
FuzzyKey: Comparing Fuzzy Cryptographic
Primitives on Resource-Constrained Devices

Mo Zhang1,4, Eduard Marin2, David Oswald1, and Dave Singelee3

1 University of Birmingham, UK, mxz819@cs.bham.ac.uk, d.f.oswald@bham.ac.uk
2 Telefonica Research, Spain, eduard.marinfabregas@telefonica.com

3 imec-COSIC, KU Leuven, Belgium, dave.singelee@esat.kuleuven.be
4 University of Melbourne, Australia

Abstract. Implantable medical devices, sensors and wearables are widely
deployed today. However, establishing a secure wireless communication
channel to these devices is a major challenge, amongst others due to the
constraints on energy consumption and the need to obtain immediate
access in emergencies. To address this issue, researchers have proposed
various key agreement protocols based on the measurement of physiolog-
ical signals such as a person’s heart signal. At the core of such protocols
are fuzzy cryptographic primitives that allow to agree on a shared secret
based on several simultaneous, noisy measurements of the same signal.
So far, although many fuzzy primitives have been proposed, there is no
comprehensive evaluation and comparison yet of the overhead that such
methods incur on resource-constrained embedded devices. In this paper,
we study the feasibility of six types of fuzzy cryptographic primitives on
embedded devices for 128-bit key agreement. We configure several vari-
ants for each fuzzy primitive under different parameter selections and
mismatch rates of the physiological signal measurements on an MSP430
microcontroller, and then measure and compare their energy consump-
tion and communication overhead. The most efficient constructions con-
sume between 0.021 mJ and 0.198 mJ for the transmitter and between
0.029 mJ and 0.380 mJ for the receiver under different mismatch rates.
Subsequently, we modify the best performing methods so that they run in
constant time to protect against timing side-channel attacks, and observe
that these changes only minimally affect resource consumption. Finally,
we provide open-source implementations and energy consumption data
of each fuzzy primitive as a reference for real-world designs.

Keywords: fuzzy commitment · fuzzy vault · fuzzy extractor · physio-
logical signal · key agreement · energy consumption

1 Introduction

Healthcare technology is evolving at a rapid pace. Medical sensors are getting
more miniaturised, while being able to measure a broader set of people’s Phys-
iological Signals (PSs) more reliably. New generations of widely-deployed Im-
plantable Medical Devices (IMDs) are considerably lighter and smaller com-
pared to previous generations. Wearables are extensively used nowadays, also

2 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

often within the context of health monitoring. Multiple wearable and medical
computing devices can be connected to form a body area network. Besides their
application opportunities within the health domain, all these devices have in
common that they rely on a wireless interface to communicate with each other
or with external devices such as a smartphone. This increased wireless connectiv-
ity enhances without any doubt the quality of the (remote) healthcare that can
be offered to users. However, in turn, security and privacy are at stake for such
medical systems. The medical data that is being monitored on the user is clearly
privacy-sensitive. Moreover, the integrity and authenticity of the data, as well as
remote updates or commands sent to the devices, have to be protected as well.
Unfortunately, researchers have demonstrated that several medical and wearable
devices available on the market currently lack security mechanisms [10,21–23,28].

It is therefore evident that cryptographic solutions are needed to secure the
wireless interface between these devices. This includes the initial security boot-
strap process to establish a secret session key to protect the wireless communica-
tion link. However, this turns out to be a challenging research problem for various
reasons. First, most of these devices have strict resource constraints, e.g., lim-
ited memory and computational power. Furthermore, most IMDs are operated
by a single non-rechargeable and non-replaceable battery which typically lasts
between five and seven years (depending on the type of device and treatment).
Once the battery is drained, the IMD is replaced through a surgical interven-
tion that can pose risks to patients. Likewise, wearables typically contain small
batteries, e.g., powered by a button cell with approximate a thousand joules.
Thus, in such resource-constrained devices every single joule matters. Second,
these devices often do not have any input or output interfaces, such as a keypad
or a screen. Third, a subset of these medical devices, more particularly IMDs,
are not even physically accessible at all, because they are implanted in the pa-
tient. Fourth, most of the wireless connections that have to be made with these
devices cannot rely on any prior trust relation. This is because these network
connections are not static, i.e., the set of external devices one needs to connect
to can change quite often. For example, during an emergency situation, the first
doctor that is present (who may have never seen the patient before) might have
to establish a communication link to the patient’s IMD. Due to all these con-
straints, conventional key distribution and bootstrap techniques are not viable
options: key exchanges based on public key cryptography are difficult to manage
because they require establishment of a robust Public Key Infrastructure (PKI).

The use of physiological signals (e.g., a signal extracted from the user’s heart-
beat) has been proposed as an alternative to securely establish a key between two
devices that do not have any prior trust relationship. In contrast to biometrics,
where the extracted information is to some extent invariant, PSs are required to
be random signals that vary over time. The security of PS-based cryptographic
solutions relies on the fact that the user’s PS can only be obtained by making
physical contact with them (e.g., by touching the skin long enough). A com-
mon approach to agree on a key is for each of the devices to independently and
synchronously take a measurement of a given user’s PS [19, 20]. However, the

FuzzyKey 3

measurements taken by the devices are often not identical but at best rather
similar due to inherent noise introduced by the measuring process. To address
this limitation, Juels et al. [14,15] and Dodis et al. [9] introduced so-called fuzzy
cryptographic primitives, including the fuzzy commitment [15], fuzzy vault [14]
and fuzzy extractor [9], which allow two devices to agree a cryptographic key
from noisy data5.

1.1 Related Work

Fuzzy cryptographic primitives have become the basis of several PS-based cryp-
tographic protocols. For example, K Venkatasubramanian et al. [37], Hu et al.
[13] and Reshan et al. [3] utilised the fuzzy vault for key agreement based on
measurements of InterPulse Intervals (IPIs), i.e., time intervals between R-peaks
of Electrocardiogram (ECG) signal. Similarly, Cherukuri et al. proposed a PS-
based key distribution protocol based on the fuzzy commitment that is used to
securely transport a session key between two sensors [6]. Another example is the
key agreement protocol by Marin et al. which uses a fuzzy extractor in combina-
tion with IPIs [20]. It is worth noting that the security of PS-based key exchange
protocols has been exhaustively investigated over the past years. In particular,
Calleja et al. [5] and Seepers et al. [31] demonstrated that some PS, such as
those extracted from the patient’s heart, might be measured remotely without
the need for direct physical touch. Besides, the entropy of the PS itself has been
questioned, e.g., although IPI was frequently chosen as the PS used in prior se-
curity protocols, Ortiz-Martin et al. [25] challenged that IPIs may not have as
much entropy as expected. Furthermore, some PS-based key exchange protocols,
such as [6, 29], have been proved to be vulnerable to certain attacks [19].

While PS-based solutions have been frequently designed and analysed, little
effort has been devoted into studying the feasibility of fuzzy primitives (as the
core of such schemes) in resource-constrained systems as well as how to configure
them to optimise performance. This is in contrast to “traditional” cryptographic
algorithms, whose efficient implementation on resource-constrained devices has
been widely studied, see e.g., [11, 24,32].

1.2 Contributions

In this paper, we present implementations and evaluations of PS-based 128-bit
key agreement based on fuzzy cryptographic primitives on an MSP430, which is
a representative low-power microcontroller similar to the one used in commercial
IMDs or wearables. Our main contributions are:

1. We implement and optimise six fuzzy cryptographic primitives for PS-based
key exchange. Our implementation can be easily ported to different platforms.

5 Apart from being used in PS-based key exchange protocols, fuzzy schemes are also
used in other areas such as biometrics and Physical Unclonable Functions (PUFs) [2,
4, 8, 9], where traditional cryptographic algorithms are not directly applicable.

4 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

2. We evaluate and compare the resource consumption (energy consumption and
communication overhead) of each construction under various parameter set-
tings both at the transmitter and receiver using an MSP430. We demonstrate
that fuzzy primitives are feasible on a resource-constrained embedded device.
We show how parameter selection affects the performance and report on the
overall best-performing fuzzy primitives under different metric spaces. To the
best of our knowledge, we are the first to provide a systematic evaluations of
various fuzzy primitives on resource-constrained devices.

3. We implement countermeasures against timing attacks for the most efficient
constructions, and show that our protected implementations reduce timing
leakage below the statistical significance threshold, while only minimally af-
fecting resource consumption.

Our source code is available under the following link: https://github.com/M
rZMN/FuzzyKey

Paper organisation. The remainder of this paper is organised as follows: in Sec-
tion 2, we introduce the mathematical background of fuzzy primitives, commonly
used components, and concrete constructions used in this paper. In Section 3,
we explain our security assumptions and how to instantiate the constructions of
fuzzy primitives. We give implementation details in Section 4, before evaluating
the performance of all fuzzy primitives in Section 5. We conclude in Section 6.

2 Background

In this section, we describe the mathematical background required for this paper,
and discuss several fuzzy cryptographic algorithms. Elementary computations
are in GF (2m). In this paper, we consider m ≤ 8 so that computations are fast on
constrained embedded devices and most variables fit in one byte. A metric space
M is a finite set. For each M , there is a definite integer distance dist (m1, m2)
between any two elements m1 and m2. The fuzzy primitives discussed in this
paper rely on two different kinds of metric spaces: (i) Hamming metric space and
(ii) set metric space. In a Hamming metric space, M = F ` for an alphabet F .
dist(m1,m2) in M is the Hamming distance, which is the number of positions
that m1 differs from m2. For example, for M = {0, 1}3, dist({0, 0, 0}, {1, 1, 1})
= 3. Besides, the number of non-zero elements in m1 is called m1’s Hamming
weight. In a set metric space, M contains all s-element subsets of a universe
U . dist() in M is the set difference, which is the size of symmetric difference
(defined by symdiff(m1, m2) = {x ∈ m1 ∪m2 | x /∈ m1 ∩m2}). For example,
U = GF (23) and s = 3, dist({0, 1, 2}, {0, 1, 3}) = 2. dist(m1,m2) is an even
number when the size of m1 and m2 is the same.

The inputs of the fuzzy primitives working on these two metrics are different.
For this paper, the input is the physiological value converted from a PS. For
Hamming metric methods, the input is a bit string that can be generated by
concatenating the bit representations of PSs, such as heart rates, which makes
these methods flexible for different types of PS. However, because a bit string is

https://github.com/MrZMN/FuzzyKey
https://github.com/MrZMN/FuzzyKey

FuzzyKey 5

consecutive, these methods are sensitive to dislocation and erasure errors on the
measurements (e.g., due to peak misdetection when using the heart beat [30]).
One bit erasure at the start of a bit string might lead to a significant increase in
the Hamming distance. Set metric methods alleviate these problems to a certain
extent. The input in this case is a set, and even if there are order-difference or
erasure problems on set elements, the set difference will not vary substantially.
However, converting one specific PS into a set whose elements are randomly
distributed in U can be complicated, especially when the size of U is large.

Error correction codes. Error Correction Codes (ECCs) are frequently used to
achieve error-tolerance in this paper. An ECC comprises encoding and decoding
phases. In the encoding phase, the original data is encoded as a codeword, where
some form of redundancy is added. When errors appear in the codeword, the
decoding phase recovers the original data if the total number of errors is below
the error tolerance limit. ECCs are represented by the triple {n, k, t}, where n
is the number of symbols of the codeword, k is the number of symbols of the
data (k < n), and t is the maximum number of errors that can be corrected in a
codeword. The error tolerance is then t/n. We focus on two linear ECCs, namely
binary Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes, as
already recommended in the first papers on fuzzy primitives [9, 14, 15]. They
provide flexible parameter selection as well as efficient encoding and decoding
methods. As we will show in the next sections, an efficient ECC can greatly
improve the performance of the fuzzy cryptographic algorithms.

2.1 Fuzzy cryptographic primitives for PS-based key exchange

We briefly describe all fuzzy cryptographic primitives evaluated in this paper and
show their use for PS-based 128-bit key exchange. We distinguish two types: (i)
based on Hamming distance (fuzzy commitment, code-offset and syndrome) and
(ii) based on set difference (fuzzy vault, improved Juels–Sudan and Pinsketch).

We denote the transmitter and receiver that agree on a cryptographic key
as TX and RX, and refer to the physiological values generated by TX and RX

as ps and ps′.
Ext←−− denotes extraction of ps or ps′ from raw PS measurements,

and
R←− denotes random number generation.

Shuffle←−−−−− refers to randomly mixing
elements in a set, while calculating the roots of a polynomial is denoted as
roots←−−−. We write (0, 1)` for an `-bit length string and {x, y}s for a set comprising
s distinct elements. In all fuzzy cryptographic constructions described below, the
first step is to extract ps and ps′, which we will omit in the rest of this section.

In a fuzzy commitment [15], TX generates a random key and encodes it to
form a codeword (Figure 1a). Subsequently, TX masks the codeword by XORing
it with ps and then sends the resulting value (denoted by fc) to RX. Upon receiv-
ing fc, RX generates codeword′ by XORing fc with ps′. Only if the mismatch
rate between codeword and codeword′ is less than the ECC’s error tolerance
limit, RX can successfully recover the key previously generated by TX.

6 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

TX RX

ps
Ext←−− (0, 1)n ps′

Ext←−− (0, 1)n

key
R←− (0, 1)128

codeword = Encode(key)

fc = codeword⊕ ps
fc

codeword′ = fc⊕ ps′

codeword = Decode(codeword′)

key ←− codeword

(a) Fuzzy commitment

TX RX

ps
Ext←−− {x, y}s ps′

Ext←−− {x, y}s

key
R←− (0, 1)128

key = {k1 ‖ k2 ‖ ... ‖ kd}; p(x) = kix
i−1, i ∈ {1, 2, ..., d}

Generate g valid points (x, y), x ∈ ps, y = p(x)

Generate b chaff points (x, y), x /∈ ps, (x, y) not on p(x), b� g

points
Shuffle←−−−−− valid+chaff points

points

points′ = {(x, y)}, (x, y) ⊆ points, x ∈ ps′

p(x) = Decode(points′)

key ←− p(x)

(b) Fuzzy vault

Fig. 1: Fuzzy cryptographic primitives.

The fuzzy vault (Figure 1b) [14] is designed to “lock” a key using a set of
features A. It can be unlocked only by using a set of features B that is sufficiently
similar to A. Concretely, TX generates a key and embeds it in a univariate
polynomial p(). Then, TX mixes and sends valid points (x, y), where x is in ps
and y = p(x), and invalid points (also known as ‘chaff points’) that do not lie on
p(). For each received point, RX verifies whether x is in ps′, and then performs
polynomial reconstruction based on all the matched points. Only if the overlap
between ps and ps′ is sufficiently large, RX can successfully recover the key.

Both fuzzy commitment and fuzzy vault transport a key using two similar PS
measurements. In contrast, fuzzy extractors [9] extract the key from the PS itself.
Generally, the mismatches of PS measurements at TX and RX are corrected by
sharing “helper data”. Afterwards, both sides use the agreed PS to extract the
cryptographic key with a strong random extractor (e.g., a secure hash function).
We consider four fuzzy extractors in Hamming and set metrics. We omit the key
extraction step below as it is the last step shared by all constructions.

The code-offset construction (Figure 2a) is similar to the fuzzy commitment
scheme, but here ps is the secret, while in fuzzy commitment, ps conceals the key.
In particular, TX generates a random nonce and encodes it as codeword using
the ECC. Then, TX sends ss = codeword ⊕ ps. RX obtains the codeword′ =
ss⊕ ps′ = codeword⊕ ps⊕ ps′ and can decode it to codeword if the mismatch
rate is within bounds. Finally, RX recovers ps = codeword⊕ ss.

The syndrome construction (Figure 2b) is based on syndrome decoding of an
ECC. Concretely, TX and RX regard ps and ps′ as a codeword and calculate
syndromes syn and syn′, respectively. TX sends syn to RX, who calculates
syn ⊕ syn′. For mismatch vector mis = ps ⊕ ps′, syn ⊕ syn′ is the syndrome
of mis, which decodes to mis if the mismatch rate is within bounds. Then, one
recovers ps = mis⊕ ps′. Compared to code-offset construction, the syndrome is
always shorter than the codeword, reducing the communication overhead.

In the improved Juels–Sudan construction (Figure 2c), TX uses the monic
polynomial p(x) =

∏
w∈ps (x−w) with roots as elements in ps and writes it as the

sum phigh() + plow(). TX calculates the coefficients of phigh() and sends them

FuzzyKey 7

to RX. Then, RX generates points (x, y) where x is in ps′ and y = phigh(x).
If ps′ ≈ ps, most points will also be on plow(), so RX can reconstruct it and
obtain ps by finding roots of p(). Compared with fuzzy vault, the communication
overhead is much lower as only some coefficients have to be sent.

The Pinsketch construction (Figure 2d) is based on an ECC. For universe
size u = 2m − 1, a set set can be viewed as a vector {0, 1}u, with 1 at position
where x ∈ set and 0 otherwise. In this way, ps and ps′ are written as two such
u-element vectors v, v′ whose Hamming weight is the set size s. TX and RX
calculate the syndromes sstx and ssrx of v and v′. Afterwords, TX sends sstx
to RX, while RX computes syn = sstx⊕ssrx. If the mismatch rate is under the
error tolerance of the ECC, the syndrome decoding result of syn is the symmetric
difference between sets ps and ps′, which helps correct the mismatches. Because
v and v′ are binary vectors, BCH codes are particularly suitable [9].

TX RX

ps
Ext←−− (0, 1)n ps′

Ext←−− (0, 1)n

nonce
R←− (0, 1)k

codeword = Encode(nonce)

ss = codeword⊕ ps
ss

codeword′ = ss⊕ ps′key = StrongExtractor(ps)

codeword = Decode(codeword′)

ps = ss⊕ codeword

key = StrongExtractor(ps)

(a) Code-offset construction

TX RX

ps
Ext←−− (0, 1)n ps′

Ext←−− (0, 1)n

syn = Syndrome(ps) syn′ = Syndrome(ps′)

syn

syn′ = syn⊕ syn′key = StrongExtractor(ps)

ps = Decode(ps′, syn′)

key = StrongExtractor(ps)

(b) Syndrome construction

TX RX

ps
Ext←−− {x, y}s ps′

Ext←−− {x, y}s

ss = {ss1, ss2, ..., sst}, ssi =
∑

S⊆ps,|S|=i

(
∏

xj∈S
xj)

ss

phigh(x) = xs +
∑s−1

j=s−tss(j−s+t+1)x
jkey = StrongExtractor(ps)

points = {(x, y)}, x ∈ ps′, y = phigh(x)

plow(x) = Decode(points)

ps
roots←−−− phigh(x) + plow(x)

key = StrongExtractor(ps)

(c) Improved Juels–Sudan construction

TX RX

ps
Ext←−− {x, y}s ps′

Ext←−− {x, y}s

sstx = {st1, st3, ...,
st2t−1}, sti =

∑
x∈ps xi

ssrx = {sr1, sr3, ...,
sr2t−1}, sri =

∑
x∈ps′ x

i

sstx

syn = {syn1, syn3, ..., syn2t−1},
syni = sti ⊕ sri

key = StrongExtractor(ps)

ps = Decode(ps′, syn)

key = StrongExtractor(ps)

(d) Pinsketch construction

Fig. 2: Fuzzy extractor constructions.

3 Design Security and Parameter Selection

To provide a systematic comparison and evaluation of fuzzy primitives for PS-
based key exchange on resource-constrained embedded systems, we make several
design decisions: Taking into account the limits on energy consumption and com-
putational resources in a body-area network scenario and the fact that keys are

8 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

often short-lived, we limit ourselves to 128-bit keys. Furthermore, we only con-
sider key exchange between two devices. We note that subsequent protocol steps,
such as key confirmation step to ensure that TX and RX derive the same 128-bit
key, are independent of the underlying fuzzy primitive and hence do not consider
those steps. We also note that fuzzy primitives are only responsible for correct-
ing the mismatches of the PS, i.e., we do not consider errors on the wireless
channel, and assume that the underlying wireless protocol includes appropriate
error detection and correction measures.

Adversary model. We consider a strong adversary who knows all details about the
used fuzzy primitives and has full access to the communication channel between
TX and RX. The adversary can (i) perform passive attacks by eavesdropping on
the communication and exploiting information leakage from it. For example, if
ps and ps′ in a fuzzy commitment are low-entropy, the adversary can statistically
analyse their distribution and thus compromise the security [26]. Alternatively,
correlation-based methods that leverage the correlation between communication
data over multiple key exchange sessions can be used [16]. On the other hand,
the adversary can also (ii) carry out active attacks, i.e., act as Man-In-The-
Middle (MITM) or replay old sessions. Finally, the adversary can also observe
and exploit secret-dependent timing leakage e.g., the precise time between two
protocol messages, both in passive and active attacks.

We assume that the measured PS cannot be modelled or predicted and cannot
be remotely obtained. The latter implies that adversary can be in proximity to
the user but cannot touch him directly or indirectly (because this would allow
the adversary to measure the signal), nor being able to compromise a device
worn by the user to measure the PS. In the research community, this touch-to-
access access control model is widely accepted as it offers a reasonable trade-
off between security and availability [23,29]. Although the security may rely on
user awareness to some extent, this model ensures high availability in emergency
situations where fast establishment of a secure channel to the IMD is vital. For
this reason, we leave physical side-channel and other attacks with direct access
(such as fault injection) out of the adversary model, as in this case, the adversary
can equally measure the PS directly for key recovery. We also do not consider
Denial-of-Service (DoS) attacks such as jamming or battery depletion attacks.

Countermeasures against passive attacks. The underlying security of the fuzzy
commitment against offline attacks depends on the entropy of the bit strings
ps and ps′ extracted from PS as these are used to conceal the key (by XOR)
while being transported. The security of fuzzy vault relies on the fact that the
adversary cannot distinguish between valid and chaff points, and hence is unable
to reconstruct p(). For a fuzzy vault scheme with parameters g, b and d (cf.
Figure 1b), the adversary would need an average of

(
g+b

(g+d)/2

)
/
(

g
(g+d)/2

)
attempts

to reveal p() (assuming that Berlekamp-Welch decoding is used). Therefore, the
number of chaff points needs to be sufficiently large.

For fuzzy extractors, the security depends on the entropy of the PS itself as
the key is directly extracted from the PS. Due to the leakage of helper data, there

FuzzyKey 9

will be an amount of entropy loss on PS in each construction. For code-offset and
syndrome constructions, the entropy loss is (n−k) · f , where n, k come from the
underlying (n, k, t) ECC, and f is the number of bits constituting each symbol.
The entropy loss is t · log2 u for the improved Juels–Sudan construction, and is
t · log2(u+1) for the Pinsketch construction, where u is the universe size and t is
the maximum set difference between ps and ps′. Note that the above represent
worst case entropy loss values [9]. Some of them were also proven to be overly
pessimistic [8]. To ensure security, we regard the worst-case values as the actual
entropy loss in this paper. Because we only focus on 128-bit key agreement, if
the remaining entropy of PS (the agreed PS before input to the strong extractor)
is ≥ 128 bit, the fuzzy extractor is considered secure.

For correlation-based attacks, note that in the case of PS-based key exchange,
the PS has to vary over time and the exchanged key (generated randomly by the
device or extracted from the PS) is short-lived and different in each session [19],
unlike scenarios based on non-variable materials, e.g., biometrics or PUFs. This
means that correlation attacks are prevented by the nature of the application.

Countermeasures against active and timing attacks. Due to the varying key,
replay attacks are by design prevented. Other active attacks (such as guessing-
based ones) require the adversary to break the fuzzy primitive “online” within
a single protocol session [3, 17], otherwise, they at most result in failure of the
key exchange and are detected by subsequent key confirmation. They can thus
be prevented by generating a secret with substantially high entropy. Active at-
tacks based on accurate measurement or modelling of the underlying PS [5] are
outside our adversary model. Timing attacks can be generically prevented using
constant-time implementations techniques, which we further discuss in Section 4.

Assumptions on physiological signal. The selection of the PS (e.g., IPI) and its
quality as an entropy source, although an important issue, are out of the scope
of this paper. However, we would like to stress that the quality of PS only affects
the total measurement time, e.g., a lower quality of the entropy source means
longer measurements. In order to generate the input for the fuzzy primitives, a
set of pre-processing methods (e.g., quantisation and coding [25]) is applied to
the raw PS measurements. However, this is out of the scope of this paper.

Assumptions on fuzzy primitive input. The inputs of fuzzy primitives (i.e., ps
and ps′ in Section 2.1) are extracted from some PS which is measured by two
devices simultaneously. There are several factors that affect the similarity of ps
and ps′, e.g., the type of PS, the measurement accuracy of the sensor, and the
signal processing method. To evaluate and compare different fuzzy primitives, it
is necessary to consider pre-defined mismatch rates (i.e., percentage of different
bits/set elements) between ps and ps′, which reflect the characteristics of differ-
ent kinds of scenarios. In this paper, we consider three mismatch thresholds of
2%, 5% and 10%. While the authors of [38,39] reported that the mismatch rate
for heart rate measurements is typically below 5%, we note that other PSs might
have slightly higher mismatch thresholds. We also note that unlike BCH codes,

10 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

RS codes are multi-bit-symbol based. Thus, for RS code variants, the above
thresholds indicate the percentage of different symbols rather than bits. Addi-
tionally, one should note that the average bit error rate (i.e., the possibility that
each bit differs for two bitstrings) may be more broadly used on the Hamming
metric in other application scenarios, thus, we also provide this information for
each variant in Table 2 (with a maximum tolerable failure rate of 10−6). This
maximum average bit rate that can be tolerated needs to be considered when
selecting the most appropriate error correcting code.

Here, we assume that ps and ps′ are `-bit strings that are random and uni-
formly distributed for Hamming metric methods, or sets containing s distinct
elements that are uniformly distributed in a universe U for set metric methods.
This assumption is only made for fairly comparing different fuzzy primitives;
both fuzzy commitment and fuzzy vault naturally require the input to be uni-
formly randomly distributed to ensure security6. Additionally, if the fuzzy prim-
itive inputs are not uniformly distributed, it is hard to quantify the entropy level
of the PS and establish a unified mismatch rate threshold. Under this assump-
tion, the initial entropy of the PS is ` for Hamming metric fuzzy extractors,
while for set metric fuzzy extractors, it is log2

(
u
s

)
with u the size of U .

Parameter selection. The mismatch rate between ps and ps′ directly determines
the error tolerance requirement of the fuzzy primitives. For Hamming metric
methods, the error tolerance is the same as that of the underlying ECC (i.e.,
t/n for an (n, k, t) code). For example, (50, 44, 1) and (20, 15, 1) BCH codes are
suitable when the maximum mismatch rate is 2% and 5%, respectively. However,
RS codes cannot provide exact 2%, 5% and 10% error tolerance because of their
inherent structure. Therefore, we selected several RS constructions with error
tolerance within 2% + the pre-defined mismatch rate thresholds. For example,
the error tolerance of a (31, 29, 1) RS code is 3.23%. As mentioned in Section 2,
all codes stay within the field GF (28). For set metric methods with (u, s, t)
structure, where u is the universe size, s the set size and t the maximum tolerable
set difference between ps and ps′, the error tolerance is t/2s.

For each fuzzy primitive, there can be multiple feasible parameter choices
under the same mismatch rate, e.g., using different configurations of ECCs may
achieve the same error tolerance. The difference between them is that the repe-
tition count might be different: Assume the total repetition count is r and the
number of secret bits distributed in each iteration is i, we need to ensure that
r · i ≥ 128 to achieve 128-bit security. This way, RX concatenates the secret bits
it receives in each iteration to form the 128-bit key. The security of subsequen-
t/parallel execution based on linear codes has been proven in [8]. Note that i is
the length of the key distributed per iteration for fuzzy commitment and fuzzy
vault, but the remaining entropy of PS for fuzzy extractors. Consider a fuzzy
commitment that is based on (50, 44, 1) and (200, 168, 4) BCH codes (both

6 However, this requirement can be alleviated with the combination of a Password
Authenticated Key Exchange (PAKE), as shown in [17]. Note that fuzzy extractors
can still be securely used even if the inputs are not uniformly distributed.

FuzzyKey 11

handle mismatch ≤ 2%) as an example. In order to distribute a 128-bit key, the
former variant needs to be executed three times (3 · 44 > 128), while the latter
only needs to be executed once. Although more iterations may be required, small
parameter choices (e.g., an ECC with a small block size) almost always mean
less computation and hence less energy consumption. Therefore, we test different
variants under the same mismatch threshold. A variant with larger parameter
choice is considered only if it reduces the number of required iterations. Besides,
under each mismatch rate, the variants used by different fuzzy primitives in each
metric are the same, thus help with the performance comparison.

Note that for Hamming metric methods, the number of feasible variants de-
pends on the number of underlying ECCs that achieve the pre-defined mismatch
thresholds. We give all feasible variants for Hamming metric in Table 2. For set
metric methods, there are more possible (u, s, t) variants because (i) the universe
size u can vary depending on how a PS is converted to a set and (ii) multiple
s and t combinations can achieve the same error tolerance. In this paper, we
use u = 255, which is the maximum universe size for the Pinsketch construction
on GF (28). We define three variants (255, 50, 2), (255, 20, 2) and (255, 10, 2)
for 2%, 5%, and 10% mismatch rate thresholds. These variants are provided for
reference only, and one could devise more appropriate variants for set metrics
with specific mappings from PS to set. Finally, the fuzzy vault construction over
GF (28) is insecure, because the number of chaff points is ≤ 28. However, for
our performance evaluation in Section 5, we limit ourselves to GF (28), and note
that the system can be easily extended to larger fields (e.g., GF (216)).

4 Implementation

We implemented, ran, and measured all algorithms on a TI MSP430FR5969
LaunchPad development board [34]. This board comprises a 16-bit microproces-
sor with 2 kB volatile SRAM and 64 kB permanent FRAM, which is represen-
tative for low-power body area network devices (including e.g., IMDs). We also
alternatively used an MSP430FR5994 development board [35] with 8 kB SRAM
for certain variants that require more resources, and indicate this in Table 2.
For development, we used TI’s Code Composer Studio as it provides integrated
functionality for on-device energy consumption measurement.

Implementation of the strong extractor. Considering many embedded microcon-
trollers, including the MSP430 used in this paper, feature a hardware AES accel-
erator, we opted to use a block cipher-based hash function, with AES as the un-
derlying cipher. We selected the Hirose construction [12] for the strong extractor
in our implementation. Hirose is a double-block-length hash with Merkle–Damg̊ard
structure. We measured the average energy consumption of each invocation of
the Hirose compression function on MSP430FR5969 to be 1.42 µJ. Depending on
the availability of a fast hardware/software implementation, other hash functions
such as SHA256 can be used instead of Hirose.

12 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

Software development and energy measurement. We implemented all algorithms
in plain C and mainly relied on standard C libraries so that our implementation
can be easily ported to other platforms. For random number generation and
hardware-accelerated AES, we used TI’s driver APIs. The tested average energy
consumption of generating 16 bytes when using TI’s random number generator
API is 2.5 µJ. Certain components can be implemented in different ways. For
example, there are a variety of algorithms for ECCs. We chose commonly used,
efficient algorithms: for BCH and RS encoding, we used standard cyclic code
encoding, and for decoding we used the Berlekamp decoding method [18]. For
polynomial reconstruction, we used the Berlekamp-Welch algorithm.

We carried out the energy consumption measurement using TI energyTrace
tool. This functionality allows to take accurate on-device energy measurement
from the Code Composer Studio IDE. For each measurement, we averaged the
energy consumption value over 100 executions of the respective algorithm. To
test the error correction ability of the fuzzy primitives, we artificially added
the maximum tolerable number of mismatches on the PS in the code, and then
measured the corresponding energy consumption. We used TI Ultra Low Power

Advisor tool to refactor our code and minimise energy consumption. Overall,
we found that these optimisations reduced the energy consumption ≤ 10%.

Estimation of communication energy cost. The energy consumption of a protocol
between multiple devices comprises two components: (i) the energy consumption
of computations; and (ii) the energy consumption of wireless communication. In
this paper, we only measure the energy consumption of computation, and model
the cost of wireless communication based on the number of bits to be transmitted
and received. In particular, in Section 5, we use the experimental results of [24]
for a TelosB [7], a wireless sensor node based on a 16-bit MSP430 microcontroller
and a CC2420 transceiver to illustrate the impact of communication overhead
on overall energy consumption. Their results show that for 75 kbps data rate
and -5 dBm transmit power, the average energy required to transmit one bit of
effective data is 0.72µJ, and the energy required to receive this bit is 0.81µJ.

We acknowledge that a simplistic “energy-per-bit” model may be inadequate
e.g., when using packet-based protocols such as Bluetooth Low Energy (BLE)7,
where the constant overheads due to the frame structure and other steps (e.g.,
wakeup and preparation) can be substantial. Therefore, we also provide the
number of payload bits for each variant in Table 2, which can be fed into a
more appropriate energy consumption model for a specific wireless protocol (e.g.,
informed by measurements as reported in [33]). We note that many widely used
protocols support payloads large enough to accommodate all our variants in
one packet (e.g., 246 bytes for BLE). This minimizes the impact of the frame
structure, thus, when considering such protocols, the different implementations
can be compared purely based on their computational energy cost.

Defenses against timing side channels. We implemented countermeasures against
timing-based side-channel attacks on the best-performing variants (i.e., fuzzy

7 BLE is already being used in commercial IMDs e.g., Medtronic Azure pacemakers [1].

FuzzyKey 13

primitives with lowest total energy consumption under different mismatch thresh-
olds, cf. Table 4). We found that non-constant execution time mainly arises in the
ECC encoding/decoding processes through various conditional branches depend-
ing on a value being negative. To address this, we replaced all such conditional
branches with Boolean operators, and used other constant-time implementation
techniques, such as constant-time modulo reduction (based on Barrett reduction)
and constant-time sorting.

TX RX

protected unprotected protected unprotected

fuzzy primitive variant t-value energy(mJ) t-value energy(mJ) t-value energy(mJ) t-value energy(mJ)

Syndrome extractor (31,29,1)RS 0.06 0.016 92.69 0.021 0.73 0.023 2039.85 0.029
Syndrome extractor (31,27,2)RS 1.64 0.029 2220.64 0.037 1.67 0.043 352.48 0.053
Syndrome extractor (63,49,7)RS 0.99 0.136 4927.79 0.198 0.80 0.237 438.42 0.308
Pinsketch extractor (255,50,2) 1.01 0.089 242.24 0.046 0.72 0.168 733.98 0.127
Pinsketch extractor (255,20,2) 0.77 0.052 468.67 0.044 0.91 0.208 428.64 0.201
Pinsketch extractor (255,10,2) 0.20 0.066 298.66 0.067 6.63 0.377 236.67 0.380

Table 1: Effects of timing side-channel defenses on timing leakage (measured by
Welch’s t-test) and energy consumption.

We empirically verified the effects of implementing the above countermea-
sures, including the effect on timing leakage and energy consumption (commu-
nication overhead included). We used dudect [27] to evaluate the timing leakage
of the TX and RX implementations running on the MSP430FR5969. The results
are given in Table 1. The timing leakage of a program is evaluated by Welch’s t-
test in dudect. For each TX and RX implementation, the t-value in Table 1 was
computed using 10,000 timing measurements. For a t-value ≤ 10, dudect regards
the timing leakage as insignificant given the number of timing measurements.

It is evident that the baseline implementations exhibit strong timing leakage,
while the protected variants significantly reduce the leakage below the constant-
time threshold of the t-test in dudect. Besides, the energy consumption is not
significantly increased for the protected variants. In fact, in some cases the en-
ergy consumption even decreases because of the use of Barrett reduction, which
replaces the costly modulo operation otherwise implemented through division.

5 Performance evaluation

We implemented 22 variants of fuzzy primitives in total for the Hamming metric
and three for the set metric. For each variant, we measured its computational
energy consumption and estimated the communication cost at both TX and RX
sides, and give the input size (extracted from the PS) required to achieve 128-bit
security. Table 3 shows the main building blocks used by each fuzzy primitive.

In the following, we focus on the evaluation and comparison of selected vari-
ants. We include full, detailed results for all variants in Table 2. As mentioned,
we base our estimation of communication costs on the values of 0.72µJ per
bit for TX and 0.81µJ for RX [24], but also provide the number of exchanged
payload bits for use with other models to estimate communication energy.

1
4

M
o

Z
h
a
n
g
,

E
d
u
a
rd

M
a
rin

,
D

av
id

O
sw

a
ld

,
a
n
d

D
av

e
S
in

g
elee

Table 2 shows the detailed measurement results for all considered fuzzy primitive instantiations in both the Hamming and
set metric. We include the following characteristics of each variant: error tolerance, maximum average bit error rate, required
number of iterations to achieve 128-bit security, computational energy cost at TX/RX (excluding communication cost), commu-
nication overhead (in bits transmitted/received), and required number of bits extracted from the PS. ∗ indicates implementation
on MSP430FR5994 due to memory requirements.

Fuzzy commitment Code-offset construction Syndrome construction

Error
tolerance

Max. average bit
error rate

Variant # iterations PS data (bit) TX
(mJ)

RX
(mJ)

Comm
(bit)

TX
(mJ)

RX
(mJ)

Comm
(bit)

TX
(mJ)

RX
(mJ)

Comm
(bit)

2% 0.0016% (50, 44, 1) BCH 3 150 0.022 0.079 150 0.030 0.091 150 0.052 0.084 36
2% 0.0146% (100, 86, 2) BCH 2 200 0.037 0.201 200 0.045 0.215 200 0.127 0.207 56
2% 0.0854% (200, 168, 4) BCH 1 200 0.082 0.389 200 0.087 0.404 200 0.244 0.394 64

3.23% 0.0037% (31, 29, 1) RS 1 155 0.011 0.017 155 0.016 0.021 155 0.014 0.021 10
5% 0.0024% (20, 15, 1) BCH 9 180 0.029 0.107 180 0.047 0.127 180 0.070 0.120 90
5% 0.0273% (40, 28, 2) BCH 5 200 0.034 0.225 200 0.046 0.239 200 0.128 0.235 120
5% 0.0854% (60, 42, 3) BCH 4 240 0.047 0.344 240 0.059 0.357 240 0.221 0.354 144
5% 0.1728% (80, 52, 4) BCH 3 240 0.076 0.526 240 0.085 0.545 240 0.294 0.533 168
5% 0.2842% (100, 65, 5) BCH 2 200 0.080 0.505 200 0.091 0.519 200 0.306 0.505 140
5% 0.9005% (220, 136, 11) BCH 1 220 0.176 0.925∗ 220 0.179 0.976∗ 220 0.725 1.096∗ 176

6.67% 0.0038% (15, 13, 1) RS 3 180 0.020 0.027 180 0.029 0.041 180 0.026 0.039 24
6.45% 0.0662% (31, 27, 2) RS 1 155 0.019 0.034 155 0.023 0.040 155 0.023 0.037 20
10% 0.0031% (10, 6, 1) BCH 22 220 0.060 0.141 220 0.099 0.180 220 0.103 0.180 176
10% 0.0407% (20, 10, 2) BCH 13 260 0.046 0.307 260 0.073 0.331 260 0.175 0.331 260
10% 0.1429% (30, 15, 3) BCH 9 270 0.044 0.399 270 0.065 0.420 270 0.259 0.428 270
10% 0.2904% (40, 16, 4) BCH 8 320 0.067 0.732 320 0.085 0.745 320 0.394 0.735 384
10% 0.4822% (50, 23, 5) BCH 6 300 0.074 0.786 300 0.091 0.797 300 0.452 0.785 360
10% 0.6855% (60, 27, 6) BCH 5 300 0.077 0.878 300 0.092 0.896 300 0.548 0.885 360
10% 1.2713% (90, 34, 9) BCH 4 360 0.131 1.713 360 0.145 1.730 360 0.965 1.724 504
10% 1.8153% (120, 43, 12) BCH 3 360 0.156 2.102 360 0.168 2.110 360 1.276 2.085 504
10% 3.0090% (210, 70, 21) BCH 2 420 0.288 3.340∗ 420 0.306 3.480∗ 420 2.637 4.025∗ 672

11.11% 2.4626% (63, 49, 7) RS 1 378 0.103 0.247 378 0.107 0.252 378 0.138 0.240 84

Fuzzy vault Improved Juels–Sudan construction Pinsketch construction

Error
tolerance

Variant # iterations TX
(mJ)

RX
(mJ)

PS data
(bit)

Comm
(bit)

iterations TX
(mJ)

RX
(mJ)

PS data
(bit)

Comm
(bit)

iterations TX
(mJ)

RX
(mJ)

PS data
(bit)

Comm
(bit)

2% (255, 50, 2) 1 2.534 7.036∗ 400 4080 1 0.391 18.957∗ 400 16 1 0.034 0.114 400 16
5% (255, 20, 2) 1 1.354 0.640 160 4080 2 0.132 2.980 320 32 2 0.021 0.175 320 32
10% (255, 10, 2) 2 1.906 0.238 160 8160 4 0.073 2.320 320 64 4 0.021 0.328 320 64

Table 2: Evaluation of Hamming and set metric methods

FuzzyKey 15

TX side RNG ECC
encoding

XOR Hash Syndrome
gen.

Find poly.
coeffs

Gen. points
on p()

Gen. chaff
points

Shuffle
points

Fuzzy commitment
Fuzzy vault
Code-offset extractor
Syndrome extractor
Improved JS extractor
Pinsketch extractor

RX side ECC
decoding

XOR Reconstruct
p()

Syndrome
gen.

Hash Gen. points
on p()

Filter
points

Find root
on p()

Fuzzy commitment
Fuzzy vault
Code-offset extractor
Syndrome extractor
Improved JS extractor
Pinsketch extractor

Table 3: Main building blocks of fuzzy primitives for TX and RX.

5.1 Hamming metric constructions

The minimum number of input bits derived from the PS is given as n · f · r, where
n is the codeword length of the chosen ECC, f is the number of bits constituting
a symbol, and r is the number of repetitions (i.e., how many iterations of the
primitive are required for 128-bit security). Depending on the specific variant,
between 150 and 420 PS-derived bits are required (cf. Table 2). However, as
we focus on the fuzzy primitive itself, rather than the conversion from PS to
the algorithm input, we provide these values for reference only and to guide
developer decisions in specific situations.

Computation costs. Figure 3 shows the energy cost of the Hamming metric
fuzzy primitives. For each mismatch threshold, we show four variants of each
fuzzy primitive and note that they are adequate to indicate the overall trend.
At TX side, we observe that the fuzzy commitment consumes the least energy.
The cost of the code-offset extractor is generally slightly higher than the fuzzy
commitment under different mismatch rates. This result is in line with our ex-
pectations, because the code-offset extractor can be seen as a fuzzy commitment
with additional invocation of a strong extractor. The syndrome fuzzy extractor
involves the most energy-intensive computations. This is because syndrome gen-
eration for BCH and RS codes is an expensive operation that involves repeatedly
evaluating p(x) given x, which requires a number of iterative operations.

At RX side, we note that the energy consumption of the fuzzy commitment is
also the smallest. The difference in computational energy consumption between
the code-offset and syndrome extractors is often small because both extractors
share several building blocks. Note that, even if the syndrome extractor has an
extra “syndrome generation” block compared to the code-offset extractor (cf.
Table 3), the actual execution of these constructions is equivalent.

Regarding ECC choice, the RS code performs substantially better than BCH
for mismatch rates below 5%. However, for 10% mismatch, the chosen RS code
is worse than the best BCH variant. However, note that e.g., the (63, 49, 7)
RS instance can accommodate up to 343-bit distribution per iteration for the
fuzzy commitment, while we only require 128 bits, which is not optimal if only
considering computational energy consumption.

16 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

2% 5% 10%
Mismatch Rate (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

TX TX
TX

RX RX
RX

(50,44,1)BCH
TX TX TX

RX RX
RX

(20,15,1)BCH
TX TX TX

RX RX RX

(10,6,1)BCH

TX TX TX

RX RX

RX

(100,86,2)BCH(100,86,2)BCH

TX TX

TX

RX RX
RX

(80,52,4)BCH

TX TX

TX

RX RX RX
(60,27,6)BCH

TX TX
TX

RX RX

RX

(200,168,4)BCH

TX TX

TX

RX
RX

RX
(220,136,11)BCH

TX TX

TX

RX RX
RX(120,43,12)BCH

TX TX
TX

RX RX

RX

(31,29,1)RS
TX TX

TX

RX RX

RX

(31,27,2)RS
TX TX

TX

RX RX

RX

(63,49,7)RS

computation cost
communication cost
Fuzzy Commitment
Code-offset Fuzzy Extractor
Syndrome Fuzzy Extractor

Fig. 3: Energy consumption of Hamming metric primitives.

Combined computation and communication cost. When we also take the esti-
mated communication costs into account, the syndrome fuzzy extractor out-
performs the other two variants most of the time. For both fuzzy commitment
and code-offset construction, the communication overhead is determined by the
codeword length n of the chosen ECC and the number of required repetitions.
For example, consider the (50, 44, 1) BCH variant in Table 2. In this case, the
communication overhead is 50 · 3 bits, because the variant needs to be executed
three times to establish a 128-bit key. In contrast, the communication overhead
for the syndrome extractor depends on the syndrome length and the number of
repetitions. The length of the syndrome is 2 · t ·m for BCH and RS codes, where
m comes from GF (2m) underlying the ECC [18]. An obvious advantage is that
the syndrome is always shorter than the codeword. Considering the previous
example, TX would only need to transmit 12 · 3 bits for the syndrome extrac-
tor. Overall, the variants with lowest combined computation and communication
cost under each mismatch rate are shown in Table 4. The syndrome extractor
has variants with the lowest total energy consumption in all conditions.

mismatch rate fuzzy primitive variant total energy at TX (mJ) total energy at RX (mJ)

2% Syndrome extractor (31,29,1) RS 0.021 0.029
5% Syndrome extractor (31,27,2) RS 0.037 0.053
10% Syndrome extractor (63,49,7) RS 0.198 0.308

2% Pinsketch extractor (255,50,2) 0.046 0.127
5% Pinsketch extractor (255,20,2) 0.044 0.201
10% Pinsketch extractor (255,10,2) 0.067 0.380

Table 4: Fuzzy primitives with lowest total energy cost on the Hamming metric
(Syndrome extractor) and set metric (Pinsketch extractor).

5.2 Set metric constructions

The required number of derived bits for set metric methods is s · f · r, where s
is the set size, f is the number of bits constituting a set element, and r is the
number of repetitions. Set metric constructions require input sizes from 160 to
400 bits (cf. Table 2), which is similar to the Hamming metric variants.

Computation costs. Figure 4 shows the energy consumption of all considered set
metric methods (cf. Table 2 for the underlying data). At TX, we observe that

FuzzyKey 17

the fuzzy vault consumes substantially more energy than the other two methods.
This is likely because TX of the fuzzy vault has to generate and shuffle a large
amount of points (mostly chaff points). The TX energy cost of the Pinsketch
fuzzy extractor is slightly below improved Juels–Sudan. According to Table 3,
the difference in energy consumption is due to the difference between syndrome
generation (note that this is not the same as the standard syndrome calculation
of BCH and RS code) and the polynomial coefficient finding.

On the RX side, we find that the Pinsketch construction has the lowest energy
consumption for mismatch rates below 5%, and has slightly higher consumption
than fuzzy vault for 10% mismatch. The improved Juels-Sudan fuzzy extractor
is always the most expensive construction under all mismatch rates, likely due to
the required polynomial root finding process. We further observe that the energy
consumption of this method and the fuzzy vault decrease significantly when the
mismatch rate threshold increases. This is expected because both methods rely
on the same complex polynomial reconstruction for mismatch correction. This
involves operations on s× s matrices (s is the set size). Hence, polynomial recon-
struction is efficient for small sets (i.e., under higher mismatch threshold), but
as the set size increases, the computational complexity increases quadratically.

19
20

2% 5% 10%
Mismatch Rate (%)

0
1
2
3
4
5
6
7
8
9

10

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

TX

TX

TX

RX

RX

RX

(255,50,2)

TX TX TX

RX

RX
RX

(255,20,2)

TX TX TXRX RX RX

(255,10,2)

computation cost
communication cost
Fuzzy Vault
Improved JS Fuzzy Extractor
Pinsketch Fuzzy Extractor

Fig. 4: Energy consumption of set metric primitives.

Combined computation and communication cost. The number of transmitted bits
for the fuzzy vault is np · lp · r, where np is the total number of points (valid and
chaff points), lp is the length of each point, and r is the repetition count. For
our universe size of 255, np = 255 and lp = 16 bits (each coordinate is one byte).
In contrast, the transmission size for improved Juels-Sudan and Pinsketch fuzzy
extractors is t · f · r, where t is the maximum tolerable set difference between sets
and f is the number of bits constituting a set element (in our constructions f =
8). Hence, the communication cost of the fuzzy vault is much higher compared
to improved Juels-Sudan and Pinsketch. The overall best set metric variants for
each mismatch threshold are shown in Table 4. The Pinsketch fuzzy extractor
performs best in terms of combined computation and communication cost in all
cases. The improved Juels-Sudan has extremely high computation cost in RX,
while the fuzzy vault incurs substantial communication overhead. Considering
that secure implementation of fuzzy vault requires operations over GF (216) and
transmits more points, it is likely that costs would further grow in practice.

18 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

5.3 Common observations and comparison with Curve25519

We observed certain common tendencies for all fuzzy primitives: for each vari-
ant, the computation energy consumption for RX is generally higher than for
TX. Conversely, the communication cost is roughly the same for TX and RX.
This observation is relevant when assigning TX/RX roles in more complex pro-
tocols; e.g., a low-power IMD can act as TX if the goal is to minimise energy
consumption. In addition, the energy consumption of variants with larger pa-
rameter (e.g., larger BCH code) shows an increase both for TX and RX, even
though the number of required repetitions decreases. However, we note that such
variants can always handle higher average bit error rate (cf. Table 2).

We compared the energy cost of our best-performing variants with Curve25519,
one of the most efficient elliptic curve-based key exchange schemes for embedded
systems. As reported in [11], one full execution of Curve25519 on MSP430FR5969
costs about 0.012 mJ (0.404 mJ if communication energy is estimated as in this
paper). Thus, our methods are comparable in terms of total energy consump-
tion. Moreover, fuzzy primitives provide security guarantees beyond a public-key
scheme such as Curve25519: they can defend against MITM attacks (without cer-
tificate infrastructure) and guarantee that RX and TX are in physical proximity.

6 Conclusion

In this paper, we systematically and fairly evaluate the performance of fuzzy
cryptographic primitives for PS-based key exchange under controlled conditions
on a resource-constrained MSP430 microcontroller. We show how different fuzzy
primitives can be securely applied to derive a 128-bit key from joint measure-
ments of a PS, and provide implementations of each of these primitives in multi-
ple variants. To our knowledge, we are the first to compare the computation and
communication energy consumption of different fuzzy primitives for a variety of
parameter choices. Among all considered fuzzy primitives, we find that Syndrome
and Pinsketch fuzzy extractors overall offer the lowest energy consumption in
Hamming and set metric spaces.

This indicates that fuzzy commitment and fuzzy vault used in previous PS-
based key exchange solutions [3, 6, 13, 36, 37] are not optimal on constrained
devices. Instead, Syndrome/Pinsketch fuzzy extractors may be preferable, with
the added advantage that they neither require random number generation, which
can be costly on embedded systems, nor uniformly randomly distributed inputs
derived from a PS. These constructions consume between 0.021 mJ and 0.198 mJ
for TX and between 0.029 mJ and 0.380 mJ for RX, including computational and
communication energy. This demonstrates that PS-based key exchange methods
using fuzzy primitives are feasible for a resource-constrained device, even if keys
are relatively frequently exchanged. We also observe that ECCs with smaller
parameter choices in fuzzy primitives have generally better performance, even if
more repetitions are required. However, this might come at the cost of having
more strict constraints on the maximum average bit error rate of a PS. Our work

FuzzyKey 19

serves as a reference when applying fuzzy primitives for body-area networks and
medical devices, and for other use cases such as biometrics or PUFs.

Acknowledgements. This work is funded in part by the European Union’s Hori-
zon 2020 Research and innovation program under grant agreement No. 826284
(ProTego), the FWO-SBO project SPITE, and by the Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/R012598/1. Mo Zhang is
funded by the Priestley PhD Scholarship programme.

References

1. Medtronic azure pacing system, https://europe.medtronic.com/xd-en/healthcare-
professionals/products/cardiac-rhythm/pacemakers/azure.html

2. Abidin, A., Argones Rúa, E., Peeters, R.: Uncoupling Biometrics from Templates
for Secure and Privacy-Preserving Authentication. In: ACM SACMAT (2017)

3. Al Reshan, M., Liu, H., Hu, C., Yu, J.: Mbpska: Multi-biometric and physiological
signal-based key agreement for body area networks. IEEE Access 7 (2019)

4. Billeb, S., Rathgeb, C., Reininger, H., Kasper, K., Busch, C.: Biometric template
protection for speaker recognition based on universal background models. IET
Biometrics 4(2), 116–126 (2015)

5. Calleja, A., Peris-Lopez, P., Tapiador, J.E.: Electrical Heart Signals can be Mon-
itored from the Moon: Security Implications for IPI-Based Protocols. In: WISTP.
pp. 36–51 (2015)

6. Cherukuri, S., Venkatasubramanian, K.K., Gupta, S.K.S.: Biosec: a biometric
based approach for securing communication in wireless networks of biosensors im-
planted in the human body. In: ICPP. pp. 432–439 (2003)

7. Crossbow Technology Inc: TelosB datasheet, rev. B
8. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper Data Algorithms for

PUF-Based Key Generation: Overview and Analysis. IEEE TCAD 34(6) (2015)
9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing
38(1), 97–139 (2008)

10. Halperin, D., Heydt-Benjamin, T.S., Fu, K., Kohno, T., Maisel, W.H.: Security
and Privacy for Implantable Medical Devices. IEEE Pervasive Computing, Special
Issue on Implantable Electronics 7, 30–39 (2008)

11. Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: LATINCRYPT.
pp. 31–47. Springer (2014)

12. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: FSE. pp. 210–225 (2006)

13. Hu, C., Cheng, X., Zhang, F., Wu, D., Liao, X., Chen, D.: OPFKA: Secure and ef-
ficient Ordered-Physiological-Feature-based key agreement for wireless Body Area
Networks. In: INFOCOM (2013)

14. Juels, A., Sudan, M.: A Fuzzy Vault Scheme. Designs, Codes and Cryptography
38(2), 237–257 (2006)

15. Juels, A., Wattenberg, M.: A Fuzzy Commitment Scheme. In: ACM CCS (1999)
16. Kholmatov, A., Yanikoglu, B.: Realization of correlation attack against the fuzzy

vault scheme. In: Security, forensics, steganography, and watermarking of multi-
media contents X. vol. 6819, p. 68190O. SPIE (2008)

https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html

20 Mo Zhang, Eduard Marin, David Oswald, and Dave Singelee

17. Li, X., Zeng, Q., Luo, L., Luo, T.: T2Pair: Secure and Usable Pairing for Hetero-
geneous IoT Devices. In: ACM CCS. pp. 309–323 (2020)

18. Lin, S., Costello, D.J.: Error control coding, vol. 2. Prentice hall (2001)
19. Marin, E., Argones Rúa, E., Singelée, D., Preneel, B.: On the Difficulty of Using

Patient’s Physiological Signals in Cryptographic Protocols. In: ACM SACMAT.
pp. 113–122 (2019)

20. Marin, E., Mustafa, M.A., Singelée, D., Preneel, B.: A Privacy-Preserving Remote
Healthcare System Offering End-to-End Security. In: AdHoc-Now (2016)

21. Marin, E., Singelée, D., Garcia, F.D., Chothia, T., Willems, R., Preneel, B.: On
the (in)Security of the Latest Generation Implantable Cardiac Defibrillators and
How to Secure Them. In: ACSAC. pp. 226–236 (2016)

22. Marin, E., Singelée, D., Yang, B., Verbauwhede, I., Preneel, B.: On the Feasibility
of Cryptography for a Wireless Insulin Pump System. In: CODASPY (2016)

23. Marin, E., Singelée, D., Yang, B., Volski, V., Vandenbosch, G.A.E., Nuttin, B.,
Preneel, B.: Securing wireless neurostimulators. In: CODASPY. pp. 287–298 (2018)

24. de Meulenaer, G., Gosset, F., Standaert, F., Pereira, O.: On the Energy Cost
of Communication and Cryptography in Wireless Sensors Networks. In: IEEE
WiMob. pp. 580–585 (2008)

25. Ortiz Martin, L., Picazo-Sanchez, P., Peris-Lopez, P., Tapiador, J.: Heartbeats do
not make good pseudo-random number generators: An analysis of the randomness
of inter-pulse intervals. Entropy 20, 94 (2018)

26. Rathgeb, C., Uhl, A.: Statistical attack against fuzzy commitment scheme. IET
biometrics 1(2), 94–104 (2012)

27. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
DATE. pp. 1697–1702. IEEE (2017)

28. Reverberi, L., Oswald, D.: Breaking (and Fixing) a Widely Used Continuous Glu-
cose Monitoring System. In: USENIX WOOT (2017)

29. Rostami, M., Juels, A., Koushanfar, F.: Heart-to-Heart (H2H): Authentication for
Implanted Medical Devices. In: ACM CCS. pp. 1099–1112 (2013)

30. Seepers, R.M., Strydis, C., Peris-Lopez, P., Sourdis, I., Zeeuw, C.I.D.: Peak mis-
detection in heart-beat-based security: Characterization and tolerance. In: EMBC.
pp. 5401–5405 (2014)

31. Seepers, R.M., Wang, W., de Haan, G., Sourdis, I., Strydis, C.: Attacks on
Heartbeat-Based Security Using Remote Photoplethysmography. IEEE J-BHI
22(3), 714–721 (2018)

32. Singelée, D., Seys, S., Batina, L., Verbauwhede, I.: The energy budget for wireless
security: Extended version. IACR Cryptol. ePrint Arch. 2015, 1029 (2015)

33. TI: AN092: Measuring Bluetooth Low Energy Power Consumption (2012)
34. TI: MSP430FR596x, MSP430FR594x Mixed-Signal Microcontrollers datasheet

(2012), https://www.ti.com/lit/gpn/msp430fr5969, rev. G
35. TI: MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers datasheet

(2016), https://www.ti.com/lit/gpn/msp430fr5994, rev. C
36. Venkatasubramanian, K.K., Banerjee, A., Gupta, S.: Plethysmogram-based secure

inter-sensor communication in body area networks. In: IEEE MILCOM (2008)
37. Venkatasubramanian, K.K., Banerjee, A., Gupta, S.K.S.: PSKA: Usable and Secure

Key Agreement Scheme for Body Area Networks. IEEE T-ITB 14(1), 60–68 (2010)
38. Venkatasubramanian, K.K., Gupta, S.K.S.: Physiological value-based efficient us-

able security solutions for body sensor networks. ACM TOSN 6(4) (2010)
39. Xu, F., Qin, Z., Tan, C.C., Wang, B., Li, Q.: IMDGuard: Securing implantable

medical devices with the external wearable guardian. In: IEEE INFOCOM (2011)

https://www.ti.com/lit/gpn/msp430fr5969
https://www.ti.com/lit/gpn/msp430fr5994

	FuzzyKey: Comparing Fuzzy Cryptographic Primitives on Resource-Constrained Devices

