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Abstract
Blum, Kalai and Wasserman (JACM 2003) gave the first sub-exponential algorithm to

solve the Learning Parity with Noise (LPN) problem. In particular, consider the LPN
problem with constant noise µ = (1 − γ)/2. The BKW solves it with space complexity
2

(1+ϵ)n
log n and time/sample complexity 2

(1+ϵ)n
log n · 2O(n

1
1+ϵ ) for small constant ϵ→ 0+.

We propose a variant of the BKW by tweaking Wagner’s generalized birthday prob-
lem (Crypto 2002) and adapting the technique to a c-ary tree structure. In summary, our
algorithm achieves the following:

1. (Time-space tradeoff). We obtain the same time-space tradeoffs for LPN and LWE
as those given by Esser et al. (Crypto 2018), but without resorting to any heuris-
tics. For any 2 ≤ c ∈ N, our algorithm solves the LPN problem with time/sample
complexity 2

log c(1+ϵ)n
log n · 2O(n

1
1+ϵ ) and space complexity 2

log c(1+ϵ)n
(c−1) log n , where one can use

Grover’s quantum algorithm or Dinur et al.’s dissection technique (Crypto 2012) to
further accelerate/optimize the time complexity.

2. (Time/sample optimization). A further adjusted variant of our algorithm solves
the LPN problem with sample, time and space complexities all kept at 2

log c(1+ϵ)n
log n ,

saving factor 2Ω( n
1+ϵ ) in time/sample compared to the original BKW, and the variant

of Devadas et al. (TCC 2017). This benefits from a careful analysis of the error
distribution among the correlated candidates, and therefore avoids repeating the same
process 2Ω( n

1+ϵ ) times on fresh new samples.
3. (Sample reduction). Our algorithm provides an alternative to Lyubashevsky’s BKW

variant (RANDOM 2005) for LPN with a restricted amount of samples. In particular,
given Q = n1+ϵ (resp., Q = 2n

ϵ) samples, our algorithm saves a factor of 2Ω(n)/(logn)1−κ

(resp., 2Ω(nκ)) for constant κ→ 1− in running time while consuming roughly the same
space, compared with Lyubashevsky’s algorithm.

We seek to bridge the gaps between theoretical and heuristic LPN solvers, but take a
different approach from Devadas et al. (TCC 2017). We exploit weak yet sufficient conditions
(e.g., pairwise independence), and the analysis uses only elementary tools (e.g., Chebyshev’s
inequality).

1 Introduction
1.1 The LPN problem and the BKW algorithm

The LPN problem with dimension n ∈ N and noise rate 0 < µ < 1/2 asks to recover the s
$←− Fn

2

given an oracle that for each query responds with (ai, 〈ai, s〉+ei) for uniformly random ai
$←− Fn

2
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and Bernoulli distributed error ei, i.e., Pr[ei = 1] = µ. Equivalently, LPN can be rephrased in
the matrix-vector format, i.e., to recover s given (A,A · s + e), where A is a random Q × n
Boolean matrix, e← BQµ , ‘·’ and ‘+’ denotes matrix vector multiplication and bitwise addition
over F2. It is worth mentioning that a candidate solution can be verified with high confidence in
polynomial time and space for any non-trivial noise rate µ ≤ 1/2−1/poly(n). A straightforward
algorithm exhaustively searches for s (or any n-bit substring of e whose corresponding submatrix
of A is invertible), which takes exponential time but consumes only polynomial-size space and
thus can be applied in extreme space-constrained situations.

Blum, Kalai and Wassermann [BKW03] gave the first sub-exponential algorithm (the BKW
algorithm) that solves the LPN problem via an iterative block-wise Gaussian elimination method.
Consider the LPNn,µ problem with dimension n, and noise rate µ = 1−γ

2 . For block size b, and
number of iterations a such that ab = n, the algorithm does the following (see Section 2.3 for
more formal details):

1. Run for a iterations and reduces the dimension by b bits in each iteration (by XORing
LPN sample pairs whose corresponding block sum to zero). This results in samples in the
form of (u1, 〈u1, s〉+ ẽj) = (u1, s1 + ẽj), where s1 is the first bit of s, and ẽj is the sum of
noise from 2a original LPN samples.

2. Repeat step 1 on fresh new LPN samples for m ≈ (1/γ)2
a+1 times, obtaining at least one

candidate (u1, s1 + ẽj) each time.

3. Majority vote on the m samples obtained in step 2, and produce a candidate for s1. Repeat
the process for other bits of s (on previously used samples).

The BKW solves the LPN problem in time T , using space of size M and up to Q samples, and
succeeds with probability P as below

T ≈ 2b · (1/γ)2(a+1)
, M ≈ 2b, Q ≈ 2b · (1/γ)2(a+1)

, P = 1− negl(n) ,

where throughout the paper “≈” denotes the approximate relation that omits a multiplicative
poly(n) factor. For any constant 0 < γ < 1, we set a = logn

1+ϵ and b = (1+ϵ)n
logn such that

T ≈ 2
(1+ϵ)n
logn · 2O(n

1
1+ϵ ), where constant ϵ → 0+. Quite naturally, one may raise the following

questions:

1. (Time-space tradeoff). Is it possible to achieve meaningful time-space tradeoffs for
BKW to deal with the reality of bounded space in practice?

2. (Time/sample optimization). Is it possible to optimize the time/sample without sac-
rificing space, in particular, to eliminate the (1/γ)2

(a+1) factor?

3. (Sample reduction). Is it possible to push the sample complexity to a much lower order
of magnitude than the time/space complexities?

Below we first survey related works and progress made in tacking the above problems fol-
lowed by a summary of our contributions.

1.2 Time-space Tradeoff for BKW
With the recent advancement of the NIST post-quantum cryptography standardization process,
it is increasingly important to give a realistic yet accurate assessment of classic/quantum secu-
rity strength for the LPN/LWE-based crypto-systems, e.g., by using an automated tool that
estimates by extrapolation the concrete security of a crypto-system under specific parameter
choices (e.g., [Mar]).
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However, the huge memory consumption of BKW has become an obstacle for a realistic secu-
rity evaluation of LPN/LWE-based crypto-systems. As discussed in [EKM17], while performing
260 or more steps is considered doable with a reasonable budget, an algorithm consuming a RAM
of size 260 is out of reach and cannot be instantiated in practice. Likewise, in the lattice setting
the enumeration method (e.g., the Kannans algorithm [Kan83] that takes time 2O(n logn) and
space poly(n)) often beats the lattice sieving [LM18,Duc18,Laa15,LdW15] (that takes time and
space 2O(n)) in practice, and there is a renewed interest in the time-space trade-offs, e.g., by
lattice tuple sieving [BLS16,HK17,HKL18].

Esser et al. [EHK+18] introduced the first variant of the BKW with support for time-space
trade-offs, called the c-sum BKW, where 2 ≤ c ∈ N. Initially, it starts with a list of independent
and uniformly random vectors L0 = (a0,1, · · · ,a0,N ), omitting the noisy parity bits for succinct-
ness. It iteratively take sums of c samples from the previous list Li and stores those (that zero
out the (i+1)-th b-bit block) into the next Li+1, until at last it reaches a given target (typically
of Hamming weight 1). The rest steps (repeating the process m times, majority voting, etc.)
are similar to the original BKW. Note that c is the parameter that tunes the tradeoff between
space and time. In particular,

(
N
c

)
increases exponentially with c, so with larger c one may use

a smaller space at the cost of increasing time.
Nevertheless, the output samples during each iteration of the c-sum BKW are somehow

correlated, e.g., a1+a2, a2+a3 and a1+a3 are correlated in that they jointly sum to 0 regardless
of the values of a1,a2,a3. Note that the original BKW resolves the independence issue by using
2b reference vectors (whose i-th block take all values over Fb

2) in each i-th iteration, and XORing
the rest vectors with one of the reference vector (zeroing out the i-th block), which produces
independent vectors for the next iteration. In the generalized c-sum setting [EHK+18], it is
not clear how the independence can be guaranteed to obtain a rigorous analysis of the running
time, space consumption and success rate. Esser et al. [EHK+18] resorted to the independence
heuristic that simply assumes independence among those vectors, and they also provided some
empirical evidences that the results (for certain parameter choices) behave close to the analysis
under the idealized heuristics. We remark that similar independence heuristics were already
used in the optimized analysis of concrete LPN instances (e.g., [ZJW16,BV16,BTV16]).

Under the independence heuristics, Esser et al. [EHK+18] obtained various variants of the
c-sum BKW, such as the naive c-sum BKW, dissection c-sum BKW, tailored dissection c-sum
BKW, and quantum c-sum BKW, as shown in Table 1. The naive c-sum BKW is the most
generic one that admits time-space tradeoffs for arbitrary 2 ≤ c ∈ N, the dissection c-sum BKW
is the time-optimized version of the naive c-sum BKW for c ∈ {(i2 +3i+4)/2 : 0 ≤ i ∈ N}, the
tailored dissection c-BKW is a fine-grained version of the dissection c-sum BKW (by adjusting
the value of β, see also a visual illustration in Fig. 4) that relies on additional heuristics, and
the quantum c-sum BKW is the quantumly accelerated version of the naive c-sum BKW via
the Grover algorithm [Gro96,DH09,BBHT10]. They also applied the c-sum BKW to the LWE
problem [Reg05] and got similar results (see Table 4). We refer to Section 2.4 for more details
about the c-sum BKW algorithm. Looking ahead, we provide unconditional versions of all those
variants without using any heuristics (see Section 3.2 through Section 3.7).

1.3 Time/sample Optimization and Sample Reduction for BKW

As discussed in Section 1.1, the BKW [BKW03] repeats step 1 for (1/γ)2
a+1

= 2O(n
1

1+ϵ ) times
and thus increases the time and sample complexities by the same factor. In fact, step 1 may
have already produced sufficiently many samples (s1 + ẽj), and intuitively one just needs a
majority vote to decode out s1. However, those noise, say ẽj and ẽj′ , are both the XOR sums
of noise from the LPN samples, and they might not be (even pairwise) independent. Levieil
and Fouque [LF06] presented a heuristic method via fast Walsh-Hadamard transform, often
referred to as LF1, that avoids repeating the process many times and recovers multiple secret
bits at the same time. Devadas et al. [DRX17] proposed a (non-heuristic) single-list pair-wise
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Table 1: The time and space complexities of the c-sum BKW [EHK+18] (and our c-sum+ BKW)
for solving the LPNn,µ problem, where Nc = 2

log c
c−1

· n
logn

·(1+ϵ) and constant ϵ > 0.
c-sum (c-sum+)
BKW

Space Time for

Classic Original BKW N2 N2 c = 2
Naive Nc N c−1

c c ≥ 2

Dissection Nc N c−
√
2c

c c = 4, 7, 11, · · ·
Tailored Dissection Nβ

c N c−β
√
2c

c c = 4, 7, 11, · · · β ∈ [1,
√
c√

c−1
]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

iterative collision search method to optimize the BKW, where they show that the distribution
of solutions is close to a Poisson distribution and apply the Chen-Stein method [AGG89] of
the second moment analysis to bound the difference. As a result, their variant solves the
LPN problem (with overwhelming probability) in time T , using space of size M and sample
complexity Q as below

T ≈ 2b · (1/γ)2a , M ≈ 2b · (1/γ)2a , Q ≈ 2b ,

where their sample complexity gets rid of the (1/γ)2
a+1 factor as desired, time complexity is

only mitigated (factor (1/γ)2a+1 squared to (1/γ)2
a), and space complexity even deteriorates by

factor (1/γ)2
a compared to the original BKW.

Lyubashevsky [Lyu05] studied the problem of solving the LPN problem with fewer samples.
In particular, he used Q = n1+ϵ (for constant ϵ > 0) LPN samples as a basis to generate as many
samples as needed, and feed them to the original BKW. In particular, let (A, tT = (sTA+xT))
be the Q LPN samples, where A is the n×Q matrix, and vectors with ‘T’ denote row vectors.
A “re-randomized LPN” oracle take as input (A, tT) and responds with (Ari, tTri = sTAri+
xTri) as the i-th re-randomized LPN sample, where every ri is drawn from the set of length-
Q-weight-w strings uniformly at random. For an appropriate value of w, (A, Ari, xTri) is
statically close to (A, Un, xTri) by the leftover hash lemma [IZ89] with mildly strong noise
xTri. In the end, Lyubashevsky’s variant of BKW solves the LPN problem (with overwhelming
probability) in time T , using space of size M and sample complexity Q as below

T ≈ 2b · (4/γ)2a+2·n/(ϵ logn), S ≈ 2b, Q = n1+ϵ .

For constant 0 < γ < 1, we set a = κ · log log n and b = n
κ log logn for constant 0 < κ < 1 and

thus T = 2
n

κ log logn · 2O(n)/(logn)1−κ , which is optimized when κ → 1−. Let us mention that
Lyubashevsky’s technique [Lyu05] also implies that LPN with Q = 2n

ϵ (constant 0 < ϵ < 1)
samples can be solved in time and space complexity 2O(n/ logn). We refer to Section 4.2 for more
details.

1.4 Our Contributions
In this paper, we consider a problem that can be seen as a variant of Wagner’s generalized
birthday problem [Wag02]. We recall that the generalized birthday problem that, given k
independent lists of i.i.d. uniformly random vectors, challenges to find out k vectors, one from
each list, summing to a specified target, where the k vectors constitute a solution to the problem.
The problem we consider is a special case for k = ca (2 ≤ c ∈ N and a ∈ N) and we additionally
require that the number of solutions found is no less than the size of a single input list (unless
they already constitute all solutions). However, unlike Wagner [Wag02], we only require that
each list consists of pairwise independent (instead of i.i.d.) uniformly random vectors, and that
all the lists are mutually independent.
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As visualized in Fig. 1(b), our algorithm, referred to as the c-sum+ BKW, breaks down the
above problem on ca lists into (ca−1 + · · ·+ c0) subproblems of a much smaller scale, called the
c-sum+ problems. More importantly, we show that as long as the pairwise-independence (for
vectors within each list) and mutual independence (among the lists) are satisfied for the ca lists
at the input level, the conditions will be satisfied by the lists at every other level (e.g., L1,1,L1,2,
L1,3 in Fig. 1(b)). We give analysis of the time, space and success probability without resorting
to heuristics, thank to the pairwise-independence condition.

L0

c-sum

tL1

c-sum

ct τL2

(a) c-sum
BKW [EHK+18]

L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7 L0,8 L0,9

c-sum+ c-sum+ c-sum+

t1L1,1 t2L1,2 t3L1,3

c-sum+

t τL2,1

(b) our c-sum+ BKW (c=3,
t = t1 + t2 + t3)

Figure 1: An illustration of the c-sum BKW [EHK+18] and our c-sum+ BKW.

1. (Time-space tradeoff). Our algorithm admits various time-space tradeoffs for solving
LPN (shown in Table 1) and LWE (see Table 4), same as those achieved by the c-sum
BKW [EHK+18], but without relying on any heuristiscs.

2. (Time/sample optimization). We carefully analyze and bound the error distribution
of the correlated solutions in step 1 (e.g., L2,1 in Fig. 1(b)), and therefore avoid the
“repeat-m-times loop” in step 2. This saves a factor of N2 = (1/γ)2

a+1
= 2Ω( n

1+ϵ
) for small

constant ϵ → 0+ in time and sample complexities compared to the original BKW. Our
algorithm also enjoys a sub-exponential

√
N2 advantage in time and space complexities

compared to the optimized BKW of Devadas et al. [DRX17]. See Table 2 for more details.

3. (Sample reduction). By using pairwise independent samples for the initial lists, we
provide an alternative to Lyubashevsky’s BKW variant [Lyu05] with improved time com-
plexity. In particular, given Q = n1+ϵ (resp., Q = 2n

ϵ) samples and for constant 0 < γ < 1,
our algorithm saves a factor of 2Ω(n)/(logn)1−κ (resp., 2Ω(nκ)) for constant κ → 1− in run-
ning time compared with the counterpart in [Lyu05]. We refer to Table 3 and Section 4.2
for details.

It might seem counter-intuitive that our results listed in Table 2 and Table 3 only depend
on N1 but still needs to satisfy the condition N1 ≈ N2 (or those in Table 3) for optimized
time complexity. As we will see, the condition N1 ≥ N2 (or alike) is translated from that in
Theorem 9 to ensure the correctness of majority voting, and we thus let N1 ≈ N2 for optimized
complexity and fair comparison.

2 Preliminary
2.1 Notation

We use log(·) to denote the binary logarithm. For a ≤ b ∈ N, [a, b]
def
= {a, a + 1, · · · , b} and

[a] := [1, a]. |S| is the cardinality of the set S. For any set S and 0 ≤ s ≤ |S|,
(S
s

)
denotes
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Table 2: The space, time and sample complexities of different variants of the BKW for solving
the LPNn,µ problem with µ = (1− γ)/2, under condition N1 ≈ N2, where ab = n, N1 = 2b and
N2 = (1/γ)2

a+1 disregarding poly(n) factors.
Algorithm Space Time Sample Condition
The original BKW N1 N1 ·N2 N1 ·N2 N1 ≈ N2

Devadas et al.’s [DRX17] N1 ·
√
N2 N1 ·

√
N2 N1 N1 ≈ N2

Ours N1 N1 N1 N1 ≈ N2

Table 3: The space, time and sample complexities of different variants of the BKW for solving
the LPNn,µ problem with µ = (1 − γ)/2, where ab = n, N1 = 2b, N2 = (4/γ)2

a+2·n/(ϵ logn) and
N ′

2 = (4/γ)2
a+2·n1−ϵ .

Sample Algorithm Space Time Condition
n1+ϵ Lyubashevskys [Lyu05] N1 N1 ·N2 N1 ≈ N2

Ours N1 N1 (N1)
log logn ≈ N2

2n
ϵ Lyubashevskys [Lyu05] N1 N1 ·N ′

2 N1 ≈ N ′
2

Ours N1 N1 (N1)
logn ≈ N ′

2

the set of all size-s subsets of S. A list L = (l1, · · · , lN ) is an element from set SN with length
|L| = N . We denote the empty list by ∅ .

For x ∈ Fn
2 and b < n we denote the last b coordinates of x by lowb(x). ui denotes the i-th

unit vector, and 0b denotes the zero vector of dimension b. We use ‘ :=’ to denote deterministic
value assignment. US denotes the uniform distribution over set S. Bµ denotes the Bernoulli
distribution with parameter µ, i.e., for x ← Bµ we have Pr[x = 1] = µ and Pr[x = 0] = 1 − µ.
We use s

$←− S (resp., s ← S) to denote sampling s from set S uniformly at random (resp.,
according to distribution S). For L = (l1, · · · , lN ) with every li uniformly distributed over
Fb
2, we say that L consists of pairwise independent elements if for every 1 ≤ i < j ≤ N the

corresponding (li, lj) is uniform over F2b
2 .

Lemma 1 (Union Bound). For all (possibly correlated) events E1, E2, · · · , Ek over a sample
space, we have Pr[E1 ∪ E2 ∪ · · · ∪ Ek] ≤ Pr[E1] + Pr[E2] + · · ·+ Pr[Ek].

Lemma 2 (Piling-up Lemma). For 0 < µ < 1/2 and random variables e1, e2, · · · , eℓ that are
i.i.d. to Bµ we have Pr[

⊕ℓ
i=1 ei = 1] = 1

2(1− (1− 2µ)ℓ).

Lemma 3 (Chebyshev’s Inequality). Let X be any random variable (taking real number values)
with expectation µ and standard deviation σ (i.e., V ar[X] = σ2 = E[(X − µ)2]). Then, for any
δ > 0 we have Pr

[
|X − µ| ≥ δσ

]
≤ 1

δ2
.

Lemma 4. For pairwise independent real-valued r.v.s X1, · · · , Xm it holds that

V ar
[ m∑

i=1

Xi

]
=

m∑
i=1

V ar
[
Xi

]
.

We defer the proof of Lemma 4 to Appendix C for completeness.
2.2 The Learning Parity with Noise Problem
The LPN problem comes with two versions, the decisional LPN and the search LPN, which are
polynomially equivalent [BFKL93, KS06, AIK09]. Therefore, we only state the search version
for simplicity.

Definition 1 (Learning Parity with Noise). For n ∈ N, s ∈ Fn
2 and 0 < µ < 1/2, denote by

Sample an oracle that, when queried, picks a
$←− Fn

2 , e ← Bµ and outputs a sample of the form
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(a, l = 〈a, s〉+ e). The LPNn,µ problem refers to recovering the random secret1 s given access to
Sample. We call n the dimension, s the secret, µ the error rate, l the label of a and e the noise.

2.3 The Original BKW
The BKW algorithm works in iterations, and during each i-th iteration, it uses 2b reference
vectors (whose i-th block take all values over Fb

2). The rest vectors are added with the cor-
responding reference vector to zero out the i-th block, which yields new labels with doubled
noise (the sum of a reference vector and another) and losing 2b vectors in each iteration. The
procedure repeats for b iterations (i.e., zeros out a · b bits) until reaching a unit vector, say u1,
and let the corresponding label be a candidate for 〈u1, s〉 = s1. One further repeats the above
on new samples and does a majority vote to recover s1 with overwhelming probability. The
procedure to recover other bits of s is likewise.

Theorem 1 (The BKW algorithm [BKW03]). For dimension n, block size b and number of
blocks a such that ab ≥ n, there is an algorithm that succeeds (with an overwhelming probability)
in solving the LPNn,µ problem in time T ≈ 2b · (1/γ)2(a+1) and using space of size M ≈ 2b, where
the noise rate µ = 1/2− γ/2.

Concretely, for constant 0 < ϵ < 1, we set a = logn
1+ϵ and b = (1+ϵ)n

logn such that T and M are

both on the order of 2
(1+ϵ)n
logn

+O(1)n
1

1+ϵ ≈ 2
(1+ϵ+o(1))n

logn .

2.4 The c-sum Problem and c-sum BKW
Given a list of N (typically uniformly random) vectors, the c-sum problem challenges to find
out c of them whose (XOR) sum equals a specified target (typically 0b). Esser et al. [EHK+18]
considered the variant that aims to find sufficiently many (at least N) such solutions. Notice
that N is both the number of vectors in the input list and the amount of solutions produced as
output. As we will later see, this (together with the independence heuristics) enables the c-sum
BKW algorithm [EHK+18] to work from one iteration to another without losing samples.

Definition 2 (The c-sum Problem (c-SP) [EHK+18]). Let b, c,N ∈ N with c ≥ 2. Let L
def
=

(a1, · · · ,aN ) be a list where ai
$←− Fb

2 for all i and let t ∈ Fb
2 be a target. A single-solution of the

c-sum problem is a size-c set L ∈
(
[N ]
c

)
such that⊕

j∈L
aj = t .

A complete-solution is a set of at least N distinct single-solutions.

Esser et al. [EHK+18] proposed a variant of the BKW, referred to as the c-sum BKW, that
admits time-space tradeoffs. This is achieved by generalizing the original BKW, which zeroes
out one block per iteration by taking the sum of two vectors (i.e., 2-sum), to one that generates
new samples that are the sum of c samples from previous iterations for arbitrary 2 ≤ c ∈ N. It
turns out that the c-sum BKW algorithm significantly reduces the space needed, as

(
N
c

)
blows

up exponentially with respect to c, at the cost of increased running time.
We revisit the c-sum BKW in Algorithm 1. For a block size b and j ∈ [a], let the coordinates

[n− jb+ 1, n− (j − 1)b] denote the j-th stripe. The important component of the c-sum BKW
algorithm is the c-sum algorithm (see line 5 and 6) that generates some refresh samples whose
j-th stripe for j ∈ [a−1] (resp. the a-th stripe) is zeros (resp. the first unit vector). If the above
steps generate some label-u1 samples, we pick one of these (u1, bi) sample uniformly at random
(see line 9). Determining the first bit s1 with overwhelming probability needs sufficiently many

1The distribution of the secret is typically uniform over Fn
2 , but it has no effect on the complexity of the

BKW-style algorithms and thus is irrelevant in our context.
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Algorithm 1: The c-sum BKW
Input: access to the oracle LPNn,µ

Output: s ∈ Fn
2

1 a := logn
(1+ϵa) log c

, b := n
a , m := 8(1−µ)n

(1−2µ)2ca
, N := 2

b+c log c+1
c−1 ;

2 for i← 1, · · · ,m do
3 Get N fresh LPN samples and save them in L;
4 for j ← 1, · · · , a− 1 do
5 L← c-sum(L, j, 0b);
6 L← c-sum(L, a,u1);
7 if L = ∅ then
8 Return ⊥;
9 Pick (u1, bi) uniformly from L;

10 s1 ← majorityvote(b1, · · · , bm);
11 Determine s2, · · · , sn the same way;
12 Return s = s1 . . . sn;

independent labels of u1 samples via the for-loop (see line 2). The process of recovering other
bits si is likewise (by reusing the LPN samples).
Independence Heuristic [EHK+18]. However, the output samples of the c-sum algorithm
are somehow correlated and may not feed into the next c-sum algorithm, which requires inde-
pendent samples for its input (see Definition 2). For instance, the output of a 2-sum algorithm
a1+a2, a2+a3 and a1+a3 are correlated in the sense that they sum to 0 regardless of the values
of a1,a2,a3. Esser et al. [EHK+18] introduced the independence heuristic that assumes inde-
pendence among those vectors. In other words, the performance of the c-sum BKW algorithm
was analyzed under the heuristic that these dependencies should only mildly affect the c-sum
BKW algorithm. Similar independence heuristics were already used in the optimized analysis
of concrete LPN instances [ZJW16, BV16, BTV16]. In the special case of the 2-sum BKW,
Devadas et al. [DRX17] proved that these dependencies merely affects the time complexity by
an o(1)-term in the exponent. Nevertheless, prior to our work there’s no formal analysis of the
general case c > 2, except that some empirical evidences (for certain parameter choices) were
provided in [EHK+18].

3 The c-sum+ BKW and Time-space tradeoffs
3.1 The c-sum+ Problem
Before presenting our c-sum+ BKW, we first define the c-sum+ problem below. Unlike the
c-sum problem (see Definition 2) that produces c-sums from a single list, the c-sum+ problem
takes as input c lists and asks to find c vectors, one from each list, that sum to a given target.
Furthermore, we require that the c lists are mutually independent, each consisting of pairwise
independent vectors.

Definition 3 (The c-sum+ Problem (c-SP+)). Let b, c,N ∈ N with c ≥ 2. Let L1, · · · , Lc,
where Li

def
= (ai,1, · · · ,ai,N ) ∈ Fb·N

2 , be c lists such that

1. (Intra-list pairwise independence). Within each list Li, each ai,j is uniformly random,
and every pair of distinct vectors is pairwise independent, i.e., for all j 6= k (ai,j ,ai,k) is
uniformly random over Fb

2 × Fb
2.

2. (Inter-list independence). L1, · · · , Lc, each seen as a random variable, are all mutually
independent.

8



Further, let t ∈ Fb
2 be a target. A solution of the c-sum+ problem is a size-c list K

def
=

(k1, · · · , kc) ∈ [N ]c such that
⊕c

i=1 ai,ki = t.

In fact, we will need the c-sum+ problem to give at least N solutions (instead of a single one)
in order to form another list for the subsequent iterations in our BKW algorithm. As stated
in the lemma below, the pairwise independence already ensures the existence of sufficiently
many (i.e., N) solutions albeit with less strong error probability, i.e., 2/N instead of 2−Ω(N)

assumed under the independence heuristic [EHK+18]. As we will see, 2/N = negl(n) for a
super-polynomial N already suffices.

Lemma 5. For N = 2
b+1
c−1 , the c-SP+ problem (as per Definition 3) has at least N and at most

3N solutions with probability more than 1− 2/N .

Proof. For every K = (k1, · · · , kc) ∈ [N ]c define a 0/1-valued variable XK that takes value
XK = 1 iff

⊕c
i=1 ai,ki = t. Thus, X =

∑
K XK is the number of solutions to the c-sum+

problem, where every K ∈ [N ]c has expectation E[XK ] = 2−b and all the XK are pairwise
independent. Therefore,

Pr
[
X < N or X > 3N

]
≤ Pr

[
|X − E[X]| > N

]
≤ V ar[X]

N2
=

∑
S V ar[XS ]

N2
≤ E[X]

N2
=

2

N
,

where the first inequality is due to N c−1 = 2b+1 and E[X] = N c · 2−b = 2N , and the second
inequality is based on Chebyshev’s inequality, the second equality is due to Lemma 4, and the
last inequality is due to

V ar[Xi] = E[X2
i ]− E[Xi]

2 ≤ E[X2
i ] = E[Xi] .

3.2 The c-sum+ BKW
We introduced the c-sum+ problem in Definition 3, and we show in Lemma 5 that it has
at least N solutions (except with probability 2/N). We defer the concrete algorithms (and
optimizations) for finding out the N solutions to a later stage. Instead, we assume a solver
for c-sum+ with time Tc,N,b and space Mc,N,b, and then show how our c-sum+ BKW algorithm
breaks down the LPN problem into many instances of the c-sum+ problem.

Abstractly speaking, our c-sum+ BKW algorithm employs a c-ary tree of depth a (see
Fig. 2 for an illustration of a = 2, c = 3), where each node represents a list of vectors, and each
parent-node list consists of vectors each of which is the sum of c vectors from its c child nodes
respectively (one from each child node). Further, we assume that for every parent node list{ c⊕

i=1

ai,ki

∣∣∣(k1, · · · , kc) ∈ [N ]c
}

the choices (k1, · · · , kc) of the c-sums are independent of the values of its child lists L1, . . ., Lc,
where Li = (ai,1, · · · ,ai,N ). While this independence assumption may seem contradictory to the
c-sum+ problem that seeks solutions satisfying

⊕c
i=1 ai,ki = t, we stress that this is due to the

simplification of the problem. That is, our c-sum+ BKW algorithm, just like the original BKW,
zeros out the coordinates in iterations: at the j-the iteration, it finds the linear combinations of
the j-th stripes that sum to zero, and produces the same combinations of the (j +1)-th stripes
as the resulting list for the next iteration, i.e.,{ c⊕

i=1

aj+1
i,ki

∣∣∣(k1, · · · , kc) ∈ [N ]c,
c⊕

i=1

aji,ki = t
}

,
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where the choice (k1, · · · , kc) is independent of the set of (j + 1)-th stripe vectors {aj+1
i,k |i ∈

[c], k ∈ [N ]} to be combined.
Under the above simplified model, we have the following lemma that states that the leaf-

level lists satisfy the intra-list pairwise independence and inter-list independence conditions (see
Definition 3), then the conditions will preserved and propagated to all the non-leaf list nodes,
all the way down to the root.

L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7 L0,8 L0,9

c-sum+ c-sum+ c-sum+

t1L1,1 t2L1,2 t3L1,3

c-sum+

t τL2,1

Figure 2: An illustration of the c-sum+ BKW for c = 3, where t = t1 + t2 + t3

Lemma 6 (Pairwise independence preserving). If the leaf-level lists L0,1, . . . , L0,ca are all
mutually independent, and each L0,i consists of pairwise independent vectors. Then, for every
1 ≤ j ≤ a it holds that Lj,1, . . . , Lj,ca−j are mutually independent, and every Lj,i (for 1 ≤ i ≤
ca−j) consists of pairwise independent vectors.

Proof. The proof follows by induction, namely, if the condition holds for level j, then it is also
true for level j + 1. The mutual independence follows from the tree structure, i.e., if Lj,1, . . . ,
Lj,ca−j are all mutually independent, then so are the next-level parents Lj+1,1, . . . , Lj+1,ca−j−1

since each parent only depends on its own children nodes. Moreover, if at level j, Lj,1, . . . ,
Lj,ca−j are all mutually independent and every list Lj,i (for 1 ≤ i ≤ ca−j) consists of pairwise
independent vectors, then at level j+1 we need to show that every list Lj+1,i′ (for i′ ∈ [ca−j−1])
consists of pairwise independent vectors as well. Consider any two vectors from Lj+1,i′ that are
distinct c-sums of its child lists, say

⊕c
ℓ=1 aℓ,kℓ and

⊕c
ℓ=1 aℓ,k′ℓ . Then, there exists at least one

ℓ ∈ [c] such that kℓ 6= k′ℓ and (aℓ,kℓ ,aℓ,k′ℓ) ∼ UF2b
2

(as they are from the same list at level j which
has pairwise independent vectors) and they are independent from other summand vectors in
the c-sum (since the lists at level j are all mutually independent). It follows that (

⊕c
ℓ=1 aℓ,kℓ ,⊕c

ℓ=1 aℓ,k′ℓ) is jointly uniform over F2b
2 and thus are pairwise independent.

We can now reduce the problem of solving LPN to (many instances of) the c-sum+ problem
without relying on any heuristics (thanks to the pairwise independence preserving property by
Lemma 6). The algorithm is formally described in Algorithm 2. For a block size b and j ∈ [a],
let the coordinates [n − jb + 1, n − (j − 1)b] denote the j-th stripe. Our algorithm proceeds
level by level. At the 0-th level, the algorithm gets fresh LPN sample to initialize every list L0,k

for k ∈ [ca] with |L0,k| = N = 2
b+1
c−1 (see line 1). Then, at each j-th level (1 ≤ j ≤ a − 1) our

algorithm invokes c-sum+ that takes as input the lists Lj−1,c(k−1)+1, · · ·Lj−1,ck at the (j−1)-th
level, and produces as output list Lj,k at the j-th level (see lines 4− 6). The execution on the
a-th (root) level is slightly different, i.e., we only need to solve a single instance of the c-sum+

with target u1 (instead of zero), and produces a single solution (instead of N solutions). In
other words, the code at line 10 is somewhat unnecessary in that it first produces N solutions
(stored in La,1) but only (randomly) picks one of them, which is another problem we are going
to tackle in the next section. Finally, we repeat the above many times on fresh LPN samples,
and majority vote to decode out first secret bit. The recovery of other secret bits is likewise
(reusing the samples).
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Algorithm 2: The c-sum+ BKW
Input: access to the oracle LPNn,µ

Output: s ∈ Fn
2

1 a := logn
(1+ϵa) log c

, b := n
a , m := 8(1−µ)n

(1−2µ)2ca
, N := 2

b+1
c−1 ;

2 for i← 1, · · · ,m do
3 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
4 for j ← 1, · · · , a− 1 do
5 for k ← 1, · · · , ca−j do
6 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0

b);

7 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
8 if La,1 = ∅ then
9 Return ⊥;

10 Pick (u1, bi) uniformly from La,1;
11 s1 ← majorityvote(b1, · · · , bm);
12 Determine s2, · · · , sn the same way;
13 Return s = s1 . . . sn;

The c-sum+ algorithm is an important building block of the c-sum+ BKW. We state below
their relations in terms of correctness and complexity.

Theorem 2 (The c-sum+ BKW). The LPNn,µ problem with µ = 1/2 − γ/2 can be solved in
time T and space M with probability P as below

T ≈ Tc,N,b · ca · (
1

γ
)2·c

a
, M ≈Mc,N,b · ca, P ≥ 1− 1

N
· ca · ( 1

γ
)2·c

a · poly(n)− n

2n
,

where Tc,N,b and Mc,N,b are respectively the time and space complexities of the c-sum+ algorithm
that aims for N distinct solutions to the c-sum+ problem with block (target) size b, ab ≥ n, and
N = 2

b+1
c−1 for 2 ≤ c ∈ N.

Notice: for now we omit the sample complexity since Q ≈ T under the scenario of unlimited
samples, as opposed to the setting considered in Section 4.2.

Proof. The c-sum+ algorithm is used to instantiate the c-sum+ subroutine in Algorithm 2. As
discussed in Lemma 5, the c-sum+ problem (implicitly defined in the j-th stripe of samples
and the target vector 0b or ui for i ∈ [b] and j ∈ [a]) has at least N distinct solutions with
probability at least 1 − 2/N . Therefore, the corresponding BKW algorithm aborts with the
probability at most 1

N · c
a · ( 1γ )

2·ca · poly(n) via the union bound (see Lemma 1).
We now analyze the probability of the event that a single bit of the secret (e.g., s1) can

be recovered correctly. Let the labels b1, · · · , bm (generated in line 10) have the corresponding
noise e1, · · · , em, i.e., bi = s1 ⊕ ei for i ∈ [m]. The c-sum+ subroutines are invoked m·ca

c−1 times,
and each final resulting vector (that are a sum of ca initial vectors) bears a noise of rate 1

2−
1
2γ

ca

via the Piling-up Lemma (see Lemma 2). Moreover, e1, · · · , em are all independent. Then, a
single secret bit can be recovered with error rate 1

2n (by a Chernoff Bound). Therefore, the
probability of recovering secret key is

P ≥ 1− 1/N · ca · (1/γ)2·ca · poly(n)− n

2n
.

Since it runs the c-sum+ subroutine ca · ( 1γ )
2·ca · poly(n) times, we have

M ≈Mc,N,b · ca , T ≈ Tc,N,b · ca · (
1

γ
)2·c

a
.
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Next, we show different variants of the c-sum+ BKW via instantiating the corresponding
c-sum+ algorithm.
3.3 Naive c-sum+ BKW Algorithm
Our naive c-sum+ algorithm is showed in Algorithm 3. Similar to the naive approach [EHK+18],
it first enumerates all possible p =

⊕c−1
j=1 aj,ij ∈ Fb

2 for all aj,ij ∈ Lj and j ∈ [c− 1], and checks
whether p⊕ t appears in the sorted list Lc or not, where the target vector t ∈ Fb

2.

Algorithm 3: Naive c-sum+

Input: L1, · · · , Lc ∈ (Fb
2)

N and t ∈ Fb
2, where Lj

def
= (aj,1, · · · ,aj,N ) for j ∈ [c]

Output: S ⊂
(
[N ]
c

)
or ⊥

1 Sort out Lc ;
2 for all V = (i1, · · · , ic−1) ∈ [N ]c−1 do
3 p :=

⊕
j∈[c−1] aj,ij ;

4 for all ic ∈ [N ] satisfying ac,ic = t⊕ p do
5 S ← S ∪ {{i1, · · · , ic}};
6 if |S| = N then
7 Return S;

8 Return ⊥;

Lemma 7. The naive c-sum+ algorithm solves the c-sum+ problem with target length b and list
size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N c−1 · poly(b, c) and space N · poly(b, c), and it returns N

distinct solutions with probability 1− 2/N .

Proof. Sorting out the list Lc is a one-time effort that takes time Õ(N), and enumerating all
possible combinations of the c− 1 lists takes time

N c−1 · poly(b, c) · logN = N c−1 · poly(b, c)

where O(b logN) accounts for the time complexity of the binary search for p⊕t in the sorted Lc.
The algorithm consumes space of size N · poly(b, c) since it only stores up to N solutions.

We obtain Theorem 3 by combining Lemma 7 with Theorem 2.

Theorem 3 (Naive c-sum+ BKW). The LPNn,µ problem with µ = 1/2− γ/2 can be solved in
time T ≈ N c−1·ca·( 1γ )

2·ca and space M ≈ N ·ca with probability P ≥ 1− 1
N ·c

a·( 1γ )
2·ca ·poly(n)− n

2n ,

where ab ≥ n, and N = 2
b+1
c−1 .

Concretely, for constant noise µ = 1/4, we set a = logn
log c(1+ϵ) and b = log c(1+ϵ)n

logn to get

logM =
log c

c− 1
· n(1 + ϵ)

log n
, log T = log c · n(1 + ϵ+ o(1))

log n
, P ≥ 1− negl(n).

3.4 Quantum c-sum+ BKW Algorithm
Following the steps in [EHK+18], we adopt the Grovers algorithm [Gro96] (see Theorem 4) to
quantumly speed up the crucial (and time-consuming) first step in the naive c-sum+. To this
end, we define

ft : [N ]c−1 → {0, 1}, ft : (i1, · · · , ic−1) 7→

{
1, ∃ac,ic ∈ Lc :

∑c
j=1 aj,ij = t

0 otherwise
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Once given (i1, · · · , ic−1) ∈ f−1(1) we can recover all ic such that (i1, · · · , ic) constitutes a
solution to c-sum+ in time Õ(log |L|) from a sorted list Lc.

Theorem 4 (Grover Algorithm [Gro96,DH09,BBHT10]). Let f : D → {0, 1} be a function with
non-empty support. Then, Grover outputs with overwhelming probability a uniformly random
preimage of 1, making q queries to f , where

q = Õ
(√ |D|
|f−1(1)|

)
.

Algorithm 4: Quantum c-sum+

Input: L1, · · · , Lc ∈ (Fb
2)

N and t ∈ Fb
2, where Lj

def
= (aj,1, · · · ,aj,N ) for j ∈ [c]

Output: S ⊂
(
[N ]
c

)
or ⊥

1 Sort out Lc ;
2 for repeat Õ(N) times do
3 (i1, · · · , ic−1)← Groverft ;
4 p :=

⊕
j∈[c−1] aj,ij ;

5 for all ic ∈ [N ] satisfying ac,ic = t⊕ p do
6 S ← S ∪ {(i1, · · · , ic)};
7 if |S| = N then
8 Return S;

9 Return ⊥;

Lemma 8 follows from Theorem 4 and Lemma 5.

Lemma 8. The quantum c-sum+ algorithm solves the c-sum+ problem with target length b and
list size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N

c
2 · poly(b, c) and space N · poly(b, c), and it returns N

distinct solutions with probability 1− 2/N .

Combining Lemma 8 and Theorem 2, we obtain Theorem 5.

Theorem 5 (Quantum c-sum+ BKW). The LPNn,µ problem with µ = 1/2 − γ/2 can be
quantumly solved in time T ≈ N

c
2 · ca · ( 1γ )

2·ca and space M ≈ N · ca with probability P ≥

1− 1
N · c

a · ( 1γ )
2·ca · poly(n)− n

2n , where ab ≥ n, and N = 2
b+1
c−1 .

Again, with noise rate µ = 1/4 we set a = logn
log c(1+ϵ) and b = log c(1+ϵ)n

logn to get

logM =
log c

c− 1
· n(1 + ϵ)

log n
, log T =

c · log c
2(c− 1)

· n(1 + ϵ+ o(1))

log n
, P ≥ 1− negl(n),

where factor c
2(c−1) represents the quantum speedup over the classic algorithm.

3.5 Dissection c-sum+ BKW Algorithm
Esser et al. [EHK+18] borrowed the dissection technique from [SS81,DDKS12] to optimize the
running time of their c-sum algorithm, referred to as dissection c-sum. The dissection c-sum
perfectly fits into our c-sum+ problem even better with only minor adaptions. Below we briefly
introduce the dissection c-sum, and analyze its running time and space consumption in solving
the c-sum+ problem. We defer the redundancy to the appendix and reproduced the (slightly
adapted) proofs for completeness.
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Following [EHK+18] we introduce the join operation (see Definition 4) to facilitate the
description of the dissection c-sum algorithm. We slightly abuse the notation in Fig. 3 by
extending the operation to multiple lists, e.g., ▷◁τ3 operates on L8, L9, L10, L11 with target τ3.
This operation can be implemented in a space friendly way without storing the intermediate
lists. We simply adapt the naive (i+ 1)-sum+ algorithm on lists Lci−1+1, · · · , Lci whose target
vector τi may not be of full length b, in which case the algorithm returns all the combinations
whose lowest |τi|-bit sum is τi.

Definition 4 (Join Operator [EHK+18]). Let d ∈ N and L1, · · · , Lk ∈ (Fd
2)

∗ be lists. The joins
of two and multiple lists are respectively defined as

L1 ▷◁ L2
def
= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2) ,

L1 ▷◁ L2 ▷◁ · · · ▷◁ Lk
def
=

((
(L1 ▷◁ L2) ▷◁ L3

)
· · · ▷◁ Lk

)
.

For t ∈ Fd′
2 with d′ ≤ d, the join of L1 and L2 on target t is defined as

L1 ▷◁t L2
def
= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2 ∧ low|t|(a1 ⊕ a2) = t) .

2-Dissection
4-Dissection

7-Dissection
11-Dissection

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

▷◁τ0▷◁τ1▷◁τ2▷◁τ3

L(11,8) L(7,5) L(4,3) L(2,1)

Figure 3: An illustration of the dissection 11-sum on input lists L11, · · · , L1 that recursively
invokes dissection 7- and 4-sum (in dashed boxes), where ▷◁τ is the join operator (as per Def-
inition 4) and implemented by Naive c-sum+ (as per Algorithm 3), the blank box stores the
intermediate results of ▷◁τj operation, combine results from previous invocations on-the-fly, and
returns the found match through the red dotted arrows.

Definition 5 (The Magic Sequence [DDKS12]). Let c−1
def
= 1 and define the magic sequence

via the recurrence ∀i ∈ N+ ∪ {0} : ci
def
= ci−1 + i+ 1, which leads to the general formula for the

magic sequence:
magic

def
=

{
ci

def
=

(1
2
· (i2 + 3i+ 4)

)}
i∈N+

.

The parameter c of the dissection c-sum can no longer be an arbitrary integer but belongs
to the “magic sequence” (Definition 5), i.e., ci

def
= (i2 + 3i + 4)/2. Fix a certain i (and ci), we

recall the list size ∀j ∈ [cj ] : |Lj | = N = 2
b+1
ci−1 . For convenience, let λ

def
= b+1

ci−1 so that block size
b = (ci − 1)λ− 1. The algorithm employs the meet-in-the-middle strategy with (intermediate)
targets of smaller sizes τj ∈ Fjλ

2 (for j ∈ [i]), and τ0 ∈ Fλ
2 in its iterations.
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We now give a high-level recursive description about the Dissection ci-sum algorithm that
aims to find out N solutions to the ci-sum+ problem for a target t ∈ Fb

2, which recursively
invokes the dissection cj-sum algorithm (j < i) to get all the combinations whose lowest jλ-bit
sum is τj . The base case (i = 0, c0 = 2), i.e., the Dissection 2-sum degenerates into the naive
2-sum+ algorithm with a minor exception that the target τ0 may be not of full length b. We
illustrate the general case with a concrete example (i = 3, c3 = 11) in Fig. 3. Taking as input
lists L1, · · · , Lci and a target t, the algorithm divides the lists into two groups L1, · · · , Lci−1

and Lci−1+1, · · · , Lci , where ci = ci−1 + i+ 1 due to the magic sequence. For each intermediate
target τi ∈ Fi·λ

2 , do the following:

1. Invoke the (adapted) naive (i+1)-sum+ algorithm on lists Lci−1+1, · · · , Lci with the target
vector τi to get all the combinations whose lowest (i·λ)-bit sum is τi. Store all the solutions
in list L(ci,ci−1+1).

2. Invoke the dissection c(i−1)-sum algorithm on lists L1, · · · , Lci−1 with target low(i−1)·λ(τi)⊕
low(i−1)·λ(t). The results are passed to the parent call on-the-fly (see the red dotted line
in Fig. 3), and combined with those in L(ci,ci−1+1), producing only those summing to t as
output.

3. Repeat the above for all possible values of τi ∈ Fi·λ
2 .

On space consumption. We stress that the above provides only an oversimplified description,
and the actual algorithm (see Algorithm 7 and Algorithm 8) is slightly more complicated to
keep the space consumption within O(iN). First, for each 0 ≤ j ≤ i we use L(cj ,cj−1+1) to
store the results of the naive (j+1)-sum+ on lists Lcj−1+1, . . ., Lcj (see the ▷◁τj operation and
the blank boxes in Fig. 3). Second, every single result from L(2,1) is passed to L(4,3), and so
on, all the way to L(ci,ci−1+1) on-the-fly to form the final output (or be discarded if it fails the
checking). In other words, no additional space will be allocated for merging L(2,1) with L(4,3),
and then L(7,5), etc., to avoid a blowup in space consumption. Finally, one can observe that
the intermediate target size τj (0 ≤ j ≤ i) are chosen such that the expected size of L(cj ,cj−1+1)

is N . That is, (j + 1)-sum+ on (j + 1) lists, each of size N = 2λ, yields N j+1 combinations,
each having a chance of 2−|τj | to hit target τj . Thus, we have N j+1/2|τj | = N (more formally
see Lemma 17), and the overall space consumption is O(iN).

The dissection ci-sum+ (Algorithm 7) invokes the interative procedure cj-Dissect for j ≤ i
(Algorithm 8) to solve the ci-sum+ problem for ci ∈ magic. We already show in Lemma 5 that
for any 2 ≤ c ∈ N the problem has at least N solutions (except with probability 2/N). Esser et
al. [EHK+18] showed that the dissection ci-sum+ does an exhaustive search over all solutions.

Lemma 9 (Correctness of ci-Dissect [EHK+18]). For some fixed kj, let aj,kj := Lj(kj) denote
the kj-th element of the list Lj. For every ci ∈ magic, when the ci-Dissect(Lci , · · · , L1, t, outer)
(see Algorithm 8) halts, the set S contains (kci , · · · , k1) ∈ [2λ]ci if and only if

⊕ci
j=1 aj,kj = t.

Compared with the naive c-sum+ algorithm that also exhausts all solutions, dissection
ci-sum+ enjoys optimized time complexity as stated in Lemma 10. Esser et al. [EHK+18] an-
alyzed the ci-Dissect subroutine (essentially the ▷◁τj operation in Fig. 3, see also Algorithm 8)
in terms of expected time and space, and we further give their upper bounds in Lemma 18 and
Lemma 20 to reach a more formal statement in Lemma 10

Lemma 10. For every ci ∈ magic, the Dissection ci-sum+ algorithm solves the ci-sum+ problem
with the target length b and list size N ≥ 2

b+1
ci−1 in time T ≈ N ci−1 and space M ≈ N , and it

returns N distinct solutions with the probability at least 1−O(i)/N .

Proof. Based on Lemma 5, there are at least N distinct solutions with the probability at least
1− 2/N that will be exhaustively recovered by Lemma 9. Note that λ = b+1

ci−1 ≤
b
i as required
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by the ci-Dissect. Based on Lemma 18 and Lemma 20, we have

Pr[M ≤ N · poly(b, ci)] ≥ 1−O(i)/N , Pr[T ≤ N ci−1 · poly(b, ci)] ≥ 1−O(i)/N .

Therefore, the Dissection ci-sum+ algorithm finds N distinct solutions in time T ≈ N ci−1 and
space M ≈ N with the probability at least 1−O(i)/N via the union bound (see Lemma 1).

Combining Lemma 10 and Theorem 2, we obtain Theorem 6.

Theorem 6 (Dissection c-sum+ BKW Algorithm). For any ci ∈ magic, the LPNn,µ problem
with µ = 1/2 − γ/2 can be solved in time T ≈ N ci−1 · cai · ( 1γ )

2·cai and space M ≈ N · cai with

probability P ≥ 1− 1
N · c

a
i · ( 1γ )

2·cai · poly(n)− n
2n , where ab ≥ n, and N = 2

b+1
c−1 .

Concretely, for µ = 1/4, we can set a = logn
log ci(1+ϵ) and b = log ci(1+ϵ)n

logn so that

logM =
log ci
ci − 1

· n(1 + ϵ)

log n
, log T = (1− i

ci − 1
) · log ci ·

n(1 + ϵ+ o(1))

log n
, P ≥ 1− negl(n),

where the i
ci−1 factor represents the optimization over the naive c-sum+ BKW.

3.6 Tailored Dissection c-sum+ BKW

The dissection c-sum+ trades time for space of smaller size Mi ≈ 2

(
log ci
ci−1

)
n(1+ϵ)
logn where ci = (i2 +

3i+4)/2. In practice, it may turn out that the size of actual usable space M ∈(Mi, Mi−1), leaving
an unused space of size (Mi−1 −M). To address this issue, Esser et al. [EHK+18] introduced
the tailored dissection ci-sum technique to enable more fine-grained time-space tradeoffs. That
is, still use N = 2

b+1
ci−1 , but increase the list size 2λ from N to Nβ ≈ M (β > 1) to fully utilize

the available space. However, the optimized running time of their algorithm needs not only the
independence heuristic but also relies on the tailoring heuristic [EHK+18] (see Appendix B),
which postulates that one needs only to go through the first 2y (for y = b − ci−1 · λ + 1)
constraints τi ∈ Fi·λ

2 (in the outmost for-loop Algorithm 8) to recover at least Nβ distinct
solutions (with high probability). In a similar vein, we present an unconditional version called
tailored dissection ci-sum+ that aims for the first Nβ (instead of all) distinct solutions and
halts as soon as 2λ = Nβ solutions are found (see line 9 of Algorithm 8). Instead of relying
on any heuristics, we prove in Lemma 11 unconditionally that the outmost for-loop needs
only 2y iterations for y = b − ci−1 · λ + 1. We defer the proofs of Lemma 11 and Lemma 12
to Appendix B due to the similarities to Lemma 5 and Lemma 10 respectively. Combining
Lemma 12 and Theorem 2, we obtain Theorem 7.

Algorithm 5: Tailored Dissection ci-sum+

Input: Lci , · · · , L1 ∈ (Fb
2)

Nβ and the target t ∈ Fb
2

Output: S ⊂
(
[Nβ ]
ci

)
or ⊥

1 S ← ci-Dissect(Lci , · · · , L1, t, outer) // halt ci-Dissect once |S| = Nβ ;
2 if |S| < Nβ then
3 Return ⊥;
4 Return S;

Lemma 11. For every ci ∈ magic, the first 2y-th iterations of the outmost loop (see line
1) of the ci-Dissect (see Algorithm 8) has at least Nβ distinct solutions and at most 3 · Nβ

distinct solutions with probability 1−O(1)/Nβ, where N = 2
b+1
ci−1 , β ∈ [1, ci−1

ci−1
], λ = β·(b+1)

ci−1 and
y = b− ci−1 · λ+ 1.
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Lemma 12. For every ci ∈ magic, the tailored Dissection ci-sum+ algorithm solves the ci-sum+

problem with the target length b and list size Nβ ≥ 2
β·(b+1)
ci−1 (for β ∈ [1, ci−1

ci−1
]) in time T ≈

N ci−1−(β−1)·i and space M ≈ Nβ, and it returns Nβ distinct solutions with the probability at
least 1−O(i)/Nβ.

Theorem 7 (Tailored Dissection c-sum+ BKW). For any ci ∈ magic, the LPNn,µ problem with
µ = 1/2− γ/2 can be solved in time T ≈ N ci−1−(β−1)·i · cai · ( 1γ )

2·cai and space M ≈ Nβ · cai with

probability P ≥ 1− 1
Nβ · cai · ( 1γ )

2·cai · poly(n)− n
2n , where ab ≥ n, N = 2

b+1
ci−1 and β ∈ [1, ci−1

ci−1
].

Concretely, for µ = 1/4 we can set a = logn
log ci(1+ϵ) and b = log ci(1+ϵ)n

logn so that

logM =
β · log ci
ci − 1

· n(1 + ϵ)

log n
, log T = (1− β · i

ci − 1
) · log ci ·

n(1 + ϵ+ o(1))

log n
, P ≥ 1− negl(n),

where the difference to the dissection c-sum+ BKW was highlighted.

3.7 Time-space Trade-offs for solving LWE
Regev [Reg05] introduced the Learning With Errors (LWE) problem, generalizing LPN over
arbitrarily large moduli in presence of Gaussian-like noise.

Definition 6 (Learning With Errors). Let Dσ be a discrete Gaussian distribution with mean
zero and variance σ2. For n ∈ N, prime p ∈ N, s ∈ Fn

p , denote by Sample an oracle that, when
queried, samples a

$←− Fn
p , e← Dσ and outputs a sample of the form (a, l) := (a, 〈a, s〉+ e). The

LWEn,σ,p problem refers to recovering the random secret s given access to Sample.

Albrecht et al. [ACF+15] adapted the BKW algorithm to solve the LWE problem. Sim-
ilarly, the BKW reduces the dimension of LWE by summing up samples and cancelling out
the corresponding blocks in iterations. The number of samples needed for the majority vote

is m = e
4π2σ22a

p2 after a BKW steps [KF15]. Herold et al. [HKM18] showed that setting
a = (1 − ϵa) log n + 2 log p − 2 log σ for constant ϵa > 0 yields m = e4π

2n1−ϵa and results in
time, space and sample complexities

Õ
(
pb · e4π2n1−ϵa)

= pb·(1+ϵ) = 2
n·log p·(1+ϵ)

logn+2 log p−2 log σ .

Following the steps of Esser et al. [EHK+18], we also generalize the c-sum+ problem to
arbitrary moduli p and employed (slightly tweaked versions of) the aforementioned algorithms
to solve the c-sum+ problem with arbitrary moduli p whose elementary operations (e.g., addition,
sorting and binary search) are now over Fp. Compared with [HKM18], we adjust a by a factor
of log c and set

a =
(1− ϵa) log n+ 2 log p− 2 log σ

log c

for constant ϵa > 0. We summarize the results in Table 4, which are essentially the same as
that of the c-sum BKW for LWE [EHK+18] except that our c-sum+ BKW does not rely on any
heuristics.

4 Optimization and Sample Reduction for BKW
We adjust our dissection 2-sum+ BKW to optimize the time, space and sample complexities
of the original BKW algorithm. Moreover, it can further push the sample complexity to 2n

ϵ

and even n1+ϵ, which also optimize the complexities over those achieved using Lyubashevskys
technique [Lyu05].

17



Table 4: The time and space complexities of the c-sum (c-sum+) BKW algorithms for solving
the LWEn,σ,p problem, where Nc = 2

log c
c−1

· n·log p·(1+ϵ)
logn+2 log p−2 log σ , n is the dimension, and constant ϵ > 0.

c-sum (c-sum+)
BKW

Space Time for

Classic Original BKW N2 N2 c = 2
Naive Nc N c−1

c c ≥ 2

Dissection Nc N c−
√
2c

c c ∈ magic

Tailored Dissection Nβ
c N c−β

√
2c

c c ∈ magic, β ∈ [1,
√
c√

c−1
]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

Table 5: The space, time and sample complexities of different variants of the BKW algorithms
for solving the LPNn,µ problem with µ = (1 − γ)/2, γ ≥ 2−nσ and constant 0 < σ < 1 under
condition N1 ≈ N2, where ab = n, N1 = 2b and N2 = (1/γ)2

a+1 disregarding poly(n) factors for
convenience.

Algorithm Space Time Sample Condition
The original BKW N1 N1 ·N2 N1 ·N2 N1 ≈ N2

Devadas et al.’s [DRX17] N1 ·
√
N2 N1 ·

√
N2 N1 N1 ≈ N2

Our 2-sum+ BKW 2.0 N1 N1 N1 N1 ≈ N2

4.1 Time, Space, and Sample Optimizations
As shown in Table 5, we compare the results of the original BKW, Devadas et al.’s optimized
version [DRX17] and our 2-sum+ BKW 2.0 (stated in Theorem 8).

We know that the last step of the BKW involves balancing the two factors N1 = 2b and
N2 = (1/γ)2

a+1 to roughly the same magnitude given ab = n. Our 2-sum+ BKW 2.0 requires
essentially the same condition, i.e., b = 2a+1 log(1/γ) + O(log n) (as specified in Theorem 8).
Asymptotically, for constant 0 < γ < 1, we typically set a = logn

1+ϵ and b = (1+ϵ)n
logn , and thus our

algorithm speeds up the running time of the original BKW by a factor of 2n
1

1+ϵ while using
roughly the same amount of space, where constant ϵ is arbitrarily close to 0 for optimized time
complexity. Devadas et al. [DRX17] further optimized the running time of the orginal BKW
from N1 ·N2 to N1 ·

√
N2 at the cost of increasing the space complexity from N1 to N1 ·

√
N2.

Thus, the 2-sum+ BKW 2.0 enjoys a sub-exponential factor advantage both in time/space
complexities compared to [DRX17].
Majority voting on correlated samples. The c-sum BKW [EHK+18] and our c-sum+

BKW (Algorithm 2) pick a single sample from La,1 and repeat the process for m ≈ (1/γ)2
a+1

times on fresh LPN samples (see line 2-10 in Algorithm 2). We argue that this step can be
removed with a careful adaption, and therefore reduces the time/sample complexities by factor
2O(n

1
1+ϵ ). Instead, we recover the single bit of secret via a majority voting on the elements

in La,1 (line 7 in Algorithm 6). This is non-trivial since the the noise bits in La,1 are linear
combinations of individual noises of the LPN samples, and thus they are not even pairwise
independent2. We observe that in order to majority-vote for the correct result it suffices that
the resulting noise remains biased-to-zero. For every sample Lj,k we define the corresponding
noise-indicator list Ej,k, whose every i-th element (−1)ei corresponds to the i-th element of Lj,k,
i.e., (ai,ai · s⊕ ei). bias(Ej,k) =

∑|Ej,k|
i=1 (−1)ei refers to the difference3 between the numbers of

2Unlike uniformly random vectors, the linear combinations of i.i.d. biased bits are not pairwise independent,
e.g., e1 + e2 and e2 for e1, e2 ← Bµ with 0 < µ < 0.5.

3Here the formula of bias(Ej,k) is informal, and only serves to explain the necessary and sufficient conditions
for a successful majority voting.
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0’s and 1’s in the noise of Lj,k. Therefore, the majority voting is successful if and only if the
final bias(Ea,1) > 0.
The c-sum+ BKW 2.0 We now describe how to adapt the c-sum+ BKW (Algorithm 6) to
avoid the outmost repeat-m-times loop. The c-sum+ BKW is sample-preserving, i.e., it invokes
subroutines such as the naive c-sum+ (Algorithm 3) that halt as soon as N solutions are found.
In contrast, we let the c-sum+ BKW 2.0 be exhaustive, i.e., the underlying c-sum+ problem
solver (see Algorithm 9) must output all solutions. We start with the initial leaf-level lists
E0,1, · · · , E0,ca with |E0,k| = N and sufficiently large bias(E0,k) for every k ∈ [ca]. Then,
as shown in Lemma 14, for every j ∈ [a] and k ∈ [ca−j ] the |Ej,k| will be bounded within
N(1 ± o(1)) and bias(Ej,k) stays positive. To achieve this, we set N = 2b/(c−1) (instead of
N = 2(b+1)/(c−1)). Consider the c-sum+ problem instance whose input noise-indicator lists
are Ej−1,1, · · · , Ej−1,c and output noise-indicator list Ej,1, whose elements are chosen from
JEj,1

def
= Ej−1,1 ▷◁ · · · ▷◁ Ej−1,c (all possible c-sums). In particular, each element from list

JEj,1 is included into Ej,1 iff the corresponding c-sum+ hits the target, which occurs with
probability 2−b. Further, whether an element in JEj,1 hits the specified target or not is a
pairwise independent event (see Lemma 6). With |Ej−1,k| ≈ N for every k ∈ [c], we have
that |Ej,1| has expected value roughly N c/2b = N and thus remains around N by Chebyshev’s
inequality. We also lower bound the corresponding bias(Ej,1) for every j ∈ [a]. We state the
results in Lemma 14, and prior to that we introduce Lemma 13 as an analogue of the piling-up
lemma that characterizes how the bias is amplified through the c-sum+ operations

Algorithm 6: The c-sum+ BKW 2.0

Input: access to the oracle LPNn,µ

Output: s ∈ Fn
2

1 b := n
a , N := 2

b
c−1 ;

2 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
3 for j ← 1, · · · , a− 1 do
4 for k ← 1, · · · , ca−j do
5 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0

b);

6 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
7 s1 ← majorityvote(b1, · · · b|La,1|);
8 Determine s2, · · · , sn the same way over the same LPN samples;
9 Return s = s1 . . . sn;

Lemma 13. For JEj+1
def
= Ej,k+1 ▷◁ Ej,k+2 · · · ▷◁ Ej,k+c, we have

bias(JEj+1) =

c∏
i=1

bias(Ej,k+i) .

Proof. It follows from the definitions of bias and ▷◁ by rearranging the terms:

bias(JEj+1) =
∑

l1∈[n1],··· ,lc∈[nc]

(−1)e
1
l1 × · · · × (−1)e

c
lc

=
( ∑

l1∈[n1]

(−1)e
1
l1

)
× · · · ×

( ∑
lc∈[nc]

(−1)e
c
lc

)
=

c∏
i=1

bias(Ej,k+i) ,

where we use shorthand ni
def
= |Ej,k+i| for 1 ≤ i ≤ c for notational convenience.

19



Lemma 14. For N = 2
b

c−1 , any 2 ≤ c ∈ N, 0 < ε < 1 and 0 < δ < 1 such that δca
√
Nε ≥ 2ac2a,

if the level-0 lists E0,1, . . ., E0,ca satisfy |E0,k| = N , bias(E0,k) ≥ δN for 1 ≤ k ≤ ca. Then, at
every level j ∈ [a], for every k-th list Ej,k (1 ≤ k ≤ ca−j) we have

Pr
[
bias(Ej,k) ≤

(
δc

j
N − 2j

√
Nc2j

ε

)]
≤ c4j · ε ,

Pr
[∣∣|Ej,k| −N

∣∣ ≥ 2j
√
Nc2j

ε

]
≤ c4j · ε .

Proof. The base case j = 0 holds by assumption, i.e., bias(E0,k) ≥ δN and |E0,k| = N for every
1 ≤ k ≤ ca. We prove the rest by induction, i.e., if it holds for level j, then it also true for level
j + 1. It suffices to consider the first list Ej+1,1 on level j + 1 whose elements are selected from
the set of all c-sum+ of the c lists, i.e., JEj+1,1=Ej,1 ▷◁ · · · ▷◁ Ej,c. With probability at least
1− c4j+1ε, we have by the definition of ▷◁

N c(1− 2jc2j+1

√
Nε

) ≤ N c(1− 2jc2j√
Nε

)c < |JEj+1,1| < N c(1 +
2jc2j√
Nε

)c ≤ N c(1 +
2j+1c2j+1

√
Nε

)

where by Lemma 22 (1+d)c ≤ 1+2cd and (1−d)c ≥ 1−cd for 0 < cd < 1, c ≥ 2. Every element
from list JEj+1,1 has a chance of 2−b to be selected into Ej+1,1 in a pair-wise independent manner
among the elements of JEj+1,1 (see Lemma 6). Thus, the above implies (recall N c−1 = 2b)

Pr
[∣∣E[|Ej+1,1|

]
−N

∣∣ < 2j+1
√
Nc2j+1

ε

]
≥ 1− c4j+1ε .

Similar to the proof of Lemma 5 (except for a different value of N), we have

Pr
[∣∣|Ej+1,1| −N

∣∣ ≥ 2j+1
√
Nc2j+2

ε

]
≤Pr

[∣∣∣|Ej+1,1| − E
[
|Ej+1,1|

]∣∣∣ ≥ 2j+1
√
Nc2j+1(c− 1)

ε

]
+ Pr

[∣∣∣E[|Ej+1,1|
]
−N

∣∣∣ ≥ 2j+1
√
Nc2j+1

ε

]
≤
V ar

[
|Ej+1,1|

]
N/ε2

+ c4j+1 · ε ≤
E
[
|Ej+1,k|

]
N/ε2

+ c4j+1 · ε

≤(1 + o(1))ε2 + 2 · c4j+1 · ε ≤ c4j+3 · ε .

(1)

By Lemma 13 the following holds with probability at least 1− c4j+1ε

bias(JEj+1,1) > δc
j+1

N c
(
1− 2jc2j

δcj
√
Nε

)c ≥ δc
j+1

N c
(
1− 2jc2j+1

δcj
√
Nε

)
,

where the Bernoulli’s inequality (1 − d)c ≥ 1 − cd is applicable since c ≥ 2 and d = 2jc2j

δc
j√

Nε
<

2ac2a

δca
√
Nε
≤ 1. We recall

bias(Ej+1,1)
def
=

|JEj+1,1|∑
l=1

vl · (−1)el

where random variable vl is 1 if the corresponding c-sum+ hits the specified target (so that
the corresponding (−1)el is included in Ej+1,1) or is 0 otherwise. By Lemma 6 all the vl’s
are pairwise independent, each with expectation 2−b, and therefore E[bias(Ej+1,1)] = 2−b ·
bias(JEj+1,1). We have

Pr
[
E
[
bias(Ej+1,1)

]
> δc

j+1
N − 2j

√
Nc2j+1

ε

]
≥ 1− c4j+1ε ,
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and thus
Pr

[
bias(Ej+1,1) ≤ δc

j+1
N − 2j+1

√
Nc2j+2

ε

]
≤Pr

[
bias(Ej+1,1)− E

[
bias(Ej+1,1)

]
≤ 2j

√
Nc2j+1(2c− 1)

ε

]
+ Pr

[
E
[
bias(Ej+1,1)

]
< δc

j+1
N − 2j

√
Nc2j+1

ε

]
≤
V ar

[
bias(Ej+1,1)

]
N/ε2

+ c4j+1 · ε ≤
E
[
|Ej+1,k|

]
N/ε2

+ c4j+1 · ε

≤(1 + o(1)) · ε2 + 2 · c4j+1 · ε ≤ c4j+3 · ε ,

(2)

where the analysis is essential the same as that for bounding |Ej+1,1| except that

V ar
[
bias(Ej+1,1)

]
=

|JEj+1,1|∑
l=1

V ar
[
vl · (−1)el

]
≤

|JEj+1,1|∑
l=1

E
[
vl

]
= E

[ |JEj+1,1|∑
l=1

vl

]
.

We state the optimized algorithm for c = 2 in Theorem 8, and compare it with the original
BKW and the one by Devadas et al. [DRX17] in Table 5.

Theorem 8 (The 2-sum+ BKW 2.0). The LPNn,µ problem with µ = 1/2− γ/2 and γ > 2−b/3

can be solved in time T , space M with probability P as below

T ≈ 2a+b , M ≈ 2a+b , P ≥ 1− 26a · n · ε ,

where ab = n, b > n0.6, and b ≥ 2a+1 log(1/γ) + 6a+ 2 log(1/ε) + negl(n).

Proof. Set the δ in Lemma 14 to γ − 2−
b
2

√
log(1/ε), and we have by Chernoff bound

Pr
[
bias(E0

0,k) ≤ N · δ
]
≤ Pr

[bias(E0
0,k)

N
− γ ≤ (δ − γ)

]
≤ 2−2−b log(1/ε)N = ε ,

where N = 2b for c = 2. The condition δc
a√

Nε ≥ 2ac2a in Lemma 14 is now

b ≥ 2a+1 log(1/δ) + 6a+ 2 log(1/ε)

= 2a+1 log(1/γ) + 6a+ 2 log(1/ε) + 2a+1 log(1 +
2−b/2O(

√
log(1/ε)

γ
))

= 2a+1 log(1/γ) + 6a+ 2 log(1/ε) + 2a−b/6 ·O
(√

(1/ε)
)
.

By Lemma 14 the size of every list Ej,k is at most N +N0.5 · c3a/ε = O(N) with the probability
at least 1− c4a · ε, and thus all lists have size O(N) with the probability at least 1− 25a · n · ε.
Therefore, the 2-sum+ algorithm (see Algorithm 9) exhaustively find all solutions of each 2-sum+

problem instance in time and space complexities at most 2b · poly(n) with probability at least
1−25a ·n ·ε. As for the correctness, the bias of the final list Ea,1 is positive with the probability
at least 1− 24a · ε in order to successfully recover a single bit of the secret. Overall, it recovers
the whole secret correctly with probability more than 1− 24a · n · ε by the union bound.

4.2 Sample Reduction for BKW
Lyubashevsky [Lyu05] introduced the “sample amplification” technique to further push the
sample complexity to Q = n1+ϵ. Let (A, tT = (sTA+xT)) be all the LPN samples one can have,
where A is the n×Q matrix, and vectors with ‘T’ denote row vectors. A “sample amplification”
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oracle take as input (A, tT) and responds with (Ari, tTri = sTAri+ xTri) as the i-th re-
randomized LPN sample, and generate as many LPN sample as needed, where every ri

$←− RQ,w

is drawn from the set of length-Q-weight-w strings uniformly at random. Finally, invoke the
original BKW on the generated samples. In order to make the approach work provably, (A,
Ari, xTri) should be statically close to (A, Un, xTri) by the leftover hash lemma [IZ89], which
requires min-entropy H∞(ri) = log

(
Q
w

)
> n. Therefore, Lyubashevsky [Lyu05] chose w = 2n

ϵ logn

for Q = n1+ϵ.
Our c-sum+ BKW supports sample amplification in a different and slightly more efficient

way. The c-sum+ BKW 2.0 (Algorithm 6) initialize the lists L0,1, . . ., L0,ca , with independent
fresh LPN samples. However, the pairwise independence preserving lemma (Lemma 6) only
requires each L0,k (for k ∈ [2a]) has pairwise independent vectors. Our sample amplification
simply divides A into n × Q

2a sub-matrices A1, · · · , A2a accordingly, and load each L0,k with
distinct w-linear combinations of the (Ak, sTAk + xT

k ), i.e.,

∀k ∈ [2a] : L0,k :=
(
(Akr1, s

TAkr1 + xT
k r1), · · · , (AkrN , sTAkrN + xT

k rN )
)

where r1, · · · , rN are distinct vectors of weight w, and N = 2b ≤
(
Q/2a

w

)
. So far we essentially

override the LPN sample oracle of the c-sum+ BKW 2.0 (line 2 of Algorithm 6), which takes
time and space 2a+b. The rest steps are the same as those in Algorithm 6.

Lemma 15. For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log m

k .

Lemma 16 ( [Lyu05]). If a bucket contains m balls, (12 + p)m of which are colored white, and
the rest colored black, and we select k balls at random without replacement, then the probability
that we selected an even number of black balls is at least 1

2 + 1
2

(
2mp−k+1
m−k+1

)k
.

Theorem 9 (The 2-sum+ BKW 2.0 with fewer samples). The LPNn,µ problem with µ = 1/2−
γ/2 and given up to Q samples can be solved in time T , space M with probability P as below

T ≈ 2a+b , M ≈ 2a+b , P ≥ 1− 26a · n · ε− 2a · 2−Ω(Qγ2

2a
) ,

where a, b, w ∈ N and 0 < ε < 1 satisfy ab = n, Qγ ≥ 2a+2w, and log
(
Q/2a

w

)
≥ b ≥

2a+1w log(4/γ) + 6a+ 2 log(1/ε).

Proof. Let Q′ def= Q/2a, and define E0,k
def
=

(
(−1)xT

kr1 , · · · , (−1)xT
krN

)
. We have by the Chernoff

bound that Pr[|xT
k | > (1/2−γ/4)Q′] ≤ 2−Ω(Q′γ2). Then, by Lemma 15 with probability at least

1− 2−Ω(Q′γ2) and for γ ≥ 4w/Q′

bias(E0,k) ≥ N ·
(2Q′(γ/4)− w + 1

Q′ − w + 1

)w
≥ N ·

(γ
2
− w

Q′

)w
≥ N(

γ

4
)w .

The condition δc
a√

Nε ≥ 2ac2a in Lemma 14 becomes b ≥ 2a+1w log(4/γ) + 6a + 2 log(1/ε),
where we set δ = (γ/4)w. The probability argument (and the rest of the proof) is similar to
that of Theorem 8 by adding the extra term 2a · 2−Ω(Q′γ2).

As shown in Table 6, we compare [Lyu05] with our algorithm for solving LPNn,µ problem
with Q = n1+ϵ, µ = 1/2 − γ/2 and γ ≥ 2−(logn)σ . Lyubashevsky’s technique [Lyu05] requires
log

(
Q
w

)
> n to satisfy the entropy condition of the leftover hash lemma, and thus picks w =

2n/(ϵ log n), a = κ · log log n and b = n
κ log logn for positive constants σ, κ satisfying 0 < κ+σ < 1.

Concretely, consider the extreme case γ = 2−(logn)σ whose running time (omitting poly(n)
factors)

Tn1+ϵ

Lyu05 ≈ 2b · (1/γ)2a·n/ logn ≤ 2
n

κ log logn · 2
n

(logn)1−σ−κ .
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In contrast, our algorithm uses all the w-linear combinations and do not require them to look
jointly independent, and therefore only need log

(
Q′

w

)
≥ b. As a result, for same values a =

κ · log log n and b = n
κ log logn , we let w = 2n/(ϵκ log n log log n) for positive constants κ and σ

satisfying κ + σ < 1. One can verify that the three inequalities (for Qγ, log
(
Q/2a

w

)
, and b) in

Theorem 9 are all satisfied with running time and success probability (where ε = 2− log2 n):

Tn1+ϵ

c-sum+bkw ≈ 2b = 2
n

κ log logn

Pn1+ϵ

c-sum+bkw ≥ 1− 26a · n · ε− 2a · 2−Ω(Qγ2

2a
) = 1− negl(n) .

That is, for the same parameter choices our algorithm saves a sub-exponential multiplicative
factor 2

n
(logn)1−σ−κ over [Lyu05] in running time, where constant 1− σ− κ arbitrarily close to 0

for optimized time complexity. We refer to Table 6 below for a comparison in the general case,
which enjoys (for constant 0 < γ < 1) a sub-exponential factor (4/γ)2

a+2·n/(ϵ logn)/poly(n) =

2Ω(n)/(logn)1−κ speedup in running time without consuming (substantially) more space. Note
that our N1 could be even smaller in magnitude than N2 by using a smaller w and thus produces
less stronger noise for majority voting.

Table 6: The space, time and sample complexities of different variants of the BKW algorithms
for solving the LPNn,µ problem with µ = (1 − γ)/2 and sample complexity Q = n1+ϵ, where
ab = n, N1 = 2b and N2 = (4/γ)2

a+2·n/(ϵ logn) disregarding poly(n) factors for convenience.
Algorithm Space Time Sample Condition
Lyubashevskys [Lyu05] N1 N1 ·N2 n1+ϵ N1 ≈ N2

Ours N1 N1 n1+ϵ (N1)
log logn ≈ N2

Another interesting setting is LPNn,µ with µ = 1/2 − γ/2, γ ≥ 2−nσ , and Q = 2n
ϵ for

constant 0 < ϵ < 1, for which we can keep the time complexity within 2O(n/ logn) as depicted in
Table 7. Lyubashevsky’s technique [Lyu05] picks w = 2n1−ϵ (to satisfy log

(
Q
w

)
> n), a = κ·log n

and b = n
κ logn for positive constants σ, κ and ϵ satisfying σ + κ < ϵ. Concretely, consider the

extreme case γ = 2−nσ whose running time

T 2n
ϵ

Lyu05 ≈ 2b · (1/γ)2a·n1−ϵ ≤ 2
n

κ logn · 2n1−(ϵ−σ−κ)

In contrast, our algorithm uses the same a = κ · log n and b = n
κ logn but set w = 2n1−ϵ/(κ log n),

where positive constants κ, σ and ϵ satisfying σ + κ < ϵ. This meets all the three conditions
(for Qγ, log

(
(Q/2a)

w

)
, and b) in Theorem 9. The resulting running time and success probability

(where ε = 2− log2 n):

T 2n
ϵ

c-sum+bkw ≈ 2b = 2
n

κ logn

P 2n
ϵ

c-sum+bkw ≥ 1− 26a · n · ε− 2a · 2−Ω(Qγ2

2a
) = 1− negl(n) .

That is, for the same parameter choices our algorithm enjoys a sub-exponential factor 2n1−(ϵ−σ−κ)

advantage over [Lyu05] in running time, where constant (ϵ− σ − κ) is arbitrarily close to 0 for
optimized time complexity. We refer to Table 7 below for a comparison in the general case, where
for constant 0 < γ < 1 our algorithm saves a sub-exponential factor (4/γ)2

a+2·n1−ϵ/
poly(n) =

2O(n1−(ϵ−κ)) for arbitrarily small constant (ϵ − κ) with roughly the same space. Note that our
N1 could be even smaller in magnitude than N2, thanks to the smaller w in use.
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Supplementary Material

A The Dissection c-sum+ BKW in Details
The dissection ci-sum+ (Algorithm 7) invokes the interative procedure cj-Dissect for j ≤ i
(Algorithm 8) to fulfill the task, where “inner” indicates that the ci-Dissect was called recursively
by the ci+1-Dissect, and “outer” means that the ci-Dissect was called by the Dissection ci-sum.

Algorithm 7: Dissection ci-sum Algorithm
Input: Lci , · · · , L1 ∈ (Fb

2)
N and t ∈ Fb

2

Output: S ⊂ [N ]ci or ⊥
1 S ← ci-Dissect(Lci , · · · , L1, t, outer) ;
2 if |S| < N then
3 Return ⊥;
4 Return S;

Algorithm 8: ci-Dissect(Lci , · · · , L1, t,pos), where ci ∈ magic

Input: Lci , · · · , L1 ∈ (Fb
2)

2λ where λ ≤ b
i , t ∈ Fb

2 and pos ∈ {inner, outer}
Output: S ⊂

(
[N ]
ci

)
or ⊥

1 for all τi ∈ Fi·λ
2 do

2 L(ci,ci−1+1) ← Lci ▷◁τi (Lci−1 ▷◁ · · · ▷◁ Lci−1+1);
3 for all a(ci−1,1) passed from ci−1-Dissect(Lci−1 , · · · , L1, lowi·λ(t)⊕ τi, inner) do
4 for all a(ci,1) ∈ L(ci,ci−1+1) ▷◁t aci−1,1 do
5 if pos = inner then
6 pass a(ci,1) to ci+1-Dissect;
7 else
8 S ← S ∪ {recover indices(a(ci,1))};

9 if |S| ≥ 2λ then
10 Return S;

11 Return ⊥;

Proof of Lemma 9. We prove it by induction.

1. The base clause i = 1. Assume (k4, k3, k2, k1) ∈ [2λ]4 is a single-solution, i.e., there exists
τ , such that

a4,k4 ⊕ a3,k3 = τ and a2,k2 ⊕ a1,k1 = t⊕ τ .

Therefore, we will store a4,k4 ⊕ a3,k3 in L4,3 (see line 2) if τ1 := lowλ(τ) fixed in line 1. At
the same time, we will pick a2,k2 ⊕ a1,k1 in line 3 since a2,k2 ⊕ a1,k1 ∈ L2 ▷◁lowλ(t)⊕τ1 L1.
Therefore, the solution (k4, k3, k2, k1) is recovered in line 4 and added to S in line 8. If
(k4, k3, k2, k1) ∈ [2λ]4 is not a single-solution, then for some τ , we have

a4,k4 ⊕ a3,k3 = τ and a2,k2 ⊕ a1,k1 6= t⊕ τ .

Thus, when the for-loop (in line 1) with τ1 := lowλ(τ), we store a4,k4 ⊕ a3,k3 in L4,3 (see
line 2). Meanwhile, a2,k2⊕a1,k1 is not be picked in line 3 or line 4 since a2,k2⊕a1,k1 6= t⊕τ .
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2. From the clause i to the clause i+1. (kci+1 , · · · , k1) ∈ [2λ]ci+1 is a solution for target t iff
there exists τ such that

ci+1⊕
j=ci+1

aj,kj = τ and
ci⊕
j=1

aj,kj = t⊕ τ .

If τi+1 := low(i+1)·λ(τ) fixed in line 1, then we will store
⊕ci+1

j=ci+1 aj,kj in Lci+1,ci+1

(see line 2). Meanwhile,
⊕ci

j=1 aj,kj will be picked, because of low(i+1)·λ(
⊕ci

j=1 aj,kj ) =
low(i+1)·λ(t)⊕ τi+1.

□

Lemma 17. For every ci ∈ magic and N = 2λ, in the ci-Dissect (see Algorithm 8), it holds
that

Pr
[
|L(ci, ci−1 + 1)| ≥ 2N

]
≤ 1/N .

Proof. We prove it considering the two cases: i > 0 and i = 0, where the latter (i = 0) is the
same as the case i = 1, and thus it suffices to prove the case i > 0.

For every K = (k1, · · · , ki+1) ∈ [N ]i+1 define a 0/1-valued variable XK that takes value
XK = 1 iff

⊕i+1
j=1 lowi·λ(aj,kj ) = lowi·λ(t). Thus, X =

∑
K XK is the number of solutions to

the c-sum+ problem, where every K ∈ [N ]c has expectation E[XK ] = 2−i·λ and all the XK are
pairwise independent. Therefore,

Pr
[
X > 2N

]
= Pr

[
X − E[X] > N

]
≤ Pr

[
|X − E[X]| ≥ N

]
≤ V ar[X]

N2
=

∑
K V ar[XK ]

N2
≤ E[X]

N2
=

1

N
,

where the first equality is due to N = 2λ and E[X] = N i+1 · 2−iλ = N , and the second
inequality is based on Chebyshev’s inequality, the second equality is due to Lemma 4, and the
last inequality is due to

V ar[Xi] = E[X2
i ]− E[Xi]

2 ≤ E[X2
i ] = E[Xi] .

Lemma 18 (Space Consumption of the ci-Dissect). For every ci ∈ magic, the ci-Dissect (see
Algorithm 8) requires space at most N · poly(b, ci) with the probability at least 1−O(i)/N .

Proof. We only store the result list L(ci, ci−1 + 1) from the join operation in line 2. Based on
Lemma 17, we have Pr

[
|L(ci, ci−1 + 1)| ≥ 2N

]
≤ 1/N . Therefore, these lists can be computed

using space of size at most N · poly(b, ci) (except with probability 1/N), since the entries in
Lci−1 ▷◁ · · · ▷◁ Lci−1+1 is computed on-the-fly and compared against Lci , using the adapted
naive c-sum+ algorithm.

In the base clause i = 1, the join of the lists L1 and L2 also can be computed in space
N · poly(b, ci) with the probability at least 1− 1/N .

Furthermore, other intermediate elements passed from a recursive call (in line 3) are pro-
cessed on-the-fly to the join operation (in line 4) and still on-the-fly passed to the ci+1-Dissect
(in line 6) without additional space. When pos = outer, the result will be dropped or added
to S (see line 8) consuming space at most N · poly(b, ci) with the probability at least 1 − 2/N
based on Lemma 5. In conclusion, the ci-Dissect requires space of size up to N · poly(b, ci) with
the probability at least 1−O(i)/N by a union bound.
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Lemma 19 ( [EHK+18]). For every ci ∈ magic, one iteration of the outmost for-loop (see line
1) of ci-Dissect(· · · , inner) (see Algorithm 8) will return at most 1.5 · 2ci−2·λ elements to the
ci+1-Dissect (in line 6) with the probability at least 1−O(1)/N .

Lemma 19 is special case of Lemma 11 for y = 0, β = 1 with target length (i + 1) · λ, and
thus can be proved following the steps of Lemma 11.

Lemma 20 (Running Time of the ci-Dissect [EHK+18]). For every ci ∈ magic, the ci-Dissect
(see Algorithm 8) runs in time at most 2ci−1·λ ·poly(b, ci) with the probability at least 1−O(i)/N .

Proof. We prove it considering the two cases: pos = inner and pos = outer and the difference
between the two cases is that the latter one should store all result elements, instead of passing
on-the-fly to the ci+1-Dissect (see lines 5-8). The store operation needs time at most 3N with the
probability at least 1−2/N , since the size of result elements can be bounded based on Lemma 5.
Let T outer

ci (resp. T inner
ci ) denote the upper bound of running time of the ci-Dissect(· · · , outer)

(resp. the ci-Dissect(· · · , inner)) with the probability at least 1 − O(i)/N (resp. 1 − O(i)/N).
Thus, T outer

ci ≤ T inner
ci + 3N via the union bound (see Lemma 1).

Here, we first analyse the running time of the ci-Dissect(· · · , inner). We prove it via an
inductive approach.

1. The base clause i = 1. We observe that the for-loop (in line 1) iterates over 2λ values.
And in each iterate, the work includes 2 instances of adapted naive 2-sum+ algorithm and
binary search. Therefore, the time is 22·λ · poly(b, ci).

2. From the clause i to the clause i+1. For any τi+1 ∈ F(i+1)·λ
2 , each iteration of the for-loop

(in line 1) over τi+1 includes

• line 2: an unbalanced join operation on i+2 lists Lci+1 , · · · , Lci+1 is computed in time
2(i+1)·λ · poly(b, ci), since the entries in Lci−1 ▷◁ · · · ▷◁ Lci−1+1 is computed on-the-fly
and compared against Lci , using the adapted naive c-sum+ algorithm.

• line 3: the ci-Dissect(· · · , inner) is called requiring time at most T inner
ci with the

probability at least 1− i/N

• lines 4-6: at most 2·2ci−1·λ partial distinct solutions are returned with the probability
at least 1−O(1)/N , based on Lemma 19.

Disregarding Oh-notation for convenience, we have,

log T inner
ci+1

= log
(
2(i+1)·λ ·max

{
2(i+1)·λ, T inner

ci , 2 · 2ci−1·λ
})

= (i+ 1) · λ+max{(i+ 1) · λ, log T inner
ci , ci−1 · λ+ 1} .

Using the induction hypothesis we have log T inner
ci = ci−1 · λ+ 1. Thus

log T inner
ci+1

= (i+ 1 +max{(i+ 1) · λ, ci−1 · λ+ 1}) .

For i ≥ 1, we have i+ 1 ≤ i+ 1 + 1
2(i

2 − i) = ci−1. Hence,

log T inner
ci+1

= (i+ 1 + ci−1) · λ+ 1

= ci · λ+ 1 .

Therefore, with probability at least 1−O(i)/N , the running time of the ci-Dissect(· · · , inner)
is T inner

ci+1
= 2ci−1·λ ·poly(b, ci) via the union bound (see Lemma 1). Then, we analyze the running

time of the ci-Dissect(· · · , outer). As discussed previously, T outer
ci ≤ T inner

ci + 3N . Therefore,
with the the probability at least 1 − O(i)/N , the running time of the ci-Dissect(· · · , outer) is
T outer
ci+1

= 2ci−1·λ · poly(b, ci).
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Figure 4: The time-space trade-offs for the variants of c-sum BKW ( [EHK+18, Fig. 1]).

B The Tailored Dissection c-sum+ BKW in Details
Tailoring Heuristic [EHK+18]. For every ci ∈ magic, let random variable Zj denote the
number of distinct solutions gained in the j-th iteration of the outmost for-loop of the ci-Dissect
(see line 1 in Algorithm 8) taken over the initial choice of input lists. Esser et al. [EHK+18]
heuristically assume that there exists a polynomial function poly(λ), such that for all J ⊂
{1, · · · , 2iλ} we have

Pr

[∑
j∈J

Zj <
1

poly(λ)
· E

[∑
j∈J

Zj

]]
≤ negl(λ) . (3)

In particular, it follows from Equation 3 that for all ι ≤ 2i·λ we have

Pr

[ ι·poly(λ)∑
j=1

Zj ≥ E
[ ι∑
j=1

Zj

]]
≥ 1− negl(λ) .

Proof of Lemma 11. Assume τ = {τi,1, · · · , τi,2y} is the set of the constraints for the first
2y-th iterations of the outmost loop (see line 1) of the ci-Dissect (see Algorithm 8). For every
K = (kci−1+1, · · · , kci) ∈ [Nβ]i+1 define an indicator variable XK that takes value XK = 1 iff
lowi·λ(

⊕ci
j=ci−1+1 aj,kj ) ∈ τ . Thus, X =

∑
K XK is the sum of the size of the intermediate list

L(ci,ci−1+1) over the constraint set τ , where every K ∈ [2λ]i+1 has expectation E[XK ] = 2y−i·λ

and all the XK are pairwise independent. Therefore, similar with the proof of Lemma 5, we
have

Pr
[∣∣|X| − 2y+λ

∣∣ ≤ 1

4
· 2y+λ

]
≥ 1− 16 · 2−(y+λ)

Let set K def
= {K|K ∈ [2λ]i+1 and XK = 1}. For every L = (l1, · · · lci) ∈ [2λ]ci−1 × K define

an indicator variable that takes value ZL = 1 iff
⊕ci

j=1 aj,lj = t, thus, for every L ∈ [2λ]ci−1 ×K,
we have E[ZL] = 2−b and all the ZL are pairwise independent. Let Z =

∑
L ZL be the number

of distinct solutions obtained in the first 2y-th iterations of the outmost loop of the ci-Dissect.
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Hence, E[Z] = 2ci−1·λ · |K| · 2−b. Therefore, we have

Pr
[∣∣E[Z]− 2Nβ

∣∣ ≤ Nβ/2
]

=Pr
[∣∣E[Z]− 2y+λ · 2ci−1·λ · 2−b

∣∣ ≤ 1

4
· 2y+λ · 2ci−1·λ · 2−b

]
=Pr

[∣∣|X| − 2y+λ
∣∣ ≤ 1

4
· 2y+λ

]
≥ 1− 16 · 2−(y+λ) ≥ 1− 16/Nβ ,

where the first equality is due to y := b−ci−1·λ+1 and 2y+λ·2ci−1·λ·2−b = 2b−ci−1·λ+1+λ+ci−1·λ−b =
2λ+1 = 2Nβ and first inequality is due to y ≥ 0.

Pr
[
|Z − 2Nβ| > Nβ

]
≤ Pr

[
|Z − E[Z]| ≥ Nβ/2

]
+ Pr

[∣∣E[Z]− 2Nβ
∣∣ > Nβ/2

]
≤V ar[Z]

N2β/4
+ 16/Nβ =

∑
L V ar[ZL]

N2β/4
+ 16/Nβ ≤

∑
L E[ZL]

N2β/4
+ 16/Nβ ≤ 42/Nβ

where the second inequality is by Chebyshev’s inequality, and the first equality is due to that
for pairwise independent r.v.s Z1, · · · , Zm

V ar[

m∑
i=1

Zi] =

m∑
i=1

V ar[Zi] ,

the third inequality is due to

V ar[Zi] = E[Z2
i ]− E[Zi]

2 ≤ E[Zi]

and the fourth inequality is due to Pr
[∣∣E[Z]− 2Nβ

∣∣ ≤ Nβ/2
]
≥ 1− 16/Nβ. □

Proof of Lemma 12. Let λ = β·(b+1)
ci−1 as defined in Algorithm 8. Since the tailored Dissection

ci-sum+ algorithm (see Algorithm 5) only invokes the ci-Dissect, then the analysis of the space
and time complexities is similar with that of the ci-Dissect. Hence, similar with the proof of
Lemma 18, we have

Pr[M ≤ Nβ · poly(b, ci)] ≥ 1−O(i)/Nβ ,

since the size of intermediate list and result elements can be bounded by Lemma 17 and
Lemma 11.

Let T tailored
ci (resp. T inner

ci ) denote the upper bound of running time of Algorithm 5 (resp.
the ci-Dissect(· · · , inner)) with the probability at least 1−O(i)/Nβ (resp. 1−O(i)/Nβ). Based
on the analysis of running time of the ci-Dissect (see Lemma 20), we can obtain that

log T inner
ci = ci−1 · λ+ 1 .

Based on Lemma 11, Algorithm 5 halts in the first 2y-th iterations of the outmost loop (see
line 1) of the ci-Dissect (see Algorithm 8) and at most 3Nβ distinct solutions are returned with
the probability at least 1−O(1)/Nβ. Therefore,

log T tailored
ci = max{y + log T inner

ci−1
, log(3Nβ)} .

Based on Nβ = 2λ, log T inner
ci−1

= ci−2 · λ+ 1 and y := b− ci−1 · λ+ 1, we have

log T tailored
ci = max{b− ci−1 · λ+ ci−2 · λ+ 2, λ+ log 3}

= b− i · λ+ 2

Further, because of λ = β·(b+1)
ci−1 (i.e., b+ 1 = (ci−1)·λ

β ), then

log T tailored
ci =

(ci − 1)λ

β
− i · λ+ 1 .
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Based on λ = β · logN , we have T tailored
ci = N ci−1−(β−1)·i · poly(b, ci).

Therefore, the tailored Dissection ci-sum+ algorithm finds Nβ distinct solutions in time
T = N ci−1−(β−1)·i · poly(b, ci) and space M = Nβ · poly(b, ci) with the probability at least
1−O(i)/N via the union bound (see Lemma 1).

□

C Algorithms, Lemmas and Proofs
Lemma 21 (Chernoff Bound). Let X1, · · · , Xn be independent variables with 0 ≤ Xi ≤ 1 for
all 1 ≤ i ≤ n, denote µ = E[(

∑n
i=1Xi)/n]. Then, for any ϵ > 0

Pr
[∣∣∑n

i=1Xi

n
− µ

∣∣ > ϵ
]
< 2−ϵ2·n .

Proof of Lemma 4. We have

V ar
[ m∑

i=1

Xi

]
= E

[
(

m∑
i=1

Xi)
2
]
− E

[ m∑
i=1

Xi

]2
=

m∑
i=1

(E[X2
i ]− E[Xi]

2) =

m∑
i=1

V ar[Xi]

where we recall E[Xi ·Xj ] = E[Xi] · E[Xj ] for independent Xi and Xj . □

Lemma 22. For 0 < d < 1/c and 2 ≤ c ∈ N we have (1 + d)c ≤ 1 + 2cd, and (1− d)c ≥ 1− cd.

Proof. The second follows from Bernoulli’s inequality, and the first is due to

(1 + d)c = 1 + cd(1 +
(c− 1)

2!
d+

(c− 1)(c− 2)

3!
d2 + · · ·+ (c− 1)(c− 2) · · · 1

c!
dc−1)

≤ 1 + cd(1 +
1

2!
+ · · ·+ 1

c!
)

≤ 1 + cd(1 +
1

2× 1
+ · · ·+ 1

c(c− 1)
)

= 1 + cd(2− 1

c
) ≤ 1 + 2cd .

Algorithm 9: The exhaustive c-sum+

Input: Lc, · · · , L1 ∈ (Fb
2)

N and t ∈ Fb
2, where Lj

def
= (aj,1, · · · ,aj,N ) for j ∈ [c]

Output: S ⊂
(
[N ]
c

)
1 Sort out Lc ;
2 for all V = (i1, · · · , ic−1) ∈ [N ]c−1 do
3 s =

⊕
j∈[c] aj,ij ;

4 for all ic ∈ [N ] satisfying ac,ic = t⊕ s do
5 S ← S ∪ {{i1, · · · , ic}};

6 Return S;
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