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Abstract

Recent exciting breakthroughs, starting with the work of Chattopadhyay and Zuckerman (STOC 2016)
have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately,
these constructions suffer from non-negligible error, and reducing the error to negligible remains an
important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated
a meaningful relaxation of this problem to the computational setting, in the presence of a common
random string (CRS). In this relaxed model, their work built explicit two-source extractors for a restricted
class of unbalanced sources with min-entropy nγ (for some constant γ) and negligible error, under the
sub-exponential DDH assumption.

In this work, we investigate whether computational extractors in the CRS model be applied to more
challenging environments. Specifically, we study network extractor protocols (Kalai et al., FOCS 2008)
and extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in the CRS model. We observe
that these settings require extractors that work well for balanced sources, making the GKK results
inapplicable. We remedy this situation by obtaining the following results, all of which are in the CRS
model and assume the sub-exponential hardness of DDH.

• We obtain “optimal” computational two-source and non-malleable extractors for balanced sources:
requiring both sources to have only poly-logarithmic min-entropy, and achieving negligible error.
To obtain this result, we perform a tighter and arguably simpler analysis of the GKK extractor.

• We obtain a single-round network extractor protocol for poly-logarithmic min-entropy sources that
tolerates an optimal number of adversarial corruptions. Prior work in the information-theoretic
setting required sources with high min-entropy rates, and in the computational setting had round
complexity that grew with the number of parties, required sources with linear min-entropy, and
relied on exponential hardness (albeit without a CRS).

• We obtain an “optimal” adversarial source extractor for poly-logarithmic min-entropy sources, where
the number of honest sources is only 2 and each corrupted source can depend on either one of the
honest sources. Prior work in the information-theoretic setting had to assume a large number of
honest sources.

1 Introduction

Randomness is fundamental in the design of algorithms and cryptographic systems. For many problems
(such as Polynomial Identity Testing), the fastest known algorithms use randomness. The role of random-
ness is more pronounced in the design of cryptographic systems such as bit commitment, encryption, etc.,
as one needs unbiased random bits to achieve security [DOPS04].

Most sources of randomness found in nature are not perfect. The amount of randomness in a source is
usually formalized via the notion of min-entropy. The min-entropy of a random source X is defined as
the maxxPSupppXq log 1{PrrX “ xs. A natural, fundamental question is: Can we extract uniform random
bits out of these weak sources? The answer is: Yes, and this is achieved by a tool called as randomness

*University of Illinois Urbana-Champaign, USA. Email: dakshita@illinois.edu
†Tata Institute of Fundamental Research, India. Email: akshayaram.srinivasan@tifr.res.in

1

dakshita@illinois.edu
akshayaram.srinivasan@tifr.res.in


extractors. However, it is well-known that it is impossible to extract uniform random bits given only a
single weak source. To side step this impossibility, two notions have been considered. One is the seeded
setting where you assume the existence of a uniform short seed that is independent of the weak source.
The other setting is the independence source setting. The independence setting is weaker than the seeded
setting as it only needs indpendent sources X1, . . . , Xp such that each have sufficient min-entropy. In this
work, we are interested in the independent source setting.

Independent Source Extractor. Starting with the seminal work of Chor and Goldreich [CG88], there has
been a long line of work on constructing better independent source extractors.1 A recent breakthrough
work of Chattopadhyay and Zuckerman [CZ16] gave a construction of two-source extractor for poly
logarithmic min-entropy sources. However, the error of the extractor was inverse polynomial. Even though
the subsequent works [Li16, Coh16a, Coh16b, Coh16c, Coh16d, Li17, BADTS16] improved the min-entropy
of the sources to nearly logarithmic, none of these works achieved negligible error (which is important for
cryptographic applications).

A recent work of Garg, Kalai, and Khurana [GKK20] considered the problem of constructing two-source
computational extractors with negligible error. They additionally assumed the existence of a common
random string that is sampled once and for all, and the weak sources can depend on the CRS. This
precludes constructions where the common random string can be used as a seed to extract uniform random
bits from these weak sources. They provided a construction of a computational two-source extractor with
negligible error in the CRS model for sources with min-entropy Ωpnγq (for some constant γ P p0, 1q) under
the sub-exponential hardness of the DDH assumption.

Challenges. The independent source setting makes two crucial assumptions. First, it assumes that each
of the sources X1, . . . , Xp are independently generated. Second, it assumes that each of these sources have
sufficient min-entropy. However, neither of these assumptions may be true in general for many sources
found in nature. For instance, it could be possible that one or more of these weak sources are biased
and have little or no min-entropy. It could also be the case that some of these sources are adversarially
corrupted so as to introduce a dependence between them. Hence, it is only safe to assume that some
of these sources have sufficient min-entropy and are independent whereas other sources may have low
min-entropy and may also depend on these honest sources. The main challenge is that we do not know
a-priori which sources are honest and which ones are corrupted.

Can we nevertheless construct an extractor that outputs uniform random bits given a sample from such sources?

This question is not new and has already been previously investigated in two types of contexts: network
extractor protocols [DO03, GSV05, KLRZ08, KLR09] and extractors for adversarial sources [CGGL20].

Network Extractor Protocols. Consider a setting where there are multiple parties and each party has
an independent weak random source. The parties want to communicate with each other over a public
channel and at the end of the protocol, each party outputs uniform random bits. These random bits could
be used to run a distributed computation protocol or for securely computing a multiparty functionality.
The challenge, however, is that some of these parties may be corrupted by a malicious adversary that
may instruct them to deviate arbitrarily from the protocol. Can honest parties still end up with uniform
random bits under such an adversarial attack? This is precisely what is achieved by a network extractor
protocol [DO03, GSV05, KLRZ08, KLR09].

Here, the key barrier is that adversarial messages may be derived from sources that have little or no
min-entropy and furthermore, these messages may depend on the messages from the honest parties. In

1The quality of an independent source extractor is determined by three parameters, (i) the number of independent sources, (ii)
the min-entropy of these sources, and (iii) the error which is the statistical distance between the output of the extractor and the
uniform distribution.
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the information-theoretic setting, the work of Kalai et al. [KLRZ08] provided constructions of network
extractor protocol for sources that have min-entropy of 2logβ n (for some constant β ă 1). However, the
main drawback is that they could guarantee that only a fraction of the honest parties end up with uniform
random bits. In a recent work, Goyal et al. [GSZ21] gave a protocol that did not have this limitation, but
their protocol only worked in a setting where the min-entropy of the sources was very high. Specifically,
they required that for any p number of parties, there exists a constant γ such that min-entropy is np1´ γq.
In the computational setting, the work of Kalai et al. [KLR09] gave a protocol for sources with min-entropy
Ωpnq but relied on exponential hardness of one-way permutations and the round complexity of the protocol
grew with the number of parties.

Extractors for Adversarial Sources. In this setting, we consider a distribution of p sources pX1, . . . , Xpq

where some them are guaranteed to be independent and have sufficient min-entropy (called honest sources)
and the others are adversarially generated and could depend on the honest sources in some limited ways
(called corrupt sources). Given a sample from this distribution, we need to extract bits that are close to the
uniform distribution. Of course, the main challenge here is that we do not know apriori which sources are
honest and which sources are corrupt and how the corrupt sources depend on the honest sources. The
work of Chattopadhyay et al. [CGGL20] formally studied this primitive2 and gave constructions (in the
information-theoretic setting) where the number of honest sources K is at least p1´γ (for some contant
γ), their min-entropy is poly logarithmic and each corrupted source could depend on at most Kγ honest
sources.

Our Work. We continue the line of work initiated by Garg et al. [GKK20] on constructing computational
extractors in the CRS model and provide new constructions that extract uniform bits in the setting of
network extractors and from adversarial sources.

1.1 Our Results

The key technical tool that allows us to obtain the above applications is a better analysis of the GKK
computational two-source extractor in the CRS model.

The GKK extractor as analyzed in [GKK20] had two drawbacks: first, it required sources that have
min-entropy of Ωpnγq (for some constant γ P p0, 1q) and second, it worked only for sources that were
heavily imbalanced: requiring that one of the sources have entropy equal to the size of the other source.

Our first result is a much cleaner analysis of this construction. Our improved analysis essentially
shows, somewhat surprisingly, that the extractor from [GKK20] actually does not suffer from either of
the limitations stated above. That is, it works for balanced sources that are each only required to have poly
logarithmic min-entropy, and achieves negligible error.

Informal Theorem 1. Let λ denote the security parameter. Assuming the sub-exponential hardness of DDH,
there exists a constant c ą 1 such that for any λ ď n1, n2 ď polypλq, there exists a construction of a negligible
error, two-source computational extractor in the CRS model where sources have lengths n1, n2 respectively and
min-entropy Oplogc nq.

Our tighter analysis is also arguably simpler than the one in [GKK20]. As a corollary, we use the
transformation from [GKK20] to obtain a construction of a negligible-error, non-malleable two-source
extractor for balanced sources with polylogarithmic min-entropy, where one source can be tampered an
arbitrary polynomial number of times (this is called a one-sided non-malleable extractor). Specifically,

2In a work that is concurrent and independent to Chattopadhyay et al., Aggarwal et al. [AOR`20b] studied another model
of adversarial sources called SHELA sources. They showed that it is impossible to extract uniform random bits from SHELA
sources and gave constructions of extractors whose output is somewhere random. In another work, Dodis et al. [DVW20] studied
a notion of extractor dependent sources which arise in the setting where the source sampler could depend on the output of the
previous invocations of the extractor using the same seed.
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in the one-sided setting, the adversary gets access to a tampering oracle and can specify any efficiently
computable tampering function on one of the sources. The oracle responds with the output of the extractor
computed on the first source and the tampered second source.

Informal Theorem 2. Let λ denote the security parameter. Assuming the sub-exponential hardness of the DDH
assumption, there exists a constant c ą 1 such that for any λ ď n1, n2 ď polypλq, there exists a construction of a
negligible error, two-source, one-sided computational non-malleable extractor in the CRS model where both sources
have lengths n1, n2 respectively and have min-entropy Oplogc nq.

We then use the above non-malleable extractor as the main building block and give a construction
of network extractor protocol that has a single round of communication, works with poly logarithmic
min-entropy sources and can tolerate an optimum number of malicious corruptions.

Informal Theorem 3. Let λ be the security parameter. Assuming sub-exponential hardness of the DDH assumption,
there exists a constant c ą 1 s.t. for any λ ď n ď polypλq, there exists a construction of a single round, negligible
error, computational network extractor protocol in the CRS model for any p (which is a polynomial in the security
parameter) number of parties each having an independent source of length n and min-entropyOplogc nq. The protocol
tolerates p´ 2 corruptions by a malicious adversary (which is optimum). Furthermore, all the honest parties end up
with an output that is computationally indistinguishable to the uniform distribution given the view of the adversary.

We also give a construction of an adversarial source extractor that works in the extreme setting where
there are only two honest sources and every corrupted source can depend on either one of the honest
sources. This construction uses our computational two-source extractor as the main building block.

Informal Theorem 4. Let p P N be fixed and let λ be the security parameter. Assuming that sub-exponential
hardness of DDH assumption, there exists some constant c ą 1 s.t. for Ωpλq ď n ď polypλq, there exists a
construction of negligible error adversarial source extractor in the CRS model that works for an arbitrary adversarial
p-source distribution where (i) each source has length n, (ii) there are two honest independent sources with min-
entropy Oplogc λq, and (iii) every other source is the output of an (efficient) function of either one of the two honest
sources.

Comparison with [AOR`20a]. We now compare our results with the prior work of Aggarwal et al. [AOR`20a].
While both papers build on [GKK20] and obtain new types of computational non-malleable extractors, there
are some important differences in the results. In the setting where only one of the sources is tamperable
and the number of tamperings is unbounded,

• Techniques in [AOR`20a] give non-malleable extractors for linear min-entropy (min-entropy greater
than 0.46n) based on quasi-polynomial DDH. To achieve poly-logarithmic min-entropy, they addi-
tionally assume the existence of near optimal (exponentially hard) collision-resistant hash functions.

• Our work gives a construction for poly-logarithmic min-entropy based on sub-exponential DDH.

We remark that [AOR`20a] also (primarily) considers a setting where both sources can be tampered
but the number of tamperings is bounded. Among other results, they provide new constructions in this
setting for linear min-entropy (min-entropy greater than 0.46n) based on quasi-polynomial DDH and for
poly-logarithmic min-entropy based on near-optimal (exponential) hardness of collision-resistant hash
functions.

An important objective of our work is to achieve new applications: these applications require a setting
where the number of tamperings is unbounded, with only one source being tampered. For this setting, as
discussed above, our work shows that the [GKK20] construction achieves poly-logarithmic min-entropy
for balanced sources from sub-exponential DDH.
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2 Technical Overview

In this section, we provide an overview of our results.

2.1 Improved Two-Source and Non-Malleable Extractors

We start with an overview of our improved two-source and non-malleable extractors. The key technical
bulk of this part of our work is an improved two-source extractor, and plugging in the resulting extractor
into the work of [GKK20] also immediately yields an improved non-malleable extractor, as we will discuss
below.

2.1.1 Background: The Blueprints of [BHK11, BACD`17, GKK20].

As a first step, we recall the construction of two-source extractors in [GKK20], which itself combines the
blueprint of [BHK11] with that of [BACD`17]. As discussed above, we will show that essentially the same
construction serves as a strong computational extractor even for balanced sources, and even in settings
where sources have only polylogarithmic min-entropy. In contrast, the techniques in [GKK20] limited them
to highly unbalanced sources and required λε min-entropy

At a high level, [GKK20] obtain two-source extractors with low error via two steps.

Step 1. Following a blueprint suggested in [BHK11], [GKK20] build a computational non-malleable
extractor in the CRS model, in a setting where one of the sources has min entropy rate larger than 1{2. We
use the same blueprint in this work also, and therefore we describe it below.

First, start with any 2-source extractor

2Ext : t0, 1un1 ˆ t0, 1un2 Ñ t0, 1um,

with negligible error (eg., [Bou05, Raz05]), min-entropy ppoly log n1q for one of the sources and min-entropy
rate slightly larger than 1{2 for the other.

The construction makes use of the following cryptographic primitives, which can be obtained based on
the (sub-exponential) hardness of DDH.

1. A collision resistant function family H, where for each h P H, h : t0, 1un2 Ñ t0, 1uk, where k is
significantly smaller than the min-entropy of the second source of 2Ext.

2. A family of lossy functions F , where for each f P F , f : t0, 1un1 Ñ t0, 1un1 . A lossy function
family consist of two types of functions: injective and lossy. Each lossy function loses most of the
information about the input (i.e., image size is very small). It is hard to distinguish between a random
injective and a random lossy function in the family.

The actual construction is as follows. The CRS consists of a random function hÐ H from the collision-
resistant hash family, and consists of 2k random functions from family F , denoted by

f1,0, f2,0, . . . , fk,0
f1,1, f2,1, . . . , fk,1

where for a randomly sampled bÐ t0, 1uk, for all i P rks, fi,bi are injective, and fi,1´bi are lossy.
The computational non-malleable extractor (in the CRS model) is defined by

cnm-Extpx, y, crsq :“ 2Extpfcrs,hpyqpxq, yq,

where
fcrs,spxq :“ f1,s1 ˝ . . . ˝ fk,skpxq
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Consider any polynomial size adversary A that obtains either pcnm-Extpx, yq, y, crsq or pU, y, crsq, together
with an oracle O that has px, y, crsq hardwired, and on input y1 outputs K if y1 “ y, and otherwise outputs
cnm-Extpx, y1, crsq. By the collision resistance property of h, A queries the oracle on input y1 s.t. hpy1q “ hpyq
only with negligible probability. Therefore, the oracle O can be replaced by a different oracle, that only
hardwires pcrs, hpyq, xq and on input y1 outputs K if hpy1q “ hpyq, and otherwise outputs cnm-Extpx, y1q.

It is observed in [BHK11, GKK20] that access to this oracle can be simulated entirely given only crs, hpyq
and pZ1, . . . Zkq, where for every i, Zi “ f1,1´hpyq1pf2,1´hpyq2p. . . fi,1´hpyqi , p. . . fk,hpyqkpxqqq. Now suppose
that the functions tfi,1´hpyqiuiPrks were all lossy – then it is easy to see that (for small enough k), Y has
high min-entropy conditioned on hpyq and Z “ pZ1, . . . , Zkq. At the same time, as long as the functions
tfi,hpyqiuiPrks are all injective, the output fcrs,hpyqpxq continues to have high entropy conditioned on hpyq
and Z. Then one could use the fact that 2Ext is a (strong) 2-source extractor, to argue that the output of our
non-malleable extractor is close to uniform.

Moreover, since the adversary A cannot distinguish between random injective functions and ran-
dom lossy ones, it should be possible to (indistinguishably) change the CRS to ensure that functions
f1,hpyq1 , . . . , fk,hpyqk are injective, whereas the functions f1,1´hpyq1 , . . . , fk,1´hpyqk are all lossy.

This intuition is converted into a formal proof by [BHK11, GKK20]. In summary, these works show that
the resulting non-malleable extractor (very roughly) inherits the entropy requirements of the underlying
two-source extractor. Moreover, the resulting extractor is non-malleable w.r.t. arbitrarily many tampering
functions (this is impossible to achieve information theoretically).

Looking ahead, the analysis in [BHK11, GKK20] appears to be fairly tight, and is not why [GKK20]
are limited to unbalanced sources and λε min-entropy. These restrictions appear to be a result of the next
transformation, which converts non-malleable extractors with high entropy for one source, to two-source
extractos with low min-entropy for both sources. We describe this next.

Step 2. Next, [GKK20] convert the resulting non-malleable extractor (for a setting where one source has
high min-entropy rate) to a two-source extractor for a setting where both sources have low min-entropy, by
following a blueprint of [BACD`17].

An important difference between [BACD`17] and [GKK20] is that the reduction in [BACD`17] is
not efficient: specifically, even given an efficient adversary that contradicts the security of the 2-source
extractor, [BACD`17] obtain an inefficient adversary that contradicts security of the underlying non-
malleable extractor.

To better understand this issue, we briefly summarize the transformation of [BACD`17]. Their trans-
formation uses a disperser as a building block.

A pK,K 1q disperser is a function

Γ : t0, 1un2 ˆ rts Ñ t0, 1ud

such that for every subset A of t0, 1un2 that is of size ě K, it holds that the size of the set of neighbors of A
under Γ is at least K 1.

The [BACD`17]-transformation starts with a seeded non-malleable extractor nm-Ext : t0, 1un1 ˆ

t0, 1ud Ñ t0, 1um and a disperser Γ : t0, 1un2ˆrts Ñ t0, 1ud, and constructs the following 2-source extractor
2Ext : t0, 1un1 ˆ t0, 1un2 Ñ t0, 1um, defined by

2Extpx1, x2q “
à

y:Di s.t. Γpx2,iq“y

nm-Extpx1, yq

Intuitively, by the definition of an (information-theoretic) t-non-malleable extractor nm-Ext, for a
random y P t0, 1ud, for all y11, . . . , y

1
t that are distinct from y, it holds that

`

nm-ExtpX1, yq,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

”

`

U,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

.
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This means that for “most” y, nm-ExtpX1, yq is stastistically close to uniform, even given nm-ExtpX1,Γpx2, jqq
for every j P rtsztiu such that Γpx2, jq ‰ y, which in turn implies that the XOR of these (distinct) values is
close to uniform, which implies that 2ExtpX1, x2q is close to uniform.

But to formally prove that the resulting extractor is a strong (information-theoretic) non-malleable
extractor, one would need to construct a reduction R that breaks the non-malleable extractor, given any
adversary A that breaks the two-source extractor. In the computational setting, R is required to be efficient,
which causes the bulk of the technical difficulty in [GKK20].

In more detail, R obtains input pα, pyq, where py is a random seed for the non-malleable extractor and
where α is either chosen according to cnm-ExtpX1, pyq or is chosen uniformly at random. In addition, R
obtains an oracle that outputs cnm-ExtpX1, y

1q on input y1 ‰ py. R must efficiently distinguish between the
case where αÐ cnm-ExtpX1, pyq and the case where α is chosen uniformly at random. In order to use the
(two-source extractor adversary) A, R needs to generate a challenge for A that corresponds either to the
output of the 2-source extractor (if α was the output of cnm-Ext) or uniform (if α was uniform). In addition,
the reduction R must generate a corresponding x2 for A, that is sampled according to X2. This is easy to do
in unbounded time by simply sampling x2 Ð X2 conditioned on the existence of i such that Γpx2, iq “ y.

To enable a reduction in the computational setting, [GKK20] view the inefficient computation involved;
i.e. sampling x2 Ð X2 conditioned on the existence of i such that Γpx2, iq “ y; as the output of a leakage
function. Unfortunately, this means that the running time of the reduction grows as 2|x2|, which restricts
|x2| to being extremely small, in fact much smaller than the size of the first source. This also restricts the
sources in such a way that the min-entropy in the first source is required to be larger than the size of the
second source. As discussed above, the highly asymmetric state of affairs does not bode well for many
natural applications of two-source and non-malleable extractors.

2.1.2 Our Key Ideas.

To remedy this situation, we develop a completely different analysis for essentially the same construction.
In contrast with [GKK20], our analysis is arguably simpler, does not impose any asymmetric restrictions
on each source, and leads to significantly improved min-entropy parameters.

First, we do not split the analysis of the resulting two-source extractor into two steps as described above.
In other words, unlike [GKK20], we do not attempt to prove that the [BACD`17] template as described in
Step 2, when applied to any computational non-malleable extractor, yields a good two-source extractor with
low min-entropy and low error.

Instead, we apply the [BHK11] transform to an information-theoretic two-source extractor with low error
but min-entropy rate of 1/2 for one of the sources (eg., [Bou05, Raz05]). Next, we consider the [BACD`17]
transform applied to the result of this extractor. We then give a monolithic proof that the result of
applying these transformations one after the other results in a two-source extractor for balanced sources,
polylogarithmic min-entropy and negligible error.

At a very high level, this monolithic approach enables us to strip off all computational components one
by one, to eventually end up with a purely information theoretic experiment. This allows us to sidestep
the need to invert the disperser in any of our computational reductions; limiting our use of inefficient
reductions to the information-theoretic step in the proof.

We now discuss our proof strategy in additional detail. We will start with an experiment where the
adversary obtains either the output of the (final) two-source extractor, which we will denote by c2Extpx1, x2q

or a uniformly random value (in each case the adversary also obtains the sample x2). As discussed above,
we will modify this experiment in steps, slowly stripping off computational assumptions until we end up
in an experiment that does not require any assumptions.

Discarding Hash Collisions. Recall that the [BHK11] blueprint uses z “ hpyq to choose a subset of
functions fi,zi to apply to the first source. As a first step, we will modify the experiment so that if in the
process of computing c2Extpx1, x2q, a hash collision is encountered, then we simply outputs a uniformly
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random sample instead of c2Extpx1, x2q. In more detail, the output of the two-source extractor c2Ext is
replaced by a slightly modified c2Ext1. The replacement c2Ext1px1, x2q first checks if Dpi1, i2q such that
Γpx2, i1q ‰ Γpx2, i2q but hpΓpx2, i1qq “ hpΓpx2, i2qq. If such pi1, i2q exist, then c2Ext1 outputs a uniformly
random value.

At the same time, the oracle O is replaced with O1 that is identical to O, except that on input any y1

such that hpy1q “ hpyq, O1 outputs K.
We rely on the collision resistance of the hash function family to argue that as long as the sources

are efficiently sampleable, this experiment is statistically indistinguishable from the previous one. This
argument will allow us to simply discard hash collisions throughout the rest of this overview. The other
remaining assumption is that of the lossy function family.

Working around Lossy Functions. Recall that the approach in [GKK20] is to (indistinguishably) switch
the crs so that the functions tfi,1´hpyqiuiPrks are all lossy, and the rest are injective. This ‘nicely distributed’
CRS allows them to efficiently “simulate” the output of the oracle O, and prove that the resulting construc-
tion is a non-malleable extractor3 But this approach runs into the barriers described above, as the eventual
two-source extractors do not support balanced sources or poly-logarithmic min-entropy.

In this work, as a first stab, we attempt to make statistical arguments about the sources in an (imagined)
experiment where the CRS is assumed to be ‘nicely distributed’. In more detail, we say that the random
variable y takes a “bad” value if it becomes possible for an oracle-aided unbounded adversary to distinguish
the output of the [BHK11] non-malleable extractor from uniform, when conditioned on the CRS being ‘nicely
distributed’ for y. That is, for a function ε “ εpλq, we define the set BAD-seedε,X (roughly) as the set of y,
for which the following holds: conditioned on the CRS being such that functions at positions indexed by
hpyq are injective and the others are lossy, the output of the non-malleable extractor is at least ε-statistically
distinguishable from a uniformly random value in presence of the oracle O1.

Bounding BAD-seedε,X . We prove that for large enough (but still negligible) ε, the size of the set
BAD-seedε,X is negligibly small. Fortunately, since the definition of BAD-seedε,X already conditions on the
CRS being nicely distributed, this argument does not involve any computational assumptions, and follows
by a reduction to the underlying information-theoretic two-source extractor of [Bou05, Raz05], as long as the
number of tampering queries is polynomially bounded. Intuitively, conditioned on the CRS being nice, we
can establish that the sources (for the non-malleable extractor) retain high entropy even in the presence of
the oracle O1, and therefore, the output of the two-source extractor, applied to pfcrs,hpyqpxq, yq is statistically
indistinguishable from uniform. Then a simple averaging argument allows us to prove that BAD-seedε,X is
small.

From non-malleable to two-source extractors. Next, we aim to use the definition of BAD-seedε,X to
derive a meaningful (statistical) conclusion about the final two-source extractor. Specifically, we begin by
fixing a (large enough, but still negligible) ε.

We consider a game that samples sources px1, x2q for the final two-source extractor, and samples iÐ rts,
conditioned on y “ Γpx2, iq lying outside the set BAD-seedε,X1 . By definition of the set BAD-seedε,X1 , for any
y outside this set, when the CRS is such that the functions indexed by hpyq are injective and others are
lossy, the output of the non-malleable extractor is statistically indistinguishable from uniform, even given
(polynomial-query) access to the tampering oracle. Recall that the output of the two-source extractor is

2Extpx1, x2q “
à

y:Di s.t. Γpx2,iq“y

nm-Extpx1, yq

3There are many other subtleties involved, most importantly, a circularity: the CRS must be programmed according to hpyq,
but y is sampled as a function of the CRS. The work of [GKK20] develops techniques to avoid these subtleties, but we do not
discuss them here as they are less relevant to the current approach.

8



This means that for y R BAD-seedε,X1 , for all y11, . . . , y
1
t that are distinct from y, it holds that

`

nm-ExtpX1, yq,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

and
`

U,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

are at most ε-statistically distinguishable.
This means that for such y, nm-ExtpX1, yq is statistically close to uniform, even given nm-ExtpX1,Γpx2, jqq

for every j P rtsztiu such that Γpx2, jq ‰ y, which in turn implies that the XOR of these (distinct) values is
close to uniform, which implies that 2ExtpX1, x2q statistically is close to uniform.

Because we carefully conditioned on y “ Γpx2, iq R BAD-seedε,X , we are able to (again, statistically)
argue that the output of the two-source extractor in this game will be statistically indistinguishable from
uniform, even given x2.

At this point, we have argued that in an idealized game where the CRS is conditioned on being nicely
distributed, the output of the (strong) two-source extractor will be indistinguishable from uniform. But the
in the actual construction, the CRS is distributed in such a way that for a random bÐ t0, 1uk the functions
fi,1´bi are lossy, and the others are injective. This only very rarely matches the idealized game (where we
essentially condition on b “ hpyq). At this point, we would like to use the fact that lossy functions are
indistinguishable from injective ones, to argue that the adversary cannot distinguish an actual game from
the idealized game. Formalizing this intuition runs into a few subtle issues, that we briefly describe next.

The Computational Argument. Note that in the idealized game described above, px2, iq are sampled
conditioned on:

• The crs being such that functions indexed by Γpx2, iq are injective and the others are lossy, and

• Γpx2, iq R BAD-seedε,X1 .

We begin by removing the first requirement, and moving to a game where we only condition on
Γpx2, iq R BAD-seedε,X1 . We prove that removing the first conditioning does not (significantly) affect a PPT
distinguisher’s ability to distinguish between the output of the extractor and uniform. The proof of this
makes careful use of Chernoff bounds to show that if the two games are different, then one can guess which
functions in the CRS are injective and which ones are lossy, with advantage better than what is allowed by
the security of the lossy function family.

At this point, we have moved to a game where px2, iq are sampled only subject to the restriction that
Γpx2, iq R BAD-seedε,X1 . Next, we prove that this restriction can also be removed without (significantly)
affect an unbounded distinguisher’s ability to distinguish between the output of the extractor and uniform.
Intuitively, this follows because of the disperser and because the set BAD´ seedε,X1 is small. Recall that
the disperser maps every “large enough” set of x2’s to a “large enough” set of y’s. This implies that if the
set of y’s for which y P BAD ´ seedε,X1 is small, their inverses (under the disperser) are also small. We
show that as long as the source x2 has polylogarithmic min-entropy, the probability that x2 is such that
Γpx2, iq R BAD-seedε,X1 for any i will be negligibly small.

This allows us to argue that the output of the strong two-source extractor is indistinguishable from
uniform. A careful separation of the information-theoretic and computational components allows us
to set parameters so that the entropy loss from the first source is only polylogarithmic. As discussed
above, existing dispersers (eg., from [GUV09]) already suffice in a setting where the second source also has
polylogarithmic min-entropy.

Here, we clarify that the exact min-entropy loss depends on our computational assumptions. In more
detail, we assume that there exists a constant 0 ă ε ă 1 such that DDH with security parameter λ is hard
against polyp2λ

ε
)-size machines. The exact polylogarithmic min-entropy requirement on our sources then

depends on ε.
This completes a high-level picture of our proof strategy, where we swept a few details under the rug

for the sake of conceptual simplicity. We refer to Section 4 for a detailed proof.
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2.1.3 From Two-Source to Non-Malleable Extractors.

Once we obtain two-source extractors as discussed above, we directly invoke a theorem from [GKK20]
(that builds on the [BHK11] blueprint) to bootstrap our low entropy, low error two-source extractors to low
entropy, low error non-malleable extractors. Since this follows almost immediately from prior work (modulo
a few parameter choices), we omit details in this overview.

2.2 Network Extractor Protocol

In the network extractor setting, there are p parties and each party Pi for i P rps has an independent weak
random source Xi. There is a centralized adversary that controls an arbitrary subset M Ă rps of the parties.
This adversary is malicious, which means that it can instruct the corrupted parties to deviate arbitrarily
from the protocol specification and is rushing which means that in each round of the protocol, it can wait
until it receives all the messages from the honest parties before sending its own message on behalf of the
corrupted parties. We consider the parties to be connected via public channels and the adversary can view
all the communication sent by honest parties. At the end of the protocol, we want all the honest parties to
output uniform random bits that are independent of the view of the adversary.

In the computational setting, we restrict the adversary to be computationally bounded and indepen-
dence mentioned above is required to hold in the computational sense. The quality of the network extractor
protocol is determined by three parameters, (i) the number of corrupted parties |M |, (ii) the min-entropy of
the weak random source available with the parties H8pXiq, and (iii) the number of rounds of the protocol.
It is easy to observe that if |M | “ p´ 1, then we cannot construct a network extractor protocol as this task
amounts to extracting uniform random bits from a single weak random source. So, the best we can hope
for is the case where |M | ď p´ 2. In this work, we give a construction of network extractor protocol in the
computational setting in the CRS model that tolerates |M | ď p´ 2 corruptions, runs in a single round, and
works with polylogarithmic min-entropy for each source.

Key Challenge. To understand the key challenge, let us first weaken the requirements from the network
extractor protocol. Let us assume for now that the first party P1 is never corrupted but the identity of the
other honest party is not known at the beginning of the protocol. Furthermore, we only require the output
of honest P1 to be uniform and independent of the view of the adversary. Can we construct a single round
protocol for this weaker setting?

We observe that the techniques developed in the work of Goyal et al. [GSZ21] gives such a protocol
based on any two-source non-malleable extractor. Specifically, we ask every party to send its source in
the clear to the first party P1. For every j ‰ 1, P1 applies the two-source non-malleable extractor on its
source and the source received from Pj and outputs the XOR of all such computations. We now argue that
the output of P1 is uniform and independent of the view of the adversary if the non-malleable extractor is
strong and is multi-tamperable. Let us assume that Pi for some i ‰ 1 is the other honest party. Now, the
messages sent by the adversarial parties are an efficiently computable function of Pi’s source. Thus, one
can view the messages from the adversarial parties as a tampering of the honest source. The security of the
non-malleable extractor guarantees that the output of the extractor on the good source is close to uniform
even conditioned on its output on the tampered sources. This allows us to argue that the output of P1 is
close to uniform given the view of the adversary (which includes the other honest source and that is why
we require the extractor to be strong).

However, we quickly run into trouble if we want to extend this to the setting where we require the
outputs of two honest parties to be uniform and independent of the view of the adversary. Indeed, if P1

were to send its source in the clear, then we cannot use the security of the non-malleable extractor to argue
that the output of P1 is close to uniform. In the “very high" min-entropy setting, the work of [GSZ21] gave
a method to overcome this barrier. Specifically, party Pi divides its source into p slices, retains the i-th slice
with itself and broadcasts the rest of the slices. It now uses the i-th slice received from the other parties
along with its own slice to compute the output as mentioned above. It was argued in their work that if the
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min-entropy source was “very high", then the outputs of the all honest parties are close to uniform and
independent of the view of the adversary. However, we cannot extend their argument to the setting where
the min-entropy of each weak source δ ¨ n for some universal constant δ.

Our Approach. In order to overcome this barrier, we rely on computational tools (namely, lossy functions)
to artificially create independence between the messages transmitted by each party and the sources used
to compute their outputs. We now elaborate on this.

For each i P rps and b P t0, 1u, we sample fi,b uniformly in the injective mode and include the
descriptions of these functions as part of the CRS. In the protocol, party Pi first computes fi,bpXiq for each
b P t0, 1u and broadcasts fi,1pXiq and retains fi,0pXiqwith itself. To compute the output, it evaluates the
non-malleable extractor with one source as fi,0pXiq and the other source as fj,1pXjq for each j ‰ i. It then
outputs the XOR of these evaluations. We now show how to use the security of lossy functions to argue
that the joint distribution of the outputs of the honest parties are close to uniform conditioned on the view
of the adversary.

We consider a sequence of hybrids where the first hybrid in the sequence consists of the outputs of
the honest parties as computed in the protocol along with the view of the adversary and last hybrid is the
distribution where the outputs of all the honest parties are replaced with uniform and independent bits. In
the i-th intermediate hybrid, we replace the outputs of the first i uncorrupted parties with uniform. By a
standard averaging argument, it is sufficient to show that the i-th hybrid in this sequence is computationally
indistinguishable to the pi´ 1q-th hybrid. Let us assume that the i-th honest party is ki and the identity of
the other honest party is k1i.

We first consider an intermediate distribution where we sample fki,1 and fk1i,0 in the CRS using the lossy
mode instead of the injective mode. It follows from the computational indistinguishability of the injective
and the lossy modes that this intermediate distribution is indistinguishable to the pi´ 1q-th hybrid. Since
fki,1 and fk1i,0 are sampled in the lossy mode, we can view these as bounded leakages from the source Xki

and Xk1i
. Now, conditioned on these leakages, we can argue that fki,0pXkiq and fk1i,1pXk1iq

are independent
and have sufficient min-entropy (since fki,0 and fk1i,1 are sampled in the injective mode). Now, we can rely
on the argument sketched above and view the adversarial messages as tamperings of the honest source
fk1i,1pXk1i

q and use the security of the non-malleable extractor to replace the output of Pki with uniform bits
independent of the view of the adversary. To show this distribution is indistinguishable to the i-th hybrid,
we again rely on the indistinguihability of the lossy and injective modes and switch sampling fki,1 and
fk1i,0 in the CRS to the injective mode. This allows us to show that the pi´ 1q-th hybrid is computationally
indistinguishable to the i-th hybrid.

2.3 Extractors for Adversarial Sources

An adversarial source distribution [CGGL20] is a sequence of p random variables pX1, . . . , Xpq such that a
subset of them are independent and have sufficient min-entropy (called as the honest sources) and the rest
can depend on the honest sources in a limited way (called as the corrupt sources). The goal is to construct
an extractor such that given a sample from the adversarial source distribution, it outputs a string that is
close to random. Here, the parameters of interest are the (i) number of honest sources in the distribution,
and (ii) the min-entropy of the honest sources. We are interested in constructing extractors that work in the
extreme setting where the number of honest sources is only 2 and every corrupted source is an (efficiently
computable) function of either one of the honest sources.

Challenge with the Prior Approaches. The works of Chattopadhyay et al. [CGGL20] and Goyal et
al. [GSZ21] gave a method of constructing such an extractor using a non-malleable extractor that satisfies
an additional security property. Specifically, the adversary is allowed to specify a set of tampering functions
tpfi, giquiPrts as well as a sequence of bits tbiuiPrts. If bi “ 0, then the adversary receives the output of the non-
malleable extractor applied on fipXq and gipY q. Otherwise, it receives the output of the extractor on gipY q
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and fipXq. Unfortunately, we do not know how to show that the non-malleable extractor constructions
in the works of [GKK20, AOR`20a] satisfy this additional property. Hence, in this work, we take new
approach towards this problem that is partly inspired by our network extractor construction and relies
only on a computational two-source extractor (rather than a non-malleable extractor).

Our Construction. We first explain why a network extractor protocol doesn’t directly give rise to an
extractor for adversarial source distribution. In the case of a network extractor protocol, only the messages
sent by the corrupted parties depend on the honest party’s messages whereas in the case of the adversarial
sources, the corrupted source could depend on the honest source. This difference precludes a direct
construction. However, we use the techniques developed for the network extractor construction to
construct an extractor for adversarial sources.

Our extractor for adversarial sources is similar to our network extractor construction except that we
replace the non-malleable extractor with a computational two-source extractor. Specifically, we consider p
parties and provide the i-th source Xi to party Pi and run the network extractor construction described
above using a two-source extractor. Once we have obtained the outputs of each of the parties, we XOR
them together to output a single string. We now argue that the distribution of the output string is close to
the uniform distribution.

To show this, it is sufficient to show that the output of one of the honest parties is close to uniform
and is independent of the outputs of every other party. Let us assume that Xi and Xj are honest sources.
We first consider an intermediate distribution where we sample fk,b for every pk, bq R tpi, 0q, pj, 1qu in the
lossy mode. It again follows from the indistinguishability of the injective and the lossy modes that this
distribution is computationally close to the original output. Now, for every corrupted source k that is
derived from Xi, we can view tfk,bpXkqubPt0,1u as bounded leakage from the honest source Xi. Similarly,
for every source k that is derived from Xj , we can view tfk,bpXkqubPt0,1u as bounded leakage from the
honest source Xj . We can additionally leak fi,1pXiq and fj,0pXjq. This allows us to argue that conditioned
on these leakages, the sources fi,0pXiq and fj,1pXjq are independent and have sufficient min-entropy. We
can now invoke the two-source extractor security to argue that the output of the i-th party is close to
uniform even conditioned on the outputs of every other party.4

This completes an overview of our techniques.

Roadmap We list some preliminaries in Section 3. We recall definitions of computational extractors in
Section 3.3. In Section 4 we derive theorems and corollaries for improved two-source and non-malleable
extractors. Finally, in Sections 5 and 6, we describe improved constructions of network and adversarial
source extractors respectively.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This includes facts about
min-entropy, lossy functions and dispersers. Many parts of this section are taken from [GKK20].

Definition 5. A distribution X over a domain D is said to have min-entropy k, denoted by H8pXq “ k, if for
every z P D,

Pr
xÐX

rx “ zs ď 2´k.

In this paper, we consider sources with average conditional min entropy, as defined in [DORS08] (and
also in the quantum information literature). This notion is less restrictive than worst case conditional

4The reason why two-source extractor is sufficient in this case but non-malleable extractor was needed in the previous case is
that the parties here can be thought of as following the protocol whereas in the previous case, they could deviate arbitrarily from
the protocol specification.
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min-entropy (and therefore this strengthens our results), and is sometimes more suitable for cryptographic
applications.

Definition 6. [DORS08] Let X and Y be two distributions. The average conditional min-entropy of X conditioned
on Y , denoted by H8pX|Y q5 is

H8pX|Y q “ ´ logEyÐY max
x

PrrX “ x|Y “ ys “ ´ logpEyÐY r2´H8pX|Y“yqsq

Note that 2´H8pX|Y q is the highest probability of guessing the value of the random variable X given the value of Y .

We will rely on the following useful claims about average conditional min-entropy.

Claim 7. [DORS08] Let X,Y and Z be three distributions, where 2b is the number of elements in the support of Y .
Then,

H8pX|Y,Zq ě H8pX,Y |Zq ´ b

Claim 8 ([GKK20]). Let X , Y and Z be three (arbitrary) distributions, then

H8pX|Y q ě H8pX|Y, Zq

3.1 Lossy Functions

Lossy functions were defined by Peikert and Waters in [PW08]. A lossy function family consists of functions
of two types: lossy functions and injective ones. The lossy ones (information theoretically) lose most of the
information about the input; i.e., the image is significantly smaller than the domain. It is (computationally)
hard to distinguish between a random lossy function in the family and a random injective function in
the family. In our setting, we will need a lossy function family where the range and the domain are of a
similar size (or close to being a similar size). Intuitively, the reason is that we apply these functions to
our min-entropy source, and if the functions produce output strings that are much longer than the input
strings then we will lose in the min-entropy rate.

Definition 9 (Lossy functions). A function family F “ tFλuλPN is a pT, n, n1, wq-lossy function family if the
following conditions hold:

• There are two probabilistic polynomial time seed generation algorithms Geninj and Genloss s.t. for any
polypT pλqq-size A, it holds that

ˇ

ˇ

ˇ

ˇ

PrsÐGeninjp1λq
rApsq “ 1s ´ PrsÐGenlossp1λq

rApsq “ 1s

ˇ

ˇ

ˇ

ˇ

“ negpT pλqq.

• For every λ P N and every f P Fλ, f : t0, 1unpλq Ñ t0, 1un
1pλq.

• For every λ P N and every s P Geninjp1
λq, fs P Fλ is injective.

• For every λ P N and every s P Genlossp1
λq, fs P Fλ is lossy i.e. its image size is at most 2n

1pλq´w.

• There is a polynomial time algorithm Eval s.t. Evalps, xq “ fspxq for every λ P N, every s in the support of
Geninjp1

λq YGenlossp1
λq and every x P t0, 1unpλq.

[PW08, BHK11] For some constant ε ą 0 and for all c1 ě 1{ε, and for every Ωpλq ď npλq ď polypλq,
there exists a pT, n, n, wq-lossy function family, with T pλq “ 2plog λqc1ε and w “ n´ pOplog λqqc, assuming
the sub-exponential DDH assumption.

5This is often denoted by rH8pX|Y q in the literature.
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3.2 Dispersers

Definition 10. A function Γ : rN s ˆ rts Ñ rDs is a pK,K 1q disperser if for every A Ď rN s with |A| ě K it holds
that

ˇ

ˇ

Ť

aPA,iPrtstΓpa, iqu
ˇ

ˇ ě K 1.

We will rely on dispersers which follow from the known constructions of seeded extractors (e.g.
[GUV09]).

Theorem 11 (e.g. [GUV09]). There exists a constant c such that the following holds. For every N,K,K 1, D such
that D ď

?
K and K 1 ď D{2, there exists an efficient pK,K 1q- disperser

Γ : rN s ˆ rts Ñ rDs

with degree
t “ logcpNq

3.3 Computational Extractors: Definitions

In this section, we recall definitions of extractors in the computational setting with a CRS. We define both a
2-source extractor and a non-malleable extractor in this setting.

Like [GKK20], in both defintions, we allow the min-entropy sources to depend on the CRS, but
require that they are efficiently sampleable conditioned on the CRS (where the efficiency is specified by a
parameter T ). We also allow each source to partially leak, as long as the source has sufficient min-entropy
conditioned on the CRS and the leakage.

As discussed in [GKK20], it may seem that there is no need to consider leakage explicitly. However, in
general a source conditioned on fixed leakage may not be efficiently sampleable. Therefore, in the definions
below we consider leakage explicitly. More specifically, for two sources X and Y we allow leakage on Y ,
which we will denote by Linit; and then allow leakage on X (that can also depend on Linit), which we will
denote by Lfinal. Moreover, both Linit and Lfinal can depend on the CRS.

For technical reasons, and specifically to enable a proof of security for their two-source extractor,
[GKK20] included an additional source of auxiliary information, AUX, that could be sampled jointly with
Y . We do not require this auxiliary source in any of our applications or proofs. The following definitions
are essentially identical to [GKK20], except we omit AUX for notational convenience.

Definition 12 (T -Admissible Leaky pn1, n2, k1, k2q Source Distribution). A T -admissible leaky pn1, n2, k1, k2q

source distribution with respect to a CRS distribution tCRSλuλPN consists of an ensemble of sources X “ tXλuλPN,
Y “ tYλuλPN, and leakage L “ tLλuλPN, such that @λ P N, the following holds:

• For every crs P SupppCRSλq, SupppXλ|crsq Ď t0, 1u
n1pλq and SupppYλ|crsq Ď t0, 1u

n2pλq.

• The leakage Lλ consists of two parts, Linit and Lfinal, such that for every crs P SupppCRSq, pY,Linit|crsq is
sampleable in time polypT q, and for every `init P SupppLinit|crsq, pX,Lfinal|crs, `initq is sampleable in time
polypT q.

• H8pXλ|CRSλ, Lλq ě k1 and H8pYλ|CRSλ, Lλq ě k2.

• For every crs P CRSλ and ` P SupppLλ|crsq, the distributions pXλ|crs, `q and pYλ|crs, `q are independent.6

Definition 13 (Computational Strong 2-source Extractors). For functions n1 “ n1pλq, n2 “ n2pλq, c “ cpλq,
and m “ mpλq, a function ensemble 2Ext “ t2ExtλuλPN, where

2Extλ : t0, 1un1pλq ˆ t0, 1un2pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq,

6This condition follows from the way X and Y are sampled, and like [GKK20], we add it only for the sake of being explicit.
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is said to be a pn1, n2, k1, k2q strong T -computational 2-source extractor in the CRS model if there is an
ensemble tCRSλuλPN where CRSλ P t0, 1ucpλq, such that the following holds:

For every T -admissible leaky pn1, n2, k1, k2q source distribution pX,Y, Lq with respect to CRS, for every poly-
nomial p, there exists a negligible function νp¨q s.t. for every λ and every ppT pλqq-size adversary A,

ˇ

ˇ

ˇ

ˇ

Pr

„

A p2Extλpx, y, crsq, y, crs, `q “ 1



´

Pr

„

A pU, y, crs, `q “ 1

ˇ

ˇ

ˇ

ˇ

“ νpT pλqq,

where the probabilities are over the randomness of sampling pcrs, x, y, `q Ð pCRSλ, Xλ, Yλ, Lλq, and over U which
is uniformly distributed over t0, 1umpλq independent of everything else.

Definition 14 (Computational Strong Non-malleable Extractors). For functions n1 “ n1pλq, n2 “ n2pλq,
c “ cpλq, and m “ mpλq, a function ensemble cnm-Ext “ pcnm-ExtλqλPN, where

cnm-Extλ : t0, 1un1pλq ˆ t0, 1un2pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

is said to be a pn1, n2, k1, k2q strong T -computational non-malleable extractor in the CRS model if there is an
ensemble tCRSλuλPN, where CRSλ P t0, 1ucpλq, such that the following holds:

For every T -admissible leaky pn1, n2, k1, k2q source distribution pX,Y, Lq with respect to CRS, for every poly-
nomial p, there exists a negligible function νp¨q such that for every λ and every ppT pλqq-size adversary A,

ˇ

ˇ

ˇ

ˇ

Pr
”

AOyx,crs pcnm-Extpx, y, crsq, y, crs, `q “ 1
ı

´

Pr
”

AOyx,crs pU, y, crs, `q “ 1
ı

ˇ

ˇ

ˇ

ˇ

“ νpT pλqq,

where the oracle Oy
x,crs on input y1 ‰ y outputs cnm-Extpx, y, crsq, and otherwise outputs K; and where the

probabilities are over the randomness of sampling pcrs, x, y, `q Ð pCRSλ, Xλ, Yλ, Lλq, and overU which is uniformly
distributed over t0, 1umpλq independent of everything else.

We will occasionally need to impose a different requirement on the error distribution. In such cases we
specify the error requirement explicitly. Specifically, we say that a pn1, n2, k1, k2q strong T -computational
two source (or non-malleable) extractor has error negpγpλqq if it satisfies Definition 13 (or Definition 14),
where the adversary’s distinguishing advantage is required to be at most negligible in γpλq.

We will also rely on the following theorem from [Raz05] (simplified to our setting). This is a statistical 2-
source extractor; i.e., one that considers sources that are sampled in unbounded time, and fools adversaries
with unbounded running time.

Theorem 15. [Raz05] There exists a pn1, n2, k1, k2q strong statistical 2-source extractor with output length Opk2q

according to Definition 13 where n2 “ ωplog n1q, k1 ě log n1, and k2 ě αn2 for any constant α ą 1
2 , and error

exp´Θpmintk1,k2uq.

Finally, we recall the following result from [GKK20] that transforms any two-source extractor in the
CRS model to a non-malleable extractor.

Theorem 16 ([GKK20]). Let T, T 1, n1, n2, k1, k2, k3, w : N Ñ N be functions of the security parameter where
T ě 2k3 , such that the following primitives exist.

• A pn1, n2, k1, k2q strong T -computational 2-source extractor in the CRS model.
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• A pT, n1, n1, wq-lossy function family.

• T 1-secure collision resistant hash functions mapping t0, 1un2 Ñ t0, 1uk3 .

Then, there exists a pn1, n2,K1,K2q strong T 1-computational non-malleable extractor satisfying definition 14 where
K1 “ k1 ` k3pn1 ´ w ` 1q ` 1 and K2 “ k2 ` k3 ` 1.

4 Computational Strong Two-Source Extractors in the CRS Model

In this section, we describe our construction of computational two-source extractors in the CRS model. We
have the following theorem.

Theorem 17. Let T, T 1, n1, n2, k1, k2, k3, d, t, w,K1,K2 : N Ñ N be functions of the security parameter, where
T ě 2maxpk3,dq, and such that the following primitives exist.

• A pn1, d, k1, d´ k3 ´ 1q strong information-theoretic 2-source extractor denoted by:

2Extλ : t0, 1un1pλq ˆ t0, 1udpλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

• A pT, n1, n1, wq-lossy function family F “ tFλuλPN, where w “ n1 ´ n
γ
1 for some constant γ P p0, 1q.

• A T 1-secure family of collision resistant hash functions H “ tHλuλPN with h : t0, 1ud Ñ t0, 1uk3 .

• A
´

2K2{2

T 1 log T 1
, 2d´1

¯

disperser

Γ : t0, 1un2 ˆ rts Ñ t0, 1ud

Then there exists a pn1, n2,K1,K2q strong T 1-computational two-source extractor, satisfying Definition 14,
where K1 “ k1 ` k3pn´ wq ` k3 ` 1.

Corollary 18. Assuming the sub-exponential hardness of DDH, there exists constants c0 ą 1 and c1 such that
for all c ą c0, for every Ωpλq ď n1 ď polypλq,Ωplog λq ď n2 ď polypλq, there exists an pn1, n2,K1,K2q

λ-computational strong two-source extractor in the CRS model, with K1 “ Oplog λqc, K2 “ Oplog λqc and output
length Oplog λqc

1 .

Proof. The sub-exponential hardness of DDH implies that there exists a constant 0 ă ε ă 1 such that DDH
with security parameter λ is hard against polyp2λ

ε
q-sized adversaries.

• This implies that for all c1 ě
1
ε , there exist lossy functions with equal domain and co-domain, where

w “ n1 ´ plog λqc1 , and where no T “ polyp2log λc1¨εq-sized adversary can distinguish the lossy mode
from the injective mode. This follows by setting, eg., log q “ plog λqc1 in the construction of lossy
functions from DDH in [BHK11].

• This also implies that for all c2 ě
1
ε , there exist collision-resistant hash functions with range k3 “

plog λqc2 , and where no T 1 “ polyp2log λc2¨εq-sized adversary can find collisions.

Setting c2 “
1
ε , c1 “

1
ε2

, we get T 1 “ λ, k3 “ plog λq
1
ε and T “ p2log λ

1
ε
q.

By the disperser construction in [GUV09], there exists a polynomial t “ polypλq for which there exists a
´

2K2{2

T 1plog T
1q
, 2d´1

¯

disperser

Γ : t0, 1un1 ˆ rts Ñ t0, 1ud

for any d, k2, T
1 that satisfy

K2 ě 4d` 2 log2 T 1 (1)
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Set d “ plog λq
1
ε2 . By Theorem 15, there exists a pn1, d, k1, d ´ k3 ´ 1q strong statistical 2-source

extractor for k1 “ plog λq
1
ε2 , with error exp´Θpminpk1,d´k3´1qq “ negp2k3q. In particular, this extractor is a

pn1, d, k1, d´k3´1q strong T -computational 2-source extractor in the CRS model (where the CRS is empty),
with error negp2k3q.

Setting d “ plog λq
1
ε2 and T 1 “ λ in Equation (2), we have K2 ě 4plog λq

1
ε2 ` 2 log2 λ. Fixing K2

to be 5plog λq
1
ε2 satisfies this inequality. From Theorem 17, we have K1 ě k1 ` k3pn ´ wq ` k3 ` 1 ě

plog λq
1
ε2 ` plog λq

1
ε ¨ plog λq

1
ε2 ` plog λq

1
ε ` 1. Fixing K1 ě 2plog λq

1
ε3 satisfies this inequality.

This completes the proof.

Corollary 19. Assuming the sub-exponential hardness of DDH, there exists constants c0 ą 1 and c1 such that
for all c ą c0, for every Ωpλq ď n1 ď polypλq,Ωplog λq ď n2 ď polypλq, there exists an pn1, n2,K1,K2q

λ-computational non-malleable extractor in the CRS model, with K1 “ Oplog λqc, K2 “ Oplog λqc and output
length Oplog λqc

1 .

Proof. This corollary can be obtained by combining Theorem 17 with 16, as follows.

• First, we apply Theorem 17 but with somewhat scaled-up parameters than in the previous corollary,
to obtain an pn1, n2, k1, k2q T -computational non-malleable extractor in the CRS model, with error
negp2k3q. This extractor will be parameterized by a (small enough) constant 0 ă ε ă 1. It will have

T “ 2plog λ1{ε
2
q, and k3 “ log λ1{ε2 .

The sub-exponential hardness of DDH implies that there exists a constant 0 ă ε ă 1 such that DDH
with security parameter λ is hard against polyp2λ

ε
q-sized adversaries.

– This implies that for all c1 ě
1
ε , there exist pT, n1, n1, wq-lossy functions with equal domain

and co-domain, where w “ n1 ´ plog λqc1 , and where no polypT q for T “ p2log λc1¨εq sized
adversary can distinguish the lossy mode from the injective mode. This follows by setting, eg.,
log q “ plog λqc1 in the construction of lossy functions from DDH in [BHK11].

– This also implies that for all c2 ě
1
ε , there exist collision-resistant hash functions with range

k3 “ plog λqc2 , and where no polypT 1q for T 1 “ 2log λc2¨ε-sized adversary can find collisions.

Setting c2 “
1
ε2
, c1 “

1
ε4

, we get T 1 “ 2log λ
1
ε , k3 “ plog λq

1
ε2 and T “ p2log λ

1
ε3
q.

By the disperser construction in [GUV09], there exists a polynomial t “ polypλq for which there exists
a
´

2K2{2

T 1plog T
1q
, 2d´1

¯

disperser

Γ : t0, 1un1 ˆ rts Ñ t0, 1ud

for any d, k2, T
1 that satisfy

K2 ě 4d` 2 log2 T 1 (2)

Set d “ plog λq
1
ε3 . By Theorem 15, there exists a pn1, d, k1, d ´ k3 ´ 1q strong statistical 2-source

extractor for k1 “ plog λq
1
ε3 , with error exp´Θpminpk1,d´k3´1qq “ negp2k3q. In particular, this extractor

is a pn1, d, k1, d ´ k3 ´ 1q strong T -computational 2-source extractor in the CRS model (where the
CRS is empty), with error negp2k3q.

Setting d “ plog λq
1
ε3 and T 1 “ 2log λ

1
ε in Equation (2), we can set K2 ě 4plog λq

1
ε3 ` 2plog λq

2
ε . Fixing

K2 ě 5plog λq
1
ε3 satisfies the above inequality. From Theorem 17, we can setK1 ě k1`k3pn´wq`k3`1

or K1 ě plog λq
1
ε3 `plog λq

1
ε2 ¨ plog λq

1
ε3 `plog λq

1
ε2 ` 1. Fixing K1 ě 2plog λq

1
ε5 satisfies this inequality.

• Re-defining some variables, we say that previous step results in a T -strong computational pn1, n2, k1, k2q

non-malleable extractor in the CRS model, with Ωpλq ď n1 ď polypλq,Ωplog λq ď n2 ď polypλq,
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T “ 2log λ1{ε , k1 “ 2plog λq
1
ε5 , k2 ě 5plog λq

1
ε3 , and error negpT q “ negp2plog λq

1
ε
q. Next, we apply

Theorem 16 to this extractor.

As before, the subexponential hardness of DDH implies that for all c11 ě
1
ε , there exist pT, n1, n1, wq-

lossy functions with equal domain and co-domain, where w “ n1 ´ plog λqc
1
1 , and where no polypT q

for T “ p2log λc
1
1¨ε
q sized adversary can distinguish the lossy mode from the injective mode. We will

set c11 “
1
ε2

. We also set k3 “ plog λq
1
ε , and by subexponential DDH, there exists a T 1-secure family of

collision resistant hash functions mapping t0, 1un2 Ñ t0, 1uk3 for T 1 “ λ.

Then, by Theorem 16, there exists an pn1, n2,K1,K2q strong T 1-computational non-malleable extractor
satisfying definition 14 where K1 “ k1 ` k3pn1 ´w ` 1q ` 1 “ 2plog λq

1
ε5 ` plog λq

1
ε ¨ plog λq

1
ε2 ` 1, or

K1 ě 3plog λq
1
ε5 and K2 “ k2 ` k3 ` 1 “ 5plog λq

1
ε3 ` plog λq

1
ε ` 1, or K2 ě 6plog λq

1
ε3 .

This completes the proof.

4.1 Construction

As discussed above, we will prove that the construction of two-source extractors in [GKK20] is a strong
non-malleable extractor for balanced sources, and additionally only requires polylogarithmic min-entropy.
We first recall the construction in [GKK20], and begin by defining the CRS distribution.

Generating the common reference string (CRS). For a given security parameter λ P N, the common
reference string is generated as follows.

1. Sample hÐ Hλ.

2. Sample b “ pb1, . . . , bk3q Ð t0, 1uk3 .

3. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3 Ð Geninjp1
λq.

4. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1´b1 , f2,1´b2 , . . . , fk3,b1´k3 Ð Genlossp1
λq.

Output

crs “

ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

The (Computational) Two-Source Extractor: Construction.
The computational two-source extractor c2Ext “ tc2ExtλuλPN is defined as follows.

For any λ P N, denote by c “ cpλq “ |crs|, then

c2Extλ : t0, 1uc ˆ t0, 1un1 ˆ t0, 1un2 Ñ t0, 1um,

where @pcrs, x1, x2q P t0, 1u
c ˆ t0, 1un1 ˆ t0, 1un2 ,

c2Extλpcrs, x1, x2q “
à

y:Di s.t. Γpx2,iq“y

cnm-Extλpcrs, x1, yq

where Γ : t0, 1un2 ˆ rts Ñ t0, 1ud is a p 2k2

T 1 log T
1 , 2d´1q disperser, and

@pcrs, x1, yq P t0, 1u
c ˆ t0, 1un1 ˆ t0, 1ud, and crs parsed as

ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

,

cnm-Extλpcrs, x1, yq “ 2Extλ

ˆ

f1,hpyq1 ˝ f2,hpyq2 ˝ . . . ˝ fk3,hpyqk3 px1q, y

˙
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4.2 Proof of Security of Computational Extractor

This section contains the proof of Theorem 17.
First, we prove the following claim.

Claim 20. Define c2Ext1λ such that on input pcrs, x1, x2q for crs parsed as
ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

,

c2Ext1λpcrs, x1, x2q first checks if Dpi1, i2q such that Γpx2, i1q ‰ Γpx2, i2q but hpΓpx2, i1qq “ hpΓpx2, i2qq. If so,
c2Ext1λpcrs, x1, x2q outputs a uniformly random value in t0, 1umpλq. Otherwise c2Ext1λpcrs, x1, x2q “ c2Extλpcrs, x1, x2q.

For every polypT 1q-sampleable pn1, n2, k1, k2q source distribution pX,Y q with respect to CRS, for every polyno-
mial p, there exists a negligible function νp¨q such that for every λ and every unbounded adversary A,

ˇ

ˇ

ˇ

ˇ

Pr rA pc2Extpx, y, crsq, y, crs, `q “ 1s ´ Pr
“

A
`

c2Ext1px, y, crsq, y, crs, `
˘

“ 1
‰

ˇ

ˇ

ˇ

ˇ

“ νpT 1pλqq

where the probabilities are over the randomness of sampling pcrs, x, yq Ð pCRSλ, Xλ, Yλq.

Proof. Suppose the claim is not true. Then we break the collision resistance property of H by constructing
an algorithm A1, running in time polypT 1q that on input hÐ H, finds collisions as follows.

1. Sample crs1 Ð CRS1, set crs “ ph, crs1q

and sample r Ð t0, 1upolypλq. Set x2 “ X2pcrs; rq.

2. Check if there exist pi, jq P rts such that Γpx2, iq ‰ Γpx2, jq and hpΓpx2, iqq “ hpΓpx2, jqq.

3. If such a pair pi, jq is found then output pΓpx2, iq,Γpx2, jqq as a collision, and otherwise output K.

Because x2 and crs1 are sampleable in time polypT 1q, the disperser is computable in time polypλq and the
degree of the disperser is polypλq, A1 runs in time polypT 1q. The two distributions differ only if there
is a collision. Moreover, by our assumption it finds a collision with probability at least 1

ppT 1q (for some
polynomial pp¨q and infinitely many λ P N). This contradicts collision resistance of the hash function, as
desired.

Fix the distribution CRS defined in the construction, and any pn1, n2, k1, k2q source distribution
pX1,X2, Lq for L “ pLinit, Lfinalq for which there exists a PPT adversary that contradicts Definition 13.

Next, for any unbounded adversary A, and bit c P t0, 1u, define experiment ExpA,crs,y,`init,c as follows.

• Sample px, `finalq Ð pX1, Lfinal|crs, `initq.

• Obtain g1, . . . , gt Ð Apcrs, yq.

• If Di P rts such that hpyq “ hpgipyqq, abort.

• If c “ 0, output
A
´

cnm-Extλpx, yq, cnm-Extλpx, g1pyqq, cnm-Extλpx, g2pyqq, . . . , cnm-Extλpx, gtpyqq, crs, `
¯

.

• If c “ 1, output
A
´

Um, cnm-Extλpx, g1pyqq, cnm-Extλpx, g2pyqq, . . . , cnm-Extλpx, gtpyqq, crs, `
¯

, whereUm denotes a uni-
formly random value in t0, 1um.
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For any b P t0, 1uk3 , let CRSpbq denote the set of all common reference strings such that f1,b1 , . . . , fk3,bk3 in
crs are injective, and the others are lossy.

For function ε “ εpλq, define set BAD-seedε as:

BAD-seedε “
!

y : Dcrs P CRSphpyqq,A, `init P SupppLinit|crsq s.t.
ˇ

ˇPrrExpA,crs,y,`init,0s “ 1s´

PrrExpA,crs,y,`init,1s “ 1s
ˇ

ˇ ą ε
)

Next we have the following information-theoretic argument.

Claim 21. Let νpλq denote the error in Raz’s extractor. Then

Pr
yÐt0,1ud

ry P BAD-seed?
νpλq
s ď

a

νpλq (3)

Proof. Suppose the claim is false. This implies that there exists an (unbounded) adversary A and a
polynomial pp¨q such that

ˇ

ˇ

ˇ

ˇ

ˇ

Pr
pcrs,x,y,`qÐpCRS,X ,Y,Lq

g1,...,gtÐApcrs,yq
hpyq“b where crsPCRSpbq

«

A
´

cnm-Extλpx, yq, cnm-Extλpx, g1pyqq, . . . , cnm-Extλpx, gtpyqq, crs, `
¯

“ 1

ff

´ Pr
pcrs,x,y,`qÐpCRS,X ,Y,Lq

g1,...,gtÐApcrs,yq
hpyq“b where crsPCRSpbq

«

A
´

Um, cnm-Extλpx, g1pyqq, . . . , cnm-Extλpx, gtpyqq, crs, `
¯

“ 1

ffˇ

ˇ

ˇ

ˇ

ˇ

ą νpλq (4)

We will now define an pn1, n2, k1, k2q source distribution pX 1, Y 1q for the underlying statistical two-
source extractor where k1 “ K1 ´ k3 ¨ pn1 ´ w ` 1q ´ 1 and k2 “ K2 ´ k3 ´ 1, such that A breaks the
pn1, n2, k1, k2q statistical two-source extractor for pX 1, Y 1q.

Define pX 1, Y 1q as follows.

1. We first define Y 1:

(a) Sample bÐ t0, 1uk3 .

(b) Sample fh “
ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

s.t. tfi,biuiPrk3s are injective and the rest are lossy.

(c) Sample py, `initq Ð pY, Linit|crsq.

(d) Set y1 “ py, d, `init, fh, bq, where d “ 0 if hpyq ‰ b and 1 otherwise.

2. We next define X 1:

(a) Sample px, `finalq Ð pX,Lfinal|crs, `initq. Set x1 “ f1,b1 ˝ f2,b2 ˝ . . . ˝ fk3,bk3 pxq, p`final, zx,bq, where
zx,b “ tz1, . . . , zk3u and for every i P r`s, zi :“ fi,1´bipfi`1,bi`1

p. . . fk3,bk3 pxqqq..

It remains to show that pX 1, Y 1, L1q is a T -admissible leaky pn1, n2, k1, k2q source distribution with
respect to CRS2Ext, where k1 “ K1 ´ k3 ¨ pn1 ´ w ` 1q ´ 1 and k2 “ K2 ´ k3 ´ 1.

Note that

H8pY
1|crs2Ext, d, `init, fh, bq ě H8pY |crs2Ext, `init, fhq ´ k3 ´ 1 (by Claim 7)

“ H8pY |crs2Ext, `initq ´ k3 ´ 1

ě K2 ´ k3 ´ 1 (by assumption).
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Similarly,

H8pX
1|crs2Ext, `final, zx,b, d, `init, fh, bq

“ H8pX|crs2Ext, `final, zx,b, d, `init, fh, bq (since fi,bi ’s are injective)
ě H8pX

1|crs2Ext, `final, `init, fhq ´ k3 ¨ pn1 ´ ω ` 1q ´ 1

(by Claim 7 and since fi,1´bi ’s are lossy)
“ H8pX

1|crs, `q ´ k3 ¨ pn1 ´ ω ` 1q ´ 1

ě K1 ´ k3 ¨ pn1 ´ ω ` 1q ´ 1 (by assumption).

Next, note that `1 “ p`1init, `
1
finalq, where `1init “ p`init, fh, b, dq and `1final “ p`final, zq. Let crs “ pcrs2Ext, fhq,

and let ` “ p`init, `finalq. In this case X 1 “ f1,b1 ˝ . . . fk3,bk3 pXq where X is sampled conditioned on pcrs, `q,
and Y 1 “ Y where Y is sampled conditioned on pcrs, `initq and on hpY q “ b.

The fact that pX,Y, Lq is T -admissible w.r.t. CRS, implies that X and Y are independent conditioned
on pcrs, `q. Moreover, since hpY q, d are a function of Y and the crs, we have that X and Y are independent
conditioned on pcrs, `, dq and on hpY q “ b. This implies that f1,b1 ˝ . . . fk3,bk3 pXq and Y are indepedent
conditioned on pcrs, `, dq and on hpY q “ b, and moreover z is just a function of crs, x. This in turn implies
that indeed X 1 and Y 1 are independent conditioned on pcrs2Ext, `

1q, as desired.
We next argue that Equation (4), together with the definition of pX 1, Y 1, L1|crs2Extq, implies that there

exists a T -size adversary A1, that simulates the adversary A, as well as its oracle, such that for infinitely
many λ P N,

PrrA1p2ExtpX 1, Y 1, crs2Extq, y
1, crs2Ext, `

1q “ 1s ´ PrrA1pU, y1, crs2Ext, `
1q “ 1s

ą νpλq (5)

The algorithm A1 on input pα, y1, crs2Ext, `
1q does the following:

1. Parse `1 “ p`1init, `
1
finalq and further parse `1init “ pd, `init, fh, hpyqq, `1final “ p`final, zx,hpyqq.

2. If d “ 0 then output K.

3. Else, set ` “ p`init, `finalq, and set crs “ pcrs2Ext, fhq.

4. Output A rOpα, y1, crs, `q, where the oracle rO is simulated using phpyq, zx,hpyq, crsq.

Equation (4) implies that indeed Equation (5) holds, as desired. This contradicts the fact that 2Ext is a strong
T -computational 2-source extractor for pX 1, Y 1, L1q. This completes the proof that Equation (3) holds.

Next, we fix ε “ εpλq “
a

νpλq, where νpλq denotes the error in Raz’s extractor. For any adversary A we
consider a set of games, GameA,0,α,GameA,1,α,GameA,2,α for α P t0, 1u. Before formally describing these
games, we informally discuss them and our high-level approach for the rest of the proof.

• GameA,0,α sends to the adversary either the output of the extractor cnm-Ext1 on randomly sampled
px1, x2, `|crsq or a uniformly random value, depending on the choice of α.

• GameA,1,α is identical to Game 0 except that it samples x2 restricted to the existence of an i such that
Γpx2, iq is not in BAD-seedε.

• GameA,2,α is identical to Game 1 except that it additionally conditions on hpyq “ b, for b s.t. the
functions tfi,biuiPrk3s in the CRS are injective, and the rest are lossy.

Once we formally define these games, we discuss the intuition for some claims that we will establish about
these games:

• For every unbounded A, GameA,2,0 and GameA,2,1 are ε-statistically indistinguishable. We will show
that this will follow by definition of the set BAD-seedε.
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• If there exists a polypT q-size adversary A that distinguishes GameA,1,0 and GameA,1,1 with advantage
better than negpT q, then A also distinguishes GameA,2,0 from GameA,2,1. This is a computational
argument that relies on the fact that lossy trapdoor functions “hide” the string b.

This, combined with the previous bullet establishes that GameA,1,0 and GameA,1,1 are computationally
indistinguishable w.r.t. polypT q-sized adversaries A, with advantage ε` negpT q.

• For every unbounded A and every α P t0, 1u, GameA,0,α and GameA,1,α are statistically indistinguish-
able. Intuitively, this is because the set BAD-seedε is small: thus by the property of the disperser, the
probability of sampling x2 for which no index i exists s.t. Γpx2, iq is not in BAD-seedε, is negligible.

This, combined with the previous bullet establishes that GameA,0,0 and GameA,0,1 are computationally

indistinguishable w.r.t. polypT q-sized adversaries, with advantage ε` negpT q ` poly
´

1
T 1 log T 1

¯

.

We now proceed to formally define the games, then formalize and prove the above claims.
GameA,0,α :

1. Sample crsÐ CRS.

2. Sample px2, `init Ð X2, Linit|crsq.

• If α “ 0, sample px1, `final Ð X1, Lfinal|crs, `initq and output Apc2Ext1pcrs, x1, x2q, x2, crs, `q.

• If α “ 1, sample px1, `final Ð X1, Lfinal|crs, `initq and output ApUm, x2, crs, `q.

GameA,1,α :

1. Sample crs Ð CRS and let b denote the underlying value such that the functions tfi,biuiPrk3s in the
CRS are injective and the rest are lossy.

2. Sample px2, `init Ð X2, Linit|crsq.

3. If Di P rts such that Γpx2, iq R BAD-seedε, do:

• If α “ 0, sample px1, `final Ð X1, Lfinal|crs, `initq and output Apc2Ext1pcrs, x1, x2q, x2, crs, `q.

• If α “ 1, sample px1, `final Ð X1, Lfinal|crs, `initq and output ApUm, x2, crs, `q.

Otherwise, go back to Step 1.

GameA,2,α :

1. Sample crs Ð CRS and let b denote the underlying value such that the functions tfi,biuiPrk3s in the
CRS are injective and the rest are lossy.

2. Sample px2, `init Ð X2, Linit|crsq.

3. Sample iÐ rts such that Γpx2, iq R BAD-seedε. If such i does not exist, go back to Step 1.

4. If hpΓpx2, iqq “ b, do:

• If α “ 0, sample px1, `final Ð X1, Lfinal|crs, `initq and output Apc2Ext1pcrs, x1, x2q, x2, crs, `q.

• If α “ 1, sample px1, `final Ð X1, Lfinal|crs, `initq and output ApUm, x2, crs, `q.

Otherwise go back to step 1.

Next, we prove that the distributions GameA,0,0 and GameA,0,1 are statistically close, for all A.

Claim 22. For all unbounded A,
ˇ

ˇ

ˇ
PrrGameA,2,0 “ 1s ´ PrrGameA,2,1 “ 1s

ˇ

ˇ

ˇ
ď ε
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Proof. We will show that this claim follows by the definition of BAD-seedε. Towards a contradiction, assume
that the claim is not true.

This implies that there exists an unbounded A such that
ˇ

ˇ

ˇ
PrrGameA,2,0 “ 1s ´ PrrGameA,2,1 “ 1s

ˇ

ˇ

ˇ
ą ε

By an averaging argument, this means that there exists b, crs P CRSpbq, px2, `initq P SupppX2, Linit|crsq, i
and A1 such that for y “ Γpx2, iq, we have that y R BAD-seedε, hpyq “ b,@i P rts, hpyq ‰ hpgipyqq and:

ˇ

ˇ

ˇ
PrrA1pc2Ext1pX1, x2, crsq, x2, crsq “ 1s ´ PrrA1pUm, x2, crsq “ 1s

ˇ

ˇ

ˇ
ą ε (6)

Fix such x2, y and A1, and note that y R BAD-seedε. By definition of BAD-seedε, for all unbounded B, all
y R BAD-seedε, crs P CRSphpyqq, `init P SupppLinit|crsq,

ˇ

ˇPrrExpB,crs,y,`init,0 “ 1s ´ PrrExpB,crs,y,`init,1 “ 1s
ˇ

ˇ ď ε (7)

We construct an adversary B that contradicts Equation (7) as follows. Recall that we fixed x2, y. For
every i P rts, B sets gi “ hpΓpx2, iqq except whenever Γpx2, jq “ y for some j, it sets gj “ K. Upon obtaining
challenge pα, c1, . . . , ctq, it outputs A1

`

p
À

iPrts ci ‘ αq, x2, crs
˘

. This contradicts Equation (7) as desired, and
proves the claim.

Next, we will show that any distinguisher that successfully distinguishes pGameA,1,0,GameA,1,1q, also
successfully distinguishes pGameA,2,0,GameA,2,1q.

Claim 23. Suppose there exists a polypT q-size adversary A, polynomial pp¨q, and polypT q-sampleable pn1, n2, k1, k2q

source distribution pX1, X2q with respect to CRS such that:
ˇ

ˇ

ˇ

ˇ

Pr rGameA,1,0 “ 1s ´ Pr rGameA,1,1 “ 1s

ˇ

ˇ

ˇ

ˇ

ě
1

pp2k3q
(8)

then
ˇ

ˇ

ˇ

ˇ

Pr rGameA,2,0 “ 1s ´ PrrGameA,2,1 “ 1s

ˇ

ˇ

ˇ

ˇ

ě
1

8pp2k3q
(9)

Proof. Suppose the claim is not true. Then there exists a polypT q-size adversary A, polynomial pp¨q, and
polypT q-sampleable pn1, n2, k1, k2q source distribution pX,Y, L|CRSq such that:

Pr rGameA,1,0 “ 1s ´ Pr rGameA,1,1 “ 1s ě
1

pp2k3q
and (10)

Pr rGameA,2,0 “ 1s ´ Pr rGameA,2,1 “ 1s ă
1

8pp2k3q
(11)

The other case can be handled symmetrically, so this assumption is w.l.o.g. Define an additional game as
follows.

GameA,3,α :

• Sample crs Ð CRS and let b denote the underlying value such that the functions tfi,biuiPrk3s in the
CRS are injective and the rest are lossy.

• Sample px2, `initq Ð X2, Linit|crs.

• Sample iÐ rts such that Γpx2, iq R BAD-seedεp2k3 q. If such i does not exist, go back to Step 1.
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• If hpΓpx2, iqq ‰ b, do:

– If α “ 0, sample px1, `finalq Ð pX1, Lfinal|crs, `initq and output
Apc2Ext1pcrs, x1, x2q, x2, crs, `q.

– If α “ 1, output ApUm, x2, crs, `q.

Otherwise go back to step 1.

Then note that

PrrGameA,3,0 “ 1s ´ PrrGameA,3,1 “ 1s

“ PrrGameA,2,0 “ 1s ´ PrrGameA,2,1 “ 1s

´ PrrGameA,1,0 “ 1s ` PrrGameA,1,1 “ 1s

ě
1

pp2k3q
´

1

8pp2k3q
ě

7

8pp2k3q
(12)

where the second-from-last inequality holds for infinitely many λ P N by Equations (10) and (11).
We will now construct an adversary A1 that contradicts key indistinguishability of the lossy function

family, as follows. A1 obtains
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

externally, where functions corresponding to (hidden value) b “ pb1, . . . , bk3q are injective. Next, it does the
following:

• Set N “ 2k3 ¨ p2p2k3q.

• Sample z Ð t0, 1uk3 .

• Initialize α “ 0, β “ 0, i “ 0 and do:

1. If i “ N ` 1, output α, β and stop.

2. Else sample hÐ Hλ and set

crs “

ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1.

˙

3. Sample px2, `initq Ð pX2,λ, Linit|crsq.
Define function F that on input px2, `init, crsq outputs a uniformly random iÐ rts s.t. Γpx2, iq R
BAD-seedεp2k3 q. It outputs K if no such i exists.

Note that function F can be implemented by a 2d-sized circuit.

4. If hpyq “ z, continue. Else go back to Step 1.

5. Sample px1, `finalq Ð pX1, Lfinal|crs, `initq.

6. Set i “ i` 1, α “ α`A
`

c2Ext1px1, x2, crsq, x2, crs, `
˘

, β “ β `A pU, x2, crs, `q. Go to Step 1.

• Set δ “ |α´ β|.

• If δ ă 1
2pp2k3 q

then output b1 “ z, otherwise output b1 Ð t0, 1uk3 .

Now when i is sampled as the output of function F , by equation (11),

Erδ|z “ bs ă
1

8pp2k3q
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and by equation (12),

Erδ|z ‰ bs ě
7

8pp2k3q

Define H as the event that

˜

δ ă 1
2pp2k3 q

¸

. By the Chernoff bound7,

PrrH|z “ bs “ 1´ Pr

«˜

δ ě
1

2pp2k3q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

z “ b

ff

ě 1´
´

e
´

2k3 ¨p2p2k3 q

32p2p2k3 q

¯

ą 1´ negp2k3q (13)

Note that (by definition)  H is the event that

˜

δ ě 1
2pp2k3 q

¸

. Therefore, by the Chernoff bound8,

Prr H|z ‰ bs “ 1´ Pr

«˜

δ ă
1

2pp2k3q

¸ˇ

ˇ

ˇ

ˇ

ˇ

z ‰ b

ff

ě 1´ e
´ 0.752

p2p2k3 q
¨
2k3 ¨p2p2k3 q

2
“ 1´ negp2k3q (14)

Next, note that the T -security of the lossy function family, together with the assumption that T ě 2k
1

where k1 “ maxtk3, du, implies that for every polypT q-size adversary B (recall b P t0, 1uk3 is used to
determine which functions are lossy or injective in the crs),

2´k
1

` negpT q ě PrrBpcrsq “ bs ě 2´k
1

´ negpT q. (15)

This, together with the fact that pX,Y, L|crsq can be sampled in time polypT q, implies that

2´k
1

` negpT q ě Pr
“

hpyq “ b
‰

ě 2´k
1

´ negpT q, (16)

where the probability is over crsÐ CRS, and over px, y, `q Ð pX,Y, L|crsq.
Furthermore, by construction,

Prrb1 “ b|H^ z “ bs “ 1 (17)

and

Prrb1 “ b| H^ z ‰ bs “ 2´k3 (18)

7We are using the following version of the Chernoff bound: Let X1, . . . XN be independent random variables taking values in
r´1, 1s. Let X denote their mean, and µ “ ErXs denote the expected value of their mean. Then for every α ą 0,

PrrX ě µ` εs ď e´
ε2N
2

We derive Equation (13) by setting ε “ 1

4pp2k3 q
, N “ 2k3 ¨ p2p2k3q.

8Here we are using the following version of the Chernoff bound: Let X1, . . . XN be independent random variables taking
values in r´1, 1s. Let X denote their mean, and µ “ ErXs denote the expected value of their mean. Then,

PrrX ď µ´ εs ď e´
ε2N
2
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Therefore,

Prrb1 “ bs

ě Prrb1 “ b|H^ z “ bs ¨ PrrH|z “ bs ¨ Prrz “ bs

` Prrb1 “ b| H^ z ‰ bs ¨ Prr H|z ‰ bs ¨ Prrz ‰ bs

ě 1 ¨ PrrH|z “ bs ¨ Prrz “ bs ` 2´k3 ¨ Prr H|z ‰ bs ¨ Prrz ‰ bs
`

By substituting with Equations (17) and (18)
˘

“ 1 ¨ p1´ negp2k3qq ¨ Prrz “ bs ` 2´k3 ¨ p1´ negp2k3qq ¨ Prrz ‰ bs
`

By substituting with Equations (13) and (14)
˘

ě 1 ¨
`

1´ negp2k3q
˘

p2´k3 ´ negp2k3qq ` 2´k3 ¨ p1´ negp2k3qq ¨ p1´ negp2k3qq
`

By substituting with Equation (16)
˘

ě 2´k3 ¨
`

2´ negp2k3q
˘

ą 1.5 ¨ 2´k3 .

This contradicts Equation (15) and completes the proof, as desired.

Proof. To complete the proof of the theorem, it remains to show that GameA,0,α and GameA,1,α are statis-
tically indistinguishable for both choices of α P t0, 1u. The only difference between the games is that
GameA,1,α samples x2 conditioned on the existence of i s.t. y “ Γpx2, iq R BAD-seedε, whereas GameA,0,α
does not condition on this event. The statistical distance between GameA,1,α and GameA,0,α (for any choice
of α) is therefore bounded by the following probability:

Pr
crsÐCRS,px2,`initqÐpX2,Linit|crsq

r@i P rts,Γpx2, iq P BAD-seedεs

We will now argue that this probability is bounded by negpT 1q. If not, then there exists a polynomial
pp¨q such that for

S “ tx2 : @i,Γpx2, iq P BAD-seedεu, |S| ě
2k2

ppT 1q
.

But the disperser Γ maps every set of size at least 2k2

T 1 log T 1
to a set of size at least 2d´1. This implies that

|tΓpx2, iqux2PS,iPrts| ě 2d´1. But this contradicts Equation (3)/Claim 21, as desired. This completes the proof
of Theorem 17.

5 Network Extractor Protocol in the CRS Model

We start with the definition of the T -admissible leaky pp, n, kq-source distribution.

Definition 24 (T -Admissible Leaky pp, n, kq Source Distribution). A
T -admissible leaky pp, n, kq source distribution with respect to a CRS distribution tCRSλuλPN consists of an ensemble
of sources X “ tXi,λuiPrps,λPN, and leakage L “ tLi,λuiPrps,λPN such that for every λ P N, the following holds:

• For every crs P SupppCRSλq, SupppXi,λ|crsq Ď t0, 1u
npλq for every i P rps.

• For every crs P SupppCRSλq, pXi,λ, Li,λ|crsq is sampleable in time polypT pλqq for every i P rps.

• For every i P rps, H8pXi,λ|CRSλ, Lλq ě kpλq where Lλ “ tLi,λuiPrps.

• For every crs P CRSλ, ` P SupppLλ|crsq and for every distinct i, j P rps, the distributions pXi,λ|crs, `q and
pXj,λ|crs, `q are independent.9

9This condition follows from the way X and Y are sampled, and we add it only for the sake of being explicit.
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• CRSGenp1λq:

1. Sample CRSNMExt for the non-malleable extractor NMExt.

2. For each i P rps and b P t0, 1u, sample fi,b Ð Geninjp1
λq.

3. Output CRS :“ pCRSNMExt, tfi,buiPrps,bPt0,1uq.

• Description of the Protocol. Party Pi on input xi P t0, 1un does the following:

1. For each b P t0, 1u, it computes fi,bpxiq and broadcasts fi,1pxiq.

2. It receives tfj,1pxjquj‰i from the other parties.

3. It outputs
À

j‰iNMExtpfi,0pxiq ˝ i, fj,1pxjq ˝ j,CRSNMExtq.

Figure 1: Network Extractor Protocol in the CRS Model

We now provide the definition of network extractor protocol in the CRS model adapting the definitions
from [KLRZ08, KLR09].

Definition 25. A protocol for p processors is a pT, t, gq network extractor with respect to CRS distribution
tCRSλuλPN with source length npλq, min-entropy kpλq and output length mpλq if for any T -admissible leaky
pp, n, kq source distribution pX,Lq w.r.t. tCRSλuλPN (see Definition 24) and any choice M of t faulty processors,
after running the protocol, there exists a set G P rpszT of size at least g such that

|CRS, B, tXiuiRG, tLiuiPrps, tZiuiPG ´ CRS, B, tXiuiRG, tLiuiPrps, Ugm| ă neglpλq

Here, pCRS, tXi, LiuiPrpsq Ð pCRSλ, tXi,λ, Li,λuiPrpsq, B is the transcript of the protocol and Zi denote the output
of the i-th party in the protocol, Ugm is the uniform distribution on gm bits independent of B, tXiuiRG and tLiuiPrps.

5.1 Building Blocks

We use the following building blocks in the construction.

1. A pn, n1, wq-lossy function family F “ tFλ : t0, 1unpλq Ñ t0, 1un1pλquλPN.

2. A pn1, k1q T -strong computational non-malleable extractor in the CRS model denoted by

NMExtλ : t0, 1un1pλq ˆ t0, 1un1pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

5.2 Construction

We give the construction of the network extractor protocol in Figure 1.

Theorem 26. Let γ P p0, 1q be a fixed constant and let kpλq be an arbitrary polynomial larger than n1pλq ´ wpλq.
Assuming the existence of the following primitives:

• A pn, n1, wq-lossy function family F “ tFλ : t0, 1unpλq Ñ t0, 1un1pλquλPN, where wpλq “ n1pλq´pn1pλqq
γ .

• A pn1, k1q T -strong computational non-malleable extractor in the CRS model denoted by

NMExtλ : t0, 1un1pλq ˆ t0, 1un1pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

where k1pλq ě kpλq ´ pn1pλq ´ wpλqq.

Then, the construction given in Figure 1 is a pT, p´2, 2, neglq network extractor with respect to the CRS distribution
in Figure 1 and min-entropy kpλq.
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5.3 Proof of Our Network Extractor

In this section, we prove Theorem 26.
Let M be an arbitrary subset of corrupted parties of size at most t ď p´ 2. Let H “ rpszM denote the

set of uncorrupted parties. Let H “ ti1, . . . , i|H|u. For each j P r|H|s, we define Hyb1 to be identical to
pCRS, B, tXiuiRH , tLiuiPrps, tZiuiPHq (see Definition 25) and Hybj as follows. It is same as Hyb1 except that
for every j1 ă j such that ij1 P H , we replace Zij1 with Um. We now observe that Hyb|H|`1 is identically
distributed to pCRS, B, tXiuiRH , tLiuiPrps, Ugmq (see Definition 25) and to complete the proof, it is sufficient
to show that for every j P r|H|s, Hybj is computationally indistinguishable to Hybj`1. We now define a
sequence of hybrids to prove the above claim. Let j1 ‰ j such that ij1 P H . Since t ď p´ 2, we infer that
such a j1 always exists.

• Hybj,1 : This hybrid is same as Hybj except that we sample fij ,1 and fij1 ,0 as output of Genlossp1
λq. It

follows immediately from the indistinguishability of the injective and the lossy modes that Hybj is
computationally indistinguishable to Hybj,1.

• Hybj,2 : This hybrid is same as Hybj,1 except that we replace Zij with Um. We argue in Claim 27 that
Hybj,1 is computationally indistinguishable to Hybj,2 from the security of the non-malleable extractor.

• Hybj,3 : In this hybrid, we reverse the changes made in Hybj,1. Again, it follows from the indis-
tinguishability of the lossy and the injective modes that Hybj,3 and Hybj,2 are computationally
indistinguishable. We note that Hybj,3 is identically distributed to Hybj`1.

Claim 27. Assuming that NMExt is pn1, k1q T -strong computational non-malleable extractor in the CRS model,
we have Hybj,1 «c Hybj,2.

Proof. Assume for the sake of contradiction that there exists a distinguisher D that can distinguish between
Hybj,1 and Hybj,2 with non-negligible advantage. We give a reduction that breaks the security of NMExt.

The reduction defines the CRS distribution to first sample CRSNMExt and then samples the rest of the
components in CRS as in Hybj,1. It then defines functions L1ij and L1ij1 as follows:

• L1ij pXij q outputs fij ,1pXij q.

• L1ij1 pXij1 q outputs fij1 ,0pXij1 q.

It then provides the following sampler for sampling the sources fi1,0pXi1q ˝ i1 and fi2,1pXi2q ˝ i2 and
the leakage function tLiuiPti1,i2u defined below.

• For each i P tij , ij1u, the sampler samples pXi, Liq Ð pXi,λ, Li,λ|CRSq from the source distribution. It
defines the leakage function to be Li “ pLi, L1ipXiqq.

• The sampler outputs fij ,0pXij q ˝ ij as the first source and fij1 ,1pXij1 q ˝ ij1 as the second source.

The reduction obtains crs, `ij “ pLij , Lij pXij qq and `ij1 “ pLij1 , L
1
ij1
pXij1 qqq from the external challenger.

Now, conditioned on `ij and `ij1 , we have thatXij andXij1 are independent sources. Since for each fij ,1 and
fij1 ,0 are generated in the lossy mode, and fij ,0 and fij1 ,1 are generated in the injective mode, it follows from
Claim 7 thatH8pfij ,0pXij q˝ ij |crs, `ij , `ij1 q ě k´pn1´wq andH8pfij1 ,1pXij1 q

˝ ij1 |crs, `ij , `ij1 q ě k´pn1´wq.
For every i P rps R tij , ij1u, the reduction samples pXi, Liq Ð pXi,λ, Li,λ|CRSq. The reduction now defines
the tampering function g that acts on fij1 pXij1 q ˝ ij1 as follows:

• It uses the output of the leakage function `ij and `ij1 as well as the fixing of the other sources to
generate the partial transcript B1 of the protocol that includes all the messages from the honest
parties except fij1 ,1pXij1 q. The tampering function on input fij1 ,1pXij1 q ˝ ij1 does the following: it uses
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fij1 ,1pXij1 q ˝ ij1 to generate the messages from all the honest parties in the protocol and then runs

the adversarial strategy to generate the messages from the corrupt parties. It outputs tXij
k ˝ kuk‰ij1

where Xij
k is the message received by ij-th party from the k-th party (for every k R tij , ij1u) in the

protocol.

We note that g is efficiently computable since the adversarial strategy is efficiently computable and
for any k ‰ ij1 , X

ij
k ˝ k ‰ fij1 ,1pXij1 q ˝ ij1 . Hence, g constitutes a valid tampering function against the

NMExt. The reduction provides g as the tampering function to the external challenger. It obtains the output
y, fij1 ,1pXij1 q ˝ ij1 , tNMExtpfij ,0pXij q ˝ ij , X

ij
k ,CRSNMExtquk‰ij from the challenger and uses it to generate

the output of the hybrid.
We note that if y is generated as the output of the NMExt on fij ,0pXij q ˝ ij , fij1 ,1pXij1 q ˝ ij1 and CRSNMExt

then the output of the reduction is identical to Hybi,1. Else, it is distributed to Hybi,2. Thus, if there is a
distinguisher that can distinguish between Hybi,1 and Hybi,2 with non-negligible advantage, then we can
use the same distinguisher to break the security of NMExt and this is a contradiction.

5.4 Instantiation

We instantiate the non-malleable extractor from Corollary 19 and the lossy functions from [PW08, BHK11]
Specifically, we set the constant c of the non-malleable extractor to be maxpc0, c1q (where c1 is the parameter
for the lossy functions). Thus, we obtain the following corollary.

Corollary 28. Assuming the sub-exponential hardness of the DDH assumption, there exist constants c ą 1 and c1

such that for any p number of players, there exists a construction of pλ, p´ 2, 2q network extractor protocol in the
CRS model with sources of length Ωpλq ď npλq ď polypλq, min-entropy Oplog λqc and output length Oplog λqc

1 .

6 Extractor for Adversarial Sources in the CRS Model

We start with the definition of the adversarial source distribution.

Definition 29. A T -admissible leaky pp, n, kq adversarial sources with respect to CRS distribution tCRSλuλ is a
tuple pi, j, pX,Y, Lq, I, txkukPI , Ii, Ij , tfkukPIiYIj q where i, j P rps, pX,Y, Lq is T -admissible leaky pn, kq-source
distribution w.r.t. tCRSλuλPN, I Y Ii Y Ij “ rps and fk : t0, 1un Ñ t0, 1un are T -time computable functions.

We now give the definition of the extractor for adversarial sources below.

Definition 30. For any p P N, and functions n “ npλq, c “ cpλq and m “ mpλq, a function ensemble AdvExt “
tAdvExtλuλPN, where

AdvExtλ : pt0, 1unpλqqp ˆ t0, 1ucpλq Ñ t0, 1umpλq

is said to be a pp, n, kq T -computational adversarial source extractor in the CRS model if there exists an ensemble
tCRSλuλPN such that the following holds:

For every T -admissible leaky pp, n, kq adversarial sources pi, j, pX,Y, Lq, I, txkukPI , Ii, Ij , tfkukPIiYIj q wrt
CRS, the following two distributions are computationally indistinguishable:

tAdvExtλppx
1
1, . . . , x

1
pq, crsq, crs, `u «c tUm, crs, `u

where crs Ð CRSλ, pxi, xj , `q Ð pX,Y, L|crsq, for every k P I , x1k “ xk, for every k P Ii, x1k “ fkpxiq, and for
every k P Ij , x1k “ fkpxjq.

29



• CRSGenp1λq:

1. Sample CRScnm-Ext for the non-malleable extractor cnm-Ext.

2. For each i P rps and b P t0, 1u, sample fi,b Ð Geninjp1
λq.

3. Output CRS :“ pCRScnm-Ext, tfi,buiPrps,bPt0,1uq.

• Description of the Extractor. On input px1, . . . , xpq P pt0, 1u
nqp, the extractor does the following:

1. For each j P rps and b P t0, 1u, it computes fj,bpxjq.

2. For each i P rps, it computes
ri :“

À

j‰i cnm-Extpfi,0pxiq ˝ i, fj,1pxjq ˝ j,CRScnm-Extq.

3. It outputs
À

iPrps ri.

Figure 2: Extractor for Adversarial Sources

6.1 Building Blocks

We use the following building blocks in the construction.

1. A pn, n1, wq-lossy trapdoor function family F “ tFλ : t0, 1unpλq Ñ t0, 1un1pλquλPN.

2. A pn1, k1q T -strong computational 2-source extractor in the CRS model denoted by

cnm-Extλ : t0, 1un1pλq ˆ t0, 1un1pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

6.2 Construction

We give the construction of our extractor for adversarial sources in Figure 2.

Theorem 31. Let p P N be fixed and let mp¨q be an arbitrary polynomial. Let kp¨q be an arbitrary polynomial such
that for every λ P N, kpλq ě p2p´1qpn1pλq´wpλqq`mpλq. Let np¨q be another polynomial such that npλq ě kpλq
for every λ P N. Assuming the existence of the following primitives:

• A pn, n1, wq-lossy function family F “ tFλ : t0, 1unpλq Ñ t0, 1un1pλquλPN.

• A pn1, k1q T -strong computational non-malleable extractor in the CRS model denoted by

cnm-Extλ : t0, 1un1pλq ˆ t0, 1un1pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

where k1pλq ě kpλq ´ p2p´ 1qpn1pλq ´ wpλqq ´mpλq.

Then, the construction given in Figure 2 is a pp, n, kq adversarial source extractor with respect to the CRS distribution
described in Figure 2.

6.3 Proof of Our Extractor for Adversarial Sources

We now prove Theorem 31.
Let pi1, i2, pX,Y, Lq, I, txkukPI , I1, I2, tfkukPI1YI2q be an arbitrary T -admissible leaky adversarial sources

with respect to CRS distribution described in Figure 2. We define Hyb1 to be identical to the output of
the extractor and Hyb2 as follows. It is same as Hyb1 except that it replaces ri1 in the computation of the
extractor with Um. We now observe that Hyb2 is identically distributed to the uniform distribution since ri
is uniform and independent of the other trkuk‰i1 . To complete the proof, it is sufficient to show that Hyb2 is
computationally indistinguishable to Hyb1. We now define a sequence of hybrids to prove the above claim.
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• Hyb1,1 : This hybrid is same as Hyb1 except that for every pi, bq R tpi1, 0q, pi2, 1qu, we sample fi,b the

as output of Genlossp1
λq. It follows immediately from the indistinguishability of the injective and the

lossy modes that Hyb1 is computationally indistinguishable to Hyb1,1.

• Hyb1,2 : This hybrid is same as Hyb1,1 except that we replace ri1 with Um. We argue in Claim 32 that
Hyb1,1 is computationally indistinguishable to Hyb1,2 from the security of the non-malleable extractor.

• Hyb1,3 : In this hybrid, we reverse the changes made in Hyb1,1. Again, it follows from the indis-
tinguishability of the lossy and the injective modes that Hyb1,3 and Hyb1,2 are computationally
indistinguishable. We note that Hyb1,3 is identically distributed to Hyb2.

This completes the proof of theorem.

Claim 32. Assuming that cnm-Ext is pn1, k1q T -strong computational 2-source extractor in the CRS model, we
have Hyb1,1 «c Hyb1,2.

Proof. Assume for the sake of contradiction that there exists a distinguisher D that can distinguish between
Hyb1,1 and Hyb1,2 with non-negligible advantage. We give a reduction that breaks the security of cnm-Ext.

The reduction defines the CRS distribution to first sample CRScnm-Ext and then sample the rest of
the components in CRS as in Hyb1,1. It defines the leakage function L1init “ pLinit, Li2p¨qq and L1final “

pLfinal, Li1p¨qqwhere Li2p¨q and Li1p¨q are defined below.

• Li2 takes Xi2 as input and outputs pfi2,0pXi2q, tfi,bpXiquiPI2,bPt0,1uq.

• The leakage function Lii takes Xi1 and first computes pfi1,1pXi1q, tfi,bpXiquiPI1,bPt0,1uq. It finally
computes ‘j‰ti1,i2ucnm-Extpfi1,0pXi1q ˝ i1, fj,1pXjq ˝ ijq.

It outputs pfi1,1pXi1q, tfi,bpXiquiPI1,bPt0,1u,‘j‰ti1,i2ucnm-Extpfi1,0pXi1q ˝ i1, fj,1pXjq ˝ ijqq.

The reduction then provides the following sampler for sampling the sources fi1,0pXi1q˝i1 and fi2,1pXi2q˝

i2.

• The sampler samples py, `1initq Ð pY,L1init|crsq. It then samples px, `1finalq Ð pX,L1final|crs, `
1
initq.

• The sampler outputs fi1,0pxq ˝ i1 as the first source and fi2,1pyq ˝ i2 as the second source.

Now, conditioned on `1init and `1final, we have that fi1,0pXi1q ˝ i1 and fi2,1pXi2q ˝ i2 are independent
sources. Since for each pi, bq R tpi1, 0q, pi2, 1qu, fi,b is generated in the lossy mode, it follows from Claim 7
that H8pfi1,0pXi1q ˝ i1|`

1
init, `

1
finalq ě k ´ p2|I1| ` 1qpn1 ´ wq ´ m and H8pfi2,1pXi2q ˝ i2|`

1
init, `

1
finalq ě k ´

p2|I2| ` 1qpn1 ´ wq.
We obtain the challenge y, `1, aux, crs from the external challenger and uses it to generate trjujPrps. The

reduction finally computes the output of the hybrid.
We note that if y is generated as the output of the cnm-Ext then the output of the reduction is identical

to Hyb1,1. Else, it is distributed identically to Hyb1,2. Thus, if there is a distinguisher that can distinguish
between Hyb1,1 and Hyb1,2 with non-negligible advantage, then we can use the same distinguisher to break
the security of cnm-Ext and this is a contradiction.

6.4 Instantiation

We instantiate the two-source extractor from Corollary 18 and the lossy functions from [PW08, BHK11].
Specifically, for any fixed p, we set c for the two-source extractor to be large enough such that min-entropy
of the two source extractor p2p´1qOplogc1 λq ă logc λ. We set mpλq ă logc λ. We, thus, obtain the following
corollary.
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Corollary 33. Fix any p P N. Assuming the sub-exponential hardness of DDH assumption, there exists constants
c ą 1 and c1 ă c such that for any Ωpλq ď npλq ď polypλq, kpλq “ Oplogc λq and mpλq ď Opkpλqq, there exists a
construction of a pp, n, kq λ-computational adversarial two-source extractor in the CRS model with output length
Oplog λqc

1 .
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