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Abstract. We propose a new hard problem, called the Embedded Multilayer
Equations (eMLE) problem in this paper. An example of eMLE, with one secret
variable x and three layers, is given below.

6268 = 57240 ∗ x+ (1248 ∗ x+ (9 ∗ x mod 16) mod 2053) mod 65699

In this example, the eMLE problem is to find x from the above equation. eMLE
in this paper has the same number of variables and equations. The hardness of
eMLE problem lies in its layered structure. Without knowing the eMLE value of
lower layer (i.e., the layer with modulus 2053), the top layer (i.e., the layer with
modulus 65699) has many candidate solutions; the adversary has to search the
solution space for a few valid ones. A lower-bound for the number of searches has
been proven in the paper, together with the expected number of valid solutions.
The hardness of eMLE can be increased by adding more layers, without changing
the number of variables and equations; no existing NP-complete problems have
this feature.
Over the hardness of eMLE, a post-quantum signature scheme, eMLE-Sig, is con-
structed. Compared with all existing signature schemes (conventional and post-
quantum), eMLE-Sig might be the simplest to understand, analyze, instantiate,
and implement. At the security level above 128 bits, five configurations are pro-
vided; all of them have keys and signatures smaller than RSA keys and signatures
(above 380 bytes) at the 128-bit security level. The smallest configuration is with
two variables and three layers, having 84.1/52.2 bytes for private/public key and
168.4 bytes for signatures.

1 Introduction

Current post-quantum signature schemes usually have bigger keys and/or bigger sig-
natures than conventional signature algorithms1 at the same security level. They are
also more complex in terms of their constructions and underlying hardness assump-
tions. These issues increase the difficulty of deploying post-quantum signature schemes
in various environments and cause security uncertainty from, for instance, improved
solutions to hard problems and insecure implementation for new environments.

1 https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions



In this paper, we propose a new hard problem, the Embedded Multiplayer Equations
(eMLE) problem, and use it to construct a signature scheme eMLE-Sig to address the
issues of existing post-quantum signature schemes. An example of eMLE with one
variable and three layers is given in the Abstract. In eMLE-Sig, we use eMLE at least
two variables (for the moment). Hence, an example of eMLE, with two integer variables
x0 and x1, and three layers, is provided below to illustrate, where p0 < p1 < p2 are
three co-prime positive integers.[
h0
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For the above example, the eMLE problem is to find the two variables x0 and x1
from the two equations, where all other values are public. eMLE in this paper has the
same number of variables and equations. In each equation, the calculations on a variable
are performed over different moduli, each of which specifies a layer. h0 and h1 are
called the eMLE values of the top layer, similarly for lower layers.

A lower layer has a smaller modulus, with its eMLE value embedded into the upper
layer; hence, the eMLE values of lower layers are not known. The number of variables
and the number of layers are independent. For example, still with two variables and two
equations, the above example can be increased to four layers, five layers, or more.

On the contrary, for hard problems used by current post-quantum signature schemes,
such as LWE [5], SIS [1] and Multivariate Quadratic Equations (MQ) [7], the numbers
of equations and variables are usually different and all variables are operated with the
same modulus. The LWE and SIS problems simply become meaningless when the num-
bers of equations and variables are equal.

The structure of problems in current post-quantum signature schemes is flat; their
hardness is increased by adding more variables/dimensions and equations accordingly.
On the contrary, the hardness of eMLE can be increased by independently adding either
variables/equations or layers; that is, its hardness can be increased by adding more
layers, without changing the number of variables and equations. More generally, the
current NP-complete problems do not have this feature.

The layered structure of the eMLE problem is able to enforce the ways an adversary
can take to solve the problem. The adversary can only start by solving the top layer
equations (i.e, the layer with modulus p2 in the example), because the eMLE values
of lower layers are not known and thus the lower layer equations cannot even be es-
tablished. Without knowing the eMLE values of the second top layer (the layer with
modulus p1 in the example), the top layer has many solutions and the adversary has
to do some brute-force search to find a valid one. In this paper, we have proven the
probability that a solution is valid and the lower-bound of the number of searches the
adversary has to carry out. For the example above, the probability of obtaining a valid
solution is 2(3−1)

p1
, and the lower-bound of the number of searches is p1.

Two problems with layered structure (called factually hard problems) have been
proposed in [4] to demonstrate the feasibility of public-key encryption without hardness
assumptions. eMLE is also a factually hard problem because of its layered structure.
The problems in [4] are used for constructing public-key encryption schemes, whilst
eMLE aims to construct an efficient post-quantum signature scheme and demonstrate
the feasibility of constructing signature schemes without hardness assumptions.
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Based on eMLE, the signature scheme eMLE-Sig is constructed. Its private key
is the secret variables in eMLE (e.g., x0, x1), and its public key is the eMLE values
(h0, h1). Compared with all current conventional and post-quantum signature schemes,
eMLE-Sig might be the simplest one to understand, analyze, instantiate, and imple-
ment, since it does not need more complex mathematical concepts beyond basic modu-
lar arithmetic and hash functions.

We have implemented eMLE-SIG with SageMath and the implementation is in Ap-
pendix. Above the security level of 128 bits, we have provided five parameter configu-
rations. Among them, the smallest instance with two variables of three layers has 84.1
bytes for private key, 52.2 bytes for public key, and 168.4 bytes for signatures. The
biggest instance is with four layers of three variables, having 174.7 byes for private
key, 126.7 bytes for public key, and 349.2 bytes for signatures. The biggest instance is
still more compact than RSA signatures, which have more than 380 bytes for keys and
signatures, at the 128-bit security level.

1.1 Notations

Given a positive integer q, let Zq refer to the set {0, ..., q − 1}. For a finite set, e.g.
S, x ← S means that x is uniformly sampled from S at random. Given two positive
integers a < b, then (a, b) indicates the set of integers from a to b. The n-ary Cartesian
product of a set S is denoted by Sn.

A lower-case boldface letter denotes a vector or a list (e.g., x), while a list of ma-
trices is represented by a upper-case calligraphy letter (e.g., G). The ith element of list
x is written as x[i], with the first element indexed by 0. The prime number just after an
integer n is denoted by np(n).

2 Embedded Multilayer Equations (eMLE)

Let n ≥ 1 and d ≥ 3 be two positive integers, indicating the number of variables and
the number of layers (or depth), respectively, in eMLE. Let p be a list containing d
positive integers, which are co-prime and indicate the modulus of each layer. An upper
layer is required to have a bigger modulus, hence p[j] < p[i] for 0 ≤ j < i ≤ d− 1.

Let G be a list of length d, with the ith element being a matrix G[i] ← Zn∗n
p[i] and

G[d − 1] is invertible with respect to p[d − 1]. Let x be a vector of n integers, each
of which is in the range (p[d − 2],p[d − 1]). Then, a system of embedded multilayer
equations (eMLE) is represented as

eMLEn,d,p,G(x) = h

where h = hd−1 and hd−1 is recursively defined as:

hi =

{
G[i] ∗ x mod p[i], if i = 0
G[i] ∗ x+ hi−1 mod p[i], otherwise

Two eMLE examples have been presented in the previous section and the abstract.
In current definition, an eMLE has n variables and n equations; however, underdeter-
mined/overdetermined eMLE can be supported.
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Theorem 1. Given eMLEn,d,p,G(x) = h, and x 6= x′, the probability of eMLEn,d,p,G(x′) =
h is at most ( 2d−1

p[d−2] )
n.

Proof. If eMLEn,d,p,G(x′) = h′, then x′ can be uniquely determined with h′d−2. There
are p[d − 2]n possible values for h′d−2, each of which can lead to a potential solution
to x′, since G[d− 1] is invertible.

If h = h′, then we have

eMLEn,d,p,G(x
′)− eMLEn,d,p,G(x) = 0 mod p[d− 1].

With such x′, let eMLEn,d,p,G(x′ − x) = h′′. Then, each element in h′′ has a value
Σd−2

i=0 bi ∗p[i], where bi can be either 0 or 1. That is, at most 2(d−1)n possible values for
x′ to generate the same h. Thus, the probability of x′ with h′ = h is ( 2d−1

p[d−2] )
n. ut

Theorem 2. Given eMLEn,d,p,G(x) = h, the expected number of solutions for x is
2(d−1)n.

Proof. Given eMLEn,d,p,G(x) = h, there are p[d− 2]n possible values for x, because

x = G[d− 1]−1 ∗ (h− hd−2) mod p[d− 1],

where hd−2 ∈ Zn
p[d−2]. Based on Theorem 1, each value in Zn

p[d−2] has the probability

( 2d−1

p[d−2] )
n to ensure its eMLE value is h. Hence, the expected number of solutions is

2(d−1)n. ut

We then evaluate the above theorem with experiments. In these experiments, a brute-
force search of hd−2 in Zn

p[d−2] is carried out to recover valid x. Let n = 1 for all
experiments. Table 1 lists the configurations of parameters d, G, p, and the correspond-
ing number of valid solutions to x, where each parameter configuration is repeated 100
times. For example, in the first case of Table 1, x has one solution 39 times, and two
solutions 61 times.

Furthermore, for the first case in Table 1, we also search x directly in Zp[d−1];
the same result is obtained. The experiments show that the number of valid solutions
to x is less than the expected value 2(d−1)∗1. A smaller number of solutions is better
for security, since the adversary has less chance to recover a valid x, as shown by the
following theorem.

Theorem 3. Let eMLEn,d,p,G(x) = h, with n ≥ 2, d ≥ 3, and p[d − 1] − p[d − 2] >
p[d−2]. Then, it is necessary for the adversary to exhaustively search at least p[d− 2]

times with a probability 2(d−1)n

p[d−2] to find a solution to x.

Proof. Given eMLEn,d,p,G(x) = h, we have

x = G[d− 1]−1 ∗ (h− hd−2) mod p[d− 1],

where hd−2 ∈ Zn
p[d−2]. It is an under-determined system of equations. To find a solution

to x, the adversary has to start by guessing at least one element for hd−2 in Zp[d−2],
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1 2 3 4 5 6 7

p = (8, 37, 149)
G = [[0], [13], [135]] 39 61 0 0 0 0 0

d = 3

p = (16, 1031, 32993)
G = [[7], [205], [16193]] 37 63 0 0 0 0 0

d = 3

p = (8, 131, 2099, 33587)
G = [[1], [103], [1103], [18464]] 35 57 8 0 0 0 0

d = 4

p = (16, 521, 16673, 533543)
G = [[7], [140], [13441], [200411]] 29 40 28 3 0 0 0

d = 4

Table 1: Number of Solutions to x (100 tests for each configuration)

or at least one element in (pd−2,pd−1) for x. Since the set Zp[d−2] is smaller, the
better strategy for the adversary is to search Zp[d−2] and then recover x with the above
equation. Theorem 3 shows the expected number of solutions to x is 2(d−1)n. Hence, the
adversary has a probability 2(d−1)n

p[d−2] to find the solution to x after searching in Zp[d−2],
which contains p[d− 2] elements.

Note that hd−2 and deeper layers in the above linear equations can be expanded.
The expanded system includes n equations and n variables, with G[d − 1] invertible.
However, the generic way of solving exactly-determined system by calculating G[d −
1]−1 ∗ h is no longer applicable to eMLE. The adversary can only proceed by guessing
at least one element of x (i.e., a case discussed above). Since n ≥ 2 and this element
could be a valid one with probability 2(d−1)n

p[d−1] , the adversary has a probability 1− 2(d−1)n

p[d−1]
to fail to find a solution to other elements of x. ut

3 Construction of eMLE-Sig

In this section, we use eMLE to construct the signature scheme eMLE-Sig. This sig-
nature scheme is parameterized with five integers: d > 2, n > 2, c max, q, and z,
and a pseudo-random function H. Optionally, some meta information associated with
signatures can also be included as parameters, such as IP addresses/domain names of
a server and expiry dates of public keys or signatures. The outputs from H is required
to be less than c max2 for the correctness of eMLE-Sig. For example, if H returns a
256-bit value, then c max should be at least 2128. These parameters are represented by
pp.

With these parameters, we define two auxiliary algorithms, which are used to gener-
ate p and G, respectively. The algorithm mkP(pp) returns p by following the definition
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Algorithm 1: Generation of G (mkG)
input : pp
output: G

1 Let G be a list of length d
2 for i = 0 to d− 1 do
3 for j = 0 to n− 1 do
4 for k = 0 to n− 1 do
5 G[i][j, k] = H(pp, i, j, k) + b p[i]

i∗d+k∗n+j+1.23
c mod p[i]

6 end
7 end
8 end
9 Ensure G[d− 1] is invertible with respect to p[d− 1]

10 return G

below.

p[i] =

2z, if i = 0
np(2 ∗ c max ∗ p[i− 1]), if i = d− 1
np(2 ∗ q ∗ c max ∗ p[i− 1]), otherwise

The algorithm mkG(pp) is described in Algorithm 1. In eMLE, G is uniformly
sampled at random. However, in eMLE-Sig, each element of a matrix in G is gener-
ated deterministically by adding the pseudo-random or hash value H(pp, i, j, k) and
b p[i]
i∗d+k∗n+j+1.23 )c. This way of generating G reduces the size of public parameters of

eMLE-Sig and the burden of generating random numbers. If an optional parameter is
not used, the hash value H(pp, i, j, k) can be removed.

Note that G[d−1] should be invertible; if not, the first element of the matrix G[d−1]
can be increased in a deterministic way until it is invertible.

Algorithm 2: Key Generation (keyGen)

input : pp
output: x, h

1 G = mkG(pp),p = mkP(pp)
2 t← (1,p[d− 2])n

3 x = G[d− 1]−1 ∗ t mod p[d− 1]
4 Ensure x ∈ (p[d− 2],p[d− 1])n

5 h = eMLEn,d,p,G(x)
6 return x, h

The signature scheme eMLE-Sig consists of three algorithms as defined and con-
structed below.

Key Generation: Given the public parameter pp, this algorithm keyGen generates
the private key x and the public key h, as defined in Algorithm 2. In the algorithm,
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Algorithm 3: Signing (sign)

input : pp, m, x
output: s, u

1 G = mkG(pp),p = mkP(pp)
2 t← (1,p[d− 2])n

3 y = G[d− 1]−1 ∗ t mod p[d− 1]
4 Ensure y ∈ (p[d− 2],p[d− 1])n

5 u = eMLEn,d,p,G(y)
6 (c, c′) = H(m,u)
7 Ensure c > 0, c < c max, c′ > 0, c′ < c max
8 s = c ∗ x+ c′ ∗ y
9 return s, u

we do not directly sample x from (p[d−2],p[d−1])n; instead, we choose a random
t from (1,p[d − 2])n, and then calculate x, such that G[d − 1] ∗ x mod p[d − 1]
returns t. This is to optimize the size of the public key h.

Signing: On input pp, x, and message m, the signing algorithm, as defined in Al-
gorithm 3, returns the signature including s and u. Note that the random vector
y ∈ (p[d − 1],p[d − 2])n is generated in the same way as x. From y, the cor-
responding eMLE value u is calculated. The pair c and c′ is obtained by equally
splitting the hash value H(m,u). If the hash value has an odd number of bits, c can
have one more bit. Note that c and c′ are less than c max and both of them are not
zero.

Verification: Defined in Algorithm 4, on input pp, public key h, message m, the sig-
nature pair s and u, this algorithm returns true if the signature can be verified. In
this algorithm, c and c′ is generated in the same as in the signing algorithm. The
algorithm recursively peels off each layer with the same s, and checks the remain-
ing value in a certain range. If all checks are passed and the result l is zero at the
lowest layer (i.e., i = d − 1), then true is returned; otherwise, false is returned.
This algorithm also checks the optional parameter if applicable; for example, the
expiry date of signatures or IP address of signers can be checked.

The signature scheme eMLE-Sig is correct in terms that for any key pair (x,h) ←
keyGen(pp), and for any signature (s,u) ← sign(pp,m,x) of any message m, we
have verify(pp,h,m, s,u) = true. Its correctness is ensured by the conditions on
parameters, definition of p, and the structure of eMLE. The formal proof of correctness
is omitted and the implementation of eMLE-Sig in Appendix can be used to evaluate
the correctness.

3.1 Security Discussion

We will not give the formal security notion of signature schemes [3]. Briefly, eMLE-
Sig is secure if an adversary cannot forge a signature for a new message, even if it can
access a signing oracle. We do not consider the case on whether a different signature
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Algorithm 4: Verification (verify)
input : pp, h, m, s, u
output: true or false

1 #optionally check meta information in pp (e.g.,expiry date)
2 G = mkG(pp),p = mkP(pp)
3 (c, c′) = H(m,u)
4 v = true
5 for j = 0 to n− 1 do
6 v = (v and s[j] < (c+ c′) ∗ p[d− 1] and s[j] > (c+ c′) ∗ p[d− 2])
7 l = c ∗ h[j] + c′ ∗ u[j]
8 for i = 0 to d− 1 do
9 l = (l −G[d− i− 1][j] ∗ s) mod p[d− i− 1]

10 if d− i− 1 > 0 then
11 v = (v and l < (c+ c′) ∗ p[d− i− 2])
12 end
13 end
14 v = (v and l = 0)

15 end
16 return v

can be forged for an old message. The security of eMLE-Sig is based on the hardness
of eMLE, as stated below.

Theorem 4. If eMLE is hard, then eMLE-Sig is secure.

Proof. A signature for a messagem includes u and s, where u can be generated without
knowing the private key. If an arbitrary pair of u and s can be verified correctly through
all layers, then s must have the form s = c ∗ x+ c′ ∗ y, where y can be selected by the
adversary.

If a PPT adversary can forge a signature for a new message, then it is able to ef-
ficiently generate s by choosing some y. From s, the secret value x can be recovered,
because the adversary knows y, c, and c′. This is contrary to the condition that eMLE is
hard, which means that the adversary needs to exhaustively search at least in Zp[d−2],
as stated in Theorem 3. ut

To forge a signature for a message, the adversary needs to generate s and u. Without
depending on secret values, u can be generated easily from any y. The above theorem
shows that it is not straightforward for the adversary to generate s when x is secret. In
the following, we use experiments to evaluate the probability of finding a valid s by
exhaustively searching x.

In the experiments, we let n = 1 and d = 3, such that x can be searched exhaus-
tively from p[d − 2] to p[d − 1]. Three parameters z, q, and c max are configured
differently; with each configuration, the test is repeated 100 times.

Based on the condition l = 0 in Algorithm 4, the probability should be not bigger
than 1

p[0] or 1
2z . Furthermore, this probability is reduced due to the range condition on

l, which is dependent on the parameter q. However, a bigger c max makes the range
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condition less effective, though it does not affect the condition l = 0. Table 2 confirms
the probability of finding a valid s is less than 0.25 when z = 2 or less than 0.5 when
z = 1. We hence use z to indicate the basic security level, with q providing extra
security for the configurations later.

z q c max solutions searches probability

1 1 4 1589 12000 0.133

2 1 4 1065 27000 0.040

1 2 4 897 27000 0.033

2 2 4 786 47400 0.017

1 1 16 28415 208600 0.136

2 1 16 25335 407000 0.062

1 2 16 25475 407000 0.063

2 2 16 23859 797400 0.030

Table 2: Probability of Solutions to s (searches = 100 ∗ (p[2]− p[1]))

3.2 Variants of eMLE-Sig

In current eMLE-Sig, s is defined as c∗x+c′∗y, where (c, c′) = H(m,u). In a variant,
multiple secret and blind vectors can be supported, such as x1, x2, y1, y2. Then, we
have

s = c1 ∗ x1 + c2 ∗ x2 + c′1 ∗ y1 + c′2 ∗ y2,

where (c1, c2, c
′
1, c
′
2) = H(m,u1,u2). The details of such variants will be left for the

future work.

4 Performance Evaluation

We have evaluated the hardness of eMLE and security of eMLE-Sig in previous sec-
tions. In this section, we evaluate the performance of eMLE-Sig in terms of the sizes
of keys and signatures, and provide a set of parameter configurations for security levels
above 128 bits.

Compared with all conventional and post-quantum signature schemes, eMLE-Sig
might be the easiest to instantiate or configure parameters. The hash algorithm H ba-
sically determines the parameter c max. Then, only four integer parameters n, d, z, q
need to be decided. Among them, z and n rely on the security level, making sure n ≥ 2
and n∗z bigger than the desired security level in bits. d and q can be determined by bal-
ancing the sizes of keys and signatures and extra security expectation. There is no need
to decide, for instance, suitable prime numbers and cyclic groups as in conventional
schemes and the particular lattices in lattice-based post-quantum signatures schemes.
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4.1 Sizes of Keys and Signatures

The private key x contains n elements, each of which has log2(p[d−1]) bits. Hence, its
size is n∗ log2(p[d−1]) bits. Similarly, the public key has n∗ (log2(p[d−2])+1) bits.
A signature includes s and u. The size of s in bits is determined by n∗ (log2(c max)+
log2(p[d− 1] + 1)), while u has the size n ∗ (log2(p[d− 2]) + 1) bits.

The calculation above depends on the sizes of p[d − 2] and p[d − 1]. These sizes
rely on not only parameters z, q,d, c max, but also the positions of prime numbers,
which are not straightforward to estimate. Hence, p[d − 2] has about z + (d − 2) ∗
(log2(c max) + log2(q) + 1) bits, with p[d− 1] about z + (d− 2) ∗ (log2(c max) +
log2(q) + 1) + log2(c max) + 1 bits.

4.2 Configurations

The sizes of keys and signatures of major conventional and PQC schemes have been
summarized in [6], where RSA signature scheme has above 380 bytes for keys and
signatures. No existing PQC scheme can be more efficient than RSA in terms of both
key and signature sizes.

In Table 3, we give several configurations and the corresponding sizes of private
key, public key and signature. The sizes are obtained by averaging the sizes from ten
experiments. All configurations lead to keys and signatures smaller than RSA, with
security level above 128 bits. In all experiments, SHA256 is be used as H, c max =
2128, and q = 216. The value of c max ensures that the condition p[2] − p[1] > p[1]
required by Theorem 3 is satisfied.

n d z Private Key Public Key Signature

2 3 64 84.1 52.2 168.4

2 4 64 120.4 88.5 240.8

2 5 64 156.6 124.7 313.4

3 3 48 120.2 72.3 240.4

3 4 48 174.7 126.7 349.2

4 3 32 152.2 88.5 304.9

.

Table 3: Parameter Configurations and Sizes from Experiments (Bytes)

For the first configuration in the table, we also calculate the sizes of keys and signa-
tures by analysis; this is to confirm the sizes from experiments roughly match the sizes
from analysis with the method in last section.

In this configuration, p[d−2] and p[d−1] have about 64+1∗(128+16+1) = 209
bits and 209+128+1 = 338 bits, respectively. Thus, a private key in this configuration
has 2 ∗ 338 = 676 bits (or 84.5 bytes), and the public key has 2 ∗ (209 + 1) = 420
bits (or 52.5 bytes). The size of s in a signature is about 2 ∗ (128 + 338 + 1) = 934
bits, and u has about 2 ∗ (209 + 1) = 420 bits. Hence, a signature has the about size
934 + 420 = 1354 bits (or 169.3 bytes).
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With the configurations in Table 3, the correctness of eMLE-Sig is checked by gen-
erating and verifying 1000 signatures for each configuration.

5 Related Works

Compared with the conventional or pre-quantum signatures, such as Schnorr signature,
ECDSA, and RSA [3], eMLE-Sig makes implementation and configuration much sim-
pler, because it does not need to select particular mathematical structures for its security
(e.g., a cyclic group with prime order, a particular curve), or particular prime numbers.
eMLE-Sig is instantiated by just specifying a few integer parameters.

The Short Integer Solution (SIS) problem [1] underlies multiple lattice-based signa-
ture schemes in NIST PQC standardization. For these schemes, the parameter selection
is tricky, because the selection is determined by worst attacks known so far and the rela-
tion between attacks and parameters might not be straightforward. The layered structure
of eMLE can enforce the ways an adversary could take to break eMLE-Sig, hence the
security of eMLE-Sig is more certain by relying on the worst attacks that are possible
to eMLE. On the other hand, the hardness of eMLE-Sig might be enhanced by taking
short secret x.

The exiting NP-complete problems has a flat structure in terms that all occurrences
of variables are defined with the same modulus, such as the variables in the Boolean
satisfiability (SAT) and the variables in LWE problem [5]. Thus, all occurrences of a
variable can be manipulated together, such as by regarding a secret value as a coefficient
of a lattice basis. However, for eMLE, the same variables occur in multiple layers, each
of which has a different modulus; only the occurrences at the top layer can be processed
by the adversary. The hardness of eMLE can be increased by adding layers without
changing the number of variables and equations; existing NP-complete problems do
not have this feature. The relation between NP-complete problems and eMLE could be
of independent interest.

Hash-based signatures schemes, such as SPHINCS+ [2], take less hard assumption,
but it generates much bigger ciphertexts. eMLE-Sig aims to demonstrate the feasibil-
ity of constructing an efficient signature scheme without assuming hard computational
problems, since eMLE is a factually hard problem as described in [4]. Two factually
hard problems with layered structure are proposed in [4]; however, those layered prob-
lems are for public-key encryption, not suitable for constructing signature schemes.

6 Conclusion

In this paper we have proposed the new hard problem Embedded Multilayer Equations
(eMLE), with its hardness analyzed and discussed. The hardness of eMLE can be in-
creased by adding more layers without changing the number of equations and variables;
no existing NP-complete problem has this feature. The relation between eMLE and ex-
isting NP-problems need further investigation as future work.

Based on the new hard problem eMLE, we constructed the signature scheme eMLE-
Sig, which addresses the issues of the current post-quantum signature schemes (i.e.,
issues of big key/ciphertext sizes and security uncertainty). eMLE-Sig has keys and
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signatures smaller than pre-quantum RSA scheme. In addition, compared with all ex-
isting signature schemes, it might the simplest signature scheme to understand, analyze,
instantiate, and implement.
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Appendix A eMLE-Sig Implementation

# ===============================
# eMLE−Sig
# ===============================
from h a s h l i b i m p o r t sha256
s e t r a n d o m s e e d ( 1 )

n = 2
d = 3
z = 64
c max = 2ˆ128
q = 2ˆ16
o = ’ e x p i r y d a t e : sep 2021 ’

d e f mkP ( ) :
p = v e c t o r ( ZZ , [0 f o r i n r a n g e ( d ) ] )
f o r i i n r a n g e ( d ) :

i f i ==0:
p [ i ] = ( 2 ˆ z )

e l s e :
i f i ==d−1:

p [ i ] = n e x t p r i m e (2∗ c max∗p [ i −1])
e l s e :

p [ i ] = n e x t p r i m e (2∗ q∗c max∗p [ i −1])
r e t u r n p

d e f mkG ( ) :
p = mkP ( )
G = [ ]

f o r i i n r a n g e ( d ) :
g = r a n d o m m a t r i x ( ZZ , n , n , x =1 , y=p [ i ] )
f o r j i n r a n g e ( n ) :

v = s t r ( n+d+z+c max+q ) + s t r ( i )+ s t r ( j )
g [ j , : ] = v e c t o r ( ZZ , [ ( i n t ( p [ i ] / ( i ∗d+k∗n+ j + 1 . 2 3 ) ) +

i n t ( sha256 ( ( s t r ( k )+ v ) . encode ( ) ) . h e x d i g e s t ( )
, 16) )%p [ i ] f o r k i n r a n g e ( n ) ] )

G = G + [ g ]
r e t u r n G

d e f eMLE( x ) :
p = mkP ( )
G = mkG ( )
h = v e c t o r ( ZZ , [0 f o r i n r a n g e ( n ) ] )
f o r i i n r a n g e ( d ) :

h = ( h+G[ i ]∗ x)%p [ i ]
r e t u r n h
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d e f keygen ( ) :
p = mkP ( )
G = mkG ( )
Rp = I n t e g e r s ( p [ d−1])
gp = G[ d−1] . c h a n g e r i n g ( Rp )
w h i l e t r u e :

x = gp . i n v e r s e ( ) ∗ v e c t o r ( Rp , [ r a n d i n t ( 1 , p [ d−2]) f o r i n r a n g e ( n ) ] )
x c h e c k = t r u e
f o r i i n r a n g e ( n ) :

i f x [ i ] <= p [ d−2]:
x c h e c k = f a l s e

i f x c h e c k :
b r e a k

x = x . c h a n g e r i n g ( ZZ )
h = eMLE( x )
r e t u r n x , h

d e f s i g n ( x , m) :
p = mkP ( )
G = mkG ( )
Rp = I n t e g e r s ( p [ d−1])
gp = G[ d−1] . c h a n g e r i n g ( Rp )

w h i l e t r u e :
y = gp . i n v e r s e ( ) ∗ v e c t o r ( Rp , [ r a n d i n t ( 1 , p [ d−2]) f o r i n r a n g e ( n ) ] )
y c h e c k = t r u e
f o r i i n r a n g e ( n ) :

i f y [ i ] <= p [ d−2]:
y c h e c k = f a l s e

i f y c h e c k :
b r e a k

y = y . c h a n g e r i n g ( ZZ )
u = eMLE( y )
hv = sha256 ( ( s t r (m)+ s t r ( u ) ) . encode ( ) ) . h e x d i g e s t ( )
l = i n t ( l e n ( hv ) / 2 )
c = i n t ( hv [ 0 : l ] , 16)
cp = i n t ( hv [ l : l e n ( hv ) ] , 16)
c = c%c max
cp = cp%c max
i f ( c==0 or cp = = 0 ) :

r e t u r n s i g n ( x , m)
s = c∗x + cp∗y
r e t u r n u , s

# v e r i f i c a t i o n
d e f v e r i f y (m, h , u , s ) :

hv = sha256 ( ( s t r (m)+ s t r ( u ) ) . encode ( ) ) . h e x d i g e s t ( )
l = i n t ( l e n ( hv ) / 2 )
c = i n t ( hv [ 0 : l ] , 16)
cp = i n t ( hv [ l : l e n ( hv ) ] , 16)
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c = c%c max
cp = cp%c max
p = mkP ( )
G = mkG ( )
v = t r u e
f o r j i n r a n g e ( n ) :

v = v and ( s [ j ] < ( c+cp )∗ p [ d−1]) and ( s [ j ] > ( c+cp )∗ p [ d−2])
l = c∗h [ j ] + cp∗u [ j ]
f o r i i n r a n g e ( d ) :

l = ( l − G[ d−i −1][ j ]∗ s )%p [ d−i −1]
i f d−i−1>0:

v = ( v and ( l < ( c+cp )∗ p [ d−i −2] ) )
v = v and ( l ==0)

r e t u r n v

x , h = keygen ( )
c o u n t = 10
c o r r e c t = 0
f o r i i n r a n g e ( c o u n t ) :

u , s = s i g n ( x , i )
r = v e r i f y ( i , h , u , s )
i f r :

c o r r e c t = c o r r e c t +1
p r i n t ( ” c o r r e c t n e s s : ” , c o r r e c t , c o u n t )
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