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Abstract

A comparison of two encrypted numbers is an important operation needed in many machine
learning applications, for example, decision tree or neural network inference/training. An effi-
cient instantiation of this operation in the context of fully homomorphic encryption (FHE) can
be challenging, especially when a relatively high precision is sought. The conventional FHE way
of evaluating the comparison operation, which is based on the sign function evaluation using
FHEW/TFHE bootstrapping, can only support very small precision (practically limited to 4-5
bits or so). For higher precision, the runtime complexity scales linearly with the ciphertext
(plaintext) modulus (i.e., exponentially with the modulus bit size). We propose sign function
evaluation algorithms that scale logarithmically with the ciphertext (plaintext) modulus, en-
abling the support of large-precision comparison in practice. Our sign evaluation algorithms
are based on an iterative use of homomorphic floor function algorithms, which are also derived
in our work. Further, we generalize our procedures for floor function evaluation to arbitrary
function evaluation, which can be used to support both small plaintext moduli (directly) and
larger plaintext moduli (by using a homomorphic digit decomposition algorithm, also suggested
in our work). We implement all these algorithms using the PALISADE lattice cryptography
library, introducing several implementation-specific optimizations along the way, and discuss
our experimental results.

∗This work was funded primarily by Duality Technologies. This material is partially based upon work supported
by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR00112090102.
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1 Introduction

The ability to compare two encrypted numbers is required in many real-world applications, and
often these applications need to combine comparisons with arithmetic operations, such as addi-
tions or multiplications (e.g., neural network or decision tree inference/training [3, 25]). The main
non-interactive method for performing these computations in a privacy-preserving manner is fully
homomorphic encryption (FHE), a powerful cryptographic primitive that enables performing com-
putations over encrypted data without having access to the secret key.

The FHE schemes are generally broken down into three classes: the FHEW/TFHE schemes for
evaluating boolean circuits, which are best suited for comparisons and decision diagram computa-
tions [16, 19, 29]; Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/Fan-Vercauten (BFV)
schemes for evaluating modular arithmetic over finite fields, which are also often applied for small-
integer computations [9, 10, 20]; and Cheon-Kim-Kim-Song (CKKS) scheme for approximate com-
putations over real and complex numbers [14].

One of the open challenges is that although the CKKS scheme can efficiently support additions,
multiplications, and more generally, polynomial function evaluation, with relatively high precision,
the current FHE capabilities of evaluating the encrypted comparison is limited. One method to
resolve this problem is to use scheme switching between CKKS and FHEW/TFHE, first introduced
in the CHIMERA paper by Boura at. al [8], and later improved in the PEGASUS paper by Lu
et. al [3]. However, after switching to FHEW/TFHE the comparison capability for these “high-
precision” numbers is very limited. For instance, we show in Section 7 that a single FHEW/TFHE
bootstrapping, a typical way to perform an encrypted comparison in FHE, can efficiently support
at most 4 bits of precision for encrypted comparison using typical parameters as in [29], which is
also close to the precision used in [3]. Any further precision improvement for this method makes
the encrypted comparison highly inefficient. Therefore, there is a significant interest in developing
methods for large-precision comparison of encrypted numbers that would scale significantly better
(both asymptotically and practically) with input precision.

The comparison of two encrypted numbers is equivalent to computing the difference of these
numbers followed by the evaluation of the sign function. As evaluating the difference is trivial for
any additively homomorphic encryption scheme, the difficulty lies in the sign function computation.
In the rest of the paper, we will focus on the sign function, assuming that all our results for the
sign function readily apply to encrypted comparison.

The sign function evaluation is closely related to the main idea of FHEW/TFHE bootstrapping,
where we need to find the most significant bit (MSB) of an encrypted number. Hence, one could
directly apply the FHEW/TFHE bootstrapping to find the sign. However, this approach only works
for a very limited precision (up to 4 bits, as pointed out above) for the parameters currently used
for efficient Boolean circuit evaluation [1, 29]. The complexity of the FHEW/TFHE bootstrapping
procedures scales linearly with the ciphertext modulus Q, i.e., exponentially with the bit-size of
Q. This implies that already for 10 bits of precision, one would need to increase the runtime by a
factor of 26 = 64, as compared to the current results for Boolean arithmetic. Clearly, this approach
is not viable for practical applications that require 10 or even more bits of precision.

A major goal of our work is to develop a sign function evaluation procedure that scales loga-
rithmically with Q. We also use the central idea of our sign evaluation algorithm to derive efficient
general functional bootstrapping procedures, which support the evaluation of arbitrary functions.
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Our Contributions More concretely, the contributions of our work can be summarized as fol-
lows:

• We propose a novel procedure for large-precision homomorphic sign evaluation using FHEW/
TFHE bootstrapping: a large-precision ciphertext is broken down into digits, and then the
homomorphic floor function is executed sequentially to clear each digit, starting from the
least significant one. After each digit is cleared, the ciphertext is scaled down to work with
a smaller ciphertext modulus Q, until at the last iteration the current modulus becomes
small enough to evaluate the fast FHEW/TFHE bootstrapping procedure (with the same
parameters as used for Boolean arithmetic).

• We develop two algorithms for the homomorphic floor function. The first algorithm requires
two invocations of FHEW/TFHE bootstrapping and has a specific constraint for the input
noise. The second algorithm requires three invocations of FHEW/TFHE bootstrapping, but
has no constraint on the input noise.

• We use the central idea of the homomorphic floor function algorithms to develop a general
functional bootstrapping procedure, which supports arbitrary functions for small plaintext
spaces (up to 4 bits in practical settings). Our general functional bootstrapping procedure
has asymptotically smaller noise than other recent works.

• We derive a homomorphic digit decomposition algorithm based on the sign-evaluation algo-
rithm to extend the general functional bootstrapping procedure to larger plaintext spaces.

• We implement all these capabilities using the PALISADE lattice cryptography library, intro-
ducing several implementation–specific optimizations. Our comparison of the two algorithms
for floor function evaluation implies that the method based on two invocations of bootstrap-
ping is always more efficient in practice. We also demonstrate an application of our method
in the context of a CKKS-based computation.

Techniques We describe a method to compute the sign of an encrypted value using bootstrapping
techniques. The input is the encryption of a numerical value m ∈ Z, usually a signed integer, or
a fractional number in fixed-point, binary, two’s complement representation. We assume the input
is presented as an LWE ciphertext, i.e., a vector of elements in ZQ. The message m is an integer
modulo Q/α. We assume that α = 2l and Q = 2h are powers of 2, so that the message m can also be
interpreted as a (h− l)-bit integer. The problem is to compute an encryption of the most significant
bit of m, i.e., ⌊m/2h−l−1⌋. If m ∈ Z2h−l is the standard (two’s complement) representation of a
signed integer, this bit is the sign of m, i.e., it equals 1 if and only if m represents a negative
number.

We treat FHEW/TFHE bootstrapping as a black box, implying that any of the bootstrapping
functions described in [16, 19, 29] can be used interchangeably. For conciseness, we refer to this
function as FHEW bootstrapping in the rest of the paper.

FHEW supports functional bootstrapping for negacyclic functions, i.e., functions f : ZQ → Z
satisfying f(x+Q/2) = −f(x). If we add α/2 to the LWE ciphertext, yielding a modified message
m′ = αm+ e+ α/2, where e is the noise, and define a sign function γ : ZQ → {−1,+1}, mapping
γ(x) = +1 for x ∈ {0, . . . , Q/2− 1} and γ(x) = −1 for x ∈ {−Q/2, . . . ,−1}, we can directly apply
the FHEW bootstrapping procedure for the evaluation function γ (it is easy to observe that γ is
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already negacyclic). The problem is that the complexity of the FHEW bootstrapping procedure
(in particular, the size of the FHEW accumulators) is linear in the ciphertext modulus Q. So,
while conceptually the sign computation can be performed directly using the FHEW procedure,
the resulting algorithm would be terribly inefficient, both in theory (exponential in the bit size of
the input) and in practice.

To circumvent this problem, we “break down” the ciphertext modulo Q into multiple digits,
each working internally with a much smaller modulus q, which enables the use of efficient FHEW
bootstrapping. For each digit, we evaluate a homomorphic floor function that can be used to clear
the least significant digit from the ciphertext. As soon as the current least significant digit is cleared,
the ciphertext is scaled down using modulus switching from Q to αQ/q. This iterative procedure is
repeated until Q becomes less than or equal to q. At that point, efficient FHEW bootstrapping for
γ(x) can be used directly to evaluate the sign function. Conceptually, this algorithm corresponds
to the “schoolbook” long division algorithm. The main challenge in this long division algorithm is
associated with evaluating the floor function, which is not negacyclic and hence cannot be directly
evaluated using FHEW bootstrapping.

The idea of our first floor function algorithm is to first evaluate the sign function γ(x) to clear
the MSB of each digit (first bootstrapping) and then subtract the remaining bits in the digit using
the second invocation of FHEW bootstrapping. Both of these evaluation functions are negacyclic,
enabling us to use FHEW bootstrapping. If we had a perfect (noiseless) bootstrapping procedure,
this would take care of clearing all the bits of the digit. But FHEW bootstrapping (just like any
lattice-based bootstrapping procedure) is noisy. In order to accommodate for the bootstrapping
noise, this method requires the introduction of a constraint on the noise of the input ciphertext:
β ≤ α/4, where |e| < β. This floor function algorithm can clear up to q/α bits.

We also propose an alternative floor function, which does not have the input noise constraint, but
requires an extra invocation of FHEW bootstrapping. The first invocation of FHEW bootstrapping
is used to clear the second-most significant bit in the digit. Intuitively, this first invocation has
the effect of enforcing the β ≤ α/4 constraint of the first floor computation algorithm. So, we can
proceed with another invocation of FHEW bootstrapping that clears the MSB, and, finally, the
remaining bits in the digit are cleared using the third invocation of FHEW bootstrapping. In other
words, the main difference between the two floor function algorithms is in the first bootstrapping
operation, which clears the second-most significant bit. In practice, the alternative floor function
evaluation algorithm gains one extra bit of precision compared to the first algorithm, but has a
cost of an additional invocation of FHEW bootstrapping.

Then, we generalize the algorithms for homomorphic floor function to arbitrary function evalu-
ation for small plaintext moduli, i.e., restricting the ciphertext modulus to q that supports efficient
FHEW bootstrapping. Consider the generalization of our first floor function algorithm as an ex-
ample. We first extend the ciphertext from modulus q to 2q. This introduces, as a byproduct,
a random MSB modulo 2q. Then we evaluate the γ(x) function modulo 2q to clear this MSB.
Finally, we invoke the desired function for the remaining bits unaffected by noise. Compared to
the homomorphic floor function, we loose just one bit of precision.

Finally, we derive a homomorphic digit decomposition algorithm that can be combined with
the general functional bootstrapping for small-precision ciphertexts to achieve the evaluation of
arbitrary functions over large-precision ciphertexts, i.e., evaluate large lookup tables. The digit de-
composition algorithm is closely related to the homomorphic sign evaluation algorithm: it basically
performs the same sequence of applications of the homomorphic floor function evaluation, while
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keeping track of the (encrypted) digits produced by each invocation.
Note that most of the homomorphic encryption schemes support the efficient extraction of LWE

ciphertexts. So the methods described here can be applied to those schemes by first extracting
an LWE representation of the input, and then applying the main algorithm. For details on the
algorithms for efficient extraction of LWE ciphertexts, we refer the reader to [12, 25].

1.1 Related Works

Related Concurrent Works Two concurrent and independent works [18, 27] propose algo-
rithms for homomorphic evaluation of arbitrary functions for small plaintext moduli. Table 1
summarizes the results of the comparison between our main algorithm for arbitrary function eval-
uation with their algorithms. An expanded comparison with concrete parameters is presented in
Section 8.

Table 1: Comparison of noise growth and complexity of our method for arbitrary function evalua-
tion with other recent works; here, β is the FHEW functional bootstrapping noise (see details in
Section 6.5), N is the ring dimension used for functional bootstrapping, p is the plaintext modulus,
Q′ is the underlying RLWE ciphertext modulus, q is the output LWE ciphertext modulus, and
d′g ≥ 2 is the number of digits for gadget decomposition specific to functional bootstrapping in [27].

Noise Growth # of bootstrappings
[18] β ·O(Np) 2

[27] β ·O(
√
Nd′gQ

′1/d′
g ) d′g + 1

Our work β 2

The main idea of both works is to use the fact that −1 · (−m) = m and extract the MSB as part
of their procedures by invoking FHEW/TFHE bootstrapping. Both approaches hence require one
multiplication operation, which increases the noise requirements. This also implies that the main
homomorphic encryption scheme should support both additions and multiplications. Our approach
does not require any multiplications, and can be applied to any additively homomorphic encryption
scheme, similar to the Boolean circuit construction in the original FHEW paper [19].

The approach in [18] executes two bootstrapping operations (one to extract the MSB and
another to evaluate the desired function), and then multiplies the results using a multiplication
operation similar to the one in Brakerski’s and BFV schemes [9, 20]. As a result, the noise increases
by O(Np), which implies that the cost of the bootstrapping operations in this method is higher
than in ours. Our analysis in Section 8 predicts that the runtime complexity will be at least two
times higher for practical parameters.

The method in [27] applies the same blueprint, but instead of performing a BFV-like multiplica-
tion, initially uses a multiplication by a GSW ciphertext, and then further optimizes it to replace it
with a cheaper multiplication by an LWE′ ciphertext (i.e., a vector of LWE ciphertexts, see details
in [29]). This approach requires at least d′g + 1 bootstrapping operations, where d′g is a design
parameter. Note that the value of d′g also affects the noise growth. If the noise cost is minimized
(a larger d′g is chosen), then the number of bootstrapping invocations increases. It is clear that the
method in [27] is always at least 1.5x slower than ours as d′g ≥ 2, and it also substantially increases
the noise unless d′q is much larger than 2.

Both methods [18, 27] can be extended to support large-precision sign evaluation (though this
was not done in these works), but will have the same drawbacks (compared to our approach) as for

6



arbitrary function evaluation: asymptotically higher noise growth (both methods) and (for [27])
increased number of bootstrapping operations.

Other Approaches to Evaluating Sign Function Although we focus on the approaches to
evaluating the comparison/sign functions based on FHEW/TFHE bootstrapping, other methods
have also been considered in literature.

We note that all of the methods described below have their own merits and method selection
is application-dependent. For instance, the FHEW/TFHE-based method is preferred when only a
small number of comparisons are needed or a small number of levels are available for the compar-
isons. The CKKS-based method may work better when a large number of comparisons are needed
in parallel and a sufficient multiplicative depth or CKKS bootstrapping are available. The desired
precision of comparison is also an important factor. A comprehensive comparison of these methods
is outside the scope of this paper and is suggested as a topic for future work.

One approach is based on evaluating special interpolation polynomials over finite fields using the
BGV or BFV scheme (see [24] for an extensive review of these techniques). This approach does not
typically require bootstrapping but involves a complicated encoding of interpolation polynomials
into the native polynomial space of BGV and BFV. Although high efficiency can be achieved (this
method may even have a smaller complexity than the techniques considered in our work), this
approach is somewhat special-purpose and becomes challenging when the comparison operations
need to be combined with multiplications and additions. The main advantage of our approach is
the ability to combine comparisons with regular arithmetic operations, resulting in a more general
functionality.

Another approach is based on minimax or other polynomial approximations using the CKKS
scheme (see [15, 28] for recent results). This approach can be very efficient for relatively small
precision, and takes full advantage of CKKS packing. However, the input numbers typically have
to be within a specific known range, and the runtime complexity may sharply increase with precision
or minimum difference allowed between two numbers. In contrast, the computational complexity
of our approach is guaranteed to scale linearly with the number of precision bits, and does not
depend on how close two numbers are to each other, i.e., how close the value of the sign function
input is to zero.

A leveled bit-wise version of TFHE (without bootstrapping) was also previously considered.
For example, Chillotti et al. showed that two (log p)-bit numbers can be compared by evaluating
a deterministic automaton made of 5 log p CMux gates [17]. Though this comparison complexity
is much smaller than for the approach considered in our paper, it has the drawback of requiring
the input to be encrypted in a bit-wise fashion. So, their approach will quickly become inefficient
in scenarios where comparisons need to be combined with additions and multiplications, as these
operations are very expensive in bit-wise representation. Note that our main motivation for de-
veloping the general comparison capability based on FHEW/TFHE bootstrapping was to support
mixed computations involving additions, multiplications, or, more generally, polynomial evaluation,
as well as comparisons.

Another potentially promising approach is based on a limited form of functional bootstrapping
supported by BFV/BGV. Chen at al. show how BFV bootstrapping can be used to compute the
sign function [13]. It is not clear whether the BFV/BGV approach can be extended to arbitrary
functions (look-up tables), but it is certainly an interesting research problem.
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1.2 Organization

The rest of the paper is organized as follows. In Section 2 we provide the necessary background
on FHEW bootstrapping. Section 3 describes our algorithms for homomorphic sign and floor eval-
uation. Section 4 shows how our homomorphic floor algorithms can be generalized to arbitrary
function evaluation. Section 5 introduces homomorphic digit decomposition algorithms based on
our sign evaluation algorithms. Section 6 discusses how parameters should be selected, and in-
troduces some optimizations. Section 7 describes our implementation and presents experimental
results, and Section 8 compares our algorithms with other concurrent works. Section 9 discusses
an application of large-precision comparison. Section 10 concludes the paper.

2 Background

All logarithms are expressed in base 2 if not indicated otherwise. Vectors are indicated in bold,
e.g., a. We choose the ring dimension N as a power of two for efficiency reasons.

2.1 FHEW Functional Boootstrapping

In this section we recall the definition of LWE ciphertexts [30], and the properties of the FHEW
[19] “functional” bootstrapping procedure needed by our algorithms.

The LWE cryptosystem [30] is parametrized by a plaintext modulus p, ciphertext modulus q,
and secret dimension n. The LWE encryption of a message m ∈ Zp under (secret) key s ∈ Zn is a
vector (a, b) ∈ Zn+1

q such that

b = ⟨a, s⟩+ (q/p) ·m+ e (mod q)

where e is a small error term, |e| < q/(2p). The message m is recovered by first computing the
approximate LWE decryption function

Decs(a, b) = b− ⟨a, s⟩ (mod q) = (q/p) ·m+ e

and then rounding the result to the closest multiple of (q/p).
The ciphertext modulus of LWE ciphertexts can be changed (at the cost of a small additional

noise proportional to the secret key size) simply by scaling and rounding its entries, as described
in the following lemma.

Lemma 1 (Modulus Switching). Let (a, b) ∈ Zn+1
q be an LWE encryption of a message m ∈ Zp

under secret key s ∈ Zn with ciphertext modulus q and noise bound |Decs(a, b) − (q/p)m| < β.
Then, for any modulus q′, the rounded ciphertext (a′, b′) = ⌈(q′/q) · (a, b)⌋ is an encryption of the
same message m under s with ciphertext modulus q′ and noise bound |Decs(a′, b′) − (q′/p)m| <
(q′/q)β + β′′, where β′′ = 1

2(∥s∥1 + 1).

In practice, when the input ciphertext is sufficiently random, or when modulus switching is
performed by randomized rounding, it is possible to replace the additive term β′′ with a smaller
probabilistic bound O(∥s∥2). For uniformly random ternary keys s ∈ {0, 1,−1}n, this is β′′ ≈
O(
√
n).
A key feature of FHEW is that it allows to perform certain homomorphic computations (de-

scribed by an “extraction” function) on ciphertexts during bootstrapping at no additional cost.
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We will use (a slight generalization of) the FHEW [19] bootstrapping procedure, and its optimized
variants for binary [16] and ternary secrets [29], as implemented in PALISADE. The bootstrapping
algorithm is parametrized by

• a dimension n and (input ciphertext) modulus q, where q is a power of 2,

• a secret key s ∈ Zn, which must be a short vector. Here we assume s ∈ {0, 1,−1}n,

• a large ciphertext modulus Q′ used internally to the bootstrapping procedure, and which is
not required to be a power of 2,

• an output ciphertext modulus Q, which we set to a power of 2 possibly different from q, and

• an extraction function f : Zq → Z which must satisfy the negacyclic constraint

f(x+ q/2) = −f(x). (1)

The bootstrapping procedure also uses a bootstrapping key, which is computed from s, but can be
made public. Since this bootstrapping key is only used internally by the bootstrapping procedure,
we omit it from the notation.

We remark that, since s is a small vector (e.g., with ternary entries {0, 1,−1}), it can be used
as a key both modulo q, and modulo Q′ or Q. On input an LWE ciphertext (a, b) ∈ Zn+1

q , the

FHEW bootstrapping procedure first computes an LWE ciphertext (c′, d′) ∈ Zn+1
Q′ such that

Decs(c
′, d′) = f ′(Decs(a, b)) + e′ (mod Q′),

where the noise bound |e′| ≤ β′ depends only on the computation performed during bootstrapping
(and not the input ciphertext), and

f ′(x) =

⌈
Q′

Q
· f(x)

⌋
is a scaled version of f still satisfying the negacyclic condition (1). Then, modulus switching is

applied to (c′, d′) to obtain a ciphertext (c, d) =
⌈

Q
Q′ (c′, d′)

⌋
∈ Zn+1

Q modulo Q such that

Decs(c, d) = f(Decs(a, b)) + e (mod Q)

where |e| < β = (Q/Q′)β + β′′ is the noise bound from Lemma 1.
For the sake of comparison, we recall that in the original FHEW bootstrapping procedure:

• the input LWE ciphertext (a, b) uses plaintext modulus p = 4, so that messagesm ∈ {0, 1, 2, 3}
are encoded as multiples of α = q/4, i.e., Decs(a, b) = (q/4) ·m+ e for some error |e| < q/8;

• the output modulus Q = q is the same as the input modulus, so that bootstrapping operations
can be composed into arbitrary circuits;

• the extraction function f maps the interval [−q/8, 3q/8) ⊂ Zq to q/8 and (necessarily, to
satisfy (1)) the interval [3q/8, 7q/8) to −q/8. Moreover, the output ciphertext is modified to
(c, d+ q/8), so that the final output is either an encryption of q/8 + q/8 = q/4 = 1 · α (i.e.,
an encoding 1) when m ∈ {0, 1}, or an encryption of −q/8 + q/8 = 0 · α (i.e., an encoding of
0) when m ∈ {2, 3}. This allows to evaluate the NAND of two input bits m0,m1 ∈ {0, 1} as
f(m0 +m1 mod 4).

9



In this paper, we make extensive use of the FHEW bootstrapping procedure, but for a larger
output modulus Q, where q ≤ Q < Q′, and a number of different (but still negacyclic) extraction
functions f .

We write

Boot[f ](a, b)

for the result of invoking this bootstrapping procedure for a given function f . We will make blackbox
use of Boot, so that the internal workings of the bootstrapping procedure are not important for
the rest of the paper, and Boot can be implemented either using the original FHEW bootstrapping
procedure [19] or the optimized versions proposed in [16, 29]. The properties of the Boot function
described in this section and needed in the rest of the paper are summarized in the following
theorem.

Theorem 1. For any LWE ciphertext (a, b) ∈ Zn+1
q and function f : Zq → ZQ such that f(x +

q/2) = −f(x) (mod Q), the bootstrapping procedure Boot[f ](a, b) outputs a ciphertext (c, d) ∈ Zn+1
Q

such that

Decs(c, d) = f(Dec(a, b)) + e (mod Q)

for some |e| < β, where β is a noise bound that depends only on the operations performed by Boot,
but not on the input ciphertext (a, b).

For simplicity of presentation, we round β up to a power of 2.

3 Large-Precision Homomorphic Sign Evaluation

In this section we describe our main algorithms to homomorphically compute the sign of an en-
crypted value.

Let (c, d) ∈ Zn+1
Q be an LWE ciphertext with (large) ciphertext modulus Q and plaintext

modulus Q/α. Specifically, assume Dec(c, d) = αm+ e, for some plaintext message m ∈ ZQ/α and
noise bound |e| < β ≤ α/2. (Later we may set β to a bound strictly smaller than α/2.) We assume
that Q and α are powers of 2, so that the message m and the decryption Dec(c, d) can both be
interpreted as signed integers, in two’s complement notation, and the sign of m is given by the
MSB of m’s binary representation. The goal is to homomorphically compute this sign bit.

By adding β to the ciphertext, the error e+ β becomes a positive value in the range (0, 2β) ⊆
(0, α). Hence the sign bit is also the same as the MSB of

m′ = Dec(c, d+ β) = αm+ (e+ β).

At this point, since we only care about the MSB of m′, it does not matter which bits of m′ are
considered “message” bits and which are “noise” bits, and one may think of m′ simply as an
arbitrary integer modulo Q.

We compute the MSB of m′ following the approach outlined in the introduction, using FHEW’s
functional bootstrapping algorithm Boot with a relatively small modulus q to clear the least sig-
nificant bits of m′ in small chunks, until only the MSB is left. We present two algorithms: the first
algorithm requiring only two invocations of Boot per chunk, but under the assumption that |e| is
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f0(x) =

{
−q/4 if 0 ≤ x < q/2
+q/4 otherwise

f1(x) =

{
x if x < q/2
q/2− x otherwise

f2(x) =


−q/4 if 0 ≤ x < q/4
+q/4 if q/2 ≤ x < 3q/4
0 otherwise

Figure 1: Negacyclic functions used by our homomorphic sign computation algorithms. The value
of f1(x) = q/2 − x for x ≥ q/2 is not relevant for our algorithms, and added here only to satisfy
the negacylic constraint.

smaller than α/4 and the second algorithm that works for ciphertexts with an arbitrary error e, but
requires three invocations of Boot for each chunk. Although the approach based on two invocations
of Boot is more efficient in practice for the large-precision sign evaluation, the approach with three
invocations is more general and is of independent interest for evaluating the homomorphic floor
function on arbitrary ciphertexts, e.g., noisy ciphertexts in the CKKS scheme.

In both algorithms, we instantiate the bootstrapping procedure as follows:

• We fix the modulus q to an appropriate value that can be efficiently supported by FHEW.

• We set the output modulus to Q by picking an internal modulus Q′ larger than Q. (Usually,
Q′ is not a power of two, in order to support NTT.) We recall that the complexity of FHEW
is linear in logQ′, and exponential only in log q. Hence one can use a relatively large Q′.

• We use Boot with one of three possible extraction functions f0, f1, f2 shown in Figure 1. It
can be easily checked that all three functions satisfy the negacyclic requirement (1).

3.1 Homomorphic Floor Function using Two Invocations of Boot

The core of the algorithm is a procedure HomFloor that on input a ciphertext (c, d) ∈ Zn+1
Q

encrypting a message m ∈ ZQ/α with noise bounded by

|Dec(c, d)− α ·m| < β ≤ α/4

outputs another ciphertext (c′, d′) ∈ Zn+1
Q encrypting the floored message

r(m) =

⌊
α

q
·m

⌋
· q
α

(2)

subject to the same noise bound β, i.e., such that |Dec(c′, d′)− α · r(m)| < β. Notice that this has
precisely the same effect as zeroing the log2(q/α) = log2 q − log2 α least significant bits of m. In
particular, the MSB of m is the same as the MSB of r(m).

11



The main algorithm HomSign uses the HomFloor subroutine to clear the least significant bits of
the message until only the sign bit is left, as we describe next. Notice that after the application of
HomFloor, the resulting ciphertext

Dec(c′, d′) = α · r(m) + e = q · m̃+ e (mod Q)

can be interpreted as an encryption of the message

m̃ =
α

q
· r(m) =

⌊
α

q
·m

⌋
∈ ZQ/q

with noise |e| < β much smaller than q. Since r(m) is a multiple of q/α, the MSB of m̃ is the same
as the MSB of r(m) and m. So, we can switch to a smaller modulus (α/q) · Q using Lemma 1 to
obtain an encryption of m̃ with a scaling factor α, and repeat. After ⌈(logQ− log q)/ log(q/α)⌉
iterations, the modulus Q will be at most q, and the sign of the message can be computed directly
using Boot.

The pseudocode of HomFloor and HomSign is given in Algorithm 1. In the rest of this subsection
we analyze the correctness of the algorithm. We first analyze the correctness of HomFloor.

Algorithm 1 Algorithm for Homomorphic Sign Computation

1: procedure HomFloor(Q, (c, d))
2: d← d+ β
3: (a, b)← (c, d) mod q
4: (c, d)← (c, d)− Boot[f0](a, b) (mod Q)
5: d← d+ β − q

4
6: (a, b)← (c, d) mod q
7: (c, d)← (c, d)− Boot[f1](a, b) (mod Q)
8: return (c, d)
9: end procedure

10: procedure HomSign(Q, (c, d))
11: while Q > q do
12: (c, d)← HomFloor(Q, (c, d))

13: (c, d)←
⌈
α
q · (c, d)

⌋
14: Q← αQ/q
15: end while
16: d← d+ β
17: (a, b)← (q/Q) · (c, d)
18: (c, d)← (−Boot[f0](a, b)) (mod Q)
19: return (c, d)
20: end procedure

Lemma 2. For any Q, q,m and β ≤ α/4, the procedure HomFloor in Algorithm 1, on input a
ciphertext (c, d) ∈ Zn+1

Q such that |Dec(c, d)− α ·m| < β outputs a ciphertext (c′, d′) ∈ Zn+1
Q such

that |Dec(c′, d′)− α · r(m)| < β, where r(x) is the rounding function defined in (2).

Proof. Let µ = Dec(c, d) ∈ ZQ be the value encrypted by the input ciphertext (c, d). By assump-
tion, µ = αm + e for some |e| < β. We trace the value of µ and e through the execution of the
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algorithm. Adding β on line 2 makes the error positive e ∈ (0, 2β). Line 3 computes an LWE
ciphertext (a, b) that decrypts to µ′ = Dec(a, b) = µ (mod q) ∈ Zq, that is, the (log2 q) least sig-
nificant bits of µ. Let m̃ = ⌊µ/q⌋ = ⌊(α/q)m⌋ be the remaining (most significant) bits, so that
µ = m̃ · q + µ′.

Next, in order to analyze lines 4 and 5, we consider two cases, depending on the most significant
bit of µ′. If the most significant bit of µ′ is zero, then Dec(Boot[f0](a, b)) = −q/4 + eβ, where
|eβ| < β. Subtracting Boot[f0](a, b) from (c, d) in line 4, and adjusting d in line 5, modifies µ by
an additive term

−(−q/4 + eβ) + β − q/4 ∈ (0, 2β).

On the other hand, if the most significant bit of µ′ is 1, then Dec(Boot[f0](a, b)) = +q/4 + eβ, and
lines 4 and 5 modify µ by the additive term

−(q/4 + eβ) + β − q/4 = −q/2 + (0, 2β).

In either case, this clears the (log2 q)th least significant bit of µ (corresponding to the most signif-
icant bit of µ′) while increasing the error by at most 2β. Since the initial error is in (0, 2β), the
final error is in (0, 4β) ⊆ (0, α), and does not overflow into the most significant bits.

This shows that, even when accounting for the bootstrapping error, the value of µ = Dec(c, d)
at line 6 has its (log2 q)th least significant bit set to 0. In formulas, µ = q · m̃ + x for some
x = (µ mod q) ∈ [0, q/2). The ciphertext (a, b) computed in line 6 encrypts this value x modulo q.
Since f1(x) = x is the identity function for all x ∈ [0, q/2), Boot[f1] in line 7 returns an encryption
of x+ eβ. Subtracting this ciphertext from (c, d) on line 7, gives an encryption of

(q · m̃+ x)− (x+ eβ) = q · m̃x− eβ = α · r(m)− eβ

and hence

|α · r(m)− eβ − α · r(m)| < β,

as claimed in the lemma.

The correctness of the main function HomSign easily follows, by repeatedly applying Lemma 2.

Theorem 2. Let β > 2 be an upper bound on both the bootstrapping noise (from Theorem 1) and
the size of the secret key1 ∥s∥1 ≤ β. Let α ≥ 4β be a power of 2. The procedure HomSign in
Algorithm 1, on input an LWE ciphertext (c, d) ∈ Zn+1

Q encrypting a message m ∈ ZQ/α with error
bounded by |Dec(c, d)− α ·m| < β, computes an LWE encryption of the most significant bit of m,

making at most 2
⌊

logQ
log(q/α)

⌋
+ 1 calls to Boot.

Proof. We need to show that the loop at lines 11-14 preserves the invariant that (c, d) encrypts a
message with the correct MSB, and noise bounded by β. By Lemma 2, at each iteration, at line
12, HomFloor computes an encryption of a value of the form m̃q+ e with |e| < β, where m̃ has the

1The weaker bound β ≥ O(∥s∥2) = O(
√
n) suffices when using randomized modulus switching, or heuristically

when assuming the input ciphertext is random. We use this weaker estimate for concrete parameters later in the
paper.
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correct MSB. Then, lines 13-14 switch the ciphertext modulus from Q to (α/q)Q. By Lemma 1,
the error of the resulting ciphertext is at most

(α/q)β + (β + 1)/2 ≤ β/4 + β/2 + 1/2 < β,

taking into account the constraint β > 2. This proves the loop invariant. Upon exiting the loop,
in line 15, the modulus has been reduced below Q ≤ q, and the most significant bit of the message
can be directly computed using Boot, using the fact that the sign function (f0) is negacyclic. The
multiplication by q/Q at line 17 is there only to ensure that Boot is always called with the same
ciphertext modulus q. Alternatively, one may use a potentially smaller modulus Q ≤ q in the last
call, which could be slightly faster.

The final output of HomSign satisfies Dec(c, d) = q/4 ± β when the initial input encrypts
a nonnegative number, and Dec(c, d) = −q/4 ± β when it encrypts a negative number. Sign
computation algorithms with different output encodings are easily obtained by simply changing
the function f0 used in line 18. Likewise, the ciphertext modulus of the final output of HomSign
can be set arbitrarily by simply changing the output modulus of the last invocation of Boot at line
18.

Remark 1. Since the running time of HomSign is proportional to logQ / log(q/α), it is always best
to set α to the smallest possible value α = 4β. So, given values for Q (from the input specification)
and q, β from Theorem 1 (typically based on security and efficiency considerations), the running

time of HomSign is essentially that of 2
⌊

logQ
log q−log β−2

⌋
+ 1 invocations of Boot or, equivalently,⌊

logQ
log q−log β−2

⌋
invocations of HomFloor + 1 invocation of Boot.

3.2 Homomorphic Floor Function for Arbitrary Ciphertexts using Three Invo-
cations of Boot

We also propose an alternative floor function evaluation algorithm that works for arbitrary cipher-
texts. This algorithm requires three invocations of Boot but makes no assumption on the size of
the input error. Although this approach is typically less efficient than HomFloor when used as a
subroutine in HomSign (as shown later in Section 6.1), it has some advantages when applied directly
to an arbitrary ciphertext. For instance, when the message and noise are not separable, as in the
CKKS scheme, the use of this procedure avoids calling a prior modulus switching operation, which
may accidentally change the sign of encrypted values close to zero. When used as a subroutine
for HomSign, the alternative floor function procedure allows us to replace α = 4β with α = 2β,
hence gaining one extra bit of precision in each floor function iteration at the expense of one extra
invocation of Boot.

Lemma 3. Let β be the bootstrapping noise from Theorem 1, and assume q ≥ 16β. The procedure
HomFloorAlt in Algorithm 2, on input a ciphertext (c, d) ∈ Zn+1

Q with Dec(c, d) = m ∈ ZQ, outputs

a ciphertext (c′, d′) ∈ Zn+1
Q with Dec(c, d) = m̃q + e ∈ ZQ for m̃ = ⌊m/q⌋ and some |e| < β.

Proof. The ciphertext (a, b) computed in line 2 decrypts to m′ = Dec(a, b) = m mod q, the log2 q
least significant digits of m. Let x be the two most significant bits of m′. Function f2 only works on
these two bits, mapping 00 7→ 11, 10 7→ 01, and 01, 11 7→ 00. When f2(m

′) is subtracted from (c, d)
in line 3, the corresponding bits of m are mapped either to 11 (when x = 11) or to 01 (otherwise).
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Algorithm 2 Alternative Algorithm for Homomorphic Sign Computation

1: procedure HomFloorAlt(Q, (c, d))
2: (a, b)← (c, d) mod q
3: (c, d)← (c, d)− Boot[f2](a, b) (mod Q)
4: d← d+ β − q

4
5: (a, b)← (c, d) mod q
6: (c, d)← (c, d)− Boot[f0](a, b) (mod Q)
7: d← d+ β − q

4
8: (a, b)← (c, d) mod q
9: (c, d)← (c, d)− Boot[f1](a, b) (mod Q)

10: return (c, d)
11: end procedure

In particular, the second bit is always one. Subtracting q/4 from d on line 4 makes this bit always
zero. Adding β in line 4 also ensures that the bootstrapping error added by Boot is positive, in the
range (0, 2β). At this point (line 5) we have a ciphertext such that Dec(c, d) = m̃ ·q+b ·(q/2)+x+e
for some (unknown) bit b̃ ∈ {0, 1}, positive integer x ∈ [0, q/4) and positive bootstrapping error
e ∈ (0, 2β). Similarly, we have Dec(a, b) = b̃(q/2)+x+e. Assuming q ≥ 8β, adding e to b̃(q/2) does
not change the bit b̃. So, f0(b̃(q/2)+x+ e) = −q/4 when b̃ = 0 and +q/4 when b = 1. Similarly to
Lemma 2, subtracting Boot[f0](a, b) from (c, d) in line 6 and adjusting the value of d in line 7 has
the effect of clearing the bit b̃, while adding a positive bootstrapping error e ∈ (0, 2β).

This shows that, at line 8, we have Dec(c, d) = m̃q + x+ e+ e′ where Dec(a, b) = x+ e+ e′ ∈
(0, q/4+4β). Assuming q ≥ 16β, we have x+e+e′ < q/4+4β ≤ q/2. So, f1(x+e+e′) = x+e+e′, and
subtracting Boot[f1](a, b) from (c, d) in line 9, gives a ciphertext such that Dec(c, d) = m̃q±β.

The HomFloorAlt algorithm can be used to homomorphically compute the sign of a ciphertext
using essentially the same process as HomSign. We only need to choose an approximate value of α,
and replace the call to HomFloor(Q, (c, d)) with the call to HomFloorAlt(Q, (c, d+ α/2)) to ensure
that the noise is positive, so it does not alter the most significant bit of the message.

By Lemma 3, the ciphertext computed by HomFloorAlt has noise at most β. So, by Lemma 1,
switching the modulus to (α/q)Q increases the error to (α/q)β + β′′, where β′′ is the modulus
switching noise. For correctness, we need this error to be bounded by α/2. This condition holds
when

β

q
+

β′′

α
≤ 1

2
.

Setting q = 16β, this is equivalent to α ≥ (16/7)β′′.
In summary, the HomSign algorithm based on the HomFloorAlt procedure proposed in this

section makes a total of

1 + 3

⌊
logQ

log q + log2 7− 4− log β′′

⌋
≈ 3

logQ

log q − log β′′

calls to Boot.
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4 From Floor Function to Arbitrary Function Evaluation

As discussed, the FHEW functional bootstrapping requires the evaluated functions to be negacyclic.
However, this greatly restricts the power of functional bootstrapping. In this section, we show how
to extend our main idea of HomFloor to functional bootstrapping of arbitrary functions.

Let us first formally define the problem. Given a ciphertext (c, d) with modulus q encrypting
a digit m ∈ Zq/α, and an arbitrary function f : Zq/α → ZQ/α, we want to obtain a ciphertext

(c′, d′) ∈ Zn+1
Q such that ⌈Dec(c′, d′)/α⌋ = f(m).

At a high level, we proceed as follows: first, we use modulus switching to raise the ciphertext
modulus from q to 2q. This process (randomly) maps an encrypted value m ∈ Zq/α to either
m ∈ Z2q/α or m+ q/α ∈ Z2q/α. The main purpose of this step is to double the size of the message
space by introducing an extra (most significant) bit.

Next, similar to HomFloor, we first use an extraction function f ′
0(x) (similar to f0 in Fig. 1)

to remove the MSB of the (modulus-raised) encrypted plaintext m ∈ Z2q/α, i.e., for plaintext m ∈
Z2q/α we homomorphically evaluate f ′

0 to obtain an encrypted value m′ = m (mod q/α) ∈ Z2q/α.
This is the same as the original message m, but as an element of a larger message space.

Then, we create a new function f ′
1 : Z2q → ZQ by setting

• f ′
1(x) = α · f(⌈x/α⌋) to the function we want to compute for x < q, and

• f ′
1(x) = −α · f(⌈(2q − x)/α⌋) for x ≥ q to satisfy the negacyclic requirement.

We evaluate this function via functional bootstrapping to obtain a ciphertext (c′, d′) such that
⌈Dec(c′, d′)/α⌋ = f(m′).

The resulting procedure for arbitrary function evaluation is listed in Algorithm 3.

Algorithm 3 Algorithm for Arbitrary Function Evaluation

Auxiliary math functions f0 : Z2q → Z2q

f ′
0(x) =

(
q

⌊
x

q

⌋
− q

2

)
mod 2q

1: procedure EvalFunc(f : Zq/α → ZQ/α, q,Q, α, (c, d))
2: Let

f ′
1(x) =

{
αf(⌈x/α⌋) if x < q
−αf(⌈(2q − x)/α⌋) otherwise

mod Q

3: d← d+ β
4: (c, d)← (c, d) (mod 2q)
5: (c, d)← (c, d)− Boot[f ′

0](c, d) (mod 2q)
6: d← d+ β − q

2
7: (c, d)← Boot[f ′

1](c, d) (mod Q)
8: return (c, d)
9: end procedure

Note that if the function f(x) is periodic (i.e., f(x) = f(x + q/2 (mod q)) for all x ∈ Zq), the
extension to Z2q is not needed and we can replace all instances of q with q/2 in Algorithm 3. This
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gains one extra bit of precision for periodic functions, as compared to arbitrary functions.
For Algorithm 3, we can formulate the following theorem.

Theorem 3. For any Q, q,m and β ≤ α/4, the procedure EvalFunc in Algorithm 3, on input a
ciphertext (c, d) ∈ Zn+1

q such that |Dec(c, d)−α·m| < β and an arbitrary function f : Zq/α → ZQ/α,

outputs a ciphertext (c′, d′) ∈ Zn+1
Q such that |Dec(c′, d′)− α · f(m)| < β.

Proof. We prove the theorem by tracing the value encrypted by the input ciphertexts (c, d). By
assumption, Dec(c, d) = αm + e for some |e| < β. Adding β on line 3 makes the error positive
e ∈ (0, 2β). Line 4 raises the ciphertext’s modulus to 2q and thus we (randomly) obtain one of the
following: µ = Dec(c, d) = αm+e ∈ Z2q or µ = Dec(c, d) = αm+e+q ∈ Z2q. Then, line 5 executes
Boot[f ′

0], and line 6 shifts the result by subtracting q/2. Based on a similar argument as in the proof
of Lemma 2, these two lines together clear the MSB of µ (i.e., now Dec(c, d) = αm+ e ∈ Z2q) while
increasing the error by at most β, and hence the updated encrypted value is µ = Dec(c, d) ∈ [0, q).
Finally, line 7 executes Boot[f ′

1] and we obtain Dec(c, d) = αf(m) + e ∈ ZQ with |e| < β, and
therefore, the resulted (c, d) encrypts a plaintext m′ = ⌈Dec(c, d)/α⌋ = f(m) where m is the input
plaintext as we required.

An alternative arbitrary function evaluation can be trivially derived based on HomFloorAlt using
the same steps as described here. As the efficiency of this alternative algorithm is worse, we do not
discuss it in the paper.

Note that our general bootstrapping algorithm works efficiently in practice only for small plain-
text moduli p because the FHEW bootstrapping becomes prohibitively expensive as the plaintext
modulus is increased (more than doubles for each extra bit of precision). However, we can extend
it to larger plaintext moduli using the procedure for homomorphic digit decomposition described
in the next section.

5 Homomorphic Digit Decomposition

The high-level idea of homomorphic digit decomposition is to decompose an LWE ciphertext with
a large plaintext (ciphertext) modulus into a vector of LWE ciphertexts with small plaintext (ci-
phertext) moduli, corresponding to the digit sizes. In this section we extend our sign evaluation
algorithm in Section 3 to achieve homomorphic digit decomposition.

As pointed out in Section 4, one useful application of such digit decomposition is the evaluation
of functions over large-precision ciphertexts using lookup tables, i.e., the evaluation of arbitrary
functions for large plaintext moduli. Two methods for evaluating large lookup tables using (a
vector of) LWE ciphertexts for each digit are presented in [22]. The first (more general) approach
uses tree evaluation while the second (more special-purpose) approach is based on chaining. The
LWE ciphertexts for each digit can be “extracted” from a large-precision LWE ciphertext using the
homomorphic digit decomposition algorithm presented in this section, and then the general boot-
strapping procedure from Section 4 can be used to evaluate for each digit arbitrary functions/lookup
tables over small plaintext moduli.

5.1 Digit Decomposition into Fixed-Size Digits

We first assume for simplicity that all output ciphertexts have the same modulus q and log(Q/α)
divides log(q/α). Let us formally define the problem. Given an input LWE (c, d) ∈ Zn+1

Q encrypting
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a message m ∈ ZQ/α, our goal is to obtain a vector of ciphertexts ((ci, di) ∈ Zn+1
q )i∈[k], where k =

log(Q/α)
log(q/α) , such that each ciphertext (ci, di) encrypts a digit mi ∈ Zq/α and m =

∑k
i=1mi · (q/α)i−1.

Let α = 4β and the input ciphertext (c, d) ∈ Zn+1
Q have noise < β. Then we can perform

digit decomposition using Algorithm 4. The high-level idea is to extract each least significant digit,
remove it using HomFloor, and then use the modulus switching procedure to reduce the modulus
from Q to αQ/q, hence moving to the next least significant digit.

Theorem 4. Let β > 2 be an upper bound on both the bootstrapping noise (from Theorem 1) and
the size of the secret key2 ∥s∥1 ≤ β. Let α ≥ 4β be a power of 2. The procedure DigitDecomp in
Algorithm 4, on input an LWE ciphertext (c, d) ∈ Zn+1

Q encrypting a message m ∈ ZQ/α with error

bounded by |Dec(c, d)−α ·m| < β, outputs ciphertexts ((ci, di))i∈[k] such that m =
∑k

i=1mi · (q/α)i,
where mi = ⌈Dec(ci, di)/α⌋, k = log(Q/α)

log(q/α) , and |Dec(ci, di)− α ·mi| < β.

Proof. By the correctness of HomFloor shown in Lemma 2, we directly see thatm =
∑k

i=0mi·(q/α)i,
where mi = ⌈Dec(ci, di)/α⌋. The first ciphertext (c1, d1) in the vector has the same noise as the
input ciphertext, i.e., at most β. Then, for (ci, di), where i ∈ [2, k], we have the same noise as for
input ciphertexts of HomFloor, again at most β, which follows from the proof of Theorem 2.

Alternatively, we can formulate a digit decomposition algorithm based on HomFloorAlt by triv-
ially replacing HomFloor with HomFloorAlt and changing α from 4β to 2β.

Algorithm 4 Algorithm for Homomorphic Digit Decomposition based on HomFloor

1: procedure DigitDecomp(Q, q, (c, d))
2: k ← 1
3: while Q > q do
4: (ck, dk)← (c, d) (mod q)
5: (c, d)← HomFloor(Q, q, (c, d))

6: (c, d)←
⌈
α
q · (c, d)

⌋
7: Q← αQ/q
8: k ← k + 1
9: end while

10: (ck, dk)← (c, d)
11: return {(ci, di)}i∈[k]
12: end procedure

5.2 Digit Decomposition into Varying-Size Digits

In some scenarios, it is desired to decompose a large-message LWE ciphertext into a vector of LWE
ciphertexts with different digit sizes, where each digit size is a power of two. Our algorithm can
also be extended to this more general case.

Let us first formally define the problem. Given an input LWE ciphertext (c, d) ∈ Zn+1
Q , encrypt-

ing a message m ∈ ZQ/α, our goal is to output a vector of ciphertexts ((ci, di) ∈ Zn+1
qi )i∈[k], where

2The weaker bound β ≥ O(∥s∥2) = O(
√
n) suffices when using randomized modulus switching, or heuristically

when assuming the input ciphertext is random.
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k denotes the vector size and (
∏k

i=1
qi
α ) =

Q
α , such that each ciphertext encrypts a digit mi ∈ Zqi/α

and m = m1 +
∑k

i=2mi · (
∏i−1

j=1
qj
α ).

This can be achieved by making small modifications in Algorithm 4. Instead of evaluating

DigitDecomp with modulus q in every iteration, we use qi in the ith iteration, and replace
⌈
α
q · (c, d)

⌋
with

⌈
α
qi
· (c, d)

⌋
.

Note that the computational complexity of varying-size digit decomposition depends on the
value of each qi as different values of N and potentially other parameters may be needed for a given
value of qi.

6 Parameter Selection and Optimizations

The proposed algorithms work with the following parameters:

• q, small (power-of-two) (LWE) modulus;

• n, lattice parameter for the LWE scheme;

• Q′, RLWE/RGSW modulus (used for NTTs);

• Q, input (power-of-two) modulus;

• Qks, LWE/RLWE modulus used for key switching;

• N , ring dimension for RLWE/RGSW;

• Bg, gadget base for digit decomposition in each accumulator update, which breaks integers
modQ into dg digits;

• Bks, gadget base for key switching, which breaks integers modQ into dks digits;

6.1 Selecting the Floor Function Evaluation Method

There are two options for evaluating the floor function: HomFloor and HomFloorAlt. Given a
ciphertext modulus q, noise bound β, and small plaintext modulus p, HomFloor can support p ≤ q/α
where α ≥ 4β with two bootstrapping operations while HomFloorAlt can support the plaintext
modulus of 2p with three bootstrapping operations. Hence HomFloorAlt is about 1.5x slower but
can process 1 extra bit. If we denote as P the desired (large) plaintext space for sign evaluation (i.e.,
P = Q/α, where Q is the (large) modulus of the input ciphertext), then evaluating HomSign using
HomFloor requires 1+2

⌊ logP
log p

⌋
bootstrapping operations and evaluating HomSign using HomFloorAlt

requires 1 + 3
⌊ logP
log p+1

⌋
bootstrapping operations.

It is easy to see that for p = 2, using HomFloorAlt is faster by a factor of about 4/3. For
p = 22 = 4, the number of bootstrapping operations is roughly the same, and for higher values of
p using HomFloor is faster. In practice, the value of p is at least 23 = 8 (or actually 24 = 16 for the
optimized setting described in Section 6.3), and, therefore, HomFloor is always the preferred floor
function evaluation algorithm in practice.
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6.2 Module-LWE vs RLWE

As an alternative to RLWE in the bootstrapping procedure described in Theorem 1, we consider a
module-LWE accumulator instead of the RLWE one. In this case, we can replace one ring element of
dimension N with w ring elements, each with dimension N/w for some w ∈ Z+. Therefore, we use
w NTT operations for the ring dimension N/w to replace one NTT operation for the ring dimension
N . This can give a speed-up of roughly logN/(logN − logw). However, since q = 2N , we would
lose one bit as w is doubled, i.e., logw bits in total. If we have 1+2

⌊ logP
log p

⌋
bootstrapping operations

for RLWE, then we will have logN
logN−logw

(
1 + 2

⌊ logP
log p−logw

⌋)
as a complexity for Module-LWE in

terms of equivalent bootstrapping operations.
For the practical values of N (at least 1024) and p (8 or 16), it can be easily shown that RLWE

is always faster than Module-LWE for any w > 1. Therefore, RLWE is always preferred in practice.

6.3 Optimizations

Throughout the paper, so far, we have used the worst-case error bound of 4β. This was done
primarily for simplicity so we could work with a power-of-two β. In the actual implementation, we
can use an average-case error estimate. We consider this as an implementation-level optimization.

If each ciphertext has an error bound β, adding two ciphertexts with errors sampled indepen-
dently from each other will result in an error bound of 2

√
2β, which can be easily shown using

subgaussian analysis/Central Limit Theorem arguments, and was confirmed experimentally.
Such optimization can end up in an even tighter noise bound in practice (essentially going from

2
√
2β to 2β). Our experimental results (based on 1,000 runs) suggest that a single ciphertext after

bootstrapping has a standard deviation σ ≈ 11.5. If we set the probability of error to less than
2−32, then the estimated β is 73, which rounds up to 128. When two independent ciphertexts are
added together, we get a noise with standard deviation σ ≈ 16.3, and for the same probability the
estimated bound β is 103, which also rounds up to 128.

Therefore, in practice, we can remove the second addition of β in HomFloor (at line 5 of Algo-
rithm 1). The same optimization can be applied to HomFloorAlt, DigitDecomp, and EvalFunc.

6.4 Setting the Parameters

For HomSign and DigitDecomp, the main input parameter is Q. Typically logQ should be set to
logP + log(β̃ + β) + 1 , where logP is precision in bits of the input plaintext, β̃ is the error in
the input ciphertext, and β is the FHEW bootstrapping error bound defined in Theorem 1. It is
recommended to perform modulus switching to obtain the smallest acceptable value of Q before
running the procedures.

After Q is fixed, one needs to find a prime number Q′ > Q to support the NTT operations
during bootstrapping. Based on the desired security level, we can fix the ring dimension N using the
HE standard [4] or LWE estimator [5]. For example, for a ring of dimension N = 2048, for 128-bit
security against classical computer attacks, we can set logQ′ to at most 54 bits; for 256-bit security,
we can support at most 29 bits. With N fixed, we choose q = 2N for maximum performance.

Together with Q′, we need to choose Bg, which is the gadget base to decompose Q′. For best
performance, we generally set Bg to the smallest power-of-two >

√
Q′, i.e., dg = 2. Bg is the

main parameter that determines the noise growth. Roughly speaking, we need
Q·Bg

Q′ ≪ 1. For best

runtime performance, Bg = ⌈
√
Q′⌉, we need Q√

Q′ ≪ 1. If we have Bg = ⌈Q′1/3⌉ (dg = 3), we get a
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slowdown of 3/4, but then we can support larger Q as the requirement is then Q
Q′2/3 ≪ 1. According

to our experiments, roughly
Q·Bg

Q′ ≈ 2−11 should be sufficient to achieve the noise standard deviation

of ≈ 11.5 after one bootstrapping (which is enough to maintain a failure probability < 2−32 with
error bound 128, because adding two bootstrapped ciphertexts would result in a noise standard
deviation ≈ 16.3).

The last remaining parameter is p, which is the small plaintext modulus for each digit in
HomSign and Decomp, i.e., the internal plaintext modulus in HomFloor. We have p = q/(4β) as
the worst-case bound in our algorithms. However, the optimizations in Section 6.3 allow us to use
p = q/(2β) in the implementation.

6.5 Noise Estimates

Bootstrapping results in a ciphertext with an error from a Gaussian distribution of standard

deviation σ =
√

q2

Q2
ks
( Q′

Qks
σ2
ACC + σ2

MS1
+ σ2

KS) + σ2
MS2

, where σ2
MS1

= |sN |2+1
3 , σ2

MS2
= |sn|2+1

3 ,

σ2
ACC = 4dgnN

B2
g

6 σ2
BK , and σ2

KS = σBKNdks for a uniform ternary secret keys sN with dimension
N and sn with dimension n, as estimated in [29]. Note that here we use a heuristic (average-case)
estimate for σ2

MS .
To guarantee that we can have a failure probability < 2−32 as proposed in [16, 19, 29], we

set β ≈ 6.37σ, and we then round β to the smallest power-of-two greater than 6.37σ. However,
sometimes

√
2 · 6.37σ is also smaller than the rounded β. Therefore, we can use the same β even if

we have a
√
2 loss in Algorithms 1 and 4.

6.6 Computational Complexity

For our experiments, we used the TFHE/GINX bootstrapping method with ternary secret keys [29].
Each bootstrapping takes roughly 2n(dg + 1) NTT operations (we employed the ternary CMUX
optimization recently proposed by Bonte et. al [6]) and each NTT operation is O(N logN).

7 Implementation and Performance Evaluation

7.1 Parameters Used for Our Implementation

In our implementation, we limited Q to at most 229, which supports up to 21 bits of precision. This
precision is sufficient for most applications. One common use of FHEW-based comparisons is in
applications that use the CKKS scheme for all polynomial computations, and then switch to FHEW
for comparison-based computations [25]. The precision typically achieved in these applications is
not higher than 20 bits (as it is limited primarily by the precision of CKKS bootstrapping [7]).

Once Q is fixed, we need to find Q′ such that Q/Q
′ dg−1

dg ≪ 1, as explained in Section 6.4. We
set logQ′ to 54, which is the largest modulus size that supports 128-bit security for N = 2048 [4].

Next, we need to choose Bg. For Q′ < 254, there are three main practical options: Bg = 227

(two digits in RGSW gadget decomposition, i.e., dg = 2), Bg = 218 (dg = 3), and Bg = 214 (dg = 4).
For Q ≤ 216, we can use Bg = 227 (fastest bootstrapping). For 216 < Q ≤ 225, we use Bg = 218.
For 225 < Q ≤ 229, we use Bg = 214.

Note that we can dynamically change from Bg = 214 to Bg = 218 and then to Bg = 227 as
the value of Q gets progressively reduced via HomFloor iterations in HomSign and DigitDecomp,
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resulting in a speed-up of later bootstrapping operations. When using this dynamic mode, a
bootstrapping key for each value of Bg should be generated and loaded in computer memory.
Hence, there is a tradeoff between runtime and storage. One can either use the smallest Bg for all
bootstrapping operations and the smallest storage for the bootstrapping key or use multiple values
of Bg, improving the runtime of later bootstrapping operations at the expense of increased storage
requirements.

We use n = 1305, σBK = 3.19, Qks = 235, and Bks = 32, where σBK is the standard deviation
of the noise to encrypt the bootstrapping keys. All other parameters are set to the same values as
in [29].

For the parameters above, the estimated standard deviation σ of a bootstrapped ciphertext is
about 11.5 (based on 1,000 bootstrapping runs). For a sum of two bootstrapped ciphertexts, the
standard deviation σsum is about 16.3. We can use this value of σsum to select the value of plaintext
modulus p. The failure probability is given by 1 − erf( q/p

2
√
2σsum

). To guarantee the probability of

success for HomSign to be at least 1 − 232, similar to [16, 19, 29], we set p = 16 = 24. For this
value of p, the error upper bound β is 128. This implies we can achieve 4 bits of precision in the
HomFloor function, i.e., we can work with digits of up to 4 bits per iteration when dealing with
large-precision LWE ciphertexts.

Remark 2. Although we restricted Q to 229 and logQ′ to 54 bits, higher values of both Q and Q′

can be supported. For Q′ larger than 64 bits, the machine word size for many modern computing
environments, a Residue Number System (RNS) variant of RLWE and the corresponding RNS digit
decomposition can be instantiated using the lattice gadget techniques presented in [21].

7.2 Software Implementation

We implemented HomSign, DigitDecomp, and EvalFunc in PALISADE v1.11.6 [1]. The evaluation
environment was a commodity desktop computer system with an Intel(R) Core(TM) i7-9700 CPU @
3.00GHz and 64 GB of RAM, running Ubuntu 18.04 LTS. The C++ compiler was g++ 10.1.0. We
compiled PALISADE with the following CMake flag: WITH NATIVEOPT=ON (machine-specific
optimizations were applied by the compiler).

7.3 Experimental Results

For Q bounded to 229 and the parameter values discussed in Section 7.1, the runtime of HomSign
and DigitDecomp can be described in terms of bootstrapping times for dg = 2, dg = 3, and dg = 4.
For Q ≤ 216 we use dg = 2, for 216 < Q ≤ 225 we use dg = 3, and for 225 < Q ≤ 229 we use dg = 4.

The single-threaded runtimes for dg = 2, dg = 3, and dg = 4 in our evaluation environment were
442, 600, and 785 ms, respectively. The runtimes for HomSign, DigitDecomp, and EvalFunc are listed
in Table 2. When logP = 4, only one bootstrapping invocation is needed. Then for each next 4
bits (each digit), two more bootstrapping invocations are needed, as explained in Section 6.1. Note
that although for Q = 225 and Q = 226, the number of bootstrapping operations is the same (four
calls to HomFloor, each with two bootstrapping invocations, plus one extra bootstrapping), the
runtimes are different because for Q = 225 we have three bootstrapping operations at dg = 2 and
six bootstrapping operations at dg = 2, while for Q = 226 we have three bootstrapping operations at
dg = 2, four bootstrapping operations at dg = 3, and two more bootstrapping operations at dg = 4.
Moreover, note that for Q = 228 and Q = 229, there is a relatively large runtime gap. This is
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because we need one more call to HomFloor for Q = 229 and therefore two additional bootstrapping
invocations. In general, the runtime is roughly linear in logQ. For arbitrary function evaluation,
we can process one bit less compared to the HomFloor function in HomSign.

Table 2: Single-threaded timing results of HomSign, DigitDecomp, and EvalFunc for (logP )-bit
encrypted numbers at N = 2048, q = 2N = 4096. Recall that in HomSign/DigitDecomp, as we pro-
ceed, logP becomes smaller and Bg is dynamically increased to improve the runtime performance,
as suggested in Section 7.1.

Function Q logP [bits] runtime [ms] Initial Bg

HomSign/DigitDecomp 212 4 442 227

HomSign/DigitDecomp 216 8 1,322 227

HomSign/DigitDecomp 220 12 2,515 218

HomSign/DigitDecomp 224 16 3,709 218

HomSign/DigitDecomp 225 17 4,589 218

HomSign/DigitDecomp 226 18 5,216 214

HomSign/DigitDecomp 228 20 5,222 214

HomSign/DigitDecomp 229 21 6,096 214

EvalFunc 212 3 884 227

It is possible to use a smaller ring dimension N = 1024 and logQ′ ≤ 27 for Q = 212 (but not for
higher Q) at the cost of reducing logP by one bit, i.e., use the same bootstrapping parameters as
for Boolean circuit evaluation in [29], but we have chosen to run all experiments at N = 2048 for
simplicity/uniformity and best precision. Similarly, we can reduce n and Qks if Q < 229 is desired,
hence reducing the runtime by a factor proportional to n. But we did not include this optimization
to provide a general functionality up to 21 bits of precision and illustrate the linear dependence of
runtime on logQ and logP .

For comparison, the TFHE/GINX bootstrapping runtime for N = 1024 using the same parame-
ters as in [29] with the CMake flag NATIVE SIZE=32 for the clang++ 9.0.0 compiler was 74 ms (we
observed that clang++ 9.0.0 is faster than g++ 10.1.0 when 32-bit integers are used for modular
arithmetic in PALISADE). This implies that the bootstrapping operations in our implementation
are 6.0x (for dg = 2), 8.1x (for dg = 3), and 10.6x (for dg = 4) slower than the bootstrapping time
for a single Boolean gate evaluation [29] when using our computing environment. This slowdown
is primarily caused by increased values of n from 502 to 1305 and N from 1024 to 2048 (both
parameters proportionally increase the runtime). If a smaller precision (below 21 bits) is desired,
this slowdown can be reduced by using smaller values of n (also, a smaller value of N can be used
if the precision of 4 bits is sufficient for a given application).

8 Comparison with Other Recent Works

There is a recent work proposing algorithms for homomorphic digit decomposition and arbitrary
function evaluation [18]. The high-level idea of their approach is to use the fact that −1 ·(−m) = m
and extract the most significant bit as part of their procedures. They run two bootstrapping op-
erations (one to extract the MSB and another to evaluate the desired function) and then multiply
the results using a homomorphic multiplication, similar to the multiplication in Brakerski’s and
Brakerski/Fan-Vercauteren (BFV) schemes [9, 20]. The work [18] does not provide any implemen-
tation, hence we focus here on the theoretical comparison of approaches.
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The most significant difference is the extra noise added in [18] due to the BFV-like homomorphic
multiplication. This adds a multiplicative factor O(N · p) to the prior noise, and hence increases
Q′ by the same factor. In our method, no additional noise beyond the sum of the noises due to
bootstrapping operations is needed. The other difference is that each iteration of their HomFloor-
like operation in digit decomposition supports one bit less precision than our method. This bit is
lost for the same reason that one extra bit is needed in our arbitrary function evaluation, where we
have to extend from Zq to Z2q.

We can estimate the concrete noise increase in [18] by using the heuristic BFV multiplication
noise estimate, 4Np, from [23, 26]. For the parameters used in our implementation (also accounting
for a smaller p, by one bit), the extra factor is 4 · 211 · 24 = 217. This implies that logQ′ has to
be increased by 17 bits. According to [4] and our noise estimates, this will require increasing
the ring dimension N from 2048 to 4096 to achieve the same security level and roughly the same
precision (i.e., same logP ). The reduced precision per iteration of their HomFloor-like function may
further increase the computational complexity. In summary, our estimates suggest that the method
proposed in [18] will be at least two times slower for digit decomposition for the parameters used
in our implementation. We expect a similar improvement for arbitrary function evaluation (except
that our algorithm supports the same largest plaintext modulus as their algorithm, i.e., there is no
1-bit advantage as in the case of HomFloor).

Another potential drawback of the approach in [18] is the need for a BFV-like relinearization key
and related extra implementation complexity. In this sense, our approach is simpler as it requires
only regular FHEW/TFHE keys.

There is another recent work proposing an algorithm for arbitrary function evaluation [27].
The high-level idea is similar to [18], i.e., use the fact that −1 · (−m) = m. The difference is
that [27] performs multiplication using a GSW ciphertext (which encrypts the sign bit). They also
propose a method to use an LWE′ ciphertext (a vector of LWE ciphertexts, see details in [29]) for
multiplication instead of using a GSW ciphertext, as only plaintext multiplications are needed in
their algorithm, instead of ciphertext multiplications. This makes the extraction of the sign bit two
times faster than the GSW-based method. Their algorithm requires d′g + 1 ≥ 3 bootstrappings to
perform an arbitrary function evaluation whereas our method requires only 2 bootstrappings and
is independent of d′g. Here, d′g refers to the number of digits for gadget decomposition specific to
their LWE′ multiplication. Their algorithm also increases the noise by a multiplicative factor of
O(

√
Nd′gQ

′1/d′g), which is the cost of GSW-like multiplication, as compared to our approach.
Both methods [18, 27] can be extended to support large-precision sign evaluation (though this

was not done in these works), but will have the same drawbacks as for arbitrary function evaluation:
asymptotically higher noise growth (both methods) and increased number of bootstrapping oper-
ations (applies to [27] only). Another advantage of our method is that no multiplication support
is needed for the homomorphic encryption scheme that invokes the FHEW bootstrapping, i.e., an
additively homomorphic LWE scheme can be used. In methods [18, 27], a homomorphic encryption
scheme supporting both additions and multiplications is needed.

9 Application

In this section, we consider an application of our large-precision comparison method where CKKS
and FHEW/TFHE are used together. We combine CKKS and FHEW/TFHE using the scheme
switching methods described in [25] based on the ideas proposed in [8].
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The large-precision comparison is used to evaluate the Heaviside activation function arising in
some machine learning applications [2, 11, 31], which is defined as

H(x) =

{
1 if x > 0,
0 otherwise.

In the case of artificial neural network networks, e.g., in a deep learning model for functions
with jump discontinuities, the input x is often computed as an inner product of (encrypted) inputs
and (encrypted) weights, which can be performed using CKKS (along with other linear/polynomial
computations needed for the model). In our example, we evaluate an inner product with CKKS and
then evaluate the Heaviside function by negating the CKKS ciphertext containing 256 valid slots
and switching it to 256 FHEW/TFHE ciphertexts. We perform our large-precision sign evaluation
on these 256 ciphertexts using Algorithm 1. Lastly, we switch the comparison results back to a
CKKS ciphertext.

In our experiment, the input precision was about 21 bits (by setting logQ = 29 and other
parameters as in Section 7) and the observed output precision was larger than 30 bits, which are
both much higher than the results from [25] (input precision of 5-6 bits and output precision not
higher than 13 bits). Similar to [25], the runtime for our experiment with 256 slots was dominated
by large-precision comparisons, and the contribution of CKKS-FHEW and FHEW-CKKS scheme
switching was not higher than 10%. Hence, the runtime can be estimated by multiplying the
runtimes from Table 2 by the number of slots (and dividing them by the number of threads if
multi-threading is available).

More generally, one can use large-precision comparison to perform an encrypted branch eval-
uation by checking the values against a threshold (i.e., if the input is above some threshold T,
evaluate circuit B; otherwise, evaluate circuit C). This may require high precision as the behavior
of B and C can be greatly different.

10 Concluding Remarks

Our experimental results for homomorphic sign evaluation suggest that increasing the precision
from 4 bits to 21 incurs a slow-down of only about 14x. If FHEW/TFHE bootstrapping would be
used directly, a slow-down of more than 100,000x would be observed. This implies that our large-
precision homomorphic sign evaluation implementation can be used for applications that work with
20-bit-precision numbers (and can be extended to a larger precision, as discussed in Remark 2 in
Section 7.1). For instance, it can be plugged into the decision tree inference implementation [25]
to increase the precision of comparison.

It was also shown that our method for arbitrary function evaluation, which we also call general
functional bootstrapping, has a lower complexity than two other recently proposed methods [18, 27].
Both of these methods require one multiplication operation while our method can be built on top
of an additively homomorphic encryption scheme, similar to the original FHEW construction for
Boolean gate evaluation [19].
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