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Abstract. Evaluating a block cipher’s strength against differential or
linear cryptanalysis can be a difficult task. Several approaches for find-
ing the best differential or linear trails in a cipher have been proposed,
such as using mixed integer linear programming or SAT solvers. Recently
a different approach was suggested, modelling the problem as a staged,
acyclic graph and exploiting the large number of paths the graph con-
tains.
This paper follows up on the graph-based approach and models the prob-
lem via compressed right-hand side equations. The graph we build con-
tains paths which represent differential or linear trails in a cipher with
few active S-boxes. Our method incorporates control over the memory
usage, and the time complexity scales linearly with the number of rounds
of the cipher being analysed.
The proposed method is made available as a tool, and using it we are
able to find differential trails for the Klein and Prince ciphers with higher
probabilities than previously published.

1 Introduction

Block ciphers have been around for decades, with the 20-year old Advanced En-
cryption Standard (AES) as the most prominent example. Still, there have been a
number of different new symmetric ciphers proposed over the years. Lightweight
ciphers are designed to be used in constrained devices and are designed to min-
imize the gate count, chip size or energy consumption [6, 24, 11, 7, 14, 4]. Others
are designed to be used with other specific cryptographic constructions like FHE,
MPC, or SNARKs [2, 9, 19, 12, 1]. We can therefore expect new designs to come
up in the future as well, and these will need to be cryptanalyzed for security.

Two of the oldest types of attacks on block ciphers are differential [5] and
linear attacks [18]. Showing resistance to differential and linear attacks is im-
portant when proposing a new design, but it may be hard to give an accurate
estimate on the strength of a cipher against these attacks. Lower bounds on the
number of active S-boxes in a differential or linear trail are sometimes proved
over a few rounds [10, 7, 14] and used to show that the full cipher must be re-
sistant to differential and linear attacks. However, the true complexity of the
attack is given by all trails in a differential or a linear hull, and it is generally



unknown how many low-weight trails they contain when the number of rounds
increases.

To simplify the analysis work for new designs there is and has been a need
for algorithms and tools that estimate a cipher’s strength against linear and
differential attacks.

1.1 Previous Work

Several methods and tools to aid in estimating a cipher’s strength against dif-
ferential and linear cryptanalysis have been proposed. As early as 1994 Mat-
sui proposed his branch and bound algorithm [18], which recursively searches
through the whole search space of trails with weight lower than a given bound.
This method was successfully applied to DES, but for most new ciphers this
exhaustive search technique has too high complexity to be applied in practice.

Another suggested method is to represent the problem as a mixed integer
linear programming (MILP) problem [21, 25, 13, 27, 28]. This turns the problem
into an optimization problem one can attempt to solve using a MILP solver.
The drawback of converting the trail search into a MILP problem is that the
complexity of solving increases sharply with the number of rounds. Moreover,
very many inequalities must be used to exactly model the possible differentials
of an S-box. To get a reasonable running time only a subset of the inequalities
are used in practice, which means the solver may return solutions that do not
correspond to actual trails. Converting the problem into a SAT- or SMT instance
and run a SAT/SMT solver on it has also been suggested [20, 16, 3] and used with
success. However, the complexity of using this method also increases sharply with
the number of rounds. Both of these approaches have have had some success in
finding trails of low weights. Some of these works have been made into tools that
are supposed to simplify the job for the cryptanalyst to use, but the user must
still code in the inequalities (for MILP) or clauses (for SAT/SMT) him/herself.

The newest approach to the problem is to use a representation via a staged
directed acyclic graph (DAG). In [15] the problem is attacked in this way, where
each node corresponds to a cipher state in a trail, and each path from start to
end in the DAG corresponds to a full trail. This approach has the benefit of being
able to combine (even exponentially) many trails in a linear hull or a differential
and add up their weights for an accurate attack complexity. The drawback of
the approach is that one can only store a limited number of nodes (i.e., cipher
block states) at every stage, out of all 2n possible states. It is difficult to tell
beforehand which states to include in the node set of the constructed graph, and
in [15] they simply choose the states with the lowest weights, limited by available
memory.

The method from [15] has been implemented as a tool called CryptaGraph
[26]. This tool is arguably the easiest to use for a cryptanalyst among the pub-
lished tools for finding differential or linear trails. The user only needs to give a
reference implementation of a given cipher (but must be programmed in Rust),
and does not need to understand anything about how the underlying method
works.
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1.2 Our Contribution

In this paper we follow up on the work from [15] and give a new method for
searching for linear and differential trails. We also take the approach of a staged
graph, but use it in a different way than in [15]. Instead of having a 1-1 corre-
spondence between nodes and cipher states, we let partial paths in the graph
represent the cipher states. It is then not necessary to make a choice of which
cipher states to include in the search space. We can simply start with a graph
containing n vertices and 2n paths, representing all possible cipher states of n
bits. From that starting point, we build on the theory of CRHS equations [23,
22] to construct the full graph.

We compare the results of our work to [15], and improve on some of Crypta-
Graph’s results for differential cryptanalysis. We find some new low-weight trails
that CryptaGraph misses, and we can explain why. We have also made a tool,
called PathFinder, implementing our proposed method. PathFinder is as easy
to use as CryptaGraph; the cryptanalyst only needs to provide the same refer-
ence implementation to PathFinder to use it. In fact, for our tests we reused all
implemented SPN ciphers in [26].

We found one interesting result on the block cipher Prince that is worth
mentioning here. In [7] the designers of Prince prove that four rounds of the
cipher must contain at least 16 active S-boxes, and deduce that any trail in the
full 12-round Prince must have at least 48 active S-boxes. To our knowledge, it
has not been previously known how tight the bound is, i.e. whether it is actually
possible to join three 4-round trails with the minimum active S-boxes together
to form a 12-round trail with 48 active S-boxes. PathFinder finds a differential
trail with 48 active S-boxes for Prince, showing that the bound given by the
designers is indeed tight and can not be improved.

Finally, we highlight the strong and weak parts of our method and [15], and
sketch an idea of how they can be combined to take advantage of each other’s
strengths. A combined tool will most likely outperform both CryptaGraph and
PathFinder.

Outline: The paper is organized as follows. In Section 2 we recall the nec-
essary basics of linear and differential cryptanalysis and introduce notation. We
give the basics of CRHS equations in Section 3. Our proposed method for find-
ing low-weight trails is explained in Section 4, and in Section 5 we present the
results, with comparisons to CryptaGraph. Section 6 concludes the paper.

2 Differential and Linear Cryptanalysis

Differential [5] and linear [17] cryptanalysis are some of the earliest attacks on
modern block ciphers. The attacks can be applied to ciphers which use S-boxes
for non-linear mappings. In this paper we only consider SPN ciphers, but the
techniques we describe can be applied to Feistel ciphers, ciphers with incomplete
S-box layers, or other constructions that only use S-boxes for non-linearity.
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2.1 Cipher model

We now describe the model we use for a general SPN cipher ε(P,K) that encrypts
plaintexts P using the secret key K. The plaintext block consists of n bits, which
is transformed by applying a key-dependent round function r times. The round
function in round i is denoted Ri and starts with the application of an S-box
layer called S, followed by a (possibly round-dependent) linear transformation
Li, an addition of a round constant, and a key addition:

Ri(x) = Li(S(x))⊕ zi ⊕ ki,

where ki is an n-bit round key and zi is the round constant for round i. The
S-box layer S consists of the parallel application of m S-boxes, each substituting
one b-bit chunk of the cipher state with another one according to a given table,
where n = bm. The complete cipher starts with an initial key addition on the
plaintext P , followed by applying the round function r times. The output is the
ciphertext C:

C = ε(P,K) = Rr ◦ . . . ◦ R1(P ⊕ k0).

When searching for differential or linear trails we disregard the additions
of the round keys and round constants. We are therefore not concerned with
modelling the key schedule in this work.

2.2 Differential distribution table and linear approximation table

The basis for both differential and linear attacks are the imbalances that exist
in the S-box S that is used. For differential attacks, we exploit that some in-
put/output differences in the S-box are more likely than others. For given b-bit
differences α and β we define the differential count DC(α, β) to be

DC(α, β) = |{x ∈ GF (2)b | S(x)⊕ S(x⊕ α) = β}|.

By varying α and β we can build a differential distribution table (DDT) of
size 2b × 2b containing all possible differential counts of an S-box:

DDT[α][β] = DC(α, β).

The entries in the DDT that are 0 indicate impossible differentials, i.e. in-
put/output differences that can not occur. These differences can not be used
when constructing a differential trail through an SPN cipher. More generally,
DDT[α][β] indicate the probability for getting the specific output difference β
for a given input difference α.

The imbalance that is exploited in a linear attack is the fact that some linear
combinations of input/output bits are more correlated than others. For two
masks γ and δ we define the linear correlation LC(γ, δ) of S to be

LC(γ, δ) = |{x ∈ GF (2)b | 〈γ, x〉 = 〈δ, S(x)〉}|,
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where 〈·, ·〉 denote the bit-wise inner product between two bit-strings of equal
length. By running through all combinations of γ, δ we can construct the linear
approximation table (LAT) of size 2b × 2b in a similar fashion as the DDT:

LAT[γ][δ] = |2LC(γ, δ)− 2b|.

By defining the LAT in this way, the input/output masks that give no bias in
the correlation get the value 0 in the LAT. These input/output masks cannot
be used when making a linear trail through a cipher. In the same way higher
numbers in a DDT indicate higher probabilities of a differential to occur, higher
numbers in the LAT indicate stronger bias for a correlation. Finally, we also
have DDT[0][0] = LAT[0][0] = 2b.

Since the DDT and the LAT share the properties that only non-zero values
in the table can be used for constructing trails and that higher numbers mean
better trails (from an attacker’s point of view), we will treat them at the same
time in the text that follows, and use the term base table (BT) for referring to
either one of them.

2.3 Trails

Given a base table for an S-box, we are interested in expanding the differential
counts or linear correlations to cover the whole cipher ε. In other words, we are
interested in finding (α, β) ∈ GF (2)n × GF (2)n such that Pr[ε(P,K) ⊕ ε(P ⊕
α,K) = β] is high, or finding (γ, δ) ∈ GF (2)n × GF (2)n such that 〈γ, P 〉 =
〈δ, ε(P,K)〉 with a probability bounded away from 1/2.

In the following we will use the term input to an S-box to mean either an
input difference or an input mask to the S-box. Similarly, the term output can
refer to both output difference for a differential or output mask for a linear
approximation. Furthermore, an S-box whose input and output are both 0 is
called a passive S-box, while an S-box with non-zero input/output is called an
active S-box.

The input and output for the whole S-box layer S is constructed in the
natural way, by concatenating the inputs and outputs of individual S-boxes to
n-bit strings. Given the output ui from S in round i, the input to S in round
i + 1 is given as Li(ui). In contrast, for a given input to S there are in general
many different possible outputs. All passive S-boxes must have the output 0, but
each active S-box in S can have a number of possible outputs. For a given input
αi to S-box i, any βi such that BT[αi][βi] 6= 0 is possible. A trail through ε is
defined as a sequence of n-bit strings

u = (u0, u1, . . . , ur)

where u0 is the difference or mask for the plaintext block P and ui is the out-
put of S in round i for i = 1, . . . , r. We furthermore split each ui into ui =
(ui,1, . . . , ui,m), where each ui,j is the substring that aligns with S-box j in S. For
a trail to be valid the following conditions must be met: The input/output u0/u1
of S in R1 must satisfy BT[u0,j ][u1,j ] 6= 0 for 1 ≤ j ≤ m, and the input/output

5



Li(ui)j/ui+1,j for S-box j in round i+ 1 satisfies BT[Li(ui)j ][ui+1,j ] 6= 0 for all
i = 1, . . . , r − 1 and 1 ≤ j ≤ m. Note that ur does not represent the ciphertext
state, but the ciphertext difference or mask is uniquely determined by ur as
Lr(ur).

The trails through ε determine the complexity for a differential or linear
attack on the cipher. The numbers in the base table for all S-boxes give what
we call the trail weight w(u), which is given as

w(u) =

m∑
j=1

− log2

(
BT[u0,j ][u1,j ]

2b

)
+

r−1∑
i=1

m∑
j=1

− log2

(
BT[Li(ui)j ][ui+1,j ]

2b

)
.

(1)
Lower weight means lower complexity of mounting an attack, and we see that

passive S-boxes do not add anything to the trail weight since BT[0][0] is always
equal to 2b. For the security analysis of a particular cipher we are therefore
interested in finding trails that give the lowest trail weight. This is a difficult
task in itself, since there is a very large search space of all possible trails.

For fixed u0, ur there are many valid trails that start with u0 and end with
ur. We call the set of all valid trails that start with u0 and ends with ur for a
hull, and denote the set with u0 ♦ ur.

The weight of all the paths in a hull gives a good approximation for the
complexity of a differential or linear attack on ε. The exact complexity is de-
pendent on the actual key used in the cipher, and the weights of all S-boxes
in ε are not independent from each other. However, disregarding the effect of
the key and the dependencies that exist between different S-boxes still gives a
good approximation of the complexity of a linear or differential attack. In the
literature one often considers the expected differential probability (EDP) and the
expected linear potential (ELP) to estimate the complexity of an attack using a
chosen hull. With our notation, we have

EDP ≈
∑

u∈(u0 ♦ur)

2−w(u),

and
ELP ≈

∑
u∈(u0 ♦ur)

2−2w(u).

Some ciphers may have many trails that contribute approximately equally
to the weight of a hull, while others may have only a few dominating trails that
make up most of the weight of a hull. Either way, a good strategy for finding
a hull with a low weight is to search for trails with the least number of active
S-boxes. We therefore define the number of active S-boxes in a trail u as

a(u) = |{ui,j | ui,j 6= 0, 1 ≤ i ≤ r, 1 ≤ j ≤ m}|.

In the following sections we describe an efficient algorithm that searches for valid
trails with the lowest number of active S-boxes, and use them to give a lower
bound on the EDP or ELP for ε.
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3 CRHS Equations

The algorithm searching for low-weight trails uses Compressed Right-Hand Side
(CRHS) equations [23] as its building block. A CRHS equation is a data structure
which may be understood as a compressed representation of a large number of
linear equation systems over some variable set.

3.1 Basics of a CRHS equations

A Compressed Right-Hand Side Equation (CRHS equation) is a special kind of
a Directed Acyclic Graph (DAG). The DAG of a CRHS equation has exactly
one source and one sink node. Each node may have at most two outgoing edges,
called the 0-edge and the 1-edge. This particular class of DAG’s is also known
as a Binary Decision Diagram (BDD). The nodes in the BDD are divided into
levels. We draw the DAG in a top-down fashion with the source node on the top,
the sink node on the bottom, and all intermediate nodes on horizontal levels.
All edges go from a node on one level to a node on the level below. If we talk
about level l for some number l, we always mean level number l counted from
the top, where the counting starts at 0.

Each level, except for the one containing the sink, have linear combinations
of variables associated with them. These linear combinations are referred to as
the Left-Hand Side (LHS) of the CRHS equation, while the paths in the DAG
are referred to as the Right-Hand Side (RHS) of the CRHS equation. A complete
path in a CRHS equation is a path which starts in the source node and ends in
the sink. One such path will consist of as many edges as there are levels in the
DAG, minus one.

Fig. 1: CRHS equation example. Path p in the CRHS equation gives a linear
system with the solution set Ap.
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Each node in the DAG can have at most two outgoing edges, the 0-edge
and the 1-edge. As the names suggest, each edge has a value associated with
it: 0 or 1. Choosing an outgoing edge from a node is viewed as assigning that
value to the linear combination associated with that edge’s level. Thus, choosing
a complete path through the DAG is the same as assigning a value to all the
linear combinations in the CRHS equation. By doing so, the LHS and the now
assigned right-hand side becomes a system of linear equations.

Let p(E) denote the set of all paths in a CRHS equation E, and let Ap be
the solution space to the linear system given by a path p in p(E). The solution
set of E is then given as ∪p∈p(E)Ap. See Figure 1 for an example of a CRHS
equation, the associated linear equation system for one of its paths p, and the
solution set Ap.

Operations on CRHS equations If some linear combinations of a CRHS
equation’s LHS are linearly dependent there will in general exist paths in the
RHS which give inconsistent linear systems, having Ap = ∅. As will become clear
later, we want to remove these paths in order to find the solutions we are looking
for. We remove these paths using linear absorption, whose operations we now
explain.

Swap levels: This operation swaps the linear combinations of two adjacent
levels, and updates the nodes and edges on these levels such that the solution
set of the CRHS equation remains unchanged. The purpose of this operation is
to move linear combinations up or down in the LHS of the CRHS equation.

Adding levels: As the name says, the linear combinations of two adjacent
levels are added (xor’ed) together. When doing so, the linear combination of the
lower level becomes the sum of the two, while the linear combination of the upper
level stays the same. The nodes and edges in the RHS of these levels are updated
accordingly so the solution set of the CRHS equation remains unchanged.

Linear Absorption: By using add and swap iteratively, we can do the same
operations on the LHS of a CRHS equation as we can do on a binary matrix.
In particular, if some linear combinations in the LHS are linearly dependent we
can add them together and create a level in the CRHS equation that has 0 as
its linear combination. We call such a level for a 0-level.

The paths that would give inconsistent linear systems (i.e., Ap = ∅) due to
a linear dependency can be readily identified after creating a 0-level from the
dependency. All paths with a 1-edge going out from a 0-level give the ”equation”
0 = 1 in the linear system, and hence an inconsistency. All these paths are
removed by simply deleting all outgoing 1-edges from nodes on the 0-level. The
last stage is to remove the whole 0-level itself. To do so, all incoming edges to
nodes on the 0-level are redirected to point directly to the node at the end of
the node’s 0-edge (if it exists). After redirecting all incoming edges, all nodes on
the 0-level are deleted. We say that the linear dependency we started with has
been absorbed, and the CRHS equation now has one level less.

If there are several linear dependencies in the LHS of a CRHS equation,
we can remove them one at a time using linear absorption. When all linear
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dependencies in the LHS of a CRHS equation are absorbed, all remaining paths
will give non-empty Ap’s, and thus the only paths left are the ones which actually
contribute to the solution set of the CRHS equation. The drawback of linear
absorption is that add and swap may increase the number of nodes on the affected
levels, increasing the memory consumption of the CRHS equation.

Executing one linear absorption will in general leave the BDD of the CRHS
equation in an unreduced state. Some nodes close to the 0-level may have no
incoming or outgoing edges; these nodes are deleted from the DAG. Moreover,
some nodes may be merged, following the reduction procedure for producing a
reduced ordered BDD [8]. Reduction is always performed after doing one linear
absorption, to keep the number of nodes in the CRHS equation low.

3.2 Systems of CRHS equations

A system of CRHS equations (SoC) is a set of CRHS equations, all defined over
the same variable set. Individual CRHS equations have their own solution set,
where each path will yield a number of valid solutions to the corresponding
system of linear equations. Similarly, the SoC has a solution set. The solution
set to a SoC is the intersection of the solution sets of each of its individual CRHS
equations.

Solving a System of CRHS Equations In order to find the solution set to
a SoC, we need to absorb all the linear dependencies which exist across all the
CRHS equations in the system. To enable us to identify the linear dependencies
in the SoC, we use an important operation on the SoC:

Joining two CRHS equations is an operation where the sink node of one
CRHS equation is replaced with the source node of another CRHS equation,
effectively merging them into one CHRS equation. This new CHRS equation
will contain all combinations of paths from the two CRHS equations.

New linear dependencies may arise in the new CRHS equation, even though
the two individual CRHS equations before the join had all their dependencies
resolved prior to joining. When linear dependencies appear in a joined CRHS
equation, we use linear absorption to remove them. Iteratively joining two CRHS
equations into one, and then absorbing all linear dependencies which arise will
result in two things:

1. The SoC will eventually consist of only one CRHS equation.

2. The solution set to this CRHS equation is the solution set to the SoC.

All paths left in the final CRHS equation will give a system of linear equations
with non-empty solution sets, and the union of all solution sets give the complete
solution set to the SoC. Iteratively joining CRHS equations and absorbing all
linear dependencies that arise is therefore a general algorithm for solving a SoC.
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4 New Method for Finding Differential and Linear Trails

Our new method uses the theory of SoCs at its core. As will become clear, a path
from the source node to the sink node in the single CRHS equation remaining
in a solved SoC will represent a complete trail (u0, . . . , ur), and we sometimes
use the terms path and trail interchangeably. For instance, we may talk about
the number of active S-boxes in a path.

The cipher is represented by the SoC, and each path in its solution space
corresponds to a trail, as given by the base tables and specified linear layers
in ε. Finding the solution space in practice for full-scale ciphers will most often
result in CRHS equations that are too large to handle, so we introduce a pruning
technique as part of the solving process. Finding the part of the solution space we
are interested in is done by the repeated applications of joining, linear absorption,
and pruning.

When the solution space is found, we could calculate the weight of each path,
and use this to find the the hull(s) with the lowest weight. In practice, the number
of paths will be exponential in the number of nodes, and we need to estimate
which input/output pair u0, ur is most likely to yield the hull of lowest weight.
The way our cipher is modelled allows for a linear time algorithm for counting
the number of active S-boxes in all paths, and we use these counts to find our
estimated pair u0, ur. The last step is then to calculate the actual weight of the
hull u0 ♦ ur.

It is important to note that the pruning process will also remove valid paths
from the SoC, meaning that we reduce the solution space. We can therefore only
give an estimate of the weight for the best hull. The rest of this section will look
at each part of this process in more detail.

4.1 Constructing CRHS equation from base table

We start by explaining how an individual CRHS equation is constructed from
a given b-bit S-box with corresponding base table BT. Let the input to the
S-box be represented with α = (αb−1, . . . , α0) ∈ GF (2)b and the output by
β = (βb−1, . . . , β0).

We start by initializing a CRHS equation with 2b+ 1 levels and a DAG that
initially contains only the source and sink nodes. Let the linear combinations
of the levels, from top to bottom, be α0, α1, . . . , αb−1, β0, . . . , βb−1. Next, build
a complete binary tree from the source node to level β0. Each path from the
source node to a node on level β0 then corresponds to a fixed input a, and there
is a unique path leading to each of these nodes. We can therefore identify a node
on level β0 with the path leading to it, so the path leading to na represents the
value a. For each node na on level β0, look up the corresponding row BT[a] in
the base table. For each non-zero entry BT[a][b], build the path representing b
from na to the sink node.

The paths in the resulting CRHS equation then encodes exactly all in-
put/output pairs that have non-zero values in the base table. See Figure 2 for
an example of a CRHS equation representing the DDT of a 3-bit S-box.
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Fig. 2: DDT of a 3-bit S-box with its corresponding CRHS equation.

4.2 Constructing the SoC

For constructing a SoC representing a whole SPN cipher we first need to in-
troduce variables at various points in the encryption function. The variables we
introduce will not represent actual cipher states during encryption, but rather
differences or masks used for differential or linear cryptanalysis, i.e. the bits that
a trail is made from. We follow the cipher model described in Section 2.1.

The bits in the input to S in R1 are labelled u0 = (x0, . . . , xn−1). The bits
in the output of S in Ri for i = 1, . . . , r are given as ui = (xni, . . . , xni+n−1).
The input state to S in round i+1, namely Li(ui), will then be given as n linear
combinations in the variables xni, . . . , xni+n−1, for i = 1, . . . , r− 1. See Figure 3
for the set-up of variables. The variable set for the SoC will be x0, . . . , xnr+n−1.

There are mr S-boxes used in total in ε. We construct one CRHS equation
for each of them, following the description given in Section 4.1. The input bits
of each S-box can be written as linear combinations in the variables we have
introduced, and the output bits are single variables. The linear combinations of
the input are inserted as the left-hand sides on the b highest levels in each CRHS
equation, while the variables in the output are inserted on the b lowest levels.
All of these CRHS equations are included in the SoC.

This way of modelling a crypto primitive as a SoC is not limited to SPN
ciphers, ciphers with complete S-box layers, or S-boxes with same input and
output size. With simple modifications, CRHS equations can be used to model
any symmetric cipher using S-boxes for non-linearity.

In addition to the mr CRHS equations constructed from the S-boxes used in
ε, we include one more CRHS equation in the SoC. We call this for the Master
CRHS equation, and it is constructed as follows: It consists of n+ 1 levels, with
x0, . . . , xn−1 as the LHS on each level, from top to bottom. There is only one
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node on each level, with both the 0- and 1-edges pointing to the node on the
level below, see Figure 4a.

The Master CRHS equation initially contains 2n paths, representing all pos-
sible inputs to S in R1.

Fig. 3: Variables in the SoC, and where they appear in ε

4.3 Solving the SoC - finding valid trails

With the SoC representation, we are free to join CRHS equations in whichever
order we want when running the generic solving algorithm. In our particular
case we will always join CRHS equations from the S-boxes to the bottom of
the Master CRHS equation, and absorb the dependencies that arises. To ensure
an orderly solving process, CRHS equations will only be joined to Master if it
respects Invariant 1:

Invariant 1 A CRHS equation E can only be joined with Master if all variables
in the linear combinations on the b highest levels in E are already present in the
LHS of Master. The b linear dependencies that arises after a join operation are
immediately absorbed.

Invariant 1 ensures that all linear combinations on the b highest levels of any
new CRHS equation joined to Master are included in a linear dependency and can
be absorbed. In the solving process we always absorb all of these dependencies
after a join. Each absorption is done by taking a linear combination lc from the
top of the newly joined CRHS equation, and moving it upwards in Master using
the swap operation. Every time lc is adjacent to a level in Master that contains
a variable appearing in lc, the add operation is used to eliminate it from lc.
Eventually lc = 0, and is absorbed. Note that only the linear combinations are
moved, so the order of all other levels with single variables are kept unchanged.
When the b linear combinations have been absorbed, only the single variables
from the bottom of the joined CRHS equation remain on the b lowest levels of
Master.

Initially, Master contains all variables present in the top levels of all CRHS
equations from the first round, so all of those can be joined to Master and
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uphold Invariant 1. After all of these have been joined and all dependencies
absorbed, Master will have 2n levels with the single variables x0, . . . , x2n−1 as
linear combinations on each of them, see Figure 4b. It is then possible to join
CRHS equations from R2. Invariant 1 ensures we always join CRHS equations
onto Master from one round Ri at a time.

We join the CRHS equations to Master in the natural order within each
round. That is, the first CRHS equation to be joined is the one representing the
first S-box in Ri, the next one is the CRHS equation representing the second S-
box in Ri, etc., for i = 1, . . . , r. This order keeps the direct association between
a path and a (partial) trail; any path from the top node to level n directly sets
a value for u0, any path from level n to 2n gives u1, etc. So every complete path
from the source node to the bottom node gives a full trail u = (u0, u1, . . . , ur).
Figure 4c shows a sketch of the Master CRHS equation after all joins and linear
absorptions have been done.

(a) Initial Master
CRHS equation

(b) Master after
joining and absorbing
CRHS equations from
the first round

(c) Master after solv-
ing the SoC. Every
path corresponds to a
valid trail (u0, . . . , ur).

Fig. 4: Master CRHS equation at various stages.

4.4 Counting active S-boxes

Counting the number of active S-boxes, a(u), for a given path u is fundamental
both to the pruning algorithm, as well as the estimation of the input/output
pair u0, ur giving the hull u0 ♦ ur with lowest weight. In both cases, finding the
weights of each path would solve this task. However, as the number of paths is
exponential in the block size n, searching through all of them is infeasible. On
the other hand, with a bit of preparation we can count the number of active
S-boxes for all paths, with a complexity that is linear in the number of nodes.
We now explain this process.
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We have already laid the ground work for a simple counting method with the
introduction of Invariant 1. We follow up with another invariant, that always
holds when joining CRHS equations and absorbing as explained above:

Invariant 2 The levels in Master with variables from the same S-box are adja-
cent.

Invariant 2 ensures that the output of every S-box corresponds to a path of
length b in Master. Each of these paths start in a node on some level l where
l mod b = 0 and l ≥ n, and extends to a node on level l+ b. An S-box is counted
as active iff at least one of the edges in such a path is a 1-edge. Because of
Invariant 1, every CRHS equation joined into Master will add b levels to the
DAG which satisfy Invariant 2 after the dependencies have been absorbed.

Algorithm 1 counts the number of active S-boxes in all trails in Master, and
we elaborate on it here. We first introduce the activity distribution d for a given
node N , defined as a vector of length rm+ 1 of integers:

dN = (dN [0], dN [1], . . . , dN [rm]) where dN [i] = |{paths u below N |a(u) = i}|.

In other words, the activity distribution counts how many sub-trails there are
among the paths starting in a particular node, with a given number of active
S-boxes. The activity distribution is defined for nodes on levels l where l is a
multiple of b and l ≥ n, but can be extended to other levels by splitting a path
of length b in two.

Let the sink node be T , and initialize dT = (1, 0, 0, . . . , 0) (that is, there is
only the empty path going from T to T , and it has no active S-boxes). The
algorithm for computing the activity distributions fills the dN recursively, level
by level, starting from the bottom of the DAG.

Assume that the activity distributions for every node on level l have been
computed with their correct numbers. Let N be a node on level l − b. Then dN
is computed as follows:

– Let p1, . . . , pk be the paths of length b from N down to nodes on level l. Let
Ni be the node on level l where pi ends. As each node in the DAG has at
most two outgoing edges, the number of paths of length b from N is at most
2b, so k ≤ 2b.

– For each pi, let wi = dNi
if pi is the all-zero path (indicating a passive S-

box), and let wi = (0, dNi
[0], dNi

[1], . . . , dNi
[rm− 1]) if pi is not the all-zero

path. When pi is non-zero, the vector dNi
is shifted by one position because

the non-zero pi adds one active S-box to the partial trails. So if there are j
paths with a active S-boxes from Ni to T , there will be j paths with a + 1
active S-boxes from N to T that starts with pi.

– Let dN =
∑k
i=1 wi. Adding up all the wi gives the number of paths below

N , and how many active S-boxes there are in each of them.

See Figure 5 for a small example of how the number of active S-boxes in a
partial trail is counted.
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Fig. 5: Counting the number of active 3-bit S-boxes in all sub-trails involving
two S-boxes, with all activity distributions shown.

This process is repeated for every node on level l− b, before continuing with
the nodes on level l−2b, etc. We stop after computing dN for all nodes on level n.
A path from any node A on level n to T gives a trail (u1, . . . , ur), and dA[i] gives
the number of such trails having a(u1, . . . , ur) = i. By traversing the nodes on
level n and looking at their dN -vectors it is then easy to find what the minimum
number of active S-boxes in any trail is. Moreover, given the vectors on all levels
it is easy to backtrack from a node on level n down to T to extract any of the
trails with minimum a(u).

4.5 Pruning - setting soft limit σ

The solving algorithm explained in Section 4.3 will give the complete picture of
all possible trails in ε, assuming we have unlimited memory. When joining CRHS
equations to Master and absorbing all the linear dependencies, the number of
nodes in Master will grow. In practice there will be an upper limit on how many
nodes our hardware is able to handle. When the number of nodes in Master
starts to approach this limit we need to prune nodes from the DAG in order
to continue extending the partial trails by joining and absorbing new CRHS
equations.

The algorithm therefore uses a parameter we call soft limit, denoted by σ.
The user must set σ according to the memory available on the machine running
the solving algorithm. Let N be the number of nodes in Master at any given
point. If µ is the maximum N the machine can reasonably handle (a hard limit),
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Algorithm 1: Computing number of active S-boxes in all trails in mas-
ter CRHS equation

Result: Distribution of number of active S-boxes in all trails.
T ← sink node on level t
dT ← (1, 0, 0, . . . , 0)
l← t− b
while l ≥ n do

for all nodes N on level l do
for all paths pi of length b from N do
Ni ← node on level l + b where pi ends
if pi only has 0-edges then
wi = dNi

else
wi = (0, dNi [0], dNi [1], . . . , dNi [mr − 1])

end if
end for
dN =

∑
wi

end for
l← l − b

end while

then σ should be set to σ ≤ µ/2b. Whenever N > σ, pruning will delete nodes
until N ≤ σ before the next join and absorb will be done.

It is known that absorbing one linear dependency in a CRHS equation may
in the worst case double the number of nodes in the DAG, so after joining one
new CRHS equation and absorbing the b dependencies that arise, N will in the
worst case be 2bσ before pruning. This is still below the hard limit µ, so by
introducing pruning and correctly setting σ we are guaranteed that the solving
algorithm will never consume too much memory when run in practice. In our
current implementation of CRHS equations one node consumes 24 bytes. In
addition there is some overhead, but this gives a starting point for determining
µ when running PathFinder on a specific machine.

Pruning strategy When doing the pruning we wish to retain as many solutions
in the SoC’s solution space as possible. The first goal of the pruning strategy
is therefore to remove as few valid trails from Master as possible. We also want
the partial trails we remove to be the ones that have the most active S-boxes,
since these are the least likely to turn into complete trails with few active S-
boxes and low weight. While we cannot guarantee that the remaining trails will
be those of minimum weight, we believe the pruning strategy explained below
achieves this to a large degree and keeps the trails with the smallest number of
active S-boxes, independently of which cipher is used. This is evidenced by the
results from Section 5. The second goal of the pruning strategy is therefore to
only delete paths with the highest number of active S-boxes.
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The pruning is described in Algorithm 2, where the notation N (l) is used for
the number of nodes on level l.

Algorithm 2: Pruning nodes from Master CRHS equation with t + 1
levels
Result: Master CRHS equation with N ≤ σ

while N > σ do
w ← level index such that N (w) ≥ N (l) for 0 ≤ l ≤ t
sw ← level index such that N (sw) ≥ N (l) for 0 ≤ l ≤ t, l 6= w
compute dN for all nodes N on level w
for all nodes N on level w do
aN = min{i|dN [i] > 0}

end for
A← max{aN}
while N (w) > 0.9 · N (sw) and ∃N with aN = A do

delete nodes N from level w with aN = A
end while

end while

The pruning algorithm starts by finding the level with the most number of
nodes on it, which we call the widest level. We choose to always delete nodes
from the widest level as this yields the best “memory to paths-lost ratio” of
all the levels: All paths go through every level, so the total number of paths
going through a level is constant and the same for any level. This in turn means
that the average number of paths passing through a node on the widest level
of Master will be the lowest for all levels. Deleting one node will thus, on the
average, delete the fewest number of paths with it, which achieves our first goal
of the pruning strategy.

Next we compute the weight distribution dN for every node N on the widest
level, and record aN = min{i|dN [i] > 0} for each node. Let A = max{aN}. The
nodes on the widest level which have aN = A are the ones with only high-weight
trails below them, and are eligible for deletion.

When deleting nodes from the widest level, some care has to be taken. First,
deleting one node may trigger other deletions on adjacent levels, in order to keep
the CRHS equation reduced. Hence we need to periodically check what N is,
especially when N is getting close to σ, and abort as soon as N ≤ σ. Second,
there might be many nodes on the widest level with aN = A, and deleting all
of them could lead to N � σ. Third, the second-widest level in Master may
only have slightly fewer nodes than the widest one, and may quickly become the
widest once a few deletions have occurred. Ideally we would like to always delete
nodes from the widest level. However, if two levels have approximately equally
many nodes then we need to switch the level to delete from very often, with a
re-computation of all the dN every time. This would increase the computational
complexity from O(N ) towards O(N 2), which quickly becomes very inefficient.
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Instead, we compromise by checking for widest level and recalculating the dN -
vectors once the widest level is reduced to 90% of the initial size of the second-
widest level. The 90% has been decided somewhat arbitrarily, but works well in
practice.

Combined, these choices dynamically try to keep as many trails as possible,
and saves trails with a low count of active S-boxes. Moreover, always deleting
from the widest level ensures that the number of nodes on different levels are
somewhat balanced. Unless σ is set very low (like, allowing only one node on
every level), we do not risk emptying a level for nodes and therefore lose all the
trails. Overall, we are therefore guaranteed to find trails with a relatively low
number of active S-boxes, regardless of the number of rounds in ε.

This feature is in contrast to CryptaGraph, which has the number of S-box
patterns as its guiding parameter for memory usage. If the number of S-box
patterns is set too low, CryptaGraph will not return any trails at all, where
”low” depends both on the cipher and the number of rounds.

4.6 Estimating Hull of Lowest Weight

Given one path p in Master, it is easy to calculate the weight of the trail u
that p represents. Starting from level n in Master, where the block u1 starts, all
sub-paths of p of length b will give all ui,j , the outputs of all S-boxes in ε. From
each ui it is possible to compute Li(ui), and then to compute w(u) as given by
(1).

We are interested in finding the hull(s) u0 ♦ ur with the lowest weight, but
searching through all paths in Master will be infeasible as the number of paths
is typically exponential in the block size n. We therefore need a more efficient
algorithm for finding good input/output pairs u0/ur, for which we calculate the
exact w(u0 ♦ ur) for all trails remaining in Master that start with u0 and end
in ur. We will again use the activity distributions as our foundation, as the
complexity for computing a(u) is linear in the number of nodes.

An added benefit from adhering to Invariants 1 and 2 when we solve the SoC
is that every n levels come from the same round, and every round is added in
increasing order. This means that any path starting in node A on level n and
ending in the sink T is a trail on the form (u1, . . . , ur), which gives all the output
states from all the Si in ε.

We begin the search for the best hull u0 ♦ ur by calculating the activity
distributions dA for all nodes A on level n, as level n is the beginning of u1 in
Master.

Let aA = min{i|dA[i] > 0 and i > 0}. Then B = min{aA} is the fewest
number of active S-boxes any trail in Master can have. Let D be the set of all
nodes A which have aA = B. Then all trails starting in the source and ending
in a node in D are input differences or masks for the plaintext block P yielding
path(s) with the lowest possible number of active S-boxes, and any one of these
trails are candidates as the u0 in our final best hull u0 ♦ ur.

Calculating the activity distributions from the sink T to level n has allowed
us to identify the lowest number of active S-boxes any trail may have, as well as
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which inputs to ε may yield such a trail. However, we still do not know what the
corresponding ur is. To do so, we need to know which input u0 in D is connected
to which output ur.

We do this by by making two adaptations to our algorithm for counting
active S-boxes. The first one changes it such that we are able to start and end in
arbitrary levels l, where l = 0b. This is done by initializing every node N on the
level where the count starts with dN = (1, 0, 0, . . . , 0). The algorithm continues
recursively as normal from there on.

The second change is to make the activity distributions remember which
nodes on the starting level they came from. We call these activity distributions
for node-to-node distributions, as they give the activity distribution for the paths
between two fixed nodes in the DAG.

We start counting node-to-node distributions on level rn, the level where the
block ur starts, and end on level n. We can then go through each node in D
and see which nodes on level rn they are connected to. For every pair of nodes
Nα on level n and Nβ on level rn we have the node-to-node activity distribution
for all paths starting in Nα and ending in Nβ . We first filter the (Nα, Nβ)-pairs
and only keep the pairs that have paths with the least number of active S-boxes
between them. As every Nα specifies some u0 and every Nβ specifies some ur,
these pairs form a set of (u0, ur) candidates for the hull with the lowest weight.

Having found our set of (u0, ur) candidates that give low w(u0 ♦ ur), we need
to estimate which of the pairs are most likely to yield the hull with the lowest
weight. Ideally, we would like to calculate the weights for each hull generated
by each pair, but for larger SoC’s with many nodes and trails, this would be
infeasible. Instead, we calculate the average weight, k, the non-zero entries in
the base table BT contribute to the weight of a path (excluding BT[0][0] = 2b,
which indicates a passive S-box). Finally, we use k to make an estimate of w(u)
for each trail u between Nα and Nβ as

w(u) ≈ a(u1, . . . , ur)k,

and sum up these estimates to find an estimate on w(u0 ♦ ur).
We fix (Nα, Nβ) as the pair of nodes that gives the lowest estimated w(u0 ♦

ur). Finally, the actual weight of every path, or as many paths we can afford in
the case this number is very big, between Nα and Nβ is calculated and summed
up to give a lower bound on the true w(u0 ♦ ur).

5 Results and Discussion

We have implemented the algorithm described in the previous sections, and made
an easy-to-use tool that searches for hulls of differential or linear trails with the
largest EDP or ELP. We have named the tool PathFinder, and it can be found
at graylink-withheld-for-anonymity. PathFinder is written in Rust, and reuses
implementations of the various block ciphers made for CryptaGraph [26].
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5.1 Results and Comparison with CryptaGraph

We have run PathFinder on most of the same instances as tabled in [15] for
comparison. The results are listed in Tables 1 and 2. The implementation was
run on a Dell server with 96 CPUs and 192GB memory. PathFinder is not
parallelized so only a single CPU was used, and due to other users using the
same server we limited our memory consumption to max 32GB. It is worth
noting that counting node-to-node distributions, searching for the optimal hull,
consume more memory than the DAG itself. This is due to the fact that more
metadata is required per node than during the pruning process.

For about half of the ciphers in Table 1 we get slightly worse ELP than
CryptaGraph, and for the rest we get significantly lower ELP. Some of these
can be explained by the fact that CryptaGraph can calculate over the complete
hull, while PathFinder has to compute the weight of one trail at the time, and
add them up. We have currently set an upper limit on 226 trails in the sum, in
order for the program to complete in a reasonable time. In other cases, like for
Mantis or Midori, PathFinder finds more trails than CryptaGraph, but of higher
weight. Almost all of the ciphers we have run PathFinder on have 64-bit blocks.
However, PathFinder is not limitied to 64-bit block sizes. Rather, our choices
of ciphers allow us to make direct comparison with CryptaGrap’s portfolio of
ciphers. If the soft limit is kept constant, increasing the block size from 64 to
128 bits means that the number of levels will double and the average number
of nodes per levels is halved. Doubling the soft limit will counteract this. In
other words, the memory requirement to keep the number of nodes per level
unchanged grows linearly with the block size.

For differential trails the situation is different for some ciphers, where we get a
higher EDP than CryptaGraph finds. There are in general fewer valid differential
trails in a cipher than linear trails, and for Klein and Prince PathFinder is able
to find some of of low weight that CryptaGraph misses. By investigating some
example trails that PathFinder finds, we see that these are cases where there
exists a round in the trails that have rather many active S-boxes, but still have
few active S-boxes in total for the whole trail. For Klein with 5 and 6 rounds,
the number of active S-boxes in each round of the example trails are (1, 4, 7, 4, 1)
and (2, 3, 7, 4, 2, 3), respectively. As CryptaGraph will include all cipher states
with 6 or fewer active S-boxes before including any with 7 active S-boxes, the
number of S-box patterns must be set very high for CryptaGraph to incorporate
these trails in its search space. The complete example trails for Klein are listed
in Appendix A.

For Prince with 6 rounds, we see the same phenomenon. The trails PathFinder
finds with the lowest weight overall have rounds containing 6 active S-boxes.
These have probably been missed by CryptaPath since the number of S-box pat-
terns must be set very high to include states with 6 active S-boxes. The number
of active S-boxes in every round of the example trail provided is (2, 2, 6, 6, 2, 2)
and can be found in Appendix B. In [7], the designers of Prince give a theorem
saying that four consecutive rounds in a trail must contain at least 16 active
S-boxes. We see that the 6-round trail PathFinder found meets this bound with
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Cipher
(Total Rounds, Rounds Soft Lim Hull Size ELP CG

block size) (Used, Found) result

AES 3 216 2, 2 2−136.77 2−53.36

(10, 128) 4 216 1, 1 2−243.26 2−147.88

EPCBC-48 15 218 226, 227.83 2−46.57 2−43.74

(32, 48) 16 218 226, 229.63 2−49.71 2−46.77

EPCBC-96 31 218 226, 232.83 2−100.50 2−94.47

(32, 96) 32 218 226, 231.67 2−102.48 2−97.59

FLY 8 216 5, 9 2−82.99 2−54.83

(20, 64) 9 216 1, 6 2−86.00 2−63.00

GIFT-64 11 218 2, 2 2−59.00 2−55.00

(28, 64) 12 218 2, 2 2−69.00 2−64.00

KHAZAD 2 216 1, 1 2−44.21 2−37.97

(8, 64) 3 216 1, 1 2−90.00 2−68.01

KLEIN 5 218 6, 6 2−52.25 2−46.00

(12, 64) 6 218 44, 50 2−70.16 2−66.00

LED 4 218 4, 8 2−72.91 2−48.68

(32, 64)

MANTIS7 2 · 4 218 217.45, 218.64 2−109.61 2−49.05

(2 · 8, 64)

MIDORI64 6 218 221.62, 223.89 2−85.03 2−53.02

(16, 64) 7 218 226, 229.66 2−108.42 2−62.88

PRESENT 23 218 226, 237.03 2−69.23 2−61.00

(31, 64) 24 218 226, 238.60 2−73.23 2−63.61

25 218 226, 239.65 2−76.54 2−66.21

PRIDE 15 218 1, 1 2−58.00 2−58.00

(20, 64) 16 218 7, 7 2−65.99 2−63.99

PRINCE 2 · 3 218 19, 19 2−55.57 2−54.00

(2 · 6, 64) 2 · 4 218 214, 214 2−92.90 2−63.82

PUFFIN 32 218 226, 252.55 2−83.69 2−51.90

(32, 64)

QARMA 2 · 3 218 612, 1433 2−95.75 2−53.71

(2 · 8, 64)

RECTANGLE 12 218 216.66, 216.66 2−56.75 2−52.27

(25, 64) 13 218 217.16, 217.16 2−64.22 2−58.14

14 218 216.51, 216.51 2−68.48 2−62.98

SKINNY-64 8 218 226, 227.51 2−113.81 2−50.46

(32, 64) 9 218 226, 237.55 2−143.15 2−69.83

Table 1: Details on hulls and ELP found by PathFinder for various ciphers. Hull
size indicates both the total number of trails found in the hull, and the number of
trails used for calculating the ELP. CryptaGraph’s results are in the last column
for comparison.

equality; the number of active S-boxes in any four consecutive rounds is 16. The
Prince designers use this bound to deduce that any trail of the full 12-round
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Cipher
(Total Rounds, Rounds Soft Lim Hull Size EDP CG

block size) (Used, Found) result

AES 3 216 1, 1 2−130.00 2−54.00

(10, 128) 4 216 1, 1 2−179.00 2−150.00

EPCBC-48 13 218 356, 356 2−48.84 2−43.86

(32, 48) 14 218 531, 531 2−53.46 2−47.65

EPCBC-96 20 218 21, 21 2−94.62 2−92.73

(32, 96) 21 218 20, 20 2−102.90 2−97.78

FLY 8 220 180, 104 2−59.0 2−55.76

(20, 64) 9 220 76, 76 2−82.63 2−63.35

GIFT-64 12 218 10, 10 2−57.81 2−56.57

(28, 64) 13 218 5, 15 2−63.19 2−60.42

KHAZAD 2 216 1, 1 2−47.49 2−45.42

(8, 64) 3 220 1, 1 2−79.66 2−81.66

KLEIN 5 218 8, 8 2−44.39 2−45.91

(12, 64) 6 222 4, 4 2−55.25 2−69.00

LED 4 222 6, 18 2−55.61 2−49.42

(32, 64)

MANTIS7 2 · 4 222 224.94, 226.64 2−100.87 2−47.98

(2 · 8, 64)

MIDORI64 6 222 220.28, 221.50 2−63.60 2−52.37

(16, 64) 7 222 223.82, 225.49 2−71.75 2−61.22

PRESENT 15 218 215.42, 215.42 2−65.69 2−58.00

(31, 64) 16 218 215.97, 216.29 2−69.71 2−61.80

17 218 217,76, 217.76 2−74.87 2−63.52

PRIDE 15 222 1, 1 2−58.00 2−58.00

(20, 64) 16 222 1, 1 2−64.00 2−63.99

PRINCE 2 · 3 222 16, 20 2−49.45 2−55.91

(2 · 6, 64) 2 · 4 222 36, 36 2−80.67 2−67.32

PUFFIN 32 218 226, 237.25 2−79.71 2−59.63

(32, 64)

QARMA 2 · 3 218 5, 5 2−97.48 2−56.47

(2 · 8, 64)

RECTANGLE 13 218 166, 166 2−58.37 2−55.64

(25, 64) 14 218 57, 171 2−62.60 2−60.64

15 218 388, 388 2−70.63 2−65.64

SKINNY-64 8 218 218.74, 220.14 2−113.70 2−50.72

(32, 64) 9 218 222.50, 223.74 2−126.91 2−69.64

Table 2: Details on hulls and EDP found by PathFinder for various ciphers. Hull
size indicates both the total number of trails found in the hull, and the number of
trails used for calculating the EDP. CryptaGraph’s results are in the last column
for comparison.

Prince must have at least 48 active S-boxes, and hence be secure against differ-
ential and linear attacks. We ran PathFinder on the full 12-round Prince cipher,
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and interestingly enough it turns out that there indeed do exist differential trails
in the full cipher with exactly 48 active S-boxes. So we find that the lower bound
for full Prince is met with equality (example trail given in Appendix B). The
EDP PathFinder gives for 12-round Prince, which has a 128-bit key, is 2−124.06.
While this does not lead to a valid differential attack since Prince only has a
64-bit block, it does give a differential probability that is higher than 2−128.

5.2 Combining PathFinder and CryptaGraph

PathFinder has several similarities to CryptaGraph. Both are tools with a sim-
ple command line interface. In either of them the user specifies cipher, number
of rounds and memory limits, and the tool returns good differential or linear
trails with an estimate on the probability or the bias of the hull they belong
to. Both of them exploit the fact that a DAG with a relatively small number of
nodes may contain exponentially (in the number of nodes) many paths. Hence
encoding information as paths in the DAG lets us handle very large data sets.
Both CryptaGraph and PathFinder encodes trails of a cipher as paths in a DAG.

The difference between them comes from the underlying graphs used in the
two tools. Each node in CryptaGraph represents a particular cipher state (of n
bits), and an edge is the transition from one state to a possible next state, as
given by the base table. In PathFinder we make the full step and let the cipher
states themselves also be encoded as paths (of length n). This means PathFinder
can handle many more states at a particular point in a cipher than CryptaGraph
can. This is maybe best illustrated in Figure 4a, where PathFinder’s initial DAG
of n nodes contains all 2n possible plaintext states while CryptaGraph would
need 2n nodes to do the same.

This difference leads to the tools having different features which complement
each other. The strength of CryptaGraph is its ability to calculate the weight
of a hull. Even if CryptaGraph’s DAG contains an exponential number of paths
representing trails belonging to the same hull, CryptaGraph can efficiently com-
pute the sum of weights of each trail. PathFinder can not do this in a similar
way, since an edge in PathFinder’s DAG does not represent a transition between
two individual states. Hence PathFinder computes the weight of each trail in a
hull individually, and can not efficiently sum up the weights of an exponential
number of trails in a hull.

The weakness of CryptaGraph is the limited set of states it can handle in
each round of a cipher. There are few ways of telling beforehand which states
that will be present in the best trails, except that they will probably have few
active S-boxes. So CryptaGraph’s strategy for selecting states (i.e. nodes) for
its DAG is simply to take the ones with the highest probabilities or biases for
going from one state to the next. In practice this resolves to the states with
the least number of active S-boxes. But this means that every state in a trail
that CryptaGraph returns must come from this limited set of states, otherwise
CryptaGraph finds nothing. This problem is partially resolved by the technique
of anchoring, which is to greatly expand the set of states for the first and last
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round in a cipher. However, this does not help if the state with many active
S-boxes occur in the middle of the cipher, like for Klein and Prince.

PathFinder on the other hand has no such limitations, and starts with the
complete set of 2n states. Eventually the pruning of nodes will delete states in
PathFinder as well, but we do not need to define which states to keep and which
to discard. Instead this is done dynamically at run-time, guided by keeping the
states with the lowest number of active S-boxes. The pruning strategy ensures
that there will always be many valid trails encoded in PathFinder’s DAG, and
that it will never return empty-handed.

For further work in this direction we therefore propose to combine the two
tools in a way that plays to each others strengths. This is beyond the scope of
the current work, but the idea is as follows:

1. Run PathFinder to find a set of states that actually occur in the best trails.
2. Run CryptaGraph, where the set of nodes in CryptaGraph’s DAG represents

this particular set of states.

Letting PathFinder guide CryptaGraph’s set of states in this way will ensure
that CryptaGraph will find the same trails as PathFinder, but we can then
exploit CryptaGraph’s better calculation of hull weights.

6 Conclusion

Using graphs for finding linear and differential trails in ciphers is a new direc-
tion in cryptanalysis. The strength of directed acyclic graphs is that they can
contain exponentially (in the number of nodes) many paths. Hence represent-
ing the data we are interested in as paths in a DAG may allow us to efficiently
search an exponentially big search space. The work done in [15] started this with
CryptaGraph, and in this paper we have followed up with complementary work
in the same direction.

Our work complements that in [15] and uses the paths in the DAG in a
different way. By representing the DDT or LAT of an S-box as a CRHS equation,
we can use existing methodology for solving a system of CRHS equations to
construct a DAG containing trails we are interested in. One general problem
with solving systems of CRHS equations is its memory complexity. We overcome
this problem by pruning the graph when it grows too big, thus controlling the
memory consumption. We have presented a pruning strategy that keeps the most
promising trails contained the graph while discarding the rest. This allows us to
find other good trails than CryptaGraph finds, and do the search for an arbitrary
number of rounds.

Both methods have been implemented as easy-to-use and compatible tools,
where only a reference implementation of a cipher is needed in order to do the
trail search. The same reference implementation made for CryptaGraph can be
used on PathFinder, and in fact PathFinder already reuses Cryptagraph’s port-
folio of cipher implementations. It has been well understood for two decades how
to make ciphers secure against differential or linear cryptanalysis, but designers
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always need to take these types of attacks into account when proposing a new
cipher. These tools can help in the design process.

We have compared CryptaGraph and PathFinder, and looked at strengths
and limitations of both. For further work, we suggest to combine the two into
one, in a way that exploits the strong parts of both.
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A Low-weight differential trails for Klein

The following differential trail for 5-round Klein has probability 2−51:

Example trail (in hex):

MSB LSB

000000000000000b Alpha

S-box Layer

0000000000000004

Linear Layer

000000000c080404

S-box Layer

0000000007060603

Linear Layer

010f040b09000509

S-box Layer

080c040404000a0e

Linear Layer

0000080c02020000

S-box Layer

0000090d0b0e0000

Linear Layer

0000000100000000

S-box Layer

0000000800000000 Beta

The following differential trail for 6-round Klein has probability 2−57:

Example trail (in hex):

MSB LSB

0000050000050000 Alpha

S-box Layer

0000020000020000

Linear Layer

0600040200000000

S-box Layer

0100030500000000

Linear Layer
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0909060001030201

S-box Layer

080e040004040a0e

Linear Layer

080c000000000604

S-box Layer

0b0d000000000809

Linear Layer

000000000d0a0000

S-box Layer

0000000002060000

Linear Layer

04000e0e00000000

S-box Layer

0100030300000000 Beta

B Trails for Prince

The following differential trail for 6-round Prince has probability 2−53:

Example trail (in hex):

MSB LSB

0000000000000101 Alpha

S-box Layer

0000000000000808

Linear Layer

0008000008000000

S-box Layer

0008000004000000

Linear Layer

8040040840800000

S-box Layer

8080040450500000

Middle involution

8080040450500000

S-box Layer

8040040840800000

Linear Layer

0008000004000000

S-box Layer

0008000008000000

Linear Layer

0000000000000808

S-box Layer

0000000000000101 Beta
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The following 12-round differential trail for Prince has 48 active S-boxes:

Example trail (in hex):

MSB LSB

0004000008000000 Alpha

S-box Layer

0004000002000000

Linear Layer

4020020400000402

S-box Layer

8080010100000808

Linear Layer

8108000008810000

S-box Layer

8808000004440000

Linear Layer

0000000040800000

S-box Layer

0000000080800000

Linear Layer

0000080000000008

S-box Layer

0000040000000008

Linear Layer

0408408000008040

S-box Layer

0808404000008080

Middle involution

0808404000008080

S-box Layer

0408408000008040

Linear Layer

0000040000000008

S-box Layer

0000080000000008

Linear Layer

0000000080800000

S-box Layer

0000000040800000

Linear Layer

8808000004440000

S-box Layer

8408000008840000

Linear Layer

8080040400000808

S-box Layer
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8010010800000801

Linear Layer

0080000000100000

S-box Layer

0080000000400000 Beta
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