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Abstract. We construct efficient functional commitments for all bounded size arithmetic circuits. A
(function hiding) functional commitment scheme allows a committer to commit to a secret function f
and later prove that y = f(x) for public x and y—without revealing any other information about f .
Thus, functional commitments allow the operator of a secret process to prove that the process is being
applied uniformly to everyone. Possible applications include bail decisions, credit scores, online ranking
algorithms, and proprietary software-as-a-service.
To build functional commitments, we introduce a new type of protocol: a proof of function relation
(PFR) to show that a committed relation is a function. We show that combining a suitable preprocess-
ing zk-SNARK with a PFR yields a secure functional commitment scheme. We then construct efficient
PFRs for two popular preprocessing zk-SNARKs, and obtain two functional commitment schemes for
arithmetic circuits. These constructions build on polynomial commitments (a special case of functional
commitments), so our work shows that polynomial commitments are “complete” for functional com-
mitments.

1 Introduction

A functional encryption scheme [15, 43] is an encryption scheme where every decryption key skf has an
associated function f . If ct is the encryption of some plaintext m, then a functional decryption key skf
applied to ct reveals f(m) and nothing else. Functional encryption is an active area of research and has
many applications [2, 11, 26, 32, 35, 45].

Functional commitments [36, 37, 42] are a natural analogue in the context of cryptographic commitments.
We are interested in the following notion, which we call function-hiding functional commitments: a committer
commits to a secret function f ∈ F using a succinct hiding and binding commitment scheme. Later, the
committer can reliably open this function at any public point in the domain of f without revealing anything
else about f . Specifically, for a public pair (x, y), the committer can prove to a verifier that the committed
function f satisfies y = f(x), without revealing anything else about f .

A polynomial commitment scheme (PCS) [33] is an important special case of functional commitments.
Here the committer commits to a polynomial of bounded degree in F[X]. It can later open the polynomial at
any public point in F. In this paper we generalize polynomial commitments, and construct efficient functional
commitments for the set of all functions that can be expressed as an arithmetic circuit of bounded size.

In more detail, a functional commitment scheme is a triple (Setup,Commit,Eval). Setup(λ) is a randomized
algorithm that outputs some public parameters pp. Commit(pp, f, r) is a deterministic algorithm that takes as
input the description of a function f ∈ F and randomness r, and outputs a hiding and binding commitment
c. Eval is a protocol between a prover PE(pp, f, r, x, y) and a verifier VE(pp, c, x, y) that is designed to convince
the verifier that f(x) = y. Informally, the evaluation protocol Eval should be (i) complete, (ii) zero knowledge,
and (iii) an argument of knowledge for the function f . In addition, the evaluation protocol must satisfy an
important property called evaluation binding: it should be infeasible for a malicious prover to convince the
verifier that f(x) = y and f(x) = y′ for some y 6= y′. More precisely, it should be infeasible to find c, x, y, y′,
where y 6= y′, such that the verifier accepts the inputs VE(pp, c, x, y) and VE(pp, c, x, y′). We define these
properties formally in Section 3.

Evaluation binding ensures that c is a commitment to a function: there is a unique output for every
input. Functional commitments enable an organization to commit to a secret function, and the public is



assured that the organization is bound to that function. For example, in the United States, a credit bureau
can commit to the secret function it uses to compute a person’s credit score. Then, given a person’s financial
records, say Bob, the credit bureau can compute Bob’s credit score, and prove to Bob that the score was
computed correctly. Here Bob plays the role of the verifier. Evaluation binding is crucial: it ensures that
the same function is applied to everyone. If needed, the function itself can be audited by an auditor who is
trusted to examine its inner workings.

Other applications of functional commitments may include 1) Ranking algorithms: ranked parties want to
know that the same ranking procedure is applied to everyone uniformly. 2) Software-as-a-Service: customers
want to verify that they are receiving the service they are paying for. For example, consider a company that
charges per query to an image classifier A. Suppose B is a classifier that is less accurate than A, but cheaper
to evaluate. The company could save money by using B and lie that they are using A. By committing to
classifier A, the company can prove it is providing the same service to all of its customers. A trusted auditor
could verify that the commitment is indeed a commitment to A. 3) Price discrimination: a company could
commit to a pricing function that takes a product detail as input and outputs a price. It could then prove
to every customer that the price being charged is the same for everyone.

Functional commitments are related to the notion of fairness for secret processes. A functional commit-
ment allows the operator of a secret process to prove that the process is being applied uniformly to everyone.
However, we note that while uniform application is necessary for fairness, it is not sufficient. In fact, since
“fairness” is a social construct, formalizing it is an interesting problem that has been the subject of a great
deal of work: [5] and [34] survey.

Constructing a functional commitment scheme: the challenge. A functional commitment scheme for
bounded size arithmetic circuits can be built from a standard succinct commitment scheme and a general
zero knowledge proof system, using universal circuits. We discuss this further in related work below.

However, we aim to construct a functional commitment scheme where the evaluation proof is non-
interactive, succinct, and fast to verify. A natural starting point is a preprocessing zk-SNARK such as
Marlin [21], Plonk [25], or many others [1, 22, 30, 31, 38, 41, 44, 46].

Informally, a preprocessing zk-SNARK operates in two phases (following a setup step). For a function
f : X → Y define the relation

Rf =
{

(x, y) : y = f(x)
}
⊆ X × Y.

Let i be a binary string, called an index, that describes the relation Rf (e.g., a description of an arithmetic
circuit for f). The first phase of a preprocessing zk-SNARK is a deterministic indexing algorithm to preprocess
the relation Rf . The algorithm takes the index i as input, and outputs a succinct index key ik that represents
Rf . Then, in the second phase, called the online phase, the zk-SNARK prover takes as input i and a pair
(x, y) ∈ Rf , and outputs a succinct non-interactive zero knowledge argument π (in the random oracle model)
that (x, y) ∈ Rf . The verifier takes as input ik, (x, y), and the proof π, and outputs accept or reject. In Plonk
and Marlin, the size of the indexing key and the size of the argument π depend only on the security parameter
λ. The time to verify the argument π depends logarithmically on the complexity of f and linearly on the
length of (ik, x, y). The time to generate the argument is quasi-linear in the complexity of f .

To build a functional commitment scheme from a preprocessing zk-SNARK one might try to use the
indexing algorithm as the Commit algorithm, where the generated index key ik is the commitment string to
the function. Then use the zk-SNARK prover and verifier as the Eval protocol of the functional commitment.

Unfortunately, this simple approach is insecure for a number of reasons. First, the index key ik may leak
information about the committed function. However, this is easily corrected. We show how to enhance the
indexing algorithms in both Marlin and Plonk so that the indexing key is a succinct hiding and binding com-
mitment to the function, and moreover, a zk-SNARK proof is an argument of knowledge for the committed
function.

Evaluation binding is the bigger problem: there is no guarantee that ik represents a function. First, ik
might not encode a relation R at all. Second, since zk-SNARKs support relations—not just functions—R
might be a relation that is not a function; we explain this with two examples.
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Fig. 1: Combining our proofs of function relation (PFR) with a zk-SNARK in our generic Construction 1
yields two functional commitment schemes (FC).

The Plonk indexing algorithm takes as input the description of an arithmetic circuit of bounded size and
outputs an index key ik. The problem is that the Plonk indexing algorithm will output a valid index key
even for a malformed arithmetic circuit: the circuit may contain gates wired together in a cycle, and some
gates may take hidden inputs (witness inputs). For example, a malicious committer can commit to one of
the following arithmetic circuits and claim that the committed circuit is well formed and takes a single input
x:

+x
w y +x y

The verifier learns nothing about the committed circuit from the commitment string. It thinks that the
circuit on the left has only one input x. However the committer can set the hidden input w to any value it
wants and convince the verifier that f(x) is any value of the committer’s choosing. For the circuit on the
right, when x = 0, any output y corresponds to a valid addition. Thus, the committer can then convince the
verifier that f(0) is any value of its choosing.

A similar problem happens with Marlin. The Marlin indexing algorithm takes as input an R1CS program,
namely three matrices A,B,C ∈ Fn×n, as explained in Section 6. It outputs an index key ik. As in the case
of Plonk, there is no guarantee that ik is a commitment to an R1CS program where the output is uniquely
determined by the input x. The output may depend on hidden inputs that are controlled by the adversary.

Proof of function relation (PFR). The Plonk and Marlin examples above show that to build a func-
tional commitment scheme from a preprocessing zk-SNARK we need the zk-SNARK to satisfy a number of
additional properties, described in Section 4. A key property is that the prover should be able to efficiently
produce a succinct zero knowledge proof that an index key ik is a commitment to a function. We call this
a proof of function relation or PFR. In Section 4 we show that a preprocessing zk-SNARK that has these
additional properties can be used to construct a secure functional commitment scheme, as illustrated in
Figure 1.

The challenge is to design an efficient zero knowledge proof of function relation (PFR) for commonly
used preprocessing zk-SNARKs.

– For Plonk, we design an efficient zk-SNARK that a Plonk index key is a commitment to an arithmetic
circuit whose graph is acyclic and whose inputs are explicitly declared. This is sufficient to ensure that
every input has a unique output. See Section 7.

– For Marlin, we design an efficient zk-SNARK that a Marlin index key is a commitment to an R1CS
program A,B,C ∈ Fn×n where A and B are strictly lower triangular and C is diagonal. We show that
this ensures that the R1CS program has a unique output for every input, without limiting the expressive
power of R1CS. See Section 6.

Designing an efficient zk-SNARK for these properties requires new algebraic tools and new sub-protocols to
prove properties of committed polynomials. We develop these sub-protocols in Section 5. Many of them are
of independent interest.
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An overview. In their simplest form, a Plonk indexing key is a commitment to two polynomials, and
a Marlin indexing key is a commitment to nine polynomials. We review what these polynomials are in
Sections 6 and 7. Proving that these indexing keys are a commitment to a well formed function requires
proofs that the committed polynomials satisfy certain complex algebraic properties. We give three examples.

– Discrete log comparison: (Protocol 8) For both Plonk and Marlin there is a need to prove that
certain values appear in a particular order. In Section 5 we devise a new efficient zk-SNARK for the
following relation: Let K and H be multiplicative subgroups of the finite field F, and let ω generate H.
Let f, g ∈ F[X] be two committed polynomials of bounded degree. The prover outputs a succinct proof
that

f(K) ⊆ H and g(K) ⊆ H and ∀k ∈ K : logω f(k) > logω g(k).

– Representative check: (Protocol 13) The Plonk indexing key ik contains a commitment to a wiring
polynomial w that is a permutation of a subgroup K of F. That is, w(K) = K. This w induces a per-
mutation on K that can be treated as a collection of cycles. Each cycle represents a wire in the circuit.
Thus, to prove that the committed circuit has no hidden inputs we design a novel zk-SNARK to prove
that a certain public set I ⊆ K intersects every cycle of the committed w. The set I corresponds to the
declared input wires to the circuit and the output wires from every gate. This is sufficient to prove in
zero knowledge that the committed circuit has no hidden inputs.

– Topological sort: (Protocol 14) To prove that the committed arithmetic circuit in Plonk is acyclic, we
use the discrete log comparison protocol above to design a protocol to prove that there is a topological
ordering of the wires in the committed circuit.

We use these to prove that a Plonk index key is a commitment to a well formed circuit, and that a Marlin
index key is a commitment to an R1CS program A,B,C where A and B are strictly lower triangular and C
is diagonal.

Future work. Our work motivates the design of efficient PFRs for other popular zk-SNARKs such as
Spartan [44], Fractal [22], Ligero [1], Libra [46], and many others. Designing efficient PFRs for these will
likely require new ideas.

Polynomial commitments are complete. In summary, we show that both Plonk and Marlin can be
enhanced to provide an efficient functional commitment scheme for all arithmetic circuits of bounded size.
Since Plonk and Marlin are built from a generic polynomial commitment scheme, we obtain a “completeness”
theorem for functional commitments:

Theorem 1 (informal). A functional commitment scheme for univariate polynomials of degree at most
d is sufficient to construct a functional commitment scheme for all arithmetic circuits of size at most αd
for some constant α. Evaluation proofs in the derived scheme have about the same length and verification
complexity as in the underlying polynomial scheme.

1.1 Additional related work

Previous works on functional commitments [36, 37, 42] consider a dual notion to ours: the committer commits
to an input x, and later the committer proves that f(x) = y, for some public function f and a value y. We
call this input-hiding functional commitments. In the current paper we focus on function-hiding functional
commitments, where the committer commits to a function f and later proves that f(y) = x for some public
pair (x, y). These two notions can be shown to be equivalent using a universal function evaluator U(f, x),
where U(f, x) = f(x). However, in practice they are quite different due to efficiency considerations. An
efficient input-hiding functional commitment scheme can be constructed directly from a standard succinct
commitment scheme and a general zk-SNARK, as observed in [36]. Constructing an efficient function-hiding
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functional commitment scheme, as we do here, requires additional tools to efficiently prove that the committed
function is well formed.

Input-hiding functional commitments were implicitly constructed by Gorbunov, Vaikuntanathan, and
Wichs [29], although commitments produced by their commitment scheme are not succinct. The term func-
tional commitment was introduced by Libert, Ramanna and Yung [36] and further developed in [37, 42].
The focus of these works is on efficient input-hiding functional commitments under falsifiable assumptions
(zk-SNARKs require non falsifiable assumptions). Libert et al. [36] and Lipmaa and Pavlyk [37] give an
input-hiding functional commitment scheme for the family of linear (or linearizable) functions. Peikert,
Pepin, and Sharp [42] give a lattice construction for bounded depth boolean circuits, meaning that the size
of commitments and proofs grow polynomially in the depth of the circuit.

Special cases of functional commitments. Several cryptographic primitives can be viewed as special cases
of functional commitments. A verifiable random function (VRF) [40] is a functional commitment where the
committer commits to a pseudorandom function (PRF) instantiated using a particular random key. Later, the
PRF can be reliably opened at any point in its domain. One difference is that a VRF evaluation proof need
not be an argument of knowledge for the key. Other examples include vector commitments [13, 17, 18, 28, 42],
accumulators [10, 13, 16] and zero knowledge sets [19, 20, 39]. A vector commitment can be viewed as a
function-hiding functional commitment where the function is described as a truth table.

Functional commitments from circuit garbling. Consider a family of circuits that have the same wiring (i.e.,
the same circuit topology), but differ in the choice of gate for each location. Then one can use Yao garbled
circuits [47] to construct a functional commitment scheme for this family, where a commitment supports a
single evaluation. The reusable garbled circuits scheme of Goldwasser, Kalai, Popa, Vaikuntanathan, and
Zeldovich [27] can extend this to multiple evaluations. In fact, [27] achieves a stronger property, where the
function is hidden from the verifier, and the input x is hidden from the committer. However, the evaluation
protocol is not succinct or fast to verify, and relies on fairly heavy cryptographic primitives.

2 Preliminaries

2.1 Mathematical notation

Let [n] for n ∈ N>0 represent the sequence 1, 2, ..., n. We 1-index sequences and matrices throughout. Let
{{·}} denote a multiset. Thus, {{1, 1}} 6= {{1}}. Let ‖ be the concatenation operator. Thus ‖ni=1(1, 1) denotes
2n ones. Let λ be the security parameter. A function f(n) is poly(n) if there exists a c ∈ N such that
f(n) = O(nc). If for all c ∈ N, f(n) is o(n−c), then f(n) is negl(n).

Let F be a field of large prime order p such that log(p) = Ω(λ) and 2k divides (p−1) for some k ∈ N. For
our Plonk construction, we also require 3 divides (p − 1). For γ ∈ F∗, let 〈γ〉 denote the set

{
γi
}
i∈N. Let

F(<d)[X] denote the set of polynomials in formal variable X with coefficients from F with degree less than
d. Fix a canonical order of F. For fields of prime order (Fp), this can be the order of their natural number
representatives.

For S ⊆ F and a function f : F → F, let g = LDES(f) be the unique polynomial in F(<|S|)[X] such that
g(s) = f(s) for all s ∈ S. For a set S ⊆ F and a function f , f(S) denotes the set {f(s) : s ∈ S}. If S comes
with a canonical ordering, then seqS(f) denotes the (ordered) sequence (f(s) : s ∈ S). Consider a nonempty
set S. A partition S of S is a set of nonempty subsets S ∈ S of S such that S is the disjoint union of S ∈ S.
Given two partitions A,B of S, A is a refinement of B if for all A ∈ A, there exists B ∈ B such that A ⊆ B.

Consider two families of probability distributions, {Dλ}λ∈N and {D′λ}λ∈N, indexed by the security pa-
rameter λ. When unambiguous, let {D} = {D′} denote that the distributions are the same.

2.2 Commitment schemes

A commitment scheme for messages x ∈ X is a tuple of algorithms (Setup,Commit) where
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– Setup(1λ)→ pp: Given the security parameter, sample public parameters. A randomized algorithm.
– Commit(pp, x ∈ X , r ∈ R)→ c ∈ C: Given public parameters, a message x, and randomness r produce a

commitment c to x. A deterministic algorithm.

A commitment scheme must satisfy two properties: hiding and binding. We formally define these as follows.

– Binding: For all PPT adversaries A:

Pr

x1 6= x2 ∧
Commit(pp, x1, r1)
= Commit(pp, x2, r2)

∣∣∣∣∣∣pp←
$ Setup(1λ)

(x1, r1, x2, r2)←$ A(pp)

 ≤ negl(λ)

– Perfect hiding: For all x, x′ ∈ X , for pp← Setup(1λ),

{Commit(pp, x, r) : r ←$ R} = {Commit(pp, x′, r′) : r′ ←$ R}

2.3 Interactive arguments

We use the notation NAME(P(a),V(b)) → (x, y) to denote an interactive protocol called NAME. P takes
input a and receives output x. V takes input b and receives output y. For randomized interactive machines
P and V let 〈P(a),V(b)〉 denote the random variable that is the output of their interaction.

An interactive argument Π for a relation R ⊆ X ×W is an interactive protocol between a pair of PPT
algorithms, a prover P and verifier V. P(x,w) attempts to convince V(x) that it knows a w such that
(x,w) ∈ R.1 The outcome of the protocol is that the verifier accepts or rejects.

Definition 1. An interactive argument (P,V) for a relation R ⊆ X ×W is Complete, if for all (x,w) ∈ R,
Pr [〈P(x,w),V(x)〉 = 1] = 1.

Definition 2. An interactive argument (P,V) for a relation R ⊆ X ×W is an Argument of Knowledge
(or knowledge-sound), if for all pairs of PPT adversaries (P1,P2), there exists a PPT extractor Ext such
that

Pr

 〈P2(st),V(x)〉 = 1
⇓

(x,w) ∈ R

∣∣∣∣∣∣ (x, st)← P1

w ← ExtP2(st)(x)1

 ≥ 1− negl(λ)

where ExtP2(st) denotes that Ext has oracle access to the “interactive function” P2(st) (see [6]).

Definition 3. An interactive argument (P,V) for a relation R ⊆ X ×W is perfect honest verifier zero
knowledge (HVZK), if there exists PPT simulator Sim such that for all (x,w) ∈ R, we have

{Sim(x)} = {ViewV(〈P(x,w),V(x)〉)},

where ViewV(〈P(x,w),V(x)〉) denotes the view of the verifier, namely its randomness and the protocol tran-
script.

Composition. Let (P,V) be an HVZK interactive argument for relation R. Define Rt ⊆ X t ×Wt to be the
following relation: (~x, ~w) ∈ Rt if for all i ∈ [t], (~xi, ~wi) ∈ R. We define the interactive argument (Pt,Vt) to
be the parallel composition of (P,V) on (~xi, ~wi) ∈ R for all i ∈ [t].

Theorem 2. Let (P,V) be an HVZK interactive argument for relation R. The interactive argument (Pt,Vt)
for relation Rt is also HVZK.

Proof Sketch Let Sim be the simulator for (P,V). We can construct a simulator Sim′ for (Pt,Vt) by running
Sim on ~xi for all i ∈ [t]. A standard hybrid argument shows that Sim′ is a valid simulator.

1 When there are public parameters pp, P, V, and Ext take in pp as well.
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2.4 Polynomial interactive oracle proofs

Polynomial interactive oracle proofs [21] (polyIOPs) refine interactive oracle proofs [9] (IOPs), themselves
generalizations of probabilistically checkable proofs [3] (PCPs).2 A polyIOP is an interactive proof between
a prover P and verifier V, where P sends polynomials that V can subsequently access via evaluation queries.

A polynomial commitment scheme [33] (PCS) enables a polyIOP to be compiled into a standard proto-
col [21, 38]. With a PCS, P can commit to each polynomial it sends the verifier. Upon an evaluation query,
P can send V the desired evaluation, and prove to V that evaluation is consistent with the committed poly-
nomial. The derived protocol has various security properties, which we discuss below. See [21] for a complete
description.

Let Π be a polyIOP for a witness relation and let Π̃ be the compiled protocol. If the PCS has extractability
(committed polynomials can be extracted from evaluation proofs), and the witness is extractable from Π’s
polynomials, then Π̃ is an argument of knowledge for the witness. To obtain a zero-knowledge protocol, one
can exploit bounded independence introduced in [7] and formalized by [8, 21]. The idea is to start with a
polyIOP in which the secret witness is encoded as the evaluations of a set of polynomials f (1), . . . , f (m) over
K ⊂ F such that |F \K| is super-poly. Let b be an upper bound on the number of queries that the polyIOP
makes to any polynomial. Protocol 1 performs re-randomization, and yields a polynomial f ′(i) that agrees
with f (i) on K, but is uniformly random for any b queries on F \ K. By re-randomizing each f (i) before
running the polyIOP, we can derive a zero knowledge protocol.

Protocol 1 requires that polynomial oracles are additive (i.e. given polynomial oracles f and g, an oracle
for h = f + g can be derived without querying f or g). This property allows V to derive f ′ without ever
querying f . Many PCSs have this property, including the one in appendix D.

Protocol 1 (Randomized Low Degree Extension)
Given: A query bound b, subset K ⊂ F, and a polynomial f ∈ F(<|K|)[X].

Outputs: A polynomial f ′ ∈ F(<|K|+b+1)[X] that agrees with f on K and whose evaluations on any size-b
subset S of F \K are uniformly random and independent from f(K).

1. P samples and sends r ←$ F(<b+1)[X].
2. P computes and sends m = zK · r.
3. V checks m(x) = zK(x)r(x) at x←$ F \K.
4. P computes f ′ = m+ f . V derives an oracle for f ′ from the additive property of oracles for f and
m.

Theorem 3 ((informal) polyIOP to HVZK Compilation). Let Π be a public coin polyIOP with input
polynomials f1, . . . , fm ∈ F(<|K|)[X]. Furthermore, let it be a sound and complete interactive argument for a
witness relation R whose witness is encoded as the evaluations of f1, . . . , fm over K. Finally, let Π make at
most b queries to any single polynomial and queries fi only randomly on F \K. Let Π ′ denote the polyIOP
that re-randomizes each fi before running Π. Let Π ′′ denote the standard protocol that is the compilation of
Π ′ using a hiding, binding, additive, extractable, and ZK-evaluation PCS. Then, Π ′′ is public coin, complete,
knowledge-sound, and HVZK.

Proof Sketch [21] formalizes and proves a very similar theorem with a key difference. They prove a variant
of HVZK that requires a trap-door to simulate the protocol transcript. When we replace their PCS with one
that has a ZK evaluation protocol, their simulator no longer requires a trap door and can instead invoke the
ZK evaluation simulator. We use the PCS from [21, 33] and modify the ZK evaluation protocol from [14] to
obtain a PCS with the required properties. We discuss this scheme in appendix D.

2 Reed-Solomon encoded IOPs [8, 22] are closely related to polyIOPs.
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2.5 Preprocessing arguments

A preprocessing argument for an index relation R ⊆ I ×X×W is a tuple (ppA.Setup, ppA.Index, ppA.Prove).
An index i ∈ I (e.g. a circuit description) represents verifier input that is preprocessed into an index key ik
during the offline phase. The index key ik and instance x ∈ X (e.g. a partial wire assignment) represent the
verifier input during the online phase. A witness w ∈ W (e.g. internal wire values) represents private prover
input during the online phase.

– ppA.Setup(1λ)→ pp: Given the security parameter, sample system parameters. A randomized algorithm.
– ppA.Index(pp, i, r) → ik: Given parameters, an index, and randomness, compute an index key. A deter-

ministic algorithm.
– ppA.Prove(PP(pp, i, r, x, w),VP(pp, ik, x)) → (⊥, {0, 1}): An interactive protocol for PP to convince VP

that it knows a w such that (i, x, w) ∈ R. Both PP and VP are interactive, randomized algorithms.

This syntax is based on [21]. Departing from [21], we’ve added a randomness token r to the arguments of
ppA.Index. As we will see, this allows ik to be a hiding commitment to i. In Section 4, we define security
for arguments with hiding index keys. For an argument with non-hiding index keys, r is null. We formally
define the efficiency and security requirements for a preprocessing argument as follows.

Completeness ppA.Prove is a complete protocol for the following binary relation.3

Rprove(pp) = {(i, x;w) : (i, x, w) ∈ R}

Knowledge Soundness ppA.Prove is a an Argument of Knowledge for Rprove(pp).

Zero-Knowledge ppA.Prove is an honest verifier zero knowledge protocol for Rprove(pp).

Efficiency: We must have the following efficiency properties:

– Index Efficient : The running time of the prover is poly(λ, |i|).
– Succinct Proof : The communication transcript between the prover and verifier has size poly(λ).
– Succinct Verifier : The running time of the verifier is poly(λ+ |x|).

Public Coin and Non-interactivity Every message of the verifier must be a uniform random string of some
length. With the Fiat-Shamir Transformation [23] (assuming a small number of rounds between the prover
and verifier), public coin protocols can be made non-interactive using random oracles.

A preprocessing zk-SNARK is a preprocessing argument that meets additional efficiency requirements,
such as succinctness, and can be made non-interactive via Fiat-Shamir [23].

2.6 Arithmetic circuits

Informally, an arithmetic circuit is a directed acyclic graph of gates and wires. Wires carry values from F.
Each gate is binary, and adds or multiplies.

Formally, an arithmetic circuit C—with ni inputs, ng gates, and no ≤ ng outputs—is a sequence of gate
tuples (li, ri, si)

ng

i=1 ∈ ([ni + ng]× [ni + ng]×{+,×})ng subject to the constraint li, ri < i+ ni. For gate i, we
will refer to li, ri as the left and right input wire indices, i+ ni as the output wire index, and si as the gate
selector. The set of circuit input wire indices is [ni]. Let ACni,ng,no denote the set of arithmetic circuits with
ni inputs, ng gates, and no ≤ ng outputs.

To evaluate C on input (x1, . . . , xni) ∈ Fni , one computes (in order) ng + ni wire values: w1, . . . , wng+ni .
The first ni wire values are just the inputs: wi = xi for i ∈ [ni]. Then, for i ∈ [ng], wi+ni is wli + wri , if
si = + otherwise wli × wri . The last no wire values are the circuit output. Through evaluation, any circuit
C defines a function from ~x ∈ Fni to ~y ∈ Fno , with evaluation denoted as ~y = C(~x).

3 Technically, ppA.Prove takes an index key, but in the preprocessing model, the verifier has the index and derives
the index key deterministically.
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3 Functional Commitments

We next define what is a (function-hiding) functional commitment scheme. A functional commitment scheme
allows the committer to commit to a secret function and then prove evaluations of this function.

Let {Xλ}λ∈N and {Yλ}λ∈N be families of input and outputs spaces. Let {(Fλ,Evaluateλ)}λ be a family
of encoded function spaces. An encoded function space is a finite set Fλ of poly(λ) length strings equipped
with a deterministic evaluation algorithm Evaluateλ : Fλ×Xλ → Yλ. We omit λ indices when unambiguous.
For f ∈ F and x ∈ X , we abbreviate Evaluate(f, x) as f(x).

Examples of functions and their encodings include:

– univariate polynomials (F(<d)[X]): The input and output spaces are F. The encoded function space
consists of d-tuples of coefficients. Evaluate(f, x) evaluates the polynomial whose coefficients are the
d-tuple.

– arithmetic circuits: The input and output spaces are Fni and Fno . The encoded function space consists
of poly(λ) size, directed acyclic graphs of additions and multiplications. Evaluate(f, x) evaluates the
arithmetic circuit represented by the graph.

A functional commitment scheme FC for F , is a tuple (Setup,Commit,Eval) where

– Setup(1λ)→ pp : Given the security parameter, sample public parameters. A randomized algorithm.
– Commit(pp, f ∈ F , r ∈ R) → c ∈ C : Given pp, an encoded function f , and randomness r, produce a

commitment c to f . A deterministic algorithm.
– Eval(PE(pp, f ∈ F , r ∈ R, x ∈ X , y ∈ Y), VE(pp, c, x, y))→ (⊥, {0, 1}) : an interactive protocol for PE to

convince VE that f(x) = y.

We call R the randomness space and C the commitment space.
Functional commitments have the following informal properties:

1. Binding : computing distinct function encodings with equivalent commitments is infeasible.
2. Hiding : commitments to different function encodings are indistinguishable.
3. Completeness: correct evaluation proofs are always accepted.
4. Evaluation honest-verifier zero-knowledge: an evaluation proof reveals nothing other than the evaluation
5. Extractable: evaluation proofs for a commitment convince VE that PE knows the underlying function

encoding.
6. Evaluation Binding : A malicious prover cannot construct valid evaluation proofs for different evaluations

on the same input.

We state these properties formally in Definition 4. The binding and hiding properties of functional commit-
ments are exactly those for classical commitments. Evaluation Binding is directly implied by binding and
extractable properties. We defer the formal definition of evaluation binding to A.1 and omit the proof.

Definition 4 Functional commitment properties:

The tuple (Setup,Commit) is a hiding and binding commitment scheme for message space F and
randomness space R.

Completeness: Eval is a complete protocol for the following binary relation.

Reval(pp) = {(c, x, y; f, r) : f ∈ F ∧ f(x) = y ∧ c = Commit(pp, f, r)}

Extractable Eval is an Argument of Knowledge for Reval(pp).
Evaluation honest-verifier zero-knowledge Eval is an honest verifier zero knowledge protocol for
Reval(pp).

As portrayed in our introduction, the Eval protocol would most likely would be run in parallel for multiple
clients. Our security definitions cover security in the case of parallel composition. By Theorem 2, Eval
composed in parallel t times is also an honest verfier zero knowledge protocol. We also note that the security
of sequential composition is implied by the security of parallel composition.
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4 Functional commitments from preprocessing arguments

Our goal is to construct an efficient functional commitment scheme from a preprocessing argument. To do
so, we require the preprocessing argument to satisfy a few non-standard properties. First, index keys must
be a hiding and binding commitment to the index. Second, the proof protocol must be knowledge sound and
zero-knowledge for the index as well as the witness. Third, and most notably, the preprocessing argument
must support a novel kind of protocol we call a proof of function relation or a PFR.

Let us define these properties. Recall that a preprocessing argument ppA for an index relation R ⊆
I × X×W is a triple (ppA.Setup, ppA.Index, ppA.Prove).

Definition 5. A preprocessing argument ppA is committing if the pair of algorithms (ppA.Setup, ppA.Index)
is a hiding and binding commitment scheme for the message space I.

The next two properties require that the proving protocol ppA.Prove be a zero-knowledge argument of
knowledge for the index i as well as the witness w.

Definition 6. ppA has Index-extended knowledge soundness if ppA.Prove is an Argument of Knowledge
for the binary relation.

Rprove(pp) = {(ik, x; i, r, w) : (i, x, w) ∈ R ∧ ik = ppA.Index(pp, i, r)}.

ppA is an index-extended honest-verifier zero-knowledge if ppA.Prove is an HVZK protocol for
Rprove(pp).

4.1 Proof of function relation (PFR)

Preprocessing arguments support proofs about relations that are not necessarily functions. Thus, we need a
protocol to prove that a committed relation is a function: every input should have a unique output. To capture
this, we first define the concept of a functional set, which is the subset of indices that encode functions.

Definition 7 (Functional Sets for Index Relations). Let R ⊆ I × X ×W be an index relation where
X = X × Y. A subset If ⊆ I is a functional set if it contains only indices for which the residual X × Y
relation is a function. That is, if for all i ∈ If , for all x ∈ X , there exists a unique y ∈ Y such that there
exists w ∈ W such that (i, (x, y), w) ∈ R. Furthermore, If must be equipped with an efficient algorithm
Extend(i, x)→ (y, w) such that (i, (x, y), w) ∈ R, for all i, x ∈ If ×X .

A functional set If can naturally be viewed as an encoded function space with the following Evaluate
algorithm: Let i ∈ If and x ∈ X . Evaluate(i, x) does the following: (i) compute (y, w) ← Extend(i, x) and
(ii) output y. By the definition of functional set, there must exist a unique y for this; thus, Evaluate returns
a deterministic result.

A proof of function relation for a functional set If is a protocol Π between Pf and Vf which is a
zero-knowledge argument of knowledge for the following relation:

Rfunc(If , pp) = {(ik; i, r) : i ∈ If ∧ ik = ppA.Index(pp, i, r)}

More precisely, Π should be complete, extractable, and zero-knowledge, as in Definition 8.

Definition 8 Proof of function relation
A proof of function relation for preprocessing argument ppA and functional index set If is an inter-

active protocol
Π(Pf (pp, i, r),Vf (pp, ik))→ (⊥, {0, 1})

which is extractable and zero-knowledge.
Complete: Π is a complete protocol for Rfunc(If , pp).
Extractable: Π is an argument of knowledge for Rfunc(If , pp).
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Honest-verifier zero-knowledge: Π is an HVZK protocol for Rfunc(If , pp).

We will construct our proofs of function relation as polyIOPs, where the relation’s index is encoded as the
evaluation of a collection of polynomials over a multiplicative subgroup. We will compile these protocols
using Theorem 3.

4.2 Functional commitments from preprocessing arguments

Construction 1
Let ppA = (ppA.Setup, ppA.Index, ppA.Prove, ppA.Verify) be a committing preprocessing argument—for
an index relation R ⊆ I × (X ×Y)×W—and let Π be a proof of function relation for functional set If
(an encoded function space), equipped with Extend. Let FCppA,If ,Π be the following tuple:

– Setup(1λ): output pp← ppA.Setup(1λ)
– Commit(pp, i, r): output ik← ppA.Index(pp, i, r)
– Eval(PE(pp, i, r, x, y),VE(pp, ik, x, y)):
• VE and PE: run Π(Pf (pp, i, r),Vf (pp, ik)), and VE asserts that the output is 1.
• PE: (y′, w)← Extend(i, x), abort if y 6= y′.
• VE and PE: run ppA.Prove(PP(pp, i, r, (x, y), w),VP(pp, ik, (x, y))) and VE asserts that the output

is 1.

Note that Eval can be optimized so that the proof of function relation Π is run only once across many
invocations of Eval.

Theorem 4. Let ppA be a committing preprocessing argument with index-extended knowledge-soundness and
honest-verifier zero-knowledge. Furthermore, let Π be a honest-verifier zero-knowledge argument of knowledge
for function relations. Then FCppA,If ,Π—as defined in Construction 1—is a secure functional commitment
for function encodings i ∈ If .

Proof. Completeness follows directly from the completeness of ppA and Π. Binding and hiding follow directly
from the binding and hiding properties of ppA.Index.

The functional commitment extractor builds on the proof of function relation extractor Extf and the
preprocessing argument index-extended extractor ExtppA. First, it runs Extf to get i ∈ If and r ∈ R such
that ik = ppA.Index(pp, i, r). Then, it runs ExtppA to get to get i′ ∈ I, w ∈ W, and r′ ∈ R such that
ik = ppA.Index(pp, i′, r′) and (i′, (x, y), w) ∈ R. Per binding, i = i′, except with negligible probability. Thus,
(i, (x, y), w) ∈ R, and we have extracted function encoding i ∈ If and randomness r consistent with the
commitment ik, the input x, and the output y.

The honest-verifier zero-knowledge property for Eval follows from the same properties of Π and ppA. The
simulator Simf for Π is used to simulate the verifier’s view in the first part of the evaluation protocol. Then,
since PE finds (i, (x, y), w) ∈ R, the simulator SimppA for ppA can be used to simulate VE’s view in the second
part of the evaluation protocol.

5 Polynomial Property Tests

Our goal is to construct functional commitment schemes from the Plonk and Marlin preprocessing arguments.
The main technical step is to construct a suitable proof of function relation, a PFR, for the Plonk and Marlin
index keys. Towards this goal, in this section we describe a number of polynomial IOPs (polyIOPs) for various
properties of polynomials. These protocols provide the building blocks for our proofs of function relation
presented in Sections 6 and 7.

Throughout, let γ ∈ F∗ be an element of order m that generates K and induces the canonical order
{1, γ, . . . , γm−1} on K.
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Unless otherwise noted, all our polyIOP protocols share the following properties. First, P sends a constant
number of polynomials to V. Second, V queries those polynomials at a constant number of points. Third,
these queries are at random x ∈ F \ K. Fourth, they have perfect completeness. Fifth, using a technique
from [21], our protocols can be updated to work when K is a coset of a multiplicative subgroup. Sixth, the
prover’s running time is always quasi-linear in the degree of the provided polynomials and verifier time is
logarithmic in the degree (which is < B = m+ b for some constant query bound b). Finally, all polynomials
have degree less than bound B = poly(λ) such that B/|F| = negl(λ).

Notation: By R(a1, . . . , an) = {f1, . . . , ft ∈ F(<B)[X] : φ(f1, . . . , ft)} we denote a relation over polynomials
f1, . . . , ft that is parameterized by a1, . . . , an. The polynomials are known to P, but V only has oracle access
to them. The parameters a1, . . . , an are known to both the prover and verifier.

5.1 Prior work

Protocol 2 (Equality over K) Previous work [21, 25, 38] gives a polyIOP for the relation

{f, g ∈ F(<B)[X] : ∀k ∈ K, f(k) = g(k)}

The protocol only requires V to query f and g. Thus, it can be applied to polynomials which were not
directly sent by the prover.4 For example, it can be used to check that f(X) · f(X) = f(X) over K. This
protocol requires V to evaluate the vanishing polynomial, zK(X) =

∏
k∈K(X − k). When K is a subgroup or

coset, V requires logarithmic time in the size of K. When K is an arbitrary set, the time is linear.

Protocol 3 (Permutation composition over K) Previous work [25] also gives a polyIOP for the relation

{f, g,w ∈ F(<B)[X] : ∀k ∈ K, f(k) = g(w(k))} (1)

assuming w is known to be a permutation on K (i.e. w(K) = K).

We note that Protocol 3 cannot be implemented by directly applying Protocol 2 to the polynomials f(X)
and g(w(X)). The difficulty is that if g and w are of degree |K|, then the polynomial g(w(X)) has degree |K|2,
and computing it will make the prover too inefficient. Instead Gabizon et al. [25] develop an elegant protocol
for proving (1) where the prover only manipulates polynomials of degree |K|. Technically, the protocol is for
a slightly different relation: {

f, g,w ∈ F(<B)[X] : ∀k ∈ K, f(k) = g(γw(k))
}

for γ that generates K and w(K) = [|K|]. However, adapting their protocol to our relation (1) is straightfor-
ward, see appendix C.

Protocol 4 (Subset over K) Previous work [24] gives a polyIOP for relation

{f, t ∈ F(<B)[X] : f(K) ⊆ t(K)} (2)

With a minor change (discussed in appendix B.1), the polyIOP in [24] can be adapted to check the relation

{f, t1, ..., tc ∈ F(<B)[X] : f(K) ⊆ t1(K) ∪ ... ∪ tc(K)}

for some small constant c ≥ 1 and polynomials t1, ..., tc such that ‖ci=1 seqK(ti) has all repeat elements
adjacent to one another. The requirement for t to have a structured image was implicitly assumed in [24].
We will compose this protocol with Protocol 5 to check the relation

{f, t1, ..., tc ∈ F(<B)[X] : f(K) ⊆ t1(K) ∪ ... ∪ tc(K) ∧ 0 6∈ f(K)} (3)

We will refer to this protocol that checks (3) as Protocol 4. While this protocol suffices for our use case, we
also describe a polyIOP for relation (2) in appendix B.5 which avoids any structure assumption on the image.

4 Other works [21] call such polynomials “virtual oracles”.
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5.2 Non-zero over K

We present a polyIOP that shows that for all k ∈ K, f(k) 6= 0.

Protocol 5 (Non-zero over K)
Relation: {f ∈ F(<B)[X] : ∀k ∈ K, f(k) 6= 0}

1. Define ∀k ∈ K, g(k) = (f(k))−1. P interpolates and sends g to V.
2. P and V run Protocol 2 to check for all k ∈ K, f(k)g(k) = 1

Completeness and soundness are both immediate.
Note that this protocol can be used to test, for any y ∈ F, that for all k ∈ K, f(k) 6= y. Informally, the

prover and verifier run the non-zero test on f ′(X) = f(X)− y.

5.3 Multiset equality over K

We present a polyIOP for verifying that the images of two polynomials are equal as multisets.5 That is, that
{{f(k) : k ∈ K}} = {{g(k) : k ∈ K}}.

Protocol 6 (Multiset Equality over K)
Relation:

{
f, g ∈ F(<B)[X] : {{f(k) : k ∈ K}} = {{g(k) : k ∈ K}}

}
1. V sends challenge c←$ F to P.
2. P interpolates z(X) defined below and sends z(X) to V.

z(1) = 1, ∀i ∈ [m], z(γi) =
∏

1≤j<i

f(γj)− c
g(γj)− c

3. V checks if z(1)
?
= 1

4. P and V run Protocol 2 to check:

∀k ∈ K : z(k) · (f(k)− c) ?
= (g(k)− c) · z(γ · k)

Soundness By induction and the z(1) = 1 condition, the verifier knows that

1 = z(γm) =
f(γ0)− c
g(γ0)− c

· · · f(γm−1)− c
g(γm−1)− c

for uniformly random c chosen independently of f, g. Per the Schwartz-Zippel lemma, this implies the poly-
nomials in C, (f(γ0)− C) · · · (f(γm−1)− C) and (g(γ0)− C) · · · (g(γm−1)− C) are equivalent, except with
the negligible probability m/|F|. Equivalent polynomials have the same multisets of roots, so {{f(k) : k ∈ K}}
and {{g(k) : k ∈ K}} are equal.

5.4 Geometric sequence

We present a polyIOP that shows the sequence seqK(f) is the concatenation of geometric sequences6 that
share the same multiplicative factor. More formally, let a1, a2, ..., an ∈ F be initial values for a set of geometric

5 This protocol can be modified to have perfect completeness as done in [25].
6 This protocol can be generalized to other inductively defined sequences.
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sequences that share the same multiplicative factor r ∈ F∗. Let c1, c2, ..., cn ∈ N, where c1 + ... + cn = m,
represent the number of terms in each geometric sequence. The relation R(r,~a,~c) contains a polynomial f
such that the sequence f(1), f(γ), f(γ2), ..., f(γm−1) is identical to the sequence

a1, a1r, . . . , a1r
c1−1, a2, a2r, . . . , a2r

c2−1, . . . , an, anr, . . . , anr
cn−1

Recall that the relation parameters r, ~a, and ~c are known to both the prover and the verifier.

Protocol 7 (Geometric Sequence Test)
Relation: R(r,~a,~c) =

{
f ∈ F(<B)[X] : seqK(f) =‖ni=1 (ai, air, . . . , air

ci−1)
}

For all i ∈ [n], let pi =
∑
j<i cj .

1. V checks ∀i ∈ [n], f(γpi)
?
= ai

2. P and V run Protocol 2 to check

∀k ∈ K, (f(γ · k)− r · f(k)) ·
∏
i∈[n]

(k − γpi+ci−1)
?
= 0

Soundness Consider an arbitrary i ∈ [n], we will prove by induction that the sequence (f(γj) : pi ≤ j ≤
pi + ci − 1) is identical to the geometric sequence ai, air, ..., air

ci−1. By the first identity, we know that
f(γpi) = ai. If ci = 1, then we are done. Otherwise, γpi 6= γpi+ci−1.

Let us consider j such that pi ≤ j < pi + ci − 1 and γj 6= γpi+ci−1. Let k = γj . We must have that the
right factor of the second identity is not zero, which implies the left factor must be zero. Then, this implies
f(γ ·k) = r ·f(k); in other words, the element next in the sequence must be the current multiplied by r. Thus,
by induction, we must have the output sequence of (f(γj) : pi ≤ j ≤ pi + ci − 1) be the required geometric
sequence. Since we considered an arbitrary i ∈ [n], we must have that seqK(f) is the exact sequence required.

5.5 Discrete-log comparison

We present a polyIOP to check the following about polynomials f and g for multiplicative subgroup H = 〈ω〉:

f(K), g(K) ⊆ 〈ω〉 = H and ∀k ∈ K, logω(f(k)) > logω(g(k))

This is a key protocol for our PFRs constructed in Sections 6.4 and 7.3.

Protocol 8 (Comparison Protocol)

Rdlog<(∆,n) =

{
f, g ∈ F(<B)[X] :

f(K), g(K) ⊆ {1, ω1, . . . , ωn−1} ∧
∀k ∈ K, logω(f(k)) > logω(g(k))

}
where m = |K|, ω = ∆2, ord(∆) ≥ 2n is even, and there exists a constant c ∈ N>0 such that n < cm.

1. P interpolates and sends s← LDEK(f/g)
2. For b ∈ {f, g, s}, P interpolates and sends b′ such that for all k ∈ K b′(k) = ∆logω(b(k)). Let these

polynomials be called f ′, g′, and s′.
3. P interpolates and sends h1, ..., hc such that ‖ci=1 seqK(hi) is the following sequence: 1, ∆,∆2, ....,∆n−1,

0, ..., 0 with cm− n zeroes.
4. P and V run Protocol 2 four times to check the following equalities over K: f ′ = s′ ·g′, f = (f ′)2, g =

(g′)2, s = (s′)2

5. P and V run Protocol 7 on h1, ..., hc with multiplicative factor ∆. For i ∈ [c − 1], the initial value
is 1 and c1 = m. Let r = cm− n. For i = c, the initial values are 1, 0 and c1 = m− r, c2 = r.
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6. P and V run Protocol 4 three times with (p, h1, ..., hc) for p ∈ {f ′, g′, s′}.
7. P and V run Protocol 5 to test s(X)− 1 is non-zero over K.

Soundness By the soundness of the geometric sequence test, we have that h1(K) ∪ .... ∪ hc(K) = {∆e−1 :
e ∈ [n]} ∪ {0}. By soundness of the subset over K check (step 6), we have that: f ′(K), g′(K), s′(K) ⊆⋃
i∈[c] hi(K) \ {0} = {∆e−1 : e ∈ [n]}.

Thus, for all k ∈ K, there exist integers 0 ≤ a, b, c < n such that f ′(k) = ∆a, g′(k) = ∆b, s′(k) = ∆c.
Because f ′ = s′g′ over K (step 4(a)), we know that a ≡ b + c (mod ord(∆)); given the range of a, b, and
c and ord(∆) ≥ 2n, this implies that a = b + c (as integers). Since ∆2 = ω, (f ′)2 = f , (g′)2 = g, and
(s′)2 = s (steps 4(b-d)), we have that logω(f(k)) = a, logω(g(k)) = b, logω(s(k)) = c. This immediately
shows that f(K), g(K) ⊆ {1, ω, . . . , ωn−1}, which is one of our requirements. Furthermore, logω(f(k)) =
logω(g(k)) + logω(s(k)). Since logω(s(k)) = c ≥ 0 and since step 7 gives that logω(s(k)) 6= 0, we have
logω(f(k)) > logω(g(k)). Since we considered an arbitrary k ∈ K, this must hold for all k ∈ K as required.

6 Functional commitments from Marlin

Marlin [21] is a preprocessing argument for R1CS. In this section, we adapt it into a functional commitment.
We begin with a review of the relevant parts of Marlin. Then, in Section 6.1 we give a functional set for
Marlin. Next, in Section 6.2 we give a compiler from arithmetic circuits to that functional set. Next, in
Section 6.3, we describe how to modify Marlin to obtain the additional properties from Section 4. Then, in
Section 6.4, we give a proof-of-function relation (Section 4.1) for the Marlin index key. Finally, Theorem 4
yields a functional commitment.

Relation and index Marlin is a preprocessing argument for RR1CS(n, h) as in Definition 9. Thus, an index
is three matrices: (A,B,C) ∈ (Fn×n)3.

Definition 9 (Rank-1 Constraint System (R1CS)).
Let ◦ denote component-wise product. For n ∈ N constraints and h ≤ n instance variables, the rank-1
constraint system (R1CS) family of index relations is

RR1CS(n, h) =

{
((A,B,C) ∈ (Fn×n)3, x ∈ Fh;w ∈ Fn−h) :

z := (x,w)
Az ◦Bz = Cz

}
Preliminaries Let H be a multiplicative subgroup of F with |H| = n, 〈ω〉 = H. Furthermore, let there exist
order-2n ∆ ∈ F such that ω = ∆2. Let each index matrix contain at most m = |K| = O(n) non-zero entries,
where K is a multiplicative subgroup of F, generated by γ.

Index key The Marlin index key comprises of commitments to polynomials encoding the index matrices.
For M ∈ {A,B,C}, let M be represented as a list of triples (ri, ci, vi)

m−1
i=0 ∈ (N × N × F)m. Each triples

represents a row number (0 ≤ ri < n), a column number (0 ≤ ci < n), and a value vi = Mri,ci . Let rowM ,
colM , and valM be the unique polynomials of degree less than |K| such that rowM (γi) = ωri , colM (γi) = ωci ,
and valM (γi) = vi,

7 for i ∈ {0, . . . ,m− 1}. The Marlin index key comprises of (non-hiding) commitments
to rowM , colM , and valM for all M ∈ {A,B,C}.

6.1 A functional set for Marlin

Let s, t ∈ N>0 such that s+ t = h. Unfortunately, for X = Ft, Y = Fs, and X = X ×Y, the set of all indices
I (for the relation RR1CS(n, h)) is not a functional set. In this section, we describe a restriction of R1CS
that captures bounded sized arithmetic circuits, and excludes non-functions. To simplify our functional set
definition, we modify the relation slightly, moving the output instance variables to the end of the vector z.

7 Technically, valM (γi) evaluates to vi/f(rowM (γi), colM (γi)) for a public function f (a formal derivative) defined
in [21]. The difference is unimportant to our protocols.
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Definition 10 (Output-final R1CS).

Let ◦ denote component-wise product. For n, t, s ∈ N such that t, s, s+t ∈ [n]. Let I = (Fn×n)3, X = Ft, Y =
Fs, X = X ×Y, W = Fn−t−s. We define the following family of index relations RR1CS-f (n, t, s) ⊆ I×X×W,

RR1CS-f (n, t, s) =

{(
(A,B,C) ∈ I,

(x ∈ X , y ∈ Y) ∈ X;w ∈ W

)
:
z := (x,w, y),
Az ◦Bz = Cz

}
With this order, we can describe a functional set of indices If , where each element of z beyond inputs is

uniquely determined by the previous elements.

Definition 11 (Functional Triple (t-FT)).

Let n, t ∈ N such that t ∈ [n]. A matrix M ∈ Fn×n is t-diagonal if and only if M is a diagonal matrix,
the first t entries along the diagonal are zero, and the last n − t entries are nonzero. Let t-Diag be the set
of such matrices.

A matrix M ∈ Fn×n is t-strictly lower triangular if and only if M is a strictly lower triangular matrix
and the first t rows are zero. Let t-SLT be the set of such matrices.

A triple of matrices (A,B,C) ∈ (Fn×n)3 is a functional triple if and only if A and B are t-SLT and
C is t-Diag. Let t-FT be the set of such triples.

The following theorem shows that if we restrict RR1CS-f(n, t, s) indices to matrices (A,B,C) ∈ t-FT, then
the residual binary relation over X × Y is a function.

Theorem 5. For RR1CS-f (n, t, s), t-FT ⊆ I is a functional set.

Proof. We want to show that

∀ (A,B,C) ∈ t-FT,∀x ∈ X ,∃! y ∈ Y,∃w ∈ W,
(
(A,B,C), (x, y), w

)
∈ RR1CS-f (n, t, s)

Let (A,B,C) be a functional triple. Consider an arbitrary x ∈ X . We will construct a unique w′ = (w, y)
that is determined by x and z = x||w′ satisfies Az ◦ Bz = Cz. Since w′ is unique, we have a unique y; this
will satisfy the required condition.

Since (A,B,C) ∈ t-FT, we have the first |x| rows of each are zero. Thus, any x ∈ X will satisfy the first
|x| constraints imposed by these rows. We will now prove by induction on the constraints imposed by the
rows that w′ is determined by x. The (|x|+ 1)’th rows of A, B, and C must have the following form:

A|x|+1 = (a1, ..., a|x|, 0, 0, ..., 0)

B|x|+1 = (b1, ..., b|x|, 0, 0, ..., 0)

C|x|+1 = (0, 0, ..., 0, c1, 0, ..., 0)

where ai, bi ∈ F for all i ∈ [|x|] and c1 6= 0. Thus, the (|x|+ 1)’th constraint must have the following form:

〈a, x〉 · 〈b, x〉 = c1w
′
1

with a, b ∈ F|x|. Solving for w′1, we see that w′1 is fixed as a function of x. The constraints following must
have the form: 〈

a′, (x,w′1, ..., w
′
j)
〉
·
〈
b′, (x,w′1, ..., w

′
j)
〉

= cj+1w
′
j+1

with a′, b′ ∈ F|x|+j and cj+1 6= 0 for j ∈ [|w′| − 1]. Therefore, w′j+1 is fixed as a function of (x,w′1, ..., w
′
j).

Thus, inductively, w′ is determined by x. Since w′ = (w, y) is a unique solution, we must have y is unique.
Since we considered an arbitrary x ∈ X , this implies we have the required condition and t-FT is a functional
set.
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Construction 2 (Compiler from arithmetic circuits to functional R1CS)
Given: an arithmetic circuit with ng gates, ni inputs, and no ≤ ng outputs, defined by gates (li, ri, si)

ng

i=1.

Produces: An index for RR1CS-f(ng + ni + 1, ni + 1, no).

Procedure Compiler:

1. Initialize three square matrices A,B,C over F of height and width ni + no + 1 with zeros everywhere.
2. For i ∈ [ng]:

(a) Set: C1+ni+i,1+ni+i ← 1
(b) If si = 0, set:

• A1+ni+i,1 ← 1
• B1+ni+i,1+li ← 1
• B1+ni+i,1+ri ← 1

(c) If si = 1, set:
• A1+ni+i,1+li ← 1
• B1+ni+i,1+ri ← 1

3. Output i← (A,B,C)

6.2 Compiling arithmetic circuits to RR1CS-f

To obtain a functional commitment for arithmetic circuits from a preprocessing argument for RR1CS-f and a
proof of function relation for t-FT, we need a compiler from arithmetic circuits to RR1CS-f.

Construction 2 is that compiler. For any input circuit with ni inputs and ng it creates matrices A,B,C,
which define an R1CS index. There is one constraint (row) for each gate, and a number of additional zero
constraints so that the matrices are square.

Theorem 6. For any bounded sized arithmetic circuit C ∈ ACni,ng,no , Compiler(C) ∈ t-FT. Additionally,
for x ∈ Fni , and y ∈ Fno , if y = C(x), then there exists w ∈ Fng−no such that (Compiler(C), ((1, x), y), w) ∈
RR1CS-f(ng + ni + 1, ni + 1, no)

Proof. The proof is straightforward and is omitted.

6.3 Extending Marlin

We begin with small changes to Marlin’s relation and arithmetization. These changes have no effect on
Marlin’s security. Then, we extend Marlin to obtain the properties required by Theorem 4.

Restricting the index encoding We will only work with C matrices which are t-diagonal (Definition 11), so we
restrict the encoding of C. We fix both seqK(rowC) and seqK(colC) to be the sequence: ωt, ωt+1, . . . ωn−1, 1, 1,
. . . , 1. Furthermore, we fix seqK(valC) to be the sequence: Mt,t,Mt+1,t+1, . . . ,Mn−1,n−1, 0, 0, . . . , 0.

This encoding captures any t-diagonal C. Since this encoding is a restriction of Marlin’s original en-
coding, it requires no protocol modifications.8

Additional properties To obtain the properties required by Theorem 4, we’ll modify Marlin further. Our
modifications (Construction 3) assume Marlin is compiled with an additive, hiding, and extractable PCS
with ZK-Eval.

Construction 3 Extended Marlin differs from Marlin in two ways:

8 Additionally, we adapt Marlin to target RR1CS-f instead of RR1CS. This can be done in a straight forward manner.
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1. Modify ppA.Index(pp, i, r)→ ik, use randomness r to create hiding commitments to the polynomials that
encode i: {rowM , colM , valM}M∈{A,B,C}.

2. Compile polyIOP ppA.Prove(. . . ) using rerandomization to a standard protocol as described in Theorem 3.

Theorem 7. Extended Marlin satisfied the conditions of Theorem 4.

Proof. The committing property of (ppA.Setup, ppA.Index) follows immediately from that of the PCS.

At a high-level, Extended Marlin achieves index-extended extractability (Definition 6) and honest-
verifier zero-knowledge (Definition 6) through the compilation described in Theorem 3.

6.4 Proof of function relation for t-FT

In this section, we construct a proof of function relation for the t-FT functional set. Let n, t, s ∈ N such that
t, s, s + t ∈ [n]. Let (A,B,C) be an index for the relation RR1CS-f (n, t, s). Our protocol is a polyIOP that
shows that polynomials {rowM , colM , valM}M∈{A,B,C} represent matrices (A,B,C) ∈ t-FT. This requires A
and B to be t-strictly lower triangular and C to be t-diagonal.

t-strictly lower triangular For M ∈ {A,B}, we want to show that rowM and colM encode matrix
M ∈ t-SLT. To do so, Protocol 9 shows:

1. the matrix is strictly lower triangular : for all i ∈ {0, . . . ,m− 1},
logω(rowM (γi)) > logω(colM (γi)) and

2. the top t rows are zero: rowM (K) ⊆ {ωt, . . . , ωn−1}.

To prove the first, we use a discrete-log comparison protocol (Protocol 8) to show (a) that the image of each
polynomial over K is a subset of H and (b) that the discrete-log inequality holds.

To prove the second, we build a polynomial whose image is {ωe : t ≤ e ≤ n− 1} ∪ {0} using a geometric
sequence protocol (Protocol 7). Then, we show that image contains the image of rowM using a subset protocol
(Protocol 4).

Protocol 9 (t-SLT Test)
Relation: {rowM , colM , valM ∈ F(<B)[X] : Encode M ∈ t-SLT}.

1. P interpolates and sends polynomial h such that seqK(h) is:

ωt, ωt+1...., ωn−1, 0, 0, ..., 0

2. P and V run Protocol 7 on h with initial values ωt, 0, multiplicative factor ω, and c1 = n− t, c2 =
m− (n− t).

3. P and V run Protocol 4 between rowM and h.
4. P and V run Protocol 8 between rowM and colM , with parameters (∆,n = |H|) such that ord(∆) =

2n,∆2 = ω.

Soundness By the soundness of Protocol 7, h(K) = {ωe : t ≤ e ≤ n−1}∪{0}. By the soundness of Protocol 4,
we have rowM (K) ⊆ {ωe : t ≤ e ≤ n− 1}. By the soundness of Protocol 8, we have rowM (K), colM (K) ⊆ H
and ∀k ∈ K, logω(rowM (k)) > logω(colM (k)). Therefore, M ∈ t-SLT.
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t-diagonal We want to verify that (rowC , colC , valC) encodes a matrix C ∈ t-Diag. We can restrict the
prover to known rowC and colC polynomials. To do so, we can test for a polynomial h whose seqK(h) is:
ωt, ωt+1...., ωn−1, 1, 1, ..., 1.

Using an equality test over K (Protocol 2), we can test rowC and colC are equal to this polynomial over
K. This implies all entries of C must be at: (ωt, ωt), (ωt+1, ωt+1), ...., (ωn−1, ωn−1), (1, 1). What remains is
to test that the values at coordinates not equal to (1, 1) are nonzero and zero at (1, 1). To do this, we test
identities between valC and a polynomial h2 whose seqK(h2) is: 0, 0, ..., 0, 1, 1, ..., 1. The following is a polyIOP
to test that an encoding represents a matrix M that is t-Diag.

Protocol 10 (t-Diag Test)

Relation:
{

rowM , colM , valM ∈ F(<B)[X] : ∃~v ∈ (F∗)n−t, seqK(valM ) = ~v‖~0

∧ seqK(rowM ) = seqK(colM ) = (ωt, ωt+1, . . . , ωn−1, 1, 1, . . . , 1)
}

These properties imply that M ∈ t-Diag.

1. P interpolates and sends two polynomials h1, h2 such that
– seqK(h1) is the following: ωt, ωt+1...., ωn−1, 0, 0, ..., 0

in which there are m− (n− t) zeroes.
– seqK(h2) is the following: 0, 0, .., 0, 1, 1, ..., 1

in which there are n− t zeroes and m− (n− t) ones.
2. P and V run Protocol 7 on h1 with initial values ωt, 0, multiplicative factor ω, and c1 = n− t, c2 =
m− (n− t).

3. P and V run Protocol 7 on h2 with initial values 0, 1, multiplicative factor 1, and c1 = n − t, c2 =
m− (n− t).

4. Define h := (h1 + h2). P and V run Protocol 2 between pairs (h, rowM ) and (rowM , colM ).

5. P and V run Protocol 2 to check for all k ∈ K: valM (k) · h2(k)
?
= 0.

6. P and V run Protocol 5 to check for all k ∈ K: valM (k) + h2(k)
?

6= 0.

Soundness Soundness of Protocol 7 and Protocol 2 implies that rowM = colM over K and that seqK(rowM ) is
ωt, ωt+1...., ωn−1, 1, 1, ..., 1. This implies all nonzero entries are restricted to coordinates (ωt, ωt), (ωt+1, ωt+1),
...., (ωn−1, ωn−1), (1, 1). By the soundness of Protocol 7, Protocol 2, and Protocol 5, we know seqK(valM ) is
v1, v2, ..., vn−t, 0, 0, ..., 0 where for all i ∈ [n− t], vi ∈ F∗. Thus, the values at coordinates not equal to (1, 1)
are nonzero and zero at (1, 1). This implies M ∈ t-Diag.

The proof-of-function relation We next present the main protocol of this section: a polyIOP to show
that the nine polynomials {rowM , colM , valM}M∈{A,B,C} encode matrices (A,B,C) ∈ t-FT.

Protocol 11 (t-FT Test)
Relation: Rt-FT =

{
(rowM , colM , valM )M∈{A,B,C} ∈ F(<B)[X] : Encode (A,B,C) ∈ t-FT

}
.

1. P and V run Protocol 9 on (rowM , colM , valM ) for M ∈ {A,B}
2. P and V run Protocol 10 on (rowC , colC , valC)

Theorem 8. Protocol 11 is a polyIOP that is a sound and complete interactive argument for Rt-FT

Proof. Completeness and Soundness are immediate from Protocol 9 and Protocol 10. �

The next corollary describes the proof of function relation derived from Protocol 11.
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C = ((1, 2,×), (1, 3,×), (4, 5,+))

x ∈ K γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

w(x) ∈ F(<9)[X] γ3 γ1 γ6 γ0 γ4 γ7 γ2 γ5 γ8

s(x) ∈ F(<3)[X] 1 – – 1 – – 0 – –

cycles of w: (γ0 γ3)(γ1)(γ4)(γ2 γ6)(γ5 γ7)(γ8)
J = {γ0, γ1, γ4} (input representatives)
G = {γ2, γ5, γ8} (all gate output wires)
{PinsIni }i∈[ni] = {{γ0, γ3}, {γ1}, {γ4}}
{PinsOut

i }i∈[ng] = {{γ2, γ6}, {γ5, γ7}, {γ8}}

Fig. 2: A circuit and Plonk arithmetization for ng = 3, ni = np = 3, no = 1.

Corollary 1 (PFR for Marlin). Let Π be the resulting protocol when Protocol 11 is compiled with a hiding,
binding, additive, extractable, and zero-knowledge evaluation PCS with succinct commitments as described in
Theorem 3. Then Π is a secure (i.e., complete, knowledge-sound, and zero-knowledge) PFR for Extended
Marlin. V’s runtime is logarithmic in m (the number of non-zero matrix entries), P’s runtime is quasilinear
in m, and proof size depends only on the security parameter.

7 Functional commitments from Plonk

In this section, we build a PFR for Plonk: a different preprocessing argument. First, we review the index
relation and arithmetization of Plonk [25]. We follow [12], but represent circuit inputs slightly differently.

The Plonk index relation Plonk proves evaluations of arithmetic circuits. Figure 2 will be our running
example: a circuit that computes x1x2 + x1x3. Plonk partitions the ni circuit inputs into np ≤ ni public
inputs (part of the relation instance) and ni − np witness inputs (part of the relation witness). Plonk is a
preprocessing argument for the index relation with

– indices I = C ∈ ACni,ng,no : the circuit being evaluated
– instances X = (~x, ~y) ∈ Fnp × Fno : public inputs and outputs
– witnesses W = ~w ∈ Fni−np : witness inputs

defined by
Rnp,ni,ng,no = {(C, (~x, ~y); ~w) : ~y = C(~x ‖ ~w)}

Plonk preliminaries Plonk assumes the existence of two multiplicative subgroups of F: Kg of order ng and
K of thrice that order, such that γ generates K and γg = γ3 generates Kg. Kg will represent gates indices,
while K will represent pin indices. Each gate has two input pins and one output pin.

The Plonk index key In Plonk, the circuit C is encoded as two polynomials. Recall (Section 2.6) that C
is defined by a tuple (li, ri, si) for each gates i ∈ [ng]. The first polynomial is the selector polynomial : s(X),
which is the unique polynomial of degree less than ng such that for all i ∈ [ng], s(γ

i−1
g ) is 0 when si = +,

and 1 otherwise.
The second is the wiring polynomial. Associate with gate i ∈ [ng]: a left input pin γ3(i−1), a right input

pin γ3(i−1)+1, and an output pin γ3(i−1)+2 (see Figure 2). The union of all gate pins is K, and the wiring
polynomial w(X) permutes K. Informally, w must equate pins that are wired together in C. The permutation
w(X) naturally defines an equivalence relation over K; this relation equates elements in the same cycle of
the unique cycle decomposition of w(X).

For a more formal definition of w, we define the sets pins that are wired together. For input i ∈ [ni],
define

PinsIni = {γ3(j−1) : j ∈ [ng], lj = i} ∪ {γ3(j−1)+1 : j ∈ [ng], rj = i}
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to be the pins wired to input i. For gate i ∈ [ng], define PinsOut
i =

{γ3(i−1)+2} ∪ {γ3(j−1) : j ∈ [ng], lj = i+ ni} ∪ {γ3(j−1)+1 : j ∈ [ng], rj = i+ ni}

to be the pins wired to gate i’s output. For any circuit, these sets partition K. To be a wiring polynomial,
w must induce the same partition of K. That is, if W are the cycles of w, then the following must hold:

W =
{
PinsIni

}
i∈[ni]

∪
{
PinsOut

i

}
i∈[ng]

Finally, let J = {ji : ji ∈ PinsIni }
np

i=1 be a set of representative input pins. Plonk’s index key comprises the
set J and commitments to w(X) and s(X).

The right side of Figure 2 shows G, s, PinsIn, and PinsOut for our example, as well as valid choices of w
and J .

7.1 Plonk Argument (Proving Protocol)

We briefly describe the Plonk argument from [25][12]. The prover interpolates a wire value polynomial
p(X) : K→ F which maps pins to the values they carry. This represents a candidate wire value assignment
by the prover. The prover sends p(X) to the verifier. The Plonk permutation argument (Protocol 3) is used
to convince the verifier that for all k ∈ K, p(k) = p(w(k)). Informally, this argument shows that pins wired
together carry the same value. The verifier must also confirm that the wire value assignment respects the
gate types. The prover and verifier run a zero check for all k ∈ K, (1− s(k))[p(k) + p(γ · k)] + s(k)p(k)p(γ ·
k) − p(γ2 · k) = 0. This shows that the output pin value of every gate is either the sum or product of the
input pin values, depending on the gate type. Thus, p(X) is a valid assignment of the wire values in the
circuit. The verifier must also query p(X) to check that the wire values assigned to the circuit input pins J
match ~x and to circuit output pins (in our example, γ8) match ~y.

7.2 Extending Plonk

Modifying the index encoding The set of input pin representatives J may reveal relationships between the
circuit inputs. To avoid this, the circuit indexing algorithm can be augmented to add prefix dummy gates
which copy values from a fixed set of publicly known, prefix pins J ′ to the underlying input pins J . Thus,
we can remove J from the Plonk index key and treat it as a fixed set of pins.

Additional properties To obtain the properties required by Theorem 4, we’ll modify Plonk as in Extended
Marlin to hide the index (s and w) and compile to a standard protocol.

7.3 Proof of function relation

Functional Set for Plonk We require a functional set for the relation Rnp,ni,ng,no . Informally, we restrict
Plonk to have no witness inputs; thus, the circuit outputs must be a function of the public inputs. Formally,
we fix ni = np, restricting to the relation Rnp,np,ng,no . The functional set is then ACnp,ng,no .

Our approach For s, it suffices to show its image is in {0, 1} on Kg.
It is harder to prove that w is a wiring polynomial. Informally, we must convince the verifier that each

equivalence class induced by the wiring polynomial w contains a gate output or a circuit input declared in
J—but not both. Then, we show that these equivalence classes can be sorted, such that each gate’s input
classes come before that gate’s output class.

In a little more detail, let W = {Wi}
ng+ni

i=1 be the partition of K induced by w and let J be a set of np
input pins, as defined above. Let G = {γ2p : p ∈ Kg} be the subset of pins which are the output of a gate.
Let I = J ∪G. Let α generate F∗, with an order divisible by 2, and let β = α2. Let N = {βi : i ∈ [ng +np]}.
Our protocol will show:
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1. w is a permutation (so partition W is well-defined),
2. There exists a bijection B : I →W such that for all i ∈ I, i ∈ B(i).
3. The W can be topographically sorted, with inputs first.

More precisely one can extract a surjective map v : K→ N such that
(a) For all Wi ∈W , for all elements w,w′ ∈Wi, we have v(w) = v(w′).
(b) seqJ(v) = (βi : i ∈ [np])
(c) For all γ3(i−1)+2 ∈ G (thus, i ∈ [ng]), v(γ3(i−1)+2) = βi+np .
(d) For each gate i, the discrete log of the image of the left and right input pins is less than that

of the output pin. More formally, logβ(v(γ3(i−1))) < logβ(v(γ3(i−1)+2)) and logβ(v(γ3(i−1)+1)) <

logβ(v(γ3(i−1)+2)).
4. s(Kg) ⊆ {0, 1}.

Soundness and extractability

Claim. If the above conditions hold, one can extract from w, s, and v a sequence of ng tuples C =
((li, ri, si))

ng

i=1 such that C is a valid arithmetic circuit on np inputs, and w is a wiring permutation for
it.

Proof. First, we extract a candidate np-input, ng-gate circuit C from the polynomials s and v. Then, we
show that w is a wiring polynomial for the candidate circuit C. Define C as follows. For gate i ∈ [ng], define
that gate by9 (

li = logβ
(
v(γ3(i−1))

)
, ri = logβ

(
v(γ3(i−1)+1)

)
, si = s

(
γig
))

We argue that C is a valid arithmetic circuit with np inputs. By construction, C has ng gates and np
inputs. It suffices to show that for each i ∈ [ng], li, ri are strictly less than i+np and si ∈ {0, 1}. The former
is implied by conditions 3(c-d). The latter is implied by condition 4. Thus, C is valid.

We will show that w is a wiring polynomial for C. It suffices to show that W (the partition induced by
w) and {PinsIni }i∈[ni] ∪ {Pins

Out
i }i∈[ng] are equivalent.

By definition of PinsIni , we know that {PinsIni }i∈[np] = {{γ3(j−1) : j ∈ [ng], lj = i} ∪ {γ3(j−1)+1 : j ∈
[ng], rj = i}}i∈[np]. By the construction of C and 3(b-c), this implies {{PinsIni }}i∈[np] = {{h ∈ K : v(h) =

βi}}i∈[np]. Similarly, it can be shown that {{PinsOut
i }}i∈[ng] = {{h ∈ K : v(h) = βi+np}}i∈[ng]. Thus, by the

definition of N , we have {PinsIni }i∈[ni] ∪ {Pins
Out
i }i∈[ng] = {{h ∈ K : v(h) = b}}b∈N . Let us call this set V .

Since v is a surjective map, each member of V is non-empty, so V is a partition of K. By condition 3(a),
we have for all Wi ∈ W , there exists V ∈ V such that Wi ⊆ V ; that is, that W refines V . By condition
3(b-c), we know that v maps elements of I to distinct elements in N . Therefore, there cannot exist i1, i2 ∈ I
such that v(i1) = v(i2). Thus, by condition 2, there cannot exist W1 6= W2 such that W1,W2 ⊆ V for some
V ∈ V . By the partition lemma (appendix E) this fact and the fact that W refines V implies that W = V .
Thus, w is a valid wiring polynomial for C.

Finally, condition 2 and the definition of I guarantee that J represents all np input wires.

The proof of function relation, in detail Our proof of function relation simply checks the conditions listed
above. Condition 1 is checked with Protocol 12. Condition 2 is checked with Protocol 13 and Protocol 14.
Condition 3 is checked with Protocol 14. Protocol 15 is the complete proof of function relation.

Protocol 12 (w is a permutation on K)
Relation:

{
w ∈ F(<B)[X] : w(K) = K

}
1. Use Protocol 6 on w, g(X) = X to show {{w(k) : k ∈ K}} = {{k : k ∈ K}}.

Completeness and soundness are immediate.

9 The extractor can efficiently compute these discrete logarithms because N is small.
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Protocol 13 (Representative Check)
Let G = {γ2p : p ∈ Kg}, let J ⊆ K, and let W be the partition of K induced by the cycles of w, where
w is a permutation polynomial over K.

Relation: R(J,G) = {w ∈ F(<B)[X] : w is a permutation over K and

∀W ∈W, W ∩ (J ∪G) 6= ∅}

In other words, J ∪G intersects every cycle of w over K.

1. P interpolates and sends a polynomial f ∈ F(<B)[X] that satisfies{
f(k) = 1 for k ∈ I = J ∪G, and

f(k) = α · f
(
w−1(k)

)
for k ∈ K \ I.

(4)

Such an f can be constructed whenever the set I intersects every cycle in w (i.e., I intersects every
set in W ).

2. P interpolates and sends p ∈ F(<B)[X] where ∀k ∈ K: f(k) = p(w(k)).
3. Use Protocol 12 to show w(K) = K.
4. Use Protocol 3 to show f(X) = p(w(X)) over K.
5. Use Protocol 2 to show that for all k ∈ K,(

f(k)− α · p(k)
)
· zG(k) · zJ(k) = 0, (5)

where zG(X) = (X |Kg|−γ2·|Kg|) and zJ(X) =
∏
j∈J(X− j) are the vanishing polynomials on G and

J respectively.
6. Use Protocol 5 to show that for all k ∈ K, f(k) 6= 0.

Completeness We need to show that (5) holds. It suffices to show that for all k ∈ K \ I we have f(k) −
α · p(k) = 0. Since f(k) = p(w(k)) over K, we have p(k) = f(w−1(k)). Thus, it suffices to show that
f(X)− α · f(w−1(X)) = 0 for k ∈ K \ I. Indeed this holds by definition of f in (4).

Soundness Assume for the sake of contradiction that there exists a Wi ∈ W such I ∩ Wi = ∅. Consider
an arbitrary element w ∈ Wi. From the soundness of Protocol 2, we know that f(w) = α · p(w) (since
the vanishing polynomials for I = J ∪ G must be nonzero). By the soundness of Protocol 3, we have
f(X) = p(w(X)) over K, which implies p(X) = f(w−1(X)) over K. Thus, we have f(w) = α · f(w−1(w)).
Since we considered an arbitrary w ∈Wi, for all w ∈Wi, we have f(w) = α · f(w−1(w)).

Pick an arbitrary w0 ∈Wi. Let (w0, w1, ..., wj) for j = |Wi|−1 represent the cycle that contains w0. Since
α generates F∗ and Protocol 5 is sound, we have f(w0) = αa for some a < |F∗|. Inductively, f(wi) = αa+i

for all i ≤ j. Since f(w) = α · f(w−1(w)), we must have f(w0) = α · f(wj) implies αa = αa+j+1. However,
this implies αj+1 = α|Wi| = 1, but since |Wi| � |F∗|, this is a contradiction. Therefore, we must have for all
Wi ∈W , there exists an i ∈ I such that i ∈Wi.

Checking topological order Informally, we must check that the wires encoded by w can be ordered such that
each gate’s inputs come before its outputs. We show this with a mapping v : K → N = {β1, . . . , βng+np}.
The mapping must send the representation of input i ∈ [np] (from J) to βi and the output pin for gate
i ∈ [ng] to βi+np . Furthermore, it must assign the same value to any pins that w connects (i.e., has in the
same cycle). Finally, it must assign a lesser β power to each gate’s input pins than it assigns to the output
pin. The relation for Protocol 14 describes these conditions in detail.
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Protocol 14 (Topological sort)
Let G = {γ2p : p ∈ Kg}, let J ⊆ K, and let W be the partition of K induced by the cycles of w, where
w is a permutation polynomial over K.

Relation: R(J,G) =
{

(v,w ∈ F(<B)[X]) : seqJ(v) = (βi : i ∈ [np]) ∧
∀ γ3(i−1)+2 ∈ G, v(γ3(i−1)+2) = βi+np ∧
∀Wi ∈W,∀w,w′ ∈Wi, v(w) = v(w′) ∧ v(K) = N ∧
∀ i ∈ [ng], logβ(v(γ3(i−1))) < logβ(v(γ3(i−1)+2)) ∧

logβ(v(γ3(i−1)+1)) < logβ(v(γ3(i−1)+2))
}

1. P and V interpolate u(X) ∈ F(<B)[X] such that u(ji) = βi for i ∈ [np], where ji is the ith element
of J , where J has an agreed upon ordering.

2. Use Protocol 2 to check v(X) = u(X) over J .
3. Use Protocol 7 seqG(v) = (βi+np : i ∈ [ng])
4. Use Protocol 3 to show v(w(X)) = v(X) on K.
5. Use Protocol 8 with parameters (α, ng + np + 1) to show logβ(v(X)) < logβ(v(γ2X)) over Kg.
6. Use Protocol 8 with parameters (α, ng + np + 1) to show logβ(v(γX)) < logβ(v(γ2X)) over Kg.
7. Use Protocol 5 to check v(X)− 1 is nonzero over K.

Soundness Step 2 directly implies the first property inR(J,G). From the soundness of Protocol 7, we have the
second property. Step 4 directly implies10 that v(w) = v(w′) for all w,w′ ∈Wi and for all Wi ∈W . For any
γ3(i−1) ∈ Kg, step 5 shows that v(γ3(i−1)) < v(γ3(i−1)+2) and step 6 shows that v(γ3(i−1)+1) < v(γ3(i−1)+2).
From the soundness of Protocol 8, we have v(Kg), v(γKg), v(γ2Kg) ⊆ N ∪ {1}. Because these are the cosets
of Kg in K and by step 7 (Protocol 5), we have v(K) ⊆ N . From steps 2, 3 (Protocol 7), we must have
v(K) = N .

Protocol 15 (Plonk proof-of-function relation)
Relation: RAC = {(w, s ∈ F(<B)[X];C ∈ ACnp,ng,no) : w and s encode C}

1. P interpolates and sends v ∈ F(<B)[X] such that for i ∈ [ng],
– v(γ3(i−1)) 7→ βli

– v(γ3(i−1)+1) 7→ βri

– v(γ3(i−1)+2) 7→ βi+np

2. Use Protocol 2 to show s(X)s(X) = s(X) over Kg.
3. Invoke Protocol 12, Protocol 13, Protocol 14.

Theorem 9. Protocol 15 is a polyIOP that is a sound and complete interactive argument for RAC.

Proof. We prove completeness and soundness.

Completeness Completeness follows immediately from the completeness of protocols Protocol 2, Protocol 12,
Protocol 13, Protocol 14.

Soundness We show that the properties required by our previous circuit extractor are guaranteed:

1. Protocol 12 shows that w is a permutation.
2. Protocol 13 shows

– For all Wi ∈W , there exists i ∈ I such that i ∈Wi.

10 A similar argument was made for the wire value assignment in Plonk [25].
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– |W | ≤ |I| as a corollary.
Protocol 14 shows from the third property of R(J,G) that |v(K)| ≤ |W |. The first and second properties
imply |I| ≤ |v(K)|. Thus, |I| ≤ |W |. Thus, from the corollary above, we must have |I| = |W |. Therefore,
there exists a bijection B : I →W such that for all i ∈ I, i ∈ B(i).

3. Protocol 14 shows W can be topologically sorted.
4. Protocol 2 shows s(Kg) ⊆ {0, 1}, since the only roots of X2 −X = (X − 1) ·X are zero and one.

Thus, by our previous argument, a circuit encoded by w and s can be extracted. ut

The next corollary describes the proof of function relation derived from Protocol 15.

Corollary 2 (PFR for Plonk). Let Π be the standard protocol obtained by compiling Protocol 15 with a
hiding, binding, additive, extractable and ZK-Eval PCS with succinct commitments as described in Theorem 3.
Then, Π is a secure (i.e., complete, knowledge-sound, and zero-knowledge) PFR for Plonk where the prover
time is quasilinear in ng, verifier time is logarithmic in ng and linear in the length of J = |x|, and the proof
size depends only on the security parameter.

8 Conclusion

We defined the concept of a (function-hiding) functional commitment, and showed how to construct such
schemes from a preprocessing argument and a proof of function relation (Theorem 4). In Section 6 we
construct a proof of function relation (PFR) for a subset of Marlin index keys which capture all arithmetic
circuits. In Section 7 we construct a PFR for Plonk index keys. Both protocols are public coin, send a
constant number of polynomials, and make a constant number of queries. By combining these PFRs with
their preprocessing arguments we construct two public-coin functional commitments for arithmetic circuits.
Verification time is logarithmic in the number of gates and linear in the input size, prover time is quasilinear,
proof size is constant, and the evaluation protocols can be made non-interactive using the Fiat-Shamir
heuristic. We hope future work can design efficient proofs of function relation for other zk-SNARKs.
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Appendix

A Definitions

A.1 Evaluation binding

Definition 12. Evaluation Binding For all pairs of PPT adversaries (P1,P2),

Pr

 〈P2(st),VE(pp, c, x, y)〉 = 1 ∧
〈P2(st),VE(pp, c, x, y′)〉 = 1 ∧
y 6= y′

:
pp← Setup(1λ)
(x, y, y′, c, st)← P1(pp)

 ≤ negl(λ)

B polyIOP for image subset

B.1 Multiple Polynomial Subset over K

We will apply a straight forward adaptation to the polyIOP discussed in [24] to check the relation

{f, t1, ..., tc ∈ F(<B)[X] : f(K) ⊆ t1(K) ∪ ... ∪ tc(K)}

We will refer to section 3 of [24] for notation and construction. Let f ∈ Fn and ti ∈ Fd for i ∈ [c]. Let
s ∈ Fn+cd be (f, t1, ..., tc) sorted by (t1, ..., tc). We will update the bivariate polynomials F,G to be:

F (β, γ) := (1 + β)n
∏
i∈[n]

(γ + fi) ·
∏
j∈[c]

[∏
i∈[d−1](γ(1 + β) + tj,i + βtj,i+1)

]
·
∏

i∈[c−1]

[
γ(1 + β) + tj,d + βtj+1,1

]
G(β, γ) :=

∏
i∈[n+cd−1]

(γ(1 + β) + si + βsi+1)

The remaining proof and protocol (polyIOP) from section 3 of [24] follow with only minor modifications.

B.2 Shadow over K

Definition 13. Shadow over K
Let f, g be two polynomials. f is in the shadow of g over K if for all k ∈ K,

f(k) ∈ {g(k), 0}

We present a polyIOP that shows that f is in the shadow of g.

Protocol 16 (Shadow over K)
Relation: {f, g ∈ F(<B)[X] : ∀k ∈ K, f(k) ∈ {g(k), 0}}

1. P interpolates s(X) defined below and sends s to V.

∀k ∈ K, s(k) =

{
1 f(k) = g(k)

0 o.w.
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2. P and V run Protocol 2 to check for all k ∈ K:

s(k)
?
= s(k)s(k), f(k)

?
= g(k)s(k)

Completeness and soundness are immediate.

B.3 Zero-knowledge point equality

For a ∈ F, we present a polyIOP that shows that for polynomials f and g, f(a) = g(a), without revealing
f(a).

Protocol 17 (Point Equality)
Relation: Rpoint(a) = {f, g ∈ F(<B)[X] : f(a) = g(a)}

1. P computes h := f − g, with degree equal to the maximum degree of f and g, and sends h to V.

2. For random c←$ F \K, V checks h(c)
?
= f(c)− g(c) and h(a)

?
= 0

Completeness and soundness are both immediate.

B.4 De-duplication

We present a polyIOP that shows that for polynomials f and g, seqK(f) is seqK(g) with duplicate neighbors
set to zero.

Definition 14. De-Duplication over K
For polynomials f and g, g is the de-duplication of f over K if and only if f(1) = g(1) and for all i ∈ [m−1]

g(γi) =

{
0 f(γi−1) = f(γi)

f(γi) o.w.

Protocol 18 (De-Duplication over K)
Relation: {f, g ∈ F(<B)[X] : g is the de-duplication of f over K}

1. V sends a random challenge c←$ F to P.
2. P and V run Protocol 17 and Protocol 2 to check

f(1)
?
= g(1) (6)

∀k ∈ K, (f(k)− g(k)) · (g(k) + c(f(γ−1k)− f(k)))
?
= 0 (7)

Soundness We prove only a limited notion of soundness: every unique element in the image of f over K
must be contained in the image of g over K. This is the notion we need for future uses of de-duplication.
More formally, we show that the protocol proves that f(K) ⊆ g(K). For any element y ∈ f(K), there exists
a minimal k ∈ K such that f(k) = y (in other words, k ≤ k′ ∈ K for all k′ ∈ K such that f(k′) = y). There
are two cases:

– k = 1: We know that y = f(1) = g(1) ∈ g(K) by the point equality check.
– k 6= 1: Since k is minimal, we must have that f(γ−1k) 6= y = f(k). Then, over the randomness of c,
g(k) + c(f(γ−1k)− f(k)) is non-zero with all but negligible probability. Therefore, to satisfy Equation 7,
we must have g(k)− f(k) = 0. This implies y = g(k) ∈ g(K).
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B.5 Subset over K
We present a polyIOP for verifying that the images of two polynomials f and g satisfy a subset relation. We
impose the extra requirement that 0 6∈ f(K).

Protocol 19 (Subset over K)
Relation: {f, g ∈ F(<B)[X] : f(K) ⊆ g(K) ∧ 0 6∈ f(K)}.

1. P interpolates the following polynomials and sends them to V.
– f ′ such that seqK(f ′) is the sorted version of seqK(f).
– f ′′ be the de-duplication of f ′ over K.
– g′ such that
• g′ is in the shadow of g over K.
• g′(K) \ {0} = f(K)
• Every element in seqK(g′) is unique except for 0.

2. P and V run Protocol 5 to check that f is non-zero on K.
3. P and V run Protocol 6 to check that f ′ and f are equal as multisets.
4. P and V run Protocol 18 (de-duplication) to check that f ′(K) ⊆ f ′′(K).
5. P and V run Protocol 6 to check that f ′′ and g′ are equal as multisets.
6. P and V run Protocol 16 to check that g′ is in the shadow of g over K.

Soundness Consider y ∈ f(K). Per the first multiset equality protocol’s soundness, y ∈ f ′(K). Per the
soundness of de-duplication, y ∈ f ′′(K). Per the second multiset equality protocol’s soundness, y ∈ g′(K).
Then, per the soundness of the shadow protocol, y is 0 or in g(K). However, the non-zero protocol’s soundness
guarantee’s that y is non-zero, so y ∈ g(K).

C polyIOP for permutation composition

We present a polyIOP for the relation

{f, g,w ∈ F(<B)[X] : ∀k ∈ K, f(k) = g(w(k))}

where w is a permutation on K. Our protocol is an adaptation of a similar protocol from [25].

Protocol 20 (Permutation Composition over K)

Relation : {f, g,w ∈ F(<B)[X] : ∀k ∈ K, f(k) = g(w(k))}

where w is known to be a permutation on K (i.e. w(K) = K).

1. V samples and sends β
$←− F∗ \K.

2. Run Protocol 6 to show that the evaluations of w(X)+βf(X) and X+βg(X) are equal as multisets.

Completeness Since f = g ◦ w, for all k ∈ K, the multisets {{(w(k), f(k)) : k ∈ K}} and {{(k, g(k)) : k ∈ K}}
are equal. Thus, {{w(k) + βf(k) : k ∈ K}} and {{k + βg(k) : k ∈ K}} are equal.

Soundness By the soundness of the multiset check, we know

{{w(k) + βf(k) : k ∈ K}} = {{k + βg(k) : k ∈ K}}

Since β was chosen at random, we have

{{(w(k), f(k)) : k ∈ K}} = {{(k, g(k)) : k ∈ K}}

except with negligible probability. Thus, since w is a permutation, we have that f = g ◦ w over K.
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D Additive PCS Scheme with ZK Eval

Marlin [21] modifies the PCS from [33] to obtain an additive, hiding, binding, and extractable PCS with
constant sized commitments. We will use this scheme to obtain a PCS which preserves those properties and
has a HVZK evaluation protocol. To do this, we will modify the ZK evaluation protocol from [14].

Protocol 21 (HVZK Eval)
Given: An additive, hiding, and binding PCS = (Setup,Commit,Verify,Eval). Public inputs (pp, Cf , z, y)
and private prover inputs (f ∈ F(<d)[X], openf ), where openf is the commitment randomness.

1. P samples r(X)←$ F(<d)[X] and computes Cr = Commit(r(X), openr). P sends Cr and r(z) to the
V.

2. V sends random challenge c←$ F to P.
3. We now invoke the additive property of the PCS. P computes s := r + c · f and opens := openr +
c · openf . P and V derive Cs := Cr + c · Cf .

4. P and V run Eval on public inputs (pp, Cs, z, r(z) + c · y) and private prover input (s, opens). V
accepts if Eval accepts.

Lemma 1. (Informal) If Eval is public coin, complete, and knowledge sound, then Protocol 21 is public coin,
complete, knowledge sound, and HVZK.

Proof Sketch Small modifications to proof shown in [14] will suffice. To preserve knowledge soundness (instead
of witness extended emulation), we can replace the extractor with the one from [4].

E Partition Lemma

Lemma 2. Let S and T be partitions of a finite universe U such that S is a refinement of T . If for all pairs
S1 6= S2 ∈ S, there cannot exist T ∈ T such that S1, S2 ⊆ T , then S = T .

Proof. Consider an arbitrary S ∈ S. Since S is a refinement of T , we have there exist T ∈ T such that
S ⊆ T . We would like to show that S = T . Assume for the sake of contradiction, that there exist t ∈ T such
that t 6∈ S. Since S is a partition, this implies t ∈ S′ 6= S ∈ S. By refinement, we know there exists a T ′ ∈ T
such that S′ ⊆ T ′. Since T is a partition, T ′ = T . Thus, we have S′ ⊆ T . By the statement condition, this is
a contradiction and S = T . Thus, we have for all S ∈ S, there exists a T ∈ T such that S = T . This implies
S ⊆ T .

Consider an arbitrary T ∈ T and t ∈ T . Since S is a partition, there exists S ∈ S such that t ∈ S. We
know there exists T ′ = S. Since T is a partition, we have T = T ′. This implies T ∈ S and S = T .
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