrodoKEM, which we call FrodoKEM-PKE, is summarized as follows:

- Gen $(p p)$: Choose $A \leftarrow \mathbb{Z}_{q}^{n \times n}, S \leftarrow \chi^{n \times \bar{n}}$ and $E \leftarrow \chi^{n \times \bar{n}}$. Compute $B:=A S+E$. Output $e k:=(A, B)$ and $d k:=S$.
- Enc $(e k, \mu):$ Choose $S^{\prime}, E^{\prime} \leftarrow \chi^{\bar{m} \times n}$ and $E^{\prime \prime} \leftarrow \chi^{\bar{m} \times \bar{n}}$. Output $c=(U, V):=\left(S^{\prime} A+E^{\prime}, S^{\prime} B+E^{\prime \prime}+\operatorname{encode}(\mu)\right)$.
- $\operatorname{Dec}(d k=S,(U, V)):$ Compute $M:=V-U \cdot S$ and output $\mu^{\prime}:=\operatorname{decode}(M)$.

Table 16. Parameter sets of FrodoKEM in Round 3.

parameter sets	n	q	σ	s	B	\bar{m}	\bar{n}
Frodo-640	640	2^{15}	2.8	12	2	8	8
Frodo-976	976	2^{16}	2.3	10	3	8	8
Frodo-1344	1344	2^{16}	1.4	6	4	8	8

Table 17. Parameter sets of HQC in Round 3.

parameter sets	r	n_{1}	k_{1}	d_{1}	n_{2}	k_{2}	d_{2}	w	w_{e}	w_{r}
hqc-128	17,669	46	16	31	384	8	192	66	75	75
hqc-192	35,851	56	24	32	640	8	320	100	114	114
hqc-256	57,637	90	32	59	640	8	320	131	149	149

We next consider an intermediate PKE scheme $\mathrm{PKE}_{0}=\left(\mathrm{Gen}_{0}, \mathrm{Enc}_{0}, \mathrm{Dec}_{0}\right)$ where the encryption algorithm uses pseudorandomness, which we call FrodoKEM-PKE-PRG:

- $\operatorname{Gen}_{0}(p p)=\operatorname{Gen}(p p)$:
- Enc ${ }_{0}(e k, \mu ; r)$: Use $\rho=\operatorname{SHAKE} 128_{X}(0 \times 96 \| r)$ to sample $S^{\prime}, E^{\prime}, E^{\prime \prime}$. Output $c=(U, V):=\left(S^{\prime} A+E^{\prime}, S^{\prime} B+\right.$ $\left.E^{\prime \prime}+\operatorname{encode}(\mu)\right)$.
$-\operatorname{Dec}_{0}(d k,(U, V))=\operatorname{Dec}(d k,(U, V)):$
FrodoKEM applies $\mathrm{FO}^{\perp \prime \prime}$ to ForodoKEM-PKE-PRG, where $\mathrm{H}^{\prime}=$ SHAKE, $\mathrm{G}=$ SHAKE, and $\mathrm{H}=$ SHAKE: We can treat them as different random oracles because their input length differ.

$\overline{\mathrm{Gen}}\left(1^{\kappa}\right)$	$\overline{\mathrm{Enc}}(e k)$	$\overline{\operatorname{Dec}}(\overline{d k}, c)$, where $\overline{d k}=(d k, e k, h, s)$
$(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	$\mu^{\prime}:=\operatorname{Dec}_{0}(d k, c)$
$h \leftarrow \mathrm{H}^{\prime}(e k)$	$(\bar{K}, r):=\mathrm{G}\left(\mu, \mathrm{H}^{\prime}(e k)\right)$	$\left(\bar{K}^{\prime}, r^{\prime}\right):=\mathrm{G}\left(\mu^{\prime}, h\right)$
$s \leftarrow\{0,1\}^{\ell(\kappa)}$	$c:=\mathrm{Enc}_{0}(e k, \mu ; r)$	$c^{\prime}:=\operatorname{Enc}_{0}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
$\overline{d k}:=(d k, e k, h, s)$	$K:=\mathrm{H}(\bar{K}, c)$	if $c=c^{\prime}$, then return $K:=\mathrm{H}\left(\bar{K}^{\prime}, c\right)$
return $(e k, \overline{d k})$	return (c, K)	else return $K:=\mathrm{H}(s, c)$

Security: Grubbs et al. [GMP21] fortunately show the security of $\mathrm{FO}^{\not{ }^{\prime \prime \prime}}$. Thus, we can apply their result to FrodoKEM.

Q HQC

Review of HQC: $\mathrm{HQC}\left[\mathrm{AAB}^{+} 20\right]$ is another code-based KEM scheme in the alternate candidates.
Let $\mathcal{R}:=\mathbb{F}_{2}[x] /\left(x^{r}-1\right)$. Let C be a decodable $\left[n_{1} n_{2}, k\right]$ code generated by $G \in \mathbb{F}_{2}^{k \times n_{1} n_{2}}$, where $n_{1} n_{2} \leq r$. Let decode be a decoder algorithm which corrects an error up to δ. Let $\mathcal{S}_{w}:=\{x \in \mathcal{R} \mid \mathrm{HW}(x)=w\}$. For a polynomial $A=\sum_{i} a_{i} x^{i} \in \mathcal{R}$, we define $\operatorname{trunc}(A, l)=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathbb{F}_{2}^{l}$. For concrete values, see Table 17.
The underlying PKE scheme of HQC, which we call HQC-PKE, is summarized as follows:

- Gen $(p p): h_{0} \leftarrow \mathcal{R}$. $(x, y) \leftarrow \mathcal{S}_{w}^{2}$. Compute $h_{1}:=x+h_{0} y$. Output $d k:=(x, y)$ and $e k:=\left(h_{0}, h_{1}\right)$.
- $\operatorname{Enc}\left(e k, \mu \in \mathbb{F}_{2}^{k} ;(e, f, t) \in \mathcal{S}_{w_{e}} \times \mathcal{S}_{w_{r}} \times \mathcal{S}_{w_{r}}\right):$ Output

$$
c=(u, v):=\left(h_{0} t+f, \operatorname{trunc}\left(h_{1} t+e, n_{1} n_{2}\right) \oplus \mu G\right) \in \mathcal{R} \times \mathbb{F}_{2}^{n_{1} n_{2}} .
$$

$-\operatorname{Dec}(d k,(u, v)):$ Compute $a:=v \oplus \operatorname{trunc}\left(u y, n_{1} n_{2}\right) \in \mathbb{F}_{2}^{n_{1} n_{2}}$ and output decode (a).
We next consider an intermediate PKE scheme $\mathrm{PKE}_{0}=\left(\mathrm{Gen}_{0}, \mathrm{Enc}_{0}, \mathrm{Dec}_{0}\right)$ where the encryption algorithm uses pseudorandomness, which we call HQC-PKE-PRG:
$-\operatorname{Gen}_{0}(p p)=\operatorname{Gen}(p p)$:

- $\operatorname{Enc}_{0}(e k, \mu ; r)$: Use $\rho=\operatorname{SHAKE256}(r, 0 \times 02)$ to sample $(e, f, t) \in \mathcal{S}_{w_{e}} \times \mathcal{S}_{w_{r}} \times \mathcal{S}_{w_{r}}$. Output (u, v) := $\operatorname{Enc}(e k, \mu ;(e, f, t))$.
$-\operatorname{Dec}_{0}(d k,(u, v))=\operatorname{Dec}(d k,(u, v)):$
HQC applies HFO^{\perp} to HQC-PKE-PRG PKE_{0}, where $\mathrm{G}(\mu)=\operatorname{SHAKE} 256_{512}(\mu, 0 \times 03), \mathrm{F}(\mu)=\operatorname{SHAKE} 256^{2}$ ($\left.\mu, 0 \times 04\right)$. and $\mathrm{H}\left(\mu,\left(c_{0}, c_{1}\right)\right)=\operatorname{SHAKE} 256512(\mu, 0 \times 05)$. We can treat them as different random oracles because their input length differ.

$\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k)}$
$\overline{(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)}$	$\mu \leftarrow\{0,1\}^{\ell(\kappa)}$	
$\overline{d k}:=(d k, e k)$	$r:=\mathrm{G}(\mu)$	$r^{\prime}:=\operatorname{Dec}_{0}\left(d k, c_{0}\right)$
return $(e k, \overline{d k})$	$c_{0}:=\operatorname{Enc}_{0}(e k, \mu ; r)$	$c_{0}^{\prime}:=\operatorname{Enc}_{0}\left(e k, \mu^{\prime} ; r^{\prime}\right)$
	$c_{1}:=\mathrm{F}(\mu)$	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}\right)$
	$K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	if $\left(c_{0}, c_{1}\right)=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$
	return $\left(\left(c_{0}, c_{1}\right), K\right)$	else return $K:=\perp$

Assumptions: For $b \in\{0,1\}$, define the finite set $\mathcal{F}_{b}:=\{h \in \mathcal{R}: h(1) \equiv b(\bmod 2)\}$, that is, a set of all binary vectors of length r and parity b. Similarly, for $b, b_{0}, b_{1} \in\{0,1\}$, we define the sets

$$
\begin{aligned}
\mathcal{F}_{b}^{1,2} & :=\left\{H=[1, h] \in \mathcal{R}^{2}: h \in \mathcal{F}_{b}\right\} \\
\mathcal{F}_{b_{0}, b_{1}}^{2,3} & :=\left\{H=\left[\begin{array}{lll}
1 & 0 & h_{0} \\
0 & 1 & h_{1}
\end{array}\right] \in \mathcal{R}^{2 \times 3}: h_{0} \in \mathcal{F}_{b_{0}} \wedge h_{1} \in \mathcal{F}_{b_{1}}\right\} .
\end{aligned}
$$

Definition Q. 1 (The 2-Decisional Quasi-Cyclic Syndrome Decoding (2-DQCSD) assumption [AAB ${ }^{+}$20]). Fix $b \in\{0,1\}, w$, and $b^{\prime}:=w+b w \bmod 2$. For any (Q)PPT adversary, it is hard to distinguish the following two distributions:

- $(H, H \cdot(x, y))$, where $H \leftarrow \mathcal{F}_{b}^{1,2}$ and $\left(x_{1}, x_{2}\right) \leftarrow \mathcal{S}_{w}^{2}$.
- (H, z), where $H \leftarrow \mathcal{F}_{b}^{1,2}$ and $y \leftarrow \mathcal{F}_{b^{\prime}}$.

Definition Q. 2 (The 3-Decisional Quasi-Cyclic Syndrome Decoding (3-DQCSD) assumption [AAB ${ }^{+}$20]). Fix $b_{0}, b_{1} \in\{0,1\}, w$. Let $b_{0}^{\prime}:=w+b_{0} w \bmod 2$ and $b_{1}^{\prime}:=w+b_{1} w \bmod 2$. For any $(Q) P P T$ adversary, it is hard to distinguish the following two distributions:

- $\left(H, H \cdot\left(x_{0}, x_{1}, x_{2}\right)\right)$, where $H \leftarrow \mathcal{F}_{b_{0}, b_{1}}^{2,3}$ and $\left(x_{0}, x_{1}, x_{2}\right) \leftarrow \mathcal{S}_{w}^{3}$.
- $\left(H,\left(z_{0}, z_{1}\right)\right)$, where $H \leftarrow \mathcal{F}_{b_{0}, b_{1}}^{2,3}, z_{0} \leftarrow \mathcal{F}_{b_{0}^{\prime}}$, and $z_{1} \leftarrow \mathcal{F}_{b_{1}^{\prime}}$.

For collision-freeness, we define the following new assumption:
Definition Q. 3 (The 3-Computational Quasi-Cyclic Codeword Finding (3-CQCCF) assumption). For any (Q)PPT adversary, given $\left(1, h, h^{\prime}\right)$ where $h, h^{\prime} \leftarrow \mathcal{R}$, it is hard to find a non-zero codeword $\left(f, t, t^{\prime}\right)$ whose Hamming weight is at most $4 w_{r}$.

Security: Using those assumptions, the proposers show the IND-CPA security of HQC-PKE:
Lemma Q. 1 ([AAB ${ }^{+}$20, Theorem 5.1], adapted). Assume that the 2-DQCSD and 3-DQCSD assumptions hold. Then, the underlying PKE PKE is IND-CPA-secure (and OW-CPA-secure).

By mimicking their proof, we can show that it is ciphertext-indistinguishable with a simulator that outputs $u \leftarrow$ $\mathcal{F}_{b_{0}}$ and $v \leftarrow \mathbb{F}_{2}^{n_{1} n_{2}}$, where $b_{0}:=\left(1+h_{0}(1)\right) w_{r} \bmod 2$.

Lemma Q.2. Assume that the 2-DQCSD and 3-DQCSD assumptions hold. Then, the underlying PKE PKE is ciphertextindistinguishable.

Proof (Proof Sketch). We consider four games Game ${ }_{0}$, Game $_{1}$, Game $_{2}$, and Game ${ }_{3}$:
In what follows, we define the parity of h_{1} as $b:=\left(1+h_{0}(1)\right) w \bmod 2$, the parity of u as $b_{0}:=\left(1+h_{0}(1)\right) w_{r} \bmod 2$, and the parity of \tilde{v} as $b_{1}:=w_{e}+b w_{r} \bmod 2$:

- Game 0 : In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h_{0} \leftarrow \mathcal{R}, x, y \leftarrow \mathcal{S}_{w}$, and $h_{1}:=x+h_{0} y$.
- Encryption: $\mu \leftarrow \mathbb{F}_{2}^{k}, e \leftarrow \mathcal{S}_{w_{e}}, t, f \leftarrow \mathcal{S}_{w_{r}}$, and compute $u:=h_{0} t+f$ and $v:=\operatorname{trunc}\left(h_{1} t+e, n_{1} n_{2}\right) \oplus \mu G$.
- Game ${ }_{1}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h_{0} \leftarrow \mathcal{R}, h_{1}^{+} \leftarrow \mathcal{F}_{b}$.
- Encryption: $\mu \leftarrow \mathbb{F}_{2}^{k}, e \leftarrow \mathcal{S}_{w_{e}}, t, f \leftarrow \mathcal{S}_{w_{r}}$, and compute $u:=h_{0} t+f$ and $v:=\operatorname{trunc}\left(h_{1}^{+} t+e, n_{1} n_{2}\right) \oplus \mu G$.
- Game 2 : In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h_{0} \leftarrow \mathcal{R}, h_{1}^{+} \leftarrow \mathcal{F}_{b}$.
- Encryption: $\mu \leftarrow \mathbb{F}_{2}^{k}, e \leftarrow \mathcal{F}_{w_{e}}, t, f \leftarrow \mathcal{F}_{w_{r}}$, and compute $u:=h_{0} t+f$ and $v:=\operatorname{trunc}\left(h_{1}^{+} t+e, n_{1} n_{2}\right) \oplus \mu G$.
- Games: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h_{0} \leftarrow \mathcal{R}, h_{1}^{+} \leftarrow \mathcal{F}_{2, b}$.
- Encryption: $u \leftarrow \mathcal{F}_{b_{0}}$ and $v \leftarrow \mathbb{F}_{2}^{n_{1} n_{2}}$.
- Game ${ }_{4}$: In this game, a public key and a target ciphertext is computed as follows:
- Key generation: $h_{0} \leftarrow \mathcal{R}, x, y \leftarrow \mathcal{S}_{w}$, and $h_{1}:=x+h_{0} y$.
- Encryption: $u \leftarrow \mathcal{F}_{b_{0}}$ and $v \leftarrow \mathbb{F}_{2}^{n_{1} n_{2}}$.
Game_{0} and Game ${ }_{1}$ are computationally indistinguishable because of the 2-DQCSD assumption. Game ${ }_{1}$ and Game ${ }_{2}$ are computationally indistinguishable because of the 3-DQCSD assumption. Game ${ }_{2}$ and Game_{3} are statistically indistinguishable, because trunc truncates $r-n_{1} n_{2}$ bits of $\tilde{y}:=h_{1}^{+} t+e$ in Game_{2} and thus, trunc $\left(\tilde{y}, n_{1} n_{2}\right)$'s distribution is statistically close to the uniform distribution over $\mathbb{F}_{2}^{n_{1} n_{2}}$. Game ${ }_{3}$ and Game ${ }_{4}$ are computationally indistinguishable because of the 2-DQCSD assumption.

Let us compute the parity of $h_{1}, b:=\left(1+h_{0}(1)\right) w \bmod 2$ and the parity of $u, b_{0}:=\left(1+h_{0}(1)\right) w_{r} \bmod 2$. According to Table 17, we obtain that the parity b of h_{1} is $0,0,1-h_{0}(1)$ and the parity b_{0} of u is $1,0, h_{0}(1)$, for HQC-128/192/256, respectively. We can say that HQC-128 and HQC-192 are SPR-CPA secure, while HQC-256 is not strong. Indeed, the parity of u leaks the information of h_{0} of the encryption key.
We next consider HQC-PKE-PRG PKE 0_{0}, whose encryption algorithm uses a PRG SHAKE256($\cdot, 0 \times 02$) instead of true randomness. The IND-CPA security and ciphertext indistinguishability of PKE $_{0}$ follows from PRG's quantum security tightly.
Lemma Q.3. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256($\cdot, 0 \times 02$) is quantumlysecure PRG. Then, HQC-PKE-PRG PKE_{0} is ciphertext-indistinguishable and IND-CPA-secure (and OW-CPA-secure).
We then consider $\mathrm{PKE}^{\prime}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$, which we call HQC-DPKE.
Lemma Q.4. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256($\cdot, 0 \times 02$) is quantumlysecure $P R G$. Then, $\mathrm{PKE}^{\prime}:=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$ is disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that $\left|\mathcal{S}\left(1^{\kappa}\right)\right| \approx 2^{r} / 2 \cdot 2^{n_{1} n_{2}}$ and $\left|\operatorname{Enc}^{\prime}(e k, \mathcal{M})\right| \leq 2^{k}$. Ciphertext indistinguishability follows from Theorem E. 1 that states that T preserves ciphertext indistinguishability and onewayness of PKE_{0} (Lemma Q.3).

We finally consider HQC's SROB-CCA-security:
Lemma Q.5. Suppose that the 3-CQCCF assumption holds. Then, HQC is SROB-CCA-secure.
Proof (Proof sketch:). Given ($1, h_{0,0}, h_{1,0}$) with $h_{0,0}, h_{1,0} \leftarrow \mathcal{R}$, we generate decryption keys and encryption keys $e k_{i}=\left(h_{i, 0}, h_{i, 1}\right)$ and $d k_{i}=\left(x_{i}, y_{i}\right)$ for $i \in z o$. We give them to an adversary against SROB-CCA security of KEM. Suppose that the adversary outputs $c=(u, v)$ and the adversary wins. If so, it should be decapsulated into $K_{0} \neq \perp$ and $K_{1} \neq \perp$. Thus, c should be decrypted into μ_{0} and μ_{1} by using $d k_{0}$ and $d k_{1}$, respectively. In reencryption check, we have $\left(e_{0}, f_{0}, t_{0}\right):=\operatorname{SHAKE} 256\left(\mathrm{G}\left(\mu_{0}\right), 0 \times 02\right)$ and $\left(e_{1}, f_{1}, t_{1}\right):=\operatorname{SHAKE256}\left(\mathrm{G}\left(\mu_{1}\right), 0 \times 02\right)$, and $u=h_{0,0} t_{0}+f_{0}=h_{1,0} t_{1}+f_{1}$. This implies $\left(1, h_{0,0}, h_{1,0}\right) \cdot\left(f_{0}+f_{1}, t_{0}, t_{1}\right)=0$ and $\left(f_{0}+f_{1}, t_{0}, t_{1}\right)$ is the solution of the 3 -CQCCF problem.

Recall that HFO^{\perp} is $\mathrm{HU}^{\perp} \circ \mathrm{T}$. Applying HU^{\perp} to $\mathrm{PKE}^{\prime}=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$, we obtain $\mathrm{KEM}=\mathrm{HU}^{\perp}\left[\mathrm{PKE}_{0}, \mathrm{H}\right]$. After applying our theorems, we summarize the security properties of HQC as follows:

- HQC-DPKE PKE' is disjointly-simulatable if the 2-DQCSD and 3-DQCSD assumptions hold (Lemma Q.4). HQC-DPKE for HQC-128 and HQC-192 are strongly disjointly-simulatable.
- Thus, HQC-128 and HQC-192 are SPR-CCA-secure and $1 / 2^{512}$-sparse in the QROM.
- HQC is SCFR-CCA-secure if the 3-CQCCF assumption holds.
- HQC-128 and HQC-192 are ANON-CCA-secure.
- HQC-128 and HQC-192 lead to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

R Streamlined NTRU Prime

Streamlined NTRU Prime is one of two KEMs in NTRU Prime [?].

Review of Streamlined NTRU Prime: Streamlined NTRU Prime (sntrupr) has parameter sets p, q, and $w . p$ and q are prime numbers and w is a positive integer. We note that $2 p \geq 3 w$ and $q \geq 16 w+1$. They choose $q=6 q^{\prime}+1$ for some q^{\prime}. For concrete values, see Table 18.

Table 18. Parameter sets of sntrupr of NTRU Prime

parameter sets	p	q	w
sntrupr653	6534621288		
sntrupr761	7614591286		
sntrupr857	8575167322		
sntrupr953	9536343396		
sntrupr1013	10137177448		
sntrupr1277	12777879492		

Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{p}-x-1\right)$ and $\mathcal{R}_{a}:=(\mathbb{Z} / a)[x] /\left(x^{p}-x-1\right)$ for $a=3, q$. Let $\mathcal{S}:=\left\{a=\sum_{i=0}^{p-1} a_{i} x^{i} \in \mathcal{R} \mid a_{i} \in\right.$ $\{-1,0,+1\}\}$, a set of ternary polynomials. Let $\mathcal{S}:=\left\{a=\sum_{i=0}^{p-1} a_{i} x^{i} \in \mathcal{R} \mid a_{i} \in\{-1,0,+1\}, \operatorname{HW}(a)=w\right\}$, a set of "short" polynomials. For $a \in[-(q-1) / 2,(q-1) / 2]$, define Round $(a)=3 \cdot\left\lfloor a / 37 .{ }^{6}\right.$
The underlying CPA-secure PKE scheme ${ }^{7}$ works as follows:

- Gen $(p p)$: Choose $g \leftarrow \mathcal{S}$ that satisfies $g \in \mathcal{R}_{3}^{\times}$at random. Compute $1 / g \in \mathcal{R}_{3}$. Choose $f \leftarrow \mathcal{S}$. Compute $h:=g /(3 f) \in \mathcal{R}_{q}$. Output $e k:=h$ and $d k:=(f, 1 / g)$.
- Enc $(e k, r \in \mathcal{S})$: Compute $h r \in \mathcal{R}_{q}$ and output $c:=\operatorname{Round}\left(h r \bmod ^{ \pm} q\right)$.
- $\operatorname{Dec}(d k=(f, v), c)$: Compute $e:=\left(3 f c \bmod ^{ \pm} q\right) \bmod ^{ \pm} 3$. Compute $r^{\prime}:=e v \bmod ^{ \pm} 3$. Output r^{\prime} if $\operatorname{HW}\left(r^{\prime}\right)=w$. Otherwise, output $r_{\text {invalid }}^{\prime}:=(1,1, \ldots, 1,0, \ldots, 0)$ with $\operatorname{HW}\left(r_{\text {invalid }}^{\prime}\right)=w$.
Due to rounding, we have a 'short' error m such that $c=h r+m$.
Streamlined NTRU Prime $\left[\mathrm{BBC}^{+} 20\right]$ used HU ${ }^{\mathcal{L}}$, prf, where $\mathrm{H}(\mu, c)=\operatorname{SHA}^{2} 12_{256}\left(0 \times 01, \operatorname{SHA}^{2} 12_{256}(0 \times 03, \mu), c\right)$
$\mathrm{H}_{\mathrm{prf}}(s, c)=\operatorname{SHA} 5122_{256}\left(0 \times 00, \operatorname{SHA}^{2} 12_{256}(0 \times 03, s), c\right) \mathrm{F}(\mu, e k)=\operatorname{SHA} 512_{256}\left(0 \times 02, \operatorname{SHA}^{2} 12_{256}(0 \times 03, \mu), \operatorname{SHA512} 256(0 \times 04, e k)\right)$.

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$	$\mu \leftarrow \mathcal{M}$	$\mu^{\prime}:=\operatorname{Dec}\left(d k, c_{0}\right)$
$s \leftarrow\{0,1\}^{l}$	$c_{0}:=\operatorname{Enc}(e k, \mu)$	if $\mu^{\prime}=\perp$, then return $K:=\mathrm{H}_{\mathrm{prf}}\left(s, c_{0}, c_{1}\right)$
$\overline{d k}:=(d k, e k, s)$	$c_{1}:=\mathrm{F}(\mu, e k)$	$c_{0}^{\prime}:=\operatorname{Enc}\left(e k, \mu^{\prime}\right)$
return $(e k, \overline{d k})$	$K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$	$c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}, e k\right)$
	return $\left(\left(c_{0}, c_{1}\right), K\right)$	if $\left(c_{0}, c_{1}\right)=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$
		else return $K:=\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$

Security: We found that Streamlined NTRU Prime has a problem of 'pre-key', as Kyber, Saber, and FrodoKEM [GMP21]. For simplicity, let $\mathrm{H}_{i}(x)=$ SHA512 $256(0 \mathrm{x} 0 \mathrm{i} \| x)$ as in $\left[\mathrm{BBC}^{+} 20\right]$. Using this notation, we have

- $\mathrm{H}(\mu, c)=\mathrm{H}_{1}\left(\mathrm{H}_{3}(\mu) \| c\right)$
- $\mathrm{H}_{\mathrm{prf}}(s, c)=\mathrm{H}_{0}\left(\mathrm{H}_{3}(s) \| c\right)$
$-\mathrm{F}(\mu, e k)=\mathrm{H}_{2}\left(\mathrm{H}_{3}(\mu) \| \mathrm{H}_{4}(e k)\right)$.

[^3]We can assume H_{i} as random oracles. If H_{3} is length-preserving, we could use the technique by Grubbs et al. [GMP21]. Unfortunately, μ is longer than 256-bits and this is not length-preserving.
If F is not nested on μ, we can prove the security as follows: We first consider $\mathrm{HU}_{m}^{b o t}\left[\mathrm{PKE}, \mathrm{H}_{3}, \mathrm{~F}\right]$, which is SPR-CCA-secure if PKE is strongly disjoint-simulatable. We then consider an indifferentiable reduction defined as follows: if $K \neq \perp$, then we rewrite the decapsulation result as $\mathrm{H}_{1}(K \| c)$; if $K=\perp$, then we rewrite the decapsulation result as $\mathrm{H}_{0}\left(\mathrm{H}_{3}(s) \| c\right)$. It is easy to see $\mathrm{HU}^{\not 又, \text { prf }}$ [PKE, $\mathrm{H}, \mathrm{F}, \mathrm{H}_{\text {prf }}$] is SPR-CCA-secure if $\mathrm{HU}_{m}^{\text {bot }}$ [PKE, $\mathrm{H}_{3}, \mathrm{~F}$] is SPR-CCA-secure.
We leave to prove IND-CCA security of Streamlined NTRU Prime as an open problem.

S NTRU LPRime

NTRU LPRime is the other KEM in NTRU Prime [$\mathrm{BBC}^{+} 20$].

Review of NTRU LPRime: NTRU LPRime has parameter sets $p, q, w, \delta, \tau_{0}, \tau_{1}, \tau_{2}$, and τ_{3}. We note that $q=6 q^{\prime}+1$ for some q^{\prime} and $q \geq 16 w+2 \delta+3$. For concrete values, see Table 19 .

Table 19. Parameter sets of ntrulpr of NTRU Prime

parameter sets	p	q	w	δ	τ_{0}	τ_{1}	τ_{2}	τ_{3}
ntrulpr653	653	4621	252	289	2175	113	2031	290
ntrulpr761	7614591	250	292	2156	114	2007	287	
ntrulpr857	857	5167	281	329	2433	101	2265	324
ntrulpr953	953	6343	345	404	2997	82	2798	400
ntrulpr1013	1013	7177	392	450	3367	73	3143	449
ntrulpr1277	1277	7879	429	502	3724	66	3469	496

Let $\mathcal{R}:=\mathbb{Z}[x] /\left(x^{p}-x-1\right)$ and $\mathcal{R}_{q}:=\mathbb{Z}_{q}[x] /\left(x^{p}-x-1\right)$. Let $\mathcal{S}:=\left\{a=\sum_{i=0}^{p-1} a_{i} x^{i} \in \mathcal{R} \mid a_{i} \in\{-1,0,+1\}\right.$, HW $(a)=$ $w\}$, a set of "short" polynomials.
For $a \in[-(q-1) / 2,(q-1) / 2]$, define $\operatorname{Round}(a)=3 \cdot\lceil a / 3] .{ }^{8}$ For a polynomial $A=\sum_{i} a_{i} x^{i} \in \mathcal{R}_{q}$, we define $\operatorname{trunc}(A, l)=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathbb{Z}_{q}^{l}$. For $C \in[0, q)$, define $\operatorname{Top}(C)=\left\lfloor\left(\tau_{1}\left(C+\tau_{0}\right)+2^{14}\right) / 2^{15}\right\rfloor$. For $T \in[0,16)$, define $\operatorname{Right}(T)=\tau_{3} T-\tau_{2} \in \mathbb{Z}_{q}$. For $a \in \mathbb{Z}$, define $\operatorname{Sign}(a)=1$ if $a<0,0$ otherwise.
The underlying CPA-secure PKE scheme ${ }^{9}$ PKE works as follows:

- Gen $(p p)$: Generate $A \leftarrow \mathcal{R}_{q}$ and $d k \leftarrow \mathcal{S}$. Compute $B:=\operatorname{Round}(A \cdot d k)$. Output $e k:=(A, B)$ and $d k$.
$-\operatorname{Enc}\left(e k, \mu \in\{0,1\}^{256}\right)$: Choose $t \leftarrow \mathcal{S}$ and output

$$
(U, V):=(\operatorname{Round}(t \cdot A), \operatorname{Top}(\operatorname{trunc}(t \cdot B, 256)+\mu(q-1) / 2)) .
$$

$-\operatorname{Dec}(d k,(U, V)):$ Compute $r:=\operatorname{Right}(V)-\operatorname{trunc}(d k \cdot U, 256)+(4 w+1) \cdot \mathbf{1}_{256} \in \mathbb{Z}^{256}$ and outputs $\mu:=$ $\operatorname{Sign}\left(r \bmod ^{ \pm} q\right)$.
We next consider an intermediate PKE scheme $\mathrm{PKE}_{0}=\left(\mathrm{Gen}_{0}, \mathrm{Enc}_{0}, \mathrm{Dec}_{0}\right)$ where the encryption algorithm uses pseudorandomness, which is called as "NTRU LPRime Expand":

- $\operatorname{Gen}_{0}(p p)=\operatorname{Gen}(p p):$
- $\operatorname{Enc}_{0}(e k, \mu ; r)$: Use $\rho=\operatorname{AES} 256-\operatorname{CTR}(r)$ to sample $t \leftarrow \mathcal{S}$. Output $(U, V):=\operatorname{Enc}(e k, \mu ; t)$.
- $\operatorname{Dec}_{0}(d k,(U, V))=\operatorname{Dec}(d k,(U, V))$:

NTRU LPRime applies $\mathrm{HFO}_{\notin \text {, prf }}$ to NTRU LPRime Expand PKE_{0}, where $\mathrm{G}(\mu)=\operatorname{SHA512} 256(0 \times 05, \mu), \mathrm{H}(\mu, c)=$ $\operatorname{SHA}^{2} 12_{256}(0 \times 01, \mu, c), \mathrm{H}_{\text {prf }}(s, c)=\operatorname{SHA}^{2} 12_{256}(0 \times 00, s, c), \mathrm{F}(\mu, e k)=\operatorname{SHA}^{2} 12_{256}\left(0 \times 02, \mu, \operatorname{SHA}^{2} 12_{256}(0 \times 04, e k)\right):$

[^4]| $\overline{\overline{\operatorname{Gen}}\left(1^{\kappa}\right)}$ | $\overline{\overline{\operatorname{Enc}}(e k)}$ | $\overline{\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{0}, c_{1}\right)\right), \text { where } \overline{d k}=(d k, e k, s)}$ |
| :--- | :--- | :--- |
| $(e k, d k) \leftarrow \operatorname{Gen}_{0}\left(1^{\kappa}\right)$ | $\mu \leftarrow\{0,1\}^{\ell(\kappa)}$ | |
| $s \leftarrow\{0,1\}^{\ell(\kappa)}:=\operatorname{Dec}_{0}\left(d k, c_{0}\right)$ | | |
| $\overline{d k}:=(d k, e k, s)$ | $r:=\mathrm{G}(\mu)$ | $r^{\prime}:=\mathrm{G}\left(\mu^{\prime}\right)$ |
| return $(e k, \overline{d k})$ | $c_{0}:=\operatorname{Enc}_{0}(e k, \mu ; r)$ | $c_{0}^{\prime}:=\operatorname{Enc}_{0}\left(e k, \mu^{\prime} ; r^{\prime}\right)$ |
| | $c_{1}:=\mathrm{F}(\mu, e k)$ | $c_{1}^{\prime}:=\mathrm{F}\left(\mu^{\prime}, e k\right)$ |
| | $K:=\mathrm{H}\left(\mu, c_{0}, c_{1}\right)$ | if $\left(c_{0}, c_{1}\right)=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c_{0}, c_{1}\right)$ |
| | return $\left(\left(c_{0}, c_{1}\right), K\right)$ | else return $K:=\mathrm{H}_{\text {prf }}\left(s, c_{0}, c_{1}\right)$ |

Security: We directly assume that $\mathrm{PKE}^{\prime}:=\mathrm{T}\left[\mathrm{PKE}_{0}, \mathrm{G}\right]$ is strongly disjoint-simulatable. Recall that $\mathrm{HFO}_{\mathcal{A}}$,prf is
 theorems, we summarize the security properties of SIKE as follows:

- Assume that the underlying DPKE of NTRU LPRime PKE' is strongly disjointly-simulatable with simulator that samples $a \leftarrow \mathcal{R}$, computes $U:=\operatorname{Round}(a)$, samples $V \leftarrow(\mathbb{Z} / 16 \mathbb{Z})^{256}$, and outputs (U, V).
- Then, NTRU LPRime is SPR-CCA-secure and SSMT-CCA-secure in the QROM.
- NTRU LPRime is SCFR-CCA-secure if the colliding probability of $e k$ is negligible since F takes μ and $e k$ as input.
- NTRU LPRime is ANON-CCA-secure.
- NTRU LPRime leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

T SIKE

Brief Review of SIKE: SIKE [JAC ${ }^{+}$20] is KEM scheme based on SIDH [JD11, ?]. For a survey of isogeny-based cryptography, we recommend reading [?].
Let $p=2^{e_{2}} 3^{e_{3}}-1$. Let E be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Let $P_{2}, Q_{2} \in E\left[2^{e_{2}}\right]$ and $P_{3}, Q_{3} \in E\left[3^{e_{3}}\right]$ linearly independent points of order $2^{e_{2}}$ and $3^{e_{3}}$ respectively. Let $\{0,1\}^{n}$ be message space and let $L: \mathbb{F}_{p^{2}} \rightarrow$ $\{0,1\}^{n}$ be a random oracle, instantiated by SHAKE256 $n(\cdot)$.
Roughly speaking, the underlying PKE scheme [JAC ${ }^{+}$20, Algorithm 1], which we call SIKE-PKE, is summarized as follows (for the details, see the specification):

- isogen $_{\ell}\left(d k_{\ell}\right)$ with $(m, \ell)=(2,3)$ or $(3,2)$: On input $d k_{\ell} \in\left[0, \ell^{e_{\ell}}\right)$, compute $S:=P_{\ell}+\left[d k_{\ell}\right] Q_{\ell}$, compute isogeny $\phi_{\ell}: E \rightarrow E /\langle S\rangle$, and compute $E_{m}^{\prime}:=E /\langle S\rangle=\phi_{\ell}(E)$. Compute $P_{m}^{\prime}:=\phi_{\ell}\left(P_{m}\right)$ and $Q_{m}^{\prime}:=\phi_{\ell}\left(Q_{m}\right)$. Output $e k_{\ell}:=\left(E_{m}^{\prime}, P_{m}^{\prime}, Q_{m}^{\prime}\right) .{ }^{10}$
- $\operatorname{isoex}_{\ell}\left(e k_{m}, d k_{\ell}\right)$ with $(m, \ell)=(2,3)$ or $(3,2)$: On input $e k_{m}=\left(E_{\ell}^{\prime}, P_{\ell}^{\prime}, Q_{\ell}^{\prime}\right)$ and $d k_{\ell} \in\left[0, \ell^{e} \ell\right)$, compute $S:=P_{\ell}^{\prime}+\left[d k_{\ell}\right] Q_{\ell}^{\prime}$ and compute $E_{\ell}^{\prime \prime}:=E_{\ell}^{\prime} /\langle S\rangle=E_{\ell}^{\prime} /\left\langle\phi_{m}\left(P_{\ell}+\left[d k_{\ell}\right] Q_{\ell}\right)\right\rangle$. Compute j_{ℓ} as the j-invariant of $E_{\ell}^{\prime \prime}$.
- Gen $(p p)$: Choose $d k_{3} \leftarrow\left[0,3^{e_{3}}\right)$ and $e k_{3}:=\operatorname{isogen}_{3}\left(d k_{3}\right)$. Output $e k_{3}$ and $d k_{3}$.
- Enc $\left(e k_{3}, \mu\right)$: Choose $d k_{2} \leftarrow\left[0,2^{e_{2}}\right)$ and $c_{2}:=$ isogen $_{2}\left(d k_{2}\right)$. Compute $j:=$ isoex ${ }_{2}\left(e k_{3}, d k_{2}\right)$. Compute $z:=$ $\mathrm{L}(j) \oplus \mu$. Output $\left(c_{2}, z\right)$.
$-\operatorname{Dec}\left(d k_{3},\left(c_{2}, z\right)\right)$: Compute $j^{\prime}:=$ isoex $x_{3}\left(c_{2}, d k_{3}\right)$ and output $\mu^{\prime}:=z \oplus \mathrm{~L}\left(j^{\prime}\right)$.
SIKE uses FO ${ }^{\neq}$for IND-CCA-secure KEM, where $\mathrm{G}=\operatorname{SHAKE256} e_{2}$ and $\mathrm{H}=$ SHAKE256 ${ }_{k}$:

$\frac{\operatorname{Gen}\left(1^{\kappa}\right)}{}$	$\overline{\operatorname{Enc}}(e k)$	$\overline{\operatorname{Dec}}\left(\overline{d k},\left(c_{2}, z\right)\right)$, where $\overline{d k}=(d k, e k, s)$
${\left(1^{\kappa}\right)} }$	$\mu \leftarrow\{0,1\}^{n}$	
$s \leftarrow\{0,1\}^{n}:=\operatorname{Dec}\left(d k,\left(c_{2}, z\right)\right)$		
$\overline{d k}:=(d k, e k, s)$	$r:=\mathrm{G}(\mu, e k)$	$r^{\prime}:=\mathrm{G}\left(\mu^{\prime}, e k\right)$
return $(e k, \overline{d k})$	$\left(c_{2}, z\right):=\operatorname{Enc}(e k, \mu ; r)$	$c_{2}^{\prime}:=\operatorname{isogen}_{2}\left(r^{\prime}\right)$
	$K:=\mathrm{H}\left(\mu, c_{2}, z\right)$	if $c_{2}=c_{2}^{\prime}$, then return $K:=\mathrm{H}\left(\mu^{\prime}, c_{2}, z\right)$
	return $\left(\left(c_{2}, z\right), K\right)$	else return $K:=\mathrm{H}\left(s, c_{2}, z\right)$

Remark T.1. SIKE's $\overline{\operatorname{Dec}}$ performs the test $c_{2}=c_{2}^{\prime}$ but omits the test $z=z^{\prime}$. Since Dec retrieves $\mu^{\prime}:=z \oplus k$ deterministically, we do not need to check the equality of z and z^{\prime}.
${ }^{10}$ Correctly speaking, this algorithm outputs ($P_{m}^{\prime}, Q_{m}^{\prime}, R_{m}^{\prime}:=P_{m}^{\prime}-Q_{m}^{\prime}$) and omits E_{m}^{\prime}. We can reconstruct E_{m}^{\prime} from $P_{m}^{\prime}, Q_{m}^{\prime}$, and R_{m}^{\prime}.

Assumptions:

Definition T. 1 (Supersingular Computational Diffie-Hellman (SSCDH) Assumption [JD11], adapted). Let $\phi_{3}: E \rightarrow$ E_{2}^{\prime} be an isogeny whose kernel is equal to $\left\langle P_{3}+\left[d k_{3}\right] Q_{3}\right\rangle$, where $d k_{3} \leftarrow\left[0,3^{e_{3}}\right)$. Let $\phi_{2}: E \rightarrow E_{3}^{\prime}$ be an isogeny whose kernel is equal to $\left\langle P_{2}+\left[d k_{2}\right] Q_{2}\right\rangle$, where $d k_{2} \leftarrow\left[0,2^{e_{2}}\right)$.
For any QPT adversary, given the curves E_{2}^{\prime} and E_{3}^{\prime} and the points $\phi_{3}\left(P_{2}\right), \phi_{3}\left(Q_{2}\right), \phi_{2}\left(P_{3}\right)$, and $\phi_{2}\left(Q_{3}\right)$, finding the j-invariant of $E /\left\langle P_{3}+\left[d k_{3}\right] Q_{3}, P_{2}+\left[d k_{2}\right] Q_{2}\right\rangle$ is hard.
Definition T. 2 (Supersingular Decisional Diffie-Hellman (SSDDH) Assumption [JD11], adapted). For any QPT adversary, given a tuple, it is hard to determine which distribution of the following two distributions generates the tuple:
$-\left(E_{2}^{\prime}, \phi_{3}\left(P_{2}\right), \phi_{3}\left(Q_{2}\right), E_{3}^{\prime}, \phi_{2}\left(P_{3}\right), \phi_{2}\left(Q_{3}\right), E_{23}\right)$, where $E_{2}^{\prime}, \phi_{3}\left(P_{2}\right), \phi_{3}\left(Q_{2}\right), E_{3}^{\prime}, \phi_{2}\left(P_{3}\right), \phi_{2}\left(Q_{3}\right)$ are as in the SSCDH assumption and

$$
E_{23} \simeq E /\left\langle P_{3}+\left[d k_{3}\right] Q_{3}, P_{2}+\left[d k_{2}\right] Q_{2}\right\rangle .
$$

- $\left(E_{2}^{\prime}, \phi_{3}\left(P_{2}\right), \phi_{3}\left(Q_{2}\right), E_{3}^{\prime}, \phi_{2}\left(P_{3}\right), \phi_{2}\left(Q_{3}\right), E_{c}\right)$, where $E_{2}^{\prime}, \phi_{3}\left(P_{2}\right), \phi_{3}\left(Q_{2}\right), E_{3}^{\prime}, \phi_{2}\left(P_{3}\right), \phi_{2}\left(Q_{3}\right)$ are as in the SSCDH assumption and

$$
E_{c} \simeq E /\left\langle P_{3}+\left[d k_{3}^{\prime}\right] Q_{3}, P_{2}+\left[d k_{2}^{\prime}\right] Q_{2}\right\rangle,
$$

where $d k_{3}^{\prime} \leftarrow\left[0,3^{e_{3}}\right)$ and $d k_{2}^{\prime} \leftarrow\left[0,2^{e_{2}}\right)$.
Security: One can show the IND-CPA security of the underlying PKE of SIKE by assuming the SSDDH assumption and the entropy-smoothing property of L^{11} as that in [JD11].
Lemma T.1. Assume that the SSDDH assumption holds and L is entropy-smoothing. Then, SIKE-PKE PKE is IND-CPAsecure (and OW-CPA-secure).
For ciphertext indistinguishablity, we construct a simulator \mathcal{S} as follows: 1) sample $d k_{2} \leftarrow\left[0,2^{e_{2}}\right.$) and compute $c_{2}=\left(E_{3}^{\prime}, P_{3}^{\prime}, Q_{3}^{\prime}\right):=$ isogen $\left._{2}\left(d k_{2}\right) ; 2\right)$ sample $\left.z \leftarrow\{0,1\}^{n} ; 3\right)$ output $\left(c_{2}, z\right)$.

Lemma T.2. SIKE-PKE PKE is ciphertext indistinguishable.
Notice that we can remove the assumption on L's property.
Proof (Proof Sketch). We consider two games Game ${ }_{0}$ and Game ${ }_{1}$.

- Game 0_{0} : In this game the challenge ciphertext is computes as

$$
\mu \leftarrow\{0,1\}^{256} ; d k_{2} \leftarrow\left[0,2^{e_{2}}\right) ; c_{2}:=\operatorname{isogen}_{2}\left(d k_{2}\right) ; j \leftarrow \operatorname{isoex}_{2}\left(e k_{3}, d k_{2}\right) ; z:=\mathrm{L}(j) \oplus \mu ; \text { return }\left(c_{2}, z\right)
$$

- Game 1 : In this game the challenge ciphertext is computes as

$$
d k_{2} \leftarrow\left[0,2^{e_{2}}\right) ; c_{2}:=\operatorname{isogen}_{2}\left(d k_{2}\right) ; z \leftarrow\{0,1\}^{256} ; \text { return }\left(c_{2}, z\right) .
$$

Game $_{0}$ and Game ${ }_{1}$ are equivalent since μ in Game_{0} and z in Game ${ }_{1}$ are uniformly at random.
We next consider $\mathrm{PKE}^{\prime}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$, which we call SIKE-DPKE.
Lemma T.3. Assume that the SSDDH assumption holds and L is entropy-smoothing. Then, $\mathrm{PKE}^{\prime}:=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$ is disjointly-simulatable.

Proof (Proof sketch:). Statistical disjointess follows from the fact that $\left|\mathcal{S}\left(1^{\kappa}\right)\right| \approx 2^{e_{2}} \cdot 2^{n}$ and \mid Enc $^{\prime}(e k, \mathcal{M}) \mid \leq$ 2^{n}. Ciphertext indistinguishability follows from Theorem E. 1 that states that T preserves SIKE-PKE's ciphertext indistinguishability (Lemma T.2) and its OW-CPA security (Lemma T.1).

We next consider SIKE-DPKE's collision-freeness. If we consider XCFR-security, the adversary, given two encryption keys $e k_{3}^{0}$ and $e k_{3}^{1}$ with their decryption keys $d k_{3}^{0}$ and $d k_{3}^{1}$, should find μ such that $d k_{2}^{0}=\mathrm{G}\left(\mu, e k_{3}^{0}\right)$, $d k_{2}^{1}=\mathrm{G}\left(\mu, e k_{3}^{1}\right)$, and $z=\mu \oplus \mathrm{L}\left(j^{0}\right)=\mu \oplus \mathrm{L}\left(j^{1}\right)$, where $j^{i} \leftarrow$ isoex ${ }_{2}\left(e k_{3}^{i}, d k_{2}^{i}\right)$. If $j^{0} \neq j^{1}$, then it finds the collision for L, which should be hard (Lemma 2.3). For $j^{0}=j^{1}$, it seems hard to find $d k_{2}^{0}$ and $d k_{2}^{1}$ such that isoex ${ }_{2}\left(e k_{3}^{0}, d k_{2}^{0}\right)=$ isoex $_{2}\left(e k_{3}^{1}, d k_{2}^{1}\right)$. Thus, we just assume the XCFR-security of SIKE-DPKE.
Recall that FO^{\perp} is $\mathrm{U}^{\mathscr{\perp}} \circ \mathrm{T}$. Applying U^{\perp} to $\mathrm{PKE}^{\prime}=\mathrm{T}[\mathrm{PKE}, \mathrm{G}]$, we obtain $K E M=\mathrm{U}^{\mathscr{L}}\left[\mathrm{PKE}^{\prime}, \mathrm{H}\right]$. After applying our theorems, we summarize the security properties of SIKE as follows:

- SIKE-DPKE PKE' is strongly disjointly-simulatable if the SSDDH assumption holds and L is entropy-smoothing.
- Thus, SIKE is SPR-CCA-secure and SSMT-CCA-secure in the QROM.
- SIKE is SCFR-CCA-secure if the underlying PKE PKE' $=$ T[PKE, G] is SCFR-CCA-secure or XCFR-secure.
- SIKE is ANON-CCA-secure.
- SIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.
${ }^{11}$ We borrow the notation from [FNP14]. We say a family of hash functions $\mathfrak{H}=\{H: X \rightarrow Y\}$ is entropy smoothing [IZ89] if for any (Q)PPT adversary, it is hard to distinguish $(H, H(x))$ with (H, y), where $H \leftarrow \mathfrak{G}, x \leftarrow X$, and $y \leftarrow Y$.

[^0]: ${ }^{1}$ A variant of FO^{\perp} using 'pre-key' technique. They wrote "a variant of the FO^{\perp} transform" in their paper.
 ${ }^{2}$ They modify 'key-confirmation hash' $c_{1}=\mathrm{F}(\mu)$ of HFO^{\perp} with $c_{1}=\mathrm{F}\left(\mu, c_{0}\right)$, where $c_{0}=\operatorname{Enc}(e k, \mu)$.

[^1]: ${ }^{3}$ See the slides available at https://csrc.nist.gov/Presentations/2021/anonymous-robust-post-quantum-public-key-encryptio
 ${ }^{4}$ if the simulator can depend on an encryption key, then we just say pseudorandom.

[^2]: ${ }^{5}$ HQC-256 is not anonymous

[^3]: ${ }^{6}$ When $q=6 q^{\prime}+1$, Round $([-(q-1) / 2,(q-1) / 2]) \in[-(q-1) / 2,(q-1) / 2]$.
 7 'Streamlined NTRU Prime Core' in the specification.

[^4]: ${ }^{8}$ When $q=6 q^{\prime}+1$, Round $([-(q-1) / 2,(q-1) / 2]) \in[-(q-1) / 2,(q-1) / 2]$.
 9 'NTRU LPRime Core' in the specification.

