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Abstract The majority of recently demonstrated Deep-Learning Side-Channel Attacks (DLSCAs) use neural

networks trained on a segment of traces containing operations only related to the target subkey. However, when

the number of training traces are restricted such as in this paper only 5K power traces, deep-learning models always

suffer from underfitting since the insufficient training data. One data-level solution is called data augmentation,

which is to use the additional synthetically modified traces to act as a regularizer to provide a better generalization

capacity for deep-learning models. In this paper, we propose a cross-subkey training approach which acts as a trace

augmentation. We train deep-learning models not only on a segment of traces containing the SBox operation of

the target subkey of AES-128, but also on segments for other 15 subkeys. Experimental results show that the

accuracy of the subkey combination training model is 28.20% higher than that of the individual subkey training

model on trajectories captured in the microcontroller implementation of the STM32F3 with AES-128. At the same

time, the number of traces that need to be captured when the model is trained is greatly reduced, demonstrating

the effectiveness and practicality of the method.

Keywords Side-channel attack · Deep learning · AES · Cross-subkey training

1 Introduction

Side-Channel Attacks (SCAs) have become a realistic

threat to implementations of cryptographic algorithms,

such as Advanced Encryption Standard (AES) [1]. Even

theoretically secure cryptography may be broken since

the encryption has to run in hardware or software at

some point to actually do things. There might be some

unintentional physical leakage during the execution of a

cryptographic algorithm, such as the power consumed

[2,3] by the victim device. By utilizing the unintentional

physical leakage, it is possible for SCAs to bypass the

theoretical strength of cryptographic algorithms and to
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recover the key. This is particularly threatening since

once the secret key is leaked, the ciphertext can be de-

crypted and the signature can be forged.

Recently, with advances in deep learning [4], SCAs

are able to be more effective than the conventional

cryptanalysis and are more practical to mount. Since

well-trained deep-learning models are good at extract-

ing features from the raw data, which helps the attacker

to find the correlation between the physical measure-

ments and the internal state of the processing device.

Many deep-learning based side-channel attacks against

both software [5–8] and hardware implementations [9–

12] of AES have been presented. [5] first investigates

hyper parameters of deep-learning models in SCAs and

builds the ASCAD benchmark database. In [13], a multi-

label approach is proposed and it surpass the state-of-

the-art result in ASCAD database [5]. In [6], the effect

caused by the board diversity has been demonstrated

and it shows that it is easy to overestimate the attack

efficiency if deep-learning models are trained on traces

captured from the victim device. Afterwards, several
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different aggregation methods are proposed to mitigate

this accuracy gap caused by the board diversity. The

data-level aggregation attack (also called cross-device

attack) [7, 8, 14] trains deep-learning models on traces

captured from multiple devices. The model-level ag-

gregation [15] utilizes the newly introduced federated

learning framework to build the global model by aver-

aging multiple local models’ weights.

Most of these existing deep-learning based attacks

use a divide-and-conquer strategy to recover a 128-bit

secret key of AES-128, in which the 128-bit key K is di-

vided into 8-bit parts ki ∈ K = {0, 1, . . . , 255}, called

subkeys, for i ∈ {1, 2, . . . , 16}. We use K to denote

the set of all possible subkey candidates. Afterwards,

each subkey ki is recovered independently by using the

deep-learning models trained on traces only related to

a specific subkey ki.

However, when the number of training traces are

not sufficient, deep-learning models always suffer from

underfitting. A common solution for this is data aug-

mentation, which is to use modified version of existing

data to expand the training set. In SCAs, a trace seg-

ment leaked by an operation related to the ith subkey

ki could be used as an augmenting trace for another

subkey kj , with the same operation and the same in-

put. In some implementations of AES-128, instructions

are computed sequentially and procedures are executed

byte-by-byte. This means if two identical operations

have the same input data, for example, two SBox sub-

stitutions in the first round of AES, the resulting power

consumption or electromagnetic emission could be sim-

ilar. Probably this is noticed before but the potential

benefit of training models on traces for multiple subkeys

has not been fully explored.

In this paper, we propose a cross-subkey training

approach that uses multiple subkeys rather than a sin-

gle subkey to build models with better fitting capacity.

By adding a certain amount of traces which are related

to the non-targets subkeys, the profiling data set can

be considered as a data augmentation for the traces of

the target subkey. Our current results show that (1) the

number of traces in the training set remains unchanged

(5K), and the accuracy of the model is improved by

an average of 6.52% by adding other non-target sub-

key related traces by changing the composition of the

training set (i.e. changing the proportion of target sub-

key traces and non-target subkey traces). (2) Adding

other non-target subkey related traces to expand the

number of training sets improved the accuracy of the

model by an average of 28.20%.

2 Background

This section first reviews AES-128. Afterwards, we briefly

introduces deep learning and how to apply deep learn-

ing to side-channel attacks. For a broader introduction

for deep learning, see [4].

2.1 AES-128

AES [1] is one of the most widely used symmetric cryp-

tographic algorithm standardized by NIST in FIPS 197

and included in ISO/IEC 18033-3. AES-128 is a subset

of AES which takes a 128-bit key K to encrypt a 128-bit

block of plaintext P , and the output is a 128-bit block of

ciphertext C. AES-128 contains 10 encryption rounds

in total and except the last round, each round repeats

4 steps sequentially: SubBytes, ShiftRows, MixColumns

and AddRoundKey. The final round does not contain

MixColumns. In our experiment, the mode of opera-

tion is set to Electronic Codebook (ECB) mode, which

first divides the message into blocks and each block is

encrypted separately. The SubBytes procedure is a non-

linear substitution which maps an 8-bit input to an 8-

bit output by using the Substitution Box (SBox).

An attack point for side-channel attacks is a selected

intermediate state which can be used to describe the

power consumed by the victim device during the exe-

cution of AES. The selection of attack point is affected

by known input data (e.g. plaintext, ciphertext) and

physical measurements (e.g. power consumption, EM

emissions, timing). Two common points of attack are

the first round of SBox output and the last round of

SBox input of the AES algorithm. An appropriate at-

tack point will lead to a more efficient attack.

2.2 Deep-Learning Side-Channel Attack

Deep learning is a subset of machine learning [16] that

uses deep neural networks to learn from experience and

understand the input data in terms of a hierarchy of

concepts. Since deep-learning techniques are good at

extracting features in raw data [4,17,18], deep-learning

based SCAs become several orders of magnitude more

effective than the traditional cryptanalysis. A typical

deep-learning side-channel attack can be divided into

two stages.

At the profiling stage, the attacker aims to use the

deep-learning model to learn a leakage profile by using

a large set of power traces T = { T1,T2, ...,Tm} cap-

tured from the profiling device, where m is the number

of traces in the training set. Each trace Ti is labeled

by the data processed at the attack point l(Ti) ∈ L,
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where L = {0, 1, . . . , 255}, which can be used to de-

rive the subkey by using some known input (e.g. the

plaintext, ciphertext). The process of building a neural

network can be viewed as a mapping N : Rm → I|L|
and the output is a score vector S = N (T) ∈ I|L|. The

element sj with value j in S represents the probability

that l(T) = j.

At the attack stage, the attacker uses the trained

deep-learning model to classify traces captured from the

victim device and obtain the score vector. The attacker

can find the ith subkey ki = j which has the largest

probability in S. We use k∗i to denote the real subkey.

Once ki = k∗i , the subkey is recovered successfully. To

quantify the classification error of the neural network,

we use the cross-entropy [16] as the loss function and

the optimizer is set to RMSprop (Root Mean Square

prop).

ki = arg max
0≤j≤255

s̃j . (1)

2.3 Composition of Power Traces

Power based side-channel attacks utilize the fact that

the power consumed during the execution of the en-

cryption process by the victim device might be different

according to the different input data and different oper-

ations. Therefore, the most interesting parts of a power

consumption trace can be defined as a data-dependent

component Pdata and an operation-dependent compo-

nent Pop. Besides, using the same device to repeat the

same operation with the same input data will also con-
sume different amount of power for every repetition be-

cause of the electronic noise component Pnoise. Mean-

while, the switching activities of the transistors which

are independent from the input data can generate a

constant amount of power consumption, which is called

the constant component Pconst. Thus, each point of a

power trace can be modeled as the sum of these com-

ponents [3].

Ptotal = Pdata + Pop + Pnoise + Pconst (2)

3 Cross-Subkey Attack

Figure 1 shows an overview of how the cross-subkey

model is trained, where the collaborative use of differ-

ent subkeys provides more feature information to the

model, providing a better fit to the target subkey.

3.1 Trace Augmentation

Deep-learning techniques have performed remarkably

well on many side-channel attack scenarios. However,

deep-learning models always suffer from underfitting

with insufficient training measurements. Underfitting

refers to the network being trained with a small number

of samples, perhaps with fewer features being extracted

from the training samples, resulting in a trained model

that does not match the test set well and performs

poorly, even if the samples themselves cannot be identi-

fied efficiently. Unfortunately, many attackers may not

have access to big profiling data, for instance, attack-

ers may not have a full control to the profiling device

and can only capture a limited amount of traces. One

data-level solution to the problem of limited training

data is data augmentation [19], which aims to use the

additional synthetically modified traces to act as a reg-

ularizer and helps enhance the fit when training models

in the context of side-channel attacks.

In software implementations of AES, leakage is time-

dependent since instructions are carried out one by one

[10]. This leads to a generally accepted approach for

the attack to against software implementation of AES,

which is to build a leakage profile between traces and

the target subkey. Typically for the 8-bit microcon-

trollers and microprocessors, the encryption is imple-

mented byte by byte. If the same data is processed by

two SBox substitutions, power traces of these two op-

erations could be similar since the the data-dependent

components and operation-dependent components in

formula 2 are the same. Fig. 2 shows power traces cap-

tured from an 8-bit microcontroller implementation of

AES, which represent the first SBox and the second

SBox operations in the first round. One can see that

power traces look very similar if the same data is pro-

cessed by two SBox substitutions. So we could use a

small amount of traces related to the non-target sub-

keys as a regularizer for the training set which contains

traces only for the target subkey. It is a data augmen-

tation for a specific subkey to build the model with a

better fitting capacity.

3.2 Cross-Subkey model training

As shown in Fig 1, a trace which contains 16 SBox

computations of the first round is first divided into 16

sub-traces. The ith sub-trace is labeled by li which rep-

resents the output of the ith SBox procedure, with pi
denotes the ith byte of the plaintext.

li = SBox(pi ⊕ ki) (3)
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Fig. 1 An overview of how the cross-subkey model is trained on the mixed profiling set.

(a) Different data is pro-
cessed

(b) The same data is pro-
cessed

Fig. 2 Power traces captured from an 8-bit microcontroller
implementation of AES, which represent the first SBox and
the second SBox operations in the first round. Traces look
very similar if the same data is processed.

At the profiling stage, traces are divided into 16 sub-
traces by analyzing the Point of Interest (POI), and

each sub-trace is labeled by the corresponding SBox

output. Generally, to recover the ith subkey, attack-

ers train dep-learning models on sub-traces which are

labeled by the ith SBox output. In the cross-subkey

training, we go to one step further by adding a small

amount sub-traces which represent the other 15 SBox

operations into the training set.

We divided the experiment into two parts (notice:

the number of training sets in this paper is 5K):

– Verifying the validity of cross-subkey train-

ing (total training set 5K constant). We define the

proportion of subtraces of the target subkey to the

total training set as x ∈ [1, 16]. Thus the propor-

tion of other subkeys in the training set is 16 − x.

The other 15 subkeys are average distributed in the

training set.

– Applying cross-subkey training (total training

set is increased by 5K at a time). We use all the

power traces of the target subkey (5K in this pa-

per) for training, and add an equal number of power

traces (5K) to the training set at a time as the

number of target power traces, which are provided

by the other 15 subkeys. The training set is thus

5K × y(y ∈ [1, 16]), where 5K × (y − 1) is equally

distributed in the training set by the other 15 sub-

keys.

4 Experimental Setup

In this section, we first present the dataset used for the

experiments. We then show how we trained the deep

learning model and how we evaluated the efficiency of

the attack.

4.1 Data Sets

The dataset used in the paper is captured by a ChipWhisperer-

Lite [20] device at a sampling frequency of 40MHz. The

experimental target cryptographic board is the CW308T-

STM32F3, and the target cryptographic chip is the

Arm Cortex M4, which runs the cryptographic algo-

rithm TinyAES. The encryption mode of operation is

the Electric Code Book (ECB) mode. For the first round

of the AES algorithm 7K power traces are captured as

the data used for the experiments. Of these, 6K uses

random plaintexts and random keys, 5K is used as the

training set and 1K is used as the validation set. The

remaining 1K are used as the test set for the experi-

ments using fixed-key random plaintexts. Each power

trace has 750 sampling points and contains all SubBytes

from the first round. This is shown by Fig 3.
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Fig. 3 An example trace representing the first round of AES
SubBytes.

Fig. 4 An example trace representing the first round of AES
SubBytes.

4.2 Model structure

The structure of the network model used in this work is

shown by Fig 4. After passing through the Input Layer,

the traces are connected to a Convolutional Layer with

a step size of 5 and a neuron count of 16. After pass-

ing through an Average Pooling Layer with a pooling

step of 3, there are expanded by Flatten and then con-

nected to two Dense Layers with 256 neurons. The last

of these Dense Layers is activated by Softmax and is

used to generate 256 output predictions. The Activa-

tion Functions of the other layers in the network model

are all with Rectified Linear Unit (Relu).

4.3 Training setup

We divide the experiment into two parts the first part

in order to demonstrate that the inclusion of sub-traces

of non-target subkeys positively influences the training

of the model, and the second part for the application

of the cross-subkey approach to the experiment.

Part I We know that data augmentation increases

the amount of training data by adding minor alterations

to the existing training traces. However, too many alter-

ations in the training set may confuse the neural net-

work. So to find the optimal amount of augmenting

traces in the training set becomes a realistic problem.

Thus, for each database, we build 16 different training

sets, which contains different amount of augmenting

traces to train 16 deep-learning models. Fig. 1 shows

an example of how these training sets are built. We

call these training sets from set1 to set16. Suppose the

database contains x traces for training and we divide

each trace to 16 segments as shown in Fig. 1, which are

related to 16 subkeys separately. So the total number of

trace segments should be 16×x. To train the model for

the target subkey, the training set is composed of x tar-

get subkey segments and y other-subkey segments. Seg-

ments of 15 non-target subkeys are equally distributed

in all training sets. From set1 to set16, the ratio of the

target-subkey segments to all segments is defined by
x

x+y ∈ {
1
16 ,

2
16 , ...

16
16}, in which set16 denotes the set

without trace augmentation. The corresponding trained

models are denoted by M1,M2, ...,M16.

Part II In image classification, data enhancement

methods are often used such as cropping, rotating, flip-

ping, deflating and shifting [21]. These methods are es-

sentially a series of changes to the original data in or-

der to expand the number of training sets on which the

model is trained. In the Part I, we do not change the

number of data sets on which the model is trained. The

main work in this part is to use all the traces of the

target subkey and expand the training set with other

subtraces of non-target subkeys for the purpose of data

augmentation. Assuming that the database contains x

training traces, similar to the work in Part I, we will

also train 16 models. The training set of 16 models

is denoted by s̃et1 to s̃et16. The amount of data in

s̃ety(y ∈ [1, 16]) is x×y, where (16−y)×x is equally dis-

tributed by the sub-traces of non-target subkeys. s̃et1
denotes all traces of the target subkey x (no sub-traces

of other subkeys), and s̃et16 denotes all traces of all

subkeys 16 × x. The corresponding trained models are

denoted by M̃1, M̃2, ..., M̃16

4.4 Evaluation Metrics

Model accuracy is defined as the probability of a model

achieving correct classification results on a test set. As

one of the most commonly used model evaluation met-

rics in machine learning, model is used to characterise

a model’s ability to classify data. An increase in model

accuracy accuracy indicates that the backpropagation

algorithm’s optimization of the weights and bias pa-

rameters gradually converges to the correct values, and

the model gradually converges to the optimal model.

The loss of a model characterises the degree of devi-

ation between a model’s predicted and actual values.

The smaller the loss, the closer the model’s prediction

is to the actual value. The loss function used in this ex-

periment is the Categorical Crossentropy. The formula

for the accuracy of the model is:
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acc(Xattack) =
|{xi ∈ Xattack}k̃|

Xattack
. (4)

Where Xattack denotes the test dataset, xi denotes

the ith power trace in that dataset, k̃ denotes the calcu-

lation result, and xi ∈ Xattack is the set when the guess

keys are all equal to the correct key. The model’s accu-

racy is the ratio of the number of power traces when the

guessed key is equal to the correct key to the number

of power traces in all the test sets.

5 Experimental Results

In this section we first present the experimental results

of testing the crossover subkey model with a constant

number of training sets. Afterwards, we show the results

of the increased number of traces in the training set. We

use the ρ-test as a leak detection method [22] to find

the point of interest (POI) for each subkey. The power

consumption model used in this paper is the identity

model [6].

5.1 Results for constant number of training set traces

Since the traces we have captured from the STM32F3

microcontroller implementation of AES-128 are the first

round of AES, the attack point is set to the output of

the first round of SBox. Fig 5 shows the segments we

located for each byte by using the attack point detec-

tion results described. In the experiments, each trace

segment contained 40 sample points. Specifically, the

trace segment for the first SBox operation is [28 : 68]

(we use the first subkey as the target subkey). Fig 6

shows how we allowed to synchronise segments for dif-

ferent bytes of the subkeys. In this experiment we gen-

erated 16 training sets, called set1, set2, ..., set16, based

on the training method in 4.3. Each training set con-

tains 5K traces, with 1K of data for the target subkey

as the validation set, which will be saved during model

training when the model is at its highest accuracy in

the validation set. The test set is the one containing

1K traces of the target subkey, and we also tested the

other subkeys, which also contained 1K traces of the

corresponding subkeys. Afterwards, model M1, M2, ...,

M16 is trained on the corresponding training set respec-

tively. The training batch size are set to 256 and the

maximum number of epochs is 500 and the learning

rate is 0.0005. Since the optimiser RMSprop is random

in updating parameters, we have trained each model 10

times and taken the mean value as the experimental re-

sult. Table 1 shows the accuracy of the 16 models on the

Fig. 5 POI for all subkeys in the first round.

Fig. 6 POI alignment.

full test set of subkey. where Mi(i ∈ [1, 16]) denote the

model and Si(i ∈ [1, 16]) denote the test set of different

subkeys, e.g. the first column in the first row shows the

accuracy of M1 on the test set of the first subkey (ac-

curacy figures are in percentages, with the % omitted

at the end).

We found that model M15 had the highest accuracy

on the test set of the first subkey. Because the training

set of model M16 is the full trace of the first subkey, a

model trained by means of cross-subkey will be 6.52%

more accurate than a model trained traditionally on a

one-to-one approach. Next, we show the results of the

trace number increase in the training set.

5.2 Results of increasing number of training set traces

Again in this subsection the first subkey is used as

the target subkey. In contrast to 5.1 the number of

training sets for each model is increasing when train-

ing the cross-subkey model, with the training set being

increased by 5K traces at a time, and these 5K traces

being equally distributed among the sub-traces of the

other non-target subkeys. Where the training set for

M̃1 is all the traces of the first subkey and the train-

ing set for M̃16 is all the traces of all subkeys. The

model M̃i(i ∈ [1, 16]) is then trained on the correspond-

ing dataset. The other hyperparameters are the same

as 5.1. Finally each model is trained 10 times and the

results on the test sets of different subkeys are taken
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Table 1 Results for 16 models on a test set of 16 subkeys (No change in the number of training sets).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

S1 5.86 8.74 9.56 11.01 11.78 12.77 11.96 13.91 13.83 14.00 14.13 14.69 16.70 18.46 21.27 14.75
S2 5.07 5.16 5.14 4.73 4.09 5.69 4.56 3.52 3.12 3.47 3.14 2.77 2.70 2.47 2.00 0.34
S3 6.31 6.55 6.53 6.40 6.12 6.48 4.30 5.07 5.45 4.17 4.37 4.49 4.22 3.02 2.33 0.36
S4 4.87 5.81 6.09 5.72 5.18 5.19 4.42 4.19 4.21 4.34 2.94 3.90 3.00 2.22 2.11 0.36
S5 7.62 8.15 8.46 8.77 8.17 8.41 8.43 6.38 7.02 6.44 6.20 5.35 4.16 3.53 4.10 1.95
S6 5.93 7.28 6.76 6.82 6.09 6.61 6.68 5.41 6.11 5.49 5.07 4.63 4.29 3.37 2.80 1.05
S7 7.99 8.92 7.43 8.44 7.90 8.38 7.67 6.41 6.23 6.09 5.66 5.50 5.40 3.61 3.93 0.72
S8 6.22 7.40 6.31 7.15 7.00 7.16 6.86 6.24 6.38 5.16 4.49 5.14 4.24 2.62 2.90 0.88
S9 5.22 6.72 6.13 6.60 6.51 5.85 7.37 5.97 6.20 5.99 7.03 5.80 6.95 7.34 5.78 1.63
S10 4.08 4.27 4.66 3.88 3.92 3.89 4.38 3.93 3.84 3.43 3.95 3.12 3.76 3.19 1.82 0.51
S11 4.18 5.42 6.52 4.78 4.67 4.91 4.77 4.44 4.27 3.30 3.96 4.07 4.55 3.88 3.04 0.77
S12 3.79 4.93 5.30 4.96 4.09 4.11 5.15 4.68 4.25 3.74 3.88 3.34 3.74 3.82 3.21 0.84
S13 7.12 7.73 6.85 7.09 7.09 7.05 7.58 6.55 6.37 5.66 5.16 4.71 5.08 4.37 3.60 0.71
S14 5.11 6.01 5.30 5.43 5.89 5.19 5.91 5.36 4.71 3.87 3.52 3.76 2.81 2.53 1.59 0.35
S15 5.77 6.91 6.52 6.53 6.16 6.67 6.16 5.79 4.91 4.46 4.01 4.70 3.35 3.55 2.58 0.50
S16 5.38 5.83 5.84 6.05 5.78 5.43 6.46 6.49 5.24 4.71 3.65 4.12 2.96 2.21 2.19 0.76

as the mean value for the experimental results. Table 2

shows the accuracy of the 16 models on the test set of all

subkeys, where M̃i denotes the model and Si(i ∈ [1, 16])

denotes the test set of different subkeys (accuracy fig-

ures are in percentages, with the % omitted at the end).

We found that model M̃10 had the highest accuracy

on the test set of the first subkey. It is 28.20% more

accurate than the traditional one-to-one trained model

M̃1 on the test set of the first subkey.

5.3 Discussion

We set up two experiments. In Experiment I, the num-

ber of traces in the training set used when each model

is trained is constant, and what is changed is the pro-

portion of subtraces of the target subkey and subtraces

of the non-target subkey in the training set. Because
the model structure and hyperparameters are identical

for the 16 models, only one independent variable, the

training set, is used during the experiments. Our exper-

imental results show that when the number of target

subkey traces is 15
16 of the training set and the number

of non-target subkey traces is 1
16 of the training set,

the trained model M15 is 6.52% more accurate than

the model trained using all target subkey traces. Be-

cause of the random nature of the iterative process of

the parameters during the training of the neural net-

work, we have repeated the training 10 times for each

model and took the average accuracy of each model on

the test set with different subkeys as the experimental

results.

Experiment I is designed to validate the effective-

ness of the cross-subkey training model. Model M̃1 is

trained using the full trace of the target subkeys. Model

M̃i(i ∈ [2, 16]) is trained using a training set that is ex-

panded with sub-traces of non-target subkeys. Model

M̃10 had the highest accuracy of 42.95% on the test set

of target subkeys, which is 28.20% more accurate than

model M̃1 on the test set of target subkeys. The results

of Experiment II showed that by using the non-target

subkeys traces to expand the training set obtained 2-

fold better results than the model trained with the tar-

get subkeys.

Finally, when training the model, if a trace of a non-

target subkey is added to the training set, the model is

equally effective on the test set of non-target subkeys.

This result suggests that the traditional approach of

one model recovering one subkey can be replaced by

one model recovering all subkeys.

6 Conclusion

In this paper, we propose a cross-subkey deep-learning

side-channel attack, which utilizes the additional syn-

thetically modified power traces as a data augmenta-

tion to build models with a better fitting capability.

Our results show that the accuracy of the model on the

test set can be improved by adding traces of other sub-

keys to the training set of the target subkeys when the

traces of the capture are limited. This paper validates

the effectiveness of the cross-subkey training model on

the STM32F3 microcontroller implementation of AES-

128 captured traces, but there are still many open rows

for the links between different subkeys. As mentioned

in the previous sections, there are many possible di-

rections of research regarding the connections between

different subkeys, which will ultimately bring more co-

hesion to the field and more confidence in the results

obtained.
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Table 2 Results for 16 models on a test set of 16 subkeys (Increasing number of training sets).

M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7 M̃8 M̃9 M̃10 M̃11 M̃12 M̃13 M̃14 M̃15 M̃16

S1 14.75 21.56 27.16 28.79 31.52 31.47 34.78 32.55 38.53 42.95 37.37 37.39 37.63 36.78 39.08 39.85
S2 0.35 4.76 9.09 11.87 14.53 15.94 18.26 18.81 19.12 21.81 23.29 23.54 24.80 25.40 27.66 25.93
S3 0.36 8.51 12.49 14.15 14.90 15.53 19.07 18.97 20.01 23.08 23.42 23.92 25.67 26.14 28.50 26.81
S4 0.36 9.05 12.79 13.21 17.42 16.69 19.76 18.97 21.78 23.88 26.54 23.98 26.13 27.75 28.63 23.72
S5 1.94 11.87 14.30 17.13 18.29 20.73 25.59 23.23 27.39 30.20 27.02 32.56 30.54 31.55 33.88 35.64
S6 1.01 9.29 12.59 11.50 14.14 16.27 19.16 19.22 19.98 19.70 23.54 23.85 25.02 28.15 25.87 29.85
S7 0.72 9.73 13.04 12.75 13.22 13.74 16.97 15.79 18.17 18.47 22.88 23.15 22.60 24.07 23.09 26.41
S8 0.88 9.99 11.78 12.76 12.62 14.01 15.95 16.12 15.96 17.21 20.17 21.25 19.54 22.54 20.39 23.23
S9 1.63 7.82 11.05 10.15 14.07 14.26 17.01 17.29 21.22 21.43 21.84 23.19 25.18 24.42 27.91 31.51
S10 0.51 5.90 8.01 8.57 11.38 9.62 13.19 11.88 13.20 15.25 14.42 13.48 15.96 14.69 18.18 19.11
S11 0.75 6.73 8.59 9.87 13.02 12.30 15.92 14.51 17.44 17.78 17.38 17.77 20.81 16.94 22.61 22.76
S12 0.84 6.68 8.76 10.96 14.54 14.39 18.81 17.48 20.81 21.16 20.77 22.13 24.22 21.71 27.06 26.44
S13 0.71 8.06 13.25 17.11 20.66 20.61 27.53 25.78 29.17 31.85 31.66 33.89 33.30 33.62 34.25 37.10
S14 0.28 7.22 11.56 14.28 16.60 16.24 21.85 19.31 21.68 23.34 24.86 23.41 26.35 25.83 26.51 28.52
S15 0.50 7.38 12.51 13.42 15.02 15.23 20.98 19.04 21.68 22.94 23.98 24.71 26.01 24.45 26.94 28.14
S16 0.76 8.47 12.28 14.98 16.28 18.00 21.66 21.69 24.06 25.03 25.49 28.08 28.01 27.31 28.60 28.07
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