
TEDT2 – Highly Secure Leakage-resilient
TBC-based Authenticated Encryption

Eik List

Bauhaus-Universität Weimar, Weimar, Germany
<firstname>.<lastname>(at)uni-weimar.de

Abstract. Leakage-resilient authenticated encryption (AE) schemes re-
ceived considerable attention during the previous decade. Two core secu-
rity models of bounded and unbounded leakage have evolved, where the
latter has been motivated in a very detailed and practice-oriented man-
ner. In that setting, designers often build schemes based on (tweakable)
block ciphers due to the small state size, such as the recent two-pass AE
scheme TEDT from TCHES 1/2020. TEDT is interesting due to its high
security guarantees of O(n − log(n2))-bit integrity under leakage and
similar AE security in the black-box setting. Though, a detail limited it
to provide only n/2-bit privacy under leakage.
In this work, we extend TEDT to TEDT2 in three aspects with the help
of a tweakable block cipher with a 3n-bit tweakey: we (1) adopt the idea
from the design team of Romulus of replacing TEDT’s previous internal
hash function with Naito’s MDPH, (2) move the nonce from the hash to
the tag-generation function both for more efficiency, and (3) strengthen
the security of the encryption to obtain beyond-birthday-bound security
also under leakage.

Keywords: Symmetric-key cryptography · authenticated encryption · provable
security · leakage resilience

1 Introduction

1.1 Leakage-resilient Authenticated Encryption

Authenticated encryption (AE) has been established as an invaluable crypto-
graphic primitive [4,50] for various practical use cases that need the protection of
both authenticity and the confidentiality of transmitted data. While the usual se-
curity notions treat the primitives as black boxes to the adversary, side channels
[36,37] are a highly important threat to many systems. The protection of primi-
tives against side-channel leakage – be it due to timing, memory accesses, power
consumption, induced faults, or electromagnetic radiation – is usually left to the
implementors and engineers. On a hardware level, the signal can be blurred by
noise or special circuits, whereas on the implementation level, countermeasures
include masking (i. e., secret sharing) [12,25] or shuffling [55]. Since side-channel
protection is often inhibitive in terms of area, additional power consumption,
and efficiency, a line of research has been devoted to developing leakage-resilient
schemes. The interested reader can find in-depth surveys in [7,35].

N

N

A M

CT

FKE

G

HF ′
KM

IV

(a) FGHF′ [17].

N

N

A M

CT

Ẽ0
K

G

HẼ1
K

N

IV

(b) TEDT [8].

N A M

CT

Ẽ0
K

G

HẼ1
K

N

IV

(c) TEDT2.

Fig. 1: High-level comparison on existing two–pass designs and our proposal.

Schools of Thought. The literature on confidentiality with leakage could be
categorized into three approaches: (1) “only computation leaks” (OCL) [41] with
bounded leakage [24], (2) absence of oracles and hard-to-invert leakage [56], and
(3) efficient simulatability of leakage [54]. The latter is still unsolved [38].

The former direction started with the framework by Barwell et al. [3] that
contained notions capturing arbitrary non-adaptive leakage in the bounded-leak-
age setting. The approach has found widespread adoption, e.g. in [17,20,22].
Characteristic is that security is lacking while leakage occurs, but is guaranteed
again once the leakage ends. Thus, schemes can provide nonce-misuse robust-
ness in the sense of [52]. The second school of thought can be located by the
group around Standaert. The school considers unbounded leakage with leveled
implementations [46]. It has evolved stepwise with early focus on integrity [46],
integrity with decryption leakage [10], and the composition with confidentiality
[9], along to attempts to include misuse-resilience [8,28], to the recent summary
at CRYPTO’20 [7]. In contrast to the bounded-leakage school, their notions
cannot provide nonce-misuse resistance, but only resilience in the sense of [1].

Recent Schemes. The portfolio of leakage-resilient AE schemes has grown sig-
nificantly recently, with focus on permutation-based designs like ISAP [18,19]
and the generic Sponge and Duplex [17,20] in the OCL line of research. In con-
trast, the unbounded-leakage direction preferred leveled implementations with
a few calls to a strongly protected primitive and the majority of computations
to a more efficient, less protected primitive. Proposals using this approach often
employed only a (tweakable) block cipher [8,28], but several permutation-based
designs [6,11,29] with few calls to a protected block cipher followed.

Leveled block-cipher-based constructions such as TEDT are interesting for
potentially higher efficiency compared to the permutation-based schemes; firstly,
the latter employ a very small rate for the nonce absorption in the key-derivation
phase [17,18]; secondly, tweakable block ciphers (TBCs) can be realized in a
more lightweight manner compared to permutations, as shown by Naito et al.
[43]. Since a high-level view can help identify concepts, we will look briefly at
FGHF′ and TEDT, which can be compared well, in the following.

2

Table 1: Comparison between existing (T)BC-based leakage-resilient AE schemes and
our proposal. Security in bits, #primitive calls for messages of at most m n-bit blocks
and at most a-block associated data. •= see CCAmL2, – = not available, (x) = probably
x-bit security, but no proof is known, (∗) = keyed hashing, (†) = can be one call less
depending on the hash-input length.

Black-box bit Security Leakage bit Security #Primitive calls

Scheme CCA CI MR CCAmL1 CCAmL2 CIML2 Enc Hash KDF TGF

1 Pass
TET [8] (n) (n) – (n/2) – (n) 2m 2a 1 1

AET-LR [26] n n/2 – n – (n/2) m a/2 (∗) 1 1

2 Pass
Romulus-LR-TEDT [33] n−log(n2) n−log(n2) – • n/2 n−log(n2) 2m a+m+ 3(†) 1 1
TEDT [8] n−log(n2) n−log(n2) – • n/2 n−log(n2) 2m 2a+ 2m+ 4 1 1

TEDT2 [This work] n− log(n) n− log(n) – • n− log(n) n− log(n) 2m a+m+ 2(†) 2 1

3 Pass
FEMALE [28] n/2 n/2 n/2 • n/2 n/2 4m 2a+ 2m+ 8 2 1

Based on the analysis of Encrypt-then-MAC under leakage by [3], Degabriele
et al. [17] suggested FGHF′, where the acronym reflects the structure. The re-
sult of a key-derivation function F takes the nonce and produces an IV for a
pseudorandom stream generator G. H hashes the resulting ciphertext, nonce,
and associated data and forwards the output to a keyed function F ′ to generate
the tag. The high-level structure is similar in other designs, e.g., ISAP or TEDT.
The latter, which stands for Tweakable Encrypt-Digest-and-Tag is built from a
TBC and comes with strong security guarantees, a single small-size primitive,
and a single key. It has only a few structural differences compared to FGHF′:
TEDT employs a TBC, an invertible tag-generation function for integrity under
decryption leakage, and uses the nonce as IV to G, as illustrated in Figure 1.

1.2 Research Questions

TEDT is interesting for its efficiency and the leveled approach that spares the
expensive protections for most primitive calls. However, the low-level view in the
analysis by Guo et al. [28] may be hard to have a clear view of all details. We can
identify three aspects of improvements, where we could use (1) a more efficient
hash function, (2) the nonce in the finalization for more efficient authentication,
and (3) a 2n-bit tweakey in the encryption for higher security under leakage.

Firstly, TEDT employed Hirose’s compression function with Merkle-Dåmgard
strengthening [30] for hashing. Compared to TEDT, we can use Naito’s proposal
MDPH[π̃] from [42] that had also been suggested for Romulus-LR-TEDT [33]
and AET-LR [26]. Like Romulus-LR-TEDT, we also suggest using a 3n-bit TBC.
Thus, our proposal can process a 2n-bit message block with each iteration of
two primitive calls. Thus, the hash-function rate increases from 1/2 to 1.

Secondly, both FGHF′ and TEDT process all inputs to the public hash func-
tion H nonce, associated data, and ciphertext. A similar approach is followed in
the instantiation of FGHF′ and in ISAP, which use the nonce as an initialization

3

vector. Using a TBC with 3n-bit tweakey, we can spare to process the nonce
during hashing and use it in the tag-generation function (TGF) instead.

Thirdly, TEDT uses two primitive calls per message block: one to derive a
new key for the subsequent block and one to produce a keystream block that is
added to the current message block. The resulting rate-1/2 encryption provided
O(n− log(n))-bit security in the single-user black-box setting, but only n/2-bit
security under leakage due to collisions and a hybrid argument. We generalize
the encryption to use a larger tweak efficiently. Using a TBC based on the
TWEAKEY framework by Jean et al. [34], we obtain a longer tweakey for higher
security, whose encryption need two primitive calls for the tweakey update per
message block. To compensate for the additional call, we use the tweakey for
processing two message blocks. We obtain a more secure rate-1/2 construction
that provides O(n− log(n))-bit security in both the black-box setting and under
leakage, where we adopt from TEDT the assumption that the distinguishing
advantage for the XORs of the plain/ciphertexts with the PRG keystream does
not endanger the security.

Outline. The remainder of this work is structured as follows: After Section 2
gives general preliminaries, Section 3 provides a design rationale of our improve-
ments before Section 4 describes our proposal. Section 5 explains our used secu-
rity model before Sections 6 and 7 summarize the results of the security analysis.
Section 8 concludes this work. The analysis details are provided in Appendix B
for the qCIML2 proof, and in Appendix C for the qCPA$mL2 proof of TEDT2
with RCTR.

2 Preliminaries

General Notations. We use uppercase characters for variables and functions,
lowercase characters for indices, calligraphic characters (X , Y, . . .) for sets and
spaces, and bold characters (X, Y, . . .) for vectors, matrices, and adversaries. For
a non-negative integer x, we define [x] =def {1, . . . , x} and [0..x] =def {0, . . . , x}.
Fn
q denotes the n-dimensional extension of the field with characteristic q, where

the elements of Fn
2 can be represented as bit strings and ε is the empty string. For

a list L, we define [] as the empty list and L
∪← x denotes appending an element

x to L. Given sets X and Y, we define Func(X ,Y) for the set of all functions
F : X → Y, P̃erm(T ,X) for the set of all tweakable permutations over X , and
TBC(K, T ,X) for the sets of all tweakable block ciphers with key space K and
tweak space T over X . We use X≤x =def ⋃x

i=0 X i. We define X1, X2, . . . ↞ X
for random uniform sampling X1, X2, . . . , independently from each other and
other samplings from X . Furthermore, we define n-bit strings for arbitrary n
as X = (Xn−1, . . . X0) where Xi is the i-th least significant bit. We denote by
msbc(X) and lsbc(X) the c least significant bits of X.

Distinguishers. An adversary is a computationally unbounded algorithm that
shall win a security game against a challenger. In this work, we focus on adver-
saries that are distinguishers. A distinguisher A is given access to one of two

4

worlds and shall output a decision bit at the end of its interaction that shall de-
note which setting it interacted with. The challenger chooses one of the worlds
by a fair coin toss at the start and provides A with access to either the real
world O1 and an ideal world O0 with identical interfaces. We define

∆
A
(O1

1, . . . , O
1
r︸ ︷︷ ︸

O1

; O0
1, . . . , O

0
r︸ ︷︷ ︸

O0

)(A)
def
=

∣∣∣Pr [AO1
1 ,...,O

1
r ⇒ 1

]
− Pr

[
AO0

1 ,...,O
0
r ⇒ 1

]∣∣∣ ,
where the probabilities are over the coins in the game, if any. Later, we will use
labeled oracles, such as ∆A(EK ,DK ; $,⊥), where we use ⊥ as a function that
always outputs the ⊥ symbol as the indicator for a failed decryption: ⊥(X) =
⊥ for all X. We will use Oj to mean the j-th oracle in the sequence in each
world, e.g., O1 will refer to EK or $. We consider computationally unbounded
distinguishers whose complexities are measured only by the number of queries
to their oracles. Moreover, we assume that adversaries do not ask duplicate
queries or queries to which they already know the answer. W.l.o.g., we focus on
deterministic distinguishers since for any probabilistic distinguisher, there exists
a deterministic one with at least the same success probability, cf. [21].

Notion Conventions. For a notion X, we write AdvX
Π(A) for the advantage

of A on some scheme Π. We define that A is a (r1, . . . , rk)-X-adversary for a
notion X if A uses at most the resources r1, . . . , rk (certain types of queries or
blocks). We write AdvX

Π(r1, . . . , rk)
def
= maxA

{
AdvX

Π(A)
}

for the maximum
advantage over all (r1, . . . , rk)-X-adversaries A on Π.

Query Restrictions. The security models we consider contain query restric-
tions that are necessary to prevent trivial wins of the adversary. We use Oi ̸↪→ Oj

to say that A must not ask the result of an earlier query to Oi in a later query
to Oj . We write Oi,N ̸↪→ Oj,N to indicate that A must not ask a query with a
nonce N to Oj,N if N was used in an earlier query to Oi. For sets of oracles Si,
Sj , we write Si ̸↪→ Sj for Oi ̸↪→ Oj for each combination of Oi, Oj ∈ Si × Sj .
For example, O1 ̸↪→ {O1, O2} means that a result from O1 must not be used as
input to O1 or O2. Similarly, we write Si ̸≻ Sj that a query to any oracle in Sj
must not have occured earlier to any oracle in Si. Finally, we denote as Oi ↪→ Oj

that Oj accepts only those queries that have been used earlier as queries to Oi.
This will be useful for models with several leaking oracles that allow A to collect
additional leakage traces for earlier queries.

Nonce-based Authenticated Encryption. Let K, N , A, M, C, T be non-
empty sets or spaces for keys, nonces, associated data, messages, ciphertexts,
and tags, respectively. Following [44], a nonce-based AE (nAE) scheme consists
of a pair of deterministic algorithms E : K × N × A ×M → C × T and D :
K×N ×A×C ×T →M∪{⊥} for encryption and decryption, respectively. We
assume correctness and tidiness: For all K,N,A,M ∈ K×N ×A×M, it holds
that DN,A

K (EN,A
K (M)) = M , and for all (K,N,A,C, T) ∈ K×N×A×C×T where

∃M ∈M s.t. EN,A
K (M) = (C, T), it holds that EN,A

K (DN,A
K (C, T)) = (C, T). The

common notion is nAE security. O1,N ̸≻ O1,N states that A must respect nonces.

5

Ui−1

Vi−1

M1

∥

π̃

π̃

⟨1⟩n

Ui

Vi

M2

∥

π̃

π̃

⟨1⟩n

⟨2⟩n

Fig. 2: Naito’s hash function MDPH[π̃] [42], based on the double-block-length com-
pression function [30] and the MDP mode [31].

Table 2: Number of primitive calls of π̃ ∈ TBC(Fn
2 ,Ft

2,Fn
2) in the hash functions. a

and m denote the number of n-bit message blocks after padding each.

(a+m) mod 2

Scheme Hash MAC t 0 1

TEDT [8] Hirose [30] HaT n 2a+ 2m+ 4
TEDT Hirose [30] HaT 2n a+m+ 4 a+m+ 5
Romulus-LR-TEDT [33] MDPH [31,42] HaT 2n a+m+ 2 a+m+ 3
TEDT2 [This work] MDPH [31,42] NHaT 2n a+m+ 2 a+m+ 1

Definition 1 (nAE Security [44]). Let Π = (E ,D) be an nAE scheme and
K ↞ K. Then, the nAE advantage of an adversary A on Π is defined as
AdvnAE

ΠK
(A)

def
= ∆A(EK ,DK ; $,⊥), where O1 ̸↪→ O2 and O1,N ̸≻ O1,N .

3 Design Rationale

This section describes our improvements for TEDT2. Prior, we briefly recall the
necessary elements of TEDT.

TEDT. From a high-level perspective, TEDT encrypts a message M as

IV ← ẼK(N), C ← G[Ẽ](IV,N)⊕M, (U, V)← H[Ẽ](N,A,C), T ← ẼV
K(U)

under a secret key K and a nonce N . G and H are based on the same TBC Ẽ ∈
TBC(Fn

2 ,Fn
2 ,Fn

2), where G is a variant of the Bellare-Yee rekeying PRG [5]. In
contrast to FGHF′, TEDT uses an invertible tag-generation function F ′ inspired
by [10]: instead of computing a leaking tag for a decryption query, the scheme
inverts F ′−1

(T) and compares the output with the hash of nonce, associated
data, and ciphertext. Since FGHF′ and other permutation-based schemes output
only a fraction of the state as tag, they are usually not efficiently invertible.

Reducing the Hash Function. TEDT2 employs three ways for more efficient
hashing compared to TEDT. It adopts the use of a TBC with 3n-bit tweakey from

6

N

Ki+1

π̃0,i,Ti
Ki

N

Ti+1

π̃1,i,Ti
Ki

N

Mi,1

Ci,1

π̃2,i,Ti
Ki

N

Mi,2

Ci,2

trunc

π̃3,i,Ti
Ki

(a) RCTR[π̃] mode in TEDT2.

M

H1 H2

T

N
ẼK

VU

(b) NHaT[H1, H2, Ẽ].

Fig. 3: Encryption (left) and tag-generation function (right) of TEDT2.

AET-LR [26] and Romulus-LR-TEDT [33], processing 2n bits of message material
by each hash-function iteration with two calls, saving half of the primitive calls.
Moreover, it adopts “Merkle-Dåmgard with permutation”, MDPH [31]. In [42],
Naito showed its indifferentiability for up to O(2n/n) queries when instantiated
with the compression function from [30]. The construction is illustrated for two
blocks in Figure 2. Compared to [30] with Merkle-Dåmgard strengthening (MDS)
[15,40], MDPH[π̃] spares a compression-function call and allows smaller key-
tweak inputs than Hirose’s compression function with MDS [30]. Finally, TEDT2
need not hash the nonce. If the number of n-bit blocks of the padded hash-
function input is even, TEDT2 saves an iteration (i.e., two calls) for messages of
random length on average, which is detailed in Table 2.

3.1 Strengthening the Authentication and Hashing More Efficiently

Unkeyed hashing avoids the need for strong leakage protection. Though, the
absence of a key allows an offline adversary to evaluate the hash function sep-
arately. For authentication, TEDT employed a variant of Cogliati et al.’s MAC
Hash-as-Tweak (HaT) [14], which provides n-bit security independent of nonces,
but with unkeyed hashing. Given an n+t-bit hash, it uses the n-bit part as state
and the t-bit part as the tweak in a tweakable block cipher to generate the tag.
Since we have a TBC with an (n+ t)-bit tweak, we can employ the nonce in the
finalization. We call the resulting MAC Nonce-and-Hash-as Tweak (NHaT).

3.2 Strengthening The Encryption

The Encryption in TEDT. One iteration of the PRG G in TEDT computes

Ki+1 = π̃PK
Ki

(N ∥ ⟨i⟩⌊n/4⌋−1 ∥ 0) and Ci = π̃PK
Ki

(N ∥ ⟨i⟩⌊n/4⌋−1 ∥ 1) ,

where PK is a user-dependent public constant. G provides beyond-birthday-
bound security in the black-box setting [8], but the bound is tight under leakage
using a hybrid argument of the form σ ·AdvLUP-2

F [π̃] (p, σ), where F [π̃] represents
one iteration of the PRG, σ the total number of blocks by the adversary and p

7

the number of leakage measures per iteration. This is the bottleneck of TEDT
due to the n-bit key size since AdvLUP-2

F [π̃] (p, σ) ∈ O (σ/2n). Over all σ blocks of
the adversary, the term leads to a birthday bound of O

(
σ2/2n

)
.

Modes. Our aim for a mode was to obtain n-bit security under leakage. We
assume an ephemeral-key scheme with (1) n-bit CPA security under nonce-
respecting adversaries and leakage and (2) unpredictability of the iteration in
O(σ/22n) to allow the use of a hybrid argument in the CCA analysis, and (3)
a rate of at least 1/2 comparable with G in TEDT. For security, we suggest a
2n-bit tweakey in a TWEAKEY-based primitive that treats both n-bit tweakey
words similarly as secrets. During our studies, we considered five modes in to-
tal: (1) Generalized TET [8] (GTET), (2) Generalized FEMALE [27] (GFBE), (3)
Rekeying counter mode (RCTR), (4) Rekeying OCB (ROCB), and (5) Rekeying
OTR (ROTR). We study them in more detail in Appendix E. For TEDT2, we
opted for the RCTR, which is illustrated for r = 2 message blocks per itera-
tion in Figure 3a. Thus, an iteration needs two calls the the primitive to derive
the subsequent tweakey (Ki+1, Ti+1) from the previous 2n-bit tweakey (Ki, Ti).
To compensate the additional primitive call without lowering the rate, we use
the tweakey for two primitive calls to derive (Ci,1, Ci,2). While this provides a
side-channel adversary with six instead of three traces, it must recover a 2n-
bit tweakey compared to TEDT. While GTET and GFBE have a higher rate of
r/(r+1), RCTR has the advantage of being a PRG, which simplifies the decryp-
tion and is a direct extension of the PRG in TEDT.

The tweakey could be expanded further to 3n or 4n bits, etc. given a primitive
with a larger tweak at the cost of increased state size. Such primitives have been
announced by Peyrin [47] for more efficient hashing. Such a primitive will be
slightly slower for encryption, but more efficient if the rate can be increased
further. Though, this should be considered in detail under the concrete side-
channel analysis, which cannot be addressed satisfactorily in the present work.

4 Definition of TEDT2

Primitive and Domains. We instantiate TEDT2 with a tweakable block ci-
pher Ẽ ∈ TBC(Fn

2 ,F2n
2 ,Fn

2). Concretely, we suggest Skinny-64-192, Skinny-128-
384, or Deoxys-BC-128-384. We assume a TWEAKEY-based block cipher where
key and tweak words are treated (almost) equivalently and in a generalizable
manner. The tweak allows us to have a single primitive for all occasions using
domains for the different purposes of key derivation, encryption, hashing, and
tag generation. We assume that key derivation and tag generation use strongly
protected implementations of Ẽ, e.g. against simple (SPA) and differential-power
analysis (DPA), and all other calls to Ẽ use a less protected implementation,
e.g. against only SPA (cf. [7]).

Sets and Primitive. Define positive integers k = τ = n, d = 4, and ν = n− d.
Let K = Fk

2 , N = Fν
2 , A = F≤n·amax

2 ,M = C = F≤n·mmax
2 , and T = Fτ

2 be spaces

8

Table 3: Domain parameters of TEDT2.

Part Domains Rationale

Encrypt {0, 1, 2, 3, 4, 5} For key, tweak, full and partial message blocks
KDF {6, 7} Two calls
TGF {8}

for keys, nonces, associated data, messages, ciphertexts, and authentication tags,
respectively. We define a domain space D = Fd

2 and a compound tweak space
TD = D × T1 × T2 = F2n

2 , where T1 = Fn−d
2 and T2 = Fn

2 . Thus, we define
the nonce space as Fn−d

2 , to have d bits for the domain. We use the domains
from Table 3 encoded as d-bit integers, e.g., ⟨8⟩d = 1000. We will often use
block indices, where we assume that they are encoded as n− d-bit integers, like
domains. We define TEDT2 for at most amax = 2n/2 n-bit blocks of associated
data and at most mmax = 2n/2 blocks per message and at most 2n/2 messages.

Encryption and Decryption. The encryption E [Ẽ]K expects a nonce, asso-
ciated data, and message (N,A,M) ∈ N × A ×M and encrypts M under a
key K ∈ K and the nonce to a tuple of ciphertext C ∈ C and tag T ∈ T such
that |M | = |C| and returns (C, T). The decryption algorithm D[Ẽ]K expects a
nonce, associated data, ciphertext, and a tag (N,A,C, T) ∈ N × A× C × T . If
the tuple is deemed invalid, the decryption outputs ⊥. Otherwise, it decrypts C
under the key K ∈ K and the nonce to the single possible message M ∈M such
that E [Ẽ]N,A

K (M) = (C, T) and outputs M . The algorithms are correct and tidy.
Algorithm 1 defines the encryption and decryption procedures.

5 Security Model

Comparison to [8,27,28]. We follow the framework of unbounded leakage
under oracle-free hard-to-invert leakage functions [8,28] since it captures leakage
in all queries. The notions follow a convention of [PI,CI,CPA,CCA][m,M,-][L⟨i⟩] (for
plaintext/ciphertext integrity, chosen-plain-/ciphertext attack), where m means
nonce-misuse resilience, i.e., nonces may repeat except in challenge queries. L⟨i⟩
indicates leakage in i oracles; L2 means leakage in en- and decryption. Though,
we differ in three minor aspects from their notions.

First, the notions from [28] used only a single challenge query, where CCAmL2
was extended to a multi-challenge variant in [27]. We will use multi-challenge
but single-user notions (and denote this by a q) throughout this work since they
are much more common and make our results comparable with those for TEDT,
which was proven under multi-challenge notions muCIML2 and muCCAmL2 [8].

Second, we replace the left-or-right style for confidentiality with a real-or-
random style, where the ideal world samples a message at random. We make this
explicit by a -$ in the notions. While left-or-right and real-or-random notions are
roughly equally strong, the latter seems more natural for avoiding dependencies

9

Algorithm 1 Definition of TEDT2.

11: function E [Ẽ]N,A
K (M)

12: KE ← KDF[Ẽ]K(N)

13: C ← Encrypt[Ẽ]KE (M)

14: T ← TGF[Ẽ]K(N,A,C)
15: return (C, T)

16: function KDF[Ẽ]K(N)
17: return Ẽ6,0,0

K (N), Ẽ7,0,0
K (N)

20: function TGF[Ẽ]K(N,A,C)
21: X ← concatn(A,C)

22: (U, V)← Hash[Ẽ](X)

23: return Ẽ8,N,V
K (U)

25: function Encrypt[Ẽ]NK(M)
26: (K1, T1)← K

27: (M1, . . . ,Mm)
2n←−M

28: for i← 1..m− 1 do
29: Ki+1 ← Ẽ0,i,Ti

Ki
(N)

30: Ti+1 ← Ẽ1,i,Ti
Ki

(N)

31: Si ← Ẽ2,i,Ti
Ki

(N) ∥ Ẽ3,i,Ti
Ki

(N)
32: Ci ← Si ⊕Mi

33: (d1, d2)← getDomainForM(|Mm|)
34: Sm ← Ẽd1,m,Tm

Km
(N) ∥ Ẽd2,m,Tm

Km
(N)

35: Cm ← trunc|Mm|(Sm)⊕Mm

36: return (C1 ∥ · · · ∥Cm)

41: function concatn(X,Y)
42: X∗ ← padzeroesn(X)
43: Y ∗ ← padzeroesn(Y)
44: L← ⟨|X|⟩n/2 ∥ ⟨|Y |⟩n/2

46: function padzeroesx(X)
47: ℓ← |X| mod x
48: if ℓ ≡ 0 then return X
49: return X ∥ 0x−ℓ

51: function D[Ẽ]K(N,A,C, T)
52: KE ← KDF[Ẽ]K(N)

53: if Verify[Ẽ]K(N,A,C, T) then
54: return Decrypt[Ẽ]NKE

(C)

55: return ⊥
56: function Verify[Ẽ]K(N,A,C, T)
57: X ← concatn(A,C)

58: (U, V)← Hash[Ẽ](X)

59: U ′ ← D̃8,N,V
K (T)

60: return U = U ′

61: function Decrypt[Ẽ]NK(C)
62: return Encrypt[Ẽ]NK(C)

66: function Hash[Ẽ](M)
67: (M1,1,M1,2, . . . ,Mm,1,Mm,2)

n←−M
68: (U0, V0)← (0n, 0n)
69: for i← 1..m do
70: if i = m then Ui−1 ← Ui−1 ⊕ ⟨2⟩
71: Ki ← Vi−1

72: Ti ←Mi,1 ∥Mi,2

73: Wi ← Ui−1 ⊕ ⟨1⟩
74: Ui ← ẼTi

Ki
(Ui−1)⊕ Ui−1

75: Vi ← ẼTi
Ki

(Wi)⊕Wi

76: return (Um, Vm)

81: function truncx(X)
82: if |X| ≤ x then return X

83: return msbx(X)

86: function padx(X)
87: ℓ← (|X|+ 1) mod x
88: if ℓ ≡ 0 then return X ∥ 1
89: return X ∥ 1 ∥ 0x−ℓ

91: function getDomainForM(ℓ)
92: if ℓ = 2n then return (2, 3)
93: else if n ≤ ℓ ∧ ℓ < 2n then return (2, 5)
94: else return (4, 5)

on how an adversary chooses alternative messages. We stress that our real-or-
random definitions only sample the message at random but process it with the
same construction and key; they do not define an abstract ideal without the real
construction since leakage of idealized objects is difficult to define (cf. [8,28,53]).

Third, we focus on information-theoretic distinguishers whose resources are
bounded only by the numbers of queries and bits/blocks to the available oracles.
Complexity-theoretic results can be derived in a straightforward manner.

We will write notions as distinguishing games. Note that we will usually add
primitive oracles similar as in the ideal-cipher model in [8,28].

Leakage Functions. We inherit three usual assumptions that leakage func-
tions Λ are (1) probabilistic, (2) oracle-free, and (3) not efficiently invertible
from the notions of [8,28]. We use a non-empty random-coin set R and sample

10

Algorithm 2 The qCIML2 experiment, adapted from [8] and [27,28].

11: procedure Initialize
12: K ↞ K; Q ← ∅; b← {0, 1}

21: function Finalize(b′)
22: return b = b′

31: function ÊK(N,A,M,Λ)
32: R ↞ R
33: (C, T)← EN,A

K (M)

34: Q ∪← {(N,A,C, T)}
35: L← ΛN,A

K (M ;R)
36: return (C, T, L)

41: function D̂K(N,A,C, T, Λ)
42: R ↞ R
43: M ← DN,A

K (C, T)
44: L← ΛN,A

K (C, T ;R)
45: return (M,L)

51: function D̂ch
K (N,A,C, T, Λ)

52: R ↞ R
53: L← ΛN,A

K (C, T ;R)
54: if (N,A,C, T) ∈ Q∨b = 0 then return (⊥, L)
55: M ← DN,A

K (C, T)
56: return (M,L)

R ↞ R for every call to a leakage function (cf. [3]), which ensures that repeated
calls may result in different leakage traces. We denote by [Li]p = (L1, . . . , Lp)
a p-element list of leakages Li from the same leakage function Λ collected un-
der independent random coins. Since leakage functions chosen by an adversary
could compute some state in the future, they are usually prohibited from calling
the primitives and are therefore called oracle-free (cf. [56]) to prevent future-
computation attacks, where Λ(Ki, . . .) might otherwise leak outputs about Kj

for a later occurring key i < j, which would render any confidentiality goal
unachievable. This model reflects practice where leakages are a function of the
primitive’s in- and outputs. Moreover, we assume that leakage functions are not
efficiently invertible in the sense of exponentially hard-to-invert functions [23].

We assume that leakage-function sets are used for the queries corresponding
to their subscripts, i.e., LE and LD correspond E and D oracle(s), respectively.
We mark leaking oracles by a hat, i.e. the leaking variant of EK is ÊK , where leak-
ing means that ÊK takes a leakage function Λ ∈ LE as an additional parameter
that is called with the remaining parameters of EK and random coins.

5.1 Notion for Authenticity

qCIML2 is a single-user variant of muCIML2 [8] and a distinguisher version of
CIML2; every forgery allows distinguishing. qCIML2, as defined in Algorithm 2,
splits the decryption queries into two oracles, one for collecting decryption leak-
age from earlier encryption queries, and one as a challenge oracle. Note that ⊥̂
always outputs the decryption ⊥, but also outputs decryption leakage.

Definition 2 (qCIML2). Let Π = (EK ,DK) be an nAE scheme, K ↞ K, and
LE and LD be sets of leakage functions. Let A be an adversary on Π. Then, the
qCIML2 advantage of A on Π is defined as

AdvqCIML2
EK ,DK ,LE ,LD

(A)
def
= ∆

A
(ÊK , D̂K , D̂ch

K ; ÊK , D̂K , ⊥̂) where O1 ̸↪→ O3 .

11

Algorithm 3 The qCCA$mL2 experiment, adapted from [8] and [27,28].

11: procedure Initialize
12: K ↞ K; b ↞ {0, 1}
13: QN ← ∅; Q ← ∅
14: Qch

N ← ∅; Qch ← ∅

21: function ÊK(N,A,M,Λ)
22: if N ∈ Qch

N then return ⊥
23: R ↞ R
24: (C, T)← EN,A

K (M)

25: Q ∪← {(N,A,C, T)}; QN
∪← {N}

26: L← ΛN,A
K (M ;R)

27: return (C, T, L)

31: function D̂K(N,A,C, T, Λ)
32: if (N,A,C, T) ∈ Qch then return ⊥
33: R ↞ R
34: M ← DN,A

K (C, T)
35: L← ΛN,A

K (C, T ;R)
36: return (M,L)

41: function Finalize(b′)
42: return b = b′

51: function ÊchK (N,A,M,Λ)
52: if N ∈ Qch

N ∨N ∈ QN ∨M = ε then
53: return ⊥
54: M∗ ←M
55: R ↞ R
56: if b = 0 then M∗ ↞ F|M|

2

57: (C, T)← EN,A
K (M∗)

58: Qch ∪← {(N,A,C, T)}; Qch
N

∪← {N}
59: L← ΛN,A

K (C, T ;R)
60: return (C, T, L)

66: function D̂ch
K (N,A,C, T, Λ)

67: if (N,A,C, T) ̸∈ Qch then return ⊥
68: R ↞ R
69: L← ΛN,A

K (C, T ;R)
70: return L

5.2 Notions for Confidentiality

We define qCCA$mL2 in Algorithm 3 as a real-or-random variant of mCCAmL2
[27] or as a single-user variant of muCCAmL2 [8]. In the ideal world, the chal-
lenge encryption oracle $̂E encrypts a random string of |M | bits with the real
construction to produce a ciphertext and leakage. The challenge decryption or-
acle is defined similarly as $̂D. Though, in both worlds, $̂D accepts only queries
that were previous outputs from $̂E (denoted as O3 ↪→ O4) and outputs only the
corresponding decryption leakages and not the decryption to avoid trivial wins.

qCPA$mL2 is a real-or-random variant of the mCPAmL2 notion by [27], which
differs from qCCA$mL2 in the fact that it has no non-challenge decryption oracle.
Thus, it is defined in Algorithm 3 without Lines 31–36.

Definition 3 (qCCA$mL2 and qCPA$mL2). Let Π = (EK ,DK) be an nAE
scheme, K ↞ K, and LE and LD be sets of leakage functions. Then, the
qCCA$mL2 advantage of an adversary A on Π is defined as

AdvqCCA$mL2
EK ,DK ,LE ,LD

(A)
def
= ∆

A
(ÊK , D̂K , ÊchK , D̂ch

K ; ÊK , D̂K , $̂E , $̂D) ,

where O3,N ̸≻ O1,N , {O1,N , O3,N} ̸≻ O3,N , O3 ̸↪→ O2, O3 ↪→ O4. The qCPA$mL2
advantage of an adversary A on Π is defined as

AdvqCPA$mL2
EK ,DK ,LE ,LD

(A)
def
= ∆

A
(ÊK , ÊchK , D̂ch

K ; ÊK , $̂E , $̂D) ,

where O2,N ̸≻ O1,N , {O1,N , O2,N} ̸≻ O2,N , O2 ↪→ O3.

We adapt two auxiliary notions, LUP-4 and XOR$, from [7,8] that reflect
practical attacks under leakage regarding its non-invertability and the indistin-
guishability of XORs, respectively. Algorithms 4 and 5 defines their experiments.

12

Algorithm 4 LUP-4 experiment.

11: procedure Initialize(K0, T0)
12: K1 ↞ Fn

2 ; T1 ↞ Fn
2

13: M0,1 ← (Ẽ0,0,T0
K0

)−1(K1)

14: M0,2 ← (Ẽ1,0,T0
K0

)−1(T1)

21: function
Leak[Ẽ](Λin, Λout,K, T,X, Y)

22: Rin, Rout ↞ R
23: Lin ← Λin(K,T,X;Rin)
24: Lout ← Λout(K,T, Y ;Rout)
25: return (Lin, Lout)

31: function Finalize(K′)
32: win← |K′| ≤ q∧
33: (K1, T1) ∈ K′

34: if win then
35: return 1
36: return 0

41: function Ê [Ẽ](N,Λin, Λout)
42: for i← 1..p do
43: Rout

0,1, R
out
0,2 ↞ R

44: K1 ← Ẽ0,0,T0
K0

(M0,1); T1 ← Ẽ1,0,T0
K0

(M0,2)

45: K2 ← Ẽ0,1,T1
K1

(N); T2 ← Ẽ1,1,T1
K1

(N)

46: Z1,1 ← Ẽ2,1,T0
K0

(N); Z1,2 ← Ẽ3,1,T1
K0

(N)
47: Lout

0,1 ← Λout
0 (K0, (0, 0, T0),K1;R

out
0,1)

48: Lout
0,2 ← Λout

0 (K0, (1, 0, T0), T1;R
out
0,2)

49: L0 ← Lout
0,1, L

out
0,2

50: Lin
1,1, L

out
1,1 ← Leak[Ẽ](Λin, Λout,K1, (0, 1, T1), N,K2)

51: Lin
1,2, L

out
1,2 ← Leak[Ẽ](Λin, Λout,K1, (1, 1, T1), N, T2)

52: Lin
1,3, L

out
1,3 ← Leak[Ẽ](Λin, Λout,K1, (2, 1, T1), N, Z1,1)

53: Lin
1,4, L

out
1,4 ← Leak[Ẽ](Λin, Λout,K1, (3, 1, T1), N, Z1,2)

54: L1,1 ← Lin
1,1, L

out
1,1; L1,2 ← Lin

1,2, L
out
1,2

55: L1,3 ← Lin
1,3, L

out
1,3; L1,4 ← Lin

1,4, L
out
1,4

56: return (K2, T2, Z1,1, Z1,2,
57: [L0]p, [L1,1]p, [L1,2]p, [L1,3]p, [L1,4]p)

Unpredictability. For TEDT, the LUP-2 game [8] modeled the unpredictability
under leakage of a single iteration of the used PRG. LUP-4 generalizes the notion
to the setting in RCTR. It takes a larger tweakey K0, T0 ∈ Fn

2 × Fn
2 from the

adversary, samples K1 ↞ Fn
2 and T1 ↞ Fn

2 and uses them for p decryptions, as
well as p calls of one iteration of the PRG in TEDT2 that generates two n-bit
outputs and K2, T2. A can query the encryption p times to collect a vector of
input- and output leakages from all primitive calls except for the calls to M0,1

and M0,2, where it is not provided with input leakage. A outputs a set K′ of q
tuples (K1, T1) and wins iff the correct tweakey is contained.

Definition 4 (LUP-4). Let π̃ ∈ TBC(Fn
2 , TD,Fn

2). Let Lin and Lout be sets of
leakage functions. Let A be an adversary that provides K0, T0 ∈ Fn

2 to and plays
the LUP-4 experiment against Ê [π̃], and outputs a set K′ ⊆ (Fn

2 × Fn
2)

∗ with
|K′| ≤ q. The LUP-4 advantage of A is defined as

AdvLUP-4
Ê[π̃]∗,∗,T0

K0
,Lin,Lout(A)

def
= Pr [(K1, T1) ∈ K′] .

We define AdvLUP-4
Ê[π̃],Lin,Lout(p, q) as the maximum of all LUP-4 adversaries A

on Ê [π̃] that ask at most p queries and output a set of at most q guesses.

Indistinguishability of XOR. An implementation that shall provide confi-
dentiality must protect all operations. An XOR that leaks a single bit can destroy
privacy, but the probability may be non-negligible [7,8,29]. However, it should
be addressed in the security analysis. Their works proposed a notion of Left-or-
Right XOR security that can be evaluated in practice on an isolated component.
The XOR$ game in Algorithm 5 is our real-or-random variant thereof for consis-
tency, where the real world processes a message M ∈ Fn

2 chosen by the adversary,
and the ideal world samples and processes a message M∗ ↞ Fn

2 .

13

Ki−1

Ti−1

Ẽ
0,Ti−1,i

Ki−1

Ẽ
1,Ti−1,i

Ki−1

Ẽ0,Ti,i+1
Ki

Ẽ1,Ti,i+1
Ki

Ẽ2,Ti,i+1
Ki

Ẽ3,Ti,i+1
Ki

Ki

Ti

?

?

N

N

N

N

Ki+1

Ti+1

Yi,1

Yi,2

Fig. 4: The LUP-4 setting.

Algorithm 5 XOR$ experiment.

11: function Initialize(K,T,M,Λout, Λ⊕)
12: Y ↞ Fn

2 ; b ↞ {0, 1}
13: M∗ ←M
14: if b = 0 then
15: M∗ ↞ Fn

2

16: X ← (ẼT
K)−1(Y)

21: function Finalize(b′)
22: return b = b′

31: function Ê [Ẽ]K(Λout, Λ⊕)
32: Rout, R⊕ ↞ R
33: Y ← ẼT

K(X); C ← Y ⊕M∗

34: Lout ← Λout(K,T, Y ;Rout)
35: L⊕ ← Λ⊕(Y,C;R⊕)
36: for i← 2..p do
37: Rout, R⊕ ↞ R
38: Y ← ẼT

K(X); M∗ ← C ⊕ Y
39: Lout ← Λout(K,T, Y ;Rout)
40: L⊕ ← Λ⊕(Y,M∗;R⊕)

41: return (C, [Lout]p, [L
⊕]p)

Definition 5 (XOR$). Let π̃ ∈ TBC(K, TD,Fn
2) and K1 ↞ K. Let Lout, L⊕

1 ,
and L⊕ be sets of leakage functions. Let A be a adversary that plays the
XOR$ experiment given in Algorithm 5 against Ê [π̃]. Then, the XOR$ advan-
tage of Ab ⇒ b′, interacting with world b and outputting b′ is defined as
AdvXOR$

Ê[π̃]K ,Lout,L⊕(A)
def
=

∣∣Pr [A1 ⇒ 1
]
− Pr

[
A0 ⇒ 1

]∣∣ .
We define AdvXOR$

Ê[π̃]K ,Lout,L⊕(p, q) for the maximum advantage over all XOR$

adversaries A on Ê [π̃]K that ask at most q queries under p measurements each.

6 Authentication Security Analysis of TEDT2

TEDT2 inherits the single-user CIML2 security from [8]. Since it is similar to
the proof of TEDT, we provide a cleaned and slightly adapted description in
Appendix B As for TEDT, we assume that all intermediate values may leak com-
pletely, except for the key K of the key-derivation and tag-generation functions.
The leakage-function sets are defined as singletons LE = {ΛE} and LD = {ΛD},
where on input (N,A,M), ΛE and ΛD return

14

– (K,S,X, Y) for each primitive call of the PRG G, where S = (D,T, U) ∈ TD,
– (X,S, Y) for each call to the key-derivation function,
– (N,U, V, T) for each call to the tag-generation function, and
– (A,B) for each XOR of A⊕B.

We follow the steps by Berti et al. [8]:

(1) We replace the KDF and TGF by ideal secret tweakable keyed permutations,
independent of each other and all other permutation calls.

(2) Then, we study the calls to the TGF and upper bound the probability of
partial collisions and partial multi-collisions in V as bad events.

(3) Third, we upper bound the probability of forgeries for good transcripts.

The result is given in Theorem 1. The proof can be found in Appendix B.

Theorem 1 (qCIML2 Security). Let π̃ ∈ TBC(K, TD,Fn
2), K ↞ K, and n ≥ 4.

Let A be a qCIML2-adversary on Π[π̃]K = TEDT2[π̃]K that makes at most qc
construction queries of at most σ message blocks and σa associated-data blocks in
total and qp primitive queries. Let qe be the numbers of encryption construction
queries, qd the cumulative decryption construction queries to the oracles and
µ be the number of encryption queries with repeating nonces in non-challenge
encryption queries. Let σp = 3σ + σa + 2qc + qp ≤ 2n−3 be the number of ideal-
primitive calls in all primitive and construction queries of A. Let the sets of
leakage functions LE and LD be as defined in Section 6. Then

AdvqCIML2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤ AdvTPRP
π̃ (2qc) +AdvSTPRP

π̃ (qe, qd)

+
2n(qp + qd) + 3(σ + σa) + 1

2n
+

9σ2
p + 2σp + 8qp(qd + µ)

22n
.

7 Encryption Security Analysis of TEDT2

We adopt the definitions of π̃ and K from Section 6. The leakage-function sets
are singletons LE = {ΛE} and LD = {ΛD}, where on input (N,A,M), ΛE

outputs

– Λin(K,T,X) and Λout(K,T, Y) for each call of π̃T
K(X) = Y in Encrypt.

– Λ⊕(A,B) for each XOR of two values A⊕B by internal actions
– All intermediate values during hashing, i.e., the hash function is unprotected.

On input (N,A,C, T), ΛD returns the values corresponding to the above that
occur during regular decryption in Algorithm 1. We let Lin = {Λin}, Lout =
{Λout}, and L⊕ = {Λout} be the leakage-function sets that contain the parts of
ΛE and ΛD, respectively, that are used in the LUP-4 and XOR$ notions.

Theorem 2. Let A be an qCCA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that
asks at most qe encryption queries and qd decryption queries of at most σ blocks

15

in total and qp primitive queries. Let F [π̃] be an iteration of RCTR[π̃]. Let n ≥ 4,
σ ≤ 2n−3, and let LE and LD be as defined at the top of Section 7. Then

AdvqCCA$mL2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤
4qp(σ + qc) + 4(σ + qc)

2

22n

+AdvqCIML2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) + 2σ ·AdvLUP-4
F [π̃],Lin,Lout(p, σ + qc + qp)

+ σ ·AdvXOR$
F [π̃],Lout,L⊕(p, 2σ + 2qc + qp) .

The latter term reflects side-channel tweakey recovery and has a birthday-
bound complexity of

O

(
σ · σ + qc + qp

c · 22n

)
.

Following the argument by Berti et al. [8], the three leakage traces per tweakey
should not render the value of c significant. While TEDT2 doubles the number
of available traces for every tweakey to six, two n-bit values must be recovered.
Thus, we assume that the resulting term of c ·22n that reflects six traces remains
insignificant. The term σ ·AdvXOR$

F [π̃] (p, 2qc+2σ+qp) represents the distinguishing
advantage in the case of “minimal message manipulation” and is inevitable for
schemes that employ XOR during encryption.

Proof. The proof can follow the steps of the muCCAmL2 proof for TEDT in [8].
All queries of A will be stored in a transcript τ = τc ∪ τp. In this context, τc
consists of the construction queries of A and their corresponding responses. τp
represents the primitive queries of A to π̃± and their associated responses. We
have to show that

(1) Encryption queries provide confidentiality.
(2) Leakages from the decryption oracle do not affect confidentiality.

From Theorem 1, we can upper bound the advantage that TEDT2 is qCIML2-
secure. Thus, unless A can forge, non-trivial decryption queries will yield only
the ⊥ symbol and leak only the invalid decryptions from (π̃

8,N,H(A,C)
K)−1(T).

We can capture this as follows.

∆
A
(ÊK , D̂K , ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , D̂K , $̂E , $̂D, π̃
±,LE ,LD) (1)

with the restrictions O3,N ̸≻ O1,N , {O1,N , O3,N} ̸≻ O3,N , O3 ̸↪→ O2, and O3 ↪→

O4. We can introduce an intermediate step of

∆
A
(ÊK , D̂K , ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , ⊥̂, ÊchK , D̂ch
K , π̃±,LE ,LD) ,

with the restrictions as for Equation (1) plus O1 ̸↪→ O2. Its left-hand side is
equivalent to that in Equation (1) since every adversary that wanted to ask a

16

query that was output from O1 ↪→ O2 before could now use O3 ↪→ O4 for this
purpose. This setting can be reformulated as

∆
A
(ÊK , D̂K , D̂K , π̃±,LE ,LD ; ÊK , D̂K , ⊥̂, π̃±,LE ,LD)

≤ AdvqCIML2
E[π̃],D[π̃],π̃±,LE ,LD

(qe, qd, σ, qp) (2)

since the nonce restrictions to two encryption oracles are irrelevant. The remain-
ing restrictions merge to O1 ̸↪→ O3 for Equation (2), which yields the qCIML2
notion. The remaining step is to upper bound the distinguishing advantage of

∆
A
(ÊK , ⊥̂, ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , ⊥̂, $̂E , $̂D, π̃±,LE ,LD)

= ∆
A
(ÊK , ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , $̂E , $̂D, π̃
±,LE ,LD)

≤ AdvqCPA$mL2
E[π̃],D[π̃],π̃±,LE ,LD

(qe, qd, σ, qp) (3)

with the restrictions O2,N ̸≻ O1,N , {O1,N , O2,N} ̸≻ O2,N , and O2 ↪→ O3. The
advantage in Equation (3) for TEDT2 can be upper bounded by Lemma 1.

Lemma 1 (qCPA$mL2 Security of TEDT2 with RCTR). Let π̃ ↞ TBC(K,
TD, Fn

2). Let A be an qCPA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that asks
at most qe encryption queries and qd decryption queries of at most σ blocks in
total and qp primitive queries. Let F [π̃] be an iteration of RCTR[π̃]. Let n ≥ 2,
σ ≤ 2n−3, and let LE and LD be as defined at the top of Section 7. Then

AdvqCPA$mL2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤
4qp(σ + qc) + 4(σ + qc)

2

22n

+ 2σAdvLUP-4
F [π̃],Lin,Lout(p, σ + qc + qp) + σAdvXOR$

F [π̃],Lout,L⊕(p, 2σ + 2qc + qp) .

The proof is given in Appendix C.

Comparison of Security Bounds. Figure 5 compares the single-user CCAmL2
and CIML2 bounds for TEDT with the corresponding qCCA$mL2 and qCIML2
bounds for TEDT2. The plot uses n = 128 and qc = qp = σ as an example.
It contains the bounds for the LUP-2 and LUP-4 terms, respectively, but must
omit the terms for XOR$ security since it strongly depends on the implementa-
tion and must be determined in practice. The lines that represent the qCCA$mL2
and qCIML2 security bounds for TEDT2 almost overlap, which is natural since
the qCCA$mL2 bound contains the dominating bound for qCIML2 security. The
difference in the terms of qCIML2 is largely due to the presentation. The main ef-
fect is the difference between the birthday-bound term for LUP-2 in the CCAmL2
bound of TEDT, while the 2n-bit tweakey of TEDT2 leads to an improved bound.

8 Discussion and Future Work

Under the umbrella aim of maintaining qCIML2 and qCCA$mL2 security, our
core goals for TEDT2 were three-fold: to adopt a more efficient hash function,

17

13 33 53 73 93 113
log2(q)2−129

2−114

2−99

2−84

2−69

2−54

2−39

2−24

2−9

Advantage

TEDT muCCAmL2
TEDT muCIML2
TEDT2 qCCA$mL2
TEDT2 qCIML2

Fig. 5: Single-user CIML2 and CCAmL2 bounds of TEDT and qCIML2 and qCCA$mL2
bounds for TEDT2, for n = 128 and where qc = qp = σ = q are used.

to render the authentication more efficient by moving the nonce to the tag-
generation function, and to strengthen the encryption under leakage beyond the
birthday bound. For this purpose, we adopted the more efficient hash function
from Naito’s result on MDPH and used a TBC with 3n-bit tweakey to have a rate
of about one while hashing. We could spare the effort for hashing the nonce and
obtain higher security for the encryption mode and thus for the scheme under
leakage, using a TWEAKEY-based TBC with 3n-bit tweakey. We emphasize
that the use of MDPH and a TBC with 3n-bit tweakey has been also proposed
for AET-LR and Romulus-LR-TEDT. We do not claim this adoption as a novel
idea. We further stress that AET-LR used a more efficient sequential hashing of
the associated data that used both state input and tweak, which is efficient and
secure in the black-box setting but needs costly protection against DPAs [26]
under leakage.

As an interesting by-product, we obtain an even more secure authentication
in the black-box setting. In Appendix D, we also prove nMAC security of the
MAC NHaT. We identify several potential future improvements: the efficiency
of the hash function can be further increased with longer tweaks, as suggested
by Peyrin [47]. Concerning the PRG, the rate of 1/2 may limit the applicability
of our proposal in high-performance settings. While the same tweakey could
be used for more blocks, this would need a fine-grained study of the leakage.
Alternatively, other PRGs such as a generalization of TET from [8] might appear
useful. Thanks to having modular proofs, only the confidentiality proof would
have to be revised in this case. Finally, while our focus was on security in the
usual single-user setting, an interesting future work could be to consider multiple
users.

Acknowledgments. We thank the reviewers of Latincrypt 2021 for their highly
fruitful comments. The author was supported by DFG Grant LU 608/9-1.

18

Acknowledgments

We thank the reviewers of Latincrypt 2021 for their highly fruitful comments.
The author was supported by DFG Grant LU 608/9-1.

References

1. Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated En-
cryption Robustness with Minimal Modifications. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO III, volume 10403 of LNCS, pages 3–33. Springer,
2017.

2. Manuel Barbosa and Pooya Farshim. Indifferentiable Authenticated Encryption.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO I, volume 10991
of LNCS, pages 187–220. Springer, 2018.

3. Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenti-
cated Encryption in the Face of Protocol and Side Channel Leakage. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT I, volume 10624 of LNCS, pages
693–723. Springer, 2017.

4. Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm. In Tatsuaki
Okamoto, editor, ASIACRYPT, volume 1976 of LNCS, pages 531–545. Springer,
2000.

5. Mihir Bellare and Bennet S. Yee. Forward-Security in Private-Key Cryptography.
In Marc Joye, editor, CT-RSA, volume 2612 of LNCS, pages 1–18. Springer, 2003.

6. Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien
Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles Momin,
Olivier Pereira, Thomas Peters, François-Xavier Standaert, Balazs Udvarhelyi, and
Friedrich Wiemer. Spook: Sponge-Based Leakage-Resistant Authenticated Encryp-
tion with a Masked Tweakable Block Cipher. IACR ToSC, 2020(S1):295–349, 2020.

7. Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo,
Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptog-
raphy - A Practical Guide Through the Leakage-Resistance Jungle. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO I, volume 12170 of LNCS,
pages 369–400. Springer, 2020.

8. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. TEDT, a Leakage-Resist AEAD Mode for High Physical Security Ap-
plications. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):256–320, 2020.

9. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Leakage-Resilient and Misuse-Resistant Authenticated Encryp-
tion. IACR Cryptol. ePrint Arch., 2016:996, 2016.

10. Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
On Leakage-Resilient Authenticated Encryption with Decryption Leakages. IACR
ToSC, 2017(3):271–293, 2017.

11. Gaëtan Cassiers, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. SpookChain: Chaining a Sponge-Based AEAD with Beyond-Birthday
Security. In Shivam Bhasin, Avi Mendelson, and Mridul Nandi, editors, SPACE,
volume 11947 of LNCS, pages 67–85. Springer, 2019.

19

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of LNCS, pages 398–412. Springer, 1999.

13. Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating
Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT,
volume 8441 of LNCS, pages 327–350. Springer, 2014. Full version at
https://eprint.iacr.org/2013/222.

14. Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New Constructions of MACs
from (Tweakable) Block Ciphers. IACR Trans. Symmetric Cryptol., 2017(2):27–58,
2017.

15. Ivan Damgård. Collision Free Hash Functions and Public Key Signature Schemes.
In David Chaum and Wyn L. Price, editors, EUROCRYPT, volume 304 of LNCS,
pages 203–216. Springer, 1987.

16. Donald W. Davies and Wyn L. Price. Digital signatures, an update. Proc. 5th Int.
Conf. on Computer Communication, pages 845–849, October 1984.

17. Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges Resist Leak-
age: The Case of Authenticated Encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT II, volume 11922 of LNCS, pages 209–240. Springer,
2019.

18. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR ToSC,
2020(S1):390–416, 2020.

19. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated En-
cryption. IACR ToSC, 2017(1):80–105, 2017.

20. Christoph Dobraunig and Bart Mennink. Leakage Resilience of the Duplex Con-
struction. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT III,
volume 11923 of LNCS, pages 225–255. Springer, 2019.

21. Christoph Dobraunig and Bart Mennink. Leakage Resilience of the ISAP Mode: a
Vulgarized Summary. In NIST LWC Workshop, volume 2019, page 23, 2019.

22. Christoph Dobraunig and Bart Mennink. Leakage Resilient Value Comparison
with Application to Message Authentication. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT II, volume 12697 of LNCS, pages 377–
407. Springer, 2021.

23. Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In Michael Mitzenmacher, editor, STOC, pages 621–630. ACM,
2009.

24. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography. In
FOCS, pages 293–302. IEEE Computer Society, 2008.

25. Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The
"Duplication" Method). In Çetin Kaya Koç and Christof Paar, editors, CHES,
volume 1717 of LNCS, pages 158–172. Springer, 1999.

26. Chun Guo, Mustafa Khairallah, and Thomas Peyrin. AET-LR: Rate-1 Leakage-
Resilient AEAD based on the Romulus Family. In NIST LWC Workshop, 2020.

27. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Au-
thenticated encryption with nonce misuse and physical leakages: Definitions, sep-
aration results, and leveled constructions. IACR Cryptol. ePrint Arch., 2018:484,
2018. version 20190711:105233.

28. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Au-
thenticated Encryption with Nonce Misuse and Physical Leakage: Definitions, Sep-
aration Results and First Construction - (Extended Abstract). In Peter Schwabe

20

and Nicolas Thériault, editors, LATINCRYPT, volume 11774 of LNCS, pages 150–
172. Springer, 2019.

29. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. To-
wards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex
Sponge Construction. IACR ToSC, 2020(1):6–42, 2020.

30. Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Func-
tions. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages
210–225. Springer, 2006.

31. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-
Damgård Scheme with a Permutation. In Kaoru Kurosawa, editor, ASIACRYPT,
volume 4833 of LNCS, pages 113–129. Springer, 2007.

32. Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-Length
Extension: Exact Bounds and Multi-user Security. In CRYPTO, pages 3–32.
Springer, 2016.

33. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. New
Results on Romulus. NIST LWC Workshop, 2020.

34. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ci-
phers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT II, volume 8874 of LNCS, pages 274–288. Springer, 2014.

35. Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptography.
In Oded Goldreich, editor, Providing Sound Foundations for Cryptography: On the
Work of Shafi Goldwasser and Silvio Micali, pages 727–794. ACM, 2019.

36. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of LNCS, pages
104–113. Springer, 1996.

37. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael J. Wiener, editor, CRYPTO, volume 1666 of LNCS, pages 388–397.
Springer, 1999.

38. Jake Longo, Daniel P. Martin, Elisabeth Oswald, Daniel Page, Martijn Stam, and
Michael Tunstall. Simulatable Leakage: Analysis, Pitfalls, and New Constructions.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT I, volume 8873 of LNCS,
pages 223–242. Springer, 2014.

39. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Im-
possibility Results on Reductions, and Applications to the Random Oracle Method-
ology. In Moni Naor, editor, TCC, volume 2951 of LNCS, pages 21–39. Springer,
2004.

40. Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 428–446. Springer, 1989.

41. Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Extended
Abstract). In Moni Naor, editor, TCC, volume 2951 of LNCS, pages 278–296.
Springer, 2004.

42. Yusuke Naito. Optimally Indifferentiable Double-Block-Length Hashing Without
Post-processing and with Support for Longer Key Than Single Block. In Peter
Schwabe and Nicolas Thériault, editors, LATINCRYPT, volume 11774 of LNCS,
pages 65–85. Springer, 2019.

43. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight Authenticated En-
cryption Mode Suitable for Threshold Implementation. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT II, volume 12106 of LNCS, pages 705–735.
Springer, 2020.

21

44. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsider-
ing Generic Composition. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of LNCS, pages 257–274. Springer, 2014.

45. Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC, volume 5381 of LNCS, pages 328–345.
Springer, 2008.

46. Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-Resilient
Authentication and Encryption from Symmetric Cryptographic Primitives. In In-
drajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS, pages 96–108.
ACM, 2015.

47. Thomas Peyrin. Tweakable Block Cipher-Based Cryptography, Nov 12 2020.
48. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on

Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor, CRYPTO,
volume 773 of LNCS, pages 368–378. Springer, 1993.

49. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Com-
position: Limitations of the Indifferentiability Framework. In Kenneth G. Paterson,
editor, EUROCRYPT, volume 6632 of LNCS, pages 487–506. Springer, 2011.

50. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS, pages 98–107. ACM, 2002.

51. Phillip Rogaway. Nonce-Based Symmetric Encryption. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of LNCS, pages 348–359. Springer, 2004.

52. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
LNCS, pages 373–390. Springer, 2006.

53. François-Xavier Standaert. Towards an Open Approach to Side-Channel Resis-
tant Authenticated Encryption. In Chip-Hong Chang, Ulrich Rührmair, Daniel E.
Holcomb, and Patrick Schaumont, editors, ACM, page 1. ACM, 2019.

54. François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-Resilient Sym-
metric Cryptography under Empirically Verifiable Assumptions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO I, volume 8042 of LNCS, pages 335–352.
Springer, 2013.

55. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive Study
with Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of LNCS, pages 740–757. Springer, 2012.

56. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practi-
cal leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS, pages 141–151. ACM, 2010.

A Notions

A.1 The H-coefficient Technique

The H-coefficient technique is a proof method by Patarin [45] that was modern-
ized by Chen and Steinberger [13] and generalized by Hoang and Tessaro [32]
in their expectation method, which allowed to derive the fundamental lemma
as a corollary. A distinguisher A obtains outputs from a real world O1 or an
ideal world O0, where the results of its interaction are collected in a transcript
τ . The oracles can sample random coins before the experiment (often a key or an

22

ideal primitive that is sampled beforehand) and are then deterministic [13]. A
transcript τ is called attainable if Pr[Θideal = τ] > 0. Let Θ denote the set of all
attainable transcripts. The fundamental Lemma of the H-coefficients technique,
whose proof can be found e.g., in [13,45], states that we can split the set Θ into
two disjoint sets GoodT and BadT and bound the distinguishing advantage
as:

Lemma 2 ([13,45]). Assume, there exist ϵ1, ϵ2 ≥ 0 s. t. for any transcript τ ∈
GoodT, it holds Pr [Θreal = τ] / Pr [Θideal = τ]≥ 1−ϵ1 and Pr [Θideal ∈ BadT] ≤
ϵ2. Then, for all distinguishers A, it holds that ∆A(O1 ; O0) ≤ ϵ1 + ϵ2.

A proof can be found, e.g., in [13].

A.2 Compatible Permutations

Let π̃ ∈ P̃erm(T ,X) be a permutation for finite non-empty sets T and X . Let
a transcript τ = {(T i, Xi, Y i)}, for i ∈ [q], be a set of queries and responses. A
permutation π̃ is compatible to a transcript τ , if for all elements in τ , it holds
that Y i = π̃T i

(Xi) and Xi = (π̃T i

)−1(Y i). We denote by

Comp(τ) def
=

{
π̃ ∈ P̃erm(T ,X) : Y i = π̃T i

(Xi),∀i ∈ [q]
}

the set of all permutations π̃ that are compatible to the transcript τ . Thus, if π̃
is compatible to τ , it holds that π̃ ∈ Comp(τ).

B qCIML2 Proof of TEDT2

This section summarizes the qCIML2 analysis of TEDT2. It is naturally very
similar to that of TEDT of Berti et al. [8] and differs only in few aspects that will
be highlighted. Throughout the section, we will use K = Fn

2 , TD = D×T1×T2 =
F2n
2 , where D = Fd

2, T1 = Fn−d
2 , and T2 = Fn

2 .

B.1 Idealizing the KDF and TGF

The analysis will employ a sequence of lemmas. First, we replace the two calls in
the key-derivation function KDF[π̃]K by ideal tweakable block ciphers π̃1, π̃2 ↞
TBC(K, TD,Fn

2) and the tag-generation function by π̃3 ↞ TBC(K, TD,Fn
2) that

cannot be queried separately. The difference between both settings is upper
bounded by

AdvTPRP
π̃ (2qc) +AdvSTPRP

π̃ (qe, qd) . (4)

23

B.2 Multi-semi-collision Resistance

While we have a nonce in the tag-generation function, in order to upper bound
the security under nonce-misusing adversaries, we still need to consider the
probability of semi-collisions in the hash. We have to consider an upper bound
on r-multi-collisions of outputs from the Davies-Meyer compression function1

to bound the probability to obtain multi-collision in values V . For this pur-
pose, recall the definition of the Davies-Meyer compression function DM[π̃] :
K × TD,×Fn

2 → Fn
2 :

DM[π̃](K,T,X)
def
= π̃T

K(X)⊕X .

For π̃ ∈ TBC(K, TD,Fn
2), let the single-input DM[π̃](X) for X = (K, T , M1,1,

M1,2) be a short-hand version for DM[π̃](K, (D,T,M1,1),M1,2), where D ∈ D is
a domain constant. Lemma 3 is given in [8]. The proof can be found ibidem.

Lemma 3 (r-collision Multi-collisions of DM [8]). For any adversary A
that makes at most q ≤ 2n/2 queries to π̃ ↞ TBC(K, TD,Fn

2) and positive
integer r, the probability to find r pairwise distinct X1, . . . , Xr ∈ Fn

2 such that

Pr [DM[π̃](X1) = · · · = DM[π̃](Xr)] ≤
(2q)r

r! · 2(r−1)n
.

B.3 Collision-freeness of the Hash Function

The next step is to upper bound the probability of hash-function collisions and
multi-collisions in one part of the hash output. We consider Hash[π̃] as in al-
gorithm 1, where π̃ ↞ TBC(K, TD,Fn

2). Naturally, the structure of the analysis
will be similar to that by Berti et al. [8], but the resulting bound will differ from
that of TEDT.

We consider a transcript τ = τh∪τp, where τh = {(U i, V i,M i)} consists of ex-
actly the queries to the construction and τp = {(Ki, T i, Xi, Y i)} to queries to the
primitive or to its inverse and the corresponding result Y i = π̃T i

Ki(Xi). We adopt
the strategy of matching-query adversaries from [8,30]. Every time A makes a
primitive forward query to Y ← π̃T

K(X), the challenger makes an additional
matching query Y ′ ← π̃T

K(X ′) with X ′ = X ⊕ 1 (which reflects the primitive
call in the lower lane of Hash) and stores (K,T,X, Y) and (K,T,X ′, Y ′) into
the adversary’s query transcript τp. Similarly, every time A makes a primitive
backward query to X ← (π̃T

K)−1(Y), the challenger makes a matching query
Y ′ ← π̃T

K(X ′) with X ′ = X ⊕ 1, and inserts (K,T,X, Y) and (K,T,X ′, Y ′)
into τ . Thus, every time A makes a primitive query, the transcript contains
both top and bottom queries. For calls M i to the construction , we compute
(U i, V i)← Hash[π̃](M i), add (U i, V i,M i) to τh, and add primitive queries for
each top-lane call in Hash and the corresponding matching query for the bottom-
lane call to τp, i.e., (V i

j , (M
i
j,1,M

i
j,2), U

i
j , Y

i
j) and (V i

j , (M
i
j,1,M

i
j,2), U

i
j ⊕ 1, Y i

j).

1 Attributed to Meyer in [16] but well-known as Davies-Meyer scheme, cf. [48].

24

Let ∃∗ mean “there exist pairwise distinct”. We define the hash-collision event

coll def
= ∃∗(U i, V i,M i), (U j , V j ,M j) ∈ τc : Hash[π̃](M i) = Hash[π̃](M j) .

We further define

vmulticoll(r) def
= ∃∗(U1, V 1,M1), . . . , (Ur, V r,Mr) ∈ τc : V

1 = · · · = V r .

Lemma 4. Let n ≥ 4 and H[π̃] be short for Hash[π̃] with π̃ ↞ TBC(K, TD,Fn
2).

Let A be an adversary on H[π̃] so that τp contains at most qp ≤ 2n/8 primitive
queries. Then,

Pr [coll ∨ vmulticoll(n)] ≤ 5q2 + 2q

22n
.

Proof. We define three bad events during the interaction of A with its oracles:

– bad1: A collision occurs between the outputs of compression-function calls.
There exist four pairwise distinct queries (V i, (M i

1, M i
2), U i, Y i), (V i, (M i

1,
M i

2), U i⊕1, Y ′i), (V j , (M j
1 , M j

2), U
j , Y j), (V j , (M j

1 , M j
2), U

j⊕1, Y ′j) ∈ τ
such that

U i ⊕ Y i = U j ⊕ Y j and (U i ⊕ 1)⊕ Y ′i = (U j ⊕ 1)⊕ Y ′j .

– bad2: The initival vector of Hash is hit, i.e., ∃(U, V , (M1,M2), Y), (U ⊕ 1,
V , M1, M2, Y ′) ∈ τp s.t.

π̃M1,M2

V (U)⊕ U = U0 and π̃M1,M2

V (U ⊕ 1)⊕ (U ⊕ 1) = V0 .

– bad3: An n-multi-collision occurs in the bottom row, i.e. ∃∗(V 1, (M1
1 , M1

2),
U1, Y 1), . . ., (V n, (Mn

1 , Mn
2), Un, Y n) ∈ τp such that U1 ⊕ 1⊕ Y 1 = · · · =

Un ⊕ 1⊕ Y n.

bad1. Since the inputs to the blocks differ, each output from π̃ is sampled
uniformly at random from a set of at least 2n− 2q values. Thus, the probability
for a collision in U i ⊕ Y i = U j ⊕ Y j is at most 1/(2n − 2q). A similar argument
can be derived for a collision in V . Over all query pairs, it follows that

Pr [bad1] ≤
∑

1≤j<i≤q

Pr[H(Xi) = H(Xj)] ≤
(
q
2

)
(2n − 2q)2

≤ q2

22n
.

using q ≤ 2n/8.

bad2. The probability that an output produces Y = U and Y ′ = U ⊕ 1 is at
most 1/(2n − 2q) . This holds for both calls. Since q ≤ 2n/8, it follows that

Pr [bad2] ≤
q∑

i=1

1

(2n − 2q)2
≤ 2q

22n
.

25

bad3. Given Lemma 3, we have that

(2q)n

n! · 2(n−1)n

For n ≥ 4, it holds that n! ≥ 2n. Thus,

Pr [bad3] ≤
(
2q

2n

)n

≤ 4q2

22n
.

The union bound yields

Pr[bad] ≤
3∑

i=1

Pr[badi] ≤
5q2 + 2q

22n
.

It remains to show that every other transcript cannot lead to a collision or
to an n-semi-collision in V , i.e., to any of the bad events. We define a good
attainable transcript as a transcript that is not bad, i.e., no bad event occurs.

Absence of Collisions. Let distinct (U, V,M), (U ′, V ′,M ′) ∈ τc and m denote
the number of 2n-bit blocks of M and m′ that of M ′. Assume that Mtail is the
maximal common suffix of M and M ′:

M
def
= (Mhead ∥Mi ∥Mtail)

M ′ def
= (M ′

head ∥M ′
j ∥Mtail) ,

where the length of |Mhead|, |M ′
head|, and |Mtail| are multiples of 2n bits. There

exist two cases:

Case (1): Either (Mhead ∥Mi) or (M ′
head ∥M ′

j) is empty. W.l.o.g., assume
that (Mhead ∥Mi) is empty. Since U is not empty, Mtail is not empty. Further-
more, it holds that H[π̃](M ′

head ∥M ′
j) ̸= (U0, V0) = (0n, 0n) since the transcript

is good. Thus, the first-block calls in Mtail are different. Since we excluded non-
trivial collisions in good transcripts, this leads to (U, V) ̸= (U ′, V ′).

Case (2): Neither (Mhead ∥Mi) nor (M ′
head ∥M ′

j) is empty. Since we ex-
cluded non-trivial collisions in good transcripts, this leads to

H[π̃](Mhead ∥Mi) ̸= H[π̃](M ′
head ∥M ′

j) .

If tail is empty, we are done. If tail is not empty, no collision can follow since
the transcript is good.

Absence of n-Multi-collisions. It remains to show that there is no n-multi-
collision in a good transcript. Let (M i

1, . . . ,M
i
mi)

2n←−M i denote the i-th message
in 2n-bit blocks after padding and length encoding. Since the transcript is good
and no message is empty, the tuples consisting of the respective final message
input blocks and the final chaining values, (Mmi , Umi−1, Vmi−1), are necessarily
pairwise distinct. By the definition of the compression function, an n-multi-semi-
collision is equivalent to an n-multi-collision of the Davies-Meyer compression
function. Since we assume that the transcript is good, this cannot occur.

26

B.4 Composition Theorem

We restate the theorem here to aid the reader.

Theorem 3 (qCIML2 Security). Let π̃ ∈ TBC(K, TD,Fn
2), K ↞ K, and n ≥ 4.

Let A be a qCIML2-adversary on Π[π̃]K = TEDT2[π̃]K that makes at most qc
construction queries of at most σ message blocks and σa associated-data blocks in
total and qp primitive queries. Let qe be the numbers of encryption construction
queries, qd the cumulative decryption construction queries to the oracles and
µ be the number of encryption queries with repeating nonces in non-challenge
encryption queries. Let σp = 3σ + σa + 2qc + qp ≤ 2n−3 be the number of ideal-
primitive calls in all primitive and construction queries of A. Let the sets of
leakage functions LE and LD be as defined in Section 6. Then

AdvqCIML2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤ AdvTPRP
π̃ (2qc) +AdvSTPRP

π̃ (qe, qd)

+
2n(qp + qd) + 3(σ + σa) + 1

2n
+

9σ2
p + 2σp + 8qp(qd + µ)

22n
.

Proof. The proof follows the steps of that for TEDT by [8]. We define a transcript

τ
def
= ({K}, τc, τp, τKDF, τTGF)

that contains the queries of A and their corresponding responses:

– τp contains all primitive queries (Ki, Si, Xi, Y i) of A and their corresponding
responses.

– For all construction queries of A, τKDF consists of exactly all queries to the
ideal key-derivation function (π̃1)

Si

Ki(N i) and (π̃2)
Si

Ki(N i) and the responses.
– Similarly, for all construction queries, τTGF consists of exactly the queries to

the ideal tag-generation function and the responses: (U i, V i, N i, T i), where
T i ← (π̃3)

Ni,V i

Ki (U i).
– Moreover, for all construction queries of A, the challenger considers all in-

ternal queries (Ki
j , S

i
j , X

i
j , Y

i
j) to π̃,

Y ← π̃
Si
j

Ki
j
(Xi

j) or its inverse Xi
j ← (π̃

Si
j

Ki
j
)−1(Y i

j) ,

and stores them in a transcript τc.

Thus, all such queries are given to A. We assume that the KDF and the TGF
components do not leak the long-term key K. We only add the long-term key
K ↞ K to the transcript as a usual proof technique to bound the transcript
probability. However, K is not given to A.

The number of primitive queries for encrypting an a-block associated data A
and an m-block message M (where we consider n-bit blocks)

– in the hash function is m+a+2 since at most two additional calls are added
by the added message length;

27

– in the encryption process is 2m.

Hence, τc consists of at most 3m+a+2 primitive queries. The same holds for valid
decryption queries. At most m+a+2 primitive calls occur in invalid decryption
queries. Thus, the number of primitive queries is at most σp = 3σ+σa+2qc+qp
in construction and additional primitive queries. Furthermore, we consider a list
of τh = {(Xi, U i, V i)} for i ∈ [qc] for the hash-function inputs Xi and outputs
(U i, V i). Note that Xi = concatn(A

i, Ci) is never the empty string since the
length has been appended.

We define the maximal multiplicity of values V as

ℓV
def
= max

V ∈Fn
2

∣∣{(Xi, U i, V i) ∈ τh : V i = V
}∣∣ .

We define an attainable transcript τ as bad if any of the following events occur:

– bad1: There exists V ∈ Fn
2 such that (X,U, V) ∈ τh and ℓV ≥ n.

– bad2: There exist distinct (Xi, U i, V i), (Xj , U j , V j) ∈ τh with Xi ̸= Xj but
(U i, V i) = (U j , V j).

– bad3: There exists (Ki, Si, Xi, Y i) ∈ τKDF and (Kj , Sj , Xj , Y j) ∈ τp such
that (Ki, Si, Xi) = (Kj , Sj , Xj) or (Ki, Si, Y i) = (Kj , Sj , Y j).

– bad4: There exists (Ki, Si, Xi, Y i) ∈ τTGF and (Kj , Sj , Xj , Y j) ∈ τp such
that (Ki, Si, Xi) = (Kj , Sj , Xj) or (Ki, Si, Y i) = (Kj , Sj , Y j).

– bad5: There exists a collision of a TGF, KDF, encryption, or primitive query
with a primitive query used in the hash function.

– bad6: There exists a TGF query (Ki, U i, V i, N i, T i) ∈ τTGF that was gener-
ated from a query (N i, Ai,M i, Ci, T i) and (2) a hash query (Xj , U j , V j) ∈ τh

with Xj = pad(Aj , Cj) and H(Xj) = (U j , V j) = (U i, V i) and (π̃3)
Ni,V i

K (U i) =
T i.

Otherwise, we call τ good. We define BadT for the set of all bad attainable
transcripts in the ideal world and GoodT for the set of all good attainable
transcripts.

B.5 Bad Transcripts

Lemma 5. It holds that

Pr[Θideal ∈ BadT] ≤ 2n(qp + qd) + 3(σ + σa) + 1

2n
+

9σ2
p + 2σp + 8qp(qd + µ)

22n
.

Proof. In the following, we upper bound the probabilities of each the individual
bad events.

bad1 and bad2. For bad1, we have an multi-semi-collision of n colliding values
in V that have been generated by the Davies-Meyer construction inside Hash[π̃].
We know this event from Lemma 3. Lemma 4 includes both bad events. We have
to insert σp for the number of primitive queries in the construction hash and
primitive queries. Thus, we can upper bound the probability of this event as

Pr [bad1 ∨ bad2] ≤
5σ2

p + 2σp

22n
.

28

bad3. Among the two KDF primitives, the qp primitive queries can target only
one of them each. Since all KDF queries employ the same key and the adversary
needs to guess and hit the correct key, the probability is at most

Pr [bad3] ≤
qp
2n

.

bad4. Similarly as for bad2, the transcript contains qp primitive queries and qc
queries that call the tag-generation function exactly once each. Note that no
internal encryption or decryption query in the encryption or decryption process
can hit K by accident due to the domain separation. We can condition on the
absence of more than n-multi-collisions. Hence, each primitive query can cover at
most n values, and can collide only with nonce-repeating or decryption queries.
Since the adversary needs to guess and hit the correct key, the probability is
upper bounded by

Pr [bad4 |¬bad1] ≤
n · qp
2n

.

bad5. The hash function is the only part of TEDT2 wherein domain separation
is absent. Hence, collisions in the tweakeys between primitive calls in the hash
function and other primitive queries or primitive calls in KDF, encryption, or
TGF primitive queries can occur. There exist two kinds of queries: (1) initial
hash queries and (2) intermediate hash queries. Each of them can collide with
the tweakeys in TGF, KDF, or in primitive calls in the encryption.

Collisions with Initial Hash Queries. For initial-value queries, the proba-
bility to hit the long-term secret K is

Pr [V0 = K] =
1

2n

for the single initial value. To hit a tweakey of any of at most 2σ+2qc primitive
calls in encryption queries with the key V0 is∑

i∈[qc]

∑
j∈[mi]

Pr
[
Ki

j = V0

]
≤ 2σ + 2qc + 1

2n
.

Hence, for initial-value queries, the probability is at most

2σ + 2qc + 1

2n
.

Collisions with Intermediate Hash Queries. For the up to σ + σa ≤ σp

intermediate-hash queries, the probability to hit the key and the nonce input of
any of at most 2σ + 2qc ≤ σp primitive calls in encryption queries is at most

Pr
[
(U i

j , V
i
j) = (N i′ ,Ki′

j′)
]
≤ (σ + σa) · 2(σ + qc)

(2n − σ)2
≤

4σ2
p

22n
.

29

The probability to hit the long-term secret K in the TGF or KDF with any
intermediate hash query is at most∑

i∈[qc]

∑
j∈[mi]

Pr
[
V i
j = K

]
=

σ + σa

2n

since the single secret has to be hit. It follows that

Pr [bad5] ≤
4σ2

p

22n
+

3σ + 3σa + 1

2n
.

bad6. It remains to upper bound the probability that A forges successfully, for
a transcript wherein the previous events bad1, . . . , bad4 do not occur. Then,
there exists (1) a TGF query (Ki, U i, V i, N i, T i) ∈ τTGF that was generated
from a query (N i, Ai,M i, Ci, T i) and (2) a hash query (Xj , U j , V j) ∈ τh with
Xj = pad(Aj , Cj) and H(Xj) = (U j , V j) = (U i, V i) and (π̃3)

Ni,V i

K (U i) = T i.
The hash query has produced two primitive queries (Uk, V k, (Xk

1 , X
k
2), Y

k)

and (Uk ⊕ 2⊕ 1, V k, (Xk
1 , X

k
2), Y

′k) such that

Uk ⊕ Y k = U j(Uk ⊕ 2⊕ 1)⊕ Y k = V j

and Xk = (Xk
1,1, X

k
1,2, . . . , X

k
mi,1, X

k
mi,2). We distinguish between two cases.

Case 1: The TGF Query Followed the Primitive Queries. If the TGF
query (Ki, U i, V i, N i, T i) was in forward direction, it would have been result of
an encryption query. However, since we excluded hash collisions, it can also not
be due to an earlier distinct encryption query (N j , Aj ,M j , Cj , T j); if it resulted
from the same query as an earlier encryption query, it would be a prohibited
trivial decryption query. Hence, the TGF query must be in backward direction.

For a transcript wherin bad1 through bad4 did not occur, the number of
earlier hash queries (Xk, Uk, V k) with V k = V i is at most n. This implies that
the number of target values U is also at most n. For each of them, the value U is
chosen uniformly at random from a set of size at least 2n−σ and the probability
that it is correct is therefore

Pr

[(
(π̃3)

Ni,V i

K

)−1

(T i) = U i

]
≤ 1

2n − σ
≤ 2

2n
,

and over at most n queries that could be hit by qd decryption queries

Pr [Case 1] ≤ 2nqd
2n

.

Case 2: The Primitive Queries Followed The TGF Query. In this case,
the hash function output must match the values of the TGF query. For π̃, the
probability to hit U i and V i for any primitive queries is at most

Pr

 U i = π̃
V k,Xk

2

Xk
1

(Uk)⊕ Uk

V i = π̃
V k,Xk

2

Xk
1

(Uk ⊕ 2⊕ 1)⊕ Uk ⊕ 2⊕ 1

 ≤ 1

(2n − σ)2
≤ 4

22n
.

30

At most 2qp primitive queries can occur. While they can match potentially all
qd decryption TGF queries, in encryption direction, they can only match any of
µ nonce-repeating TGF queries. Therefore

Pr [Case 2] ≤ 8qp(qd + µ)

22n
.

It follows that

Pr

[
bad6

∣∣∣∣∣
5∧

i=1

¬badi

]
≤ 2nqd

2n
+

8qp(qd + µ)

22n
.

Then, the claim in Lemma 5 follows from

Pr [bad] ≤
3∑

i=1

Pr[badi] + Pr [bad4|¬bad1] + Pr [bad5] + Pr

[
bad6

∣∣∣∣∣
5∧

i=1

¬badi

]

≤
5σ2

p + 2σp

22n
+

qp
2n

+
nqp
2n

+
4σ2

p

22n
+

3σ + 3σa + 1

2n
+

2nqd
2n

+
8qp(qd + µ)

22n

≤ 2n(qp + qd) + 3(σ + σa) + 1

2n
+

9σ2
p + 2σp + 8qp(qd + µ)

22n
.

B.6 Good Transcripts

Lemma 6. For an attainable good transcript τ , it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
= 1 .

Proof. First, we consider the probability of the transcript in the ideal world.
Since the key is sampled uniformly at random, the probability for each value
of K is |K|−1. We reorder the elements in τc ∪ τp according to their tweakeys
(Ki, Si) in lexicographic manner. We define

ℓi
def
=

∣∣{(K,S,X, Y) : (K,S) = (Ki, Si)
}∣∣

for the number of distinct queries with the tweakey (Ki, Si). Then, the proba-
bility of the ideal transcript is given as

Pr [Θideal = τ] =
1

|K|
· Pr [π̃ ∈ Comp(τ)] ·

∏
i

1

(2n)ℓi
.

For the real world, it holds that Pr [Θreal = τ] is given by

=
1

|K|
· Pr

[
π̃Si

Ki(Xi) = Y i for all (Ki, Si, Xi, Y i) ∈ τp

∣∣∣ π̃ ∈ Comp(τ)
]
·

Pr [π̃ ∈ Comp(τ)] .

Since τ is good, there are no tweakey collisions in queries. Thus

Pr
[
π̃Si

Ki(Xi) = Y i for all (Ki, Si, Xi, Y i) ∈ τp

∣∣∣ π̃ ∈ Comp(τ)
]
=

∏
i

1

(2n)ℓi
.

As a result, the claim in Lemma 6 follows.

31

C qCPA$mL2 Analysis of TEDT2 with RCTR[π̃]

We restate the lemma to aid the reader.

Lemma 6 (qCPA$mL2 Security of TEDT2 with RCTR). Let π̃ ↞ TBC(K,
TD, Fn

2). Let A be an qCPA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that asks
at most qe encryption queries and qd decryption queries of at most σ blocks in
total and qp primitive queries. Let F [π̃] be an iteration of RCTR[π̃]. Let n ≥ 2,
σ ≤ 2n−3, and let LE and LD be as defined at the top of Section 7. Then

AdvqCPA$mL2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤
4qp(σ + qc) + 4(σ + qc)

2

22n

+ 2σAdvLUP-4
F [π̃],Lin,Lout(p, σ + qc + qp) + σAdvXOR$

F [π̃],Lout,L⊕(p, 2σ + 2qc + qp) .

Proof. The proof follows similar steps as the muCCAmL2 proof by [8] on TEDT.
Though, we consider only a single user and we can safely restrict decryption
queries to such that are results of previous encryption queries since here, we
assume that the adversary is unable to produce a valid forgery. In the following,
we employ a sequence of games G1 through G4. In that sequence, Game G1
represents the left-hand side of Equation (3),

∆
A
(ÊK , ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , $̂E , $̂D, π̃
±,LE ,LD) ,

with the restrictions O2,N ̸≻ O1,N , {O1,N , O2,N} ̸≻ O2,N , and O2 ↪→ O3. Game G4
represents the right-hand side of Equation (3). We will move stepwise from
Game Gi to Gi+1 for i = 1..3. For each step, we define an adversary Ai whose
goal is to distinguish between Game Gi to Gi+1. We write ∆Gi,j for the maximal
advantage for all adversaries Ai to distinguish between Game Gi and Gj , where
all adversaries use equal query resources as A.

We introduce an IdealPRG instead of RCTR[π̃] in the process. We denote the
latter as RealPRG[π̃]. We use a shorthand notation for the games, where we focus
only on the PRG used in the oracles O1, O2, O3 and indicate by M that real
messages are encrypted, and by $ that random messages are encrypted:

– ∆G1,4 =def ∆A(RealPRG[π̃](M) ; RealPRG[π̃]($))
– ∆G1,2 =def ∆A(RealPRG[π̃](M) ; IdealPRG[π̃](M))
– ∆G2,3 =def ∆A(IdealPRG[π̃](M) ; IdealPRG[π̃]($))
– ∆G3,4 =def ∆A(IdealPRG[π̃]($) ; RealPRG[π̃]($))

Note that the advantage of the final step is already considered in the second step
by ∆G1,2. Using the triangle inequality, we can upper bound the advantage by

(3) ≤ ∆G1,4 ≤
3∑

i=1

∆Gi,i+1 .

32

Algorithm 6 Games G1 to G3. IdealPRG replaces RealPRG in G2. Note that
the primitive oracles π̃± and leakage functions belong to all games. The boxed
statements belong only to Game G3 and G4.

11: procedure Initialize(τ)
12: b← {0, 1}; K ↞ K; Q ← ∅; bad← false

21: function RealPRG[π̃]N (M)
22: L← []

23: Q ∪← {(K, (6, 0, 0)), (K, (7, 0, 0))}
24: K1 ← π̃6,0,0

K (N)
25: T1 ← π̃7,0,0

K (N)

26: (M1, . . . ,Mm)
2n←−M

27: for i← 1..m do
28: for d← 0..3 do Q ∪← (Ki, (d, i, Ti))

29: Ki+1 ← π̃0,i,Ti
Ki

(N)

30: Ti+1 ← π̃1,i,Ti
Ki

(N)

31: Yi ← π̃2,Ti,i
Ki

(N) ∥ π̃3,Ti,i
Ki

(N)

32: Mi ↞ F|Mi|
2

33: Ci ← trunc|Mi|(Yi)⊕Mi

34: Li ← (
35: Leak4up(Lin, Lout,Ki, (0, i, Ti), N,Ki+1),
36: Leak4up(Lin, Lout,Ki, (1, i, Ti), N, Ti+1),
37: Leak4up(Lin, Lout,Ki, (2, i, Ti), N, Yi,1),
38: Leak4up(Lin, Lout,Ki, (3, i, Ti), N, Yi,2),
39: LeakXOR(L⊕,Mi,1, Yi,1, Ci,1),
40: LeakXOR(L⊕,Mi,2, Yi,2, Ci,2))

41: L
∪← Li

42: C ← C1 ∥ · · · ∥Cm

43: return (L, C)

46: function π̃d,i,T
K (X)

47: if (K, (d, i, T)) ∈ Q then bad← true
48: return π̃d,i,T

K (X)

51: function (π̃d,i,T
K)−1(Y)

52: if (K, (d, i, T)) ∈ Q then bad← true
53: return (π̃d,i,T

K)−1(Y)

56: procedure Initialize(τ)
57: b← {0, 1}; K ↞ K; Q ← ∅; bad← false

61: function IdealPRGN (M)
62: L← []

63: Q ∪← {(K, (6, 0, 0)), (K, (7, 0, 0))}
64: K1 ↞ Fn

2

65: T1 ↞ Fn
2

66: (M1, . . . ,Mm)
2n←−M

67: for i← 1..m do
68: for d← 0..3 do Q ∪← (Ki, (d, i, Ti))

69: Ki+1 ↞ Fn
2

70: Ti+1 ↞ Fn
2

71: Yi,1 ↞ Fn
2

72: Yi,2 ↞ Fn
2

73: Mi ↞ F|Mi|
2

74: Ci ← trunc|Mi|(Yi)⊕Mi

75: Li ← (
76: Leak4up(Lin, Lout,Ki, (0, i, Ti), N,Ki+1),
77: Leak4up(Lin, Lout,Ki, (1, i, Ti), N, Ti+1),
78: Leak4up(Lin, Lout,Ki, (2, i, Ti), N, Yi,1),
79: Leak4up(Lin, Lout,Ki, (3, i, Ti), N, Yi,2),
80: LeakXOR(L⊕,Mi,1, Yi,1, Ci,1),
81: LeakXOR(L⊕,Mi,2, Yi,2, Ci,2))

82: L
∪← Li

83: C ← C1 ∥ · · · ∥Cm

84: return (L, C)

86: function Leak4up(Lin, Lout,K, T,X, Y)
87: return [Lin(K,T,X)]p, [L

out(K,T, Y)]p

91: function LeakXOR(L⊕, X, Y, Z)
92: return [L⊕(X,Y)]p, [L

out(Y,Z)]p

Difference ∆G1,2. Next, we define an ideal PRG as on the right-hand side of
Algorithm 6. For each construction query (N j ,M j), it

1. Samples all keys and tweaks Kj
i , T

j
i , as well as all would-be primitive outputs

Y j
i,1, Y

j
i,2 uniformly and independently at random from Fn

2 ,
2. Computes Cj as Cj

i = trunc|Mj
i |
(Y j

i)⊕M j
i ,

3. Computes the leakages L⊕, Lin, and Lout with the help of its primitive oracle
π̃ and π̃−1, collects the would-be leakages into a vector Lj , and

4. Outputs (Lj , Cj).

bad Query. We define bad as the event that the tweakey (K,S) used in a call to
π̃S
K for any block in a construction query collides with any tweakey with a call to

π̃± in a primitive query or with a distinct block of a construction query. Formally,
the first case is fulfilled iff there exists a construction query (N j ,M j , Cj) with

33

(M j
1 , . . . ,M

j
mj)

2n←− M j and a primitive query (Kk, Sk, Xk, Y k) such that for
some i ∈ [0..mj], j ∈ [qc], and k ∈ [qp], it holds that (Kj

i , S
j
i) = (Kk, Sk).

There are 2σ calls to the primitives in RCTR if all queries have a multiple of
2n blocks. There can be up to 2qc further primitive calls if the final 2n-bit
block of each message is partial. The second event is fulfilled iff there exists a
second construction query (N j′ ,M j′ , Cj′) with (M j′

1 , . . . ,M j′

mj′)
2n←− M j′ such

that (Kj
i , S

j
i) = (Kj′

i′ , S
j′

i′) for any j′ ̸= j and i′ ∈ [0..mj′]. Here, there can be a
collision of tweakeys among those 2(σ + qc) encrypted blocks. Over all queries,
the probability is upper bounded by

Pr[bad] ≤ qp · 2(σ + qc)

22n
+

(
2(σ+qc)

2

)
22n

≤ qp · 2(σ + qc) + 2(σ + qc)
2

22n
.

If no collision occurs among the guesses, then all tweakeys are fresh. In this case,
there is would be no difference between both games G1 with the RealPRG and G2
with the IdealPRG in the black-box setting. Though, under leakage and absence
of bad queries, we show that the advantage of a distinguisher A1,2 that tries to
distinguish between Games G1 and G2 can be reduced to the advantage of an
LUP-4 distinguisher Au on an isolated call to the PRG by A1,2.

We define F [π̃] for one iteration of the LUP-4 game and an LUP-4 adversary
Au that runs an instance of A1,2. For each primitive query of A1,2, Au simply
forwards the query to its corresponding primitive oracle, collects the query to-
gether with the output in a transcript τp = {(Ki, Si, Xi, Y i)} for i ∈ [qp] and
forwards the response to A1,2. For each construction query of A1,2, (N j ,M j)

with (M j
1 , . . . ,M

j
mj)

2n←−M j for j ∈ [qc], Au does the following:

1. Au samples k ↞ [mj], Kj
1 ↞ Fn

2 , T j
1 ↞ Fn

2 . Moreover, it initializes an empty
list of leakages L.

2. For i = 1..k − 1, Au queries its primitive oracle π̃ with (Kj
i , i, T

j
i , N

j) to
obtain (Lj

i ,K
j
i+1, T

j
i+1, Y

j
i), computes Cj

i ← Y j
i ⊕M j

i , and adds the leakage
Lj
i to the list Lj .

3. Au queries its primitive oracle π̃ with (Kj
k, k, T

j
k , N

j) to obtain (Lj
i ,K

j
k+1,

T j
k+1, Y

j
k). Then, Au queries its LUP-4 challenger with (Kj

k, k, T
j
k , N

j) to
obtain (Lj

k,K
j
k+2, T

j
k+2, Y

j
k+1) from the response, computes Cj

k+1 ← Y j
k+1⊕

M j
k+1, and adds the leakage to the list Lj .

4. For i = k+2..mj , Au queries primitive oracle with (Kj
i , i, T

j
i , N

j) to obtain
(Lj

i ,K
j
i+1, T

j
i+1, Y

j
i) and computes Cj

i ← Y j
i ⊕M j

i , and adds the leakage to
the list Lj .

5. Au returns (Lj , Cj) with Cj = (Cj
1 ∥ . . . ∥C

j
mj) to A1,2.

At the end of the interaction, Au outputs a set of guesses for the used tweakeys
K that consists of all tweakeys in the primitive queries of A1,2, K = {(K,S) :
(K,S,X, Y) ∈ τp} for any X, Y ∈ Fn

2 .
The advantage of the distinguisher A1,2 is inherited by Au who can measure

its leakage of the LUP-4 query p times. The difference consists of the σ indices

34

over the guess of k. Hence, the advantage between the games is upper bounded
by

∆G1,2 ≤ σ ·AdvLUP-4
F [π̃] (p, σ + qc + qp) +

qp · 2(σ + 2qc) + 2(σ + 2qc)
2

22n
.

Difference ∆G2,3. Since the IdealPRG outputs a random keystream, in the
black-box setting, its outputs would be indistinguishable from random. Though,
under leakage, there is a remaining advantage that we can reduce to that of
an XOR$ adversary. We follow the stepwise approach by Berti et al. of many
hybrid adversaries. We define an adversary Ax that simulates a distinguisher
A2,3 whose aim is to distinguish between Games G2 and G3. Whenever A2,3

asks a primitive query to π̃±, Ax answers it with its own primitive oracle π̃±,
forwards the responds to A2,3, and stores the query and response into a transcript
τp. For each construction query of A2,3, (N j ,M j) with (M j

1 , . . . ,M
j
mj)

2n←−M j

for j ∈ [qc] and some fixed index k ∈ [mj], Ax does the following:

1. Ax samples K1 ↞ Fn
2 , T1 ↞ Fn

2 . Moreover, it initializes an empty list of
leakages L.

2. For i = 1..k − 1, Ax samples unifomly random values Kj
i+1, T

j
i+1, Y

j
i , com-

putes Cj
i ← Y j

i ⊕M j
i and leakage Lj

i as IdealPRG and stores Lj
i into the list

Lj .
3. Ax samples Kj

k and T j
k . For c ∈ {1, 2}, it builds Sj

k,c = (c+1, k, T j
k), submits

it together with M j
k,c to its XOR$ challenger to obtain (Lj

k, C
j
k,c). It computes

the would-be leakage Lj
k,c. It builds Cj

k = Cj
k,1 ∥C

j
k,1 and Lj

k = Lj
k,1 ∥L

j
k,2

and adds it to the list Lj .
4. For i = k + 1..mj , Ax proceeds as for i = 1..k − 1.
5. Ax returns (Lj , Cj) with Cj = (Cj

1 ∥ . . . ∥Cj
m) to A2,3.

6. Ax forwards the guess of b′ from A2,3 to its own challenger.

We see that the advantage of Ax with p leakage trails each is inherited from
A2,3. We have to build σ such adversaries Ax over all queries and blocks that
A2,3 queries to fully reduce it. Over all blocks, we obtain that

∆G2,3 ≤ σ ·AdvXOR$
F [π̃] (2σ + 2qc + qp) .

Our claim in Lemma 1 follows from summing up the individual bounds.

D Blackbox Security of NHaT with Keyed Hashing

For the sake of completeness, we provide also a black-box security bound of
NHaT in the following.

35

D.1 Black-box Model: MAC Security

A message authentication code (MAC) Π consists of two algorithms Auth :
K × M → T and Verify : K × M × T → {⊥,⊤} for authentication and
verification, respectively. The canonical MAC defines the verification function
with AuthK as

VerifyK(M,T) =

{
⊤ iff AuthK(M) = T

⊥ otherwise.
.

Definition 6 (MAC Security). Let Π = (T ,V) be a MAC and K ↞ K. Then,
the MAC advantage of an adversary A on F is defined as AdvMAC

TK ,VK
(A)

def
=

∆A(TK ,VK ; TK ,⊥), where O1 ̸↪→ O2.

Note that this is equivalent that A forges, where to forge means that an
adversary A finds a valid message-tag tuple (M,T) that it has not queried to
the authentication oracle before. Valid means that VerifyK(M,T) = ⊤. The
similar notions nMAC and sdMAC differ only in the domains of the MAC in
the sense that the former takes a nonce input whereas the latter is stateless
deterministic.

Lemma 7 (Lemma 3 in [14]). Let S = {S1, . . . , Sr}, λ= be a list of permuta-
tion equalities and λ ̸= be a list of permutation inequalities compatible with λ=.
Let q =def |λ=| and q′ =def |λ ̸=|. Assume q, q′ < 2n. For i = 1..r, let qi be the
number of (S,X, Y) ∈ λ= such that Si = S. Then, for (πs) ↞ Perm(π)s

Pr [(πs) ∈ Comp(λ)] ≥ 1∏r
i=1 (2

n)qi

(
1− q′

2n −max{qi, . . . , qr}

)
.

D.2 nMAC Security of NHaT

Theorem 3 (nMAC Security of NHaT). Let Ẽ ∈ TBC(K,Fn
2 ×N ,Fn

2). Let
H : KH ×M → Fn

2 and H : K′
H ×M → Y be ϵ-AU. Further, let K ↞ K,

KH ↞ KH , K ′
H ↞ K′

H be independent keys. Let qm and qv be integers for the
number of MAC and verification queries of A such that qm < 2n and µ be the
number of nonce-repeating queries. Then, AdvnMAC

HaT[ẼK ,H]
(qm, µ, qv) is at most

AdvTPRP
ẼK

(qm + qv) + 2(µ− 1)qmϵ2 + µqvϵ
2 +

qmqvϵ
2

2n
+

qv
2n − µ

.

One can see from Theorem 3 that a nonce-respecting adversary can only
guess the correct authentication tag in verification queries, the number of which
can be limited by a surrounding protocol. This bound is considerably better as
the q2ϵ2 security of HaT. If nonces repeat often, the security of NaT degrades to
the birthday bound, whereas that of HaT and NHaT remain at n bit for optimal
hash functions.

36

Proof of Theorem 3. The first step is to replace ẼK with a permutation π̃ ↞
P̃erm(TD,Fn

2) that cannot be queried by A. The advantage to distinguish be-
tween both settings is upper bounded by

AdvTPRP
ẼK

(qm + qv) .

Next, we follow the H-coefficient technique. Let τ = (τm, τv,KH ,K ′
H) denote

the transcript of A where

τm = ((M1, N1, T1), . . . , (Mqm , Nqm , Tqm)),

τv = ((M ′
1, N

′
1, T

′
1), . . . , (M

′
qv , N

′
qv , T

′
qv))

denote MAC and verification queries, respectively. Let Θreal and Θideal represent
random variables for the transcripts in the real and ideal world, respectively. We
define a variable bad that is set if any of the following bad events occurs:

– bad1: There exist distinct MAC queries (Mi, Ni, Ti) and (Mj , Nj , Tj) such
that (Xi, Yi, Ni), (Xj , Yj , Ni).

– bad2: There exist distinct MAC queries (Mi, Ni, Ti) and (Mj , Nj , Tj) such
that (Ti, Yi, Ni), (Tj , Yj , Ni).

– bad3: There exist a MAC query (Mi, Ni, Ti) and a verification query (Mj , Nj , Tj)
such that (Xi, Yi, Ni, Ti) = (Xj , Yj , Nj , Tj).

We upper bound Pr[bad] ≤
∑3

i=1 Pr[badi].
We define a transcript as bad if bad = true and good otherwise. Then, the

bound in Theorem 3 follows from the fundamental lemma of the H-coefficient
technique and the application of Lemma 8 and 9.

Lemma 8. For any integers qm, qv, µ, it holds that

Pr [bad] ≤ 2(µ− 1)qmϵ2 + µqvϵ
2 +

qmqvϵ
2

2n
.

Proof. In the following, we upper bound the probability of the individual bad
events.

bad1. In this case, it follows from the ϵ-almost universality and independence of
H and H ′ that.

Pr[Xi = Xj , Yi = Yj] ≤ ϵ2 .

Since we need Ni = Nj , at least one of the queries must be nonce-repeating.
Over all query pairs, we have (µ− 1) · qm pais. Therefore, it holds that

Pr[bad1] ≤ (µ− 1)qmϵ2 .

37

bad2. In this case, it follows from the ϵ-almost universality of H ′ and the uniform
random choice of Ti and Tj in the ideal world that

Pr[Yi = Yj , Ti = Tj] ≤ ϵ · 2−n .

Since we need Ni = Nj , at least one of the queries must be nonce-repeating.
Over all query pairs, we have (µ− 1) · qm pais. Therefore, it holds that

Pr[bad2] ≤ (µ− 1)qm · ϵ · 2−n ≤ (µ− 1)qm · ϵ2 .

bad3. In this case, we need a collision in both hash outputs. Since (Ni, Ti) =
(Nj , Tj), it must follow that Mi ̸= Mj ; otherwise, the adversary is trivial. From
the ϵ-almost universality and independence of H and H ′, it follows again that

Pr[Xi = Xj , Yi = Yj] ≤ ϵ2 .

We have to consider two cases. Say the verification query comes before the MAC
query. Then, the probability that both tags are identical in the ideal world is

Pr[Ti = Tj] =
1

2n
.

Then, the probability for (Xi, Yi, Ti) is at most

qmqvϵ
2

2n
.

In the opposite case when the verification query follows the MAC query, A can
simply choose (Nj , Tj) = (Ni, Ti). However, it can address at most µ queries at
once with a verification query. Hence, there are at most µqv query combinations.
Then, the probability that (Xi, Yi) = (Xj , Yj) is at most

µqvϵ
2 .

It follows that

Pr[bad3] ≤ µqvϵ
2 +

qmqvϵ
2

2n
.

Lemma 9. For any good transcript τ , it holds that

Pr [Θreal = τ]

Pr [Θideal = τ]
≤ 1− qv

2n − µ
.

Proof. Let T = {Yi, . . . , Yqm} be the set of all tweaks in MAC queries and reorder
them to eliminate duplicates as T = {Wi, . . . ,Wr} such that r ≤ qm is the
number of distinct tweaks used in MAC queries. Let ℓi denote the number of
MAC queries (Mi, Ni, Ti) with nonce Ni and H ′

K′
H
(Mi) = Yi. The probability of

a good transcript τ in the ideal world is simply

Pr [Θideal = τ] =
1

|KH | · |K′
H | · (2n)qm

.

38

In the real world, a tweakable permutation π̃ is compatible with τ if

π̃Yi,Ni(Xi) = Ti, for all i ∈ [qm] ,

π̃Yi,Ni(Xi) ̸= Ti, for all i ∈ [qv] .

Let Comp(τm), Comp(τv), and Comp(τ) be the set of tweakable permutaitons
compatible to τm, τv, and τ , respectively. Then, it holds that

Pr [Θreal = τ] =
1

|KH | · |K′
H |
· Pr

[
π̃ ↞ P̃erm(TD,Fn

2) : π̃ ∈ Comp(τ)
]
.

We obtain that

Pr [π̃ ∈ Comp(τ)] =
1∏r

i=1 (2
n)ℓi
·
(
1− qv

2n − µ

)
.

We obtain that

Pr [Θreal = τ]

Pr [Θideal = τ]
≥

(
1− qv

2n − µ

)
·

r∏
i=1

(2n)ℓi

(2n)ℓi
≥ 1− qv

2n − µ
.

E Comparison of Alternative Encryption Modes

Mi,1

Ki+1

Ci,1

Mi,1

Ti+1

π̃0,i,Ti
Ki

π̃1,i,Ti
Ki

Mi,2

Ci,2

π̃2,i,Ti
Ki

N

Mi,2

Ci,2

trunc

π̃3,i,Ti
Ki

(a) Generalized TET (GTET).

Mi,1

Ci,1

π̃2,i,Ti
Ki

Mi,2

Ci,2

π̃3,i,Ti
Ki

N

Mi,2

Ci,2

trunc

π̃
4/5,i,Ti
Ki

(b) ROCB.

N N

Ki+1

Ci,1

Mi,1

Ti+1

π̃0,i,Ti
Ki

π̃1,i,Ti
Ki

N

Mi,2

Ci,2

trunc

π̃
2/3,i,Ti
Ki

(c) Generalized FEMALE (GFBE).

Mi,1 Mi,2

Ci,1 Ci,2

π̃2,i,Ti
Ki

π̃3,i,Ti
Ki

tr
u
n
c

pa
d

N

Mi,1

Ci,1

trunc

π̃
4/5,i,Ti
Ki

(d) ROTR.

Fig. 6: One iteration of alternative encryption modes for r = 2 message blocks. The
right side shows the treatment of the final block if its size is smaller than bits. Since
ROCB and ROTR derive the subsequent key and tweak as RCTR, only the message
processing components are shown.

39

Table 4: Comparison of potential encryption modes for a primitive with n-bit key
and state. XORF = XOR-free, IF = inverse-free. Partial XOR-free means only XORs
for partial final blocks. • = yes, ◦ = XORs only for partial final block, – = absent or
trivial, r = blocks processed per iteration.

Features Security in bits

Scheme Rate XORF IF CPA CCA CPAmL1

GTET r/(r + 1) ◦ – n n/2 n
GFBE r/(r + 1) – • n n/2 n
RCTR r/(r + 2) – • n – n
ROCB r/(r + 2) ◦ – n – n
ROTR r/(r + 2) – • n – n

E.1 Requirements

Our aim for a more secure mode of operation was to obtain n-bit security under
leakage in the context of use in an nAE scheme. We assume an ephemeral-key
scheme with (1) n-bit CPAmL2 security under nonce-respecting adversaries and
(2) unpredictability of the iteration in O(σ/22n) to allow the use of a hybrid
argument in the CCAmL2 analysis. For this purpose, we employ a 2n-bit tweakey
and assume a TWEAKEY-based primitive that treats both n-bit tweakey words
similarly as secrets.

Two desiderata seem to complement each other: inverse-freeness vs. XOR-
freeness. In the black-box setting, keystream generators such as counter mode
are preferable since the keystream can easily be added to the message, which
equalize the operations for en- and decryption and spares the primitive’s inverse.
Under leakage, the XOR may leak information about the keystream.

E.2 Considered Modes

In total, we considered five options to increase the security under leakage:

(1) Generalized TET [8] (GTET),
(2) Generalized FEMALE [27] (GFBE),
(3) Rekeying counter mode (RCTR),
(4) Rekeying OCB (ROCB), and
(5) Rekeying OTR (ROTR).

Their encryption definitions are given in Algorithm 7. Except for RCTR, they
are illustrated in Figure 6 and compared in Table 4.

GTET and GFBE generalize the encryption schemes used in TET and FE-
MALE. The latter three modes represent ephemeral-key adaptations of the en-
cryption in the well-known modes counter, OCB and OTR. We generalize the
scheme definitions by a flexible number of primitive calls and adding a treat-
ment of a final partial message block, where the nonce is encrypted and the
truncated result is added to the message block, to their definitions. We note
that FEMALE encrypts a message in two passes plus a hash over the ciphertext;
GFBE corresponds to the feedback-based first level of encryption.

40

Algorithm 7 Definition of alternative encryption schemes.

11: function GTET[π̃, r]NK0,T0
(M)

12: (M1, . . . ,Mm)
n·r←−−M

13: for i← 1..m− 1 do
14: (Mi,1, . . . ,Mi,r)

n←−Mi

15: Ki+1 ← π̃0,i,Ti
Ki

(Mi,1)
16: for j ← 1..r do
17: Ci,j ← π̃j,i,Ti

Ki
(Mi,j)

18: Ti+1 ← Ci,j ⊕Ki+1

19: Ci ← (Ci,1, . . . , Ci,r)

20: (Mm,1, . . . ,Mm,rm)
n←−Mm

21: for j ← 1..rm − 1 do
22: Cm,j ← π̃j,m,Tm

Km
(Mm,j)

23: if |Mm,rm | = n then
24: Cm,rm ← π̃rm,m,Tm

Km
(Mm,rm)

25: else
26: Sm,rm ← π̃r+1,m,Tm

Km
(N)

27: S′
m,rm ← trunc|Mm,rm |(Sm,rm)

28: Cm,rm ← S′
m,rm ⊕Mm,rm

29: Cm ← (Cm,1, . . . , Cm,rm)
30: return (C1, . . . , Cm)

31: function ROTR[π̃, r]NK0,T0
(M)

32: (M1, . . . ,Mm)
n·r←−−M

33: for i← 1..m do
34: (Mi,1, . . . ,Mi,rm)

n←−Mi

35: Ki+1 ← π̃0,i,Ti
Ki

(N)

36: Ti+1 ← π̃1,i,Ti
Ki

(N)
37: for j ← 1..rm/2 do
38: S1 ← π̃2j,i,Ti

Ki
(Mi,2j−1)

39: Ci,2j ← trunc|Mi,2j |(S1)⊕Mi,2j

40: S2 ← π̃2j+1,i,Ti
Ki

(padn(Ci,2j)
41: Ci,2j ← S2 ⊕Mi,2j−1

42: if rm mod 2 = 1 then
43: Si,rm ← π̃r+2,i,Ti

Ki
(N)

44: S′
m,rm ← trunc|Mm,rm |(Sm,rm)

45: Ci,rm ← S′
i,rm ⊕Mi,rm

46: Ci ← (Ci,1, . . . , Ci,rm)

47: return (C1, . . . , Cm)

51: function GFBE[π̃, r]NK0,T0
(M)

52: (M1, . . . ,Mm)
n·r←−−M

53: for i← 1..m do
54: (Mi,1, . . . ,Mi,rm)

n←−Mi

55: Ki+1 ← π̃0,i,Ti
Ki

(N)
56: for j ← 1..rm do
57: Ci,j ← π̃j,i,Ti

Ki
(N)⊕Mi,j

58: Ti+1 ← Ci,j ⊕Ki+1

59: D ← rm
60: if |Mi,rm | < n then D ← r + 1

61: Si,rm ← π̃D,rm,Ti
Ki

(N)
62: S′

i,rm ← trunc|Mm,rm |(Si,rm)
63: Ci,rm ← S′

i,rm ⊕Mi,rm

64: Ci ← (Ci,1, . . . , Ci,rm)

65: return (C1, . . . , Cm)

66: function ROCB[π̃, r]NK0,T0
(M)

67: (M1, . . . ,Mm)
n·r←−−M

68: for i← 1..m do
69: (Mi,1, . . . ,Mi,rm)

n←−Mi

70: Ki+1 ← π̃0,i,Ti
Ki

(N)

71: Ti+1 ← π̃1,i,Ti
Ki

(N)
72: for j ← 1..rm − 1 do
73: Ci,j ← π̃j+1,i,Ti

Ki
(Mi,j)

74: if |Mi,rm | < n then
75: Ci,rm ← π̃rm,i,Ti

Ki
(Mi,rm)

76: else
77: Si,rm ← π̃r+1,i,Ti

Ki
(N)

78: S′
i,rm ← trunc|Mi,rm |(Si,rm)

79: Ci,rm ← S′
i,rm ⊕Mi,rm

80: Ci ← Ci,1, . . . , Ci,rm

81: return (C1, . . . , Cm)

85: function RCTR[π̃, r]NK0,T0
(M)

86: (M1, . . . ,Mm)
n·r←−−M

87: for i← 1..m do
88: (Mi,1, . . . ,Mi,rm)

n←−Mi

89: Ki+1 ← π̃0,i,Ti
Ki

(N)

90: Ti+1 ← π̃1,i,Ti
Ki

(N)
91: for j ← 1..rm do
92: D ← j + 1
93: if |Mi,j | < n then D ← r + 1

94: Si,j ← π̃D,i,Ti
Ki

(N)
95: S′

i,rm ← trunc|Mi,j |(Si,j)
96: Ci,j ← S′

i,j ⊕Mi,j

97: Ci ← (Ci,1, . . . , Ci,rm)

98: return (C1, . . . , Cm)

41

Comparison. GTET and GFBE possess the advantage that their rate is r/(r+1)
for r message blocks, i.e., they need only a single call more per iteration as a
secret state, equivalent to the capacity in permutation-based schemes. Given the
need for a 2n-bit tweakey, they use at least one of the further random outputs
for ciphertext generation and – hidden by adding the secret part – as input to
the subsequent iteration. Note that chosen-ciphertext security is preserved when
they are embedded into an nAE scheme that refuses to decrypt after the tag has
been deemed invalid.

F Auxiliary Notions for GTET

Prior to the analysis of GTET, we have to tailor the unpredictability-under-
leakage notion (LUP-2 in TEDT and LUP-4 in TEDT2 with RCTR) to an iteration
of GTET.

F.1 Unpredictability for GTET

It takes a larger tweakey K0, T0 ∈ Fn
2×Fn

2 from the adversary, samples K1 ↞ Fn
2 ,

T1 ↞ Fn
2 , and uses it for p decryptions, as well as p calls of one iteration of the

PRG that generates two n-bit outputs and K2, T1, C1,1, . . ., C1,r for a given
message M . A can query the encryption p times to collect a vector of in- and
output leakages from all primitive calls except for the calls to M0,1 and M0,2,
where it is not provided with input leakage. A outputs a set K′ of q values K1

and wins iff the correct tweakey is contained.

Definition 7 (GTET-r-LUP). Let π̃ ∈ TBC(Fn
2 , TD,Fn

2). Let Lin and Lout be
sets of leakage functions. Let A be an adversary that provides K0, T0 ∈ Fn

2 to and
plays the GTET-r-LUP experiment against Ê [π̃], and outputs a set K′ ⊆ (Fn

2)
≤q.

The GTET-r-LUP advantage of A is defined as

AdvGTET-r-LUP
Ê[π̃]∗,∗,T0

K0
,Lin,Lout(A)

def
= Pr [K1 ∈ K′] .

We can already envision the birthday-bound consequences of the so-modified
notion. The release of T1 seems necessary to model the knowledge of Ci−1,1 in
GTET. It is not a fully exact representation since Ti would be unknown, but
Ci−1,1 = Ti ⊕Ki would be known in GTET instead. Though, the knowledge of
the output would allow the adversary to fully compute the decrypted block to
M0,2 in the GTET-r-LUP game.

As a consequence, the secret state consists of only n bits. Under leakage, the
term of GTET-r-LUP security, given ρ chunks, whose goal is to recover an n-bit
state is upper bounded at best by

ρ ·AdvGTET-r-LUP
GTET[π̃,r] (A) ≤ ρ ·O

(
qc + qp
c · 2n

)
.

42

Algorithm 8 GTET-r-LUP experiment.

11: procedure Initialize(K0, T0)
12: K1 ↞ Fn

2

13: T1 ↞ Fn
2

14: M0,1 ← (Ẽ0,0,T0
K0

)−1(K1)

15: M0,2 ← (Ẽ1,0,T0
K0

)−1(T1)

21: function
Leak[Ẽ](Λin, Λout,K, T,X, Y)

22: Rin, Rout ↞ R
23: Lin ← Λin(K,T,X;Rin)
24: Lout ← Λout(K,T, Y ;Rout)
25: return (Lin, Lout)

31: function Finalize(K′)
32: win← |K′| ≤ q∧
33: (K1, T1) ∈ K′

34: if win then return 1
35: return 0

41: function Ê [Ẽ](M,Λin, Λout)
42: (M1, . . . ,Mr)

n←−M
43: for i← 1..p do
44: Rout

0,1, R
out
0,2 ↞ R

45: K1 ← Ẽ0,0,T0
K0

(M0,1)

46: T1 ← Ẽ1,0,T0
K0

(M0,2)

47: K2 ← Ẽ0,1,T1
K1

(M1)
48: Lout

0,1 ← Λout
0 (K0, (0, 0, T0),K1;R

out
0,1)

49: Lout
0,2 ← Λout

0 (K0, (1, 0, T0), T1;R
out
0,2)

50: L0 ← Lout
0,1, L

out
0,2

51: Lin
1,1, L

out
1,1 ← Leak[Ẽ](Λin, Λout,K1, (0, 1, T1),M,K2)

52: L1,1 ← Lin
1,1, L

out
1,1

53: for j ← 1..r do
54: C1,j ← Ẽj,1,T1

K1
(Mj)

55: Lin
j,2, L

out
j,2 ← Leak[Ẽ](Λin, Λout,

56: K1, (j, 1, T1),M,C1,j)
57: L1,j+1 ← Lin

1,j+1, L
out
1,j+1

58: C1 ← (C1,1, . . . , C1,r)
59: return (K2, C1, [L0]p, [L1,1]p, [L1,2]p, . . . , [L1,r+1]p)

K0

T0

Ẽ0,0,T0
K0

Ẽ1,0,T0
K0

Ẽ0,1,Ti
Ki

Ẽ1,1,Ti
Ki

Ẽ2,1,Ti
Ki

K1

T1

?

?

M1

M1

M2

K2

C1,1

C1,2

Fig. 7: The GTET-r-LUP setting for r = 2. White boxes only combine the tweakey.

While the term is an artifact in the black-box setting, it is tight under leakage.
Thus, it seems hard to employ a variant of TET encryption for higher security
under leakage. Though, the rate of TEDT could be improved by employing TET
instead of the Bellare-Yee PRG for encryption. Nevertheless, we conduct the
proof in detail to give a the bound for a higher-rate scheme.

We define AdvGTET-r-LUP
Ê[π̃],Lin,Lout(p, q) as the maximum of all GTET-r-LUP adver-

saries A on Ê [π̃] that ask at most p queries and output a set of at most q guesses.

F.2 Indistinguishability of XOR with Two Unknowns

In theory, we can consider another formalism. GTET contains an XOR whose
leakage may destroy privacy. In contast to RCTR, the XOR of a known output
T j
i+1C

j
i,1⊕K

j
i+1 contains two unknowns. Thus, the leakage must leak information

about both unknowns to allow an adversary to exploit it. We capture it for the

43

Algorithm 9 XOR$2 experiment.

11: function Initialize(K,T,M,Λout, Λ⊕)
12: Y ↞ Fn

2 ; b ↞ {0, 1}
13: M∗ ←M
14: if b = 0 then
15: M∗ ↞ Fn

2

16: X ← (ẼT
K)−1(Y)

21: function Finalize(b′)
22: return b = b′

31: function Ê [Ẽ]K(Λout, Λ⊕)
32: Rout, R⊕ ↞ R
33: Y ← ẼT

K(X); C ← Y ⊕M∗

34: Lout ← Λout(K,T, Y ;Rout)
35: L⊕ ← Λ⊕(Y,C;R⊕)
36: for i← 2..p do
37: Rout, R⊕ ↞ R
38: Y ← ẼT

K(X); M∗ ← C ⊕ Y
39: Lout ← Λout(K,T, Y ;Rout)
40: L⊕ ← Λ⊕(Y,M∗;R⊕)

41: return ([Lout]p, [L
⊕]p)

sake of comprehension. The XOR$2 game in Algorithm 9 is our real-or-random
game, where the real world processes a message M ∈ Fn

2 chosen by the adversary,
and the ideal world samples and processes a message M∗ ↞ Fn

2 . Note that the
result of the XOR is not returned to the adversary, but only the leakage.

Definition 8 (XOR$2). Let π̃ ∈ TBC(K, TD,Fn
2) and K1 ↞ K. Let Lout, L⊕

1 ,
and L⊕ be sets of leakage functions. Let A be a adversary that plays the XOR$2
experiment given in Algorithm 9 against Ê [π̃]. Then, the XOR$ advantage of
Ab ⇒ b′, interacting with world b and outputting b′ is defined as

AdvXOR$2
Ê[π̃]K ,Lout,L⊕(A)

def
=

∣∣Pr [A1 ⇒ 1
]
− Pr

[
A0 ⇒ 1

]∣∣ .
We define AdvXOR$2

Ê[π̃]K ,Lout,L⊕(p, q) for the maximum advantage over all XOR$2

adversaries A on Ê [π̃]K that ask at most q queries under p measurements each.

G qCPA$mL2 Analysis of GTET[π̃, r]

G.1 Reduction Analysis

Theorem 4. Let π̃ ↞ TBC(K, TD, Fn
2). Let r and n ≥ 4 be positive integers.

Let A be an qCPA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that asks at most qe
encryption queries and qd decryption queries of at most ρ chunks and at most
σ ≤ 2n−3 blocks in total and qp ≤ 2n−2 primitive queries. Let F [π̃, r] be an
iteration of GTET[π̃, r]. Let LE and LD be as defined at the top of Section 7.
Then

AdvqCPA$mL2
Π[π̃,r]K

(A) ≤ 2σ2 + (4 + qp)σ

22n
+
(q

2n

)n

+
(n+ 1) · qp

2n

+ ρ ·AdvGTET-r-LUP
F [π̃,r] (σ + qc + qp) + qc ·AdvXOR$

F [π̃,r](2σ + 2qc + qp)

+ ρ ·AdvXOR$2
F [π̃] (ρ+ qp) .

44

Algorithm 10 Games G1 to G3 for the proof of IdealEnc[π̃, r] replaces GTET
[π̃,r] in G2. Note that the primitive oracles π̃± and leakage functions belong to
all games. The boxed statements belong only to Game G3 and G4.

11: procedure Initialize(τ)
12: b← {0, 1}; K ↞ K; Q ← ∅; bad← false

21: function RealPRG[π̃]N (M)
22: L← []

23: Q ∪← {(K, (6, 0, 0)), (K, (7, 0, 0))}
24: K1 ← π̃6,0,0

K (N)
25: T1 ← π̃7,0,0

K (N)

26: (M1, . . . ,Mm)
2n←−M

27: for i← 1..m do
28: for d← 0..3 do Q ∪← (Ki, (d, i, Ti))

29: Ki+1 ← π̃0,i,Ti
Ki

(N)

30: Ti+1 ← π̃1,i,Ti
Ki

(N)

31: Yi ← π̃2,Ti,i
Ki

(N) ∥ π̃3,Ti,i
Ki

(N)

32: Mi ↞ F|Mi|
2

33: Ci ← trunc|Mi|(Yi)⊕Mi

34: Li ← (
35: Leak4up(Lin, Lout,Ki, (0, i, Ti), N,Ki+1),
36: Leak4up(Lin, Lout,Ki, (1, i, Ti), N, Ti+1),
37: Leak4up(Lin, Lout,Ki, (2, i, Ti), N, Yi,1),
38: Leak4up(Lin, Lout,Ki, (3, i, Ti), N, Yi,2),
39: LeakXOR(L⊕,Mi,1, Yi,1, Ci,1),
40: LeakXOR(L⊕,Mi,2, Yi,2, Ci,2))

41: L
∪← Li

42: C ← C1 ∥ · · · ∥Cm

43: return (L, C)

46: function π̃d,i,T
K (X)

47: if (K, (d, i, T)) ∈ Q then bad← true
48: return π̃d,i,T

K (X)

51: function (π̃d,i,T
K)−1(Y)

52: if (K, (d, i, T)) ∈ Q then bad← true
53: return (π̃d,i,T

K)−1(Y)

56: procedure Initialize(τ)
57: b← {0, 1}; K ↞ K; Q ← ∅; bad← false

61: function IdealPRGN (M)
62: L← []

63: Q ∪← {(K, (6, 0, 0)), (K, (7, 0, 0))}
64: K1 ↞ Fn

2

65: T1 ↞ Fn
2

66: (M1, . . . ,Mm)
2n←−M

67: for i← 1..m do
68: for d← 0..3 do Q ∪← (Ki, (d, i, Ti))

69: Ki+1 ↞ Fn
2

70: Ti+1 ↞ Fn
2

71: Yi,1 ↞ Fn
2

72: Yi,2 ↞ Fn
2

73: Mi ↞ F|Mi|
2

74: Ci ← trunc|Mi|(Yi)⊕Mi

75: Li ← (
76: Leak4up(Lin, Lout,Ki, (0, i, Ti), N,Ki+1),
77: Leak4up(Lin, Lout,Ki, (1, i, Ti), N, Ti+1),
78: Leak4up(Lin, Lout,Ki, (2, i, Ti), N, Yi,1),
79: Leak4up(Lin, Lout,Ki, (3, i, Ti), N, Yi,2),
80: LeakXOR(L⊕,Mi,1, Yi,1, Ci,1),
81: LeakXOR(L⊕,Mi,2, Yi,2, Ci,2))

82: L
∪← Li

83: C ← C1 ∥ · · · ∥Cm

84: return (L, C)

86: function Leak4up(Lin, Lout,K, T,X, Y)
87: return [Lin(K,T,X)]p, [L

out(K,T, Y)]p

91: function LeakXOR(L⊕, X, Y, Z)
92: return [L⊕(X,Y)]p, [L

out(Y,Z)]p

Proof. Again, we employ a sequence of games G1 through G4. In that sequence,
Game G1 represents the left-hand side of Equation (3),

∆
A
(ÊK , ÊchK , D̂ch

K , π̃±,LE ,LD ; ÊK , $̂E , $̂D, π̃
±,LE ,LD) ,

with the restrictions O2,N ̸≻ O1,N , {O1,N , O2,N} ̸≻ O2,N , and O2 ↪→ O3. We
will go stepwise from Game Gi to Gi+1 for i = 1..3. For each step, we define an
adversary Ai whose goal is to distinguish between Game Gi to Gi+1 and write
∆Gi,j for the maximal advantage for all adversaries Ai to distinguish between
Game Gi and Gj , where all adversaries use equal query resources as A.

We introduce an ideal encryption scheme, IdealEnc[π̃, r] instead of GTET[π̃, r]
in the process and write GTET[π̃, r] for the latter. We use a shorthand notation
for the games, where we focus only on the nonce-based encryption scheme used
in the oracles O1, O2, O3 and indicate by M that real messages are encrypted,
and by $ that random messages are encrypted:

45

– ∆G1,4 =def ∆A(GTET[π̃, r](M) ; GTET[π̃, r]($))
– ∆G1,2 =def ∆A(GTET[π̃, r](M) ; IdealEnc[π̃, r](M))
– ∆G2,3 =def ∆A(IdealEnc[π̃, r](M) ; IdealEnc[π̃, r]($))
– ∆G3,4 =def ∆A(IdealEnc[π̃, r]($) ; GTET[π̃, r]($))

Again, the second and final step consider the same advantage that can be upper
bounded by ∆G1,2. Using the triangle inequality, we obtain

(3) ≤ ∆G1,4 ≤
3∑

i=1

∆Gi,i+1 .

Prior, we consider an nE analysis of GTET of the game in the black-box setting.
This result will then help bounding ∆G1,2.

Difference ∆G1,2. Next, we define an ideal encryption scheme as on the right-
hand side of Algorithm 10. For each construction query (N j ,M j), it

1. Samples all keys Kj
i as well as all would-be primitive outputs Cj

i,1, . . . , Cj
i,r

uniformly and independently at random from Fn
2 ,

2. Computes the leakages L⊕, Lin, and Lout with the help of its primitive oracle
π̃ and π̃−1, collects the would-be leakages into a vector Lj , and

3. Outputs (Lj , Cj).

We will show that the advantage of a distinguisher A1,2 that tries to distin-
guish between Games G1 and G2 can be reduced to the advantage of an GTET-
r-LUP distinguisher Au on an isolated call to the GTET[π̃, r] oracle by A1,2. For
each primitive query of A1,2, Au simply forwards the query to its correspond-
ing primitive oracle, collects the query together with the output in a transcript
τp = {(Ki, Si, Xi, Y i)} for i ∈ [qp] and forwards the response to A1,2. For each
construction query of A1,2, (N j ,M j) with (M j

1 , . . . ,M
j
mj)

r·n←−− M j for j ∈ [qc],
Au does the following:

1. Au samples k ↞ [mj], Kj
1 ↞ Fn

2 , and T j
1 ↞ Fn

2 . Moreover, it initializes an
empty list of leakages L.

2. For i = 1..k − 1, Au queries its primitive oracle π̃ with (Kj
i , i, T

j
i , N

j) to
obtain (Lj

i ,K
j
i+1, T

j
i+1, C

j
i) and adds the leakage Lj

i to the list Lj .
3. Au queries its primitive oracle π̃ with (Kj

k, k, T
j
k , N

j) to obtain (Lj
i ,K

j
k+1,

T j
k+1, Y

j
k). Then, Au queries its GTET-r-LUP challenger with (Kj

k, k, T
j
k , N

j)

to obtain (Lj
k,K

j
k+2, T

j
k+2, C

j
k+1) from the response and adds the leakage to

the list Lj .
4. For i = k+2..mj , Au queries primitive oracle with (Kj

i , i, T
j
i , N

j) to obtain
(Lj

i ,K
j
i+1, T

j
i+1, C

j
i) and adds the leakage to the list Lj .

5. Au returns (Lj , Cj) with Cj = (Cj
1 ∥ . . . ∥C

j
mj) to A1,2.

At the end of the interaction, Au outputs a set of guesses for the used tweakeys
K that consists of all tweakeys in the primitive queries of A1,2, K = {(K,S) :
(K,S,X, Y) ∈ τp} for any X, Y ∈ Fn

2 .

46

We could exclude any bad queries such as tweakey collisions and upper bound
their probability before. Since we assume then that no bad events occur among
the guesses, then all tweakeys are fresh, and there is no difference between both
games G1 with GTET[π̃, r] and G2 with the ideal encryption scheme. The advan-
tage of the distinguisher A1,2 is inherited by Au who can measure its leakage of
the LUP-4 query p times. The difference consists of the σ indices over the guess
of k. Hence, the advantage between the games is upper bounded by

∆G1,2 ≤ ρ ·AdvLUP-4
F [π̃] (p, σ + qc + qp) +AdvnE

GTET[π̃,r](q, ρ,m, σ, qp) .

Difference ∆G2,3. Again, the output of random bits by IdealEnc would render it
indistinguishable from random in the black-box setting. Though, under leakage,
there is a remaining advantage that stems from the presence of XORs with
plaintext material.

The XOR with a Partial Block. For GTET, those XORs are given only once
per query in the computation of a keystream block that is truncated and XORed
with a final partial plaintext block. Similar to the proof for RCTR, we can reduce
the advantage to that of an XOR$ adversary, following the stepwise approach by
Berti et al. of chunkwise hybrid adversaries. Though, we do not have to cover
all queries, but at most a reduction of the final block.

For this purpose, we can define an adversary Ax that simulates a distinguisher
A2,3 whose aim is to distinguish between Games G2 and G3. The simulation of Ax

by A2,3 is highly similar to that before, but reduced to a single call. Whenever
A2,3 asks a primitive query to π̃±, Ax answers it with its own primitive oracle π̃±,
forwards the responds to A2,3, and stores the query and response into a transcript
τp. For each construction query of A2,3, (N j ,M j) with (M j

1 , . . . ,M
j
mj)

r·n←−−M j

for j ∈ [qc] and does the following.

1. Ax samples K1 ↞ Fn
2 , T1 ↞ Fn

2 . Moreover, it initializes an empty list of
leakages L.

2. For i = 1..mj − 1, Ax samples unifomly random values Kj
i+1, T

j
i+1, C

j
i and

leakage Lj
i as from IdealEnc and stores Lj

i into the list Lj .
3. Ax samples Kj

k and T j
k . Let (M j

m,1, . . . ,M
j
m,c)

n←− M j
m. Ax builds Sj

k,c =

(c+1, k, T j
k), submits it together with M j

k,c to its XOR$ challenger to obtain
(Lj

k, C
j
k,c). It computes the would-be leakage Lj

k,c. It builds Cj
k = Cj

k,1 ∥C
j
k,1

and Lj
k = Lj

k,1 ∥L
j
k,2 and adds it to the list Lj .

4. Ax returns (Lj , Cj) with Cj = (Cj
1 ∥ . . . ∥Cj

m) to A2,3.
5. Ax forwards the guess of b′ from A2,3 to its own challenger.

Again, the advantage of Ax with p leakage trails each is inherited from A2,3.
We have to build qc such adversaries Ax over all construction queries that A2,3

queries. Hence, we obtain an advantage of

qc ·AdvXOR$
F [π̃] (qc + qp) .

47

The XOR of Keys and Tweaks. There is a similar XOR operation that we
need to consider, though, it happens in each chunk: that of T j

i+1 ← Cj
i,1⊕Kj

i+1.
Here, two out of three values are unknown, which we modeled as the XOR$2
game. We can define a similar adversary that simulates an XOR and is called
once per chunk. Again, this can be modeled as a stepwise reduction of hybrid
games of an XOR$2 adversary Ax2 that simulates A2,3, one per chunk of A2,3.
As a result, we obtain an upper bound of the advantage of

ρ ·AdvXOR$2
F [π̃] (ρ+ qp) .

Over both notions, we obtain the upper bound.

∆G2,3 ≤ qc ·AdvXOR$
F [π̃] (qc + qp) + ρ ·AdvXOR$2

F [π̃] (ρ+ qp) .

Our claim in Lemma 4 follows from summing up the individual bounds.

G.2 Proof of Lemma 10

Lemma 10. Let r and n ≥ 4 be integers, π̃ ↞ TBC(K, TD,Fn
2), and K ↞ K. Let

A be an adversary on GTET[π̃, r]K that asks at most qp primitive queries and qe
encryption queries and qd decryption queries of at most m blocks corresponding
to ρ chunks each and σ blocks in total. Then,

AdvnE
GTET[π̃,r]K (A) ≤ 2σ2 + qpσ

22n
+

(q

2n

)n

+
(n+ 1) · qp

2n
.

Proof. Again, all queries by A will be stored together with their correspond-
ing responses in a transcript τ = {K, τc, τp}, where τc consists of exactly the
construction queries of A and their corresponding responses, i.e., for encryption
queries, it stores (N i,M i, Ci). We define mi for the maximal number of chunks
in M i, where each chunk M i

j consists of a sequence of r ·n-bits that are split into
M i

j,1, . . . , M i
j,r; the last chunk of M i can consist of ≤ r ·n bits. τp represents the

primitive queries of A to π̃± and their associated responses, (di,Ki, T i, Xi, Y i),
where Y i ← π̃T i

Ki(Xi) and di = 1 if it is a query in forward direction and di = 0
otherwise. We define a transcript τ as bad if any of the following events occurs:

– bad1: There exist distinct (i, j) ̸= (i′, j′) with i, i′ ∈ [qc] and j ∈ [mi],
j′ ∈ [mi′] such that (Ki

j , T
i
j) = (Ki′

j′ , T
i′

j′).
– bad2: There exist pairwise distinct i1, . . . , in ∈ [qc] and j1, . . . , jn such that

Ci1
j1,1

= · · · = Cin
jn,1

and ji < mi for all i ∈ {i1, . . . , in}.
– bad3: There exists i ∈ [qp] such that Ki = K.
– bad4: There exists i ∈ [qc], j ∈ [mi] and k ∈ [qp] such that (Ki

j , T
i
j) =

(Kk, T k).

We define BadT for the set of all bad transcripts and GoodT for the set of all
good transcripts, i.e., transcripts that are not bad. Then, the proof follows from
applying the Lemmas 2, 11, and 12.

48

Thus, it remains to upper bound the probability of bad events and to de-
termine the interpolation ratio of good transcripts. We start with the former
task.

Lemma 11. It holds that

Pr[Θideal ∈ BadT] ≤ 2σ2 + qpσ

22n
+
(q

2n

)n

+
(n+ 1) · qp

2n
.

Proof. In the following, we upper bound the probability of the individual bad
events.

bad1. In this event, a collision between two tweakeys in construction queries
occurs. This means that

(Ki
j , T

i
j) = (Ki′

j′ , T
i′

j′) .

which is equivalent to π̃
0,j−1,T i

j−1

Ki
j−1

(M i
j) = π̃

0,j′−1,T i′
j′−1

Ki′
j′−1

(M i′

j′)

π̃
1,j−1,T i

j−1

Ki
j−1

(M i
j)⊕ π̃

0,j−1,T i
j−1

Ki
j−1

(M i
j) = π̃

1,j′−1,T i′
j′−1

Ki′
j′−1

(M i′

j′)⊕ π̃
0,j′−1,T i′

j′−1

Ki′
j′−1

(M i′

j′)

 .

Given the equality in the top row, we can simplify the lower row toπ̃
0,j−1,T i

j−1

Ki
j−1

(M i
j) = π̃

0,j′−1,T i′
j′−1

Ki′
j′−1

(M i′

j′)

π̃
1,j−1,T i

j−1

Ki
j−1

(M i
j) = π̃

1,j′−1,T i′
j′−1

Ki′
j′−1

(M i′

j′)

 . (5)

W.l.o.g., that this tweakey collision is the lexicographically first collision con-
sidering the indexing (i, i′, j, j′). Otherwise, the present tweakey collision is a
consequence of an earlier collision and we consider the lexicographically first
such collision. Since it is the first tweakey collision, it must hold that

(Ki
j−1, T

i
j−1) ̸= (Ki′

j′−1, T
i′

j′−1) .

Therefore, all four calls to π̃ consider different permutations and are pairwise
independent from each other. Since it is the first collision, they do not collide
with other tweakeys. Thus, the probability for each equality therein is 2−n. It
follows that, over all σ blocks in construction queries, the probability for this
event is at most

Pr[bad1] ≤
(
σ
2

)
(2n − 2σ)2

≤ 2σ2

22n
,

given σ ≤ 2n−2. For the subsequent bad events, we assume that bad1 did not
occur, i.e., we condition on ¬bad1.

49

bad2. In this case, an n-multicollision in values Ci,1, for i ∈ [q], occurs. For this
event, it has to hold that

Pr
[
Ci1

j1,1
= · · · = Cin

jn,1

]
= Pr

[
π̃1,j1,T

i1

K
i1
j1

(M i
j1,1) = · · · = π̃1,jn,T

in

Kin
jn

(M i
jn,1)

]
.

Given that bad1 has not occurred, all blocks come from pairwise independent
permutations that have not been queried anywhere else. Therefore, the proba-
bility for each output is 2−n. Over all q queries, we obtain ρ chunks, where the
final chunk of each query is not considered since the tweakey it generates will
not used for any subsequent tweakey input.

Pr[bad2|¬bad1] ≤
(
ρ− q

n

)
·
(

1

2n

)n−1

≤ (ρ− q)n

n! · 2n(n−1)
≤

(
(ρ− q)

2n

)n

using n! ≥ 2n for n ≥ 4.

bad3. For this event, a key collision between a TGF query and a primitive query
occurs for i ∈ [qp] such that Ki = K. Since the adversary must hit the correct
secret key K under the assumption that it does not leak, the probability is at
most

Pr[bad3|¬bad1 ∧ ¬bad2] ≤
qp
2n

.

bad4. Finally, a tweakey collision between a construction block and a primitive
query can occur. It must hold that

Pr

[
Ki

j = Kk

Ki
j ⊕ Ci

j,1 = T k

]
= Pr

 π̃
0,T i

j−1,j

Ki
j−1

(M i
j−1) = Kk

π̃
0,j,T i

j−1

Ki
j−1

(M i
j−1)⊕ π̃

1,j,T i
j−1

Ki
j−1

(M i
j−1) = T k

 .

Conditioning on ¬bad1 means that all tweakeys are distinct.
We can distinguish between two cases:

Case 1: The construction query occured before the primitive query.
Further conditioning on ¬bad2, we know that each value Ci

j,1, for all i ∈ [qc] and
j ∈ [mi], occurs at most n times in the transcript. Thus, A can choose Kk for a
primitive query and can select T k to cover at most n values C1

j,1 at a time. Over
all queries, the probability in this case is at most

n · qp
2n

.

Case 2: The construction query occured after the primitive query.
Since bad1 did not occur, in this case, the tweakey was not used before and the
output from the construction query was sampled uniformly at random from 2n

50

values. Thus, the probability to hit any primitive query is 2−2n, and over all
queries

qp · σ
22n

Over both cases, we obtain

Pr [bad4|¬bad1 ∧ ¬bad2] ≤
n · qp
2n

+
qp · σ
22n

.

The bound in Lemma 11 follows then from

Pr [bad] ≤ Pr [bad1] + Pr [bad2|¬bad1] +
4∑

i=3

Pr [badi|¬bad1 ∧ ¬bad2] .

Lemma 12. For any good transcript τ , it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
= 1 .

Proof. Let T = {S1, . . . , Sqp} denote the set of all tweaks in primitive queries
and let us reorder them to eliminate duplicates as T = {W 1, . . . ,W r} such that
r ≤ qp is the number of distinct tweaks. The probability of choosing the initial
key is Pr[K] = 2−n.

Let further b denote the number of bits from partial final blocks in construc-
tion queries, and σ′ the number of full blocks over all queries.

In the ideal world, all output bits of any block Ci
j,k are sampled independently

uniformly at random. Given a randomly chosen tweakable block cipher π̃ ↞
TBC(Fn

2 , TD,Fn
2) for primitive queries, the probability of its primitive outputs is

Pr [Θideal = τ] =
1

|K|
· 1
2b
· 1

2σ′·n ·
r∏

i=1

1

(2n)ℓi
.

Considering the real world, we observe that a good transcript lacks collisions of
tweakeys in construction queries. Moreover, the nonce requirement ensures that
no partial blocks can collide. The probability that the primitive is compatible to
the transcript is again

Pr[π̃ ∈ Comp(τ)] =
r∏

i=1

1

(2n)ℓi
.

Hence,

Pr [Θreal = τ] =
1

|K|
· 1
2b
· 1

2σ′·n ·
r∏

i=1

1

(2n)ℓi
.

The claim in Lemma 12 follows.

51

H Relation to Indifferentiability

The indifferentiability framework by Maurer et al. [39] is a simulation-based se-
curity model which tries to capture what a construction would need to be as
good as an ideal object. Thus, it captures also yet unknown attacks. Indifferen-
tiability has been applied to authenticated encryption schemes by Barbosa and
Farshim [2]. Though, indifferentiability in general and their work in particular
showed three limitations.

First, their work outlined that nonce-misuse resistance or robustness were
necessary (though not always sufficient) for schemes to be indifferentiable from
the ideal AE scheme, which is a conflict in the understanding of what leakage
resilience could provide by the school by Standaert et al.

Second, the applicability of indifferentiability to show leakage resilience is
not well-understood yet. The original indifferentiability framework captures only
security notions that can be evaluated as single-stage games. Ristenpart et al.
[49] had identified leakage resilience as a multi-stage game. Only the work by
Barbosa and Farshim [2] showed that certain multi-stage games can be rewritten
as single-stage games, including the setting of leakage resilience. However, a
formal treatment has not been conducted yet, and is an interesting open task.

Third, due to technical details, security bounds from indifferentiability proofs
are often inferior by magnitudes compared to bounds in the ideal-primitive or
standard models. Since our focus lied on quantitative bounds under common
assumptions, this work had opted for the established models in this work. Nev-
ertheless, proofs in the indifferentiability setting could be valuable for increasing
the security of schemes under leakage.

52

	TEDT2 – Highly Secure Leakage-resilient TBC-based Authenticated Encryption

