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Abstract. Smart contract-enabled blockchains represent a powerful tool
in supporting a large variety of applications. Despite their salient features
of transparency, decentralization, and expressiveness, building privacy-
preserving applications using these platforms remains an open question.
Existing solutions fall short in achieving this goal since they support a
limited operation set, only support private computation on inputs be-
longing to one user, or even ask the users themselves to perform the
computations off-chain.
In this paper, we propose smartFHE, a modular framework to sup-
port private smart contracts that utilizes fully homomorphic encryp-
tion (FHE). The smartFHE framework allows users to build arbitrary
decentralized applications that preserve input/output privacy for inputs
belonging to the same user or even different users. This is achieved by em-
ploying single and multi-key FHE to compute over private (encrypted)
data and account balances, along with efficient zero-knowledge proof
systems to prove well-formedness of private transactions. Crucially, our
framework is “modular” since any FHE and ZKP scheme can be used
so long as they satisfy certain minimal requirements with respect to cor-
rectness and security. Furthermore, smartFHE reduces the burden on the
user, since miners translate smart contract code into public or private
operations based on whether the accounts involved are public or private.
In proposing smartFHE, we define notions for a privacy-preserving smart
contract (PPSC) scheme along with its correctness and security. We pro-
vide a concrete instantiation of a PPSC using the smartFHE framework.
Finally, we consider further extensions/optimizations.

1 Introduction

Cryptocurrency can be traced back to (at least) 1983 when Chaum first proposed
the concept of electronic cash using blind signatures [1]. Extending Chaum’s de-
sign, Bitcoin [2] was introduced a few decades later and removed the need for
a trusted party. It was an appealing concept: a way to exchange currency in
a cryptographically secure way without relying on banks. Since then, hundreds
of cryptocurrencies have been deployed with a total market cap exceeding $940
billion [3].

Cryptocurrency and Privacy. In Bitcoin [2], Nakamoto introduced the no-
tion of a public distributed ledger called blockchain through which users could



exchange currency directly with one another. Although users have addresses that
serve as their pseudonymous identities in the system, anyone can trace transac-
tions on the blockchain to see exactly how much was exchanged and by which
addresses. There have even been successful attempts to link these addresses with
real-world identities [4].

This lack of privacy resulted in several initiatives to bring privacy to cryp-
tocurrency such as Zerocash [5] and Monero [6]. To achieve private currency
transfer, many schemes exploited additive homomorphisms in commitment and
encryption schemes. Zero-knowledge proofs (ZKP) were then used to prove cer-
tain relations held on the committed or encrypted values. While these construc-
tions succeed in bringing confidentiality (i.e. hiding the transfer amount) to
cryptocurrency, they do not support much more than private currency transfer.

Smart Contracts and Privacy. In parallel to the development of a pri-
vate cryptocurrency, a very different question about Bitcoin’s functionality was
asked. Could Bitcoin be extended to support arbitrary user-defined applications?
The answer was yes but with major changes to its UTXO-based design. Thus,
Ethereum was born, defining an account-based model and a Turing-complete
scripting language that could support arbitrary user-defined programs called
smart contracts [7]. Using smart contracts, individuals can build applications
processing highly sensitive data such as auctions and voting. Although Ethereum
offers a highly expressive functionality, it provides no privacy out of the box.

Over the last few years, several attempts have been made to bring privacy
to smart contracts. However, supporting arbitrary computation with privacy
even for a single user’s inputs and outputs has proved to be quite the challenge.
Some constructions (such as Zether [8]) built upon the theoretical approach used
for private currency transfer, operating directly on encryptions/commitments.
Specifically, Zether exploits additive homomorphisms in the ElGamal encryption
scheme and then uses ZKPs to prove that certain relations hold [8]. However,
additive homomorphisms can support only a limited set of applications with in-
put/ouput (I/O) privacy. Other constructions (such as Zexe [9] and Zkay [10])
abandoned the aforementioned approach since it did not yield immediately prac-
tical results in the short-term. Instead, their schemes offload all work to the user
to do offline. Users perform all the computations themselves on plaintext data,
encrypt the inputs and outputs of the computation, and create a ZKP certifying
correctness of computation with respect to these encryptions. The blockchain
miner’s only role here is to verify correctness of the ZKP. We refer to this ap-
proach as the “pure ZKP approach” as it relies on the power of ZKPs to perform
computations with I/O privacy.

1.1 Our Contributions

Operating directly on encrypted values has proven invaluable across numerous
applications—from searching over encrypted databases [11], to protecting user
data in machine learning applications involving neural networks [12]. Prominent
private smart contract schemes may have chosen to abandon this approach as
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it did not yield practical results in the short-term; we believe such a viewpoint
may also be short-sighted.

Supporting additive and multiplicative homomorphisms on ciphertexts leads
us to the holy grail of fully homomorphic encryption (FHE) which provides I/O
privacy for any computation. Using FHE, users could supply encrypted inputs
along with a simple ZKP showing well-formedness of the initial ciphertexts and
that certain relations on the plaintexts are satisfied. Miners check the proof and
then perform the requested computations directly on the encrypted inputs. No
need for the user to remain online during the computation or provide complex
ZKPs attesting to correctness of computation. Unlike the pure ZKP approach,
here the private computation is performed on-chain.

FHE’s primary (if not sole) drawback is its poor efficiency. However, even
this viewpoint is slightly outdated. Industry has been championing more efficient
implementations of popular FHE schemes each year; for example, a particular
variant of the popular TFHE scheme can perform homomorphic multiplication
in less than 50 milliseconds and bootstrapping in less than 20 milliseconds on a
machine with 2.6 GHz using only a single thread [13]. FHE still has the major
drawback of large ciphertext sizes; this problem isn’t limited to FHE but still
exists for lattice-based cryptography at large.

Most importantly, the pure ZKP approach cannot scale to support privacy-
preserving computation on multi-user inputs without utilizing (usually) highly-
interactive MPC protocols.3 Regardless of the particular MPC protocol chosen,
users would still be responsible for coordinating the entire computation off-chain
themselves and determining who would perform it. Our single-key FHE ap-
proach, like the pure ZKP approach, can only directly support computations
with I/O privacy on inputs belonging to the same user. However, we have an ace
up our sleeve to address the multi-user problem.

We follow the same blueprint as in single-key FHE to create smart contracts
with I/O privacy for multi-user inputs. Users encrypt their own inputs using
a multi-key FHE scheme and provide simple ZKPs showing well-formedness of
each of their own ciphertexts. Miners can then perform arbitrary computations
directly on any subset of the users’ encrypted inputs. No off-chain coordination
needed for the computation. No interaction necessary for the computation. No
need for the users to even be online.

In an ambitious forward-looking world, one may entertain the thought of
harnessing the power of multi-key FHE to realize these advantages—advantages
that cannot be realized using the pure ZKP approach or its MPC-based ex-
tensions. Although multi-key FHE is far from being ready for practical de-
ployment, current state-of-the-art schemes provides highly appealing theoretical

3 Several works have dealt with MPC in a non-interactive setting where an output-
producing party is available all the time; users submit their inputs and then this
party computes the intended functionality output. However, these works also leak
the residual function [14] and require additional setup assumptions such as pre-
dealt correlated randomness [15], or rely on the existence of a PKI [14] or even
indistinguishability obfuscation [16].
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results—namely, non-interactivity for the computation itself and a one round
decryption process [17]—that we can utilize in bringing this dream into reality.

We take a foundational approach to realizing smart contracts with I/O pri-
vacy by proposing a smart contract framework harnessing the power of single
and multi-key FHE. Crucially, we design our framework to be modular, allowing
the instantiator to choose the specific FHE and ZKP schemes assuming they
satisfy certain minimal conditions.

New Notion for Privacy-Preserving Smart Contracts. We define a notion
for privacy-preserving smart contracts (PPSCs) that captures the support of ar-
bitrary computation with I/O privacy for inputs belonging to one or multiple
users. Furthermore, we extend previous definitions of correctness and security (in
terms of privacy/ledger indistinguishability and overdraft safety/balance) from
Zether [8] and Zerocash [5] to provide formal guarantees for a PPSC scheme. We
believe our PPSC definition is of independent interest as it is general enough to
be used in future private smart contract constructions.

smartFHE: An FHE-based PPSC Framework. We propose a modular
framework to support PPSCs using FHE and ZKPs. To the best of our knowl-
edge, we are the first to use FHE in the smart contract (or even blockchain)
setting.

Specifically, our framework supports smart contracts with I/O privacy, along
with payments that hide the users’ balances and transfer amount. We offer two
modes of operation—public and private—that users can automatically switch
between. A user can write any smart contract of his choice. If the contract
operates on public accounts, the contract code will operate in the usual way;
everything will be public. On the other hand, if the contract operates on private
accounts, the system will translate the contract code into operations providing
input/output privacy.

Private accounts and their data are stored encrypted on the blockchain. FHE
allows for operating on this encrypted data directly, with ZKPs used to prove
well-formedness of the initial ciphertexts and conditions on the corresponding
plaintext. Since we use FHE, we provide post-quantum security with respect
to account privacy [18]. Furthermore, when a multi-key FHE scheme is used
to instantiate our framework, we can support arbitrary smart contracts with
I/O privacy on inputs belonging to different users. This is in stark contrast to
the previous works of Zether [8], Zexe [9], and Zkay [10], which cannot readily
support privacy-preserving computation on inputs belonging to different users.

Operating directly on private (i.e. encrypted) accounts requires us to address
resulting concurrency issues. Say, for example, Alice has submitted her own
private transaction to be processed and (while waiting) Bob successfully sends
her currency. Alice’s encrypted balance has changed and, thus, the ZKP in her
transaction is no longer valid which would cause Alice’s own transaction to be
rejected. Worse, she would lose the fees associated with this transaction. We
resolve such conflicts using a locking mechanism reminiscent of a mutex.
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Finally, we show how the smartFHE framework supports a correct and secure
PPSC scheme. Our framework will additionally protect against front-running
and replay attacks.

A Harmonious Union. From our work, we observe that FHE and blockchain
are well-suited to one another, particularly in theoretical terms. Blockchain al-
lows FHE to address the pain point of verifying correctness of homomorphic
computation. Using a blockchain also allows users to offload their computations
to a party who is financially incentivized to always be online.

A Solution to Verifying Homomorphic Computations. When using FHE, the
party performing the homomorphic computations (i.e. the evaluation party) is
usually different from the private key owner. However, there is no immediate way
for this key owner to verify that the evaluation party performed the homomorphic
computations correctly.

There have been solutions to the challenge of verifiable computation, but
adding verification to even simple homomorphic computations of multiplicative
depth 2 can double the cost for the key owner [19]. By using a blockchain, we can
solve the first problem in a simpler way through consensus. That is, the underly-
ing security assumption of blockchain—namely, that the majority of the mining
power is honest—provides guarantees with regards to correctness [20]. Miners
re-execute the computation and only accept blocks that agree with what they
computed. Thus, the owner of the encrypted data can rest assured that the eval-
uation party (in this case, the miners) performed the homomorphic computation
correctly. No need for additional tools to verify correctness of computation. This
also holds true when we use multi-key FHE in our framework.

An Always-available and Financially-incentivized Evaluation Party. To success-
fully outsource computation (as in the FHE setting), we need an evaluation
party who is readily available; blockchain provides the perfect setting for this.
In certain account-based models, such as Ethereum [7], miners are financially
rewarded for being online and performing computations for the users. Thus,
blockchain can provide an always-available and financially motivated evaluation
party to perform private computations for users.

Additionally, FHE can be computationally intensive and require specialized
hardware. This is not an issue in proof-of-work blockchains since the miners are
often expected to have powerful and potentially even specialized machines avail-
able. No need for the users to be online during the computation; they can simply
check the blockchain later for the result.

An Instantiation. We propose an instantiation of a PPSC scheme based on
the smartFHE framework. We start with a simpler construction using single-key
FHE; we then show how to extend it to support multi-key FHE. In particular, we
employ current state-of-the-art FHE and ZKP schemes—specifically, the lattice-
based BGV (fully homomorphic encryption) scheme [21] and the discrete log
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proofs construction [18] which allows for efficient proofs of lattice-based relations
using Pedersen commitments.

Our single-key FHE-based instantiation is trustless—requiring no trusted
third party or trusted setup. Additionally, it supports arbitrary user-defined
smart contracts with I/O privacy for a single user’s inputs (like previous con-
structions Zexe [9], Zkay [10]) along with public and private payments. We
demonstrate in Appendix B how our instantiation can be used to support some
popular applications that operate on inputs from different users with additional
logic in the smart contract code.

Finally, we extend our single-key FHE-based instantiation to support arbi-
trary computation with I/O privacy on multi-user inputs using a recent multi-key
FHE scheme [17]. None of the specific schemes chosen are binding—we have just
used current state-of-the-art. As stated previously, our framework is modular
and future PPSC schemes will make use of what qualifies as state-of-the-art for
their time.

Evaluation Results. Our construction involves benchmarking several crypto-
graphic primitives and transaction operations to get a sense of their practicality.
We are in the process of using existing implementations and libraries to report
their costs.

1.2 Related Work

Hawk [20] was one of the first works to construct a private smart contract scheme
using zero-knowledge proofs. They support a UTXO-based system in the style
of Zerocash but, like Ethereum, they assume that their blockchain can support
any Turing-complete program. Hawk requires the involvement of a semi-trusted
manager—trusted with protecting the privacy of the users’ inputs to the con-
tract, but not trusted for execution or correctness. We do not use any such
semi-trusted manager in our scheme.

Zether is a private transaction scheme that can support a limited class of
private smart contracts on Ethereum—namely, those that can be expressed via
homomorphic addition [8]. Using single-key FHE in the smartFHE framework,
we will be able to support a larger class of applications via homomorphic multi-
plication. Additionally, smartFHE can also support arbitrary computation with
I/O privacy on multi-user inputs—which is not possible using Zether. Unlike
Zether, we do not support user anonymity, which we leave as future work.

Zexe [9] is a private computation scheme that allows users to perform ar-
bitrary computations on their individual inputs offline. Along with hiding the
inputs and outputs of a user-defined function, Zexe supports hiding the function
itself. Their UTXO-based construction cannot support loops whereas our PPSC
scheme can support public loops. As they follow the pure ZKP approach, Zexe
cannot readily support computation with I/O privacy on inputs belonging to
different users. The authors suggest using MPC but this requires users to coor-
dinate the entire computation off-chain themselves. Our framework allows users
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to perform computations with I/O privacy on multi-user inputs on-chain. No
need to coordinate the computation or even be online.

Zkay [10] proposes a language and type system to easily identify who private
data belongs to when writing smart contracts with I/O privacy. We view their
language and type system as compatible with our smartFHE framework. How-
ever, they focus on the pure ZKP approach when constructing such contracts.
Concerningly, they do not address how to resolve concurrency issues that result
when implementing their private smart contracts.

There have been recent works, such as Ekiden [22], combining the use of
trusted hardware with smart contracts. We do not use any trusted hardware in
our system.

Finally, Kachina [23] formally defines and models private smart contracts.
Their work is primarily of theoretical interest but can be viewed as compatible
to ours in the sense that smart contracts providing input and output privacy
can be realized as Kachina-style contracts.

2 Preliminaries

In this section, we introduce some of the cryptographic building blocks that
will be needed in our schemes—namely, fully homomorphic encryption, zero-
knowledge proofs, and digital signatures. As our framework builds upon ideas
from Ethereum [7] and Zether [8], we also review these systems.

Notation. We use λ to represent the security parameter and pp to denote the
system public parameters. To refer to parameter x inside pp, we write pp.x. The
public and secret keys of an account are denoted pk and sk, respectively, with
the account owner in superscript and the account type (public or private) in
subscript.

We use Zp to represent Z/pZ, the arrow notation for column vectors (e.g.,
~v), and capital letters for matrices. For polynomials, we use boldface notation
(e.g., v), boldface with arrow notation for a vector of polynomials (e.g. ~v), and
boldface capital letter for a matrix of polynomials.

For ZKPs, we use {(x, y; z) : f(x, y, z)} to mean that the prover shows
knowledge of x, y, z (where x, y are public variables and z is a private variable)
such that f(x, y, z) holds. Lastly, PPT means probabilistic polynomial time and
negl(λ) is meant to denote negligible functions.

Ethereum. Ethereum [7] is a smart contract-enabled cryptocurrency that allows
users to perform simple currency transfer in its native currency, Ether, as well
as deploy complex applications via the creation of user-defined smart contracts.
To this end, Ethereum introduces a Turing-complete language and maintains a
virtual machine to execute contracts written in this language. Ethereum relies
on an account-based model rather than the UTXO model like Bitcoin [2]. Thus,
it introduces a more advanced notion of ledger state, which includes the state of
all accounts in the system.
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Ethereum provides two types of accounts: externally owned accounts (EOAs)
that are controlled by users and contract accounts that are controlled by their
contract code. The state of an EOA mainly consists of a nonce (to prevent replay
attacks) and a balance. The state of a contract account includes its code and
any state variables created by this code. Both account types can invoke functions
from a smart contract’s code. However, only an EOA can initiate a transaction
or deploy a smart contract.

Miners execute the code in any smart contract upon request (i.e. when in-
voked). To prevent DoS attacks, each operation in Ethereum has some associated
cost in terms of gas. Additionally, Ethereum’s blockchain has a gas limit which
constrains the total number of operations that can be executed in a single block.

Zether. Zether [8] brings privacy to currency transfers in Ethereum. It supports
confidential transactions (in which the transfer amount and balances of the users
are kept hidden), as well as anonymous transactions (that additionally hide the
identities of the users involved). The latter, however, cannot be implemented on
Ethereum as the cost exceeds the gas limit per block [8].

Zether is instantiated as a token on top of Ethereum with Zeth as its cur-
rency. Thus, users have accounts on the Ethereum network, as well as accounts
for Zether’s smart contract. To perform confidential transactions, Zether makes
use of an additively homomorphic encryption scheme (namely ElGamal) and
Sigma-Bullets (a Sigma protocol version of Bulletproofs) [8]. Account balances
are encrypted and balance updates are done over the ciphertexts. To handle
concurrency, incoming funds to private accounts are held in a pending state to
ensure that ZKPs in private transactions are not deemed invalid if the sender’s
account balance changes. Pending currency transfers must be rolled over by the
account owner at the start of an epoch (a period of k contiguous blocks). As
Zether uses an additively homomorphic encryption scheme, only applications
that can be represented in an additive manner support input/output privacy.

2.1 Fully Homomorphic Encryption

FHE supports computations directly on ciphertexts via the use of homomorphic
addition and homomorphic multiplication. All currently known schemes rely on
lattice-based cryptography, thus providing post-quantum security guarantees.
Single-key FHE allows for arbitrary computation over data encrypted under the
same key.

Multi-key FHE, on the other hand, allows for arbitrary computation over
data encrypted under different keys. Ideally, the multi-key FHE scheme chosen
for the smartFHE framework would be “multi-hop” [24]. Multi-hop schemes,
unlike single hop schemes, allow evaluated ciphertexts to be used in further
homomorphic computations.

FHE schemes model computation in one of three ways—as boolean circuits,
modular arithmetic, or floating point arithmetic [25]. Floating point arithmetic
will provide only approximate values and, thus, is a poor choice here since we
need precise balance and transfer amounts for our ZKPs.
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Specifically, we will use the BGV scheme [21] and then the Mukherjee-Wichs
multi-key scheme [17] in our instantiation.

BGV Scheme. We use a single-key FHE scheme that models computation
as arithmetic circuits—specifically, the BGV scheme [21]. It is a leveled FHE
scheme, meaning that only a certain number of homomorphic multiplications
can be performed sequentially before reaching a point at which the resulting
ciphertext cannot be decrypted. Each level has its own set of (public and secret)
keys. Bootstrapping can be used as an optimization to avoid having to specify
the number of levels (i.e. multiplicative depth) in advance.

A ciphertext can be decrypted successfully if its noise is small enough. How-
ever, each time we perform homomorphic operations (especially multiplication),
the ciphertext’s noise grows. To help manage the noise growth, a refreshing pro-
cedure is introduced that can be performed by anyone.

Correctness of the BGV scheme is guaranteed so long as the noise does not
wrap modulo qj or qj−1 (we change from modulus qj to smaller modulus qj−1 as
part of the refreshing procedure to move between levels). Its semantic security
follows from a standard hybrid argument from security of the basic Ring-LWE
(Learning with Errors) encryption scheme [26].

Additional details on the BGV scheme can be found in Appendix A.

Mukherjee-Wichs Multi-key FHE Scheme. We consider the multi-key FHE
scheme of [17] that extends the single-key GSW scheme. Unlike the BGV scheme,
the Mukherjee-Wichs construction models computations as boolean circuits and
requires a trusted setup. However, this scheme relies only on the hardness of
LWE and has a one round decryption process. Note that this scheme provides
both correctness and semantic security.

2.2 Zero-Knowledge Proofs

Our smartFHE framework uses FHE which can only be constructed using lattice-
based cryptography. There have been recent improvements to lattice-based ZKPs
(namely [27], [28], and [29]) but these constructions still do not achieve the
desired efficiency level with regards to proof sizes (<100KB).

Perhaps surprisingly, it is possible to use elliptic curve-based ZKPs to prove
relations in lattice-based cryptography quite efficiently via the short discrete log
proofs system [18]. We take this approach in our instantiation to obtain small
proof sizes (in the single digit kilobyte range). We will also use Bulletproofs [30]
to prove properties of the plaintext (such as the committed value being in a
particular range). Both of these ZKP systems provide soundness, completeness,
and zero-knowledge guarantees and can be made non-interactive using the Fiat-
Shamir transform [31]. Additionally, neither requires a trusted setup.

Bulletproofs. Bulletproofs [30] support logarithmic-sized zero-knowledge proofs
for general arithmetic circuits. Their security relies on the the hardness of the
discrete log problem. Additionally, Bulletproofs are universal (so that a single
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reference string can be used to prove any NP statement). Bulletproofs are par-
ticularly well-suited to short range proofs (i.e. proving that a committed value
is in some range) which we make use of in our PPSC construction.

Short Discrete Log Proofs. This proof system [18] allows us to efficiently
prove knowledge of a short vector ~s such that:

A~s = ~t

for public A and ~t over the polynomial ring Rq = Zq[X]/(f(x)), where f(x) is
a monic, irreducible polynomial of degree d in Z[X].

To do so, we first form a Pedersen commitment to the coefficients of ~s. This
commitment is in some group G of size p such that the discrete log problem is
hard. The proofs owe their efficiency to the fact that p is usually much larger
than q, particularly in the FHE setting.

Then, to prove the linear relation, a variant of Bulletproofs is used, which
differs from the original Bulletproofs construction in that the inner-product proof
will be zero-knowledge [18]. Using the initial Pedersen commitment to ~s, we can
use Bulletproofs to prove properties of the plaintext—such as a secret value being
in a particular range. The soundness of the proofs is based on the discrete log
problem whereas secrecy is based on Ring-LWE, a problem generally considered
to be hard even for quantum computers [26].

2.3 Lattice-Based Signature Schemes

We require a signature scheme that is correct (so that valid signatures can be
produced on arbitrary messages) and existentially unforgeable (to prevent adver-
saries from creating valid signatures on new messages having seen some previous
valid signatures). This signature scheme will be used for signing transactions that
originate from private accounts. In practice, we would like for such a scheme to
be fairly efficient and compatible with our lattice-based FHE scheme.

In our instantiation, we suggest using the lattice-based Falcon signature
scheme, a round 3 finalist for NIST’s post-quantum cryptography competition
[32].

3 Defining a Privacy-Preserving Smart Contract Scheme

In this section, we define a notion for a privacy-preserving smart contract (PPSC)
scheme and cover its basic operation, correctness, and security. Correctness and
security are inspired by Zerocash [5] and Zether [8].

Our PPSC scheme is applied on top of a public smart contract-enabled cryp-
tocurrency such as Ethereum. It can be viewed as the extension needed to
support privacy-preserving execution of smart contracts and payments on an
account-based ledger. Hence, a PPSC scheme inherits all the public function-
ality and data structures found in the underlying public system. These include
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the append-only ledger L that stores states for accounts (e.g. their balances,
and contract code if applicable). Users have access to this ledger at any time
and can initiate basic currency transfer transactions or deploy arbitrary smart
contracts. Processing transactions and performing computations (the code por-
tions of smart contracts) change the state of the ledger, where such changes are
applied when a new block is mined. Thus, issuing any transaction or implement-
ing any code relies on the latest ledger state (i.e. the latest changes reflected
by the most recent mined block). In our definition below, we focus on the new
modules needed to support private transactions and smart contract execution
with private inputs and outputs.

Definition 1 (PPSC Scheme). A PPSC scheme Π is a tuple of PPT al-
gorithms (Setup, CreateAccount, CreateTransaction, VerifyTransaction, Compute,
UpdateState) defined as follows:

– Setup: Takes as input a security parameter λ. Outputs public parameters pp.
– CreateAccount: Takes as inputs public parameters pp and a privacy level

(private or public). It generates key pair (sk, pk) and an address addr (derived
from pk) with a postfix indicating if it is for a private or public account. It
also initializes the account state consisting of a nonce ctr[pk] = 0 that is
incremented with each transaction, a balance Bal[pk] = 0 associated with
the account, and a lock entry Lk[pk] = ⊥ indicating the address to which
the account is locked (⊥ means the account is unlocked). If the account is
private, Bal[pk] will be secret. Finally, CreateAccount outputs the key pair,
address, and state.

– CreateTransaction: Takes as input public parameters pp, transaction seman-
tics, syntax, and information. Outputs a transaction tx of one of the following
types:

• txshield : Transfers currency from a public account to a private account.
The transfer amount is public.

• txdeshield : Transfers currency from a private account to a public account.
The transfer amount is public.

• txprivtransf : Transfers currency from one private account to another pri-
vate account. The transfer amount is secret.

• txlock : Locks a private account to some other account, thereby transfer-
ring account ownership to the recipient and preventing the locked account
balance from being altered until unlocked.

• txunlock : Unlocks a private account, returning control back to its owner.
The transaction is only successful if it is issued by the same account to
which the private account was locked.

– VerifyTransaction: Takes as inputs public parameters pp, transaction tx, and
the transaction’s syntax/semantics for the types mentioned above. Outputs 1
if tx is valid and 0 otherwise.

– Compute: Takes as inputs public parameters pp, an arithmetic or boolean cir-
cuit C, and inputs (public or secret) x1, ..., xn for this circuit. If x1, ...xn are
public, then apply C as is on these inputs. If x1, ..., xn are secret, transform C
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into an equivalent circuit C ′ operating on secret inputs and producing secret
outputs, then apply C ′ to x1, ..., xn. If computation was successful, output 1.
Otherwise, output 0.

– UpdateState: Takes as inputs public parameters pp, current ledger state L
which includes the state of all accounts, and a list of pending operations
Ops = {opi} such that opi can be a transaction txi or a computation Compute(pp,
Ci, {xi,, . . . , xi,n}) as described above. UpdateState proceeds in blocks and
epochs (an epoch is k consecutive blocks). Changes induced by all operations
are reflected at the end of a block except for txshield or txprivtransf , which are
processed at the end of the epoch (i.e. the last block in an epoch). Incoming
transactions to a locked account will not be processed until the next epoch
after which the account is unlocked. After applying Ops to L based on these
rules, output an updated state L′.

Intuitively, correctness of a PPSC scheme requires that if we start with a valid
ledger state and apply an arbitrary sequence of valid (or honestly generated)
operations, the resulting state will also be valid. Towards this end, we define what
constitutes a valid operation list, ledger state evolution, and an incorrectness
game, INCORR, in which a challenger C and a ledger sampler S interact with
each other. The goal of S is to produce an Ops that leads to an inconsistent ledger
state. Thus, in this game, after receiving the public parameters pp, S samples
a ledger state, a list of operations Ops, and two accounts; one is public and the
other is private. Ops will be applied to each account starting with the same initial
ledger state (for the public account, a public version of Ops will be used, but for
the private account, an equivalent private version will be used). S wins the game
if at the end, these accounts contain different balance values (meaning that the
private operations in a PPSC scheme do not produce a consistent output with
their public version). A PPSC scheme is correct so long as the advantage of S
in winning the INCORR game is negligible (as defined below).

Definition 2 (Correctness of a PPSC Scheme). A PPSC scheme Π =
(Setup, CreateAccount, CreateTransaction, VerifyTransaction, Compute, UpdateState)
is correct if no PPT ledger sampler S can win the INCORR game with non-
negligible probability. In particular, for every PPT S and sufficiently large secu-
rity parameter λ, we have

AdvINCORR∏
,S < negl(λ)

where AdvINCORR
Π,S := Pr[INCORR(Π,S, 1n) = 1] is S’s advantage of winning the

incorrectness game.

With respect to security, we define two requirements for a PPSC scheme—ledger
indistinguishability and overdraft safety. To this end, we define a common secu-
rity game between a challenger C, representing the honest users, and an adversary
A. Both interact with the PPSC oracle OPPSC. The adversary can ask C to per-
form various user algorithms. A can also submit his own operations to OPPSC for
processing and request arbitrary subsets of pending operations to be processed.
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Informally, ledger indistinguishability ensures that the ledger produced by
the PPSC scheme Π does not reveal additional information beyond what was
publicly revealed. We define a Ledger-Indistinguishability-Game to represent the
interaction between C and A. At some point in the game, C chooses a bit b at
random (choosing between two operations) and the task of A is to guess which
operation was selected (i.e. return b′). As in Zerocash [5], we define public con-
sistency to rule out trivial wins by the adversary. Our definition requires taking
into account not only the new transactions produced from CreateTransaction,
but also the computations resulting from Compute.

Definition 3 (Ledger Indistinguishability). A PPSC scheme Π satisfies
ledger indistinguishability if for all PPT adversaries A, the probability that b′ = b
in the Ledger-Indistinguishability-Game is 1/2 + negl(λ), where the probability is
taken over the coin tosses of both A and C.

Informally, overdraft safety ensures that our PPSC scheme Π does not allow
an adversary to spend more currency than he owns. To capture this, we also
define an Overdraft-Safety-Game game between C and A. A wins the game if he
manages to spend currency of a value larger than he rightfully owns.

Definition 4 (Overdraft Safety). A PPSC scheme Π provides overdraft safety
if for all PPT adversaries A, the probability that

valA→PK + valInsert > valPK→A + valdeposit (1)

in the Overdraft-Safety-Game is negl(λ), where the probability is taken over the
coin tosses of A and C and:

– valA→PK is the total value of payments sent from A to users with addresses
in PK

– valInsert is the total value of payments placed by A on the ledger

– valPK→A is the total value of payments sent from users with addresses in PK
to A

– valdeposit is the initial amount of currency in accounts owned by A.

Now, we define security of a PPSC scheme with respect to the previous two
definitions.

Definition 5 (Security of a PPSC Scheme). A PPSC scheme Π = (Setup,
CreateAccount, CreateTransaction, VerifyTransaction, Compute, UpdateState) is
secure if it satisfies ledger indistinguishability and overdraft safety.

A detailed version of the formal definitions (for both correctness and security)
can be found in Appendix C.
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4 The smartFHE Framework

In this section, we provide an overview of how the smartFHE framework can
be used to support PPSCs. Specifically, we define the smart contract-enabled
cryptocurrency architecture that we target, outline the functionalities that our
framework supports, show how to handle concurrency issues, and provide a high-
level description of how correctness and security of the resulting PPSCs are
satisfied using FHE and ZKP. An instantiation of a PPSC using the smartFHE
framework can be found in Section 5.

4.1 Architecture

Our framework can be viewed as extending a public smart contract-enabled
cryptocurrency to support privacy. We require the underlying system to support
an account-based model, a Turing-complete scripting language, and a virtual
machine with a cost associated for each smart contract operation. For smartFHE,
we consider extending Ethereum’s design. Thus, our framework will provide
additional functionalities to support both private currency transfer and smart
contracts that operate on private data.

The default operation of smartFHE is the public mode—meaning that ev-
erything will be logged in the clear on the blockchain (including the account
balances, smart contract code, and all transactions), and that smart contract
code will be operating on public inputs/outputs. Working in the private mode
requires explicit quantifiers to indicate that a user wants to conduct private
payments or execute smart contacts that operate on private data or accounts
and produce private outputs (for simplicity, we refer to these as private smart
contracts).

As in Ethereum, smartFHE has two types of accounts: contract owned and
externally (or user) owned. However, we further subdivide externally owned ac-
counts into two types: public and private. Private accounts will be used to initiate
private transactions and participate in private smart contracts. To differentiate
between these two types (since both are represented by public addresses that
could be hashes of the actual public keys), a prefix is added to an account ad-
dress. Namely, we can let 00 indicate a public account address, whereas 11 will
indicate a private one.

Given that smartFHE supports both private currency transfers and private
smart contracts, we need to augment Ethereum’s network protocol [7] with new
types of transactions and cryptographic capabilities to permit operations on
private accounts.

It should be noted that we are concerned with the privacy of the accounts and
user’s data rather than the executed functionality (or function privacy as often
called in the literature). The smart contract code, even if working on private
accounts, is public. Also, in the current version of smartFHE, we do not support
anonymity of the users. The users’ addresses are public information, explicitly
referenced in any transaction performed in the system. Extending smartFHE to
support anonymity is a direction for our future work.
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Encrypted outputs 
Transactions

Fig. 1: A high-level description of private smart contract service in smartFHE.

4.2 Supported Functionality

Our framework supports four services: public payments, public smart contracts,
private payments, and private smart contracts.

Public Operations. Both public transactions and public smart contracts offer
no privacy—with all inputs and outputs provided in the clear. smartFHE han-
dles public operations in the same manner as Ethereum.

Private Payments. For private payments, smartFHE allows users to issue
transactions that hide the transfer amount and the users’ balances.

To hide the balance of a private account, we use an FHE scheme (either
single or multi-key) to encrypt the balance. Thus, examining the blockchain
does not reveal the total amount of currency an account owns. Furthermore, for
private transactions, the transfer amount will also be encrypted using the FHE
scheme. This allows for updating the sender and receiver’s account balances
using homomorphic operations (i.e. homomorphic addition). Since his balance
and transfer amount is hidden, the sender will need to provide ZKPs to show
that certain conditions are met (i.e. he has enough currency in his account, the
transfer amount is non-negative, the ciphertext is well-formed).

We only need an additively homomorphic encryption scheme to achieve pri-
vate currency transfer. For example, we can restrict ourselves to the basic Ring-
LWE encryption scheme [26] (rather than generating the full FHE key set from
the BGV scheme) in our instantiation if only private currency transfer is desired.

Private Smart Contracts. smartFHE supports arbitrary computations on
private inputs belonging to the same user if single-key FHE is used in the frame-
work. If multi-key FHE is used in the framework, then smartFHE can support
arbitrary computations on private inputs belonging to different users.

Users write smart contracts with code operating on their private data and
private account balances (see Figure 1 for a high level pictorial representation).
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Since the code may operate on hidden values, the users participating in the con-
tract need to provide ZKPs showing that their initial ciphertexts are well-formed
and satisfy certain conditions (dependent on the application). Operations (aka
circuits) over private accounts’ data will be translated into fully homomorphic
computations over these private inputs. smartFHE provides such translations
behind the scenes for users.

Miners (who can be trusted for correctness and availability in the blockchain
model) will check these ZKPs, perform the requested homomorphic computa-
tions directly on the ciphertexts, and update the blockchain state accordingly.

4.3 System Operation

We discuss the setup process, show how to handle concurrency issues resulting
from distributed computation on private values, and outline the new transaction
types we support.

Setup. Setup includes system-related setup, user-related setup, and smart contract-
related setup.

System setup involves launching the system—which starts with deploying
miners, creating the genesis block of its blockchain, and generating all public
parameters pp needed by the cryptographic primitives (such as FHE and ZKP)
that we employ in the system. The public parameters will be known to everyone
and could either be published in the genesis block or announced and maintained
off-chain.

For user-related setup, once system setup is complete, users can now join
and create their own accounts. A user needs at least one of a public or private
account (although users can own multiple accounts of each type if desired).
For a public account, a user generates a key pair (specified by (pkpub, skpub))
to be used for signatures. The public account can be used to initiate public
transactions and participate in public smart contracts. For a private account, a
user generates a key set from the given single or multi-key FHE scheme (specified
by (pkpriv, skpriv)) along with an appropriate signature scheme. Private accounts
can be used to initiate private transactions and participate in private smart
contracts.

Smart contract setup is dependent on whoever creates the smart contract.
The contract creator may or may not participate in the contract himself. The
smart contract will usually specify the sorts of inputs the contract will take
in (which may be encrypted or in the clear), along with the operations to be
performed on the inputs. If the smart contract offers privacy, there may also
be ZKP verification step to ensure that contract-related conditions are satisfied
with respect to the encrypted inputs.

Handling Concurrency. A challenge in designing privacy-preserving mecha-
nisms for smart contract-enabled systems is how to handle both privacy and
concurrency for accounts [23].
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Suppose Alice submits a private transaction to be processed by the miners.
While this transaction is waiting to be processed, Bob submits his own trans-
action in which he transfers currency to Alice. If Bob’s transaction is processed
first by the miners, then Alice’s transaction will be subsequently rejected since
her account’s state has changed and the ZKP (generated with respect to her
previous balance) is no longer valid.

Epochs. We adopt Zether’s [8] approach to handle this issue; namely, we divide
time into epochs consisting of some predetermined number of blocks (this value
will be chosen in System.Setup) and hold all incoming transfers to private ac-
counts in a pending state until an epoch is complete. We ask private account
users to submit deshielding and private transfer transactions at the start of an
epoch so that they will be processed by the end of the epoch. Public accounts
do not have to worry about submitting transactions at any particular point in
time; additionally, incoming funds to public accounts are not subject to a wait-
ing period (i.e. waiting until the start of the next epoch to be included in the
account balance).

Our system (unlike Zether [8]) will roll over the funds to private account’s
balance automatically so that it can be spent at the start of the next epoch.
Users do not have to explicitly call any algorithm for this to occur.

The length of an epoch must be chosen carefully (in the system setup phase)
to ensure that a transaction submitted at the start of an epoch is processed
before the epoch ends. When Alice and Bob submit their own respective trans-
actions, miners will verify the transaction against the sender’s current balance at
that point in time. In practice, the sender should view the transaction amount
as being deducted from his own account and reflected in his account balance im-
mediately. We do this to prevent possible double-spending attacks. There is no
issue with this approach as users should know how much currency they have sent
to others. Additionally, transaction order will be enforced by the nonce value.

Private Account Locking. Our system supports more than just private currency
transfer so dividing time into epochs and rolling over transfers does not suffice
for handling front-running. For example, users may participate in private smart
contracts that span an undetermined number of epochs. To handle front-running
in these applications, we allow accounts to be locked to other accounts. We use
locking differently from how it is used in Zether [8]; specifically, users can lock
their account to any type of account, not just smart contract accounts.

If desired, epochs can be eliminated entirely in favor of using a locking mech-
anism for private accounts. We discuss this possibility in Section 6.

Transactions. As the smartFHE framework is used to support PPSCs, smartFHE
supports all the transaction types mentioned in Section 3. Namely, we can sup-
port txshield, txprivtransf , txdeshield, txlock, and txunlock.
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4.4 Security and Correctness

We briefly outline how the smartFHE framework supports a correct and secure
PPSC scheme (full details can be found in Appendix C). Additionally, we show
how the smartFHE framework handles system implementation level attacks, such
as replay and front-running attacks.

Theorem 1. Assuming (a) the signature scheme is correct, (b) the (single or
multi-key) fully homomorphic encryption scheme is correct and semantically
secure, and (c) the proof system satisfies soundness, completeness, and zero-
knowledge properties, then smartFHE supports a correct (cf. Definition 2) and
secure (cf. Definition 5) PPSC scheme (cf. Definition 1).

Correctness. As discussed in the previous section, correctness of smartFHE’s
private operations will depend on the correctness of its cryptographic primi-
tives—specifically, correctness of the signature scheme, correctness of the single
or multi-key FHE scheme, and completeness of the ZKP system. Thus, any PPT
adversary will win the incorrectness game INCORR (outlined in Section 3) with
negligible probability assuming these requirements are satisfied.

Ledger Indistinguishability. Informally, an adversary that wins the
Ledger-Indistinguishability-Game (outlined in Section 3) with non-negligible prob-
ability can be used to break semantic security of the (single or multi-key) FHE
scheme and/or the zero-knowledge property of smartFHE’s proof system.

Overdraft Safety. Informally, an adversary that wins the Overdraft-Safety-Game
(outlined in Section 3) with non-negligible probability can be used to break the
soundness of smartFHE’s proof system.

Replay Attacks. In a replay attack, a transaction that has already been processed
is replayed on the network. In our scheme, each account (public or private) will
maintain its own nonce which must be signed and incremented as part of any
transaction this account issues. This approach ensures that valid transactions
cannot be replayed and zero-knowledge proofs cannot be maliciously imported
into new transactions.

Front-running. To mitigate this risk, we initially hold all incoming transfers to
private accounts in a pending state (until the end of an epoch) and allow users to
lock their private accounts to other accounts. Thus, they can put their accounts
on hold—preventing any state changes while their own private transactions are
still pending.

5 Our Instantiation

We provide an instantiation of a PPSC scheme using the smartFHE framework.
For our single-key instantiation, we use the BGV fully homomorphic encryption
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scheme [21], Bulletproofs [30], and short discrete log proofs [18]. We can extend
our instantiation to support private computation on multi-user inputs using the
Mukherjee-Wichs multi-key FHE scheme [17].

5.1 Syntax

We now outline the syntax used in our implementation. Note that all algorithms
take as additional inputs the public parameters pp and the state of the system
sth for the current block height h (but we sometimes omit listing it explicitly).
Details on the syntax of the BGV scheme (which is used for private accounts)
are provided in Appendix A.

System Related. First, we perform the setup for the entire system. This in-
cludes choosing the parameters for the signature schemes (for the public and
private account), the BGV fully homomorphic encryption scheme, and the non-
interactive zero-knowledge proofs—specifically discrete log proofs [18] and Bul-
letproofs [30]). Please see Figure 2 for details. Important considerations for choos-
ing some of these parameters are discussed in 5.3.

Public Account Related. A public account owner maintains key pair (pkpub, skpub)
to sign outgoing txtransf and txshield transactions, an unencrypted balance balance,
and a nonce ctr[pkpub] that is incremented with each transaction. We handle oper-
ations relating to public account in the same manner as Ethereum [7]. Ethereum
uses the Elliptic Curve Digital Signature Algorithm [33] but in theory any ef-
ficient digital signature scheme (providing correctness and existential unforge-
ability) can be employed.

1. Pub.CreateAccount(pp): To create a public account, a user calls the
Pub.CreateAccount algorithm which outputs key pair (pkpub, skpub). pkpub will
be used as the account address/to identify the account owner. In practice,
the account address is usually a hash of the public key.

2. Pub.ReadBalance(pkpub): Returns the (plaintext) balance balance belonging
to the public account pkpub. If no such account exists, returns ⊥.

3. Pub.Sign(skpub,m): Produces a signature σpub using the Elliptic Curve Digital
Signing Algorithm on message m with secret key skpub.

4. Pub.VerifySig(σpub, pkpub): Verifies if the signature σpub produced is valid and
belongs to pkpub. It outputs 1 if σpub is valid and 0 otherwise.

Private Account Related. A private account owner maintains key pair (pkpriv, skpriv),
an encrypted balance (with respect to pkpriv), and a nonce ctr[pkpriv] that is in-
cremented with each transaction. The user will use a signature scheme to sign
outgoing txdeshield and txprivtransf transactions.

1. Priv.CreateAccount(pp): To create a private account, a user calls the
Priv.CreateAccount algorithm. Priv.CreateAccount generates the keys for the
BGV scheme which are set to be the keys for the private account (pkpriv, skpriv),
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System.Setup(1λ, 1L): Takes as inputs the security parameter λ and number of
levels L to be supported in the leveled BGV scheme. Outputs the public parameters
pp for the entire system including:

– pp.BGV← BGV.Setup(1λ, 1L)
– pp.NIZKlogproofs ← NIZKlogproofs.Setup(1λ)
– pp.NIZKbulletproofs ← NIZKbulletproofs.Setup(1λ)
– pp.sigpriv ← PrivSig.Setup(1λ), setup for signature scheme used for private ac-

counts
– pp.keypub ← PubKey.Setup(1λ), setup for signature scheme used for public ac-

counts

Initializes:

– acc, account table
– pendOps, pending operations table to keep track of pending transactions and

computations
– lastRollOver, table detailing the last epoch at which a private account’s balance

was rolled over
– lock, lock table keeping track of which address a private account is locked to
– counter, counter table keeping track of the counters associated with accounts

Also outputs:

– MAX, maximum currency amount smartFHE can support
– E, epoch length

Fig. 2: System setup

along with generating the keys for a lattice-based signature scheme
(sigpkpriv, sigskpriv). We have a secret key skpriv = {sj} for each level j in the
leveled BGV scheme. The public key pkpriv consists of matrix Aj along with
auxiliary information τs′′j+1→sj

for key switching. If we assume circular secu-

rity, we will use the same public and secret key for every level [21].
2. Priv.Encrypt(pp, pkpriv,m): Calls BGV.Encrypt on the message m. Outputs

ciphertext ~c which is encrypted with respect to level L.
3. Priv.Decrypt(pp, skpriv,~c): Decrypts a ciphertext ~c encrypted under pkpriv for

level j by running BGV.Decrypt(pp, sj ,~c). Returns the corresponding plain-
text message m.

4. Priv.ReadBalance(skpriv): Returns the unencrypted balance balance belonging
to a private account pkpriv. If no such account exists, returns ⊥.

5. Priv.Sign(sigskpriv,m): Produces a signature σpriv on message m using the
signature scheme for the private account.

6. Priv.VerifySig(σpriv, sigpkpriv): Verifies if the signature σpriv produced is valid
and belongs to sigpkpriv. It outputs 1 if σpriv is valid and 0 otherwise.
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7. CheckLock(pkpriv): Checks if the account corresponding to pkpriv is currently
locked. If pkpriv is locked, returns the address of the account it is locked to.
Otherwise, returns ⊥.

Transaction Related. Users can engage in four types of transactions using
their key pairs. Details are provided in Section 5.2.

1. Transfer(skfrompub , pk
to
pub, amnt): Transfer is used to send currency from one public

account to another public account. It outputs txtransf .
2. VerifyTransfer(txtransf): VerifyTransfer verifies if all the conditions for txtransf

have been satisfied. If yes, it outputs 1. Otherwise, it outputs 0.
3. Shield(skfrompub , pk

to
priv, amnt): Shield is used to send currency from a public ac-

count to a private account. It outputs txshield.
4. VerifyShield(txshield): VerifyShield verifies if all conditions for txshield have been

satisfied. If yes, it outputs 1. Otherwise, it outputs 0.
5. Deshield(skfrompriv , pk

to
pub, amnt): Deshield is used to send currency from a private

account to a public account. It outputs txdeshield which includes a ZKP.
6. VerifyDeshield(txdeshield): VerifyDeshield verifies if all conditions for txdeshield

have been satisfied. If yes, it outputs 1. Otherwise, it outputs 0.
7. PrivTransfer(skfrompriv , pk

to
priv, amnt): PrivTransfer is used to send currency from

one private account to another private account. It outputs txprivtransf which
includes a ZKP.

8. VerifyPrivTransfer(txprivtransf): VerifyPrivTransfer verifies if all conditions for a
txprivtransf have been satisfied. If yes, it outputs 1. Otherwise, it outputs 0.

9. Lock(skfrompriv , addr
to): First checks that skfrompriv is not already locked by calling

CheckLock. Locks private account corresponding to pkfrompriv to account corre-
sponding to addrto. A user can even lock his account to itself. Funds from
transactions sent to pkfrompriv will not be rolled over into his balance until the
epoch after which the account is unlocked. Outputs txlock = (addrto, σlock)
where σlock = Priv.Sign(sigskpriv, (addr

to, ctr[pkpriv])).
10. Unlock(pkpriv): First checks that pkpriv is locked by calling CheckLock. Unlocks

the private account corresponding to pkpriv if and only if the address addr
that called Unlock is the same one returned by CheckLock(pkpriv). Outputs
txunlock.

Private Smart Contract Related. Operations on inputs belonging to a pri-
vate account will be translated into homomorphic computations.

1. Priv.HomAdd(pkpriv,~c1,~c2): Runs BGV.HomAdd on the ciphertexts ~c1 and
~c2 (which are encrypted with respect to pkpriv) to produce the sum of the
two ciphertexts. Assuming they are encrypted with respect to the same level
j, output ~c3 = ~c1 + ~c2 mod qj . If not, use Priv.Refresh first to obtain two
ciphertexts at the same level.

2. Priv.HomMult(pkpriv,~c1,~c2): Runs BGV.HomMult on the ciphertexts ~c1 =
(c1,0, c1,1),~c2 = (c2,0, c2,1) (which are encrypted with respect to pkpriv) to
obtain the “product” ~c3 = (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1). We call
Priv.Refresh on ~c3 and output the result. If the initial ciphertexts are not
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encrypted with respect to the same level, we use the Priv.Refresh procedure
first to obtain two ciphertexts at the same level.

3. Priv.Refresh(~c, τ, qj , qj−1): Runs BGV.Refresh on the ciphertext ~c (encrypted
with respect to pkpriv) using auxiliary information τ associated with private
account pkpriv to facilitate key switching and modulus switching from qj to
modulus qj−1.

5.2 Instantiating the Payment Mechanism

We discuss our payment scheme in detail; namely, we show how users perform
our new shield, deshield and private transfer transactions using our instantiation.

Representing Balances and Transfers. Let R = Zq(x)/(f(x)). We use the
Integer Encoder technique (described in SEAL [34]) to represent integer value
currency amounts for private accounts in our PPSC scheme. The technique is as
follows:

1. Compute the binary expansion of the integer.
2. Use the bits as coefficients to create the polynomial g(x). Negative integers

can be represented via the use of 0 and −1 as coefficients.
3. To get back the integer from a polynomial, simply evaluate the polynomial
g(x) at x = 2.

Thus, the modulus q must be chosen to be large enough so that there is no
overflow. Finally, we can pass our newly obtained polynomial (that represents
some integer amount) into Priv.Encrypt to obtain an encryption.

Shielding Transaction. The sender with public account (pkfrompub , sk
from
pub ) and

unencrypted balance balancefrom wishes to send some currency amnt to the re-
ceiver with private account (pktopriv, sk

to
priv) and encrypted balance ~b′. The sender

will issue a shielding transaction txshield containing the following information:

– Receiver’s public key: pktopriv
– Transfer amount (in plaintext): amnt
– Transfer amount encrypted under the receiver’s public key: ~c
– Randomness used for encrypting transfer amount: r

The sender signs the transaction along with his nonce ctr[pkfrompub ], producing

signature σfrom
pub . He then broadcasts the transaction txshield to the miners of the

network.
For the transaction to be verified, miners check that the following conditions

are met:

– Valid signature from sender
– Receiver’s public key exists/is valid
– Ciphertexts are well-formed
– Transfer amount is positive: amnt ∈ [0,MAX]
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– Encrypted transfer amount matches plaintext amount with published ran-

domness: Priv.Encrypt(pp, pktopriv, amnt; r)
?
= ~c

– Sender’s remaining balance will be non-negative: balancefrom − amnt ∈ [0,MAX]

If all conditions are satisfied (i.e. VerifyShield(txshield) = 1), miners update
the sender’s account balance to balancefrom − amnt and the receiver’s balance to
~b′ + ~c. The transaction txshield is recorded on the blockchain.

Deshielding Transaction. In a deshielding transaction, the sender has private
account (pkfrompriv , sk

from
priv ) and maintains some encrypted balance ~b. He wishes to

send some currency amnt to the receiver who has public account (pktopub, sk
to
pub) and

unencrypted balance balanceto. The sender will issue a deshielding transaction
txdeshield containing the following information:

– Receiver’s public key: pktopub
– Transfer amount (in plaintext): amnt
– Transfer amount encrypted w.r.t. sender’s public key: ~c
– Randomness used for encrypting transfer amount: r
– Sender’s remaining encrypted balance: ~b′

– Proof πdeshield that sender’s remaining balance is non-negative
(i.e. Priv.Decrypt(pp, skfrompriv ,

~b′) = balance∗ ∈ [0,MAX])

The proof follows from a simple, straightforward application of discrete log
proofs [18]. The sender signs the transaction along with his nonce ctr[pkfrompriv ],

producing signature σfrom
priv . He then broadcasts the transaction txdeshield to the

miners of the network.
For the transaction to be verified, miners check that the following conditions

are met:

– Sender’s account is not currently locked
– Valid signature from sender
– Receiver’s public key exists/is valid
– Transfer amount is positive: amnt ∈ [0,MAX]
– Encrypted transfer amount matches plaintext amount with published ran-

domness: Priv.Encrypt(pp, pkfrompriv , amnt; r)
?
= ~c

– Sender’s remaining balance is correctly computed: ~b′
?
= ~b− ~c

– Range proof πdeshield is valid

If all conditions are satisfied (i.e. VerifyDeshield(txdeshield) = 1), miners up-

date the sender’s encrypted balance to ~b′ = ~b− ~c and the receiver’s balance to
balanceto + amnt. The transaction txdeshield is recorded on the blockchain.

Private Transaction. In a private transaction, the sender has private account
(pkfrompriv , sk

from
priv ) and maintains encrypted balance ~b. He wishes to send some amnt

of currency to the recipient who is also using a private account (pktopriv, sk
to
priv)

and maintains some encrypted balance ~b′. However, the sender does not wish to
reveal the transfer amount or his balance to other users in the system.
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Thus, the sender will issue a private transaction txprivtransf containing the
following information:

– Receiver’s public key: pktopriv
– Transfer amount encrypted under sender’s public key:
~c = Priv.Encrypt(pp, pkfrompriv , amnt; r)

– Transfer amount encrypted under receiver’s public key:
~c′ = Priv.Encrypt(pp, pktopriv, amnt; r)

– Sender’s remaining encrypted balance: ~b∗

– Proof that ~c,~c′ encrypt same transfer amount amnt with same randomness
r and that this transfer amount is in [0,MAX] 4

– Proof that sender’s remaining balance is non-negative
(i.e. Priv.Decrypt(pp, skfrompriv ,

~b∗) = balance∗ ∈ [0,MAX])

The sender signs the transaction along with his nonce ctr[pkfrompriv ], producing

signature σfrom
priv . He then broadcasts the transaction txprivtransf to the miners of

the network.
For the transaction to be verified, miners check that he following conditions

have been met:

– Sender’s account is not currently locked
– Valid signature from sender
– Receiver’s public key exists/is valid

– Sender’s remaining encrypted balance is correctly computed: ~b∗
?
= ~b− ~c

– Ciphertexts are well-formed
– All proofs are valid

The sender’s public key can be represented as matrix A. The receiver’s public
key can be represented by the matrix B. Let ~m contain the transfer amount amnt
and randomness. Then we can form the equation:(

A
B

)
· ~m =

(
~c
~c′

)
(2)

This equation verifies that ~c and ~c′ do in fact encrypt the same amount
ammt with respect to the sender’s public key A and the receiver’s public key
B. Thus, we will need to show that ~m satisfies the above equation and that the
amount amnt represented in it is non-negative. This can be done using discrete
log proofs [18]. We will also have another proof that the sender’s remaining

balance Priv.Decrypt(pp, skfrompriv ,
~b∗) is non-negative; this proof is identical to the

one that will be provided in txdeshield.
If all conditions are satisfied (i.e. VerifyPrivTransfer(txprivtransf) = 1), miners

update the sender’s encrypted balance to ~b − ~c and the receiver’s encrypted
balance to ~b′ + ~c′. The transaction txprivtransf is recorded on the blockchain.

4 The scheme is still secure with randomness re-use here (to encrypt the transfer
amount under the sender and receiver’s keys) via the generalized Leftover Hash
Lemma [35].
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5.3 Public Parameter Considerations

We highlight some especially important considerations when choosing parame-
ters for the system (performed as part of the System.Setup process before users
can join the system). The following is not intended to be an exhaustive discus-
sion.

Epoch Length. The number of blocks in an epoch, k, must be chosen based
on:

– the length of time it takes to incorporate a transaction into the blockchain
– the gap between a user’s view of the blockchain and the latest state of the

blockchain

These are precisely the considerations Zether outlines for determining epoch
length [8].

Overflow. Recall that we are working over a polynomial ring Rq for lattices.
As part of the system setup, we will need to determine the maximum amount of
currency our system can support along with the modulus q used in our ring. It
is important that MAX is chosen to be much, much smaller than modulus q to
prevent possible overflow for balance/transfer amounts.

Discrete Log Proofs. Our scheme relies on the hardness of both the Ring-LWE
problem [26] and the discrete log problem. Let p be the order of the group G in
which the discrete log problem is hard. For discrete log proofs [18], the authors
observe that the modulus q (in Rq) for applications of the Ring-LWE problem
is usually much smaller than the group order p. While their proof system works
even if q = p, they note that proofs would be much less computationally effi-
cient [18]. Recall that our primary motivation for using discrete log proofs in our
PPSC system is to achieve small proof sizes (single digit kilobytes). Otherwise,
there exist pure lattice-based constructions (such as [28]) that achieve proof sizes
on the order of hundreds of kilobytes.

Levels and Bootstrapping. When using the leveled BGV scheme (as we sug-
gest), the number of levels L must be specified as part of the setup process. L
determines the maximum depth of the circuit that can be homomorphically eval-
uated along with the per-gate computation cost [21]. We must consider the sorts
of private contracts we expect users to participate in and choose L accordingly
to support a certain number of homomorphic multiplications. If such a decision
is impossible to make and/or efficiency is of little concern, bootstrapping can be
used to support computations of multiplicative depth exceeding L [21].

5.4 Supporting Multi-user Inputs using Multi-key FHE

We now consider supporting computation with I/O privacy for multi-user inputs,
possibly using the Mukherjee-Wichs multi-key FHE scheme [17]. Users could
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employ this scheme when generating a private account key pair. Transactions
would proceed as they do when using single-key FHE, as neither homomorphic
multiplication nor multi-user inputs are needed here.

Private smart contract operations could now take in data encrypted under
different keys. Participating users will need to prove in zero-knowledge that each
of their individual ciphertexts are well-formed and satisfy contract-dependent
relations to ensure that the private computations proceed as expected. Short
discrete log proofs could possibly be used here as they support proving LWE
relations but with a loss in efficiency [18]. As before, users then ask the miners
to perform the private computations directly on the ciphertexts after checking
the ZKPs. To decrypt the result, users (whose ciphertexts were operated upon)
would take part in a one round decryption process.

6 Optimizations and Extensions

We discuss some potential optimizations and extensions for our framework and
instantiation.

Eliminating Epochs. Epochs may introduce synchronization issues for users.
If desired, we can eliminate epochs entirely from the smartFHE framework. As
part of a deshield or private transfer transaction, Alice will lock her account to
itself. We can augment the network protocol so that once the ZKP is verified and
the transaction is processed, Alice’s account will automatically be unlocked. Note
that we would still keep the Lock,Unlock procedures to handle front-running is-
sues in private smart contracts (to transfer ownership of the user account and
keep away incoming transactions for an unknown amount of time).

Circular Security. If we assume circular security, the same keys can be used
for all levels in the BGV scheme [21]. We leave this decision to whoever performs
the initial setup of the scheme.

BFV Scheme. The BFV scheme is another type of fully homomorphic encryp-
tion scheme that models computation as arithmetic circuits [36]. It is closely
related to the BGV scheme but is often considered simpler to work with since it
is scale invariant. There are user-friendly libraries available for the BFV scheme
such as SEAL [34]. If desired, the BFV scheme can be used in place of the BGV
scheme in our instantiation with appropriate (minimal) changes.

7 Conclusion

In this paper, we defined a notion for a PPSC scheme and introduced smartFHE
as a modular framework for supporting secure and correct PPSCs. smartFHE
is the first framework to investigate the utility of fully homomorphic encryp-
tion, combined with non-interactive zero knowledge proofs, in the blockchain
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model. Users can ask miners to execute arbitrary computations on their pri-
vate inputs and produce private outputs. Our system supports both public and
private modes with respect to payments and smart contracts. We believe that
the blockchain model presents exciting opportunities for the full potential of
homomorphic encryption to be realized.
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A Fully Homomorphic Encryption

A.1 Basic Ring-LWE Encryption Scheme

The usual Ring-LWE public key encryption scheme [26] forms the basis of the
BGV (fully homomorphic encryption) scheme [21].

Let λ be the security parameter. All operations will be performed over the
polynomial ring Rq = Zq[x]/(f(x)) where q is an integer and f(x) ∈ Z[X] is a
monic, irreducible polynomial of degree d. The original BGV paper chooses the
plaintext space to be 2 (such that p = 2 in the syntax below). We follow the
presentation from short discrete log proofs here [18].

E.Setup(1λ, 1µ): The setup algorithm takes as inputs security parameter λ and
positive integer µ. E.Setup outputs public parameters e.pp = (p, q, d, χ) where p
is the size of the plaintext space (often chosen to be binary), q is a µ-bit mod-
ulus, d = d(λ, µ) is a power of 2 for R = Z[x]/f(x) where f(x) = xd + 1, and
χ = χ(λ, µ) is a “small” noise distribution. The parameters are chosen such that
the scheme is based on a Ring-LWE instance that achieves 2λ security against
known attacks [21].

E.SecretKeyGen(e.pp): The secret key generation algorithm E.SecretKeyGen out-
puts secret key e.sk = s where s is a polynomial with small, bounded coefficients
from the error distribution χ.

E.PublicKeyGen(e.pp, e.sk): The public key generation algorithm outputs public
key e.pk = (a, t) for a, t ∈ Rq where a is a random polynomial and t = as + e
where e is a polynomial with small, bounded coefficients from the error distri-
bution χ.

E.Enc(e.pp, e.pk,m): To encrypt message m = m ∈ Rq, where all the coefficients
of m are in Zp, we do the following:
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1. Sample polynomials r, e1, e2 with small, bounded coefficients from the error

distribution. Let ~m∗ =


r
e1

e2

m

 consisting of the message and randomness.

2. Form the matrix A from e.pk by setting A =

(
pa p 0 0
pt 0 p 1

)
.

3. Compute A · ~m∗ =

(
pa p 0 0
pt 0 p 1

)
r
e1

e2

m

 =

(
u
v

)
.

4. Output ciphertext ~c =

(
u
v

)
.

E.Dec(e.pp, e.sk,~c): To decrypt ciphertext ~c =

(
u
v

)
, compute v − us mod p

This will return the plaintext message m since v − us = p(er + e2 − se1) + m
and all the coefficients in the above equation were chosen to be small so that no
reduction modulo q occurred.

Correctness is straightforward. Semantic security of the encryption scheme is
based on the hardness of Ring-LWE for ring R [26]. Recall that the Ring-LWE
problem with appropriately chosen parameters can be reduced (via a quantum
reduction) to the Shortest Vector Problem over ideal lattices. For details on the
reduction, see [26].

A.2 BGV Scheme

We present a simplified description of the BGV scheme below. For full details,
please see [21].

Recall that each time we perform a homomorphic operation, the noise associ-
ated with the ciphertext grows. To prevent the noise from growing so large such
that decryption fails, a technique called modulus switching is used to keep the
noise level roughly constant [21]. When we multiply two ciphertexts ~c and ~c′ to-
gether, we get a long resulting ciphertext that is decryptable under a long secret
key. Having to work with these long keys and ciphertexts impacts the efficiency
of the scheme so BGV utilizes an additional technique called key switching that
instead allows us to work with a smaller ciphertext and secret key in place of the
originals. Both of these techniques—modulus switching and key switching—are
encapsulated in the refreshing procedure that can be performed by anyone.

1. BGV.Setup(1λ, 1L): The setup algorithm BGV.Setup takes as inputs the se-
curity parameter λ and the number of levels L. It outputs the parameters
bgv.ppj for each level j ∈ {L, ..., 0}—which includes a modulus, noise distri-
bution, and an integer. We also obtain a ladder of decreasing moduli that will
be used in the modulus switching procedure in the algorithm BGV.Refresh.
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2. BGV.KeyGen({bgv.ppj}): The key generation algorithm BGV.KeyGen takes
as inputs the parameters {bgv.ppj}. It outputs a secret key sk which consists
of the secret key sj for each level j from L down to 0 (obtained by run-
ning E.SecretKeyGen(e.ppj)), a public key pk which consists of public keys
pkj for each level j (obtained by running E.PublicKeyGen(e.ppj, sj)), and aux-
iliary information {τ} needed to facilitate the key switching procedure in
BGV.Refresh.

3. BGV.Encrypt(bgv.pp, pk,m): The encryption algorithm BGV.Encrypt takes as
inputs the scheme’s parameters bgv.pp, the public key pk, and a message m.
It runs E.Enc(e.pkL,m) (which is the same as E.Enc(AL,m)) and outputs a
ciphertext ~c.

4. BGV.Decrypt(bgv.pp, sk,~c): The decryption algorithm BGV.Decrypt takes as
inputs the scheme’s parameters bgv.pp, the appropriate secret key sk for the
level, and a ciphertext ~c. It outputs the corresponding plaintext m by running
E.Decrypt(sj ,~c) (assuming the ciphertext was encrypted with respect to level
j).

5. BGV.HomAdd(pk,~c1,~c2): BGV.HomAdd is used to add two ciphertexts to-
gether. It takes as inputs two ciphertexts—~c1 = (c1,0, c1,1),~c2 = (c2,0, c2,1)—
and the public key pk under which they are encrypted. If the ciphertexts are
not encrypted with respect to the same level, then run the BGV.Refresh
procedure first. We set ~c3 = (c1,0 + c2,0, c1,1 + c2,1)—the sum of the two
ciphertexts ~c1 and ~c2 from performing component-wise vector addition. If
desired, we can call BGV.Refresh on ~c3 and output the “refreshed” result
[21]. Otherwise, output ~c3.

6. BGV.HomMult(pk,~c1,~c2): BGV.HomMult is used to multiply two ciphertexts
together. It takes as inputs two ciphertexts—~c1 = (c1,0, c1,1),~c2 = (c2,0, c2,1)—
and the public key pk under which they are encrypted. If the ciphertexts are
not encrypted with respect to the same level, then run the BGV.Refresh pro-
cedure first. We obtain ~c3 = (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1), the
“product” of the two ciphertexts. Finally, we call BGV.Refresh on ~c3 and
output this result.

7. BGV.Refresh(~c, τ, qj , qj−): BGV.Refresh takes as inputs a ciphertext ~c, aux-
iliary information τ to facilitate key switching from secret key sj to sj−1, the
current modulus qj , and the next modulus qj−1. It then does the following:
(a) “Expands”: Expand the ciphertext into a powers-of-2 representation.
(b) “Switch Moduli”: Scales the ciphertext to prepare it for modulus switch-

ing according to the new modulus qj−1.
(c) “Switch Keys”: Performs the key switching procedure resulting in a new

ciphertext ~c′ decryptable under key sj−1 for modulus qj−1.
BGV.Refresh finally outputs ciphertext ~c′.

B Applications

In this section, we outline how smartFHE can be used to support several real-
world applications using only single-key FHE.
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B.1 Sealed-bid Auctions on Multiple Items

Most existing private cryptocurrency and smart contract systems offer bid pri-
vacy in auctions only when bidding on a single item. However, bidding on mul-
tiple items of a good is of interest in many financial and trading services.

The stock exchange, for example, allows potential buyers to bid on multiple
shares of a stock using auctions [37]. These auctions allow buyers and sellers to
specify not only the per-item price, but also the quantity (or number of shares)
they are willing to buy or sell. To settle the auction, the auctioneer (which will
be a smart contract in our case) needs to compute the market clearing price
(which could be the highest per-item price among all bids), match buyers with
sellers, and enforce currency transfer from the buyer to the seller.5 The last
condition requires multiplying together the ciphertexts of the per-item price
and the quantity of items in the matched bid—a homomorphic multiplication
operation. In what follows, we show how smartFHE can be used to implement
this multi-item sealed-bid auction.

A smart contract, representing a simplified stock exchange, can be deployed
to allow buyers and sellers to post bids and offers respectively. In its simplest
form, each seller can publicly specify the maximum number of shares of a given
stock she is willing to sell. Buyers can submit their sealed bids; each of which
is composed of a private per-item price and a private quantity value (encrypted
with respect to their private accounts). The auction proceeds in two phases: a
bidding phase during which bidders post private bids along with proofs of their
correctness and a matching phase during which those bidders reveal their bids
to allow settlement. 6

For example, Bob may post an offer to sell up to 32 shares of Noether’s
stock. Alice wants to buy n shares of Noether’s stock at price p per share.
Alice maintains a private account in smartFHE with key pair (pkpriv, skpriv). Her
private account has an encrypted balance b′Alice. To construct a sealed bid, Alice
encrypts the values (n, p) under pkpriv to get (n′, p′) and submits the output to
the exchange smart contract. She also needs to submit ZKPs attesting to the
well-formedness of the ciphertexts, that the number of shares she wants to buy
is within the range that Bob is offering, and that she has enough currency in her
account to make the bid.

In the reveal phase, all bids that were not rejected (due to invalid ZKPs) will
be given a timeout to be revealed. The exchange smart contract will decide the
winning buyer(s) according to a given policy, such as first matching the bidder
with the highest per-item price.

5 For physical goods, we assume that the custody of the physical items and transferring
them after settlement are provided by out-of-band means such as a custodial service.
For digital assets, these can be handled by extending the contract code to hold
custody and execute asset transfer.

6 To prevent potential buyers from possibly spending all currency in their accounts
(after posting bids but prior to auction settlement), we require bidders to lock their
private accounts to the smart contract account as part of the bidding process. At
the end of the auction, the smart contract will unlock all bidders’ accounts.
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Alice, the winner of the auction, will then create a private transfer transaction
of the total amount—namely, the plaintext value bidtotal = np—and present it to
the smart contract. Alice’s balance after the private transaction will be updated
to b′Alice − (n′p′). Bob’s balance will be updated to b′Bob + bid′total (which is the
sum of Bob’s private account balance and the winning bid amount encrypted
under Bob’s key).

To see why homomorphic multiplication is needed, note that proving that
Alice’s balance can cover the total bid value requires multiplying the ciphertexts
together as n′p′. Alice is able to provide ZKPs proving properties of the indi-
vidual ciphertexts (e.g. n′ encrypts a value n such that 0 < n ≤ 25 where 25 is
the total number of shares offered by Bob), as well as a ZKP over the homomor-
phically multiplied ciphertext that will be computed later. This multiplication
capability is also needed to prevent other serious attacks.

To clarify, we consider an alternative bidding approach that does not require
homomorphic multiplication. One may suggest computing the total bid value
bidtotal = np locally and then submitting an encryption of the output, along
with encryptions of the per-item price and quantity, n′ and p′, respectively.
Next, a ZKP could be computed attesting that the buyer’s balance can cover
bidtotal. This does not require anyone to perform homomorphic multiplication
since multiplication was done locally before encryption. In the reveal phase, the
bidder reveals all values (n, p, and bidtotal); anyone can verify that np equals to
bidtotal.

However, such an approach exposes the system to a DoS attack. A malicious
bidder can provide a valid ZKP proving that they can cover bidtotal, but with
invalid n and p values such that np 6= bidtotal. This will be detected in the reveal
phase if the bidder reveals the bid. At this stage, the exchange smart contract
will reject such a fraudulent bid but after performing all computations needed
to verify the attached ZKPs. Thus, an attacker may exploit this vulnerability
and submit a large number of fraudulent bids, making the exchange unavailable
to honest users. Although other means can be used here, such as punishing a
malicious party financially via a penalty deposit, it may potentially be infeasible
to compute a lower bound for this financial punishment (which would require
knowing the utility gain of the attackers). Supporting homomorphic multipli-
cation removes the need for additional countermeasures and makes our system
secure against all efficient adversaries, rather than only rational and efficient
ones.

B.2 Private Inventory Tracking

In certain trading scenarios, buyers and sellers may agree to trade a quantity of
items that have yet to be produced. One such example is art work production,
where a buyer is interested in buying several items of an art piece that an artist
(after agreeing on the per-item price) will produce in the near future. In such
a scenario, there is a chance that the seller may not produce the agreed upon
amount within the specified timeline. To mitigate this risk, the buyer may resort
to contacting several sellers to increase the chances of finalizing the deal on
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time. However, only one seller will be able to finalize the trade and the effort
of other sellers will be for nothing. This issue is of particular concern for highly
customizable goods that may not be of interest to other buyers.

Thus, a binding trading contract between the buyer and seller is needed
(which automatically settles the trade once the seller produces the items and
financially punishes the seller if he does not meet the agreed-upon timeline).
Although such functionality can be provided using traditional legal services,
smart contracts provide a cheaper and more transparent way to satisfy this
need, especially for frequent traders. Furthermore, with privacy-preserving smart
contracts, no information about the price or the quantity sold is revealed to
anyone other than the involved parties.7

In particular, Alice, the buyer, can create a smart contract to track the
inventory of m products. For each of these m products, the contract will store a
private per-item price, denoted as p′i, and a private counter tracking the number
of items produced so far, denoted as n′i for i ∈ {1, . . . ,m}. The trading process
is composed of two stages: deal term negotiation and item production. In the
negotiation period, Alice negotiates the per-item price, quantity, and the timeline
with Bob, the seller. This stage concludes with Alice registering Bob as the seller
for a product in the list, and Bob recording the per-item price and quantity
they agreed on. The latter is done by encrypting these two values under Alice’s
public key and storing them on the smart contract.8 Furthermore, Bob records
the production deadline which is simply the index of some future block on the
blockchain.

After finalizing the deal terms, both Alice and Bob have to create penalty
deposits by sending currency to the trading smart contract. These deposits will
be used to financially punish the parties if they do not execute the trading
terms (e.g. if Alice does not pay the full price of the items or if Bob does not
produce the agreed-upon quantity within a given timeline). In contrast to sealed-
bid auctions, this is feasible here since the utility gain of both parties can be
computed (which could be set as a proper compensation for the losses).

The production stage will start once the penalty deposits are in place and
continues until the agreed-upon deadline. At that time, Alice will be given a
period to dispute the produced quantity (e.g. by revealing that the agreed upon
quantity and the quantity produced by Bob are not equal). If there is a mis-
match, Bob’s penalty deposit will be given to Alice as compensation. Otherwise,
the trading contract will compute a ciphertext of the total payment value as
p′1n
′
1, assuming Bob’s product is at index 1 in the product array. Alice will then

create a private transfer transaction of the total amount—namely, the plaintext
p1n1—owed to Bob and present it to the smart contract. If no such transaction

7 Similar to the previous application, we assume an external custodial service for phys-
ical goods, and proper code extension of the contract for custody and transference
of digital assets.

8 The contract code can be extended to allow Alice to dispute these values in case of
mismatch. We leave such details out for now and focus on the contract functionality
instead.
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is issued within a given period, the trading contract will give Alice’s penalty
deposit to Bob. Otherwise, the trading contract will refund the parties their de-
posits and reset the inventory tracking variables to allow them to start another
trade (if desired).

Without homomorphic multiplication, the trading smart contract would not
be able to track private inventory on the fly and settle trades.

C Definitions and Proofs

In this section, we define notions for correctness and security of a PPSC scheme.
We then prove that smartFHE supports a correct and secure PPSC scheme based
on these notions. As mentioned earlier, our definitions are inspired by those in
Zerocash [5] and Zether [8].

C.1 Correctness

Intuitively, the correctness of a PPSC scheme requires that if we start with a
valid ledger state and apply an arbitrary sequence of operations (transactions
or computations), the resulting state is also valid. Recall that a ledger state is
composed of account states. Correctness with respect to public state variables
(i.e. operations inherited from a public smart contract scheme which is Ethereum
for smartFHE) is derived from the correctness of the underlying public system.
These can be easily verified by inspecting the ledger since public accounts and
all operations performed on them are stored in the clear.

On the other hand, private state variables, which are the extensions intro-
duced by a PPSC scheme, store secret values. Although a smart contract’s code
is public when operating on private inputs, this code is translated into privacy-
preserving operations—meaning that the state evolution over time is private.
Thus, proving correctness requires validating these private operations. Correct-
ness of a PPSC scheme is derived from the correctness of the cryptographic
building blocks used to implement these operations.

For simplicity, since an account balance is also a state variable subject to up-
dates through smart contract code, we only discuss validating account balances
after performing a sequence of private operations. This is expressed by requiring
that deshielding (i.e. revealing) a private account balance will produce the same
amount of currency as if the original account was public (so that the sequence
of operations were all public).

Towards this end, we define an incorrectness game INCORR between an hon-
est challenger C and a ledger sampler S. At a high level, the game starts by
having C perform the setup phase and pass the public parameters pp to S. After
that, S samples a valid initial ledger L, a public account accpub (representing
the reference point) and a private account accpriv such that their initial balances
are identical, and an operation transcript Ops that consists of a sequence of in-
structions covering all basic operations in the system (more details about this
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shortly). Ops will be applied separately to accpub (as is) and accpriv (with an
equivalent private version of Ops here) starting with L in each case.

By a private version of Ops, which we refer to as Ops′, we mean replacing
the operations in Ops with private ones such that Ops and Ops′ correspond
to the same functionality (i.e. produce identical state changes). For example,
a public transfer transaction between two public accounts could be translated
into a private transfer between two private accounts, a shield transaction if
the recipient’s public account is replaced with a private one, or to a deshield
transaction if the sender’s public account is replaced with a private account (all
with proper lock/unlock transactions as needed). For Compute, the circuit C will
be transformed into an equivalent version C ′ that operates on private inputs and
produces private outputs.

Applying these two versions of Ops will produce two updated states of the
ledger: L′1 (when working on accpub) and L′2 (when working on accpriv). At the
end of the game, the balances of both accounts will be revealed (this requires a
deshield transaction for accpriv). S wins the INCORR game if it can produce a
scenario in which the balance of accpriv is not equal to the balance of accpub.

Definition 6 (Correctness of a PPSC Scheme—Definition 2 revisited).
A PPSC scheme Π = (Setup, CreateAccount, CreateTransaction, VerifyTransaction,
Compute, UpdateState) is correct if no PPT ledger sampler S can win the INCORR
game with non-negligible probability. In particular, for every PPT S and suffi-
ciently large security parameter λ, we have

AdvINCORR∏
,S < negl(λ)

where AdvINCORR
Π,S := Pr[INCORR(Π,S, 1n) = 1] is S’s advantage of winning the

incorrectness game.

We now describe the incorrectness experiment—which includes specifications
of a valid operation list Ops, the state evolution of a ledger L, and the interaction
between C and S.

Specifications of a Valid Ops. Let Ops = {opi} be a list of operations sam-
pled by S, where each opi can be a transaction txi or a computation
Compute(pp, Ci, {xi,, . . . , xi,n}). We say that Ops is valid if it satisfies the fol-
lowing:

– All account addresses, keys, and states are generated using CreateAccount.
– Each opi is either a transaction defined in a PPSC scheme (cf. Definition 1), a

public transaction as defined in the underlying public smart contract-enabled
system, or a Compute operation with some arbitrary arithmetic (or boolean)
circuit C and a set of inputs {xi}.

– If an operation opi is issued in epoch i, then the ledger state used to produce
opi (if needed) is the one produced by the last block of epoch i− 1.

The last condition implies that an operation issued in an epoch will be pro-
cessed in the same epoch, which reflects the assumption of processing delays we
have in our system.
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Ledger State Evolution. A ledger state is composed of two tables, Bal and Lk,
that store the balance amount and lock state for each account. These tables are
indexed using the public keys of the accounts (i.e. Bal[pk] returns the plaintext
amount of currency that the account associated with pk owns, and Lk[pk] returns
the address to which the account pk is locked or ⊥ if the account is unlocked).
Let the initial ledger state sampled by S be L0. Bal and Lk will be initially set
to 0 and ⊥, respectively, for all accounts (including those for accpub and accpriv
sampled by S).

Let Li be the ith ledger state defined based on Li−1 and the ith operation
opi. The updates result from processing an opi is defined as follows:

– txshield ← Shield(skfrompub , pk
to
priv, val). If the sum of val and Bal[pktopriv] is less than

MAX and Lk[pktopriv] = ⊥, then increment Bal[pktopriv] by val.

– txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, val). If Lk[pktopriv] = Lk[pkfrompriv ] = ⊥, then

increment Bal[pkfrompriv ] by val and decrement Bal[pktopriv] by val.

– txdeshield ← Deshield(skfrompriv , pk
to
pub, val). If Lk[pkfrompriv ] = ⊥, then decrement Bal[pkfrompriv ]

by val and increment Bal[pktopub] by val.
– txlock ← Lock(sk, addr). If Lk[pk] = ⊥ then set Lk[pk] = addr (where pk is the

public key associated to sk).
– txunlock ← Unlock(pk). If Lk[pk] = txunlock.addr, then set Lk[pk] = ⊥ (where

txunlock.addr is the account address that issued txunlock).
– Compute(pp, C, {x, . . . , xn}). Updates depend on the code that C repre-

sents. These may include altering the persistent storage variables of the
smart contract account (the smart contract containing C’s code).

INCORR Game Definition. The probabilistic experiment INCORR takes as
inputs a PPSC scheme Π and a security parameter λ. It defines an interaction
between a challenger C and a ledger sampler S. The game terminates with an
output from C—which is 1 if S succeeds in breaking the correctness of Π and 0
otherwise.

The game proceeds as follows:

1. C runs System.Setup(1λ) and sends the public parameters pp to S.
2. S sends back a ledger L, two accounts accpub and accpriv, and an operation

transcript Ops.
3. C verifies the validity of the transcript (based on the specifications listed

above), that the two accounts are recorded in the ledger state, and that the
state is initialized properly. If any of these checks fail, C aborts and outputs
0.

4. C applies Ops to accpub with ledger state L and produces an updated ledger
state L′1. Then, it applies an equivalent private version of Ops to accpriv with
the same initial ledger state L and produces an updated ledger state L′2.

5. C deshields the balance of accpriv on L′2 and outputs 1 if the revealed balance
is different from the balance of accpub as recorded on L′1—meaning that S
won the game. Otherwise, it outputs 0.

The advantage of S in wining the INCORR game is defined as the probability
that C outputs 1.
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Correctness and smartFHE. Informally, correctness is derived from the cor-
rectness of the cryptographic building blocks. Every operation, whether a valid
transaction or an arithmetic/boolean circuit computation, will be processed suc-
cessfully in smartFHE and leads to a verifiable ledger update. This can easily
be seen for each transaction type in the system. By relying on the completeness
of the ZKP system, the correctness of the FHE scheme, the locking process (to
lock account states to avoid invalidating any pending ZKPs), and the rolling
over process at the end of each epoch, it can be shown that valid transactions
will update the ledger state as expected. The same is true for Compute requests.
For arithmetic/boolean computations on private inputs, the correctness of the
results is based on the correctness of the chosen FHE scheme.

Accordingly, in the INCORR game, applying Ops to accpub and applying an
equivalent private version Ops′ to accpriv, will lead to the same final balance
value. Given that all balance values are not allowed to exceed some maximum
value MAX determined by the system’s setup, the homomorphic operations on
account balances will not cause an overflow. Based on this discussion, we have the
following lemma(we omit the formal proof which follows from the logic above):

Lemma 1. Assuming the signature scheme is correct, the (single or multi-key)
fully homomorphic encryption scheme is correct, and the proof system satisfies
the completeness property, then smartFHE supports correct PPSCs (cf. Defini-
tion 2).

C.2 Security

Our security definitions for overdraft safety and ledger indistinguishability are
similar to those in Zerocash [5] and Zether [8]. However, we make the appropriate
changes to take into account our different account types, transaction types, and
the additional Compute functionality we defined for PPSC.

We first define the common security game Security-Game that will be used in
overdraft safety and ledger indistinguishability.

Let A represent the adversary; C, the challenger (who represents honest users
in our system);OPPSC, the oracle for our PPSC scheme. Both C andA have access
to the oracle; however, A has full view of the oracle OPPSC.

All parties receive the security parameter λ as input. OPPSC maintains the
public parameters pp and the state of the system. We define PK to be the set of
public keys generated by C at A’s request. Since these belong to C, A does not
have the corresponding secret keys for them. C can request the current state or
previous state from OPPSC at any time. OPPSC will answer queries from adversary
A proxied by C. Any time a query requires a secret key belonging to C as input,
we allow A to specify the corresponding public key (which is the set PK).

When OPPSC receives a well-formed transaction or computation from either
C or A, it will be added to the list of pending transactions and computations
denoted as Ops. A will also be allowed to directly insert his own well-formed
transactions and computations via an Insert query and ask these to be processed
immediately via UpdateState.
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The following types of queries are permitted from A:

– Request C to perform any of the user algorithms with certain inputs and
send the resulting transaction (if any) to OPPSC from an EOA address of A’s
choice

• For CreateAccount, C will send only the resulting EOA address and public
key to A

• For Compute, C will only agree to perform computations supported by
the PPSC system

• C will refuse to perform a transaction from a locked account

– Insert, allows A to send his own well-formed transaction or computation to
OPPSC which will be held in pending state until processed via UpdateState

– UpdateState, allows A to ask OPPSC to process an arbitrary subset of pending
operations and update the state (i.e. add a new block to the blockchain)

For UpdateState, note that the usual conditions around when certain trans-
actions to private accounts are processed still apply. As C represents the honest
parties in the system, C will use the state of the previous epoch when performing
transactions that require it. Lastly, A can stop the game at any point.

Overdraft Safety. Overdraft safety ensures that our PPSC scheme Π does not
allow A to spend more currency than he owns. To capture this, we define an
Overdraft-Safety-Game game in which C and A interact in the same manner as
they do in Security-Game. A wins the game and, hence, breaks overdraft safety
if he manages to spend currency of a value larger than what he rightfully owns.
This is expressed formally in the following definition:

Definition 7 (Overdraft Safety—Definition 4 revisited). A PPSC scheme
Π provides overdraft safety if for all PPT adversaries A, the probability that

valA→PK + valInsert > valPK→A + valdeposit (3)

in the Overdraft-Safety-Game is negl(λ) where the probability is taken over the
coin tosses of A and C and:

– valA→PK is the total value of payments sent from A to users with addresses
in PK

– valInsert is the total value of payments placed by A on the ledger

– valPK→A is the total value of payments sent from users with addresses in PK
to A

– valdeposit is the initial amount of currency in accounts owned by A.

A has two ways in which he can win the game—by inserting his own transac-
tions into the ledger (handled by valInsert) or by asking honest parties represented
by C to create transactions for him (handled by valA→PK).
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Overdraft Safety and smartFHE. We now show how the smartFHE frame-
work supports PPSCs providing overdraft safety. We will look at Transfer,Shield,
Deshield,PrivTransfer and show that none of these transaction algorithms can be
used to send more currency than a user rightfully owns with non-negligible prob-
ability. The nonce associated with each account will enforce order on the pending
transactions and prevent A from double-spending. Additionally, the smartFHE
framework satisfies correctness (as seen prior) so that private computations can-
not be used to falsely increase a user’s account balance. Ultimately, operations
on private balances and transfer amounts will be captured in transactions.

Lemma 2. Assuming the proof system satisfies soundness and smartFHE sup-
ports correct PPSCs, then smartFHE supports PPSC providing overdraft safety
(cf. Definition 4).

In Transfer, all account and transaction details are associated with public
accounts so are publicly verifiable information (e.g. sender/receiver’s balances,
transfer amount). Thus, if the sender attempts to send more currency than he
rightfully owns, VerifyTransfer would output 0 and the transaction would be
rejected.

In Shield, the state of the sender’s account can be publicly tracked and ver-
ified. The encrypted transfer amount will be checked to ensure that it matches
the published plaintext transfer amount with randomness and that the sender’s
remaining balance is non-negative. If the sender attempts to send more currency
than he rightfully owns, VerifyShield will output 0.

In Deshield, the state of the sender’s account is private. The encrypted trans-
fer amount will be checked to ensure it matches the published non-negative plain-
text transfer amount with corresponding randomness. The zero-knowledge proof
showing that the sender has enough currency in his private account to perform
this transfer will also be checked as part of VerifyDeshield. Thus, if the sender is
able to send more currency than he rightfully owns (i.e. VerifyDeshield(txdeshield) = 1),
he has violated the soundness of the ZKP system (which happens with at most
negligible probability).

In PrivTransfer, the state of the sender and receiver’s accounts are private.
As part of VerifyPrivTransfer, ZKPs will be checked showing that the sender has
enough currency in his account to perform the transaction and that the transfer
amount encrypted under the sender and receiver’s public key matches and is non-
negative. Thus, if the sender is able to send more currency than he rightfully
owns (i.e. VerifyPrivTransfer(txprivtransf) = 1), he has violated the soundness of the
ZKP system (which happens with at most negligible probability).

Ledger Indistinguishability. Ledger indistinguishability ensures that the ledger
produced by the PPSC scheme Π does not reveal additional information beyond
what was publicly revealed. We define a Ledger-Indistinguishability-Game to cap-
ture this. It is the same as Security-Game except that at some point in the game,
A will send two publicly consistent instructions instead of one (we define publicly
consistent instructions below, which is needed to rule out trivial wins of A). C
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will execute one of these instructions based on bit b that is hidden from A which
is chosen at random and in advance. A will have to guess which instruction C
performed at the end of the game. Let b′ be A’s guess.

We first define the notion of public consistency of two instructions.

Definition 8 (Public Consistency). Two instructions are publicly consistent
if:

– They refer to the same user algorithm with the same public key/address.
– All transactions are associated with the same sender, recipient, and nonce

value.
– For transactions including a public EOA, the transfer amount must be the

same.
– For transactions between private EOAs, if the recipient is corrupt then the

transfer amount must be the same.
– If computations are requested, they must be the same computations on the

same inputs.
– Lock must be associated with the same account and address for the locker

and lockee.
– Unlock must be associated with the same account.
– Same balance value returned when querying an account’s balance.

Based on the above, we formally define the ledger indistinguishability prop-
erty.

Definition 9 (Ledger Indistinguishability—Definition 3 revisited). A
PPSC scheme Π satisfies ledger indistinguishability if for all PPT adversaries A,
the probability the b′ = b in the Ledger-Indistinguishability-Game is 1/2 + negl(λ)
where the probability is taken over the coin tosses of A and C.

Ledger Indistinguishability and smartFHE.

Lemma 3. Assuming the proof system satisfies the zero-knowledge property and
the (single or multi-key) fully homomorphic encryption scheme is semantically
secure, then smartFHE supports PPSCs satisfying ledger indistinguishability (cf.
Definition 3).

We have defined public consistency to rule out trivial wins by the adversary.
This leaves us with the following cases to consider:

– A deshielding transaction.
– A private transfer transaction.

For two consistent deshielding transactions, A has a negligible advantage
of winning the game due to the zero-knowledge property of the ZKP system
employed in smartFHE.

The same argument holds for two consistent private transactions. A has a
negligible advantage of winning the game due to the zero-knowledge property
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of the underlying ZKP system. Additionally, note that the ciphertexts of the
transfer amounts are computationally indistinguishable from random based on
the FHE scheme being semantically secure. Thus, with overwhelming probability,
they will not reveal any additional information that may help A in guessing b
correctly.

Proof of Theorem 1. Follows from Lemmas 1, 2, and 3.

42


	smartFHE: Privacy-Preserving Smart Contracts from Fully Homomorphic Encryption

